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Massive and massless monopoles with non-Abelian magnetic charges

Kimyeong Lee,* Erick J. Weinberg,† and Piljin Yi‡
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~Received 3 June 1996!

We use the multimonopole moduli space as a tool for studying the properties of BPS monopoles carry
non-Abelian magnetic charges. For configurations whose total magnetic charge is purely Abelian, the mo
space for non-Abelian breaking can be obtained as a smooth limit of that for a purely Abelian breaking. As
asymptotic Higgs field is varied toward one of the special values for which the unbroken symmetry is enlar
to a non-Abelian group, some of the fundamental monopoles of unit topological charge remain massive
acquire non-Abelian magnetic charges. The BPS mass formula indicates that others should become mass
this limit. We find that these do not correspond to distinct solitons but instead manifest themselves as ‘‘n
Abelian clouds’’ surrounding the massive monopoles. The moduli space coordinates describing the pos
and U~1! phase of these massless monopoles are transformed into an equal number of non-Abelian g
gauge orientation and gauge-invariant structure parameters characterizing the non-Abelian cloud. We illus
this explicitly in a class of Sp(2N) examples for which the full family of monopole solutions is known. We
show in detail how the unbroken symmetries of the theory are manifested as isometries of the moduli sp
metric. We discuss the connection of these results to the Montonen-Olive duality conjecture, arguing
particular that the massless monopoles should be understood as the duals to the massless gauge boso
appear as the mediators of the non-Abelian forces in the perturbative sector.@S0556-2821~96!00122-1#

PACS number~s!: 11.15.Kc, 14.80.Hv
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I. INTRODUCTION

Magnetic monopoles have been the object of intense
terest ever since it was shown that they can arise as clas
solutions in spontaneously broken gauge theories@1#. This
interest is due in part to their role as predicted, although
yet undiscovered, particles that occur in all grand unifi
theories. Beyond their specific phenomenological implic
tions, however, monopoles are of interest as examples
classical solitons. Like all solitons, they give rise after qua
tization to a type of particle that can be seen as complem
tary to those that arise as quanta of the elementary fields.
complementary nature of solitons and elementary quant
particularly striking in theories with unbroken U~1! gauge
symmetry, since Maxwell’s equations are invariant unde
duality that interchanges magnetic and electric charges. T
idea is made more concrete in the conjecture of Monton
and Olive@2# that in certain theories there might be an exa
electromagnetic duality that exchanges solitons and elem
tary quanta, and weak and strong coupling.

In this paper we will be concerned with monopoles who
magnetic charge has a non-Abelian component, i.e., th
whose long-range magnetic field transforms nontrivially u
der an unbroken non-Abelian subgroup of the gauge sym
try of the theory. Just as elementary quanta carrying n
Abelian electric-type charges display a much richer range
phenomena than those with purely Abelian charges, there
some curious new properties that arise with non-Abel
magnetic charges. Some of these are associated with
long-distance behavior of these monopoles. Attempts to

*Electronic address: klee@phys.columbia.edu
†Electronic address: ejw@phys.columbia.edu
‡Electronic address: piljin@phys.columbia.edu
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ply a time-dependent global non-Abelian gauge rotation t
obtain a dyonic object carrying both electric and magneti
non-Abelian charges are frustrated by the nonnormalizabilit
of certain zero modes@3# and, at a deeper level, by the in-
ability to define global non-Abelian charge in the presence o
a monopole@4,5#. Also, Brandt and Neri, and Coleman@6#
have shown that, regardless of the physics that governs t
structure of their core, monopoles carrying more than a min
mal non-Abelian magnetic charge are unstable against dec
into minimally charged objects.~This result does not apply
in the BPS limit.! There are other new phenomena suggeste
by the possibility of electromagnetic duality. In particular,
one would expect the massless electrically charged gau
bosons to have magnetic counterparts. Although dualit
would predict that these should be massless, it is not obvio
how to obtain a zero energy soliton; one of our goals will be
to gain more insight into the properties of these objects.

We work with an adjoint representation Higgs fieldF in
the Bogomol’nyi-Prasad-Sommerfield~BPS! limit @7# in
which the scalar field potential is ignored and a nonzer
Higgs expectation value is imposed as a boundary conditio
at spatial infinity. In this limit static monopole solutions obey
the first order equations1

Bi5DiF . ~1.1!

Because the Higgs field is massless in the BPS limit, it me
diates a long-range force. For static monopoles, this forc
exactly balances their magnetic force.

We also use the moduli space approximation@8#, in which
the dynamics of the many degrees of freedom of the solito

1Our conventions are such thatFi j5] iAj2] jAi 1 ie@Ai ,Aj #
5e i jkBk andDiF5] iF1 ie@Ai ,F#.
6351 © 1996 The American Physical Society
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6352 54KIMYEONG LEE, ERICK J. WEINBERG, AND PILJIN YI
solution is effectively reduced to that of a small number
collective coordinateszi . For BPS monopoles, the absenc
of static interactions implies that the collective coordina
Lagrangian consists only of a kinetic energy term, which c
be written in the form

L5 1
2gi j ~z!żi żj , ~1.2!

wheregi j may be interpreted as a metric on the moduli spa
spanned by thezi . If the monopole solutions are known fo
arbitrary values of the collective coordinates, then the mod
space metric can be obtained in a straightforward man
from the zero modes about these solutions. Even if the g
eral solution is not known, as is usually the case, it is som
times possible to determine the moduli space metric. T
was first done by Atiyah and Hitchin@9#, who found the
two-monopole moduli space metric for the case of SU~2!
broken to U~1!. Recently, the metric for two monopoles in
theory with an arbitrary group broken to a purely Abelia
subgroup was found@10–12#. Finally, in Ref. @13# we pro-
posed a family of metrics for the moduli spaces of a som
what larger class of multimonopole solutions in higher ra
gauge groups.2

These last results are the starting point for our pres
investigation. We begin in Sec. II by reviewing some of th
properties of BPS monopoles. An adjoint Higgs field c
break a rankr gauge groupG to either U~1! r or to
K3U(1)r2k, whereK is a semisimple group of rankk,r .
The former case, which we will refer to as maximal symm
try breaking~MSB!, occurs for generic values ofF. There
are r topologically conserved charges, one for each U~1!
factor. Associated with these arer fundamental monopoles
each carrying a single unit of one of these topologic
charges; all other BPS solutions can be understood as m
monopole solutions containing appropriate numbers of
various fundamental monopoles.

The latter case, with a non-Abelian unbroken symme
~NUS!, occurs for special values ofF. For these values some
of the fundamental monopoles of the MSB case survive
massive solitons but acquire non-Abelian magnetic charge
the sense that their long-range magnetic field has nonvan
ing components inK. Taken at face value, the BPS mas
formulas indicate that certain other fundamental MSB mon
poles ~also with non-Abelian magnetic charge! become
massless in the NUS limit; these are just the duals to
massless gauge bosons that were mentioned above. T
interpretation is complicated by the fact that as the mass
limit is approached the core radii of the corresponding cla
sical monopole solutions tend to infinity while at the sam
time the fields all tend toward their vacuum values.

In this paper we investigate the properties of these n
Abelian monopoles by following the behavior of MSB solu
tions as the asymptotic Higgs field is varied toward the NU

2In a recent paper, Murray@14# has shown that these metrics co
incide with those on the space of Nahm data@15# for the unitary
gauge groups. More recently, Chalmers@16# has given a proof that
they are the only smooth hyper-Ka¨hler metrics that possess the righ
symmetry properties as well as the correct asymptotic behavior,
thus are in fact the exact moduli space metrics.
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value. For configurations whose total magnetic charge ac
quires a non-Abelian component when one passes from th
MSB to the NUS case, one encounters various pathologies
of which the behavior of the massless monopoles describe
above is just one example. To avoid these difficulties, we use
the approach of Refs.@5,17# and consider only combinations
of monopoles whose non-Abelian charges cancel. As we
shall see, for such ‘‘magnetically color-neutral’’ combina-
tions the approach to the NUS case is quite smooth.

Each such combination of NUS magnetic charges is the
limit of a unique set of MSB magnetic charges. Index theory
methods reveal that the moduli spaces for the two cases hav
the same dimension. It therefore seems quite plausible tha
the moduli space metric for the NUS case should be simply
the appropriate limit of the metric for the corresponding set
of MSB charges.

In Sec. III we test this explicitly for an example with
gauge group SO~5!, with MSB and NUS symmetry break-
ings to U(1)3U(1) and SU(2)3U(1), respectively. In the
former case there are two fundamental monopole solutions
Because the sum of the magnetic charges of these two re
mains purely Abelian as one passes to the NUS case, th
solutions containing two distinct fundamental monopoles are
precisely the sort of color-neutral combinations that we want.
For the MSB case, the metric for the corresponding eight-
dimensional two-monopole moduli space is known from the
results of Ref. @10#. For the NUS case, the full eight-
parameter family of solutions was found some time ago@18#.
We use these to calculate the NUS moduli space metric di
rectly and verify that it is indeed the expected limit of the
MSB metric.

Despite this smooth behavior of the metric, the interpre-
tation of the coordinates on the moduli space is quite differ-
ent for the cases of Abelian and non-Abelian symmetry
breaking. In the MSB case the generic solution has a natura
interpretation in terms of two widely separated monopoles,
each of which is specified by the three spatial coordinates o
its center and a single U~1! phase angle. As the NUS limit is
approached, one of the fundamental monopole solutions re
tains its nonzero mass and finite core radius. The mass of th
other fundamental monopole approaches zero while, as note
above, its radius,in the absence of any other monopoles,
tends to infinity. However, the behavior of this massless
monopole is modified dramatically by the presence of a mas
sive monopole.

This can be seen by considering an MSB solution contain-
ing two such monopoles separated by a distancer 0 that is
much larger than either of their core radii. As the NUS limit
is approached, the core of the would-be massless monopo
expands until its radius becomes comparable tor 0. It then
begins to lose its identity as an isolated soliton and instead is
manifested as a ‘‘non-Abelian cloud’’ of radius;r 0 sur-
rounding the massive monopole. Within this cloud there is a
Coulomb magnetic field corresponding to a combination of
Abelian and non-Abelian magnetic charge, but the non-
Abelian component disappears forr@r 0. In the NUS non-
Abelian limit, one of the position coordinates of the massless
monopole is transformed into a parameter specifying the ra
dius of the non-Abelian cloud, while its other two position
coordinates combine with its U~1! phase angle to specify the
global SU~2! orientation of the solution.
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In the last part of Sec. III, we consider the semiclassi
quantization of the moduli space coordinates describing
non-Abelian cloud. We find that there is a tower of stat
carrying both spin and electric-type SU~2! charge ~‘‘iso-
spin’’!, with the magnitudes of the isospin and spin bei
equal.

In Sec. IV we consider some more complex cases. T
first of these involves a color-neutral combination
(N11) monopoles in a theory with Sp(2N12) broken to Sp
(2N)3U(1). @For N51 this reduces to the SO~5!5Sp~4!
example of Sec. III.# TheN11 monopoles become distinc
fundamental monopoles upon maximal symmetry breaki
and so the MSB moduli space metric given in Ref.@13# is
applicable to this case. With Sp(2N)3U(1) as the unbroken
group,N of these monopoles become massless and coal
in a cloud about the single massive monopole. In fact,
full family of solutions for this case can be obtained fro
embedding of the SO~5! solutions of Sec. III. As with the
SO~5! case, one can verify that the moduli space metric o
tained from such exact monopole solutions is identical to
NUS limit of the MSB moduli space metric. This examp
also illustrates very nicely how monopole coordinates
transformed into parameters describing the structure
gauge orientation of the cloud. As we will show, what us
to be the relative position and U~1! coordinates of the
N11 monopoles can be assembled into 2N complex~or N
quaternionic! variables on which the unbroken grou
Sp(2N) acts triholomorphically, defining a set of Killing
vector fields of the algebra of Sp(2N). These leave invarian
a single combination of the monopole coordinates that
comes the radius of the non-Abelian cloud.

