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Pair creation of black holes during inflation
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Black holes came into existence together with the universe through the quantum process of pair creation in
the inflationary era. We present the instantons responsible for this process and calculate the pair creation rate
from the no boundary proposal for the wave function of the universe. We find that this proposal leads to
physically sensible results, which fit in with other descriptions of pair creation, while the tunneling proposal
makes unphysical predictions. We then describe how the pair-created black holes evolve during inflation. In the
classical solution, they grow with the horizon scale during the slow roll down of the inflaton field; this is shown
to correspond to the flux of field energy across the horizon according to the first law of black hole mechanics.
When quantum effects are taken into account, however, it is found that most black holes evaporate before the
end of inflation. Finally, we consider the pair creation of magnetically charged black holes, which cannot
evaporate. In standard Einstein-Maxwell theory we find that their number in the presently observable universe
is exponentially small. We speculate how this conclusion may change if dilatonic theories are applied.
[S0556-282(196)00222-9
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[. INTRODUCTION One usually thinks of black holes forming through gravi-
tational collapse, and so the inflationary era may seem an

It is generally assumed that the universe began with anlikely place to look for black holes, since matter will be
period of exponential expansion called inflation. This era ishurled apart by the rapid cosmological expansion. However,
characterized by the presence of an effective cosmologicdhere are good reasons to expect black holes to form through
constant\ . due to the vacuum energy of a scalar figldin ~ the quantum process of pair creation. We have already
generic models of chaotic inflatidii,2], the effective cos- pointed out the presence of large quantum fluctuations dur-
mological constant typically starts out large and then deing inflation. They lead to strong density perturbations and
creases slowly until inflation ends wheh s~0. Corre- thus potentially to spontaneous black hole formation. But
spondingly, these models predict cosmic densitysepond, and more fundamentally, it is clear that in orde_r to

perturbations to be proportional to the logarithm of the scalePair createany object, there must be present a force which
On scales up to the current Hubble rad}wﬁo%,v, this agrees pu!ls the pair apart. In the_case of a virtual electron-pqsnron
well with observations of near scale invariance. However, orPh: for example, the particles can only become real if they

1 are pulled apart by an external electric field. Otherwise, they
much larger length scales of ordeip,,exp(10), perturba- would just fall back together and annihilate. The same holds

tions are predicted to be on the order of 1. Of course, thigo, piack holes: examples in the literature include their pair
means that the perturbational treatment breaks down; but it iS;eation on a cosmic string], where they are pulled apart

an indication _that b_Iach holes may be created, and thus Waky the string tension; or the pair creation of magnetically
rants further investigation. charged black holes on the background of Melvin's Universe
An attempt to interpret this behavior was made by Linde[6], where the magnetic field prevents them from recollaps-
[3,4]. He noted that in the early stages of inflation, when theing. In our case, the black holes will be separated by the
strong density perturbations originate, the quantum fluctuarapid cosmological expansion due to the effective cosmo-
tions of the inflaton field are much larger than its classicalogical constant. So we see that this expansion, which we
decrease per Hubble time. He concluded that, therefore, theravely expected to prevent black holes from forming, actu-
would always be regions of the inflationary universe whereally provides just the background needed for their quantum
the field would grow, and so inflation would never end glo- pair creation.
bally (“eternal inflation”). However, this approach only al- Since inflation has ended, during the radiation and matter-
lows for fluctuations of the field. One should also considerdominated eras until the present time, the effective cosmo-
fluctuations which change the topology of space-time. Thidogical constant was nearly zero. Thus, the only time when
topology change corresponds to the formation of a pair oblack hole pair creation was possible in our universe was
black holes. The pair creation rate can be calculated usinduring the inflationary era, wheh was large. Moreover,
instanton methods, which are well suited to this nonperturthese black holes are unique since they can be so small that
bative problem. guantum effects on their evolution are important. Such tiny
black holes could not form from the gravitational collapse of
normal baryonic matter, because degeneracy pressure will
:Electronic address: R.Bousso@damtp.cam.ac.uk support white dwarfs or neutron stars below the Chan-
Electronic address: S.W.Hawking@damtp.cam.ac.uk drasekhar limiting mass.
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In the standard semiclassical treatment of pair creation, Il. NO BOUNDARY PROPOSAL

one finds two instantons: one for the background, and the

other for the objects to be created on the background. Frorﬁ]

the instanton actionls,g and | o

ation ratel:

