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Massive and massless monopoles with non-Abelian magnetic charges
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We use the multimonopole moduli space as a tool for studying the properties of BPS monopoles carrying
non-Abelian magnetic charges. For configurations whose total magnetic charge is purely Abelian, the moduli
space for non-Abelian breaking can be obtained as a smooth limit of that for a purely Abelian breaking. As the
asymptotic Higgs field is varied toward one of the special values for which the unbroken symmetry is enlarged
to a non-Abelian group, some of the fundamental monopoles of unit topological charge remain massive but
acquire non-Abelian magnetic charges. The BPS mass formula indicates that others should become massless in
this limit. We find that these do not correspond to distinct solitons but instead manifest themselves as “non-
Abelian clouds” surrounding the massive monopoles. The moduli space coordinates describing the position
and U1) phase of these massless monopoles are transformed into an equal number of non-Abelian global
gauge orientation and gauge-invariant structure parameters characterizing the non-Abelian cloud. We illustrate
this explicitly in a class of Sp([¥) examples for which the full family of monopole solutions is known. We
show in detail how the unbroken symmetries of the theory are manifested as isometries of the moduli space
metric. We discuss the connection of these results to the Montonen-Olive duality conjecture, arguing in
particular that the massless monopoles should be understood as the duals to the massless gauge bosons that
appear as the mediators of the non-Abelian forces in the perturbative §&03666-282(196)00122-1

PACS numbdss): 11.15.Kc, 14.80.Hv

[. INTRODUCTION ply a time-dependent global non-Abelian gauge rotation to
obtain a dyonic object carrying both electric and magnetic

Magnetic monopoles have been the object of intense MAon-Abelian charges are frustrated by the nonnormalizability

teres.t ever since it was shown that they can arise as c]assic certain zero modeE3] and, at a deeper level, by the in-
;olutlong in sppntaneously proken gauge .theo[rlés This ability to define global non-Abelian charge in the presence of
interest is due in part tp their role as pr_edlcted, althoug_h a8 monopole[4,5]. Also, Brandt and Neri, and Colemd48]
yet undiscovered, particles that occur in all grand unifiedhaye shown that, regardless of the physics that governs the
theories. Beyond their specific phenomenological implicastrycture of their core, monopoles carrying more than a mini-
tions, however, monopoles are of interest as examples Ghal non-Abelian magnetic charge are unstable against decay
classical solitons. Like all solitons, they give rise after quan-into minimally charged objectsThis result does not apply
tization to a type of particle that can be seen as complemern the BPS limit) There are other new phenomena suggested
tary to those that arise as quanta of the elementary fields. Th®y the possibility of electromagnetic duality. In particular,
complementary nature of solitons and elementary quanta isne would expect the massless electrically charged gauge
particularly striking in theories with unbroken(l) gauge bosons to have magnetic counterparts. Although duality
symmetry, since Maxwell's equations are invariant under avould predict that these should be massless, it is not obvious
duality that interchanges magnetic and electric charges. Thigow to obtain a zero energy soliton; one of our goals will be
idea is made more concrete in the conjecture of Montonef© gain more insight into the properties of these objects.
and Olive[2] that in certain theories there might be an exact We work with an adjoint representation Higgs fieldin
electromagnetic duality that exchanges solitons and elemefthe Bogomol'nyi-Prasad-SommerfielBPS limit [7] in
tary quanta, and weak and strong coupling. which the scalar field potential is ignored and a nonzero

In this paper we will be concerned with monopoles whoseHiggs expectation value is imposed as a boundary condition
magnetic charge has a non-Abelian component, i.e., thosat spatial infinity. In this limit static monopole solutions obey
whose long-range magnetic field transforms nontrivially un-the first order equations
der an unbroken non-Abelian subgroup of the gauge symme-
try of the theory. Just as elementary quanta carrying non- Bi=D;® . (1.7
Abelian electric-type charges display a much richer range of
phenomena than those with purely Abelian charges, there aigecause the Higgs field is massless in the BPS limit, it me-
some curious new properties that arise with non-Abeliardiates a long-range force. For static monopoles, this force
magnetic charges. Some of these are associated with tlxactly balances their magnetic force.
long-distance behavior of these monopoles. Attempts to ap- We also use the moduli space approximafi8h in which

the dynamics of the many degrees of freedom of the soliton
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solution is effectively reduced to that of a small number ofvalue. For configurations whose total magnetic charge ac-
collective coordinateg;. For BPS monopoles, the absence quires a non-Abelian component when one passes from the
of static interactions implies that the collective coordinateMSB to the NUS case, one encounters various pathologies,
Lagrangian consists only of a kinetic energy term, which carof which the behavior of the massless monopoles described

be written in the form above is just one example. To avoid these difficulties, we use
o the approach of Ref$5,17] and consider only combinations
L=%9ij(Z)ZiZ,—, (1.2 of monopoles whose non-Abelian charges cancel. As we

shall see, for such “magnetically color-neutral” combina-
whereg;; may be interpreted as a metric on the moduli spacgions the approach to the NUS case is quite smooth.
spanned by the; . If the monopole solutions are known for Each such combination of NUS magnetic charges is the
arbitrary values of the collective coordinates, then the modullimit of a unique set of MSB magnetic charges. Index theory
space metric can be obtained in a straightforward mannenethods reveal that the moduli spaces for the two cases have
from the zero modes about these solutions. Even if the gerthe same dimension. It therefore seems quite plausible that
eral solution is not known, as is usually the case, it is somethe moduli space metric for the NUS case should be simply
times possible to determine the moduli space metric. Thishe appropriate limit of the metric for the corresponding set
was first done by Atiyah and Hitchif@], who found the of MSB charges.
two-monopole moduli space metric for the case of(®U In Sec. Il we test this explicitly for an example with
broken to W1). Recently, the metric for two monopoles in a gauge group S@®), with MSB and NUS symmetry break-
theory with an arbitrary group broken to a purely Abelianings to U(1)xU(1) and SU(2)X U(1), respectively. In the
subgroup was founfil0-12. Finally, in Ref.[13] we pro-  former case there are two fundamental monopole solutions.
posed a family of metrics for the moduli spaces of a someBecause the sum of the magnetic charges of these two re-
what larger class of multimonopole solutions in higher rankmains purely Abelian as one passes to the NUS case, the
gauge group$. solutions containing two distinct fundamental monopoles are
These last results are the starting point for our presengrecisely the sort of color-neutral combinations that we want.
investigation. We begin in Sec. Il by reviewing some of theFor the MSB case, the metric for the corresponding eight-
properties of BPS monopoles. An adjoint Higgs field candimensional two-monopole moduli space is known from the
break a rankr gauge groupG to either Ul)" or to  results of Ref.[10]. For the NUS case, the full eight-
KXU(1) 7% whereK is a semisimple group of rank<r. parameter family of solutions was found some time g
The former case, which we will refer to as maximal symme-We use these to calculate the NUS moduli space metric di-
try breaking(MSB), occurs for generic values @b. There rectly and verify that it is indeed the expected limit of the
are r topologically conserved charges, one for eacfi)U MSB metric.
factor. Associated with these arefundamental monopoles, Despite this smooth behavior of the metric, the interpre-
each carrying a single unit of one of these topologicaltation of the coordinates on the moduli space is quite differ-
charges; all other BPS solutions can be understood as multent for the cases of Abelian and non-Abelian symmetry
monopole solutions containing appropriate humbers of thdéreaking. In the MSB case the generic solution has a natural
various fundamental monopoles. interpretation in terms of two widely separated monopoles,
The latter case, with a non-Abelian unbroken symmetryeach of which is specified by the three spatial coordinates of
(NUS), occurs for special values df. For these values some its center and a single () phase angle. As the NUS limit is
of the fundamental monopoles of the MSB case survive agpproached, one of the fundamental monopole solutions re-
massive solitons but acquire non-Abelian magnetic charge itains its nonzero mass and finite core radius. The mass of the
the sense that their long-range magnetic field has nonvanisiether fundamental monopole approaches zero while, as noted
ing components irk. Taken at face value, the BPS massabove, its radiusin the absence of any other monopoles,
formulas indicate that certain other fundamental MSB monotends to infinity. However, the behavior of this massless
poles (also with non-Abelian magnetic chajgdoecome monopole is modified dramatically by the presence of a mas-
massless in the NUS limit; these are just the duals to theive monopole.
massless gauge bosons that were mentioned above. Their This can be seen by considering an MSB solution contain-
interpretation is complicated by the fact that as the masslesag two such monopoles separated by a distancéhat is
limit is approached the core radii of the corresponding clasmuch larger than either of their core radii. As the NUS limit
sical monopole solutions tend to infinity while at the sameis approached, the core of the would-be massless monopole
time the fields all tend toward their vacuum values. expands until its radius becomes comparable tolt then
In this paper we investigate the properties of these nonbegins to lose its identity as an isolated soliton and instead is
Abelian monopoles by following the behavior of MSB solu- manifested as a “non-Abelian cloud” of radiusrg sur-
tions as the asymptotic Higgs field is varied toward the NUSrounding the massive monopole. Within this cloud there is a
Coulomb magnetic field corresponding to a combination of
Abelian and non-Abelian magnetic charge, but the non-
2In a recent paper, Murrajl4] has shown that these metrics co- Abelian component disappears foer,. In the NUS non-
incide with those on the space of Nahm d§it&] for the unitary ~ Abelian limit, one of the position coordinates of the massless
gauge groups. More recently, Chalmgt$] has given a proof that monopole is transformed into a parameter specifying the ra-
they are the only smooth hyper-Klar metrics that possess the right dius of the non-Abelian cloud, while its other two position
symmetry properties as well as the correct asymptotic behavior, andoordinates combine with its(ll) phase angle to specify the
thus are in fact the exact moduli space metrics. global SU?2) orientation of the solution.
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In the last part of Sec. Ill, we consider the semiclassicathe remaining ones bouphdhe number of structure param-
guantization of the moduli space coordinates describing thisters. In general there are more than one, suggesting that the
non-Abelian cloud. We find that there is a tower of stateshon-Abelian cloud can have considerable structure.

carrying both spin and electric-type 8 charge (“iso- One of motivations for this work was the possibility of an
spin™), with the magnitudes of the isospin and spin beingexact electromagnetic duality. In particular, it has been con-
equal. jectured that inN=4 supersymmetric Yang-Mills theories

In Sec. IV we consider some more complex cases. Théhere is a correspondence between electrically and magneti-
first of these involves a color-neutral combination of cally charged states. While some of the magnetic states re-

(N+1) monopoles in a theory with Spk+2) broken to Sp  duired by this duality are based straightforwardly on the fun-

(2N)x U(1). [For N=1 this reduces to the §6)=Sp4)  damental monopole solutions, others must be obtained as
example of Sec. Ill. The N+1 monopoles become distinct threshold bound states; the latter can be related to normaliz-

fundamental monopoles upon maximal symmetry breaking@P!e harmonic forms on the moduli space. In Sec. VI we note
and so the MSB moduli space metric given in R@f3] is  Some of the implications of our results for this conjectured
applicable to this case. With Sp@ X U(1) as the unbroken duality and discuss some of the issues related to the thresh-
group,N of these monopoles become massless and coales@& Pound states.

in a cloud about the single massive monopole. In fact, the Finally, in Sec. VIl we summarize our results and make
full family of solutions for this case can be obtained from SOMe concluding remarks. Some detailed calculations relat-

embedding of the S@) solutions of Sec. Ill. As with the N9 to the isometrie; of the modgli spaces studied in Sec.
SQ(5) case, one can verify that the moduli space metric oblV C aré contained in the Appendix.
tained from such exact monopole solutions is identical to the
NUS limit of the MSB moduli space metric. This example Il. REVIEW OF BPS MONOPOLES
o, ustats very ricely o, monofele COOTGMALES 1S e begin by recaling the mai features of e BPS
gauge orientation of the cloud. As we will show, what used%or_]opoles in an 5(2)_ gauge thgor{?]. We fix the normal-

: . ' . ' ization of the magnetic charge in the unbrokefi)by writ-
to be the relative position and (1) coordinates of the ing the asymptotic magnetic field as
N+1 monopoles can be assembled infd 2omplex(or N
guaternioni¢ variables on which the unbroken group gf, @2
Sp(2N) acts triholomorphically, defining a set of Killing Bf‘:—'z?.
vector fields of the algebra of Sp{. These leave invariant 4mr® ||
a single combination of the monopole coordinates that bey
comes the radius of the non-Abelian cloud.