The next step is to examine solutions with two mass
monopoles in the NUS limit. For either Sp(2N12) or
SU(N12) broken to SU(N)3U(1)2 there are magnetically
color-neutral configurations with (N21) massless and two
massive monopoles, each of which individually carries
nonzero non-Abelian magnetic charge. Again they belong
the class of multimonopoles for which we have a MS
moduli space metric. We are unable to compare its N
limit to the exact metric in this case, because the comp
family of such multimonopole solutions is unknown. Instea
we examine its symmetry properties in the NUS limit, whic
must include a U(N) triholomorphic isometry coming from
the unbroken gauge group, and find the right set of Killi
vectors. As in the previous case, we can construct a sin
invariant from the massless monopoles coordinates that fi
the size of the non-Abelian cloud surrounding the two m
sive monopoles.

We cannot carry out the analysis at this level for oth
cases, since we know neither the general solutions nor
moduli space metric. However, as we describe in Sec. V,
still possible to make some progress in understanding n
Abelian monopoles in other groups. From the root struct
of the group, we can determine the transformation proper
of the massive fundamental monopoles under the unbro
gauge group and see how they can be combined to y
configurations with no net non-Abelian magnetic charg
Each such combination requires a fixed number of mass
monopoles, whose coordinates combine to give the vari
global gauge and cloud structure parameters. Using gr
theory arguments, we can in most cases determine~and in
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the remaining ones bound! the number of structure param-
eters. In general there are more than one, suggesting that
non-Abelian cloud can have considerable structure.

One of motivations for this work was the possibility of an
exact electromagnetic duality. In particular, it has been con
jectured that inN54 supersymmetric Yang-Mills theories
there is a correspondence between electrically and magne
cally charged states. While some of the magnetic states r
quired by this duality are based straightforwardly on the fun
damental monopole solutions, others must be obtained
threshold bound states; the latter can be related to normal
able harmonic forms on the moduli space. In Sec. VI we not
some of the implications of our results for this conjectured
duality and discuss some of the issues related to the thres
old bound states.

Finally, in Sec. VII we summarize our results and make
some concluding remarks. Some detailed calculations rela
ing to the isometries of the moduli spaces studied in Se
IV C are contained in the Appendix.

II. REVIEW OF BPS MONOPOLES

We begin by recalling the main features of the BPS
monopoles in an SU~2! gauge theory@7#. We fix the normal-
ization of the magnetic charge in the unbroken U~1! by writ-
ing the asymptotic magnetic field as

Bi
a5

gr̂ i
4pr 2

Fa

uFu
. ~2.1!

Topological arguments then show thatg must be quantized
in integer multiples of 4p/e. The monopole solution carry-
ing one unit of magnetic charge may be written as

Fa5 r̂ aH~r !, Ai
a5eaimr̂

mA~r !, ~2.2!

wherev is the asymptotic magnitude of the Higgs field and

A~r !5
v

sinhevr
2

1

er
, H~r !5vcothevr2

1

er
. ~2.3!

The solutions carryingn.1 units of magnetic charge can all
be understood as multimonopole solutions. The dimension
the moduli space for a givenn can be determined by study-
ing the zero modes about an arbitrary solution, i.e., the pe
turbations that preserve Eq.~1.1! to first order. By requiring
that these perturbations satisfy the background gauge con
tion

05DidAi1 ie@F,dF#[DmdAm , ~2.4!

we ensure that the zero mode is orthogonal to all mode
obtained by gauge transformation of the original solution
with gauge functions that vanish at spatial infinity.3 This

3In the second equality we have adopted a notation in whichF is
treated as the fourth componentA4 of a vector potentialAm , with
]4 acting on any quantity being identically zero. We will always use
Greek indices to indicate that this four-dimensional notation is be
ing used; Roman indices should always be understood to run from
to 3.
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leaves only a single normalizable gauge mode, correspo
ing to the single generator of the unbroken U~1!. Index
theory methods show@19# that there are 4n linearly indepen-
dent normalizable zero modes; when the monopoles
separated far away from each other, the corresponding c
dinates on the moduli space having natural interpretations
the positions and U~1! phase angles ofn unit monopoles.

Now consider an arbitrary gauge groupG of rank r . Its
generators can be chosen to bek commuting operatorsHi ,
normalized by trHiH j5d i j , which span the Cartan subalge
bra, together with ladder operators, associated with the ro
a, which obey

@H,Ea#5aEa , @Ea ,E2a#5a•H . ~2.5!

One can choose a basis ofr simple roots with the property
that all other roots are linear combinations of these with
teger coefficients all of the same sign. A particularly conv
nient basis may be chosen as follows. LetF0 be the asymp-
totic value ofF in some fixed direction. We choose this t
lie in the Cartan subalgebra and then define a vectorh by

F05h–H. ~2.6!

We then require that the simple roots all have non-negat
inner products withh. If the symmetry breaking is maximal
there are no roots orthogonal toh and there is unique set o
simple rootsba obeying this condition. If instead there ar
roots orthogonal toh, then the sublattice formed by suc
roots is the root lattice for some semisimple groupK of rank
k,r , and the unbroken gauge group is U(1)r2k3K. In this
case we denote bygj the simple roots orthogonal toh and
write the remainder asba . Here the choice of simple roots i
not unique, with the various possibilities being related
elements of the Weyl group ofK.

We can also require that, in the direction chosen to defi
F0, the asymptotic magnetic field lie in the Cartan subalg
bra and be of the form

Bi5
r̂ i

4pr 2
g–H. ~2.7!

Topological arguments lead to the quantization conditi
@20#

g5
4p

e F(
a

naba*1(
j
qjgj* G , ~2.8!

where

a*5
a

a2 ~2.9!

is the dual of the roota and thena andqj are non-negative
integers. Thena are the topologically conserved charges. F
a given solution they are uniquely determined and gau
invariant, even though the correspondingba may not be. The
qj are neither gauge invariant nor conserved.

For maximal symmetry breaking there is a unique fund
mental monopole solution associated with each of ther to-
pological charges. To obtain these, we first note that any r
a defines an SU~2! subgroup generated by
nd-
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t1~a!5
1

A2a2
~Ea1E2a!,

t2~a!52
i

A2a2
~Ea2E2a!,

t3~a!5a* •H. ~2.10!

If Ai
s(r ;v) andFs(r ;v) give the SU~2! solution correspond-

ing to a Higgs expectation valuev, then the fundamental
monopole corresponding to the rootba is given by@19#

Ai~r !5(
s51

3

Ai
s~r ;h•ba!t

s~ba!,

F~r !5(
s51

3

Fs~r ;h•ba!t
s~ba!1~h2h•ba*b!•H.

~2.11!

It carries topological charges

nb5dab ~2.12!

and has mass

ma5
4p

e
h•ba* . ~2.13!

All other BPS solutions can be understood as multimono
pole solutions containingN5(na fundamental monopoles.
These include both solutions, containing many widely sepa
rated fundamental monopoles, that are obviously composi
and spherically symmetric solutions whose compositeness
revealed only by analysis of their zero modes. The latte
solutions are obtained by replacingba in Eq. ~2.11! by any
composite roota; their topological charges are equal to the
coefficients in the expansion

a*5(
a

naba* . ~2.14!

The moduli space for these multimonopole solutions ha
4N dimensions, corresponding to three position variable
and a single U~1! phase for each of the component funda-
mental monopoles. The full moduli space and its metric ar
known forN52. ForN.2 the metric for the case where all
the component fundamental monopoles are all distinct wa
given in Ref.@13#; for all other cases, the explicit form of the
metric is known only for the region of moduli space corre-
sponding to widely separated fundamental monopoles.

Matters are somewhat more complicated when the unbr
ken gauge group is non-Abelian@21#. If ba•H commutes
with the generators ofK ~i.e., if ba is not linked in the
Dynkin diagram to one of thegj ), the construction described
above yields a unique fundamental monopole carrying
single unit of topological charge. The identification of the
fundamental solutions for the remainingba is less straight-
forward. The Weyl group ofK takes each of theseba to one
or more other roots, any of which could have been chosen
a simple root instead ofba . Using any of these in the em-
bedding construction leads to a solution, carrying a singl
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unit of topological charge, that is simply a global gauge r
tation of the original solution. In addition, it is sometime
possible to have a roota that is not related toba by a Weyl
reflection but that nevertheless gives an expansion

a*5ba*1(
j
qjgj* . ~2.15!

Insertion of such a root into Eq.~2.11! yields a solution that
is gauge inequivalent to the solution based onba , yet still
carries unit topological charge.4 As we will see illustrated in
the next section, there is a continuous family of gaug
inequivalent solutions with unit topological charge that inte
polate between thea- andba-embedding solutions.

If the long-range magnetic field has a non-Abelian com
ponent~i.e., if g•gjÞ0), the index theory methods used t
count zero modes in Refs.@19# and @21# fail for technical
reasons related to the slow falloff of the non-Abelian field
large distance. These difficulties do not arise ifg•gj50, in
which case the number of normalizable zero modes is

p54F(
a

na1(
j
qj G . ~2.16!

~It is possible to writep in the form (cana , but this is
somewhat misleading because, as we will see, there are s
zero modes that cannot be associated with any single fun
mental monopole.!

III. SO „5… EXAMPLE

A. Monopoles in SO„5… gauge theory

Many of the issues we want to address are illustrated i
particularly simple fashion if the gauge groupG is SO~5!,
whose root lattice is shown in Fig. 1. Ifh is oriented as
shown in Fig. 1~a!, there is maximal symmetry breaking, t
the subgroup U(1)3U(1), while if h is as in Fig. 1~b!, the
unbroken gauge group is SU(2)3U(1) with the SU~2! de-

4Such solutions were referred to as degenerate fundamental m
poles in Ref.@21#.

FIG. 1. The unitary gauge Higgs expectation valueh in the root
space of SO~5!. The symmetry is maximally broken for~a! and only
partially for ~b!.
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fined by the long root5 g. In this section we will examine the
behavior ash is rotated towarda ~i.e., as the mass of the
g vector meson is taken to zero! and see to what extent the
properties of the monopoles with SU(2)3U(1) symmetry
breaking can be obtained as limits of the MSB case.

In the maximally broken case, withh oriented as in Fig.
1~a!, the simple roots are the two labeledb andg. The cor-
responding fundamental monopoles, with masses

mb5
4p

e
h•b* , mg5

4p

e
h•g* , ~3.1!

are obtained by SU~2! embeddings as in Eq.~2.11!. Their
central cores have radii

Rb;~eh•b!21, Rg;~eh•g!21, ~3.2!

which are set by the masses of the corresponding electrica
charged vector bosons.

The SU~2! embeddings defined bya andm give two other
spherically symmetric solutions but, as discussed in Sec.
these are actually multimonopole solutions. Because

a*5b*1g* , m*5b*12g* , ~3.3!

the former is a two-monopole solution that maps to a sing
point of an eight-dimensional moduli space, while the latte
is a three-monopole configuration, with the correspondin
moduli space having 12 dimensions. Note that, even thou
these last two solutions are composite, their cores are ac
ally smaller than those of either of the fundamental mono
poles. Essentially, this is because the vector boson mass t
sets the core size depends on the local, rather than the
ymptotic, value of the Higgs field.

With the non-Abelian symmetry breaking that result
whenh is orthogonal tog, as in Fig. 1~b!, b andg can still
be chosen as the simple roots. However, there is no longe
solution withg parallel tog. Furthermore, the solutions with
eg/4p equal to b* , b*1g* , and b*12g* that corre-
sponded to one, two, and three monopoles in the MSB ca
are now all degenerate, with any solution with
eg/4p5b*12g* being gauge equivalent to one with
eg/4p5b* .

