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Semiclassical treatment of matter-enhanced neutrino oscillations for an arbitrary density profile
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The matter-enhanced oscillations of two neutrino flavors are studied using a uniform semiclassical approxi-
mation. Unlike some analytic studies which have focused on certain exactly solvable densities, this method can
be used for an arbitrary monotonic density profile. The method is applicable to a wider range of mixing
parameters than previous approximate methods for arbitrary densities. The approximation is excellent in the
adiabatic regime and up to the extreme nonadiabatic limit. In particular, the range of validity for this approxi-
mation extends farther into the nonadiabatic regime than for the linear Landau-Zener result. This method also
allows calculation of the source- and detector-dependent terms in the unaveraged survival probability, and
analytic results for these terms are given. These interference terms may be important in studying neutrino
mixing in the Sun or in supernovas.@S0556-2821~96!01722-5#
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I. INTRODUCTION

Matter-enhanced oscillations of neutrino flavors via th
Mikheyev-Smirnov-Wolfenstein ~MSW! mechanism @1#
have been studied for neutrinos in various environments,
most extensively for the Sun, in connection with the sol
neutrino problem@2#. For a recent review of the solar neu
trino problem and the ongoing neutrino detection expe
ments, see Ref.@3#. Recently, interest has also been deve
oping for the study of neutrino oscillations in supernovas@4#.

The approximate results derived in this paper are app
cable to matter-enhanced, two-flavor neutrino oscillations
general physical situations. Analytic results are important f
several reasons. While numerical integration of the MS
equations is straightforward, it becomes extremely tedio
when it must be done for a large range of the mixing para
eters. Analytic results also allow a greater understanding
the effects of changes in the parameters, and may be us
for extracting information about the solar density from th
measured neutrino fluxes.

Analytic studies of matter-enhanced neutrino oscillatio
proceed along two lines. The first approach is the study
certain densities for which an exact solution for the oscill
tion probability can be obtained. The mixing parameters a
allowed to be arbitrary. The exponential density has attrac
particular interest, since it approximates the solar density.
catalog of all of the exactly solvable densities has been p
sented in Ref.@5#. The second approach allows for a gener
density, but restricts the parameters so that an approxima
can be made to the equations of motion, which are th
solved exactly. The approximations are chosen so that
exact results are recovered in either the extreme nonadiab
or extreme adiabatic limit. In this paper, we consider a un
form semiclassical approximation to derive the neutrino co
version probability for an arbitrary density. The solution i
exact in the adiabatic limit, such as the linear Landau-Zen
result. However, the new result has a larger range of valid
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in the nonadiabatic regime. In the body of the paper, we will
discuss how some of the different approximations are re
lated.

II. MATTER-ENHANCED NEUTRINO OSCILLATIONS

A. Coupled equations in the flavor basis

For two neutrino flavors~taken here to be electron and
muon! in matter, the equations of motion for thene andnm
probability amplitudes in the relativistic limit are

i\
]

]t F Ce~ t !

Cm~ t !
G5

1

4E FA2dm2cos 2uv dm2sin 2uv

dm2sin 2uv 2A1dm2cos 2uv
G

3F Ce~ t !

Cm~ t !
G , ~2.1!

where all terms in the Hamiltonian proportional to the iden-
tity have been dropped since they do not contribute to the
relative phase between thene and nm components. The
vacuum-mixing parameters are specified by the vacuum
mixing angleuv , taken to be 0,uv,p/4, and the vacuum
mass-squared splittingdm2[m2

22m1
2, where we take

m2.m1. Electron neutrinos experience charged-current sca
tering with the electrons in the medium, whereas muon neu
trinos do not. This difference yields the effective mass cor-
rection

A52A2GFNe~ t !E, ~2.2!

whereGF is the Fermi constant andNe(t) is the number
density of electrons in the medium.

Before proceeding further, we switch to working with di-
mensionless quantities. We define a length scale

L5
\l

dm2/4E
, ~2.3!

and use this to definex5t/L. Since we will be making a
semiclassical expansion, we need to be able to keep track
6323 © 1996 The American Physical Society
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formal powers of\. For each\ in the problem, we writel
and considerl to be formally small; this is equivalent to
saying that the lengthL is small. We will make expansions
in powers ofl, truncating the higher orders. At the end
the calculation, we will setl51. For notational conve-
nience, we write

il
]

]x F Ce~x!

Cm~x!
G5Hem~x!F Ce~x!

Cm~x!
G5Fhw~x! AL

AL 2hw~x!
G

3F Ce~x!

Cm~x!
G . ~2.4!

We have defined

hw~x!5z~x!2cos 2uv ~2.5!

and

L5sin 2uv . ~2.6!

The scaled electron density is

z~x!5z~xi !Ne~x!/Ne~xi !, ~2.7!

normalized at the initial pointxi as

z~xi !5
2A2GFENe~xi !

dm2 . ~2.8!

Note that there are notation changes from Refs.@6–8#; here,
we have madeL andw dimensionless. The factorh ~taken
to be61), is introduced above to control the analytic beha
ior of the functionw(x) in the complex plane, as explaine
in Appendix. In the expressions withw2 below, we drop
h251.

B. Coupled equations in the adiabatic basis

The flavor-basis Hamiltonian of Eq.~2.4! can be instan-
taneously diagonalized. We make a change of basis

FC1~x!

C2~x!
G5R„2u~x!…F Ce~x!

Cm~x!
G5F cosu~x! 2sinu~x!

sinu~x! cosu~x!
G

3F Ce~x!

Cm~x!
G . ~2.9!

C1(x) is the probability amplitude to be in the ‘‘light’’~pri-
marily electron-type! eigenstate in the mass basis, a
C2(x) is the probability amplitude to be in the ‘‘heavy’
~primarily muon-type! eigenstate in the mass basis. The r
quirement that this transformation instantaneously diagon
ize Hem(x) defines the matter-mixing angle via

sin 2u~x!5
AL

AL1w2~x!
~2.10!

and
of

v-
d

nd
’
e-
al-

cos 2u~x!5
2hw~x!

AL1w2~x!
. ~2.11!

The matter angle thus ranges fromp/2 at infinite density to
uv in vacuum. At the resonance,u5p/4. The instantaneous
eigenvalues ofHem(x) are

7AL1w2~x!, ~2.12!

corresponding toC1 ~the ‘‘light’’ eigenstate! andC2 ~the
‘‘heavy’’ eigenstate!, respectively. The splitting between the
instantaneous mass eigenstates has a minimum as a functi
of x whenw(x)50, or z(x)5cos2uv ; this is the MSW reso-
nance point, which will be denoted byxc . The trajectories of
these eigenvalues represent an avoided level crossing. T
adiabatic limit is the case where the neutrino stays in one o
the instantaneous eigenstates during its entire propagation.
the nonadiabatic limit, the neutrino may ‘‘hop’’ from one
eigenstate to the other near the resonance.

In the mass basis, the equations of motion are

il
]

]x FC1~x!

C2~x!
G5H12~x!FC1~x!

C2~x!
G

5F2AL1w2~x! 2 ilu8~x!

ilu8~x! AL1w2~x!
GFC1~x!

C2~x!
G .

~2.13!