The next step is to examine solutions with two massiv
monopoles in the NUS Iimit. Fé)r either Sp{2-2) or
SU(N+2) broken to SUN) X U(1)“ there are magnetically a_ra a__ . tm
color-neutral configurations withN—1) massless and two PEETH), - AT Gain AT, 3
massive monopoles, each of which individually carries awherev is the asymptotic magnitude of the Higgs field and
nonzero non-Abelian magnetic charge. Again they belong to
the class of multimonopoles for which we have a MSB v
moduli space metric. We are unable to compare its NUS AN = g — o, H(r)=vcotheor — —. (2.3
limit to the exact metric in this case, because the complete
family of such multimonopole solutions is unknown. Instead,The solutions Carrying>1 units of magnetic Charge can all
we examine its symmetry properties in the NUS limit, which be understood as multimonopole solutions. The dimension of
must include a U{) triholomorphic isometry coming from  the moduli space for a givem can be determined by study-
the unbroken gauge group, and find the right set of Killinging the zero modes about an arbitrary solution, i.e., the per-
vectors. As in the previous case, we can construct a singlgirbations that preserve E€1.1) to first order. By requiring
invariant from the massless monopoles coordinates that fixafat these perturbations satisfy the background gauge condi-
the size of the non-Abelian cloud surrounding the two mastion
sive monopoles.

We cannot carry out the analysis at this level for other 0=D;éA+ie[®,60]=D ,6A,,, (2.9
cases, since we know neither the general solutions nor the
moduli space metric. However, as we describe in Sec. V, it isve ensure that the zero mode is orthogonal to all modes
still possible to make some progress in understanding norebtained by gauge transformation of the original solution
Abelian monopoles in other groups. From the root structurevith gauge functions that vanish at spatial infimtyhis
of the group, we can determine the transformation properties
of the massive fundamental monopoles under the unbroken—
gauge group and see how they can be combined to yield®in the second equality we have adopted a notation in wiidk
configurations with no net non-Abelian magnetic chargetreated as the fourth componehj of a vector potentiah, , with
Each such combination requires a fixed number of masslesg acting on any quantity being identically zero. We will always use
monopoles, whose coordinates combine to give the varioureek indices to indicate that this four-dimensional notation is be-
global gauge and cloud structure parameters. Using grouing used; Roman indices should always be understood to run from 1
theory arguments, we can in most cases deterrtanéd in  to 3.

(2.9

opological arguments then show tlimust be quantized
in integer multiples of 4/e. The monopole solution carry-
%ng one unit of magnetic charge may be written as
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leaves only a single normalizable gauge mode, correspond-

ing to the single generator of the unbroker1J Index tY(@)= —=(E,+E_,),
theory methods shoyd 9] that there are @ linearly indepen- s

dent normalizable zero modes; when the monopoles are

separated far away from each other, the corresponding coor- 2, I

dinates on the moduli space having natural interpretations as Ha)=- W(Ea_ E_a),

the positions and (1) phase angles af unit monopoles.
Now consider an arbitrary gauge gro@of rankr. Its t3(a)=a* -H. (2.10

generators can be chosen to beommuting operatorsi;

normalized by tH'H/= §', which span the Cartan subalge- If Aj(r;v) and®%(r;v) give the SW2) solution correspond-

bra, together with ladder operators, associated with the rooisg to a Higgs expectation valug, then the fundamental

a, which obey monopole corresponding to the rof is given by[19]

- _ 3
[HlEa]_aEa! [Ea!E—a]_a'H . (25) A(r :E As(r h- Ba S(ﬁa)

One can choose a basis ofimple roots with the property =

that all other roots are linear combinations of these with in-

teger coefficients all of the same sign. A particularly conve- o= ®&r-h- Bt +(h—=h-8*B)-H

nient basis may be chosen as follows. gf be the asymp- ") 32::1 (ih-Ba)t(Ba) +( PaP)-H.

totic value of® in some fixed direction. We choose this to (2.11)

lie in the Cartan subalgebra and then define a vettoy It carries topological charges

®y=h-H. (2.6 Np= 6. (2.12

We then require that the simple roots all have non- negaﬂveoInd has mass

inner products withh. If the symmetry breaking is maximal,

there are no roots orthogonal ioand there is unique set of A7

simple rootsB, obeying this condition. If instead there are my=-—h-B; . (2.13

roots orthogonal tch, then the sublattice formed by such

roots is the root lattice for some semisimple grapf rank All other BPS solutions can be understood as multimono-

k<r, and the unbroken gauge group is U(19XK. In this  pole solutions containing=>n, fundamental monopoles.

case we denote by; the simple roots orthogonal o and ~ These include both solutions, containing many widely sepa-

write the remainder aB, . Here the choice of simple roots is rated fundamental monopoles, that are obviously composite

not unique, with the various possibilities being related byand spherically symmetric solutions whose compositeness is

elements of the Weyl group df. revealed only by analysis of their zero modes. The latter
We can also require that, in the direction chosen to definsolutions are obtained by replaciggy in Eqg. (2.11) by any

d,, the asymptotic magnetic field lie in the Cartan subalge-composite rooky; their topological charges are equal to the

bra and be of the form coefficients in the expansion

3
Bi=4_20H. 2.7 a*=§a‘, NaBs . (2.14
Topological arguments lead to the quantization condition The moduli space for these multimonopole solutions has
[20] 4N dimensions, corresponding to three position variables
and a single (1) phase for each of the component funda-
4 mental monopoles. The full moduli space and its metric are
e ; naf +; %7 |, (28 \nown forN=2. ForN>2 the metric for the case where all
the component fundamental monopoles are all distinct was
where given in Ref.[13]; for all other cases, the explicit form of the
metric is known only for the region of moduli space corre-
sponding to widely separated fundamental monopoles.
Matters are somewhat more complicated when the unbro-
ken gauge group is non-Abelig21]. If B,-H commutes
is the dual of the rootr and then, andq; are non-negative with the generators oK (i.e., if B, is not linked in the
integers. Then, are the topologically conserved charges. ForDynkin diagram to one of the;), the construction described
a given solution they are uniquely determined and gaugabove yields a uniqgue fundamental monopole carrying a
invariant, even though the correspondjigmay not be. The single unit of topological charge. The identification of the
g; are neither gauge invariant nor conserved. fundamental solutions for the remainiggy, is less straight-
For maximal symmetry breaking there is a unique fundaforward. The Weyl group oK takes each of thesg, to one
mental monopole solution associated with each ofrtie-  or more other roots, any of which could have been chosen as
pological charges. To obtain these, we first note that any roa simple root instead g8,. Using any of these in the em-
« defines an S(2) subgroup generated by bedding construction leads to a solution, carrying a single

o
o Z? (2.9)
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FIG. 1. The unitary gauge Higgs expectation vaiui@ the root
space of S@). The symmetry is maximally broken f¢a) and only
partially for (b).
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fined by the long rodty. In this section we will examine the
behavior ash is rotated towardwa (i.e., as the mass of the
vy vector meson is taken to zgrand see to what extent the
properties of the monopoles with SU(RWJ(1) symmetry
breaking can be obtained as limits of the MSB case.

In the maximally broken case, with oriented as in Fig.
1(a), the simple roots are the two label@dand y. The cor-
responding fundamental monopoles, with masses

_47Th _47Th 3.1
mg 'ﬁ*' my_? ")’*, (3.2

e

are obtained by S(2) embeddings as in Eq2.11). Their
central cores have radii

Ry~ (eh-p)~%,

which are set by the masses of the corresponding electrically

R,~(eh-y 71 (3.2

unit of topological charge, that is simply a global gauge ro-charged vector bosons.

tation of the original solution. In addition, it is sometimes

possible to have a roat that is not related tgd, by a Weyl
reflection but that nevertheless gives an expansion

a*=ﬁ;+; 97 (2.15

Insertion of such a root into E@2.11) yields a solution that
is gauge inequivalent to the solution based@n yet still
carries unit topological chardeAs we will see illustrated in

The SU2) embeddings defined by andu give two other
spherically symmetric solutions but, as discussed in Sec. I,
these are actually multimonopole solutions. Because

=gty pr=p 2y,

the former is a two-monopole solution that maps to a single
point of an eight-dimensional moduli space, while the latter
is a three-monopole configuration, with the corresponding
moduli space having 12 dimensions. Note that, even though
these last two solutions are composite, their cores are actu-

(3.3

the next Section, there is a continuous fam||y of gauge.a.”y smaller than those of either of the fundamental mono-
inequivalent solutions with unit topological charge that inter-poles. Essentially, this is because the vector boson mass that

polate between the- and B,-embedding solutions.

sets the core size depends on the local, rather than the as-

If the long-range magnetic field has a non-Abelian com-Ymptotic, value of the Higgs field.

ponent(i.e., if g- ¥;#0), the index theory methods used to

count zero modes in Ref$19] and [21] fail for technical

With the non-Abelian symmetry breaking that results
whenh is orthogonal toy, as in Fig. 1b), 8 andy can still

reasons related to the slow falloff of the non-Abelian field atbe chosen as the simple roots. However, there is no longer a

large distance. These difficulties do not aris@iify;=0, in
which case the number of normalizable zero modes is

p=4 . (2.19

Ea: na+§j: q

(It is possible to writep in the form Zc,n,, but this is

solution withg parallel toy. Furthermore, the solutions with
eg/dw equal to g, B*+y*, and B*+29* that corre-
sponded to one, two, and three monopoles in the MSB case
are now all degenerate, with any solution with
eg/dw=B*+2y* being gauge equivalent to one with
eg/dm=B*.