The way in which this behavior emerges from the MSB
case ash is rotated towarda can be rather subtle. Consider,
for example, theg monopole solution. This exists for all
nonzero values ofmg , but not ifmg50. Asmg decreases,
the core of this monopole spreads out to increasingly larg
distances, while the magnitudes of the gauge fields at a
fixed point in the core become ever smaller. Thus, to a
observer who measures fields only within a fixed region o
space, the monopole becomes effectively undetectable wh
mg is sufficiently small. From a more global point of view,
on the other hand, the limit is not smooth. Similarly, sinc
the moduli spaces for solutions witheg/4p5b* and
eg/4p5b*12g* have 4 and 12 dimensions, respectively
they cannot have a common limit, even though an observ

ono-

5There is an inequivalent breaking to SU(2)3U(1) where the
unbroken SU~2! is the subgroup defined by a short root; this case
not of interest to us here.
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confined to a finite volume would not be able to distingui
between the case wheremg was precisely zero and tha
where it very small, but nonzero.

Since these difficulties are associated, at least in part, w
the appearance of a non-Abelian magnetic charge with
associated Coulomb field, one hope that themg→0 limit
would be smoother for the solutions witheg/4p5b*1g* ,
whose magnetic charge remains purely Abelian. Ind
theory methods can be applied to these solutions for ei
maximal or nonmaximal symmetry breaking, and in bo
cases show that the moduli space is eight dimensional. It t
seems quite plausible that the moduli space metric for
latter case might be themg→0 limit of the moduli space for
the former. To test this conjecture, we will obtain the mod
space metric for the NUS case directly from the explicit s
lutions that were found in Ref.@18#, and then compare this
with themg→0 limit of the MSB metric that was obtained in
Ref. @13#.

B. Eight-parameter family of solutions

We begin by describing the solutions of Ref.@18#. We
start with some notation. For any Hermitian elementP of the
Lie algebra we define two real vectorsP(1) and P(2) and
232 matrixP(3) obeyingP(3)* 52t2P(3)t2 by

P5P~1!•t~a!1P~2!•t~g!1trP~3!M , ~3.4!

wheret(a) and t(g) are defined as in Eq.~2.10! and

M5
i

Ab2 S Eb 2E2m

Em E2b
D . ~3.5!

Note that a 2p gauge rotation generated by any of th
ta(g) changes the sign ofP(3) but leaves the other compo
nents ofP invariant. The commutation relations of the ge
erators imply that the components ofR5@P,Q# are

R~1!5 iP~1!3Q~1!2 trP~3!
† tQ~3! ,

R~2!5 iP~2!3Q~2!2 trP~3!tQ~3!
† ,

~3.6!

R~3!5
1
2 @P~1!•tQ~3!2Q~3!t•P~2!

2Q~1!•tP~3!1P~3!t•Q~2!#.

The family of spherically symmetric solutions found i
@18# can be written as

Ai ~1!
a 5eaimr̂ mA~r !, f~1!

a 5 r̂ aH~r !,

Ai ~2!
a 5eaimr̂ mG~r !, f~2!

a 5 r̂ aG~r !, ~3.7!

Ai ~3!5t iF~r !, f~3!52 i IF ~r !.

HereA(r ) andH(r ) are the SU~2! monopole functions given
in Eq. ~2.3!, while the other two coefficient functions obey
sh
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05G81S eG1
2

r DG14eF2, ~3.8!

05F81
e

2
~H22A1G!F, ~3.9!

together with the boundary conditionsG(0)5F(`)
5G(`)50. There is no constraint onF(0), although the
gauge freedom noted below Eq.~3.5! can be used to make it
positive. These equations have a one-parameter family o
solutions

F~r !5
v

A8cosh~evr /2!
L~r ,a!1/2, G~r !5A~r !L~r ,a!,

~3.10!

where

L~r ,a!5@11~r /a!coth~evr /2!#21 ~3.11!

and the parameter6 a has the dimension of length and ranges
from 0 to`. In these formulasv5h•a.

Whena50 the monopole is invariant under the unbroken
SU~2!, since the doublet and triplet components of the fields,
proportional toF(r ) andG(r ), vanish identically. IfaÞ0,
these components are nonvanishing and can be thought of a
constituting a ‘‘non-Abelian cloud’’ about the monopole.
The effect ofa on the long-range tail ofG(r ) is particularly
striking. For 1/ev&r&a, this falls as 1/r , thus yielding the
Coulomb magnetic field appropriate to a non-Abelian mag-
netic charge. At larger distances, however, the falloff in-
creases to 1/r 2, showing that the magnetic charge is actually
purely Abelian. Not surprisingly, the limita→` gives a so-
lution that is a gauge transformation of theb embedding of
the SU~2! monopole, for whichg actually does have a non-
Abelian component.

With the MSB case in mind, one might think of these
solutions as being superpositions of ab monopole and ag
monopole. The fact that it has a finite core radius, even
though Eq.~3.2! givesRg5` in the NUS limit, can be seen
as analogous to the contraction of the cores in the analogou
MSB superposition that was noted below Eq.~3.3!.

This one-parameter family of solutions can be extended to
an eight-parameter family by the action of the symmetries of
the theory. Three of the additional parameters correspond t
spatial translations of the solution, while the remaining four
are obtained by applying global SU(2)3U(1) transforma-
tions generated byt(g) and t3(b).

C. Zero modes

The moduli space metric can be obtained directly from
the zero modes about these solutions, provided that thes
modes satisfy the background gauge conditionDmdAm50.
In order to satisfy this condition, it may be necessary to add
an infinitesimal gauge transformation to the zero modes ob

6This is related to the parameterb5F(0) used in Ref.@18# by
eva516b2/(128b2).
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tained by varying the parameters in the solution, so that t
zero mode corresponding to a collective coordinatez will in
general take the form

dzAm5]zAm1Dmez . ~3.12!

Once these zero modes have been found, the moduli sp
metric is given by

gi j5E d3x tr~d iAm d jAm!. ~3.13!

The determination of the zero modes is simplified consid
erably by the fact that one zero mode can be used to gener
three others. If we define

c~x!5Idf~x!1 is jdAj~x!, ~3.14!

then the three self-duality equations plus the backgrou
gauge condition fordAm are equivalent to the Dirac equation

smDmc50, ~3.15!

wheres4[ i @22#. Right multiplication of a solutionc by
any unitary 232 matrix yields another solutionc8, which
can be transformed back to give a new zero moded8Am . In
particular, if we have a zero modedAm , then multiplication
of the correspondingc on the right byi n̂•s ~where n̂ is a
unit three-vector! yields a new Dirac solution that can be
decomposed to give

d8f52n̂idAi , d8Ai5n̂idf1e i jk n̂ jdAk . ~3.16!

By making three orthogonal choices forn̂, we can obtain
three zero modes that are orthogonal to each other and to
original mode; the four modes clearly have the same norm

We consider first the mode corresponding to an infinites
mal change in the parametera. Becausea enters only
through the functionL,

]aAm~1!50, ]aAm~2!5
]aL

L
Am~2! , ]aAm~3!5

]aL

2L
Am~3! .

~3.17!

To see whether this is already in background gauge, we m
calculate

Dm]aAm5]mdAm1 ie@Am ,dAm#. ~3.18!

It is trivial to verify the vanishing of the singlet and triplet
components of this quantity. The remaining component is

Dm]aAm~3!5] j]aAj ~3!

1
ie]aL

4L
@Am~1!•tAm~3!1Am~3!t•Am~2!#.

~3.19!

In the first term on the right we can interchange the spati
differentiation and the variation ofa. To evaluate the second
term we make use of the fact that]aL/L52]aF/F. Using
Eqs.~3.7! we then find that
he
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Dm]aAm~3!5 r̂•tF]aF81
e

2
]aF~H22A13G!G50,

~3.20!

where the last equality follows from the variation of Eq
~3.9! together with the relation]aG/G52]aF/F. Thus, this
mode satisfies the background gauge condition without t
need for any additional gauge transformation, and so

daAm5]aAm . ~3.21!

We can now use Eq.~3.16! to generate three other zero
modes from this mode. Substitution of the expression~3.17!
for daAm into this equation gives a mode that can be writte
in the form7

d8Am5DmL5]mL1 ie@Am ,L#, ~3.22!

where the only nonzero components ofL are

L~2!~r !52n̂
]aL

eL
52

n̂

e F1a2
1

r
1O~r22!G . ~3.23!

This new mode is just a global SU~2! zero mode, already in
background gauge. Its relation to the gauge rotation angle
given by eL(`); from Eq. ~3.23!, we see that the mode
corresponding to a shiftda maps to one corresponding to an
SU~2! rotation by an angledc5da/a.

The three translation zero modes are given by spatial d
rivatives of the solution combined with appropriate gaug
transformations. Once these are found, Eq.~3.16! can be
used to obtain the eighth, U~1!, mode. We do not actually
need the form of these four modes, but we will make use
the fact that they are orthogonal to each other and to t
other four zero modes. This orthogonality is clearly expect
on physical grounds. To verify it, we first note that the tran
lation modes transform under spatial rotations as the com
nents of a vector, and so must be orthogonal to the other fi
modes, which are rotational scalars. It then follows that th
Dirac mode from which these arise is orthogonal to the Dir
mode obtained from the SU~2! andda modes; since the U~1!
mode arises from the former Dirac mode, it must be orthog
nal to the latter four modes.

D. Moduli space metric

We can now proceed to determine the moduli space m
ric. Symmetry considerations and the properties of the BP
mass formula constrain its form considerably. The subspa
corresponding to the translation modes is clearlyR3, with a
natural set of coordinates given by the location of the cen
of the monopole. The metric on this subspace relates
kinetic energy to the spatial velocity, and so is proportion
to the monopole mass, which depends only on the magne
charge. Hence, it must be independent not only of the po
tion coordinates and SU~2! and U~1! parameters, but also of

7Showing thatd8Am(1) andd8Am(3) are of this form is trivial. To
verify the result ford8Am(2) , one must make use of the identity
(]aL/L)852(]aF/F)852eG(]aL/L) which is obtained by differ-
entiating Eq.~3.9! with respect toa.
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the parametera. Similarly, since the metric componentgxx

in the subspace spanned by the U~1! phase angle contributes
to the leading corrections to the dyon mass through a term
the formQx

2/2gxx , it too must be independent of all eigh
parameters. The subspace spanned by the SU~2! parameters
must be simply the standard mapping of SU~2! onto a three-
sphere, with a radius that might depend ona but not on the
position or U~1! phase angle. Finally, the metric in the one
dimensionalda subspaces can depend at most ona.

Thus the metric on the eight-dimensional moduli spa
must be of the form

ds25Bdx21Cdx21I 1~a!da21I 2~a!~s1
21s2

21s3
2!,
~3.24!

whereB andC are constants, and the one-formss j are de-
fined by

s152sincdu1coscsinudf,

s25coscdu1sincsinudf, ~3.25!

s35dc1cosudf ,

with the SU~2! Euler anglesu, f, andc having periodicities
p, 2p, and 4p, respectively.

From Eq.~3.13!, we see thatI 1(a) is simply the norm of
the da mode; from its construction, it is obvious that th
SU~2! mode of Eq.~3.22! has the same norm. Hence,

I 1~a!5E d3x tr ~d8Amd8Am!5E d3x tr~DmL!2

5E d3x ] j@ tr~LDjL!#5
4pk

e2a
, ~3.26!

with k[tr t3(g)t3(g)51/g2. In the second equality we have
used the fact thatd8Am obeys the background gauge cond
tion, while in the last we have used Eq.~3.23!. To obtain
I 2(a) we need only multiply this by the square of the facto
da/dc5a that followed fromL(`). Finally, B andC can
be related to the monopole massM[mb with the aid of the
BPS dyon mass formula. We thus find that the moduli spa
metric is

ds25Mdx21
16p2

Me4
dx21

4pk

e2 Fda2a 1a~s1
21s2

21s3
2!G .
~3.27!

