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Semiclassical treatment of matter-enhanced neutrino oscillations for an arbitrary density profile
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The matter-enhanced oscillations of two neutrino flavors are studied using a uniform semiclassical approxi-
mation. Unlike some analytic studies which have focused on certain exactly solvable densities, this method can
be used for an arbitrary monotonic density profile. The method is applicable to a wider range of mixing
parameters than previous approximate methods for arbitrary densities. The approximation is excellent in the
adiabatic regime and up to the extreme nonadiabatic limit. In particular, the range of validity for this approxi-
mation extends farther into the nonadiabatic regime than for the linear Landau-Zener result. This method also
allows calculation of the source- and detector-dependent terms in the unaveraged survival probability, and
analytic results for these terms are given. These interference terms may be important in studying neutrino
mixing in the Sun or in supernovasS0556-282(196)01722-9

PACS numbes): 14.60.Pq, 03.65.Sq, 26.65t, 96.60.Jw

I. INTRODUCTION in the nonadiabatic regime. In the body of the paper, we will
discuss how some of the different approximations are re-
Matter-enhanced oscillations of neutrino flavors via thelated.
Mikheyev-Smirnov-Wolfenstein (MSW) mechanism [1]
have been studied for neutrinos in various environments, but Il. MATTER-ENHANCED NEUTRINO OSCILLATIONS
most extensively for the Sun, in connection with the solar
neutrino problen{2]. For a recent review of the solar neu-
trino problem and the ongoing neutrino detection experi- For two neutrino flavorgtaken here to be electron and
ments, see Ref3]. Recently, interest has also been devel-muon in matter, the equations of motion for thg and v,
oping for the study of neutrino oscillations in supernop&ls  probability amplitudes in the relativistic limit are
The approximate results derived in this paper are appli-
cable to matter-enhanced, two-flavor neutrino oscillations in g
general physical situations. Analytic results are important fori

A. Coupled equations in the flavor basis

Pt)] 4 [A—émPcos B, dm?sin 26,

several reasons. While numerical integration of the MSW & V(1) 4Bl om’sin2,  —A+oemicos @,
equations is straightforward, it becomes extremely tedious W (1)

when it must be done for a large range of the mixing param- % © 2.1)
eters. Analytic results also allow a greater understanding of V(1) ' '

the effects of changes in the parameters, and may be useful

for extracting information about the solar density from the\yhere all terms in the Hamiltonian proportional to the iden-

measureq neutrino fluxes. _ _ ity have been dropped since they do not contribute to the
Analytic studies of matter-enhanced neutrino oscillationsg|ative phase between the, and v, components. The

proceed along two lines. The first approach is the study o{acyum-mixing parameters are specified by the vacuum-
certain densities for which an exact solution for the oscilla-mixing angled, , taken to be & 6, < /4, and the vacuum
v v ’

tion probability can be obtained. The mixing parameters arenass-squared  splitting 5m25m§—mi where we take
allowed to be arbitrary. The exponential density has attractepn2>m1_ Electron neutrinos experience charged-current scat-

particular interest, since it approximates the solar density. Agring with the electrons in the medium, whereas muon neu-
catalog of all of the exactly solvable densities has been pre;

sented in Ref{5]. The second approach allows for a generalrrelzgzndo not. This difference yields the effective mass cor
density, but restricts the parameters so that an approximation

can be made to the equations of motion, which are then A=22GeNy(1)E, (2.2)
solved exactly. The approximations are chosen so that the

exact results are recovered in either the extreme nonadiabatighere G¢ is the Fermi constant ani(t) is the number
or extreme adiabatic limit. In this paper, we consider a uni-density of electrons in the medium.

form semiclassical approximation to derive the neutrino con- Before proceeding further, we switch to working with di-
version probability for an arbitrary density. The solution is mensionless quantities. We define a length scale

exact in the adiabatic limit, such as the linear Landau-Zener

result. However, the new result has a larger range of validity AN
L=~ = (2.3
ém</4E
:Electronic address: baha@nucth.physics.wisc.edu and use this to defing=t/L. Since we will be making a
Electronic address: beacom@nucth.physics.wisc.edu semiclassical expansion, we need to be able to keep track of
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formal powers offi. For each in the problem, we write. — 7¢(X)
and conside\ to be formally small; this is equivalent to oS H(X) = ———. (2.1)
saying that the length is small. We will make expansions VA+@%(X)

in powers of\, truncating the higher orders. At the end of
the calculation, we will sei=1. For notational conve-
nience, we write

The matter angle thus ranges frami2 at infinite density to
8, in vacuum. At the resonancé= /4. The instantaneous
eigenvalues oH,,(x) are

IRLS Tex)] [mex) VA - (AT %0, (2.12
A & = He'u(x) =
(%) W, (%) VA = 7e(x) corresponding toP; (the “light” eigenstate and ¥, (the
¥ (x) “heavy” eigenstatg, respectively. The splitting between the
% € 2.4 instantaneous mass eigenstates has a minimum as a function
¥ (%) ' : of x whene(x) =0, or {(x)=cos2,; this is the MSW reso-
m nance point, which will be denoted by . The trajectories of
We have defined thgse giggnya!ues represent an avoided 'IeveI cro;sing. The
adiabatic limit is the case where the neutrino stays in one of
ne(X)={(X)—cos ¥, (2.5  theinstantaneous eigenstates during its er!‘tire [?,ropagation. In
the nonadiabatic limit, the neutrino may “hop” from one
and eigenstate to the other near the resonance.
In the mass basis, the equations of motion are
A=sin29,. (2.6
o 5[ %100 W(x)
The scaled electron density is i — =Hyo(X)
M| W(x) Wo(X)
Z(¥)=L(Xi)Ne(X)/Ne(X;), (2.7)
: i : —VA+@A(x)  —INO'(X) || Wi(x)
normalized at the initial poink; as _
o >
2\2GEEN(x;) ING'(X) VA +@*(X) [ Pa(X)
()= (2.9 (2.13

Throughout the paper, prime denotes derivative with respect
to x. When the density is changing slowly, then so is the
matter angled(x), and the off-diagonal terms can be ne-
glected; for that reason, this is also known as the "adia-
batic” basis. The adiabaticity parameter is defined as

VA + ¢%(x)

(X :‘ NG (X)

Note that there are notation changes from Rids.8|; here,
we have madé\ and ¢ dimensionless. The factoj (taken

to bex1), is introduced above to control the analytic behav-
ior of the functione(x) in the complex plane, as explained
in Appendix. In the expressions with? below, we drop
7°=1.