The way in which this behavior emerges from the MSB
case as is rotated towardr can be rather subtle. Consider,

somewhat misleading because, as we will see, there are soqs example, they monopole solution. This exists for all

zero modes that cannot be associated with any single fund

mental monopole.

lll. SO (5) EXAMPLE
A. Monopoles in SQ5) gauge theory

fionzero values ofn.,, but not if m

,=0. Asm, decreases,

the core of this monopole spreads out to increasingly large
distances, while the magnitudes of the gauge fields at any
fixed point in the core become ever smaller. Thus, to an
observer who measures fields only within a fixed region of
space, the monopole becomes effectively undetectable when

Many of the issues we want to address are illustrated in a,, is sufficiently small. From a more global point of view,

particularly simple fashion if the gauge gro@ is SQ5),
whose root lattice is shown in Fig. 1. H is oriented as

on the other hand, the limit is not smooth. Similarly, since
the moduli spaces for solutions witkeg/47=p8* and

shown in Fig. 1a), there is maximal symmetry breaking, to eg/47= g*+29* have 4 and 12 dimensions, respectively,

the subgroup U(TX U(1), while if h is as in Fig. 1b), the
unbroken gauge group is SU(2J(1) with the SU2) de-

they cannot have a common limit, even though an observer

5There is an inequivalent breaking to SURY(1) where the

4Such solutions were referred to as degenerate fundamental mononbroken SI(2) is the subgroup defined by a short root; this case is

poles in Ref[21].

not of interest to us here.
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confined to a finite volume would not be able to distinguish
between the case whem, was precisely zero and that 0=G'+
where it very small, but nonzero.

Since these difficulties are associated, at least in part, with o
the appearance of a non-Abelian magnetic charge with its 0=F'+=(H-2A+G)F, (3.9
associated Coulomb field, one hope that the—0 limit 2
would be smoother for the solutions witg/4m= B* + v*, ) N
whose magnetic charge remains purely Abelian. Indestogether with the boundary conditions5(0)=F()
theory methods can be applied to these solutions for either G(*)=0. There is no constraint oR(0), although the
maximal or nonmaximal symmetry breaking, and in bothgauge freedom noted below E@.5) can be used to make it
cases show that the moduli space is eight dimensional. It thuositive. These equations have a one-parameter family of
seems quite plausible that the moduli space metric for th&olutions
latter case might be the,— 0 limit of the moduli space for
the former. To test this conjecture, we will obtain the moduli v
space metric for the NUS case directly from the explicit so- F(r)= m

2
eG+ F) G+4eF?, (3.8

L(r,a)¥2,  G(r)=A(r)L(r,a),

lutions that were found in Refl18], and then compare this (3.10
with them,— 0 limit of the MSB metric that was obtained in
Ref.[13]. where

B. Eight-parameter family of solutions L(r,a)=[1+(r/a)coth(evr/2)]~* (3.1

We begin by describing the solutions of R¢L8]. We
start with some notation. For any Hermitian elementf the
Lie algebra we define two real vectoR;y and P,y and
2% 2 matrix P 3y obeyingP{ = — 7,P 37, by

and the parameta has the dimension of length and ranges
from 0 to . In these formulag =h- a.

Whena=0 the monopole is invariant under the unbroken
SU(2), since the doublet and triplet components of the fields,

_ ) . proportional toF(r) andG(r), vanish identically. Ifa#0,
P=Pu-t(a)*Po) t(y) TP M, 34 these components are nonvanishing and can be thought of as
constituting a “non-Abelian cloud” about the monopole.
The effect ofa on the long-range tail o&(r) is particularly
striking. For 1év=<r=a, this falls as 17, thus yielding the
i ([Eg —E_, Coulomb magnetic field appropriate to a non-Abelian mag-
\/Tz E E . (3.5 netic charge. At larger distances, however, the falloff in-
B\ Eu ~B creases to 1, showing that the magnetic charge is actually
purely Abelian. Not surprisingly, the limé—oo gives a so-

Note that a 2r gauge rotation generated by any of the|ution that is a gauge transformation of tfleembedding of

t%() changes the sign d? 3 but leaves the other compo- the SU2) monopole, for whichy actually does have a non-
nents ofP invariant. The commutation relations of the gen- Apelian component.

wheret(a) andt(y) are defined as in Eq2.10 and

erators imply that the components R&=[P,Q] are With the MSB case in mind, one might think of these
solutions as being superpositions offamonopole and gy
Ri1)=iP1)X Q1)— trp;’3)7Q(3), monopole. The fact that it has a finite core radius, even

though Eq.(3.2) givesR, = in the NUS limit, can be seen
as analogous to the contraction of the cores in the analogous

i t
R2)=iP2)X Q) ~ P35 7Q3), MSB superposition that was noted below E8.3).
(3.6 This one-parameter family of solutions can be extended to
Ris)= %[p(l). Q35— Q37 P2 an eight-parameter family by 'ghe action of the symmetries of
the theory. Three of the additional parameters correspond to
— Q1) P 3+ P37 Q2] spatial translations of the solution, while the remaining four

are obtained by applying global SU()J(1) transforma-

The family of spherically symmetric solutions found in tions generated by(y) andt®(B).
[18] can be written as

C. Zero modes

A?(l)zfaimfmA(r)’ ¢’(a1>:faH(r)' The moduli space metric can be obtained directly from
the zero modes about these solutions, provided that these
A?(z)zeaim?mG(r)r ¢?2)=FaG(r), (3.77  Modes satisfy the background gauge condifippsA,=0.

In order to satisfy this condition, it may be necessary to add

) an infinitesimal gauge transformation to the zero modes ob-
Ai(3):TiF(r), ¢(3):_||F(r).

HereA(r) andH(r) are the S2) monopole functions given  °This is related to the parametbr=F(0) used in Ref[18] by
in Eg. (2.3), while the other two coefficient functions obey eva=16b%(1-8b?).
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tained by varying the parameters in the solution, so that the R e
zero mode corresponding to a collective coordirateill in D, daA 3 =17 daF + 50aF(H—2A+ 3G)|=0,
general take the form (3.20

O A=A+ D e (312 \yhere the last equality follows from the variation of Eq.

Once these zero modes have been found, the moduli spa %’9) together with the relatiod,G/G=2,F/F. Thus, this
e ' Pafode satisfies the background gauge condition without the
metric is given by

need for any additional gauge transformation, and so

gij = J’ d3X tr( 5iA;L 5IA,U~) (313) 5aA,u,:(9aAp, . (32])

o o ] We can now use E(q.3.16 to generate three other zero
The determination of the zero modes is simplified considynodes from this mode. Substitution of the expressRid7)

erably by the fact that one zero mode can be used to genergige 5.A  into this equation gives a mode that can be written
three others. If we define in the fornT

P(X)=18¢(x) +i0;5A;(x), (3.14 8'A,=D,A=d,A+ie[A, A], (3.22

then the three self-duality equations plus the backgroungyhere the only nonzero components/ofare
gauge condition fopA , are equivalent to the Dirac equation

1

L 1
> SO

n
a,D,y=0, (3.15 A(2>(r)=—nE=—— . (323

where o,=i [22]. Right multiplication of a solution/ by  Thjs new mode is just a global $2) zero mode, already in
any unitary 2<2 matrix yields another solutiog’, which  packground gauge. Its relation to the gauge rotation angle is
can'be transformed back to give a new zero méﬂ@u .In given by eA(x); from Eq. (3.23, we see that the mode
particular, if we have a zero mod#,,, then multiplication  ¢orresponding to a shifia maps to one corresponding to an
of the correspondings on the right byin- o (wheren is a SU(2) rotation by an angléy= sa/a.

unit three-vector yields a new Dirac solution that can be  The three translation zero modes are given by spatial de-
decomposed to give rivatives of the solution combined with appropriate gauge
transformations. Once these are found, E216 can be
used to obtain the eighth, (), mode. We do not actually
need the form of these four modes, but we will make use of

tl?;]y making th:jee ?t:tr;ogonalthchmce? thr Wﬁ C?hn Obt?j'? tthe fact that they are orthogonal to each other and to the
ree zero modes hat are orthogonal to each other and to %‘ﬁﬁer four zero modes. This orthogonality is clearly expected
original mode; the four modes clearly have the same norm

X . : ..~ 'on physical grounds. To verify it, we first note that the trans-

we conS|d¢r first the mode corresponding to an Im('n'tesﬁation modes transform under spatial rotations as the compo-
mal change in the parameta. Becausea enters only  nonus of 5 vector, and so must be orthogonal to the other five
through the functiort., modes, which are rotational scalars. It then follows that the
Dirac mode from which these arise is orthogonal to the Dirac
mode obtained from the SB) and da modes; since the (1)
mode arises from the former Dirac mode, it must be orthogo-
(3.17) nal to the latter four modes.

5,¢:_ﬁi5Ai1 5,Ai:ﬁi5¢+€ijkﬁj5Ak- (316)

a aal-
IaPu1)=0: TP = Au@)r TP =5 Aud)-

To see whether this is already in background gauge, we must ) i
calculate D. Moduli space metric
We can now proceed to determine the moduli space met-
D,daA,=3d,6A,+ie[A, ,oA,]. (3.18  ric. Symmetry considerations and the properties of the BPS
mass formula constrain its form considerably. The subspace
It is trivial to verify the vanishing of the singlet and triplet corresponding to the translation modes is cle&fy with a
components of this quantity. The remaining component is natural set of coordinates given by the location of the center

of the monopole. The metric on this subspace relates the

D u9ahu(3)= 9j9aA(3) kinetic energy to the spatial velocity, and so is proportional
ied.L to the monopole mass, which depends only on the magnetic
+ 4—E[A”(1)' A3+ Aua T Az charge. Hence, it must be independent not only of the posi-

tion coordinates and SB) and U1) parameters, but also of

(3.19

In the first term on the right we can interchange the spatial “Showing thatd’A ;) and ' A (3 are of this form is trivial. To
differentiation and the variation @f. To evaluate the second verify the result fors’A ;) , one must make use of the identity
term we make use of the fact thajL/L=2d,F/F. Using  (d,L/L)' =2(d,F/F)'=—eG(d,L/L) which is obtained by differ-
Egs.(3.7) we then find that entiating Eq.(3.9 with respect taa.
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M=R3XS'XR* (3.29

to the leading corrections to the dyon mass through a term qfjith the natural flat metric(The second factor i§?, rather
the form Qf(/ZgXX, it too must be independent of all eight thanR!, because of the periodicity of.)

parameters. The subspace spanned by th@)Starameters
must be simply the standard mapping of (8Jonto a three-
sphere, with a radius that might dependaiut not on the

position or U1) phase angle. Finally, the metric in the one-

dimensionalda subspaces can depend at mostaon

Thus the metric on the eight-dimensional moduli space

must be of the form

ds?=Bdx?+ Cdy?+1,(a)da’+1,(a)( o2+ o5+ 03),
(3.24

whereB andC are constants, and the one-formsare de-
fined by

o= —singd 6+ cosysindd ¢,
o= cospd 6+ singsindd ¢, (3.29
o3=dy+cospd g ,
with the SU?2) Euler angles), ¢, and having periodicities

T, 2, and 4, respectively.
From Eq.(3.13, we see that,(a) is simply the norm of

the da mode; from its construction, it is obvious that the

SU(2) mode of Eq.(3.22 has the same norm. Hence,
|1(a)=J d3x tr(5’AM5’AM)=J d3x tr(D ,A)?
—fd3atADA _dmw 3.2

= | d* g[tr(AD;A)]= (3.26

with k=tr t3(9)t3(y) =1/+2. In the second equality we have

used the fact thad’A,, obeys the background gauge condi-

tion, while in the last we have used E.23. To obtain

I,(a) we need only multiply this by the square of the factor

dal dy=a that followed fromA (). Finally, B and C can
be related to the monopole mags=mj with the aid of the

BPS dyon mass formula. We thus find that the moduli spac

metric is

2 daZ

7+a<a§+ag+ag)]

(3.27

4k

167
dSZZMdX2+ dX2+?