To put this in a more standard form, we definer52Aa and
obtain

ds25Mdx21
16p2

Me4
dx21

4pk

e2 Fdr21
r2

4
~s1

21s2
21s3

2!G .
~3.28!

The quantity in square brackets is just the metric forR4

written in polar coordinates, with the unfamiliar factor o
1/4 arising from the normalization of thes j , and so the
moduli space is
of
t

-

ce

e

i-

r

ce

f

M5R33S13R4, ~3.29!

with the natural flat metric.~The second factor isS1, rather
thanR1, because of the periodicity ofx.!

We want to compare this with the metric for the moduli
space of solutions containing oneb and oneg monopole in
the MSB case. In Ref.@13#, it was shown that this space is of
the form

M5R33
R13M0

Z
. ~3.30!

Here M0 is the Taub-NUT ~Newman-Unti-Tamburino!
space with metric

GM0
5S m1

g2l

8pr D @dr21r 2s1
21r 2s2

2#

1S g2l8p D 2S m1
g2l

8pr D
21

s3
2 , ~3.31!

with the reduced massm5mbmg /(mb1mg) and the mag-
netic couplingg54p/e. The constantl encodes the strength
of coupling between the two monopoles,

l522g* •b*52k , ~3.32!

where the second equality follows from the fact thatg is a
long simple root of the non-simply-laced SO~5! algebra. The
division byZ denotes the fact that there is an identification of
points

~x,c!5S x12p,c1
4mg

mb1mg
p D . ~3.33!

Using Eq.~3.32! and the relation betweeng ande, we see
that, asm andmg tend to zero,GM0

approaches the metric
for the relative moduli space that we found for the
SU(2)3U(1) breaking, provided that we identify the radial
coordinater with the cloud size parametera. Furthermore, in
this limit the identification ~3.33! reduces to
(x,c)5(x12p,c), and so the division byZ acts only on
the R1 factor, allowing us to make the replacement
R1/Z5S1. Thus the moduli space metric for the NUS case is
indeed the expected limit of that for the MSB case.

Although the metric varies smoothly as one case goes
over into the other, there is a curious transformation in the
meaning of the moduli space coordinates, specifically those
on the four-dimensional subspace that remains after the
center-of-mass coordinates and overall U~1! phase have been
factored out. With maximal symmetry breaking these coor-
dinates are the distancer between theb andg monopoles,
the anglesu andf that specify the direction from one mono-
pole to the other, and the relative U~1! phase anglec. As
m tends toward 0 and theg monopole ceases to be a distinct
soliton, the monopole separationr becomes instead a mea-
sure of the size of the non-Abelian cloud, while the direc-
tional anglesu andf combine withc to give the coordinates
in the internal symmetry space.
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E. Quantum mechanics of the moduli space coordinates

In the moduli space approximation, one assumes tha
sufficiently low energy the classical dynamics of the mon
poles is mimicked by the free motion of a point particle o
the moduli space. Quantizing this motion should then g
the low energy quantum mechanics of the monopoles. T
reduces the quantum mechanics of interacting monopole
a nonlinears model with the moduli space as the targ
manifold.~When there are fermionic zero modes present, o
must modify thes model to include fermionic coordinates
but here we want to confine our attention to the pure
bosonic part.!

When the symmetry breaking is maximal, all bosonic c
ordinates on the moduli space have a clear physical interp
tation as either positions or U~1! phase angles of individua
monopoles. The periodicity of the latter leads to the quan
zation of the dyonic charges. On the NUS moduli space
the SO~5! solution found above, the center-of-mass variab
still have this interpretation. Since the corresponding port
of the moduli space is a flatR33S1, a natural basis of energy
eigenstates is given by plane waves onR3 with a periodic
dependence on the ‘‘internal’’S1; these describe a freely
propagating dyon with quantized electric U~1! charge.

The relative part of this moduli space is a flatR4, whose
coordinates may be taken as the cloud size parametera to-
gether with SU~2! gauge collective coordinates that span t
transverse three-spheres.R4 admits an SO~4!
5SU(2)3SU(2) isometry. Let us call the respective SU~2!
generatorsiL (a) and iK (a), a51,2,3. The wave function is
then decomposed as

CM0
5( Ajlk

E f E
~ j !~a!Dkl

~ j !~u,f,c!, ~3.34!

where theDkl
( j ) are the three-dimensional spherical harmon

that satisfy

2L ~a!L ~a! Dkl
~ j !52K ~a!K ~a! Dkl

~ j !5 j ~ j11! Dkl
~ j ! ,

~3.35!
iL ~3!Dkl

~ j !5 lDkl
~ j ! ,

iK ~3!Dkl
~ j !5kDkl

~ j ! ,

and f E
( j )(a) solves the eigenvalue equation

2
1

a

d

da
a2

d

da
f E

~ j !1
j ~ j11!

a
f E

~ j !5EfE
~ j ! . ~3.36!

As usual with representations of an SU~2! group, the eigen-
values l and k are either integers or half-integers and a
bounded by2 j and j .

We will see in the next section that one triplet of gener
tors,K (a), induces SU~2! global gauge transformations, an
so the eigenvaluej ( j11) encodes the electric SU~2! ~iso-
spin! charge of the resulting state. The other tripletL (a) is
nothing but the angular momentum in the center-of-ma
frame. Hence there is a tower of~non-BPS! states carrying
both spin and isospin; the fact that the eigenvalues
L (a)L (a) are identical to those ofK (a)K (a) implies that the
spin of the chromodyonic state is identical to its isospin.
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This identity can be understood by considering the MSB
case first. Both monopoles are then massive and the angu
momentum of the system is the sum of the orbital angula
momentum and an anomalous contribution, proportional t
the relative electric U~1! chargeq, of the formqr̂ . Because
these two contributions are orthogonal,uqu gives a lower
bound on the magnitude of the total angular momentum th
is saturated when the orbital part vanishes. As the NUS lim
is approached, the relative U~1! is promoted to an SU~2!, and
so uqu becomes the isospin. At the same time, one of th
monopoles becomes massless and is manifested as a sph
cally symmetric cloud about the other, and so the ‘‘orbital’’
angular momentum disappears. The equality of the isosp
uqu and the spinj then follows.

It is worth noting that this identity should hold beyond the
BPS limit. Introducing a mass term for the Higgs scala
would lift the degeneracy along thea direction, and so we
would expect to find a family of SO~5! solutions similar to
the above BPS solution but with a definite size for the non
Abelian cloud. Because of the unbroken SU~2!, the non-
Abelian gauge zero modes would still span a three-sphere
the appropriate moduli space and so should lead after qua
tization to a tower of chromodyons with the same eigenva
ues for spin and isospin as before.

The quantization of the last collective coordinatea is less
transparent. Solving Eq.~3.36! for the ground state (E50)
radial wave functionf 0

(0) , for instance, we find a unique
solution that is regular at the origin,

CM0
~a!5const, ~3.37!

which is just the non-normalizable, zero-momentum plan
wave on theR4 with radial distancer. In terms of the three-
dimensional monopole separation or cloud size paramet
a, however, we have a nontrivial probability distribution

uCM0
u2r3dr;

1

a
~a2da! . ~3.38!

The proper physical interpretation of this result is just one o
the puzzles related to these states that we hope to investig
in the future.

IV. SYMMETRY OF THE MODULI SPACE

In the previous section we showed in an SO~5! example
that the NUS moduli space for a family of configurations
carrying no net non-Abelian magnetic charge could be ob
tained as a limit of the known two-monopole MSB moduli
space. More generally, the metric for the MSB moduli spac
was given in Ref.@10# for all cases in which the monopoles
are all fundamental and distinct.

Before presenting this metric, we need some notation
When a simple gauge group is maximally broken to its Car
tan subgroup, the fundamental monopoles are in one-to-o
correspondence with ther simple rootsba (a51, . . . ,r ) of
the original gauge group. A pair of such monopoles interac
with each other if and only ifba•bbÞ0. In the Dynkin dia-
gram ~see Fig. 2! such pairs are indicated by linked circles.
In any simple gauge group of rankr , there are precisely
r21 such links. We will label these links by an indexA, and
denote byrA the relative position vector between the pair of
fundamental monopoles connected by theAth link. Like-
wise, cA is the linear combination of internal U~1! angles
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that is conjugate to the relative U~1! electric charge between
the two monopoles. Finally, we generalize Eq.~3.32! by de-
fining lA to be22 times the inner product of the duals o
the roots joined by theAth link.

The relative part of the moduli space metric can then
written as

Grel5(
A,B

CABdrA•drB1(
A,B

S g28p D 2lAlB~C21!AB

3~dcA1wA•drA!~dcB1wB•drB! . ~4.1!

Here the matrixC is

CAB5mAB1dAB
g2lA

8pr A
, ~4.2!

wheremABmay be interpreted as a reduced-mass matrix, a
wA(rA) is the vector potential due to a negative unit charg
Dirac monopole atrA50.

In this section, we consider two types of configuration
The first is a direct generalization of the SO~5! case, and
consists of one massive andN massless monopoles in
theory with Sp(2N12) broken to U(1)3Sp(2N). Again the
moduli space metric can be found by direct calculation a
then compared to the result obtained by the limiting proc
dure. The second involves two massive andN21 massless
monopoles in a theory with either Sp(2N12) or
SU(N12) broken to U(1)23SU(N). In this case, a direct
calculation of the metric is not possible, since the full fami
of monopole solutions is not known. Although we cann
verify with certainty that the limiting procedure yields th

FIG. 2. Dynkin diagrams of all simple groups. For the no
simply-laced cases, the arrow points toward the short roots.
have also labeled the simple roots for later reference.
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correct metric, we can check its consistency by examin
the symmetry of the moduli space metric. The unbrok
gauge symmetry must be realized as an isometry of
moduli space that preserves the hyper-Ka¨hler structure, and
the correct metric must exhibit such properties. For bo
classes of theories, we give explicit forms of the correspon
ing triholomorphic Killing vector fields.

A. Unbroken Sp„2N…

The simplest class of examples arises when the ga
group Sp(2N12) is broken to U(1)3Sp(2N); the
SO(5)5Sp(4)→U(1)3SU(2) example of the last section
is a special case of this. We write the simple roots asb1 and
gj ( j52, . . . ,N11), with the indices corresponding to th
numbering of roots in Fig. 2. The sum

eg

4p
5b1*1 (

j52

N11

gj* ~4.3!

is orthogonal to thegj ’s that span the root lattice of the
unbroken Sp(2N), and gives the magnetic charge of a co
figuration containing a single massiveb1 fundamental mono-
pole surrounded by a cloud of massless monopoles that c
cel the long-range non-Abelian field.

As mentioned above, this can be regarded as a gene
zation of the SO~5! example of the previous section. In fac
we can identify an SO~5! subgroup of Sp(2N12), generated
by the pairg[gN11 andb[b11(2

Ngj , in which the SO~5!
solutions of the previous section can be embedded. This
bedding makes the Higgs expectation valueh proportional to
b*1g*5b1*1( j52

N11gj* which is just what is needed to en
sure that the unbroken group is Sp(2N)3U(1). Note that,
even though the form of the solution remains intact, the nu
ber of massless monopoles associated with this embed
solution is nowN rather than 1.