, (2.19

B. Coupled equations in the adiabatic basis

The flavor-basis Hamiltonian of Eq2.4) can be instan- where #’'(x) can be derived from Eqg2.10 and (2.11).
taneously diagonalized. We make a change of basis When this parametey(x) is large, we can neglect the off-
diagonal terms. All nonadiabatic behavior, i.e., hopping from

W4(x) We(x) | [ cosf(x) —sing(x) one mass eigenstate to the other, takes place in a neighbor-
=R(=6(x)) = hood of the resonance. It is there thdt) is minimized, so
W5(X) V,(x)] Lsing(x)  cosd(x) the requirement ofy(x)>1 for adiabatic propagation is the
W (X) most exacting:
e
X : (2.9 2 sif29, 1
W, (X) s 1. (2.19

Y= '}’(Xc)_)\ cos 2, |§'/§|xc>
¥, (x) is the probability amplitude to be in the “light(pri-

marily electron-type eigenstate in the mass basis, andIn this limit, the equations of motion can be integrated im-
W,(x) is the probability amplitude to be in the “heavy” mediately, yielding pure phases fér;(x) andW¥,(x). At the
(primarily muon-type eigenstate in the mass basis. The re-initial point x;, we take the neutrino to be a purg, so
guirement that this transformation instantaneously diagonal-

ize Ho,(x) defines the matter-mixing angle via We(x)=1 (216
\/K and
Sin 20(X) = —— 2.1
N ¢?(X) (210 L awy(x) i
We(x)=—1 —| =5 neX). (2.17)

and X
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The latter follows fromW¥(x;)=1, ¥ ,(x;)=0. We denote 2(92\1re(x) ) _

the initial matter angle by; and reference the phases from ~X\"—— 7— ~[A+¢“(X) +iA7¢" () ]Ve()=0  (2.22
the initial pointx;. The phase integral will be denoted by

and
X
Ip(x,xi)zf dxVA + @?(X). (2.18 29 (0
Xi X .
N [ A+ X () —iN e’ (X)W () =0,
Taking into account the basis changes at the initial and final (2.23
points, the adiabatic solutions, valid in the limi{x.)>1, '
are where ¢(x) and A are defined in Eqs(2.5) and (2.6), re-
i spectively. Such a simple decoupling is not possible in the
\pe(x)=cose(x)cosaiexp( + —|p(x,xi)> matter basis.
A These Schrdinger-like equations are similar to those for

i nonrelativistic particles in the presence of a complex barrier,
+ sing(x)sing, ex;{ — —|p(x,xi)) (2.19 and for convenience we use the language of wave mechanics
A to describe them. In particular, to the extent that we can
ignore the imaginary terms in the potential, these correspond
to particles above a barriésince A>0). There are two ca-
i veats regarding discussing this as a barrier penetration prob-
v, (x)= —sina(x)cosﬁiexp( + XI p(x,xi)> lem. First, that our boundary conditions do not correspond to
the usual picture of incident, reflected, and transmitted
i waves; in general, there are waves moving in each direction
+COS€(X)Sin0ieXD( 5! p(XaXi)>- (2.20  on each side of the barrier. Second, the pure imaginary terms
in the potentials play an extremely important role here, even

These forms hold both before and after the resonance in tHE e asymptotic regions. These terms are needed not only to
adiabatic limit. If nonadiabatic corrections are taken into acY€Present nonadiabatic transitions, but also to keep up with

count, then the wave functions will have these forms befordh€ local matter angle. _ _ _
the resonance but will be more complicated after the reso- N this problem, then, the quantity of interest is not a
nance. In the adiabatic limfi9], the electron neutrino sur- reflection —or transn12|SS|on coefficient, but rather
vival probability at a general point is P(ve— ve) =|W(x—)|%, the probability of the neutrino
being of the electron-type far from the source. In general,
P(ve— ve) (X, X)) =W o(X)|? this is a function of both source and detector positions,
though typically, only the fully averaged result is presented.
However, those interference terms could be important, and
we present approximate expressions for them in the next sec-
tion.

and

1
= 5[1+cos Picos B(x)]

1. . 2 Two well-known semiclassical treatments of this problem
+ = ) — 1. X o !
25N 2;sin ZH(X)CO{ A p(x:i) are via the Wentzel-Kramers-BrillouitWKB) [7] and linear
(2.21 Landau-Zenef10-12 methods. The WKB techniquglo-

bally maps the “potential” discussed above onto the free-

Note that the second term depends upon the source and de@rticle potentiali.e., a constant densityBy “global map-
tector positions, and will disappear under averaging of eithef?ing,” we mean a variable stretching of the axis that deforms
The probability of conversion to muon-type is given by the shape of one potenue}l into another. In_fact,.the WKB
P(ve—1,)=1—P(ve—v,). If the final point is chosen in treatment turns out to be identical to the adiabatic approxi-
vacuum, therg(x)— 6, . mation[7]. The linear Landau-Zener technigleeally maps

With the adiabatic limit in hand, the obvious thing to do is ONt0 @ linear densityi.e., extends a linear profile from a
to seek the corrections that take into accoBpy,, the prob- single MSW resonance point with the right density and de-
ability of hopping from one mass eigenstate to the otherivative), and hence a “potential” with a parabolic real part
Above, the adiabatic approximation was controlled by thednd constant imaginary part. While the linear Landau-Zener
ratio of diagonal to off-diagonal elements. That ratio is, in"€Sult is easy to derive and apply, there are two problems.
turn, controlled by, which keeps track of powers df. In F_|rst, it is notoriously difficult t(_) get the boundary cond_ltlons
the semiclassical limit of—0, one has\—0 andy,—. right (for a complete explanation of how to handle this, see

Note that\ appears above in the adiabatic survival probabil-Ref- [13]). Second, since Landau-Zener is a point mapping,
ity only in the phase; the fully averaged expression is inde!n€ expression foP, is not very accurate. In the case of
pendent ofx. The way to treaP,, systematically is to ex- neutrino oscillations in the Sun, the exponential Landau-

pand in powers ok and to keep only the lowest-order terms. ZEN€r approximation circumvents these problga®.
The aim of this paper is to calculate the nonadiabatic cor-

rections semiclassically, but with global mapping of the

“potential,” where, as in the Landau-Zener calculation we
The coupled first-order equations for the flavor-basischoose as a model the case of a linear density. By using a

wave functions can be decoupled to yield global mapping, the correct boundary conditions are auto-

C. Uncoupled equations in the flavor basis
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matic. Further, the expression fBf,, is more accurate. The Such a solution has an unbounded error near a turning point.
approximate wave function is uniformly valid i (though ~ For MSW propagation, the turning points are complthey

the approximation is not uniform in the mixing paramelers are near the resonance pgirin the nonadiabatic limit, the
turning points approach the real axis, which means that the

WKB solutions are unable to represent any of the nonadia-

IIl. UNIFORM SEMICLASSICAL SOLUTION batic behavior. In contrast, the uniform semiclassical ap-
OF THE MSW EQUATIONS proximation used here is excellent for all but the extreme
A. Semiclassical background nonadiabatic limit. Since we will make a semiclassical ex-

_ o ) . pansion, we explicitly show all factors éf(via \). Either an
_ Inthe adiabatic limit, only the lowest order is kept in the jcreasing or a decreasing density can be considered, by
limit A—0 in Eqg. (2.13, so the Hamiltonian is taken as proper choice ofy.
diagonal(no hopping from one mass eigenstate to the other  £rom the derivation in Appendix, the general solution to
and the integration is trivial. The treatment at that order SUGE(Q. (2.22) is
gests that in order to take into account the probability of
hopping, we will need to consider further ordersninin this V(x)=K(X)[AD,(z(x))+BD,(—z(x))], (3.1
section, we will show that it is possible to obtain a rather
accurate expression for the electron neutrino survival probwhere
ability by making a semiclassical expansion, i.e., by consid- )
ering only the two lowest orders inwhen solving the MSW b= 7—1-iQ/A
equations. 2