Me*

To put this in a more standard form, we define 2/a and
obtain

2 2

dp?+ %(Ui-l- o5+ a'g)}.

(3.28

167 4k
_ 2 2
ds>=Mdx?+ et It

The quantity in square brackets is just the metric Rr
written in polar coordinates, with the unfamiliar factor of
1/4 arising from the normalization of the;, and so the
moduli space is

We want to compare this with the metric for the moduli
space of solutions containing ofgeand oney monopole in
the MSB case. In Refl13], it was shown that this space is of
the form

RIX M,

_p3
MRxZ

(3.30
Here M, is the Taub-NUT (Newman-Unti-Tamburinp
space with metric

g°A 2, .2 2, .2 2
,u,-l—ﬁ [dre+reoitreos]

2)\ 2
{5
8w
with the reduced masg=mgm,/(mg+m,) and the mag-

netic couplingg=4m/e. The constank encodes the strength
of coupling between the two monopoles,

gMo:

g\

-1
,u+ ﬁ) O'g, (331)

A (3.32

=29 B =2k,
where the second equality follows from the fact thais a
long simple root of the non-simply-laced 8)algebra. The
division by Z denotes the fact that there is an identification of
points

m,
Myt m . (3.33
y

(x,)=\x+2m ¢+

Using EQ.(3.32 and the relation betweeg and e, we see
that, asu andm,, tend to zeroGu, approaches the metric
for the relative moduli space that we found for the
SU(2)XU(1) breaking, provided that we identify the radial
coordinate with the cloud size parametar Furthermore, in
this limit the identification (3.33 reduces to

?X,zp):()rl— 2,1, and so the division by acts only on

the R! factor, allowing us to make the replacement
RY/Z=S!. Thus the moduli space metric for the NUS case is
indeed the expected limit of that for the MSB case.
Although the metric varies smoothly as one case goes
over into the other, there is a curious transformation in the
meaning of the moduli space coordinates, specifically those
on the four-dimensional subspace that remains after the
center-of-mass coordinates and overglllphase have been
factored out. With maximal symmetry breaking these coor-
dinates are the distaneebetween the8 and ¥ monopoles,
the angles) and ¢ that specify the direction from one mono-
pole to the other, and the relative(1) phase angle). As
w tends toward 0 and thg monopole ceases to be a distinct
soliton, the monopole separationbecomes instead a mea-
sure of the size of the non-Abelian cloud, while the direc-
tional angles and ¢ combine withys to give the coordinates
in the internal symmetry space.
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E. Quantum mechanics of the moduli space coordinates This identity can be understood by considering the MSB
gase first. Both monopoles are then massive and the angular
momentum of the system is the sum of the orbital angular
momentum and an anomalous contribution, proportional to
the relative electric () chargeq, of the formqr. Because
Shese two contributions are orthogonéd gives a lower
. . . Bound on the magnitude of the total angular momentum that
reduces the quantum mechanics of interacting monopoles §Q oy rated when the orbital part vanishes. As the NUS limit
a nqnllneara model with the .mo.dul| space as the target is approached, the relative(lJ is promoted to an S(2), and
mamfold.(When there are fermlomc zero !”no.des pregent, ON&g || becomes the isospin. At the same time, one of the
must modify thes model to include fermionic coordinates, monopoles becomes massless and is manifested as a spheri-
but here we want to confine our attention to the purelycally symmetric cloud about the other, and so the “orbital”
bosonic pan. angular momentum disappears. The equality of the isospin

When the symmetry breaking is maximal, all bosonic co-|g| and the spirj then follows.
ordinates on the moduli space have a clear physical interpre- It is worth noting that this identity should hold beyond the
tation as either positions or () phase angles of individual BPS limit. Introducing a mass term for the Higgs scalar
monopoles. The periodicity of the latter leads to the quantiwould lift the degeneracy along the direction, and so we
zation of the dyonic charges. On the NUS moduli space ofvould expect to find a family of S@) solutions similar to
the SA5) solution found above, the center-of-mass variableghe above BPS solution but with a definite size for the non-
still have this interpretation. Since the corresponding portiorAbelian cloud. Because of the unbroken @)) the non-
of the moduli space is a fl&>x S!, a natural basis of energy Abelian gauge zero modes would still span a three-sphere in
eigenstates is given by plane waves Rhwith a periodic ~ the appropriate moduli space and so should lead after quan-
dependence on the “internal'St: these describe a freely tization to a tower of c'hromodyons with the same eigenval-
propagating dyon with quantized electri¢1y charge. ues for spin and isospin as before. o

The relative part of this moduli space is a fif, whose The quantization of the last collective coordinatés less
coordinates may be taken as the cloud size paranaeter transparent. Solving E¢3.3 for the ground statef=0)

gether with SW2) gauge collective coordinates that span thera?'?_l W?r\:et TunCt'onO ’ttfr?r instance, we find a unique
transverse  three-spheres.R* admits an S@) Solution that 1S regular at the onigin,

In the moduli space approximation, one assumes that
sufficiently low energy the classical dynamics of the mono-
poles is mimicked by the free motion of a point particle on
the moduli space. Quantizing this motion should then giv

=SU(2)xSU(2) isometry. Let us call the respective @Y ¥, (a)=const, (3.37)
generatorsL® andiK®, a=1,2,3. The wave function is 0
then decomposed as which is just the non-normalizable, zero-momentum plane

wave on theR* with radial distance. In terms of the three-
dimensional monopole separation or cloud size parameter

_ E ¢() (i)
q’Mo E AJlka (@)D (0,¢.9), (3.34 a, however, we have a nontrivial probability distribution
where theD{) are the three-dimensional spherical harmonics |‘I’Mo|zp3dp~ 2(a2d a) . (3.39

that satisfy

The proper physical interpretation of this result is just one of
the puzzles related to these states that we hope to investigate
(3.3 in the future.

—L@L® DE(J'I): —K@K@ Dl(<j|):j(j +1) D(kil) ,

i|_(3)D(ki|): | Df(J'l) ,
IV. SYMMETRY OF THE MODULI SPACE
iK @D =kD{) . . _

’ In the previous section we showed in an (S0example
that the NUS moduli space for a family of configurations
carrying no net non-Abelian magnetic charge could be ob-
tained as a limit of the known two-monopole MSB moduli

andf{)(a) solves the eigenvalue equation

1d .d i(j+1)

Py Sl 1) fU) =gl (3.3 space. More generally, the metric for the MSB moduli space
ada da E a F E was given in Ref[10] for all cases in which the monopoles
are all fundamental and distinct.
As usual with representations of an @Jgroup, the eigen- Before presenting this metric, we need some notation.
values| andk are either integers or half-integers and arewhen a simple gauge group is maximally broken to its Car-
bounded by—j andj. tan subgroup, the fundamental monopoles are in one-to-one

We will see in the next section that one triplet of genera-correspondence with the simple rootsg, (a=1,... ) of
tors, K@, induces SIR) global gauge transformations, and the original gauge group. A pair of such monopoles interact
so the eigenvalug(j+1) encodes the electric $2) (iso-  with each other if and only if3,- 8,#0. In the Dynkin dia-
spin) charge of the resulting state. The other triplé®) is  gram(see Fig. 2 such pairs are indicated by linked circles.
nothing but the angular momentum in the center-of-mas$n any simple gauge group of rank there are precisely
frame. Hence there is a tower @fon-BPS states carrying r—1 such links. We will label these links by an ind&xand
both spin and isospin; the fact that the eigenvalues oflenote byr 4 the relative position vector between the pair of
L@L®@ are identical to those ok (@K@ implies thatthe  fundamental monopoles connected by #h link. Like-
spin of the chromodyonic state is identical to its isospin.  wise, ¢, is the linear combination of internal (I) angles
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O—0—"0C++--0—0O suw+p

O—0O0—0-+++-O=0O soen+]

O—0O0—0 - O==0 spe2m

O—O—0-++ SO(2N)

correct metric, we can check its consistency by examining
the symmetry of the moduli space metric. The unbroken
gauge symmetry must be realized as an isometry of the
moduli space that preserves the hypehkéa structure, and
the correct metric must exhibit such properties. For both
classes of theories, we give explicit forms of the correspond-
ing triholomorphic Killing vector fields.

A. Unbroken Sp(2N)

The simplest class of examples arises when the gauge
group Sp(A+2) is broken to U(1LXSp(2N); the
SO(5)=Sp(4)-U(1)xSU(2) example of the last section
is a special case of this. We write the simple root@asnd
% (j=2,... N+1), with the indices corresponding to the
numbering of roots in Fig. 2. The sum

i 7 N+1
7 eg _
5 E_ﬂpj; A 4.3

2 L2 3 4
=0 6, O—C=<=0—70 F,

is orthogonal to they;’s that span the root lattice of the
unbroken Sp(®), and gives the magnetic charge of a con-
figuration containing a single massigg fundamental mono-
pole surrounded by a cloud of massless monopoles that can-

FIG. 2. Dynkin diagrams of all simple groups. For the non- cel the 'O”Q'range non'Abe_‘“an field. i
simply-laced cases, the arrow points toward the short roots. We AS mentioned above, this can be regarded as a generali-

have also labeled the simple roots for later reference. zation of the S@®) example of the previous section. In fact,
we can identify an S®) subgroup of Sp(R+2), generated

that is conjugate to the relative(l) electric charge between by the pairy=yy.; andB=B;+ X}y, in which the S@6)

the two monopoles. Finally, we generalize £8.32 by de-  solutions of the previous section can be embedded. This em-

fining A5 to be —2 times the inner product of the duals of bedding makes the Higgs expectation vatugroportional to

the roots joined by théth link. B+ v =B +3} 9 which is just what is needed to en-

The relative part of the moduli space metric can then besure that the unbroken group is Sp{(PxU(1). Note that,
written as even though the form of the solution remains intact, the num-
ber of massless monopoles associated with this embedded
solution is nowN rather than 1.

Further solutions can be obtained by gauge transforming
such an embedded solution by elements of the unbroken
X (dipp+wa-dra)(dyg+wg-drg) . 4.1 Sp(2N), but not all generators of SpY transform it non-

trivially. A generic embedded solution is left invariant by
Sp(2N—2), and this tells us that there must be at least
) dim[Sp(2N)/Sp(2N—-2)]=4N—-1 global gauge zero
Corom ot & 9°Ma 4.2 modes. Since we already know that the(SGsolution con-
AB™ HABT OABg ' tains one parameter that fixes the size of the non-Abelian
cloud, the general Sp(2+2) solution must admit at least
whereu g Mmay be interpreted as a reduced-mass matrix, andne such parameter. Together, these account forNiltd-
w,(rp) is the vector potential due to a negative unit chargedrdinates of the relative moduli space. Let us now proceed to
Dirac monopole at ,=0. determine the metric of this space.