We shall give a brief review; more comprehensive treat-
X ents can be found elsewhel#7]. According to the no
one calculates the pair cre- 1, ,nqary proposal, the quantum state of the universe is de-
fined by path integrals over Euclidean metrgs, on com-
pact manifolddM. From this it follows that the probability of
finding a three metrit;; on a spacelike surface is given
I'=exf = (lopj— o) ], (1.3) by a path integral over alj,, on M that agree withh;; on
3. If the space-time is simply connectédhich we shall

) . assumg the surface, will divide M into two partsM , and
where we neglect a prefactor. This prescription has been vely;  one can then factorize the probability of findihg

succes_,sfully qsed by a number of authprs recdrtiyld for into a product of two wave functionsV, and ¥ . W,
the pair creation of black holes on various backgrounds. (¥_) is given by a path integral over all metrigs,, on the

In this paper, however, we will obtain the pair creation half-manifoldM , (M _) which agree witth;; on the bound-
rate through a somewhat more fundamental, but equivale ry 3. In most situationsl , equals¥ . VJVe shall. there-

procedur:tar; smcetl WE hai\(/_e a cozmolgglcal backgrom;nd, Wdre, drop the suffixes and refer ® as the wave function of
can use né nartie-rawking no boundary Propc_[ﬂdﬂ or the universe. Under inclusion of matter fields, one arrives at
the wave function of the universe. We will describe the Cre+he prescription

ation of an inflationary universe by a de Sitter-type gravita-
tional instanton, which has the topology of a four-sphere
S*. In this picture, the universe starts out with the spatial size Wlhyj,Ps]= f D(9u,.P)exd —1(g,,,9)], (2.1
of one Hubble volume. After one Hubble time, its spatial

volume will have increased by a factor et~20. However, \here ;@) are the three-metric and matter fields on a
by the de Sitter no hair theorem, we can regard each of thesgacelike boundary, and the path integral is taken over all
20 Hubble volumes as having been nucleated independentipompact Euclidean four geometrigg, that haveS. as their
through gravitational instantons. With this interpretation, Weonly boundary and matter field configuratiods that are

are allowing for black hole pair creation, since some of the,agyjar on them| (9, ®) is their action. The gravitational
new Hubble volumes might have been created through a difyart of the action is given by

ferent type of instanton that has the topolog§§x S? and

thus represents a pair of black holes in de Sitter spag 1 a1 1 o
Using the framework of the no boundary propogaviewed le=~ 164 y d*xg"(R—2A) - gL&Xh K,
in Sec. I), one can assign probability measures to both in- * 2.2
stanton types. One can then estimate the fraction of inflation- '

ary Hubble volumes containing a pair of black holes by theyhereR is the Ricci scalarA is the cosmological constant,
fractionI” of the two probability measures. This is equivalentgnd K is the trace ofK;;, the second fundamental form of
to saying thatl” is the pair creation rate of black holes on a the poundang in the metricg.
de Sitter background. We will thus reproduce EhJ). The wave function? depends on the three mettig and

In Sec. 1ll A we follow this procedure using a simplified on the matter fields> onS. It does not, however, depend on
model of inflation, with a fixed cosmological constant, be-time explicitly, because there is no invariant meaning to time
fore going to a more realistic model in Sec. Il B. In Sec. in cosmology. Its independence of time is expressed by the
Il C we show that the usual description of pair creationfact that it obeys the Wheeler-DeWitt equation. We shall not
arises naturally from the no boundary proposal, and(Ed)  y to solve the Wheeler-DeWitt equation directly, but we

is recovered. We find that Planck size black holes can bghg| estimate¥ from a saddle-point approximation to the
created in abundance in the early stages of inflation. Largegath integral.