The expressions derived below will hold for values of the

mixing parameters from the extreme adiabatic limit up untilwith
the extreme nonadiabatic limit. In order to obtain solutions J——
that hold in the extreme nonadiabatic limit, one would for- I I e T
mally have to consider all orders . Since semiclassical Q_?f AXVA+¢7(x). 33
expansions are asymptotice., nonconvergehin general, it %

is not clear that this would work in practice. A much better thg |imits of integration above are the zeros of the integrand,
approach for the extreme nonadiabatic limit is to consideghosen as described in the Appendix. The argument of the

expansions in N [14]. , parabolic cylinder functions is given by
Semiclassical method@or reviews, see Ref[15]) are

used in quantum mechanics to provide approximate solutions 1+i 1+i

to the Schrdinger equation in the limit thax is small. As z(X)= TS(X)%T[SO(X)-F)\Sl(X)], (3.9
noted, in the WKB method, one bases the approximate solu- A A

tions on free-particle solutions. A procedure was developed . . .
by Miller and Good 16] that, instead, bases the approximateWher.eSO(X) and S.l(x).a'rg descrlpgd in the Appendix.
solutions on the known solutions of a ScHirger equation Given approprla.te |n_|t|al cqndltlons, one can solve for
with a similar potential. In this method, the turning-point and B. In some situations, it may be useful to evaluate

singularities of the primitive WKB method are regulated, andq’e(x) for all x. This requires evalugtlng t_ﬂéfunctlon_ fora
the solutions are uniformly valid: they hold over the whole €°MPI€x argument and the parabolic cylinder functions for a

range inx and are well-behaved at the turning-points. Agenera[ complex order and argument. For gengral comments
further advantage of the Miller-Good method is that differento" routines available for the numerical evaluation of special

potentials are treated with the same formalism, i.e., théunctlons, see Refl17]. Th_eF function for a complex argu-
; gnent can be evaluated WIlERNLIB [18]. General properties

of the parabolic cylinder functions may be found in Refs.

The MSW equation$2.22) and (2.23 are Schidinger- [19-22. While library routines do exist for various special
type equations for particles in the presence of complex pogases of the parabolic cylinder functions, to our knowledge

tentials of the form V(x)=—[e2(X)*i\7e’(x)], with there.is nothing avai_lable that is general eno(ig8]. The
¢(x) independent oh. In Appendix, we summarize the ex- techniqué used h?‘re IS _to use the power sefi2| fc_)r small
tension of the uniform semiclassical approximation to treaM' .the asymptotic serief20] .fo_r Iarge 2, find dlrec_t nu-
potentials with this specific dependence xonoriginally in- merical integration of the defining differential equation with
troduced in Refs[6—8]. This special form of the potential ODEPACK [24] for moderate|z|. Fortunately, one does not
arises in supersymmetric quantum mechanics; see [Rgf. ger_1era||y hav_e to perform any Integrations for the parabolic
for discussion. cylinder funct|0ns, as only the asymptotic forms are needed.
We will use the asymptotic forms at both the production
and detection points. As shown below, this means that we
assume adiabatic propagation at those two points. This
The method presented in Appendix allows a uniformmatching is justified to the extent that the production and
semiclassical solution fow(x). By “uniform,” we mean  detection points are sufficiently far from the resonance point.
that the local error incurred by using the approximate soludn practice, these requirements do not present any difficul-
tion developed there in the exact differential equation is
bounded as a function of. This is to be distinguished from
a semiclassical solution via the primitive WKB method. !The code is available, upon request, from the authors.

: (3.2

same number and type of turning points.

B. Application to the MSW problem
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ties. Consider the Sun as an example, with neutrinos proand
duced at the solar center. If the resonance is near the produc-
tion point, or there is no resonance, then this implies that
8m? is large and the entire propagation is adiabatic, except
for extremely small mixing angles. If the resonance is at a
very low density, i.e., approaching vacuum, th#n? is very

small and our approximation breaks down for other reasons
described below. Note that in the linear Landau-Zener treat-
ment, one has to handle the finapoint carefully since the

density runs negative at large and #(x)—0, not#,. NO  From their form, we see immediately that the asymptotic
such difficulties with the boundary value of the matter angleywaye functions represent adiabatic propagation. The coeffi-
arise in the treatment given here. cientsC. ,D. still depend onz, which will allow us to

The asymptotic forms developed below repres#{x)  consider increasing or decreasing densities. The phase inte-
well for large but finitex. All of the expansions below are gra| functionl , is defined in Eq(A12).
just to get outside of the resonance region; we do not take \ith the asymptotic wave function in this form, it is
x so large that the matter angle is eithef2 or 6,. More  rather easy to apply the initial conditions. As before, we take

precisely(see the discussion in the Appengithe approxi-  the neutrino at the initial point; to be a purev,, so
mate solutions are characterized by two scales, one set by

So(x) and the other byp(x). The functionSy(x) is asymp- Po(x)=1 (3.10
totic outside the resonance region, whereds) is not as-

ymptotic until the density is zero or infinite. In this formula- and

tion, Sp(x), but not ¢(x), will be taken to be asymptotic.

This means that we have the control to connect opposite \I,,(X,):O“I’e(x)
sides of the resonance region without having to take e X
x— * o, i.e., we do not have to extend the density profile

indefinitely. In either case regarding the signs @fand 5, one immedi-
ately obtainsC_=cos#, andD _=sing,, so

P (X— +o0)= C+sin0(x)exr< - ;\—I p(x,xi))

+ Dwosﬂ(x)exr{ + )i\—l p(x,xi)) . (3.9

=—sme(x). (31D

Xi

C. Asymptotic solutions and connection formulas

Using the definition of the matter angle given in Egs. \Ife(x—>—oo)=cosﬁ(x)cosﬁiexr{ +'_| (x,xi))
(2.10 and(2.11), we can rewrite the pre-exponential factors AP

in the asymptotic solution o .(x), Eqg. (A37). There are i

two cases, depending on hawand 7 are chosen. The first +sin0(x)sin0iexr( — =l p(X,Xi)),
case hasgp(x)=cos¥,—{(x),7=—1, so A

; (3.12
A 1/4 (P+ \/A-i-—(pz +1/2
A+ 020] A = cosi(x), (3-5  which is, of course, the adiabatic solution given in Sec. Il B.
- - We now turn to the evaluation of the coefficiefts and
and D, that are needed after the resonance. From the above and
Egs.(A39) and (A41),
A 1/4 (P+\/A+—(PZ -1/2 Y ) (3 6) i
=sind(x). . .
| ALA+ % (0] JA ( C:cosai:(:exp< + SRel5(x ,xo))(Ae'V"+ B),
In the other case op(x)=—2co9¥,+{(X),7=+1, these are (313
reversed. In either case, the prefactors associated with the i
various terms are D_=sing,=C exp( = SRelp(xi %) (Ae '™, (3.19

C_:co9(x), D_:sind(x), . -
These determine the coefficiemdsand B of the general so-

C, :sinf(x), D, :cosd(x). 3.7y  lution:

o ; i _
It is important tq note that these will bg evalgated at general A= DleX[< + —Rel (X, ,xo))e'”sinei . (319
values ofx outside the resonance regidm| will not be so A

large thaté(x)— w/2 or 6(x)— 6,. The asymptotic wave

functions are 1 i
B=C “exp — XReI p(Xi ,Xo) | COSY);