In this section, we consider two types of configurations. Consider a point on the moduli space corresponding to a
The first is a direct generalization of the &p case, and generic S@) embedded solution. Since the geometry of the
consists of one massive and massless monopoles in a gauge orbit can depend only on the paramategvaluating
theory with Sp(N+2) broken to U(1 X Sp(2N). Again the  the metric at such a point determines the metric everywhere.
moduli space metric can be found by direct calculation andDf the 4N—1 gauge generators that act on this point non-
then compared to the result obtained by the limiting procedrivially, three arise from the simple embedding and form an
dure. The second involves two massive ahd 1 massless SU(2), generated by( .+ 1), which keep the solution within
monopoles in a theory with either S@{2-2) or the S@5) subgroup. The other M—4 gauge zero modes
SU(N+2) broken to U(1§xSU(N). In this case, a direct about such a point are generated by the ladder operators as-
calculation of the metric is not possible, since the full family sociated with the R—2 positive roots v;=7v;+ .1
of monopole solutions is not known. Although we cannot+-- -+ and  p=vt+7%+1t T W with
verify with certainty that the limiting procedure yields the j=2,... N. The associated zero modéa =D ,A satisfy

922
g) AaNg(C Hag

Grel= > Cagdra-drg+ >,
AB AB

Here the matrixC is
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D,D#A=0. (4.4 dmel 1 aN-1
" o= | = da2+a > oul. (4.12
The solutions of this equation are found to be of the form e |a s=1
A=¢€(rT, 4.5 After a coordinate redefinitiop=2\/5, we obtain

whereT is any linear combination of theNi—4 ladder op- 4mc| 223511%05 Amc L
erators above, appropriately normalized, and the radial funcgrelz—ez— dp“+p = [dp“+p=dQjy_4]

T a2
tion e satisfies 4 ©
Atk
de 1 =——g (4.13
—_ — = 2 flat 1 .
ar T36€=0, (4.6) e
whereG(r) is given by Eq.(3.10 and (=)= 1/e. showing that the moduli space metric is that of a flat Euclid-

For generic values o, the total gauge orbit must be €N §pacéR““. The smopthness oj the metric at origin then
topologically given by Sp(R)/Sp(2N—2) =SN-1 possi-  reduires the gauge orbit to BN ~1 globally, and so the
bly up to a division by a discrete group. Together with the'elative moduli space is strictlig®™. o
fact that the last M—4 gauge zero modes do not involve _ 10 compare this to the NUS limit of the MSB metric in
any of the SU2) generators®(yy. 4), this allows us to de- Ed- (4.1, let us first note thahy=A=—2"-y" for all

compose the metric in the form A. We also need the fact that the,g all vanish if there is
only a single massive monopole. The NUS limit of E4.1)
N1 is then
Ge=|l1(@)da+ () (01 + o3+ 0D+ 2 15 @)oo,
s,t=4 92)\ 1
(4.7) Gro= =2 | —dra+ra(dya+cosiadea)?,
877 A rA
where (4.19
L (a)= 4k l I (a)= Ak a 4.9 where we have rewritten the vector potentig]- dr 4 in po-
! e a ? e’ ' lar coordinates. After a coordinate redefinitipp=2/r ,

) ) ) ) we see that this MSB metric is a sum gfcopies of the flat
were obtained in the previous section andrd/2,s R4 metric,

=1,...,AN—1} is an orthonormal frame on a unit sphere

st

2

. ) g\ Gf-i- 0'5-1— crg
Further, the functional form of the gauge zero modes in gre|=8—2 dp?+ ZT
Eq. (4.5 is independent of the generatdr and so we may A A
choose N —4 orthogonall’s, each of whose zero modes is 92\ 92\
given by Eq.(4.5 with one and the same functioe(r). :8—2 [dp2+p2dQ§]A=8— Ghat-  (4.15
Then, ™A m
15=1564,1  4<st<4N-1, (4.9  Since\/2=k andeg=4m, this is the same as the metric of
Eq. (4.13, thus verifying that the two approaches produce
with the same result.
, It is curious that the single Sp{\®-invarianta can be
|3(a):f d3x trD ,AD#A = % dSMtrAD“Azzwf a. v_vritten as the sum of_aII distances between adjamuje-
B e fined by the Dynkin diagrainmonopoles, massive or mass-
(4.10 less alike; i.e.,
Recall thatk=trt3(yy+1)t3 (1), Where the S(R) gen- 11
erators t?(yy.41) induce unit shifts along ther,'s with a= —p2=—2 pi=2 Fp- (4.1
a=1,2,3. We must fixx' =tr T? so thatT will induce a unit 47 AR A

shift along aos with 4<s<4N-—1. The action of Sp(R) i i ) )

on anS*N"1 is found by embedding Sp(® into SO(AN); Howe.zver,_ the fact that-thtlar.e is only a single !nvar!ant param-
after normalizing all generators with respect to the invarianter implies that the individual,’s are not invariant(the
bilinear form of Sp(2), we find that the generators associ- Fésults of the next section will make this more explicit
ated with the short rootg; andw; and those associated with Thus. the positions of the massless monopoles do not have a
the long rootyy, ; shift a point corresponding to a generic gauge-invariant meaning, emphasizing again that the mass-
SO(5) embedding by unequal distances. The ratio turns ouess monopoles should not be regarded as localized objects.

to be 14/2, so that the appropriate normalization fbris As for the_SQS) examp[e of Sec. I.”’ a tower of non-BPS
such that states carrying non-Abelian electric charge can be con-

structed by semiclassical quantization of the moduli space
k' =2k. (4.11)  coordinates. The degeneracy of these states will be greater
than in that example, reflecting the greater symmetry of the
The relative moduli space metric is then higher-dimensional moduli space.
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B. Sp(2N) triholomorphic isometry of R*N 1
w@=wid=— ; (T €PdrdAdr§

Because Sp(®) is an unbroken symmetry of the field A

equations and of the boundary conditions, its action on the
solutions will manifest itself as metric-preserving diffeomor-
phisms of the relative moduli spad&™. In fact, since the
relative moduli space is a fl&*", it possesses a larger isom-
etry group, SO(M). However, the Sp(R) subgroup ac- which are needed to complete the hypemhka structure of
quires a special significance because it is the maximal sulihe moduli space.

+draN\(dya+ cosoAdqﬁA)), (4.22

group of SO(A) that preserves the hyper-Klar structure In contrast, the secon8U(2) is holomorphic and thus
of the manifold. This triholomorphicity is a generic feature cannot rotate the complex structure. Its generators are given
of isometries associated with the gauge rotation. by

Let us introduce a pair of complex coordinates
Ex=Xa+ix4 andZ,=x3+ix} in the R* spanned by , and . L 0 d
Yya. These are related to the relative Euler angles and the KW= ( gA(;g §A5_§A+§A IE —{a 5&) - E7N
monopole separation, by

—j J d
§A=2\/GCO$ Gpl2)e (Pat I, Kf;):i(gA__gK _ >,
29N 234
{a= 21 aSIN(Op12) €71 (Pa=¥R)2, (4.17)
In effect, we have chosen a particular complex structure on K(A):i<§Aa_§A_§:\ E) (4.23

R*N. Given this complex structure, the Klar form is

: Since thes& (’s commute with thel (’s and sinceL in-
w(3)=§2 (dEpNdES +dZaNdER) duces rotations among the®’s, the K{?)'s are in fact tri-
A holomorphic; i.e., they preserve the hyperkia structure
of the moduli space:
=—E drA/\drA+dri/\(dzﬂA+cos9Ad¢>A)

Ly )ngg 0. (4.24
(4.18
where in the second line we have used TheseSSl(JZ)’s are clearly part of the_SpQ\I) isometry, with
the Kg ’s forming a set oN commuting generators that can
_ N ENEX—CXC be taken to be the generators of the Cartan subalgebra.
ra—ira= AZA, ri=¥. (4.19 To complete the Sp(g), we recall that Sp(R) contains

an SUN) X SU(2) subgroup. Let the SBK) be generated by

Each factor ofR* admits an SO(43 SU(2)xSuU(2) the simple roots{y,, ...y} and the SW2) by {yy;1}.
isometry. The first S() is generated é:l/:) () (2) Since this S2) maps a given S®) embedded solution to
another embedded solution in the same(®Gubgroup, it

g | 9 J must be realized on the moduli space by th{é‘)’s, which
L(A):E(gAE—FgAz_gZ IEx —{a ag*):_ﬁ’ form the unique triholomorphic S) that preserves the
A A A A A four-planer,=r,=---=ry_,=0. The SUWN), on the other

hand, rotates onB* to another; its Killing vectors are

L(”:i({*i—g* i) (4.20
A Rotan "R ala)’

J J
Ly >—|(§A —{a—r ) i ( d 9 9 )
J J Exg=—= — i —— & ——(g— |, A#B.
{n én T §A5§B LA 0 s aEx gB&é’A
After reexpressing these in termsmf and ¢, , and writing (4.29

LG =LP+iL? we can add these to obtain

v d ) .0
—Wy—— | =T a—|,
A TRaga) P oyn

(4.21) E(+)_

which is the standard form for the generators of three-
dimensional rotations in the presence of the vector potentials P
w, . Under appropriate rotations induced by the Kanler E( ( ) A<B
two-form w(® s transformed into the other two "Ker AB \/_ §A<9§ RRLFTN <9§ ¢ 1955 = 74

forms (4.29

Commuting theEg's with the KS™)’s results in another set

of ladder operators,

L= La=2 | —rax
A

A

0 *
\/—<§A{9§ EBé—gA—{AagB 74 e ), A<B,
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which give the remaining generators of Sp(2 These all 9°\ 2
commute withL and are therefore triholomorphic. We thus grelzggﬂaﬁ'ﬁ(; drA)
have the required triholomorphic isometry
e DENCTRRERIN 2
~ s 4 Ty a0 S Fa AT COHAADA) | -
{KQ Eps.Ebs K 1<A#B<N} — Sp2N). 9N+ 8muZgra| “A

(4.27) (4.32

These generators have particularly simple interpretationdhe metric is still hyper-Kaler, as it must be, but the three
in terms of an orthonormal basés (j=1,... N) in the root ~ independent Kaler forms are now given b}23,24

space of Sp(R). [In this basis, y,,,=(g—¢1)/2 for

j <N, while ¢y, =6y .] The correspondence between roots @ _ E abcy b c
and ladder operators is then simply Wsun) = 2;:43 Cape®“dra/\drg
g°A
Eap— 3(€a—63), E<AiB>H +i(ertep), Kf)—> te,. - E; dri/\(dia+ costadpp)
(4.28

5 _
9°A (a) s abc( b) ( )
=—wl——¢€ dr} |\ drg|.
Finally, we note that in terms of the complex coordinates, 8m Mt 2 ; A % B
the invarianta takes the simple form 4.33

1 As in the previous example, this moduli space must reflect
a=>, rAZZZ (EnEX+ 500 (429  the symmetries of the theory. There must be three Killing
A A vector fields that generate three-dimensional rotations of the
multimonopole solution, while the unbroken gauge symme-
which is manifestly invariant under the transformations geniry must be realized as a triholomorphi¢N) isometry with
erated by the Killing vectors. appropriate Killing vectors. Now note that if the original
gauge group is Sp(2+ 2), this example reduces to our pre-
vious one in the limitu—0. Hence, in that limit the rota-
C. Unbroken SU(N) tional Killing vectors for the present case must reduce to the

A slightly more involved example arises when either Of Ed. (4.21), while the triholomorphic Killing vectors
Sp(2N+2) or SUN+2) is broken to SU)x U(1)2. One ~ Must reduce to those that generate thidlJsubgroup of Sp

finds that the magnetic charge (2N) in Eq. (4.25. _
In fact, the vector fieldd in Eq. (4.21) generate the ro-

eg N tational SUW2) isometry of the general MSB metric in Eq.
EZB’{ + Zz 7/]" + By (4.30 (4.1) [13], and thus are I_<|II|ng vectors on the NU_S moduli
y space as well. Further, it turns out, as we show in the Ap-
pendix, that the SUWN) generators in Eqé4.25 are Killing

(where the roots are again numbered in accordance with th¢ectors on this curved moduli space and also preserve the
Dynkin diagram of Fig. 2is orthogonal to they,'s that span hyper-thIer strgcture. Together W|th_ a smultaqequs rota-
the unbroken SUY). This corresponds to a combination of tion of all 474, this completes the () triholomorphic isom-
two massive monopoles, associated with and g5, ; and etry mdgced by the action of the unbroken gauge group on
having massesn, and my.,, and N—1 massless mono- (e multimonopole solutions,
poles.