Further solutions can be obtained by gauge transform
such an embedded solution by elements of the unbro
Sp(2N), but not all generators of Sp(2N) transform it non-
trivially. A generic embedded solution is left invariant b
Sp(2N22), and this tells us that there must be at lea
dim@Sp(2N)/Sp(2N22)#54N21 global gauge zero
modes. Since we already know that the SO~5! solution con-
tains one parameter that fixes the size of the non-Abel
cloud, the general Sp(2N12) solution must admit at leas
one such parameter. Together, these account for all 4N co-
ordinates of the relative moduli space. Let us now proceed
determine the metric of this space.

Consider a point on the moduli space corresponding t
generic SO~5! embedded solution. Since the geometry of t
gauge orbit can depend only on the parametera, evaluating
the metric at such a point determines the metric everywhe
Of the 4N21 gauge generators that act on this point no
trivially, three arise from the simple embedding and form
SU~2!, generated byt(gN11), which keep the solution within
the SO~5! subgroup. The other 4N24 gauge zero modes
about such a point are generated by the ladder operators
sociated with the 2N22 positive roots nj5gj1gj11
1•••1gN and mj5gj1gj111•••1gN11 with
j52, . . . ,N. The associated zero modesdAm5DmL satisfy

n-
We
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DmD
mL50. ~4.4!

The solutions of this equation are found to be of the form

L5e~r !T, ~4.5!

whereT is any linear combination of the 4N24 ladder op-
erators above, appropriately normalized, and the radial fu
tion e satisfies

de

dr
1
1

2
Ge50, ~4.6!

whereG(r ) is given by Eq.~3.10! ande(`)51/e.
For generic values ofa, the total gauge orbit must be

topologically given by Sp(2N)/Sp(2N22) 5S4N21, possi-
bly up to a division by a discrete group. Together with t
fact that the last 4N24 gauge zero modes do not involv
any of the SU~2! generatorsta(gN11), this allows us to de-
compose the metric in the form

Grel5F I 1~a!da21I 2~a!~s1
21s2

21s3
2!1 (

s,t54

4N21

Ĩ 3
st~a!sss tG ,

~4.7!

where

I 1~a!5
4pk

e2
1

a
, I 2~a!5

4pk

e2
a ~4.8!

were obtained in the previous section and$ss/2,s
51, . . . ,4N21% is an orthonormal frame on a unit sphe
S4N21.

Further, the functional form of the gauge zero modes
Eq. ~4.5! is independent of the generatorT, and so we may
choose 4N24 orthogonalT’s, each of whose zero modes
given by Eq. ~4.5! with one and the same functione(r ).
Then,

Ĩ 3
st5I 3dst ,l 4<s,t<4N21, ~4.9!

with

I 3~a!5E d3x trDmLDmL5 R̀ dSmtrLDmL5
2pk8

e2
a.

~4.10!

Recall thatk5trt3(gN11)t
3(gN11), where the SU~2! gen-

erators ta(gN11) induce unit shifts along thesa’s with
a51,2,3. We must fixk85tr T2 so thatT will induce a unit
shift along ass with 4<s<4N21. The action of Sp(2N)
on anS4N21 is found by embedding Sp(2N) into SO(4N);
after normalizing all generators with respect to the invaria
bilinear form of Sp(2N), we find that the generators assoc
ated with the short rootsmj andnj and those associated wit
the long rootgN11 shift a point corresponding to a gener
SO~5! embedding by unequal distances. The ratio turns
to be 1/A2, so that the appropriate normalization forT is
such that

k852k. ~4.11!

The relative moduli space metric is then
nc-

he
e

re

in

is

nt
i-
h
ic
out

Grel5
4pk

e2 F1a da21a (
s51

4N21

ssssG . ~4.12!

After a coordinate redefinitionr52Aa, we obtain

Grel5
4pk

e2 Fdr21r2
(s51
4N21ssss

4 G5
4pk

e2
@dr21r2dV4N21

2 #

5
4pk

e2
Gflat , ~4.13!

showing that the moduli space metric is that of a flat Euclid-
ean spaceR4N. The smoothness of the metric at origin then
requires the gauge orbit to beS4N21 globally, and so the
relative moduli space is strictlyR4N.

To compare this to the NUS limit of the MSB metric in
Eq. ~4.1!, let us first note thatlA5l522b* •g* for all
A. We also need the fact that themAB all vanish if there is
only a single massive monopole. The NUS limit of Eq.~4.1!
is then

Grel5
g2l

8p (
A

F 1r A drA21r A~dcA1cosuAdfA!2G ,
~4.14!

where we have rewritten the vector potentialwA•drA in po-
lar coordinates. After a coordinate redefinitionrA52Ar A,
we see that this MSB metric is a sum ofN copies of the flat
R4 metric,

Grel5
g2l

8p (
A

Fdr21r2
s1
21s2

21s3
2

4 G
A

5
g2l

8p (
A

@dr21r2dV3
2#A5

g2l

8p
Gflat . ~4.15!

Sincel/25k andeg54p, this is the same as the metric of
Eq. ~4.13!, thus verifying that the two approaches produce
the same result.

It is curious that the single Sp(2N)-invariant a can be
written as the sum of all distances between adjacent~as de-
fined by the Dynkin diagram! monopoles, massive or mass-
less alike; i.e.,

a5
1

4
r25

1

4(A rA
25(

A
r A . ~4.16!

However, the fact that there is only a single invariant param
eter implies that the individualr A’s are not invariant~the
results of the next section will make this more explicit!.
Thus, the positions of the massless monopoles do not have
gauge-invariant meaning, emphasizing again that the mas
less monopoles should not be regarded as localized object

As for the SO~5! example of Sec. III, a tower of non-BPS
states carrying non-Abelian electric charge can be con
structed by semiclassical quantization of the moduli spac
coordinates. The degeneracy of these states will be great
than in that example, reflecting the greater symmetry of th
higher-dimensional moduli space.
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B. Sp„2N… triholomorphic isometry of R4N

Because Sp(2N) is an unbroken symmetry of the field
equations and of the boundary conditions, its action on t
solutions will manifest itself as metric-preserving diffeomo
phisms of the relative moduli spaceR4N. In fact, since the
relative moduli space is a flatR4N, it possesses a larger isom
etry group, SO(4N). However, the Sp(2N) subgroup ac-
quires a special significance because it is the maximal s
group of SO(4N) that preserves the hyper-Ka¨hler structure
of the manifold. This triholomorphicity is a generic featur
of isometries associated with the gauge rotation.

Let us introduce a pair of complex coordinate
jA5xA

11 ixA
2 andzA5xA

31 ixA
4 in theR4 spanned byrA and

cA . These are related to the relative Euler angles and
monopole separationr A by

jA52Ar Acos~uA/2!e2 i ~fA1cA!/2,

zA52Ar Asin~uA/2!e2 i ~fA2cA!/2. ~4.17!

In effect, we have chosen a particular complex structure
R4N. Given this complex structure, the Ka¨hler form is

w~3!5
i

2(A ~djA`djA*1dzA`dzA* !

52(
A

S 1r A drA1`drA
21drA

3`~dcA1cosuAdfA! D ,

~4.18!

where in the second line we have used

r A
12 ir A

25
zAjA
2

, r A
35

jAjA*2zA* zA
4

. ~4.19!

Each factor ofR4 admits an SO(4)5SU(2)3SU(2)
isometry. The first SU~2! is generated by

LA
~3!5

i

2 S jA
]

]jA
1zA

]

]zA
2jA*

]

]jA*
2zA*

]

]zA*
D 52

]

]fA
,

LA
~1 !5 i S zA*

]

]jA
2jA*

]

]zA
D , ~4.20!

LA
~2 !5 i S jA

]

]zA*
2zA

]

]jA*
D .

After reexpressing these in terms ofrA andcA , and writing
LA
(6)5LA

(1)6 iL A
(2) we can add these to obtain

L5(
A

LA5(
A

F2rA3S“A2wA

]

]cA
D2 r̂A

]

]cA
G ,
~4.21!

which is the standard form for the generators of thre
dimensional rotations in the presence of the vector potenti
wA . Under appropriate rotations induced byL , the Kähler
two-form w(3) is transformed into the other two Ka¨hler
forms
he
-

b-

s

he

on

-
ls

w~a!5wflat
~a![2(

A
S 1

2r A
eabcdrA

b`drA
c

1drA
a`~dcA1cosuAdfA! D , ~4.22!

which are needed to complete the hyper-Ka¨hler structure of
the moduli space.

In contrast, the secondSU(2) is holomorphic and thus
cannot rotate the complex structure. Its generators are given
by

KA
~3!5

i

2 S 2jA
]

]jA
1zA

]

]zA
1jA*

]

]jA*
2zA*

]

]zA*
D 5

]

]cA
,

KA
~1 !5 i S jA

]

]zA
2zA*

]

]jA*
D ,

KA
~2 !5 i S zA

]

]jA
2jA*

]

]zA*
D . ~4.23!

Since theseKA
(a)’s commute with theLA

(a)’s and sinceL in-
duces rotations among thew(a)’s, theKA

(a)’s are in fact tri-
holomorphic; i.e., they preserve the hyper-Ka¨hler structure
of the moduli space:

LK
A
~a!wflat

~a8!50. ~4.24!

These SU~2!’s are clearly part of the Sp(2N) isometry, with
theKA

(3)’s forming a set ofN commuting generators that can
be taken to be the generators of the Cartan subalgebra.

To complete the Sp(2N), we recall that Sp(2N) contains
an SU(N)3SU(2) subgroup. Let the SU(N) be generated by
the simple roots$g2 , . . . ,gN% and the SU~2! by $gN11%.
Since this SU~2! maps a given SO~5! embedded solution to
another embedded solution in the same SO~5! subgroup, it
must be realized on the moduli space by theKN

(a)’s, which
form the unique triholomorphic SU~2! that preserves the
four-planer 15r 25•••5r N2150. The SU(N), on the other
hand, rotates oneR4 to another; its Killing vectors are

TA5 1
2 ~KA

~3!2KA11
~3! !,

EAB5
i

A2 S jA
]

]jB
1zA*

]

]zB*
2jB*

]

]jA*
2zB

]

]zA
D , AÞB.

~4.25!

Commuting theEAB’s with theKB
(6)’s results in another set

of ladder operators,

ẼAB
~1 !5

i

A2 S jA
]

]zB
1jB

]

]zA
2zA*

]

]jB*
2zB*

]

]jA*
D , A,B,

ẼAB
~2 !5

i

A2 S zA
]

]jB
1zB

]

]jA
2jA*

]

]zB*
2jB*

]

]zA*
D , A,B,

~4.26!
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which give the remaining generators of Sp(2N). These all
commute withL and are therefore triholomorphic. We thu
have the required triholomorphic isometry

$KA
~3! ,EAB ,ẼAB

~6 ! ,KA
~6 ! ,1<AÞB<N% → Sp~2N!.

~4.27!

These generators have particularly simple interpretatio
in terms of an orthonormal basisej ( j51, . . . ,N) in the root
space of Sp(2N). @In this basis,gj115(ej2ej11)/2 for
j,N, while gN115eN .# The correspondence between roo
and ladder operators is then simply

EAB→ 1
2 ~eA2eB!, ẼAB

~6 !→6 1
2 ~eA1eB!, KA

~6 !→6eA .
~4.28!

Finally, we note that in terms of the complex coordinate
the invarianta takes the simple form

a5(
A

r A5
1

4(A ~jAjA*1zA* zA! , ~4.29!

which is manifestly invariant under the transformations ge
erated by the Killing vectors.

C. Unbroken SU„N…

A slightly more involved example arises when eith
Sp(2N12) or SU(N12) is broken to SU(N)3U(1)2. One
finds that the magnetic charge

eg

4p
5b1*1(

j52

N

gj*1bN11* ~4.30!

~where the roots are again numbered in accordance with
Dynkin diagram of Fig. 2! is orthogonal to thegj ’s that span
the unbroken SU(N). This corresponds to a combination o
two massive monopoles, associated withb1* andbN11* and
having massesm1 and mN11, and N21 massless mono-
poles.