\I’e(X—)—OO)ZC_COS%X)eX% + I—Ip(x,xi)) i
A - D‘lex;{ + Rl p(x; ,xo)) sing;.  (3.16

+D_sin0(x)ex;{ —;\—Ip(x,xi)), (3.8 Then,
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. v 2i tend asymptotically to constants outside of it. Since the
C,=2iCD "€'""sing; +ex -y Re p(Xi 1 Xo) 2X2 Hamiltonian is Hermitian and traceless, the time-
_ evolution operator must be a member of the(3Uyroup.
Xe '"""cod;, (3.1  Thus, this matrix must assume the form
“1n i 2i € G
D,=C "De '"""cod,—expg + —Rd ,(X; ,Xg) x %l (3.20

Xeflvﬂ'singi , (318) Where|01|2+|02|2:1'

By comparison to the forms @, andD , in Eqgs.(A38)

whereC andD are given in Eqs(A42) and(A43). and (A40), the new coefficients are easily found to be

The asymptotic forms of¥'(x) shown above are per-
fectly general, and depend only on the assumption of adia- T(=p) [ Q| 12+ 012) g-imi2) v = Simla
batic propagation outside the resonance region. The heart of Ci=— _<_> ( )
this problem is the connection of the asymptotic coefficients V27 \A 2 2
C_andD_to C, andD, . That connection represents the .
integration of the solutions through the resonance region. In ><exp( + E) 2i sin(vr) (3.21)
our case, that information is carried by the coefficiehtsnd A ’

B of the generalbut approximate, due to the mapp)jrgp-

lution in terms of parabolic cylinder functions. c,=e "7, (3.22
D. Resonance transition coefficients d,—— V2w (9 +im2"_”/2( e_i”/z) _Ve+3i”/4\/§
Above, the asymptotic wave functions were written in F(=») A 2
terms of the adiabatic solutions, which is convenient for ap- i\
plying initial conditions and deducing the connection formu- ><exp( - 2—) e "', (3.23
las. Before squaring the asymptotic wave function to obtain A
the neutrino survival probability, it is convenient to rewrite L ipn
the wave function in a slightly different form: dp=—e : (329
_ i By analysis of two cases of= *= 1 separately, one can show
‘Ife(x—>+oo)=C+sm0(x)ex;{ —Klp(x,xi)) [19]
| TNERRIL: et 3.2
+D+cos9(x)ex;{+xlp(x,xi)> IT(—v)| 2% “snhQa/2n)’ (3.29
: i 2 Q\”
=| c,Sing;exp + XReI p(Xi ,Xo) ;|F(— v)|2(§) |sin(vmr)|2e” Q™2 =1 — g~ Q72
(3.2

[
+ . JE— .
CZCOS&'eXp( )\Rd p(Xi ’XO)) wherev is given by Eq.(A22). Using these relations, it may

i easily be verified explicitly thatl =c, andd} = —c,, and
X sina(x)exy{ - XRd p(XaXO)) that

lcy|?=1—e 0, (3.27
_|._

[
dlcos9-exp( — —Rd (X ,xo))
! A pA o |C2|2:e—ﬂ77/)\, (32&

so|cq|?+]cy|?=1.
Starting with Eq.(2.13), one can determine how; and
i c, depend oy, i.e., on whether the density is increasing or
xcos9(x)exp( + XReI p(x,xo)). decreasing. One can show th@t must be independent of
7, and thatc, must change sign iy does. With the present
(3.19 form of ¢4, this is not obvious. Define the phase®fas

i
+d,sing; ex;{ + XReI o(Xi ,xo))

The terms inside the square brackets depend only on the clz|cl|ei“. (3.29
source positiorx;, whereas the terms outside depend only

on the final positiorx. Since all of the adiabatic phases and An asymptotic series can be developed for this phase
matter angles for the asymptotic solutions are written explicUsing the special form of the Stirling expansion of the
itly, the matrix of coefficients given bg,,c,,d;,d, repre- function for purely imaginary argument given in Egs.
sents only the nonadiabatic transitions in the resonance ré¢6.1.43 and (6.1.44 of Ref. [19], one can show that the
gion. These coefficients change in the resonance region, bphase ofc,, in the limit Q/\ is large, is
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(3.30 We(X— +o0)=

a=

% (_1)n182n<2)\)2n1

& 2n(2n-1) \ Q

i
clsinaiexp( + XReI p(Xi ,xo))

whereB,, are Bernoulli numbergl9]. When a linear density

is considered, this expression for the phase is equal to that
given in Ref.[25]. We do not use this limit for the phase in
general, since it requires th&/\ =1, which is unnecessar-

ily restrictive on the range of validity of our main approxi-

[
+ czcoa9iexp( - XReI p(Xi ,xo))

X sinﬁ(x)ex;{ - ;\—Rel p(X!XO))

mat|on._ $|_nce thls_ is independent Qf_so_lisvszrl_. N_ote from +|c* cosﬁiexp( — —Rd (X, :Xo)>
the definition ofv in Eq. (A22) thatc,=€ is, in fact, a A
real number, though it may be positive or negative, and i
changes sign ity does. —c sinaiexp< + XRd o(X; ,Xo))
- [
E. Calculation of P(v.—v,) Xcow(x)exy{ n XRG p(X,Xo))- (3.31)
The electron neutrino survival probability at a general

point x after the resonance for a neutrino producec;as

given by the modulus squared of the amplitude After taking the squared modulus of this expression for
V¥ (x— +) for the neutrino to be of the electron type. First ¥¢(x), and then reducing it, the survival probability takes
write the form

1 1 2
P(ve— ve)(x,xi)=§[1+(1—2|cz|2)cos d,cos H(x)]— §|c1|czsin 26,cos 29(x)cos<xRel p(Xi ,Xo) T a

1 2 2
+ Esin 26,sin Zﬁ(x)cos( XReI p(x,xi)—2a> —|c,|%sin 29;sin %(X)COS(XRGI o(Xi ,Xo) T a

2 2
xcos{xRel o(X,Xg) — a | +]cq|c,c0s P;sin 20(x)cos( XReI p(x,xo)—oz). (3.32
|
This, along with Eqs(3.21) and (3.22), is our main result. 2i _
Recall that in our approximatiort, is real. In general, the exp £-Rel (X, Xo) | =consi exp(+2ix/N).  (3.39

phasea should be extracted from, directly, rather than

taken from the asymptotic series far given above. ThiS (The same applies when the lower limit iig is x;, though
simple form for the survival probability can be evaluatedhe constant will be different. The oscillation length in

easily and rapidly, providing accurate results for both the,,-,um isL, whereL is given by Eq.(2.3. For example,

direct and interference terms for all mixing parameters eX;q, the solar neutrino problem, the favored MSW parameters

cept for the extreme nonadiabatic limit. It is much more con-o.4 to an oscillation length 01000 km[26]. In such
venient than direct numerical solution of the MSW equa-cages where the oscillation length in vacuum is much less

tions, especially if many values of the mixing parametersyan the variation in the source-detector distance, it will be

need to be explored. appropriate to average over the detector position. If that is