The relative moduli space again has the topologR8¥ {Ta,Eas IsA#B<N}—=SUN),
and can be covered by the coordinate systeém,{,} de-
fined in the previous subsection. However, this moduli space B 3)
is no longer flat. Referring to the results of Rgt3], one KZEA: Ka'—U(1). (4.39
finds that the reduced mass matgisg no longer vanishes.
Instead, theN? elements of this matrix are all equal to the

reduced mass of the two massive monopoles: i.e., PhysicallyK corresponds to the relative electri¢) charge

of the two massive monopoles. ThisN) contains theN
U(1) generatorK )= a/gy, that clearly preserve both the
. myMyyq metric and the hyper-Kder structures of the general MSB
HAB T e, all A andB. (43D  metric. This is not true in general for thEsg's, but the
detailed calculation in the Appendix shows that they are all
triholomorphic and metric preserving in the present NUS
Using this and the fact that,=\ is again independent of limit. An important consistency check is to see if these vec-
the link indexA, we find that the NUS limit of the MSB tor fields preserve such gauge-invariant quantities as the rela-
metric is tive position vector and the relative(l) charge of the two
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massive monopoldsThe latter is clearly invariant since its Abelian magnetic charges. In this section we will consider
charge operator—iK commutes with all generators of the general case of a simple gro® of rankr broken to

SU(N), while the former is also invariant if KX U(1)"* with a simple grouK of rank k. (The exten-
sion to semisimpl& is straightforward. As before, we de-

E rd=o. 43 note the simple roots df by ¥, and the remaining roots of

AB 2/—\: A (4.39 G by B,, with nhumbering corresponding to the Dynkin dia-

grams of Fig. 2.

One can show this explicitly using E(4.19. Although we do not know the moduli space metric for

The 4N coordinates of the moduli space can be related tgnost cases, we can still learn a good deal about how the
the physical parameters of the multimonopole solution. Anmassive and massless monopoles combine to form neutral
embedding argument similar to that of Sec. IV A shows thatconfigurations. In such configurations the magnetic charge
the gauge orbit of a generic point in the moduli space is ofectorg must be orthogonal to every root &, i.e.,
the form UN)/U(N—2). This implies that the number of
gauge modes isM— 4, including one that corresponds to the eg
relative U1l) phase of the two massive monopoles. Three OIE"/J':aZl naﬂ;"yj_"i_El Qi')/i*"yj’ (5.9
more parameters must correspond to the relative position
vector between the two massive monopoles. This leaves only, o j. The sum of any two or more sudjis will also

one gauge-invariant coordinate to characterize the NoNsaisty this condition; we will concentrate here on the “mini-
Abelian cloud. A natural choice for this coordinate is just 4" cases. for whichg cannot be decomposed as such a
a=2Xara, which we know from our previous results to be g,y ’
U(N) invariant. In the simplest case, with=2, the gauge The number of normalizable zero modes about such solu-
orbits are elllpsmdsa=r1+ r,=const, with focal points at tions, i.e., the dimension of the moduli spaté, is equal to
the two massive monopoles; these become three-spheres4|(n+q) wheren=n, andq=Sg; are the number of mas-
the two massive monopoles coincide. _ , _sive and massless fundamental monopoles, respecfi&ly

As with our previous example;, the sgmlclassmal quantithe examples described above suggest thabfithese de-
zation of the moduli space coordinates will lead to a tower ofyqiine the position coordinates andlYphases of the mas-
chromodyonic states. A new feature here is that the relevang, o monopoles, while the remainingy4lescribe the non-
“moment of inertia” will increase with the separation be- apejian cloud. Of the latter, some describe the size and,
tween the two massive monopoles, in a fashion similar tq,,sgibly, other gauge-invariant characteristics of the non-

r—k k

that found in Ref{S]. Abelian cloud and the rest correspond to global non-Abelian
gauge rotations of the configuration. The number of such
V. CHARACTERISTICS OF GENERAL MODULI SPACES gauge modes can be as |arge as the dimensidf, dfut is

In the examples of the previous two sections we were abl&>> if the generic solution is invaria.nt. under some group
b b i«CK. (Note thatKk’ need not be semisimp)eThe number

to analyze monopoles in theories with unbroken non-Abelia ¢ ters d ibing th . iant struct fth
symmetries by taking the appropriate limit of the MSB case 0! parameters describing the gauge-invariant structure of the

For combinations of monopoles such that the Iong-rangé:IOUd is then

magnetic field was invariant under the action of the unbroken ; ,

nong—AbeIian symmetry, the NUS limit of the MSB moduli Nitrucure= 49— dim[K/K"]. (5.2
space was shown to possess an isometry corresponding to thetpe problem of finding the minimaj’'s can be phrased in
unbroken gauge symmetry. We found that color-yerms of group representations. Each of the massive mono-
magnetically neutral combinations were composed of & numMyges transforms according to a representation of the dual
ber of massive monopoles surrounded by a non-Abelia roupK g, SPanned by thq/j‘ . (The dual group enters here

cloud that could be viewed as arising from the coalescence ecause the magnetic chargé is a weight vector with re-

a number of massless monopoles carrying purely nonépect to the dual root system spanned byﬂﬁe[ZO].) The

desiredg’s correspond to collections of massive monopoles

8 - - that can be combined with a number of adjoint representation
In fact this is sufficient to show th&,g generates a symmetry of -
massless monopoles to form a group singlet.

the monopole dynamics. Consider the first order form of the La-
grangian

1 o . . 9 . .
L(w)= EE Cadlfa-Te—0als]+ 2 Qa(ha+ COSHpbp) An equwalc_ant a_pprogch starts frpm _the observa.tlon that any fgn-
AB A damental weight is a linear combination of the simple roots with

2 2 non-negative rational coefficients. By definition, a fundamental
> fA> -1 qA> . (4.35  weight is orthogonal to all but one simple root, and so any linear
A A combination of the fundamental weights associated with the broken
The metric is recovered by integrating out the conserved chargesimple rootsg's of Gy, is automatically orthogonal to thyzj* 's

ga (which is conjugate tay,) and replacing velocities by line ele- and hence to they;’s. To obtain a minimalg, one simply adds a
ments.L(w=0) is by itself invariant since it describes free motion number of such fundamental weights in such a way that the coeffi-
on R*N, The invariance of the relative positiGh,r, and the rela-  cients of theg:’s and of theq/j“s in the final expression are all
tive U(1) charge=q, then implies the invariance of the whole non-negative integers; these coefficients then give the number of
Lagrangian. massive and massless monopoles required for the configuration.

M
“L(p=0)+3
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The representations of the massive fundamental moncg,, or Eg, while there is a breaking dB, to SU(2)x U(1)

poles. can be identified with the aid'of the Dynkin diagram.ipat gives monopoles transforming under the spin-3/2 repre-
Consider the monopole corresponding to the fBptand let  ¢oniation ofSU(2).

Y be the root'ofK to which B, is linked in the Dynkin For K=SO(2N+1), SO(N), or Sp(aN), there is one
dggrzr;hgiofé]ésar;'o;IlsrilEedmttfo ;\:ro_oggf, ;P Einltht?] g:] Ot?g type of massive monopole, transforming under the defining
P | ; 9 di o h a7 _I ' ) gr vector representatiod, if G is a classical group. I6 is
monopole transforms according to the complex conjugate o xceptional, there can also be massive monopoles transform-

the basic representation ¢y, corresponding tof i ing under the spinor representations corresponding to the last
A>1, then the monopole transforms as a symmetric produqlOot of SO(N+1) and the last two roots of SOKD or

of A such representations. . . ! .
With these ideas in mind, let us recall the case c)funder the 14-dimensional representation corresponding to

Sp(AN+2)—Sp(N) > U(L) that was considered in Sec. thelria'ls'gglmtlc\)/f/sf?)t. for th where the original gauge
IV A. The single massive monopole is linked to the first root € ' we Tist, for the case ) gaug

of Sp(2N), with A=1. It therefore transforms according to group is a classical group, the various ways in which these
the vectc;r representation of the dual Qrouf gy representations can be combined to give minimal configura-
ual

=SO(N+1). Since the adjoint representation of an Or_tions with vanishing non-Abelian magnetic charge. The

thogonal group is the antisymmetric product of two vectorsOverall groupG that is shown is the smallest one that allows
and the antisymmetric product o2+ 1 vectors is a singlet, the neutral combination shown; in most cases, a la@es
a color-neutral combination can be obtained by combininclSO possible. In the table we also give the decomposition of
the massive monopole with massless monopoles, in agree- g into simple roots, with the coefficients corresponding to
ment with our previous results. massive monopoles indicated by boldface type. The remain-
In the other case considered in Sec. IV, withing coefficients give the number of massless monopoles,
K=Kga=SUNN) and G being either SU{+2) or from which in turn the total num_ber of gauge and cloud
Sp(2N+2), the two massive monopoles were linked to theStructure zero modes can be obtained.
first and last simple roots of the unbroken $U)( both with For the neutral combinations in which the number of
\=1. These therefore transform under the defining represerfomponent massive monopoles is independent of the rank of
tationsF andF. The neutral combination of E¢4.30 cor- 1€ group, the number of massless monopoles grows linearly
responds to the fact that a group singlet can be formed b?r?th N. Since the dimension df grows quadratically with

combining anF and anF with a number of adjoints. How- :3 rank, there must be a ”O”tf""a' invariance sgb_group
N - . K’. In all such cases, the generic solution for sufficiently
ever, this is not the only possibility. A singlet can also be, . K .
, ; ) high rank can be obtained by an embedding of a lower rank
constructed fronN F's (or N F’s) together with some ad-