The relative moduli space again has the topology ofR4N

and can be covered by the coordinate system$jA ,zA% de-
fined in the previous subsection. However, this moduli spa
is no longer flat. Referring to the results of Ref.@13#, one
finds that the reduced mass matrixmAB no longer vanishes.
Instead, theN2 elements of this matrix are all equal to th
reduced mass of the two massive monopoles: i.e.,

mAB5m̄[
m1mN11

m11mN11
all A and B. ~4.31!

Using this and the fact thatlA5l is again independent of
the link indexA, we find that the NUS limit of the MSB
metric is
s

ns

ts

s,

n-

er

the

f

ce

e

Grel5
g2l

8p
Gflat1m̄S (

A
drAD 2

2
g2lm̄

g2l18pm̄(Br B
S (

A
r A ~dcA1cosuAdfA! D 2.

~4.32!

The metric is still hyper-Ka¨hler, as it must be, but the three
independent Ka¨hler forms are now given by@23,24#

wSU~N!
~a! 52

1

2(A,B CABe
abcdrA

b`drB
c

2
g2l

8p (
A

drA
a`~dcA1cosuAdfA!

5
g2l

8p
w flat

~a! 2
m̄

2
eabcS (

A
drA

b D `S (
B

drB
c D .

~4.33!

As in the previous example, this moduli space must reflec
the symmetries of the theory. There must be three Killing
vector fields that generate three-dimensional rotations of th
multimonopole solution, while the unbroken gauge symme
try must be realized as a triholomorphic U~N! isometry with
appropriate Killing vectors. Now note that if the original
gauge group is Sp(2N12), this example reduces to our pre-
vious one in the limitm̄→0. Hence, in that limit the rota-
tional Killing vectors for the present case must reduce to th
L of Eq. ~4.21!, while the triholomorphic Killing vectors
must reduce to those that generate the U~N! subgroup of Sp
(2N) in Eq. ~4.25!.

In fact, the vector fieldsL in Eq. ~4.21! generate the ro-
tational SU~2! isometry of the general MSB metric in Eq.
~4.1! @13#, and thus are Killing vectors on the NUS moduli
space as well. Further, it turns out, as we show in the Ap
pendix, that the SU(N) generators in Eq.~4.25! are Killing
vectors on this curved moduli space and also preserve t
hyper-Kähler structure. Together with a simultaneous rota
tion of all cA , this completes the U~N! triholomorphic isom-
etry induced by the action of the unbroken gauge group o
the multimonopole solutions,

$TA ,EAB, 1<AÞB<N%→SU~N!,

K[(
A

KA
~3!→U~1!. ~4.34!

PhysicallyK corresponds to the relative electric U~1! charge
of the two massive monopoles. This U~N! contains theN
U~1! generatorsKA

(3)5]/]cA that clearly preserve both the
metric and the hyper-Ka¨hler structures of the general MSB
metric. This is not true in general for theEAB’s, but the
detailed calculation in the Appendix shows that they are a
triholomorphic and metric preserving in the present NUS
limit. An important consistency check is to see if these vec
tor fields preserve such gauge-invariant quantities as the re
tive position vector and the relative U~1! charge of the two
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massive monopoles.8 The latter is clearly invariant since its
charge operator2 iK commutes with all generators of
SU~N!, while the former is also invariant if

EABF(
A

rAG50. ~4.36!

One can show this explicitly using Eq.~4.19!.
The 4N coordinates of the moduli space can be related

the physical parameters of the multimonopole solution. A
embedding argument similar to that of Sec. IV A shows th
the gauge orbit of a generic point in the moduli space is
the form U(N)/U(N22). This implies that the number of
gauge modes is 4N24, including one that corresponds to th
relative U~1! phase of the two massive monopoles. Thre
more parameters must correspond to the relative posit
vector between the two massive monopoles. This leaves o
one gauge-invariant coordinate to characterize the no
Abelian cloud. A natural choice for this coordinate is jus
a5(Ar A , which we know from our previous results to be
U(N) invariant. In the simplest case, withN52, the gauge
orbits are ellipsoids,a5r 11r 25const, with focal points at
the two massive monopoles; these become three-sphere
the two massive monopoles coincide.

As with our previous examples, the semiclassical quan
zation of the moduli space coordinates will lead to a tower
chromodyonic states. A new feature here is that the relev
‘‘moment of inertia’’ will increase with the separation be
tween the two massive monopoles, in a fashion similar
that found in Ref.@5#.

V. CHARACTERISTICS OF GENERAL MODULI SPACES

In the examples of the previous two sections we were a
to analyze monopoles in theories with unbroken non-Abeli
symmetries by taking the appropriate limit of the MSB cas
For combinations of monopoles such that the long-ran
magnetic field was invariant under the action of the unbrok
non-Abelian symmetry, the NUS limit of the MSB modul
space was shown to possess an isometry corresponding to
unbroken gauge symmetry. We found that colo
magnetically neutral combinations were composed of a nu
ber of massive monopoles surrounded by a non-Abeli
cloud that could be viewed as arising from the coalescence
a number of massless monopoles carrying purely no

8In fact this is sufficient to show thatEAB generates a symmetry of
the monopole dynamics. Consider the first order form of the L
grangian

L~m̄!5
1

2(A,B CAB@ṙA• ṙB2qAqB#1(
A

qA~ ċA1cosuAḟA!

5L~m̄50!1
m̄

2 FS(
A
ṙAD 22S (

A
qAD 2G . ~4.35!

The metric is recovered by integrating out the conserved char
qA ~which is conjugate tocA) and replacing velocities by line ele-
ments.L(m̄50) is by itself invariant since it describes free motio
on R4N. The invariance of the relative position(ArA and the rela-
tive U~1! charge(qA then implies the invariance of the whole
Lagrangian.
to
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Abelian magnetic charges. In this section we will consider
the general case of a simple groupG of rank r broken to
K3U(1)r2k with a simple groupK of rank k. ~The exten-
sion to semisimpleK is straightforward.! As before, we de-
note the simple roots ofK by gi and the remaining roots of
G by ba , with numbering corresponding to the Dynkin dia-
grams of Fig. 2.

Although we do not know the moduli space metric for
most cases, we can still learn a good deal about how th
massive and massless monopoles combine to form neutr
configurations. In such configurations the magnetic charg
vectorg must be orthogonal to every root ofK; i.e.,

05
eg

4p
•gj5 (

a51

r2k

naba* •gj1(
i51

k

qigi* •gj , ~5.1!

for all j . The sum of any two or more suchg’s will also
satisfy this condition; we will concentrate here on the ‘‘mini-
mal’’ cases, for whichg cannot be decomposed as such a
sum.

The number of normalizable zero modes about such solu
tions, i.e., the dimension of the moduli spaceM, is equal to
4(n1q), wheren5(na andq5(qi are the number of mas-
sive and massless fundamental monopoles, respectively@21#.
The examples described above suggest that 4n of these de-
scribe the position coordinates and U~1! phases of the mas-
sive monopoles, while the remaining 4q describe the non-
Abelian cloud. Of the latter, some describe the size and
possibly, other gauge-invariant characteristics of the non
Abelian cloud and the rest correspond to global non-Abelian
gauge rotations of the configuration. The number of such
gauge modes can be as large as the dimension ofK, but is
less if the generic solution is invariant under some group
K8,K. ~Note thatK8 need not be semisimple.! The number
of parameters describing the gauge-invariant structure of th
cloud is then

Nstructure54q2dim@K/K8#. ~5.2!

The problem of finding the minimalg’s can be phrased in
terms of group representations. Each of the massive mono
poles transforms according to a representation of the dua
groupKdual spanned by thegj* . ~The dual group enters here
because the magnetic chargeba* is a weight vector with re-
spect to the dual root system spanned by thegj* @20#.! The
desiredg’s correspond to collections of massive monopoles
that can be combined with a number of adjoint representatio
massless monopoles to form a group singlet.9

a-

ges

n

9An equivalent approach starts from the observation that any fun
damental weight is a linear combination of the simple roots with
non-negative rational coefficients. By definition, a fundamental
weight is orthogonal to all but one simple root, and so any linear
combination of the fundamental weights associated with the broke
simple rootsba* ’s of Gdual is automatically orthogonal to thegj* ’s
and hence to thegj ’s. To obtain a minimalg, one simply adds a
number of such fundamental weights in such a way that the coeffi
cients of theba* ’s and of thegj* ’s in the final expression are all
non-negative integers; these coefficients then give the number o
massive and massless monopoles required for the configuration.
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The representations of the massive fundamental mon
poles can be identified with the aid of the Dynkin diagram
Consider the monopole corresponding to the rootba and let
gj be the root ofK to which ba is linked in the Dynkin
diagram.~If ba is not linked to a root ofK, then the mono-
pole transforms as a singlet.! If l[22ba* •gj*51, then the
monopole transforms according to the complex conjugate
the basic representation ofKdual corresponding togj* ; if
l.1, then the monopole transforms as a symmetric produ
of l such representations.

With these ideas in mind, let us recall the case o
Sp(2N12)→Sp(2N)3U(1) that was considered in Sec.
IV A. The single massive monopole is linked to the first roo
of Sp(2N), with l51. It therefore transforms according to
the vector representation of the dual group,Kdual
5SO(2N11). Since the adjoint representation of an or
thogonal group is the antisymmetric product of two vector
and the antisymmetric product of 2N11 vectors is a singlet,
a color-neutral combination can be obtained by combinin
the massive monopole withN massless monopoles, in agree
ment with our previous results.

In the other case considered in Sec. IV, with
K5Kdual5SU(N) and G being either SU(N12) or
Sp(2N12), the two massive monopoles were linked to th
first and last simple roots of the unbroken SU(N), both with
l51. These therefore transform under the defining represe
tationsF and F̄. The neutral combination of Eq.~4.30! cor-
responds to the fact that a group singlet can be formed
combining anF and anF̄ with a number of adjoints. How-
ever, this is not the only possibility. A singlet can also b
constructed fromN F’s ~or N F̄’s! together with some ad-
joint representation objects. The corresponding color-neut
magnetic charge is

eg

4p
5Nb1*1 (

j51

j5N21

~N2 j !gj11* . ~5.3!

This describes a family of solutions composed ofN massive
andN(N21)/2 massless monopoles, with a moduli space
dimension 2N212N. The positions and U~1! phases of the
N massive monopoles account for 4N of these. There ap-
pears to be no invariance subgroup, and so there areN221
gauge modes from the global SU(N) rotations. This leaves
(N21)2 structure parameters that encode the gaug
invariant characteristics of the non-Abelian cloud; this show
that the cloud can have much more structure than it did
our SO~5! example.

With other choices forG, additional representations of
SU(N) can arise. IfG5SO(2N11), one can have a massive
monopole linked to the last simple root of SU(N) with
l52, corresponding to the symmetric rank-2 tensor repr
sentationS, while with G5SO(2N) a massive monopole
can be linked to the next to last root of SU(N), with l51,
giving an antisymmetric rank two tensorL. In addition, the
even orthogonal groups allow the possibility of two differen
monopoles transforming as fundamentals; this can happen
the last two simple roots of SO(2N) are broken butgN22 is
not. A few more possibilities arise for low values ofN by
taking G to be an exceptional group. An antisymmetric
rank-3 tensor representationD can be obtained ifG5E6,
o-
.
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E7, or E8, while there is a breaking ofG2 to SU(2)3U(1)
that gives monopoles transforming under the spin-3/2 repre
sentation ofSU(2).

For K5SO(2N11), SO(2N), or Sp(2N), there is one
type of massive monopole, transforming under the defining
or vector representationV, if G is a classical group. IfG is
exceptional, there can also be massive monopoles transform
ing under the spinor representations corresponding to the las
root of SO(2N11) and the last two roots of SO(2N) or
under the 14-dimensional representation corresponding to
the last root of Sp~6!.