When Q/\>1, e, the adiabatic limit |ci—1,  yone then the survival probability no longer dependscpn
|c,|—0, @—0, and this general form for the survival prob- but does still depend or and is given by
|

ability reduces to

1
_= _ 2 _
P(ve—>ve)(x,xi)—>%[1+cos ,c05 B(x)] P(ve—ve)(X) =5[1+(1 2|c,|%)cos H;cos X,]

1
1 2 -z i )
+ Esin 26;sin 20(x)cos<XRel p(x,xi)), 2 |cq|cosin 26,cos B,

(3.33 xoos( §Rel o(Xi  Xo) T . (3.39

which is the usual adiabatic result.
Typically, the final pointx will be taken in vacuum, so This shows that the source term may be important even after
6(x)— 6, and VA + ¢%(x)—1, and detector averaging. If the source is extended, or if an energy
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spectrum is considered, one can also average over the source " "
position. The completely averaged result for the electron sur- 1.0
vival probability is then given by

e

1
P(ve— Ve):§[1+(1—2|C2|2)<COS ¥;)srcCOS D(X)], g 05
(3.36 a

where (cos2),,. indicates the average of cas2ver the
source position and energy spectrum. In the usual deriva- Sin’26 = 0.01
tions, the source term is assumed to be averaged away, yet 0.0 + " ' ' " "
no average over co#is shown. However, one can get away 10t -
with this in some situations that suppress the source term
without any averaging over position or energy.

This structure for the fully averaged survival probability
is completely general, and thus we interpfej|? as the I~
probability of hopping from one mass eigenstate to the other & 0.5
in the passage through the resonance region. Thus,

P — 2
hop= |C2| Sin'2,= 0.7

=exp —7Q) 0.{)0_10 =

100 100 100 10°
3m?/E (eV:/MeV)

.
-8

’ 10

3

107

=ex;{ —2if de\/gz(x)—ZCOS P,L(x)+1

X0

CSm? [ %
=exX —IE : dt
0

2\2GEEN()
sm?

FIG. 1. The electron neutrino survival probability vs the mass-
2 squared difference parameter for two different vacuum-mixing
angles. The solid line is given by the method of this paper. The
dashed line is the exa¢humerica) result. The dotted line is the
linear Landau-Zener result. In the top figure, the lines are indistin-
vz guishable. An exponential density with parameters chosen to ap-
+1} ) (3.37

2\2GEEN(t)
sm?

—2c0s 3, proximate the Sun was us¢80]. The region leftward of the lower

left corner of the trough is the nonadiabatic region.

This probability characterizes the nonadiabatic nature of thavhere
evolution near the avoided level crossing; for purely adia-

exp— §5(1 —
batic evolution,Py,,,=0. The limits of the integral are the Q o(1-cos Z,) (343
complex turning points of Eq(Al), i.e., the zeros of the and

integrand, and are labeled such thatxym0. The middle Sm2

form is particularly convenient since then the turning points —
are located by =exp(+2i6,). This result forPy,, is valid 2E
for both arbitrary mixing parameters and an arbitrary MONO-—rhis is the leading exponential to the exact result for an
tonic density profile. Since our solutions were based on th%xponential density13,27). The exact result is

solution for a linear density, the form &, follows that for T

a linear density: a single exponential which vanishes in the exp exg —m6(1—cos ¥,)]—exp(—2m5)

adiabatic limit. Phop= T—exp—279) . (343

(3.42

1 dN(t)|?
N(t) dt '

Equation(3.40 for the exponential density was previously
) ) . obtained[28] by connecting the coefficients of the coupled
For a linear density, we must recover the linear Landauequations in the adiabatic basis through the complex plane

F. Comparisons of different densities

Zener resul{11,12. Equation(3.37) yields [29]. In Fig. 1, we compare our fully averaged result for the
in in survival probability in an exponential densityhe parameters
Phop=exp(— 7Q™), (3.39 are chosen to approximate the solar denfa§]) with the
exact result. The values of the vacuum angle chosen approxi-
where mate those of the two best-fit models for the MSW solution
2 1 to the solar neutrino problef26]. In Figs. 2 and 3, we show
Qlin:ﬁ = om’ sir20, | 1 dN(t) (3.39 the accuracy of our approximation by comparing our source
2 4E cos ¥,|N(t) dt | term to the exact results. The source term is defined as the
survival probability, averaged over detector, minus the sur-
as expected. vival probability, averaged over both source and detector.
For an exponential density, E(B.37) yields Note that in Eq(3.36, whensm?/E is large () is large, and

oxp o c,— 0, suppressing the source term. On the other hand, if the
Prop= €Xp(— 729, (3.40  initial density is large enough, then whem?/E is small,
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5:10°7 . . . tentialsV, andVg, the mapping is good only if it makes as
much sense to mag,— Vg asVg—V,. If this is not true,
Sin20,=0.7 then the mapping is a projection, and something is lost. In-
3107

vertibility may thus be associated with a “sameness of to-
pology.” More precisely, when the mapping is not invert-
ible, the comparison potential becomes multivalued.

Let us consider the treatment of an exponential density. In
this case, the root of the failure in mapping is the difference
in the topology of higher-order turning points of the two
potentials corresponding to linear and exponential densities.
The turning points are located kiy=exp(+2i4,). For a lin-
ear density, there are only two turning points. For an expo-

1:10° F

Source Term

—1)(1075 r

310 nential density, however, additional, higher-order turning
points can be found by the transformatigr-x+2mwnxg,
—5.10° L . . - wheren' is an ir'1teger'anctS is th'e scale height of the expo-
10 10 10 10 nential in our dimensionless units. As noted in Appendix, we

Sm'/E (eV'/MeV) considered only the primary turning points, i.e., those closest
) . to the real axis. When only the lowest-order turning points of

FIG. 2. The source terithe survival probability, averaged over o axnonential density are taken into account, then the two
detector, minus the survival probaplllty, avgraged over .both Sourcf)otentials can be made only approximately equivalent. In
and detectorin t.he electron neutrino s?urvwal probab|llty vs the principle, the way to cure this problem is to use a compari-
_rnas_s-squared difference parameter foraip=0.7. Th.e sc.)“d line son potential with the same numb@tfinite, if necessaryof
is given by the method of this paper. The dashed line is the exact . int th iqinal | i thi be
(numerica) result. The density profile is as in Fig. 1. urning points as the original one. In practice, this may

rather cumbersome.

Consider how a path in the plane is mapped into th®
plane. In Appendix, we discuss why the locations of the
primary turning points are only considered to lowest order in
\. In particular, the turning points in th plane are located
_ by S(Xo) ~So(Xo) = +iVQ, S*(x0)~S§(x0)=—iQ. The

G. Breakdown of the mapping resonance poink, is mapped toS(x.)~0. In the extreme

As can be seen from Fig. 1, our approximation does nogdiabatic limit, the path from-« to + along the real axis
hold in the extreme nonadiabatic limit, wheen>—0. As  in thex plane is mapped onto a path froar to + along
emphasized in Ref[31], the Miller-Good method only the real axis in the5 plane. As the mixing parameters be-
works well when the mapping is invertible. Given two po- come more and more nonadiabatic, the path inSh@ane

makes more and more of an excursion into one tdper or

1.10° . , lower) of the complex plane near the resonance.z4¢, it
returns to the real axis. In both planes, the paths run between
the primary turning points. In the extreme nonadiabatic limit,
however, the path d&(x) eventually crosses a turning point.
There is then a topological difference between the two
planes; in one case, the path runs between the primary turn-
ing points, and in the other, it does not. Because of how the
turning points are anchored, this indicates that the mapping
has folded the complex plane over, and the comparison po-
tential is multivalued.