- . . ; olution. Thus, the solutions studied in Sec. IVA for
joint representation objects. The corresponding color-neutr p(2N+2) broken to Sp(Rl) could all be obtained by em-

magnetic charge is bedding the S®) solution, and hadk’ =Sp(2N—2), while
ey j=N-1 the solutions with two massive monopoles considered in Sec.
=9 _ o IV C were all equivalent to embeddings either of @Uso-
=NgB7 + N AP 5.3
4 pi 121 (N=D) 7 63 lutions [if G=SU(N+2)] or of Sp6) solutions [if
G=Sp(2N+2)], and hadK’'=U(N—-2).
This describes a family of solutions composed\bfassive The other entries in Table | with nontrivi&l’ can all be

andN(N—1)/2 massless monopoles, with a moduli space otletermined by studying appropriate embeddings. As an ex-
dimension N?+2N. The positions and (1) phases of the ample, forG=SO(k+2) broken to SOK) (k=4) there are
N massive monopoles account foN4of these. There ap- color-magnetically neutral solutions containing two massive
pears to be no invariance subgroup, and so theréarel fundamental monopoles. To deal with these, we first con-
gauge modes from the global SN) rotations. This leaves sider the case of SO(6)SO(4). Viewing this as
(N—1)? structure parameters that encode the gaugeSU(4)— SU(2)xSU(2), it is nothard to construct an ap-
invariant characteristics of the non-Abelian cloud; this showsproximate solution with the two massive monopoles widely
that the cloud can have much more structure than it did irseparated that clearly has no invariance group. The corre-
our SQ5) example. sponding moduli space has dim SO&§ gauge parameters
With other choices forG, additional representations of and 8-6=2 cloud structure parameters. By embedding
SU(N) can arise. IIG=SO(2N+ 1), one can have a massive these solutions in the larger orthogonal groups, we see that
monopole linked to the last simple root of WY with  for k=4, Nyrcure2 andK’ CSO(K—3). In order that the
A=2, corresponding to the symmetric rank-2 tensor reprenumber of parameters be consistent with the decompositions
sentationS, while with G=SO(2N) a massive monopole of g shown in the table, these inequalities must be saturated,
can be linked to the next to last root of U\, with A\=1, indicating that the embeddings give the generic solution.
giving an antisymmetric rank two tensdr. In addition, the Finally, for the combinations where the number of mass-
even orthogonal groups allow the possibility of two differentless monopoles grows witN the generic solution cannot be
monopoles transforming as fundamentals; this can happen dbtained by embedding from a smaller group, and we expect
the last two simple roots of SO are broken butyy_,is K’ to be trivial.
not. A few more possibilities arise for low values Nf by The results for when the initial gauge gro@is excep-
taking G to be an exceptional group. An antisymmetric tional are summarized in Table Il. We have used a notation
rank-3 tensor representatiah can be obtained ifG=Eg, 4n+4q for the dimension of the moduli space, with the
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TABLE I. Minimal singlet combinations of massive fundamental monopoles when the original gauge
group is classical. The symbols for the representations of the dual grgg@re as followsF is the defining
representation of SUN), while A and S are the antisymmetric and the symmetric products of w®
respectively,V is either the defining representation of a symplectic group or the vector representation of an
orthogonal group; finally, an overbar denotes complex conjugation. The total magnetic charge of the singlet
combination is written as a row vector of the integer coefficients appearing it2By. ordered according to
the Dynkin diagram of the original gauge groGpin Fig. 1, with then; indicated by boldface type.

K Singlet G eg/4m K’ Natructure
SU(N) EN SU(N+1) (NNN-1,...,2,1) . (N—1)2
FN Sp(2N) (1,2,...N—1N) . (N—1)2
== SU(N+2) (11, ...,10 U(N-2) 1
Sp(MN+2)
gh2 SO(N+1) (1,2,..., N—1,N/2) . (N—1)?
(evenN)
SN SO(N+1) (2,4,..., 2N-2N) : 3N?2—4N+1
(odd N)
F2s SO(N+3) (2,2, ...,20) . 5 (N=2)
. 8 (N=3)
U(N—4) 9 (N=4)
AN? SO(2N) (1,2,... N=2N/2—1N/2) : N?2—4N+1
(evenN) (N>2)
AN SO(2N) (24,... N—4N—2N) : 3N?2—8N+1
(odd N)
FPE/N-N SO(N+2) (1,2,... ,N—1n,N—n) . (N—1)?
E2A SO(N+2) 2,2, ...,211) . 4 (N=3)
U(N—4) 5 (N=4)
F2EE’  SO(2N+4) (2,2, ...,211) . 5 (N=2)
. 8 (N=3)
U(N—4) 9 (N=4)
SO(MN+1) V2 SO(N+3) (22,...,2,9) SO(MN-3) 2 (N=2)
Sp(2N) \Y; Sp(N+2) (L1, ....1) Sp(N-2) 1
SO(2N) V2 SO(2N+2) (22,...2,1,9 SO(2N-—4) 2 (N=3)

boldface numeral indicating the degrees of freedom assoctorrespondence is between the states based on the elemen-
ated with the massive monopoles. Except for the trivial caséary gquanta and those based on simple soliton solutions.
G=G,, we do not know the invariant subgrotfy, and so  Thus, in theN=4 supersymmetric theory with $B) broken

the number in the final column is in general a lower boundto U(1), the states dual to the electrically charged vector
obtained from Eq(5.2) by assuming thaK’ is trivial. When = mesons are obtained from the unit charged monopole and
this yields a nonpositive number, we have written “1?” in antimonopole solutions: However, more complex situations

the last column. can arise, even when the unbroken group is purely Abelian.
Consider, for example, the case of @Ubroken to U(1¥.
V1. DUALITY AND THRESHOLD BOUND STATES There are three electrically charged vector bosons, whose

charges in the two unbroken(l factors arg1,0), (0,1), and

The classical BPS multimonopole solutions that we haveg1,1); in the BPS limit, the mass of the third of these is the
been studying can be naturally embedded ifNan4 super-  sum of the masses of the first two. The duals to the first two
symmetric Yang-Mills theory. It has been conjectul@]  objects are the fundamental monopoles of the theory, but the
that such theories possess an exact electromagnetic dualdiyial of the third is a threshold bound state of the two funda-
under which the spectrum of electrically charged elementarynental monopoles. This state can be constructed semiclassi-
particles is mirrored by that of the magnetically chargedcally by considering the supersymmetric quantum mechanics
particlest® More precisely, the magnetically charged objectsof two-monopole systems or, equivalently, by studying a su-
in a theory with gauge grou should be in one-to-one persymmetricc model on the corresponding moduli space
correspondence with the electrically charged objects in #26,27. In the latter approach, the bounds states are in one-
theory with the dual grougsy,,. In the simplest cases, this

f the SU2) theory has onlyN=2 supersymmetry, the unit
Opyality also makes predictions concerning the dyonic states careharged monopoles are actually dual to quarks irf2sldoublets.
rying both electric and magnetic charges; we do not discuss thesgee Ref[25] for detailed studies of a conformally invariant model
here. with four families of quarks.
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TABLE II. Minimal singlet combinations of massive fundamental monopoles when the original gauge
group is exceptional. The notation is similar to that in Tablé\lis the antisymmetric product of three
F’s, while ¥ and¥ () are spinor representations of odd- and even-dimensional orthogonal groups. In some
cases, an irreducible representation is denoted by its dimension inside the square brackets.

K Singlet G eg/4m dim[ M] Nstrueure
SU?2) [4]3 G, (2,3) 8+12=20 9
F2 G, (12 8+4=12 1
SU4) FFA?2 Es (1,2,3,21,2) 16+ 28=44 13
SU(5) FA2 Ee (1,2,3,2,12) 12+32=144 8
E3A Es (3,3,3,2,11) 16+ 36=52 12
F2FA E, (1,2,3,4,32,2) 20+ 48=68 24
Su(6) A2 = (1,2,3,2,12) 8+ 36=44 1
F2A2 E, (1,2,3,4,32,2) 16+52=68 17
F3A E, (3,3,3,3,2,11) 16+ 48=64 13
FFAS Esg (1,2,3,4,5,31,3) 20+ 68=88 33
SU7) A7 E, (3,6,9,12,8,47) 28+168=196 120
FA® Esg (1,2,3,4,5,31,3) 16+72=88 24
ASF Es (1,3,5,7,9,6,%) 24+132=156 84
Su(8) A8 Eg (3,6,9,12,15,10,B) 32+240=272 177
SQ(5) V2 Fyu (12,32 12+20=32 10
SA) [14]? Fa (2,3.4,2) 8+36=44 15
Sp(6) P2 F, (1,2,32) 8+24=32 3
sQ@8) RASUER AR Eg (4,5,6,42,3) 24+72=96 44
SO10) RASUE Eg (4,5,6,4,2,3) 16+80=96 35
R ASIE E, (1,2,3,4,32,2) 12+ 56=68 11
SQ(12) [P()7? E, (1,2,3,4,32,2) 8+ 60=68 1?
VP ()72 Eg (2,3,4,5,6,42,3) 16+100=116 34
SQ(14) [P()4 Eg (2,4,6,8,10,74,5) 16+168=184 77
Es [27]3 E, (3,4,5,6,4,2,3) 12+96=108 18
E, [56]? Esg (2,3,4,5,6,4,2,3) 8+108=116 1?

to-one correspondence with the harmonic forms on there self-dugl The dual to the positivel{negatively charged
moduli space that satisfy an appropriate normalizability conimassive multiplet is the fundamental monop@@atimono-
dition [28,29. Such a normalizable harmonic form was pole), which, according to the arguments of the previous
found recently in Refd.10] and[11]. section, corresponds to a fundamerigadtifundamentalrep-
Now let us consider the extension of these ideas to thearesentation multiplet.
ries with unbroken non-Abelian subgroups. A new feature If this group is broken further, to SI(—2) X U(1)?, the
that arises here is the presence of massless elementary exelementary particle sector contains two nondegenerate mas-
tations in the electrically charged sector. The duals to thessive fundamental SUW—2) multiplets with U1) charges
should also be massless, and so cannot be solitons of thi&,0 and (0,1); these are dual to the two kinds of massive
ordinary sort; they are presumably the massless monopoldandamental monopoles. There is also a massiveNstUZ)
that form the non-Abelian clouds that we have found. For thesinglet that carries one unit of each of thé¢llJcharges. Its
massive particles, on the other hand, the duality picturelual must be a threshold bound state containing one of each
should be much closer to that of the MSB case, except thaif the fundamental monopoles am—1 massless mono-
some of the particles transform under nontrivial representapoles. Such a state would correspond to a normalizable har-
tions of the unbroken gauge group. monic form on the moduli space we discussed in Sec. IV C;
As an example, take the case of $U( broken to in order to be unique, this form must be either a self-dual or
SU(N—1)XU(1). In the electrically charged sector, the anti-self-dual N-form [28]. With further breakinde.g., to
N2—1 gauge bosons of the original group can be decomSU(N—3)x U(1)%], additional bound states, containing
posed intoN(N—2) massless SWIN—1) gauge bosons, a some monopoles with purely Abelian charges, would also be
neutral massless (1)) gauge boson,N—1) massive bosons required.
with positive U1) charge belonging to the fundamental rep-  Other symmetry-breaking patterns can be studied in a
resentation of SUN—1), and N—1) massive bosons with similar fashion. In Table Il we list the breakings of simple
negative W1) charge belonging to the antifundamental rep-groups such that the unbroken group is a product of a simple
resentation of SU{—1). As noted above, the duals of the group times a product of () factors and the fundamental
massless gauge bosons are the massless monopoles and rmnnopoles all carry non-Abelian charg€Bhe latter require-
timonopolegexcept for the case of the neutral bosons, whichment implies that every broken simple root is linked to an
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TABLE lll. Representations of massive fundamental monopoles and their threshold bound states. The
notation for representations follows that of Tables | and II.