Throughout the paper, prime denotes derivative with respec
to x. When the density is changing slowly, then so is the
matter angleu(x), and the off-diagonal terms can be ne-
glected; for that reason, this is also known as the ‘‘adia-
batic’’ basis. The adiabaticity parameter is defined as

g~x!5U AL1w2~x!

ilu8~x!
U, ~2.14!

where u8(x) can be derived from Eqs.~2.10! and ~2.11!.
When this parameterg(x) is large, we can neglect the off-
diagonal terms. All nonadiabatic behavior, i.e., hopping from
one mass eigenstate to the other, takes place in a neighbo
hood of the resonance. It is there thatg(x) is minimized, so
the requirement ofg(x)@1 for adiabatic propagation is the
most exacting:

gc5g~xc!5
2

l

sin22uv
cos 2uv

1

uz8/zuxc
@1 . ~2.15!

In this limit, the equations of motion can be integrated im-
mediately, yielding pure phases forC1(x) andC2(x). At the
initial point xi , we take the neutrino to be a purene , so

Ce~xi !51 ~2.16!

and

Ce8~xi !5
]Ce~x!

]x U
xi

52
i

l
hw~xi !. ~2.17!
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54 6325SEMICLASSICAL TREATMENT OF MATTER-ENHANCED . . .
The latter follows fromCe(xi)51, Cm(xi)50. We denote
the initial matter angle byu i and reference the phases from
the initial pointxi . The phase integral will be denoted by

I p~x,xi ![E
xi

x

dxAL1w2~x!. ~2.18!

Taking into account the basis changes at the initial and fin
points, the adiabatic solutions, valid in the limitg(xc)@1,
are

Ce~x!5cosu~x!cosu iexpS 1
i

l
I p~x,xi ! D

1sinu~x!sinu iexpS 2
i

l
I p~x,xi ! D ~2.19!

and

Cm~x!52sinu~x!cosu iexpS 1
i

l
I p~x,xi ! D

1cosu~x!sinu iexpS 2
i

l
I p~x,xi ! D . ~2.20!

These forms hold both before and after the resonance in
adiabatic limit. If nonadiabatic corrections are taken into a
count, then the wave functions will have these forms befo
the resonance but will be more complicated after the res
nance. In the adiabatic limit@9#, the electron neutrino sur-
vival probability at a general pointx is

P~ne→ne!~x,xi !5uCe~x!u2

5
1

2
@11cos 2u icos 2u~x!#

1
1

2
sin 2u isin 2u~x!cosS 2l I p~x,xi ! D .

~2.21!

Note that the second term depends upon the source and
tector positions, and will disappear under averaging of eith
The probability of conversion to muon-type is given b
P(ne→nm)512P(ne→ne). If the final point is chosen in
vacuum, thenu(x)→uv .

With the adiabatic limit in hand, the obvious thing to do i
to seek the corrections that take into accountPhop, the prob-
ability of hopping from one mass eigenstate to the othe
Above, the adiabatic approximation was controlled by th
ratio of diagonal to off-diagonal elements. That ratio is,
turn, controlled byl, which keeps track of powers of\. In
the semiclassical limit of\→0, one hasl→0 andgc→`.
Note thatl appears above in the adiabatic survival probab
ity only in the phase; the fully averaged expression is ind
pendent ofl. The way to treatPhop systematically is to ex-
pand in powers ofl and to keep only the lowest-order terms

C. Uncoupled equations in the flavor basis

The coupled first-order equations for the flavor-bas
wave functions can be decoupled to yield
al
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is

2l2
]2Ce~x!

]x2
2@L1w2~x!1 ilhw8~x!#Ce~x!50 ~2.22!

and

2l2
]2Cm~x!

]x2
2@L1w2~x!2 ilhw8~x!#Cm~x!50,

~2.23!

wherew(x) andL are defined in Eqs.~2.5! and ~2.6!, re-
spectively. Such a simple decoupling is not possible in the
matter basis.

These Schro¨dinger-like equations are similar to those for
nonrelativistic particles in the presence of a complex barrier
and for convenience we use the language of wave mechani
to describe them. In particular, to the extent that we can
ignore the imaginary terms in the potential, these correspon
to particles above a barrier~sinceL.0). There are two ca-
veats regarding discussing this as a barrier penetration pro
lem. First, that our boundary conditions do not correspond to
the usual picture of incident, reflected, and transmitted
waves; in general, there are waves moving in each directio
on each side of the barrier. Second, the pure imaginary term
in the potentials play an extremely important role here, even
in the asymptotic regions. These terms are needed not only
represent nonadiabatic transitions, but also to keep up wit
the local matter angle.

In this problem, then, the quantity of interest is not a
reflection or transmission coefficient, but rather
P(ne→ne)5uCe(x→`)u2, the probability of the neutrino
being of the electron-type far from the source. In general
this is a function of both source and detector positions
though typically, only the fully averaged result is presented
However, those interference terms could be important, an
we present approximate expressions for them in the next se
tion.

Two well-known semiclassical treatments of this problem
are via the Wentzel-Kramers-Brillouin~WKB! @7# and linear
Landau-Zener@10–12# methods. The WKB techniqueglo-
bally maps the ‘‘potential’’ discussed above onto the free-
particle potential~i.e., a constant density!. By ‘‘global map-
ping,’’ we mean a variable stretching of the axis that deforms
the shape of one potential into another. In fact, the WKB
treatment turns out to be identical to the adiabatic approxi
mation@7#. The linear Landau-Zener techniquelocally maps
onto a linear density~i.e., extends a linear profile from a
single MSW resonance point with the right density and de-
rivative!, and hence a ‘‘potential’’ with a parabolic real part
and constant imaginary part. While the linear Landau-Zene
result is easy to derive and apply, there are two problems
First, it is notoriously difficult to get the boundary conditions
right ~for a complete explanation of how to handle this, see
Ref. @13#!. Second, since Landau-Zener is a point mapping
the expression forPhop is not very accurate. In the case of
neutrino oscillations in the Sun, the exponential Landau
Zener approximation circumvents these problems@13#.

The aim of this paper is to calculate the nonadiabatic cor
rections semiclassically, but with aglobal mapping of the
‘‘potential,’’ where, as in the Landau-Zener calculation we
choose as a model the case of a linear density. By using
global mapping, the correct boundary conditions are auto
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6326 54A. B. BALANTEKIN AND J. F. BEACOM
matic. Further, the expression forPhop is more accurate. The
approximate wave function is uniformly valid inx ~though
the approximation is not uniform in the mixing parameters!.

III. UNIFORM SEMICLASSICAL SOLUTION
OF THE MSW EQUATIONS

A. Semiclassical background

In the adiabatic limit, only the lowest order is kept in th
limit l→0 in Eq. ~2.13!, so the Hamiltonian is taken as
diagonal~no hopping from one mass eigenstate to the oth!
and the integration is trivial. The treatment at that order su
gests that in order to take into account the probability
hopping, we will need to consider further orders inl. In this
section, we will show that it is possible to obtain a rathe
accurate expression for the electron neutrino survival pro
ability by making a semiclassical expansion, i.e., by cons
ering only the two lowest orders inl when solving the MSW
equations.

The expressions derived below will hold for values of th
mixing parameters from the extreme adiabatic limit up un
the extreme nonadiabatic limit. In order to obtain solution
that hold in the extreme nonadiabatic limit, one would fo
mally have to consider all orders inl. Since semiclassical
expansions are asymptotic~i.e., nonconvergent! in general, it
is not clear that this would work in practice. A much bette
approach for the extreme nonadiabatic limit is to consid
expansions in 1/l @14#.