In Table I we list, for the case where the original gauge
group is a classical group, the various ways in which these
representations can be combined to give minimal configura
tions with vanishing non-Abelian magnetic charge. The
overall groupG that is shown is the smallest one that allows
the neutral combination shown; in most cases, a largerG is
also possible. In the table we also give the decomposition o
g into simple roots, with the coefficients corresponding to
massive monopoles indicated by boldface type. The remain
ing coefficients give the number of massless monopoles
from which in turn the total number of gauge and cloud
structure zero modes can be obtained.

For the neutral combinations in which the number of
component massive monopoles is independent of the rank o
the group, the number of massless monopoles grows linearl
with N. Since the dimension ofK grows quadratically with
the rank, there must be a nontrivial invariance subgroup
K8. In all such cases, the generic solution for sufficiently
high rank can be obtained by an embedding of a lower rank
solution. Thus, the solutions studied in Sec. IV A for
Sp(2N12) broken to Sp(2N) could all be obtained by em-
bedding the SO~5! solution, and hadK85Sp(2N22), while
the solutions with two massive monopoles considered in Sec
IV C were all equivalent to embeddings either of SU~4! so-
lutions @if G5SU(N12)# or of Sp~6! solutions @if
G5Sp(2N12)#, and hadK85U(N22).

The other entries in Table I with nontrivialK8 can all be
determined by studying appropriate embeddings. As an ex
ample, forG5SO(k12) broken to SO(k) (k>4) there are
color-magnetically neutral solutions containing two massive
fundamental monopoles. To deal with these, we first con-
sider the case of SO(6)→SO(4). Viewing this as
SU(4)→SU(2)3SU(2), it is nothard to construct an ap-
proximate solution with the two massive monopoles widely
separated that clearly has no invariance group. The corre
sponding moduli space has dim SO(4)56 gauge parameters
and 82652 cloud structure parameters. By embedding
these solutions in the larger orthogonal groups, we see tha
for k>4, Nstructure>2 andK8#SO(k23). In order that the
number of parameters be consistent with the decomposition
of g shown in the table, these inequalities must be saturated
indicating that the embeddings give the generic solution.

Finally, for the combinations where the number of mass-
less monopoles grows withN the generic solution cannot be
obtained by embedding from a smaller group, and we expec
K8 to be trivial.

The results for when the initial gauge groupG is excep-
tional are summarized in Table II. We have used a notation
4n14q for the dimension of the moduli space, with the
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TABLE I. Minimal singlet combinations of massive fundamental monopoles when the original gauge
group is classical. The symbols for the representations of the dual groupKdual are as follows:F is the defining
representation of SU(N), while L and S are the antisymmetric and the symmetric products of twoF ’s
respectively;V is either the defining representation of a symplectic group or the vector representation of an
orthogonal group; finally, an overbar denotes complex conjugation. The total magnetic charge of the singlet
combination is written as a row vector of the integer coefficients appearing in Eq.~2.8!, ordered according to
the Dynkin diagram of the original gauge groupG in Fig. 1, with thenj indicated by boldface type.

K Singlet G eg/4p K8 Nstructure

SU(N) F̄N SU(N11) (N,N21, . . .,2,1) . (N21)2

FN Sp(2N) (1,2, . . . ,N21,N) . (N21)2

FF̄ SU(N12) (1,1, . . . ,1,1) U(N22) 1

Sp(2N12)
SN/2 SO(2N11) (1,2, . . . ,N21,N/2) . (N21)2

~evenN)
SN SO(2N11) (2,4, . . . ,2N22,N) . 3N224N11

~oddN)

F̄2S SO(2N13) (2,2, . . . ,2,1) . 5 (N52)

. 8 (N53)
U(N24) 9 (N>4)

LN/2 SO(2N) (1,2, . . . ,N22,N/221,N/2) . N224N11
~evenN) (N.2)

LN SO(2N) (2,4, . . . ,2N24,N22,N) . 3N228N11
~oddN)

FnF8N2n SO(2N12) (1,2, . . . ,N21,n,N2n) . (N21)2

F̄2L SO(2N12) (2,2, . . . ,2,1,1) . 4 (N53)

U(N24) 5 (N>4)

F̄2FF8 SO(2N14) (2,2, . . . ,2,1,1) . 5 (N52)

. 8 (N53)
U(N24) 9 (N>4)

SO(2N11) V2 SO(2N13) ~ 2,2, . . .,2,1! SO(2N23) 2 (N>2)
Sp(2N) V Sp(2N12) (1,1, . . . ,1) Sp(2N22) 1
SO(2N) V2 SO(2N12) ~ 2,2, . . .,2,1,1! SO(2N24) 2 (N>3)
en-
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boldface numeral indicating the degrees of freedom asso
ated with the massive monopoles. Except for the trivial ca
G5G2, we do not know the invariant subgroupK8, and so
the number in the final column is in general a lower boun
obtained from Eq.~5.2! by assuming thatK8 is trivial. When
this yields a nonpositive number, we have written ‘‘1?’’ in
the last column.

VI. DUALITY AND THRESHOLD BOUND STATES

The classical BPS multimonopole solutions that we hav
been studying can be naturally embedded in anN54 super-
symmetric Yang-Mills theory. It has been conjectured@2#
that such theories possess an exact electromagnetic dua
under which the spectrum of electrically charged elementa
particles is mirrored by that of the magnetically charge
particles.10 More precisely, the magnetically charged object
in a theory with gauge groupG should be in one-to-one
correspondence with the electrically charged objects in
theory with the dual groupGdual. In the simplest cases, this

10Duality also makes predictions concerning the dyonic states c
rying both electric and magnetic charges; we do not discuss the
here.
ci-
se

d

e

lity
ry
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a

correspondence is between the states based on the elem
tary quanta and those based on simple soliton solution
Thus, in theN54 supersymmetric theory with SU~2! broken
to U~1!, the states dual to the electrically charged vecto
mesons are obtained from the unit charged monopole a
antimonopole solutions.11 However, more complex situations
can arise, even when the unbroken group is purely Abelia
Consider, for example, the case of SU~3! broken to U(1)2.
There are three electrically charged vector bosons, who
charges in the two unbroken U~1! factors are~1,0!, ~0,1!, and
~1,1!; in the BPS limit, the mass of the third of these is the
sum of the masses of the first two. The duals to the first tw
objects are the fundamental monopoles of the theory, but t
dual of the third is a threshold bound state of the two funda
mental monopoles. This state can be constructed semiclas
cally by considering the supersymmetric quantum mechani
of two-monopole systems or, equivalently, by studying a su
persymmetrics model on the corresponding moduli space
@26,27#. In the latter approach, the bounds states are in on

ar-
se

11If the SU~2! theory has onlyN52 supersymmetry, the unit
charged monopoles are actually dual to quarks in SU~2! doublets.
See Ref.@25# for detailed studies of a conformally invariant mode
with four families of quarks.
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TABLE II. Minimal singlet combinations of massive fundamental monopoles when the original gauge
group is exceptional. The notation is similar to that in Table I.D is the antisymmetric product of three
F ’s, whileC andC (6) are spinor representations of odd- and even-dimensional orthogonal groups. In some
cases, an irreducible representation is denoted by its dimension inside the square brackets.

K Singlet G eg/4p dim@M# Nstructure>

SU~2! @4#2 G2 (2,3) 8112520 9
F2 G2 (1,2) 814512 1

SU~4! FF̄L2 E6 (1,2,3,2,1,2) 16128544 13

SU~5! F̄L̄2 E6 (1,2,3,2,1,2) 12132544 8

F̄3L̄ E6 (3,3,3,2,1,1) 16136552 12

F2F̄L E7 (1,2,3,4,3,2,2) 20148568 24

SU~6! D2 E6 (1,2,3,2,1,2) 8136544 1
F2L2 E7 (1,2,3,4,3,2,2) 16152568 17

F̄3A E7 (3,3,3,3,2,1,1) 16148564 13

FF̄L3 E8 (1,2,3,4,5,3,1,3) 20168588 33

SU~7! D7 E7 (3,6,9,12,8,4,7) 2811685196 120
FL3 E8 (1,2,3,4,5,3,1,3) 16172588 24

D5F̄ E8 (1,3,5,7,9,6,3,5) 2411325156 84

SU~8! D8 E8 (3,6,9,12,15,10,5,8) 3212405272 177
SO~5! VC2 F4 (1,2,3,2) 12120532 10
SO~7! @14#2 F4 (2,3,4,2) 8136544 15
Sp~6! C2 F4 (1,2,3,2) 8124532 3
SO~8! @C (1)#4@C (2)#2 E6 (4,5,6,4,2,3) 24172596 44
SO~10! @C (1)#4 E6 (4,5,6,4,2,3) 16180596 35

V@C (1)#2 E7 (1,2,3,4,3,2,2) 12156568 11
SO~12! @C (2)#2 E7 (1,2,3,4,3,2,2) 8160568 1?

V2@C (2)#2 E8 (2,3,4,5,6,4,2,3) 1611005116 34
SO~14! @C (2)#4 E8 (2,4,6,8,10,7,4,5) 1611685184 77
E6 @27#3 E7 (3,4,5,6,4,2,3) 121965108 18
E7 @56#2 E8 (2,3,4,5,6,4,2,3) 811085116 1?
to-one correspondence with the harmonic forms on
moduli space that satisfy an appropriate normalizability co
dition @28,29#. Such a normalizable harmonic form wa
found recently in Refs.@10# and @11#.

Now let us consider the extension of these ideas to th
ries with unbroken non-Abelian subgroups. A new featu
that arises here is the presence of massless elementary
tations in the electrically charged sector. The duals to th
should also be massless, and so cannot be solitons of
ordinary sort; they are presumably the massless monop
that form the non-Abelian clouds that we have found. For t
massive particles, on the other hand, the duality pictu
should be much closer to that of the MSB case, except t
some of the particles transform under nontrivial represen
tions of the unbroken gauge group.

As an example, take the case of SU(N) broken to
SU(N21)3U(1). In the electrically charged sector, the
N221 gauge bosons of the original group can be deco
posed intoN(N22) massless SU(N21) gauge bosons, a
neutral massless U~1! gauge boson, (N21) massive bosons
with positive U~1! charge belonging to the fundamental re
resentation of SU(N21), and (N21) massive bosons with
negative U~1! charge belonging to the antifundamental re
resentation of SU(N21). As noted above, the duals of th
massless gauge bosons are the massless monopoles an
timonopoles~except for the case of the neutral bosons, whi
the
n-
s
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are self-dual!. The dual to the positively~negatively! charged
massive multiplet is the fundamental monopole~antimono-
pole!, which, according to the arguments of the previous
section, corresponds to a fundamental~antifundamental! rep-
resentation multiplet.

If this group is broken further, to SU(N22)3U(1)2, the
elementary particle sector contains two nondegenerate mas-
sive fundamental SU(N22) multiplets with U~1! charges
~1,0! and ~0,1!; these are dual to the two kinds of massive
fundamental monopoles. There is also a massive SU(N22)
singlet that carries one unit of each of the U~1! charges. Its
dual must be a threshold bound state containing one of each
of the fundamental monopoles andN21 massless mono-
poles. Such a state would correspond to a normalizable har-
monic form on the moduli space we discussed in Sec. IV C;
in order to be unique, this form must be either a self-dual or
anti-self-dual 2N-form @28#. With further breaking@e.g., to
SU(N23)3U(1)3#, additional bound states, containing
some monopoles with purely Abelian charges, would also be
required.