black holes, which would form near the end of inflation, are’ \ye give here only a brief summary of this semiclassical

exponentially suppressed. The tunneling propd4sl, on  method: the procedure will become clear when we follow it
the other hand, predicts a catastrophic instability of de Slttefhrough in the following section. We are interested in two
space and is unable to reproduce Egl). _ types of inflationary universes: one with a pair of black
_We then investigate the evolution of black holes in anpgjes, and the other without. They are characterized by
inflationary universe. In Sec. IV their classical growth is spacelike sections of different topology. For each of these
shown to correspond to energy-momentum flux across thgyo universes, we have to find a classical Euclidean solution
black hole horizon. Taking quantum effects into account, Wgq the Einstein equation&@n instantopy which can be ana-
find in Sec. V that the number of neutral black holes thaytica|ly continued to match a boundaBy of the appropriate
survive into the radiation era is exponentially small. On thetopology. We then calculate the Euclidean actionsf the

other hand, black holes with a magnetic charge can also bgq types of solutions. Semiclassically, it follows from Eq.
pair created during inflation. They cannot decay, becausgz_l) that the wave function is given by

magnetic charge is topologically conserved. Thus, they sur-

vive and should still be around today. In Sec. VI, however, Y=exp —1), (2.3

we show that such black holes would be too rare to be found

in the observable universe. We summarize our results in Seevhere we neglect a prefactor. We can thus assign a probabil-
VII. We use units in whichmp=A=c=k=1. ity measure to each type of universe:
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P=|¥|?=exp— 2179, (2.9
boundary &
where the superscript Re denotes the real part. As explained
in the introduction, the ratio of the two probability measures

gives the rate of black hole pair creation on an inflationary
background.

Lorentzian
section

Ill. CREATION OF NEUTRAL BLACK HOLES

The solutions presented in this section are discussed much
more rigorously in an earlier pap¢t8]. We shall assume
spherical symmetry. Before we introduce a more realistic
inflationary model, it is helpful to consider a simpler situa-
tion with a fixed positive cosmological constaft but no
matter fields. We can then generalize quite easily to the case
where an effective cosmological “constant” arises from a

scalar field. Euclidean section

A. Fixed cosmological constant FIG. 1. The creation of a de Sitter universe. The lower region is

1. The de Sitter solution half of a Euclidean four-sphere, embedded in five-dimensional Eu-

. . . _ clidean flat space. The upper region is a Lorentzian four-
First, we consider the case without black holes: a homopynerholoid, embedded in five-dimensional Minkowski space.

geneous isotropic universe. Sinde>0, its spacelike sec-

tions will simply be round three-spheres. The wave function  The Lorentzian part of the metric will contribute a purely
is given by a path integral over all metrics on a four manifoldimaginary term to the action. This will affect the phase of the
M. bounded by a round three-spheXeof radiusas . The  wave function but not its amplitude. The real part of the

corresponding saddle-point solution is the de Sitter spacegction of this complex saddle-point metric will be the action
time. Its Euclidean metric is that of a round four-sphere ofof the half Euclidean four-sphere:

radius+/3/A:

37
Re_ _
ds?=d72+a(7)2dO32, (3.1) las=— 57 (3.9

where 7 is Euclidean timed(Q3 is the metric on the round Thus, the magnitude of the wave function will still be
three-sphere of unit radius, and e3™2A | corresponding to the probability measure

3
a(r)= \/%Sin\/gr. (3.2 Pas= eXF{T '