Semiclassical methods~for reviews, see Ref.@15#! are
used in quantum mechanics to provide approximate solutio
to the Schro¨dinger equation in the limit thatl is small. As
noted, in the WKB method, one bases the approximate so
tions on free-particle solutions. A procedure was develop
by Miller and Good@16# that, instead, bases the approxima
solutions on the known solutions of a Schro¨dinger equation
with a similar potential. In this method, the turning-poin
singularities of the primitive WKB method are regulated, an
the solutions are uniformly valid: they hold over the whol
range in x and are well-behaved at the turning-points.
further advantage of the Miller-Good method is that differe
potentials are treated with the same formalism, i.e., t
method of connection is the same for all potentials with th
same number and type of turning points.

The MSW equations~2.22! and ~2.23! are Schro¨dinger-
type equations for particles in the presence of complex p
tentials of the formV(x)52@w2(x)6 ilhw8(x)#, with
w(x) independent ofl. In Appendix, we summarize the ex-
tension of the uniform semiclassical approximation to tre
potentials with this specific dependence onl, originally in-
troduced in Refs.@6–8#. This special form of the potential
arises in supersymmetric quantum mechanics; see Ref.@8#
for discussion.

B. Application to the MSW problem

The method presented in Appendix allows a unifor
semiclassical solution forCe(x). By ‘‘uniform,’’ we mean
that the local error incurred by using the approximate so
tion developed there in the exact differential equation
bounded as a function ofx. This is to be distinguished from
a semiclassical solution via the primitive WKB method
r
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Such a solution has an unbounded error near a turning poin
For MSW propagation, the turning points are complex~they
are near the resonance point!. In the nonadiabatic limit, the
turning points approach the real axis, which means that th
WKB solutions are unable to represent any of the nonadia
batic behavior. In contrast, the uniform semiclassical ap
proximation used here is excellent for all but the extreme
nonadiabatic limit. Since we will make a semiclassical ex-
pansion, we explicitly show all factors of\ ~via l). Either an
increasing or a decreasing density can be considered, b
proper choice ofh.

From the derivation in Appendix, the general solution to
Eq. ~2.22! is

Ce~x!5K~x!@ADn„z~x!…1BDn„2z~x!…#, ~3.1!

where

n5
h212 iV/l

2
, ~3.2!

with

V5
2i

p E
x0

x0*

dxAL1w2~x!. ~3.3!

The limits of integration above are the zeros of the integrand
chosen as described in the Appendix. The argument of th
parabolic cylinder functions is given by

z~x!5
11 i

Al
S~x!'

11 i

Al
@S0~x!1lS1~x!#, ~3.4!

whereS0(x) andS1(x) are described in the Appendix.
Given appropriate initial conditions, one can solve forA

and B. In some situations, it may be useful to evaluate
Ce(x) for all x. This requires evaluating theG function for a
complex argument and the parabolic cylinder functions for a
general complex order and argument. For general commen
on routines available for the numerical evaluation of specia
functions, see Ref.@17#. TheG function for a complex argu-
ment can be evaluated withCERNLIB @18#. General properties
of the parabolic cylinder functions may be found in Refs.
@19–22#. While library routines do exist for various special
cases of the parabolic cylinder functions, to our knowledge
there is nothing available that is general enough@23#. The
technique1 used here is to use the power series@22# for small
uzu, the asymptotic series@20# for large uzu, and direct nu-
merical integration of the defining differential equation with
ODEPACK @24# for moderateuzu. Fortunately, one does not
generally have to perform any integrations for the parabolic
cylinder functions, as only the asymptotic forms are needed

We will use the asymptotic forms at both the production
and detection points. As shown below, this means that w
assume adiabatic propagation at those two points. Thi
matching is justified to the extent that the production and
detection points are sufficiently far from the resonance point
In practice, these requirements do not present any difficul

1The code is available, upon request, from the authors.



54 6327SEMICLASSICAL TREATMENT OF MATTER-ENHANCED . . .
ties. Consider the Sun as an example, with neutrinos p
duced at the solar center. If the resonance is near the pro
tion point, or there is no resonance, then this implies th
dm2 is large and the entire propagation is adiabatic, exc
for extremely small mixing angles. If the resonance is a
very low density, i.e., approaching vacuum, thendm2 is very
small and our approximation breaks down for other reaso
described below. Note that in the linear Landau-Zener tre
ment, one has to handle the finalx point carefully since the
density runs negative at largex, andu(x)→0, not uv . No
such difficulties with the boundary value of the matter ang
arise in the treatment given here.

The asymptotic forms developed below representCe(x)
well for large but finitex. All of the expansions below are
just to get outside of the resonance region; we do not ta
x so large that the matter angle is eitherp/2 or uv . More
precisely~see the discussion in the Appendix!, the approxi-
mate solutions are characterized by two scales, one se
S0(x) and the other byw(x). The functionS0(x) is asymp-
totic outside the resonance region, whereasw(x) is not as-
ymptotic until the density is zero or infinite. In this formula
tion, S0(x), but notw(x), will be taken to be asymptotic.
This means that we have the control to connect oppo
sides of the resonance region without having to ta
x→6`, i.e., we do not have to extend the density profi
indefinitely.

C. Asymptotic solutions and connection formulas

Using the definition of the matter angle given in Eq
~2.10! and~2.11!, we can rewrite the pre-exponential facto
in the asymptotic solution ofCe(x), Eq. ~A37!. There are
two cases, depending on howw andh are chosen. The first
case hasw(x)5cos2uv2z(x),h521, so

F L

4@L1w2~x!#G 1/4S w1AL1w2

AL
D 11/2

5cosu~x!, ~3.5!

and

F L

4@L1w2~x!#G 1/4S w1AL1w2

AL
D 21/2

5sinu~x!. ~3.6!

In the other case ofw(x)522cosuv1z(x),h511, these are
reversed. In either case, the prefactors associated with
various terms are

C2 :cosu~x!, D2 :sinu~x!,

C1 :sinu~x!, D1 :cosu~x!. ~3.7!

It is important to note that these will be evaluated at gene
values ofx outside the resonance region;uxu will not be so
large thatu(x)→p/2 or u(x)→uv . The asymptotic wave
functions are

Ce~x→2`!5C2cosu~x!expS 1
i

l
I p~x,xi ! D

1D2sinu~x!expS 2
i

l
I p~x,xi ! D , ~3.8!
ro-
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and

Ce~x→1`!5C1sinu~x!expS 2
i

l
I p~x,xi ! D

1D1cosu~x!expS 1
i

l
I p~x,xi ! D . ~3.9!

From their form, we see immediately that the asymptotic
wave functions represent adiabatic propagation. The coeffi-
cientsC6 ,D6 still depend onh, which will allow us to
consider increasing or decreasing densities. The phase inte-
gral functionI p is defined in Eq.~A12!.

With the asymptotic wave function in this form, it is
rather easy to apply the initial conditions. As before, we take
the neutrino at the initial pointxi to be a purene , so

Ce~xi !51 ~3.10!

and

Ce8~xi !5
]Ce~x!

]x U
xi

52
i

l
hw~xi !. ~3.11!

In either case regarding the signs ofw andh, one immedi-
ately obtainsC25cosui andD25sinui , so

Ce~x→2`!5cosu~x!cosu iexpS 1
i

l
I p~x,xi ! D

1sinu~x!sinu iexpS 2
i

l
I p~x,xi ! D ,

~3.12!

which is, of course, the adiabatic solution given in Sec. II B.
We now turn to the evaluation of the coefficientsC1 and

D1 that are needed after the resonance. From the above and
Eqs.~A39! and ~A41!,

C25cosu i5C expS 1
i

l
ReI p~xi ,x0! D ~Ae2 inp1B!,

~3.13!