The need to impose the same turning point topology be-
tween the original and comparison potentials restricts the
applicability of Eq.(3.37) to monotonically varying electron
densities, i.e., those with a single MSW resonance. If there
are two or more close MSW resonances, one cannot use a
10‘.7 10‘4 0 linear density to construct the comparison potential. Such

SmZ/E (eV*/MeV) situations are considered in Ref&5,32.

0,— /2, and sinZ—0, which also suppresses the source
term. Therefore, the source term is nonzero only for interme
diate values osm?, as illustrated in Figs. 2 and 3.

Sin’20, = 0.01

5x107 |

0x 10"

Source Term

-5x10™

—1:10°
107

FIG. 3. The source territhe survival probability, averaged over IV. CONCLUDING REMARKS

detector, minus the survival probability, averaged over both source . . . . ) .

and detectorin the electron neutrino survival probability vs the ~ We have studied a uniform semiclassical approximation
mass-squared difference parameter fof2i=0.01. The solid line for the matter-enhanced neutrino oscillations for two flavors,
is given by the method of this paper. The dashed line is the exadSSuming a monotonically changing but otherwise arbitrary
(numerica) result. The lines are indistinguishable, even when adensity profile. We obtained an analytic expression for the
zoom is performed in the region of rapid oscillations. The densityelectron neutrino survival probability, unaveraged over either
profile is as in Fig. 1. detector or source positions. Our result is valid for a large
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range of the mixing parameters, up to but not including thepverall sign ong is chosen to make Ig(xo)>0, and7 is
extreme nonadiabatic limit. Upon averaging over detectogayen to bet1 as needed so thatp(x) has the desired sign.
and source positions, we recover expressions previously ol hresented with an equation such as B&L), but with the
tained in the literature. Since our expressions are valid foppngsite sign on the imaginary term, one can always conju-

arbitrary dengities_, they_ may be applied not only to the Sungate it and solve as below fdf* (x), so the treatment here is
but to all settings in which resonant neutrino conversion Car@;eneral.

occur, such as supernovas and the early Universe. We will map Eq.(A1) onto the comparison equation
The method of analytic continuation utilized in RE28]

for an exponential density was extended in R88], where JU(S) _

the general form of Eq(3.37) for an arbitrary monotonic —)\ZW—[Q+SZ+I7\77]U(S)=0, (A2)

density profile was found. Results for several other analyti-

cally solvable densities are presented there. Our analysis n@there() is a real, positive consta@nd will be determined
only yields an expression for the hopping probability whichpejow). This equation, considered as a functiorSpélso has
coincides with Ref[33], but also provides the source and o conjugate turning points in the complex plane. By
detector terms. _ _ _ “map,” we mean that we will find a change of variables
As noted, we assumed a monotonic density profile, so thig— g(x) such that the potential in the comparison equation is
formalism is not suitable for studying neutrino propagationgeformed into the potential in the original equation. That
in stochastic medide.g., with density fluctuationsas has  statement indicates how the real axis will be stretched. How-
recently been studied for the Sun and type-Il supernovas tier, we will also have to consider how the compleplane
Refs.[32,34. is mapped onto the compleéxplane. In particular, the turn-
ing points in thex plane must be mapped onto the turning
ACKNOWLEDGMENTS points in theS plane. The comparison equation is chosen to

We thank J. M. Fetter and R. E. Meyer for helpful discus_be one for which exact analytic solutions are known, and

sions. This research was supported in part by the U.S. N which is as similar as possible to the original equation. If we

' . i i equirep(x) to be monotonic for reat, then imaginary term
tlor_1al Science I_:oundgtmn Grant No. PHY-9314131 at th n the comparison equation may be taken as constant. Other
University of Wisconsin, and in part by the University of

. : . X than (2, this comparison equation is taken with no free pa-
W!scons!n Resegrch Committee W'th. funds granted by th(?ameters; such parameters can always be scaled away, and so
Wisconsin Alumni Research Foundation.

are irrelevant here. That the turning-point topologies of the
original and comparison problems be the same is critical to
APPENDIX: SUPERSYMMETRY-INSPIRED the method. In this case, we are mapping an as-yet unspeci-
UNIFORM APPROXIMATION fied real barrier onto a parabolic barrier, and the imaginary

term onto an imaginary constant. However, we can map onto
) . ) any convenient potential with known solutions.
Consider the Schrbinger-type equation In principle, if we could find the change of variables

2 S=9(x) exactly, then we would have exact solutions for
0 ¥ (X) ) ] , v . .

— —[A+ @2 (X)+ikpe' (x)]¥(x)=0, (A1) (x) in terms of the known functiond (S(x)). In general,

IX the solution for the change of variabl8s- S(x) would be at

) » ) least as difficult as direct solution of the original problem.
where A is a real, positive constant, ardis a real, mono- The approximation made to solve EGA1) will be to ap-
tonic function on the real axis, and is analytic in the Comp|exproximate S(x) as a truncated power series k. This
plane. In the above and what follows, everything is dimen-nethod of uniform approximation via mapping is also
sionless, and is being used as a placeholder farNeither  known as the method of comparison equatiénste Ref.
A nor ¢ depends or\. We will solve this equation in an [35)). The work here was inspired by the ideas of Miller and
approximation that treats as formally small. In the physical Good[16]. For further work on the theory of their method,
problem represented by E@A1), the variablex is real. How-  gge also Refd36,31], and the related works in Ref37].
ever, for addressing the mathematical question of the solu- | the original Miller-Good problem, the imaginary terms
tion of this differential equation, we considgrto be com- i the potentials above are not present. They treat the cases
plex. We assunfethat A+¢*(x) has two zeros in the of 4 particle bound in a well and traveling in the presence of
complex plane, i.e., pointgy, x5 where ¢=*i\A. These a barrier, mapping onto a parabolic well and barrier, respec-
points are taken to be the turning points of E4l1). We will  tively, each of which has as solutions the parabolic cylinder
discuss below why the turning points can be taken at lowesfunctions. In their formalism, one immediately sees that the
order, i.e., given as the zeros df+ ¢?(x), rather than of WKB approximation amounts to mapping onto the free-
A+ @*(X)+ikn¢(x). In general, there can be more than particle potential; the mismatch in turning-point topologies is
two zeros of A+ ¢?; for now, we only consider the two the origin of the failure of the WKB methddia the zeros in
closest to the real axis, and label them so thatghm0. The  what is essentially a Jacobian, see E419)] near the turn-

ing points. With the Miller-Good formalism, the wave func-
tion is continuous through the turning points.

°The case in which the zeros are on the real axis, while not rel- The notation used here has some important differences
evant here, can be treated similarly to the rest of the Appendix; sefom previous work{6,8]. This allows some difficulties and
Ref. [6]. errors to be resolved. In particulag,will be used differently

1. General treatment

-\
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here. We continue to takg(x) to be real on the real axis and A and demand that each order vanishes independently, as
to be monotonic. In those papers, it was assumedd¢lmy  is a free parameter as far as the mathematics are concerned.
monotonically increasing along the real axis would imply This yields the equations

Ime(Xp)>0. While this is suggested by the Cauchy-

Riemann conditions applied ip(x) on the real axis, it need O\%):  (A+¢)=S2(0+S)),

not always be true. No such assumption is made here. For

each density, one simply has to make sure that the signs of O(AY): ine’=2(Q+S3)SyS;+ SH(i 7+2SSy).