G Gyual Unbroken dual group Massive monopoles Bound states
SUNN+1) SUN+1) SUN) X U(1) F None
U(1)xSU(N—1)xU(1) F.F FF=[1]
SO(N+1) Sp(N) U(1)X Sp(2N—2) v VV=[1]
SU(N) X U(1) S None
U(1)XSUN—1)x U(1) F,S FS=F
FFS=[1]
Sp(2N) SO(N+1) U(1)XSO(N-1) v None
SU(N) X U(1) F FF=A
U(1)x SU(N—1)x U(1) F,F FF=[1]
FF=A
FFF=F
SO(2N) SO(N) U(1)X SO(2N—2) v None
SU(N) X U(1) A None
SU(N—1)X U(1)? F,F’ FF'=A
U(1)XSUN—1)xU(1) F, A FA=F
U(1)X SUN—2)x U(1)2 F.F,F FF=[1]
F'F=[1]
FF'=A
FF'F=F
G G U(1)xSU(2) [4] [4]1x[4]=[1]
(dim=14) SU(2)x U(1) [2] [2]1X[2]=]1]
[2]x[2]x[2]=[2]
Fa Fu Sp(6)x U(1) [14] [14]x[14]=[1]
(dim=52) U(1)x SO(7) v VY=V
U(1)X SO(5)x U(1) vV, ¥ VY=[1]
V=¥
VI¥=V
VVY¥=[1]
Es Eg U(1)X SU(6) A AA=[1]
(dim=78) SO(10%x U(1) ) None
U(1)x SO(8)xU(1) v, ¥) VI =)
U(1)x SU(4)x U(1)? F.F, A FF=[1]
FA=F
FASF
FFA=A
FFAA=[1]
E, E, U(1)X Eg [27] None
(dim=133) U(1)x SU(7) A AASF
SO(12)x U(1) ) POPEI=T1]
U(1)X SO(10)x U(1) v, ¥ VI (=g )
VIO P(=11]
U(1)x SU(6)x U(1) F,A FA=A
AA=[1]
FAASF
U(1)X SU(5)x U(1)? F,F, A FF=[1]
FA=F
FA:>/T
FAA=[1]
FFA=A
FFAASF

FFFAA=[1]
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TABLE lll. (Continued).

G Gyual Unbroken dual group Massive monopoles Bound states

Eg Eg U(1)X E; [56] [56]X[56]=[1]
(dim=248) U(1)xSU(8) A AA=s A
AAA=F
SO(14)< U(1) Wy () TPy
U(1)x SO(12)x U(1) v v TOWO=[1]
POV=p )
vOPOlv=y
TOTEIvy=[1]
U(1)xSU(7)xU(1) F,A FA=A
AA=F
F_AA:/T
FAAA=F
FFAAA=[1]
U(1)X SU(6)xU(1)? F,F, A FF=[1]
FA=F
FA=A
FAA=F
FFA=A
FFAA=A
FFAA=[1]
FFAAA=[1]
FFFAA=F
FFFAAA=F
FFFFAA=[1]

unbroken root in the Dynkin diagrajri-or each of these we ken gauge group. As we have noted, there are pathologies
have listed the representations of the fundamental monopolessociated with configurations that have nonzero long-range
and indicated the bound states containing such monopole®n-Abelian magnetic fields, and a meaningful moduli space
that are required by duality. These examples can in mostmerges only if we insist that the total magnetic charge be
cases be embedded in larger groups, in which case there wplurely Abelian. Since the nonsinglet bound states necessarily
also be purely Abelian fundamental monopoles and addiinvolve only some of the monopoles described by the moduli
tional bound states containing these. space, the corresponding harmonic forms cannot be normal-
In principle, all the bound states listed in Table Ill mustizable in the usual sense.
be realized as harmonic forms on appropriate moduli spaces.
However, actually finding these forms is a rather nontrivial
problem. For the case of distinct fundamental monopoles
with the moduli space metric given in Rdfl3], Gibbons In this paper we have used the multimonopole moduli
[30] recently gave an answer for the threshold bound state ispace as a tool for investigating the properties of monopoles
the MSB case: a middle form constructed as a wedge producarrying non-Abelian magnetic charges. If the net magnetic
of a number of harmonic two-forms that are associated witltharge is purely Abelian, the moduli space for the case with
the Killing vectorsd/di, . One might have hoped that this an unbroken non-Abelian subgroup can be obtained as a
construction would carry over to the present NUS limit andsmooth limit of that for the MSB case. In this limit the
produce the expected harmonidNZorm on the moduli moduli space describes multimonopole solutions that are
space for two massive and—1 massless monopoles of composed of one or more color-magnetically neutral combi-
Sp(2N+2) or SUN+2) broken to SUN) X U(1)?. Unfor-  nations of monopoles. In each of the latter there are a number
tunately, this is not the case. Although the harmonicity of theof massive fundamental monopoles, corresponding to em-
middle form is likely to be preserved, the normalizability is beddings of the S(2) monopole, that carry both Abelian and
not. Further, this middle form is invariant only under the non-Abelian magnetic charge. These are surrounded by a
Cartan subgroup of the unbroken gauge groupMJ(m-  cloud within which there is a nonzero non-Abelian magnetic
plying that the corresponding state is electrically charged anéleld.
cannot be the purely magnetic threshold bound state. This By studying the approach to the NUS limit, we are led to
difficulty is compounded by the fact that even the MSBinterpret this cloud as being composed of massless mono-
moduli space metric is unknown for most cases. poles carrying purely non-Abelian magnetic charges. These
Finally, we want to emphasize the fact that some of thecan be understood as limits of the fundamental monopoles of
required bound states transform nontrivially under the unbrothe MSB case that correspond to simple roots of the unbro-

VIl. CONCLUSION
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ken non-Abelian subgroup. However, they differ from thethere is much to be learned about these objects. Indeed, one
other fundamental monopoles in that there is no classicahight hope that a fuller understanding of these massless
soliton corresponding to an isolated massless monopolénonopoles could form the basis for a dual approach to non-
When they coalesce to form a non-Abelian cloud, they loséAbelian interactions that would prove complementary to that
their identity as individual objects. Thus, although the num-based on the perturbative gauge bosons.

ber of parameters remains unchanged as one goes from the

MSB case to the NUS case, the position and)Wrienta-

tions of these monopoles are transformed into gauge orien- ACKNOWLEDGMENTS

tation and structure parameters describing the cloud as a
whole.

There are a number of outstanding issues to be address
We have worked entirely within the context of the BPS limit.
To what extent do our results apply to modédsch as real-
istic grand unified theorigsthat have nonvanishing Higgs
potentials? Such models will still have a humber of massive
fundamental monopoles belonging to representations of the
dual of the unbroken gauge group. At least for Higgs boson
masses small compared to the vector meson masses, the lea
ing effects of the departure from the BPS limit could be We start with the observation that trEAB,S preserve
incorporated by adding to the moduli space Lagrangian & ,r,, which is the relative position vector between the two

potential energy depending on the monopole separations anfiassive monopoles. This can be seen by rewriting the vector
the cloud structure parameters. Presumably at least some gé|d in three-dimensional coordinates:

the color-magnetically neutral combinations of monopoles
are stably boundboth classically and quantum mechani- B @ d d .
cally) by this potential energy31], since the Brandt-Neri- Eas=€ fag rd e +gAB_é,¢ +95AW :
. . . . A B A B

Coleman analysi§6] shows that stable configurations with (A1)
large non-Abelian magnetic charge are impossible.

Another important question is that of how our largely (The details of theNx N matricesf® andg will not matter
classical analysis must be modified to take into accounhere) Recalling that the scalar quantiB,r » is also invari-

quantum effects. We discussed briefly in Sec. Ill the quantiant, one can easily see that the metric in @432 is invari-
zation of the moduli space coordinates and the nature of thgnt if and only if the Lie derivative of the one-form

low energy eigenstates of the moduli space Hamiltonian.
However, we have not addressed at all the question of how
the moduli space itself might be modified by quantum cor- QEEA: Fa (da+COSp difin)
rections.(Note that the BPS limit can be maintained under
guantum corrections in theories with extended supersymme- [ . . .
try.) For example, at the classical level the energy does not 271; (EAdEp—EndER — Ladint+EadlR)  (A2)
depend on the values of the cloud structure parameters, but
the corresponding degeneracy does not seem to be requirgdnishes. The Lie derivative of the differential form can be
by the BPS conditions at the quantum level. Does this meagyccinctly written as
that one-loop effects modify the low energy moduli space
Lagrangian? It would be clearly desirable to go beyond the LEABQ:d<EAB,Q>+<EAB,dQ>_ (A3)
semiclassical approximation and make a connection with the
work of Seiberg and Witteri32]. One would also like to  The two terms cancel each other withgiven as in Eq(A2)
understand what the effects of confinement on non—AbeIiar(lthiS is easiest to see in complex coordinatesd so the
magnetic charges are and how they should be incorporated , .'s are indeed Killing vector fields.

Perhaps most iﬂteresting are the questions connected with To show thatEAB is triho|omorphic1 we Compute the Lie
:Ee duality hypothesis. Pamcylarly intriguing is the ro_le of gerivative of the Kaler form Wg:B(N):

e massless monopoles, which are naturally recognized as
being the objects that are dual to the massless gauge bosons (@ _ (a) (a)
carrying electric-type color charges. In fact, if the electric LengWstun = HEas W)+ (Eng dWsin)- (A4)
and magnetic sectors are to be on an equal setting, the fufl,e kiler forms are closed, so that the second term is null,
multiplet of gauge bosons should have a counterpart comgpile the first term is
prising not only the massless monopoles and antimonopoles,
but also neutral gauge particles corresponding to the Cartan R
subalgebra. In one sense, the latter should be seen as bem@EAB,W(Sﬂm): 8—d<EAB,w§|2{)
their own dual, just as the photon is in tigJ(2)—U(1) 7
case. However, the fact that the choice of the Cartan subal- 1w ) ) .
gebra for the unbroken group is not gauge invariant shows —§d< Eag, € C(EA drA>/\(§ drB) >
that the particular separation into monopoles, antimonopoles,
and self-dual objects is to some extent arbitrary. Clearly, (A5)
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BecauseE 5 is orthogonal taS,dri the u-dependent term
vanishes identically. Then,
g°\ g

A
ﬁEABW(salj(N) -y d(Epp Wi = ELEABW% =0. (A6)
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This concludes the proof that tHe,g's are triholomorphic
Killing vector fields. It follows that the NUS metric in Eq.
(4.32 admits a UN) isometry that preserves its hyper-
Kahler structure.
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