D25sinu i5C expS 2
i

l
ReI p~xi ,x0! D ~Ae2 inp!. ~3.14!

These determine the coefficientsA andB of the general so-
lution:

A5D21expS 1
i

l
ReI p~xi ,x0! Deinpsinu i , ~3.15!

B5C21expS 2
i

l
ReI p~xi ,x0! D cosu i

2D21expS 1
i

l
ReI p~xi ,x0! D sinu i . ~3.16!

Then,
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C152iCD21einpsinu i1expS 2
2i

l
ReI p~xi ,x0! D

3e2 inpcosu i , ~3.17!

D15C21De2 inpcosu i2expS 1
2i

l
ReI p~xi ,x0! D

3e2 inpsinu i , ~3.18!

whereC andD are given in Eqs.~A42! and ~A43!.
The asymptotic forms ofCe(x) shown above are per-

fectly general, and depend only on the assumption of ad
batic propagation outside the resonance region. The hear
this problem is the connection of the asymptotic coefficien
C2 andD2 to C1 andD1 . That connection represents the
integration of the solutions through the resonance region.
our case, that information is carried by the coefficientsA and
B of the general~but approximate, due to the mapping! so-
lution in terms of parabolic cylinder functions.

D. Resonance transition coefficients

Above, the asymptotic wave functions were written in
terms of the adiabatic solutions, which is convenient for a
plying initial conditions and deducing the connection formu
las. Before squaring the asymptotic wave function to obta
the neutrino survival probability, it is convenient to rewrite
the wave function in a slightly different form:

Ce~x→1`!5C1sinu~x!expS 2
i

l
I p~x,xi ! D

1D1cosu~x!expS 1
i

l
I p~x,xi ! D

5Fc1sinu iexpS 1
i

l
ReI p~xi ,x0! D

1c2cosu iexpS 2
i

l
ReI p~xi ,x0! D G

3sinu~x!expS 2
i

l
ReI p~x,x0! D

1Fd1cosu iexpS 2
i

l
ReI p~xi ,x0! D

1d2sinu iexpS 1
i

l
ReI p~xi ,x0! D G

3cosu~x!expS 1
i

l
ReI p~x,x0! D .

~3.19!

The terms inside the square brackets depend only on
source positionxi , whereas the terms outside depend onl
on the final positionx. Since all of the adiabatic phases and
matter angles for the asymptotic solutions are written expli
itly, the matrix of coefficients given byc1 ,c2 ,d1 ,d2 repre-
sents only the nonadiabatic transitions in the resonance
gion. These coefficients change in the resonance region,
ia-
t of
ts

In

p-
-
in

the
y

c-

re-
but

tend asymptotically to constants outside of it. Since the
232 Hamiltonian is Hermitian and traceless, the time-
evolution operator must be a member of the SU~2! group.
Thus, this matrix must assume the form

F c1 c2

2c2* c1*
G , ~3.20!

whereuc1u21uc2u251.
By comparison to the forms ofC1 andD1 in Eqs.~A38!

and ~A40!, the new coefficients are easily found to be

c152
G~2n!

A2p
S V

l D 2 iV/2l1h/2S e2 ip/2

2 D n e23ip/4

A2

3expS 1
iV

2l D2i sin~np!, ~3.21!

c25e2 inp, ~3.22!

d152
A2p

G~2n! S V

l D 1 iV/2l2h/2S e2 ip/2

2 D 2n

e13ip/4A2

3expS 2
iV

2l De2 inp, ~3.23!

d252e2 inp. ~3.24!

By analysis of two cases ofh561 separately, one can show
@19#

uG~2n!u2S V

2l D h

5
p

sinh~Vp/2l!
, ~3.25!

2

p
uG~2n!u2S V

2l D h

usin~np!u2e2Vp/2l512e2Vp/2l,

~3.26!

wheren is given by Eq.~A22!. Using these relations, it may
easily be verified explicitly thatd1*5c1 andd2*52c2, and
that

uc1u2512e2Vp/l, ~3.27!

uc2u25e2Vp/l, ~3.28!

so uc1u21uc2u251.
Starting with Eq.~2.13!, one can determine howc1 and

c2 depend onh, i.e., on whether the density is increasing or
decreasing. One can show thatc1 must be independent of
h, and thatc2 must change sign ifh does. With the present
form of c1, this is not obvious. Define the phase ofc1 as

c15uc1ueia. ~3.29!

An asymptotic series can be developed for this phasea.
Using the special form of the Stirling expansion of theG
function for purely imaginary argument given in Eqs.
~6.1.43! and ~6.1.44! of Ref. @19#, one can show that the
phase ofc1, in the limit V/l is large, is



t
n
-
i

s

54 6329SEMICLASSICAL TREATMENT OF MATTER-ENHANCED . . .
a52 (
n51

`
~21!n21B2n

2n~2n21! S 2l

V D 2n21

, ~3.30!

whereB2n are Bernoulli numbers@19#. When a linear density
is considered, this expression for the phase is equal to
given in Ref.@25#. We do not use this limit for the phase i
general, since it requires thatV/l*1, which is unnecessar
ily restrictive on the range of validity of our main approx
mation. Since this is independent ofh, so isc1. Note from
the definition ofn in Eq. ~A22! that c25e2 inp is, in fact, a
real number, though it may be positive or negative, a
changes sign ifh does.

E. Calculation of P„ne˜ne…

The electron neutrino survival probability at a gener
point x after the resonance for a neutrino produced atxi is
given by the modulus squared of the amplitud
Ce(x→1`) for the neutrino to be of the electron type. Fir
write
h

hat

-

nd

al

e
t

Ce~x→1`!5Fc1sinu iexpS 1
i

l
ReI p~xi ,x0! D

1c2cosu iexpS 2
i

l
ReI p~xi ,x0! D G

3sinu~x!expS 2
i

l
ReI p~x,x0! D

1Fc1* cosu iexpS 2
i

l
ReI p~xi ,x0! D

2c2* sinu iexpS 1
i

l
ReI p~xi ,x0! D G

3cosu~x!expS 1
i

l
ReI p~x,x0! D . ~3.31!

After taking the squared modulus of this expression for
Ce(x), and then reducing it, the survival probability takes
the form
P~ne→ne!~x,xi !5
1

2
@11~122uc2u2!cos 2u icos 2u~x!#2

1

2
uc1uc2sin 2u icos 2u~x!cosS 2lReI p~xi ,x0!1a D

1
1

2
sin 2u isin 2u~x!cosS 2lReI p~x,xi !22a D2uc2u2sin 2u isin 2u~x!cosS 2lReI p~xi ,x0!1a D

3cosS 2lReI p~x,x0!2a D1uc1uc2cos 2u isin 2u~x!cosS 2lReI p~x,x0!2a D . ~3.32!
This, along with Eqs.~3.21! and ~3.22!, is our main result.
Recall that in our approximation,c2 is real. In general, the
phasea should be extracted fromc1 directly, rather than
taken from the asymptotic series fora given above. This
simple form for the survival probability can be evaluate
easily and rapidly, providing accurate results for both t
direct and interference terms for all mixing parameters e
cept for the extreme nonadiabatic limit. It is much more co
venient than direct numerical solution of the MSW equ
tions, especially if many values of the mixing paramete
need to be explored.