¢(x) and n are defined so thahe(x) represents the right (A9)
physics and that lg(xp)>0.
This mapping will be accomplished as While the original equation to be solved was linear, after
approximation the system of equations to be solved is non-
¥ (x)=K(x)U(S(x)), (A3) linear. In particular, the equation for ti@\2) terms, which

) ) involves S,(x), is probably analytically intractable. Never-
where the form ofk(x) will be chosen andS(x) will be  theless, the integrations fdBy(x) and S;(x) can be per-
defined by that choice. Using this form df(x) and EQ.  formed, and the results are given below. In those integra-
(A2), we can rewrite Eq(A1). By making the choice tions, the branch cut for the logarithm and square-root

functions is taken along the negative real axis. Before solv-

K(X)= 1 (Ad) ing for Sy(x) and S;(x), we show what will be left over.
M’ Using the relations foBy(x) and S;(x), one can show
T . (92‘1, X
and dividing through by¥, we find )2 ;Eg.( ) C[A+2(X) +i g0’ () +M2e(X)]
N— =S O+ SP+iNg]+[A+ > +iNpe']=0.
K [ NI+ A+ eIk ne’] e XW aonf(X) =0. (A10)
A5

In the rest of the Appendix¥'(x) always denotes the ap-
proximate wave function, and we drop the subscript. The
degree to which the approximate solution fails to solve the

So far, no approximation has been made, and the form

1 : ; A )
W(x)= U (S(x A6 exact differential equation is the local error, and is of the
(X) 500 (S(x)) (A6) form
is a purely formal solution of EqAl) in terms of the solu- 3(S5\% 1Sy b2 .
tions of Eq.(A2). If we could find the change of variables  €(X)=7 s “2lg —Sp"S1—25;S(i n+25,S,)

S=5(x) exactly, then we would have exact solutions for
V¥ (x) in terms of the known functionsl (S(x)). In general, —512(Q+S§)+(terms that depend 0®,). (A11)

the solution for the change of variabl8s- S(x) would be at

least as difficult as direct solution of the original problem. ToThe first two terms are familiar from either the WKB8] or
avoid that, we will approximat&(x). Very crudely, this pro-  Miller-Good[16] problems’ The next three terms arise from
cedure is a perturbation expansion in the shapes of the tmte more general form of the potential considered here. Un-

potentials; the more they resemble each other, the more ogértunately, the remaining terms depend®y; for which we
approximation to the change of variables is justified, and théave no analytic solution.

better our solution® (x) will be. Sinceg is independent of The turning points of the original and comparison equa-
A, all of the\ dependence in EGAS) is explicit. We expand tions are taken to be the zeros ¢fA+ ¢?(x)] and
S(x) in powers of\: [Q+S%(x)], respectively. Since these are real for reathe
turning points are complex conjugates. As noted above, the
S(X)=Sp(X) FAS (X) + - - - (A7) turning points of original equation are labeled so that

The power of this method is that we can obtain a good SO[mxo>0, and the sign of(x) is chosen so that

lution by keeping only the semiclassical terrfibe lowest ‘P(XO).:i\/K' We map the t_urning points of t_he origina_l
two orders in\). In the original Miller and Good problem equation or.1to the turpmg points of th? comparison equat.lon
[16], theiX ¢’ term was not present in the potential. There-PY demanding(xo) =i (1. The way this correspondence is
fore, only A2 appears in Eq(A5), and one can expand in made ensures that the mapping does not flip the complex

A2 instead ofx, which leads tdS(x)~ So(x) + O(A2), mak- plane about the real ax{g is not flipped about the imaginary

ing solving for the mapping quite simple. In our case, since®Xis either, as will be shown belgwThese choices make it

X appears directly in EQA5), we must expand i, which easier to a}v0|d integration errors below. Note that all of the
leads to turning points are treated only at lowest order.

S(X) = Sp(X) + A S1(X), (A8)

SWhile these methods have the same form for the local error, the
which makes solution of the mapping somewhat more comglobal results can be rather different, e.g., the transmission coeffi-
plicated, but still much easier to solve than the original equacient[16]. Note that the WKB error term is singular at the turning
tion. After expansion of EqA5) in A, we group by order in  points, whereas the Miller-Good error term is bounded.
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The formal solution foiSy(x) can be written immediately i +JA+ o2 Q
from Eg. (A9), including the turning-point correspondence S;(x)= 7 51 In ¢ ¢ +In Vo 5 ]
condition of Sy(Xe) =iV VO+S5 VA So+ VO +S

(A18)

X (x)

Ip(X!XO)Ef dxyA + @?(x :fso dSVOQ+S5. (A1) which is purely imaginary for reak, as claimed in Refs.

%0 W [7,8]. In those references, there were typographical errors
(corrected here and this was not obvious. In order to get
§1 right (i.e., pure imaginary one has to be careful about a

ranch cut crossing during the integration. In order to facili-
tate that,p is defined here with the sign noted in E3.5).
The prefactoiK(x) is given by

In order to evaluat&y(x), we will first need(}, the energy
of the comparison system. This is determined by demandin
that the conjugate turning points correspond, i.e.
So(x§)=—iyQ. When both sides of EqA12) are inte-
grated between their turning points, the right-hand side can

be done explicitly, yielding va

Q+S3(x)
A+ ¢%(X)

1
K(x)

‘m%zfxodxm. (A13) REEIRETN

(A19)

The truncation ofS’ at lowest order here is consistent with
With O determined, an implicit solution foB(x) can be  our overall policy of keeping the two lowest ordershinand
obtained through integration of EGA12) to a general point || be justified below. This form allows us to explain why
X the turning points may be taken at lowest order. Consider
how the exact change of variabl8s- S(x) would work at a
0T S —— Q[ S+ VQ+S single point, where the local momenta in both problems
Ip(X,Xo) = = 4 2 QJFSOJF?'“ JQ : could be taken as constant. Then the change of variables is
(A14) lustascale change, ac?(x) is the ratio of the exact local
momenta, the zeros of which are the exact turning points.
The fact that the solution foB,(x) is left in this implicit ~ When we approximat&(x) by power series iix, K*(x) will
form does not present any difficulties. When the asymptotid€ the ratio of the local momenta, taken at the proper order,
forms are used, this expression can be solved approximatelfhe zeros of which are the turning points, taken at the proper
If the full forms of the parabolic cylinder functions are being order. From the expression fd¢(x) above, this indicates
used, then one will be taking a numerical approach anywaythat the turning points should be taken at the lowest order in
and the solution fo6y(x) is rather easy. Using the Schwarz A. The denominator oK(x) vanishes at the turning points.
reflection principle and the integrals f&(x) and, one For there to be any hope df (x) being well behaved at the
can show thaBy(x) is real for realx. Then,l,(x,Xo) sepa- turning points, the numerator must also vanish. This is why
rates into real and imaginary parts as follows: we demanded the turning-point matching as above. In the
WKB case, the numerator never vanishes, and the connec-
iQar tion between the mismatch in turning-point topologies and
Ip(X,X0) =Re[ I p(X,X0) ] - 2 (A15)  the singularity of the WKB solutions at the turning points is
evident. When the turning points are matched properly, one
This will be needed to show that the exponentials in thecan show thakK(x) is well behaved for alk. The method of

asymptotic solution have purely imaginary arguments. proof is to expand Eq(A12) near one turing point; this