Other symmetry-breaking patterns can be studied in a
similar fashion. In Table III we list the breakings of simple
groups such that the unbroken group is a product of a simple
group times a product of U~1! factors and the fundamental
monopoles all carry non-Abelian charges.~The latter require-
ment implies that every broken simple root is linked to an
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TABLE III. Representations of massive fundamental monopoles and their threshold bound states. The
notation for representations follows that of Tables I and II.

G Gdual Unbroken dual group Massive monopoles Bound states

SU(N11) SU(N11) SU(N)3U(1) F None
U(1)3SU(N21)3U(1) F̄, F FF̄⇒@1#

SO(2N11) Sp(2N) U(1)3Sp(2N22) V VV⇒@1#

SU(N)3U(1) S None
U(1)3SU(N21)3U(1) F̄, S F̄S⇒F

F̄F̄S⇒@1#

Sp(2N) SO(2N11) U(1)3SO(2N21) V None
SU(N)3U(1) F FF⇒L

U(1)3SU(N21)3U(1) F, F̄ FF̄⇒@1#

FF⇒L

FFF̄⇒F
SO(2N) SO(2N) U(1)3SO(2N22) V None

SU(N)3U(1) L None
SU(N21)3U(1)2 F, F8 FF8⇒L

U(1)3SU(N21)3U(1) F̄, L F̄L⇒F
U(1)3SU(N22)3U(1)2 F, F8, F̄ FF̄⇒@1#

F8F̄⇒@1#

FF8⇒L

FF8F̄⇒F
G2 G2 U(1)3SU(2) @4# @4#3@4#⇒@1#

(dim514) SU(2)3U(1) @2# @2#3@2#⇒@1#

@2#3@2#3@2#⇒@2#

F4 F4 Sp(6)3U(1) @14# @14#3@14#⇒@1#

(dim552) U(1)3SO(7) C CC⇒V
U(1)3SO(5)3U(1) V, C CC⇒@1#

VC⇒C

VCC⇒V
VVCC⇒@1#

E6 E6 U(1)3SU(6) D DD⇒@1#

(dim578) SO(10)3U(1) C (1) None
U(1)3SO(8)3U(1) V, C (2) VC (2)⇒C (1)

U(1)3SU(4)3U(1)2 F̄, F, L F̄F⇒@1#

F̄L⇒F

FL⇒F̄

F̄FL⇒L

F̄FLL⇒@1#

E7 E7 U(1)3E6 @27# None
(dim5133) U(1)3SU(7) D DD⇒F̄

SO(12)3U(1) C (2) C (2)C (2)⇒@1#

U(1)3SO(10)3U(1) V, C (1) VC (1)⇒C (2)

VC (1)C (1)⇒@1#

U(1)3SU(6)3U(1) F̄, D F̄D⇒L

DD⇒@1#

F̄DD⇒F̄
U(1)3SU(5)3U(1)2 F̄, F, L F̄F⇒@1#

F̄L⇒F

FL⇒L̄

FLL⇒@1#

F̄FL⇒L

F̄FLL⇒F̄

F̄FFLL⇒@1#
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TABLE III. ~Continued.!

G Gdual Unbroken dual group Massive monopoles Bound states

E8 E8 U(1)3E7 @56# @56#3@56#⇒@1#

(dim5248) U(1)3SU(8) D DD⇒L̄

DDD⇒F
SO(14)3U(1) C (2) C (2)C (2)⇒V

U(1)3SO(12)3U(1) C (2), V C (2)C (2)⇒@1#

C (2)V⇒C (1)

C (2)C (2)V⇒V
C (2)C (2)VV⇒@1#

U(1)3SU(7)3U(1) F̄, D F̄D⇒L

DD⇒F̄

F̄DD⇒L̄

F̄DDD⇒F

F̄F̄DDD⇒@1#

U(1)3SU(6)3U(1)2 F̄, F, L F̄F⇒@1#

F̄L⇒F
FL⇒D

FLL⇒F̄

F̄FL⇒L

F̄FLL⇒L̄

FFLL⇒@1#

F̄FLLL⇒@1#

F̄FFLL⇒F̄

F̄FFLLL⇒F̄

F̄F̄FFLL⇒@1#
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unbroken root in the Dynkin diagram.! For each of these we
have listed the representations of the fundamental monop
and indicated the bound states containing such monop
that are required by duality. These examples can in m
cases be embedded in larger groups, in which case there
also be purely Abelian fundamental monopoles and ad
tional bound states containing these.

In principle, all the bound states listed in Table III mu
be realized as harmonic forms on appropriate moduli spa
However, actually finding these forms is a rather nontriv
problem. For the case of distinct fundamental monopo
with the moduli space metric given in Ref.@13#, Gibbons
@30# recently gave an answer for the threshold bound stat
the MSB case: a middle form constructed as a wedge prod
of a number of harmonic two-forms that are associated w
the Killing vectors]/]cA . One might have hoped that thi
construction would carry over to the present NUS limit a
produce the expected harmonic 2N-form on the moduli
space for two massive andN21 massless monopoles o
Sp(2N12) or SU(N12) broken to SU(N)3U(1)2. Unfor-
tunately, this is not the case. Although the harmonicity of t
middle form is likely to be preserved, the normalizability
not. Further, this middle form is invariant only under th
Cartan subgroup of the unbroken gauge group SU(N), im-
plying that the corresponding state is electrically charged
cannot be the purely magnetic threshold bound state. T
difficulty is compounded by the fact that even the MS
moduli space metric is unknown for most cases.

Finally, we want to emphasize the fact that some of t
required bound states transform nontrivially under the unb
oles
oles
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ken gauge group. As we have noted, there are patholog
associated with configurations that have nonzero long-ran
non-Abelian magnetic fields, and a meaningful moduli spac
emerges only if we insist that the total magnetic charge b
purely Abelian. Since the nonsinglet bound states necessa
involve only some of the monopoles described by the modu
space, the corresponding harmonic forms cannot be norm
izable in the usual sense.

VII. CONCLUSION

In this paper we have used the multimonopole modu
space as a tool for investigating the properties of monopol
carrying non-Abelian magnetic charges. If the net magnet
charge is purely Abelian, the moduli space for the case wi
an unbroken non-Abelian subgroup can be obtained as
smooth limit of that for the MSB case. In this limit the
moduli space describes multimonopole solutions that a
composed of one or more color-magnetically neutral comb
nations of monopoles. In each of the latter there are a numb
of massive fundamental monopoles, corresponding to e
beddings of the SU~2! monopole, that carry both Abelian and
non-Abelian magnetic charge. These are surrounded by
cloud within which there is a nonzero non-Abelian magneti
field.

By studying the approach to the NUS limit, we are led to
interpret this cloud as being composed of massless mon
poles carrying purely non-Abelian magnetic charges. The
can be understood as limits of the fundamental monopoles
the MSB case that correspond to simple roots of the unbr
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ken non-Abelian subgroup. However, they differ from th
other fundamental monopoles in that there is no classi
soliton corresponding to an isolated massless monopo
When they coalesce to form a non-Abelian cloud, they lo
their identity as individual objects. Thus, although the num
ber of parameters remains unchanged as one goes from
MSB case to the NUS case, the position and U~1! orienta-
tions of these monopoles are transformed into gauge ori
tation and structure parameters describing the cloud a
whole.

There are a number of outstanding issues to be addres
We have worked entirely within the context of the BPS limi
To what extent do our results apply to models~such as real-
istic grand unified theories! that have nonvanishing Higgs
potentials? Such models will still have a number of massi
fundamental monopoles belonging to representations of
dual of the unbroken gauge group. At least for Higgs bos
masses small compared to the vector meson masses, the
ing effects of the departure from the BPS limit could b
incorporated by adding to the moduli space Lagrangian
potential energy depending on the monopole separations
the cloud structure parameters. Presumably at least som
the color-magnetically neutral combinations of monopol
are stably bound~both classically and quantum mechan
cally! by this potential energy@31#, since the Brandt-Neri-
Coleman analysis@6# shows that stable configurations with
large non-Abelian magnetic charge are impossible.

Another important question is that of how our largel
classical analysis must be modified to take into accou
quantum effects. We discussed briefly in Sec. III the quan
zation of the moduli space coordinates and the nature of
low energy eigenstates of the moduli space Hamiltonia
However, we have not addressed at all the question of h
the moduli space itself might be modified by quantum co
rections.~Note that the BPS limit can be maintained unde
quantum corrections in theories with extended supersymm
try.! For example, at the classical level the energy does n
depend on the values of the cloud structure parameters,
the corresponding degeneracy does not seem to be requ
by the BPS conditions at the quantum level. Does this me
that one-loop effects modify the low energy moduli spac
Lagrangian? It would be clearly desirable to go beyond t
semiclassical approximation and make a connection with
work of Seiberg and Witten@32#. One would also like to
understand what the effects of confinement on non-Abeli
magnetic charges are and how they should be incorporat

Perhaps most interesting are the questions connected w
the duality hypothesis. Particularly intriguing is the role o
the massless monopoles, which are naturally recognized
being the objects that are dual to the massless gauge bo
carrying electric-type color charges. In fact, if the electr
and magnetic sectors are to be on an equal setting, the
multiplet of gauge bosons should have a counterpart co
prising not only the massless monopoles and antimonopo
but also neutral gauge particles corresponding to the Car
subalgebra. In one sense, the latter should be seen as b
their own dual, just as the photon is in theSU(2)→U(1)
case. However, the fact that the choice of the Cartan sub
gebra for the unbroken group is not gauge invariant sho
that the particular separation into monopoles, antimonopol
and self-dual objects is to some extent arbitrary. Clear
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there is much to be learned about these objects. Indeed, on
might hope that a fuller understanding of these massles
monopoles could form the basis for a dual approach to non
Abelian interactions that would prove complementary to that
based on the perturbative gauge bosons.
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APPENDIX A: TRIHOLOMORPHIC SU „N… ISOMETRY

We start with the observation that theEAB’s preserve
(ArA , which is the relative position vector between the two
massive monopoles. This can be seen by rewriting the vecto
field in three-dimensional coordinates:

EAB5e2 i ~cA2cB!/2F f AB~a!S ]

]r A
a 2

]

]r B
a D 1gAB

]

]cA
1gBA*

]

]cB
G .

~A1!

~The details of theN3N matricesf (a) andg will not matter
here.! Recalling that the scalar quantity(Ar A is also invari-
ant, one can easily see that the metric in Eq.~4.32! is invari-
ant if and only if the Lie derivative of the one-form

V[(
A

r A ~dcA1cosuA dcA!

5
i

4(A ~jA* djA2jAdjA*2zA* dzA1zAdzA* ! ~A2!

vanishes. The Lie derivative of the differential form can be
succinctly written as

LEABV5d^EAB ,V&1^EAB ,dV&. ~A3!

The two terms cancel each other withV given as in Eq.~A2!
~this is easiest to see in complex coordinates!, and so the
EAB’s are indeed Killing vector fields.

To show thatEAB is triholomorphic, we compute the Lie
derivative of the Ka¨hler formwSU(N)

(a) :

LEABwSU~N!
~a! 5d^EAB ,wSU~N!

~a! &1^EAB ,dwSU~N!
~a! &. ~A4!

The Kähler forms are closed, so that the second term is null,
while the first term is

d^EAB ,wSU~N!
~a! &5

g2l

8p
d^EAB ,wflat

~a!&

2
m̄

2
dK EAB,e

abcS (
A

drA
b D `S (

B
drB

c D L .
~A5!
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BecauseEAB is orthogonal to(AdrA
a the m̄-dependent term

vanishes identically. Then,

LEABwSU~N!
~a! 5

g2l

8p
d^EAB ,wflat

~a!&5
g2l

8p
LEABwflat

~a!50. ~A6!
This concludes the proof that theEAB’s are triholomorphic
Killing vector fields. It follows that the NUS metric in Eq.
~4.32! admits a U~N! isometry that preserves its hyper
Kähler structure.
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