When V/l@1, i.e., the adiabatic limit, uc1u→1,
uc2u→0, a→0, and this general form for the survival prob
ability reduces to

P~ne→ne!~x,xi !→
1

2
@11cos 2u icos 2u~x!#

1
1

2
sin 2u isin 2u~x!cosS 2lReI p~x,xi ! D ,

~3.33!

which is the usual adiabatic result.
Typically, the final pointx will be taken in vacuum, so

u(x)→uv andAL1w2(x)→1, and
d
e
x-
n-
a-
rs

-

expS 6
2i

l
ReI p~x,x0! D5const3exp~62ix/l!. ~3.34!

~The same applies when the lower limit inI p is xi , though
the constant will be different.! The oscillation length in
vacuum ispL, whereL is given by Eq.~2.3!. For example,
in the solar neutrino problem, the favored MSW parameters
lead to an oscillation length of'1000 km @26#. In such
cases, where the oscillation length in vacuum is much less
than the variation in the source-detector distance, it will be
appropriate to average over the detector position. If that is
done, then the survival probability no longer depends onx,
but does still depend onxi and is given by

P~ne→ne!~xi !5
1

2
@11~122uc2u2!cos 2u icos 2uv#

2
1

2
uc1uc2sin 2u icos 2uv

3cosS 2lReI p~xi ,x0!1a D . ~3.35!

This shows that the source term may be important even after
detector averaging. If the source is extended, or if an energy
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spectrum is considered, one can also average over the so
position. The completely averaged result for the electron s
vival probability is then given by

P~ne→ne!5
1

2
@11~122uc2u2!^cos 2u i&srccos 2u~x!#,

~3.36!

where ^cos2ui&src indicates the average of cos2ui over the
source position and energy spectrum. In the usual der
tions, the source term is assumed to be averaged away
no average over cos2ui is shown. However, one can get awa
with this in some situations that suppress the source te
without any averaging over position or energy.

This structure for the fully averaged survival probabilit
is completely general, and thus we interpretuc2u2 as the
probability of hopping from one mass eigenstate to the ot
in the passage through the resonance region. Thus,

Phop5uc2u2

5exp~2pV!

5expS 22i E
x0

x0*
dxAz2~x!22cos 2uvz~x!11D

5expS 2 i
dm2

2E E
t0

t0*
dtH F2A2GFENe~ t !

dm2 G 2
22cos 2uvF2A2GFENe~ t !

dm2 G11J 1/2D . ~3.37!

This probability characterizes the nonadiabatic nature of
evolution near the avoided level crossing; for purely ad
batic evolution,Phop50. The limits of the integral are the
complex turning points of Eq.~A1!, i.e., the zeros of the
integrand, and are labeled such that Imx0.0. The middle
form is particularly convenient since then the turning poin
are located byz5exp(62iuv). This result forPhop is valid
for both arbitrary mixing parameters and an arbitrary mon
tonic density profile. Since our solutions were based on
solution for a linear density, the form ofPhop follows that for
a linear density: a single exponential which vanishes in
adiabatic limit.

F. Comparisons of different densities

For a linear density, we must recover the linear Landa
Zener result@11,12#. Equation~3.37! yields

Phop
lin 5exp~2pV lin!, ~3.38!

where

V lin5
gc

2
5

dm2

4E

sin22uv
cos 2uv

U 1

N~ t !

dN~ t !

dt U
res

21

, ~3.39!

as expected.
For an exponential density, Eq.~3.37! yields

Phop
exp5exp~2pVexp!, ~3.40!
urce
ur-
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where

Vexp5d~12cos 2uv! ~3.41!

and

d5
dm2

2E U 1

N~ t !

dN~ t !

dt U21

. ~3.42!

This is the leading exponential to the exact result for an
exponential density@13,27#. The exact result is

Phop
exp5

exp@2pd~12cos 2uv!#2exp~22pd!

12exp~22pd!
. ~3.43!

Equation~3.40! for the exponential density was previously
obtained@28# by connecting the coefficients of the coupled
equations in the adiabatic basis through the complex plane
@29#. In Fig. 1, we compare our fully averaged result for the
survival probability in an exponential density~the parameters
are chosen to approximate the solar density@30#! with the
exact result. The values of the vacuum angle chosen approxi-
mate those of the two best-fit models for the MSW solution
to the solar neutrino problem@26#. In Figs. 2 and 3, we show
the accuracy of our approximation by comparing our source
term to the exact results. The source term is defined as the
survival probability, averaged over detector, minus the sur-
vival probability, averaged over both source and detector.
Note that in Eq.~3.36!, whendm2/E is large,V is large, and
c2→0, suppressing the source term. On the other hand, if the
initial density is large enough, then whendm2/E is small,

FIG. 1. The electron neutrino survival probability vs the mass-
squared difference parameter for two different vacuum-mixing
angles. The solid line is given by the method of this paper. The
dashed line is the exact~numerical! result. The dotted line is the
linear Landau-Zener result. In the top figure, the lines are indistin-
guishable. An exponential density with parameters chosen to ap-
proximate the Sun was used@30#. The region leftward of the lower
left corner of the trough is the nonadiabatic region.
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u i→p/2, and sin2ui→0, which also suppresses the sourc
term. Therefore, the source term is nonzero only for interm
diate values ofdm2, as illustrated in Figs. 2 and 3.

G. Breakdown of the mapping

As can be seen from Fig. 1, our approximation does n
hold in the extreme nonadiabatic limit, wheredm2→0. As
emphasized in Ref.@31#, the Miller-Good method only
works well when the mapping is invertible. Given two po

FIG. 2. The source term~the survival probability, averaged over
detector, minus the survival probability, averaged over both sou
and detector! in the electron neutrino survival probability vs the
mass-squared difference parameter for sin22uv50.7. The solid line
is given by the method of this paper. The dashed line is the ex
~numerical! result. The density profile is as in Fig. 1.

FIG. 3. The source term~the survival probability, averaged over
detector, minus the survival probability, averaged over both sou
and detector! in the electron neutrino survival probability vs the
mass-squared difference parameter for sin22uv50.01. The solid line
is given by the method of this paper. The dashed line is the ex
~numerical! result. The lines are indistinguishable, even when
zoom is performed in the region of rapid oscillations. The dens
profile is as in Fig. 1.
e
e-

ot

-

tentialsVA andVB , the mapping is good only if it makes as
much sense to mapVA→VB asVB→VA . If this is not true,
then the mapping is a projection, and something is lost. In
vertibility may thus be associated with a ‘‘sameness of to
pology.’’ More precisely, when the mapping is not invert-
ible, the comparison potential becomes multivalued.

Let us consider the treatment of an exponential density. I
this case, the root of the failure in mapping is the differenc
in the topology of higher-order turning points of the two
potentials corresponding to linear and exponential densitie
The turning points are located byz5exp(62iuv). For a lin-
ear density, there are only two turning points. For an expo
nential density, however, additional, higher-order turning
points can be found by the transformationx→x12pnxs ,
wheren is an integer andxs is the scale height of the expo-
nential in our dimensionless units. As noted in Appendix, we
considered only the primary turning points, i.e., those close
to the real axis. When only the lowest-order turning points o
the exponential density are taken into account, then the tw
potentials can be made only approximately equivalent. I
principle, the way to cure this problem is to use a compar
son potential with the same number~infinite, if necessary! of
turning points as the original one. In practice, this may b
rather cumbersome.