To solve forS;(x), we use the first of EqQA9) to rewrite  reveals thaK(x) tends to a constant as the turning point is
the second as approached. The same holds for the other turning point as

well.
iy o 1 s, After successively solving forQ), Sy(x), Si(x), and
> \/A+_¢2=81\/Q+SOZ+§ Q+SS(I n+25S;). K(x), one can write the approximate wave function as
o oo LS s s, (a20)
X)=|——2— X) + X)),

We integrate fromx, to x, changing variables as needed A+ @*(x) 0 '

ig e de x d 5 where U(Sy(x) +AS;(x)) approximately solves Eq(A2),
7f \/A:f dx 5 (S1V Q2+ ) the comparison equation, an#t(x) approximately solves
e VAT QT Ixo Eq. (A1), the original Schidinger-type equation. By taking

i Sox) d
dnfo_ds

> (A17) 1+ 1+i

Sotxo) 2+ S 2(x) = ﬁ'axwﬁ(s()(x)ﬂsl(x)), (A21)

In all three integrals, the lower limit has a positive imaginary

part and the upper limit is real; this ensures that all of theone can show that EA2) is Weber's equatiofn19—-21 for
square-root functions are on the same sheet. Upon substitthe parabolic cylinder functiod ,(z), where the ordew is
tion of the limits of integration, this yields given by
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7—1—iQ/\ tent orders in\. As befits our semiclassical expansion, we
V= (A22)  only keep the lowest two orders inin the exponentials of
the asymptotic wave functions. Using the formzogiven in
The general solution may be taken to be Eq. (A21),
W(x)=K(X)[AD,(z(x))+BD,(-z(x))]. (A23) 2 i (S5
' . exy{i—)=ex;{t§ T+28081+O()\)”, (A28)
There are four solutions to Weber’s equation, any two of
which can be taken as independent; the two above are con-
venient. Given appropriate initial conditions, one can solve 1+i\” ) iQS,
for ¥(x) everywhere. The coefficiens andB will be de- z'= Ny So€Xp — 5~ §+0(7\) . (A29)
termined below by applying the initial conditions to the as-
ymptotic form of the solution. The evaluation of the para-
bolic cylinder functions is discussed in the body of the paper. - 1+i) 7t N F{ iQS; o )
| 0y Sy Texp + 75 +0O(N) ],
2. Asymptotic forms (A30)

In many cases, one only needs the wave function as

X— * o (the reasons for this in the MSW problem are ex- 1
plained in the body of the papein this section, we develop 1+ O(? =exp(O(N)), (A31)
the asymptotic forms o¥ (x), which are easier to work with
than the general form above. Another benefit of the asymp-
totic forms is that it becomes much easier to count powers of 1 1
K(x)= = exp(O(N)). (A32)

\, thus ensuring that we are working to a consistent order.
Using the definitions in the previous section, one can eas-

VS'(X)  VSH(x)

ily show . . .
Now, we expand the various pieces for largé. Using
So(x) ~ =+ (A24) Eqg. (A14), and keeping only terms growing or constant in
Xt |So(X)|, one can easily show
and S0 lyxx) (Fim=DO 0 [0
Si(x) ~ 0. (A25) N U TR Tl DY
With these crude limits, and the fact th8§(x) is real for _2 2[So(¥)
. I . (A33)
real x, we can determine the phases to the arguments of 2\ I\

D,(z(x)) and D, (—z(x)) to be w/4 and —3/4, respec-

tively, for x— +o, and vice versa fox— —. We Use  \yhen|s,|>Q and this expansion is valid, théz>|| and
—3m/4 instead of ar/4 to stay inside the principal branches 1o p 's can be put in their asymptotic forms. Using Eq.
of the square-root and logarithm functions used below. 'rtA15)V one can see tha&% is purely real for realx, as

particular, one must be careful when rewritiay The as- . Jineq The various terms were introduced to show where
ymptotic forms Qf the .parabollc cylinder functions  for h’s would appear if we took these equations out of dimen-
12>/ grem given in Ref. [20]. For —3m/4 sionless form. The expansion f@; from Eq. (A18) is
<arg(z)<3/4, straightforward, and yields

22 1
DV(Z)Z:DOEXF{ 4)2 1+0 Eg” (A26) S0 — in n o+ VA + @2
1 X*)ioo2|so| \/K
and for —5#/4<arg(z) < — /4,
z 512
z 1 FIn| —=|FIn| —| ;. (A34)
D,(z) ~ ex;{——)z” 1+0 —2” o) NN
oo 4 z
N 2 In this expansion|S,| was treated asymptotically biip|
- e‘”exp{ _) v 114 O(—z)} was not[At the MSW resonance point discussed in the body
I'(=v) 4 z of this paperg(x.) =0 butSy(x.) #0 in general, The nona-

(A27)  diabatic region is, in general, far narrower than the region
over which the matter angle is varying appreciably. The re-
In the common range of validity, the difference between thegion in which Sy cannot be treated asymptotically is essen-
two forms is negligibly small. tially the nonadiabatic region, whereascannot be treated
These asymptotic forms make the dependence wpon  asymptotically until the matter angle is very close to either
the various terms easy to see, and show how to keep consig4/2 or 4,. We expand(x) as
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NEE A 14 i _
~ | = S C =Cexr<——Rel Xi,Xg) |[(A+Be '"), (A38
K(x)Hw(A> AT 700 : LR Xo) | ( ), (A39)
1 (2S00 i o
xexg 5 —h (A35) C_=Cexp +Rey(x,X) |(Ae”"7+B), (A39)
The factors of Sy(x)| remaining in these asymptotic expan- i

sions will all cancel. —ivm
D,=D + —Rd (X, B , A40
For convenience in applying the initial conditions, it is * exp( A (X XO))( &) (A40)

useful to write

Lo(X:X0) =1p(Xi . Xo) +1p(X,Xi), (A36) D_=D ex;{ - ;\—Rel o(X; ,Xo)) (Ae™"™),  (A4D)

where the first term on the right is a complex constant and
the second is real and varyirigf. Eq. (A15)]. After some d
algebra, we find that the asymptotic expansion of the generéﬁn
solution in Eq.(A23) can be written as

v c;(l) 1/4(9>m’4“"’4( e‘""‘) Vex,(Q (a42)
\I,(X)X;-;oo 4[/\—_'—4)2()(_)] A )\ \/§ 4)\
e+ VA + ¢? = nl2 i 27 (A V4l o\ HiOM =74 gimia) —v=1
(ol ] e T
VA A N
o AT\ [ 0
Bt o B B u L xexp — gy (A43)

A37
(A3D) Note that the arguments to thedependent exponentials

In the arguments of the exponentials, all termsOgf\) or ~ above are purely imaginary sinck,(x,x;) is real (that
that vanish agx|—c have been dropped. The constant co-knowledge will be convenient when we take the squared
efficients are given by modulus of the wave functign
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