Consider how a path in thex plane is mapped into theS
plane. In Appendix, we discuss why the locations of the
primary turning points are only considered to lowest order in
l. In particular, the turning points in theS plane are located
by S(x0)'S0(x0)51 iAV, S* (x0)'S0* (x0)52 iAV. The
resonance pointxc is mapped toS(xc)'0. In the extreme
adiabatic limit, the path from2` to 1` along the real axis
in thex plane is mapped onto a path from2` to 1` along
the real axis in theS plane. As the mixing parameters be-
come more and more nonadiabatic, the path in theS plane
makes more and more of an excursion into one half~upper or
lower! of the complex plane near the resonance. At6`, it
returns to the real axis. In both planes, the paths run betwe
the primary turning points. In the extreme nonadiabatic limit
however, the path ofS(x) eventually crosses a turning point.
There is then a topological difference between the tw
planes; in one case, the path runs between the primary tur
ing points, and in the other, it does not. Because of how th
turning points are anchored, this indicates that the mappin
has folded the complex plane over, and the comparison p
tential is multivalued.

The need to impose the same turning point topology be
tween the original and comparison potentials restricts th
applicability of Eq.~3.37! to monotonically varying electron
densities, i.e., those with a single MSW resonance. If ther
are two or more close MSW resonances, one cannot use
linear density to construct the comparison potential. Suc
situations are considered in Refs.@25,32#.

IV. CONCLUDING REMARKS

We have studied a uniform semiclassical approximatio
for the matter-enhanced neutrino oscillations for two flavors
assuming a monotonically changing but otherwise arbitrar
density profile. We obtained an analytic expression for th
electron neutrino survival probability, unaveraged over eithe
detector or source positions. Our result is valid for a larg
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rce

act
a
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range of the mixing parameters, up to but not including th
extreme nonadiabatic limit. Upon averaging over detect
and source positions, we recover expressions previously
tained in the literature. Since our expressions are valid
arbitrary densities, they may be applied not only to the Su
but to all settings in which resonant neutrino conversion c
occur, such as supernovas and the early Universe.

The method of analytic continuation utilized in Ref.@28#
for an exponential density was extended in Ref.@33#, where
the general form of Eq.~3.37! for an arbitrary monotonic
density profile was found. Results for several other analy
cally solvable densities are presented there. Our analysis
only yields an expression for the hopping probability whic
coincides with Ref.@33#, but also provides the source an
detector terms.

As noted, we assumed a monotonic density profile, so t
formalism is not suitable for studying neutrino propagatio
in stochastic media~e.g., with density fluctuations!, as has
recently been studied for the Sun and type-II supernovas
Refs.@32,34#.
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APPENDIX: SUPERSYMMETRY-INSPIRED
UNIFORM APPROXIMATION

1. General treatment

Consider the Schro¨dinger-type equation

2l2
]2C~x!

]x2
2@L1w2~x!1 ilhw8~x!#C~x!50, ~A1!

whereL is a real, positive constant, andw is a real, mono-
tonic function on the real axis, and is analytic in the comple
plane. In the above and what follows, everything is dime
sionless, andl is being used as a placeholder for\. Neither
L nor w depends onl. We will solve this equation in an
approximation that treatsl as formally small. In the physical
problem represented by Eq.~A1!, the variablex is real. How-
ever, for addressing the mathematical question of the so
tion of this differential equation, we considerx to be com-
plex. We assume2 that L1w2(x) has two zeros in the
complex plane, i.e., pointsx0 ,x0* wherew56 iAL. These
points are taken to be the turning points of Eq.~A1!. We will
discuss below why the turning points can be taken at low
order, i.e., given as the zeros ofL1w2(x), rather than of
L1w2(x)1 ilhw(x). In general, there can be more tha
two zeros ofL1w2; for now, we only consider the two
closest to the real axis, and label them so that Imx0.0. The

2The case in which the zeros are on the real axis, while not r
evant here, can be treated similarly to the rest of the Appendix;
Ref. @6#.
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overall sign onw is chosen to make Imw(x0).0, andh is
taken to be61 as needed so thathw(x) has the desired sign.
If presented with an equation such as Eq.~A1!, but with the
opposite sign on the imaginary term, one can always conju
gate it and solve as below forC* (x), so the treatment here is
general.

We will map Eq.~A1! onto the comparison equation

2l2
]2U~S!

]S2
2@V1S21 ilh#U~S!50 , ~A2!

whereV is a real, positive constant~and will be determined
below!. This equation, considered as a function ofS, also has
two conjugate turning points in the complex plane. By
‘‘map,’’ we mean that we will find a change of variables
S5S(x) such that the potential in the comparison equation is
deformed into the potential in the original equation. That
statement indicates how the real axis will be stretched. How-
ever, we will also have to consider how the complexx plane
is mapped onto the complexS plane. In particular, the turn-
ing points in thex plane must be mapped onto the turning
points in theS plane. The comparison equation is chosen to
be one for which exact analytic solutions are known, and
which is as similar as possible to the original equation. If we
requirew(x) to be monotonic for realx, then imaginary term
in the comparison equation may be taken as constant. Othe
thanV, this comparison equation is taken with no free pa-
rameters; such parameters can always be scaled away, and
are irrelevant here. That the turning-point topologies of the
original and comparison problems be the same is critical to
the method. In this case, we are mapping an as-yet unspec
fied real barrier onto a parabolic barrier, and the imaginary
term onto an imaginary constant. However, we can map onto
any convenient potential with known solutions.

In principle, if we could find the change of variables
S5S(x) exactly, then we would have exact solutions for
C(x) in terms of the known functionsU„S(x)…. In general,
the solution for the change of variablesS5S(x) would be at
least as difficult as direct solution of the original problem.
The approximation made to solve Eq.~A1! will be to ap-
proximate S(x) as a truncated power series inl. This
method of uniform approximation via mapping is also
known as the method of comparison equations~note Ref.
@35#!. The work here was inspired by the ideas of Miller and
Good @16#. For further work on the theory of their method,
see also Refs.@36,31#, and the related works in Ref.@37#.

In the original Miller-Good problem, the imaginary terms
in the potentials above are not present. They treat the case
of a particle bound in a well and traveling in the presence of
a barrier, mapping onto a parabolic well and barrier, respec
tively, each of which has as solutions the parabolic cylinder
functions. In their formalism, one immediately sees that the
WKB approximation amounts to mapping onto the free-
particle potential; the mismatch in turning-point topologies is
the origin of the failure of the WKB method@via the zeros in
what is essentially a Jacobian, see Eq.~A19!# near the turn-
ing points. With the Miller-Good formalism, the wave func-
tion is continuous through the turning points.

The notation used here has some important difference
from previous work@6,8#. This allows some difficulties and
errors to be resolved. In particular,h will be used differently

el-
see
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here. We continue to takew(x) to be real on the real axis and
to be monotonic. In those papers, it was assumed thatw(x)
monotonically increasing along the real axis would imp
Imw(x0).0. While this is suggested by the Cauch
Riemann conditions applied tow(x) on the real axis, it need
not always be true. No such assumption is made here.
each density, one simply has to make sure that the sign
w(x) andh are defined so thathw(x) represents the right
physics and that Imw(x0).0.

This mapping will be accomplished as

C~x!5K~x!U„S~x!…, ~A3!

where the form ofK(x) will be chosen andS(x) will be
defined by that choice. Using this form ofC(x) and Eq.
~A2!, we can rewrite Eq.~A1!. By making the choice

K~x!5
1

AS8~x!
, ~A4!

and dividing through byC, we find

l2
K9

K
2S82@V1S21 ilh#1@L1w21 ilhw8#50 .

~A5!

So far, no approximation has been made, and the form

C~x!5
1

AS8~x!
U„S~x!… ~A6!

is a purely formal solution of Eq.~A1! in terms of the solu-
tions of Eq.~A2!. If we could find the change of variable
S5S(x) exactly, then we would have exact solutions f
C(x) in terms of the known functionsU„S(x)…. In general,
the solution for the change of variablesS5S(x) would be at
least as difficult as direct solution of the original problem. T
avoid that, we will approximateS(x). Very crudely, this pro-
cedure is a perturbation expansion in the shapes of the
potentials; the more they resemble each other, the more
approximation to the change of variables is justified, and
better our solutionsC(x) will be. Sincew is independent of
l, all of thel dependence in Eq.~A5! is explicit. We expand
S(x) in powers ofl:

S~x!5S0~x!1lS1~x!1•••. ~A7!

The power of this method is that we can obtain a good
lution by keeping only the semiclassical terms~the lowest
two orders inl). In the original Miller and Good problem
@16#, the ilw8 term was not present in the potential. Ther
fore, only l2 appears in Eq.~A5!, and one can expand in
l2 instead ofl, which leads toS(x)'S0(x)1O(l2), mak-
ing solving for the mapping quite simple. In our case, sin
l appears directly in Eq.~A5!, we must expand inl, which
leads to

S~x!'S0~x!1lS1~x!, ~A8!

which makes solution of the mapping somewhat more co
plicated, but still much easier to solve than the original equ
tion. After expansion of Eq.~A5! in l, we group by order in
ly
y-
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l and demand that each order vanishes independently, asl
is a free parameter as far as the mathematics are concerned
This yields the equations

O~l0!: ~L1w2!5S08
2~V1S0

2!,

O~l1!: ihw852~V1S0
2!S08S181S08

2~ ih12S0S1!.
~A9!

While the original equation to be solved was linear, after
approximation the system of equations to be solved is non-
linear. In particular, the equation for theO(l2) terms, which
involvesS2(x), is probably analytically intractable. Never-
theless, the integrations forS0(x) and S1(x) can be per-
formed, and the results are given below. In those integra-
tions, the branch cut for the logarithm and square-root
functions is taken along the negative real axis. Before solv-
ing for S0(x) and S1(x), we show what will be left over.
Using the relations forS0(x) andS1(x), one can show

2l2
]2Cappr~x!

]x2
2@L1w2~x!1 ilhw8~x!1l2e~x!#

3Cappr~x!50. ~A10!

In the rest of the Appendix,C(x) always denotes the ap-
proximate wave function, and we drop the subscript. The
degree to which the approximate solution fails to solve the
exact differential equation is the local error, and is of the
form

e~x!5
3

4 S S09S08D
2

2
1

2 S S0-S08 D 2S08
2S1

222S08S18~ ih12S0S1!

2S18
2~V1S0

2!1~ terms that depend onS2!. ~A11!

The first two terms are familiar from either the WKB@38# or
Miller-Good @16# problems.3 The next three terms arise from
the more general form of the potential considered here. Un-
fortunately, the remaining terms depend onS2, for which we
have no analytic solution.

The turning points of the original and comparison equa-
tions are taken to be the zeros of@L1w2(x)# and
@V1S2(x)#, respectively. Since these are real for realx, the
turning points are complex conjugates. As noted above, the
turning points of original equation are labeled so that
Imx0.0, and the sign of w(x) is chosen so that
w(x0)5 iAL. We map the turning points of the original
equation onto the turning points of the comparison equation
by demandingS(x0)5 iAV. The way this correspondence is
made ensures that the mapping does not flip the complex
plane about the real axis~it is not flipped about the imaginary
axis either, as will be shown below!. These choices make it
easier to avoid integration errors below. Note that all of the
turning points are treated only at lowest order.

3While these methods have the same form for the local error, the
global results can be rather different, e.g., the transmission coeffi-
cient @16#. Note that the WKB error term is singular at the turning
points, whereas the Miller-Good error term is bounded.
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The formal solution forS0(x) can be written immediately
from Eq. ~A9!, including the turning-point correspondenc
condition ofS0(x0)5 iAV:

I p~x,x0![E
x0

x

dxAL1w2~x!5E
iAV

S0~x!

dS0AV1S0
2. ~A12!

In order to evaluateS0(x), we will first needV, the energy
of the comparison system. This is determined by demand
that the conjugate turning points correspond, i.
S0(x0* )52 iAV. When both sides of Eq.~A12! are inte-
grated between their turning points, the right-hand side c
be done explicitly, yielding

2
iVp

2
5E

x0

x0*
dxAL1w2~x!. ~A13!

With V determined, an implicit solution forS0(x) can be
obtained through integration of Eq.~A12! to a general point
x:

I p~x,x0!52
iVp

4
1
S0
2
AV1S0

21
V

2
lnS S01AV1S0

2

AV
D .

~A14!

The fact that the solution forS0(x) is left in this implicit
form does not present any difficulties. When the asympto
forms are used, this expression can be solved approxima
If the full forms of the parabolic cylinder functions are bein
used, then one will be taking a numerical approach anyw
and the solution forS0(x) is rather easy. Using the Schwar
reflection principle and the integrals forS0(x) andV, one
can show thatS0(x) is real for realx. Then,I p(x,x0) sepa-
rates into real and imaginary parts as follows:

I p~x,x0!5Re@ I p~x,x0!#2
iVp

4
. ~A15!

This will be needed to show that the exponentials in t
asymptotic solution have purely imaginary arguments.

To solve forS1(x), we use the first of Eq.~A9! to rewrite
the second as

ih

2

w8

AL1w2
5S18AV1S0

21
1

2

S08

AV1S0
2 ~ ih12S0S1!.

~A16!

We integrate fromx0 to x, changing variables as needed

ih

2 Ew~x0!

w~x! dw

AL1w2
5E

x0

x

dx
d

dx
~S1AV1S0

2!

1
ih

2 ES0~x0!

S0~x! dS0

AV1S0
2
. ~A17!

In all three integrals, the lower limit has a positive imagina
part and the upper limit is real; this ensures that all of t
square-root functions are on the same sheet. Upon subs
tion of the limits of integration, this yields
e

ing
e.,

an

tic
tely.
g
ay,
z

he

ry
he
titu-

S1~x!5
ih

2AV1S0
2 H lnFw1AL1w2

AL
G1 lnF AV

S01AV1S0
2G J ,

~A18!

which is purely imaginary for realx, as claimed in Refs.
@7,8#. In those references, there were typographical errors
~corrected here!, and this was not obvious. In order to get
S1 right ~i.e., pure imaginary!, one has to be careful about a
branch cut crossing during the integration. In order to facili-
tate that,w is defined here with the sign noted in Eq.~2.5!.

The prefactorK(x) is given by

K~x!5
1

AS8~x!
'

1

AS08~x!
5FV1S0

2~x!

L1w2~x!
G1/4. ~A19!

The truncation ofS8 at lowest order here is consistent with
our overall policy of keeping the two lowest orders inl, and
will be justified below. This form allows us to explain why
the turning points may be taken at lowest order. Consider
how the exact change of variablesS5S(x) would work at a
single point, where the local momenta in both problems
could be taken as constant. Then the change of variables is
just a scale change, andK2(x) is the ratio of the exact local
momenta, the zeros of which are the exact turning points.
When we approximateS(x) by power series inl, K2(x) will
be the ratio of the local momenta, taken at the proper order,
the zeros of which are the turning points, taken at the proper
order. From the expression forK(x) above, this indicates
that the turning points should be taken at the lowest order in
l. The denominator ofK(x) vanishes at the turning points.
For there to be any hope ofC(x) being well behaved at the
turning points, the numerator must also vanish. This is why
we demanded the turning-point matching as above. In the
WKB case, the numerator never vanishes, and the connec-
tion between the mismatch in turning-point topologies and
the singularity of the WKB solutions at the turning points is
evident. When the turning points are matched properly, one
can show thatK(x) is well behaved for allx. The method of
proof is to expand Eq.~A12! near one turning point; this
reveals thatK(x) tends to a constant as the turning point is
approached. The same holds for the other turning point as
well.

After successively solving forV, S0(x), S1(x), and
K(x), one can write the approximate wave function as

C~x!5FV1S0
2~x!

L1w2~x!
G1/4U„S0~x!1lS1~x!…, ~A20!

where U„S0(x)1lS1(x)… approximately solves Eq.~A2!,
the comparison equation, andC(x) approximately solves
Eq. ~A1!, the original Schro¨dinger-type equation. By taking

z~x!5
11 i

Al
S~x!'

11 i

Al
„S0~x!1lS1~x!…, ~A21!

one can show that Eq.~A2! is Weber’s equation@19–21# for
the parabolic cylinder functionDn(z), where the ordern is
given by
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n5
h212 iV/l

2
. ~A22!

The general solution may be taken to be

C~x!5K~x!@ADn„z~x!…1BDn„2z~x!…#. ~A23!

There are four solutions to Weber’s equation, any two
which can be taken as independent; the two above are c
venient. Given appropriate initial conditions, one can sol
for C(x) everywhere. The coefficientsA andB will be de-
termined below by applying the initial conditions to the a
ymptotic form of the solution. The evaluation of the par
bolic cylinder functions is discussed in the body of the pap

2. Asymptotic forms

In many cases, one only needs the wave function
x→6` ~the reasons for this in the MSW problem are e
plained in the body of the paper!. In this section, we develop
the asymptotic forms ofC(x), which are easier to work with
than the general form above. Another benefit of the asym
totic forms is that it becomes much easier to count powers
l, thus ensuring that we are working to a consistent orde

Using the definitions in the previous section, one can e
ily show

S0~x! ;
x→6`

6` ~A24!

and

S1~x! ;
x→6`

0 . ~A25!

With these crude limits, and the fact thatS0(x) is real for
real x, we can determine the phases to the arguments
Dn„z(x)… and Dn„2z(x)… to be p/4 and23p/4, respec-
tively, for x→1`, and vice versa forx→2`. We use
23p/4 instead of 5p/4 to stay inside the principal branche
of the square-root and logarithm functions used below.
particular, one must be careful when rewritingzn. The as-
ymptotic forms of the parabolic cylinder functions fo
uzu@unu are given in Ref. @20#. For 23p/4
,arg(z),3p/4,

Dn~z! ;
z→`

expS 2
z2

4 D znF11OS 1z2D G ~A26!

and for25p/4,arg(z),2p/4,

Dn~z! ;
z→`

expS 2
z2

4 D znF11OS 1z2D G
2

A2p

G~2n!
e2 inpexpS z24 D z2n21F11OS 1z2D G .

~A27!

In the common range of validity, the difference between t
two forms is negligibly small.

These asymptotic forms make the dependence uponl in
the various terms easy to see, and show how to keep con
of
on-
ve

-
-
r.

as
-

p-
of
r.
s-

of

s
In

r

e

sis-

tent orders inl. As befits our semiclassical expansion, we
only keep the lowest two orders inl in the exponentials of
the asymptotic wave functions. Using the form ofz given in
Eq. ~A21!,

expS 6
z2

4 D 5expF6
i

2 SS02l 12S0S11O~l! D G , ~A28!

zn5S 11 i

Al
D n

S0
nexpS 2

iV

2

S1
S0

1O~l!D , ~A29!

z2n215S 11 i

Al
D 2n21

S0
2n21expX1 iV

2

S1
S0

1O~l!C,
~A30!

11OS 1z2D5exp„O~l!…, ~A31!

K~x!5
1

AS8~x!
5

1

AS08~x!
exp„O~l!…. ~A32!

Now, we expand the various pieces for largeuxu. Using
Eq. ~A14!, and keeping only terms growing or constant in
uS0(x)u, one can easily show

S0
2~x!

2l
;

x→6`

6
I p~x,x0!

l
1

~6 ip21!V

4l
1

V

4l
lnS V

l D
2

V

2l
lnS 2uS0~x!u

Al
D . ~A33!

WhenuS0u@V and this expansion is valid, thenuzu@unu and
the Dn’s can be put in their asymptotic forms. Using Eq.
~A15!, one can see thatS0

2 is purely real for realx, as
claimed. The variousl terms were introduced to show where
\ ’s would appear if we took these equations out of dimen
sionless form. The expansion forS1 from Eq. ~A18! is
straightforward, and yields

S1~x! ;
x→6`

ih

2uS0u H lnFw1AL1w2

AL
G

7 lnS Al

AV
D 7 lnS 2uS0u

Al
D J . ~A34!

In this expansion,uS0u was treated asymptotically butuwu
was not.@At the MSW resonance point discussed in the bod
of this paper,w(xc)50 butS0(xc)Þ0 in general.# The nona-
diabatic region is, in general, far narrower than the regio
over which the matter angle is varying appreciably. The re
gion in whichS0 cannot be treated asymptotically is essen
tially the nonadiabatic region, whereasw cannot be treated
asymptotically until the matter angle is very close to eithe
p/2 or uv . We expandK(x) as
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K~x! ;
x→6`

S l

L D 1/4F L

4@L1w2~x!#G 1/4
3expF12 lnS 2uS0~x!u

Al
D G . ~A35!

The factors ofuS0(x)u remaining in these asymptotic expan
sions will all cancel.

For convenience in applying the initial conditions, it i
useful to write

I p~x,x0!5I p~xi ,x0!1I p~x,xi !, ~A36!

where the first term on the right is a complex constant a
the second is real and varying@cf. Eq. ~A15!#. After some
algebra, we find that the asymptotic expansion of the gene
solution in Eq.~A23! can be written as

C~x! ;
x→6`

F L

4@L1w2~x!#G 1/4
3HC6S w1AL1w2

AL
D 6h/2

expS 7
i

l
I p~x,xi !D

1D6S w1AL1w2

AL
D 7h/2

expS 6
i

l
I p~x,xi !D J .

~A37!

In the arguments of the exponentials, all terms ofO(l) or
that vanish asuxu→` have been dropped. The constant co
efficients are given by
-

-

d

ral

-

C15CexpS 2
i

l
ReI p~xi ,x0! D ~A1Be2 inp!, ~A38!

C25C expS 1
i

l
ReI p~xi ,x0! D ~Ae2 inp1B!, ~A39!

D15D expS 1
i

l
ReI p~xi ,x0! D ~Be2 inp!, ~A40!

D25D expS 2
i

l
ReI p~xi ,x0! D ~Ae2 inp!, ~A41!

and

C5S l

L D 1/4S V

l D 2 iV/4l1h/4S eip/4A2 D n

expS iV4l D , ~A42!

D52
A2p

G~2n! S l

L D 1/4S V

l D 1 iV/4l2h/4S e23ip/4

A2 D 2n21

3expS 2
iV

4l D . ~A43!

Note that the arguments to thex-dependent exponentials
above are purely imaginary sinceI p(x,xi) is real ~that
knowledge will be convenient when we take the squared
modulus of the wave function!.
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