2. The Schwarzschildde Sitter solution

(3.5

For ay =0, the saddle-point metric will only be a single
point. For 0<as < /3/A it will be part of the Euclidean four- We turn to the case of a universe containing a pair of
sphere, and wheas = /3/A, the saddle-point metric will be black holes. Now, the cross sectios have topology
half the four-sphere. Wheas>\3/A there will be no real S°XS'. Generally, the radius of th& varies along thes'.
Euclidean metric which is a solution of the field equationsThis corresponds to the fact that the radius of a black hole
with the given boundary conditions. However, we can regardmmersed in de Sitter space can have any value between zero
Eqg. (3.2 as a function on the complex plane. On a @and the radius of the cosmological horlzon._ The mlnlmal_
line parallel to the imaginaryr axis defined by two-sphere corresponds to the blqck hole'horlzon, the maxi-
Re= [(3IA)(w/2), we have ma_ll two-sp_here to the cos_mologlcal _horlzon. The _saddle-

point solution corresponding to this topology is the
3 A Schwarzschild—de Sitter universe. However, the Euclidean
a(7)|re=(3/AN)(m/2)= \[Kcosh\gr'm_ (3.3)  section of this space-time typically has a conical singularity
at one of its two horizons and thus does not represent a
. : . . . ) regular instanton. This is discussed in detail in the Appendix.
Th's_ describes a Lorentyan de.Sltter hyperboloid, with There we show that the only regular Euclidean solution is the
serving as a Lore'ntZ|an tl'me yarlable. One.can thus_con;trugegenerate case where the black hole has the maximum pos-
a complex solution, which is the analytical continuationgip|e gjze |t is also known as the Nariai solution and given

of thg Euclidean fqur-sphere metric. It is obtainethje byby the topological product of two round two-spheres:
choosing a contour in the complex plane from 0 tor

=(3/A)(w/2) and then parallel to the imaginary axis. ds?=dr?+a(7)2dx%+b(7)2dQ?2, (3.6)
One can regard this complex solution as half the Euclidean

four-sphere joined to half of the Lorentzian de Sitter hyper-where x is identified with period 2, dQ5=d6?
boloid (Fig. 1). + sirféde?, and
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1 1 and we shall do so for simplicity. Fab>1 the potential acts
a(r)= Ksin\/Kr, b(r)=/y=const. (3.7 like an effective cosmological constant

In this case the radiub of the S? is constant in thes! Aeii( $)=87V(¢). (3.12
direction. The black hole and the cosmological horizon have One proceeds in complete analogy to the fixed cosmologi-
equal radius A and no conical singularities are present.cal constant case. For small three-geometries anell,
Thus, by requiring the smoothness of the Euclidean solutiorthere will be real Euclidean metrics v, with ¢ almost
the instanton approach not only tells us about probabilityconstant. If the three-geometries are rather larger, there will,
measures, but also about the size of the black hole. Thergain, not be any real Euclidean saddle-point metrics. There
will be no saddle-point solution unless we specify will, however, be complex saddle points. These can, again,
bE:]./\/X. We are then only free to choose the radiygsof  be regarded as a Euclidean solution joined to a Lorentzian
the one-sphere ob. For this variable, the situation is similar solution, although neither the Euclidean nor Lorentzian met-
to the de Sitter case. There will be real Euclidean saddlerics will be exactly real. Apart from this subtlety, which is
point metrics orM , for ay<1/\/A. For largeras there will  dealt with in Ref[18], the saddle-point solutions are similar
again be no Euclidean saddle point, but we find that to those for a fixed cosmological constant, with the time-

dependentA . replacingA. The rad;yﬂ)f the pair-created
1 black holes will now be given by YA As before, the
a(7)| re= (LIA)(m/2)= \/;COSWXT””- (3.8)  magnitude of the wave function comes from the real part of

the action, which is determined by the Euclidean part of the

This corresponds to the Lorentzian section of the degeneraf8etric. This real part will be
Schwarzschild—de Sitter space-time, in which tBe ex-

pands ra_pidly, whi_le the two—spheljm_d, therefore, the black |§3€‘= - 3—7T (3.13
hole radiu$ remains constant. Again, we can construct a 2Aeii( bo)
complex saddle point, which can be regarded as half a Eu- h ithout black hol d
clideans?x S? joined to half of the Lorentzian solution. The ' (€ case without black holes, an
real part of the action will be the action of the half of a -
EuclideanS?x S2: 18 = 31
=38 R (90 314
|§§S= - I. (3.9 in the case with a black hole pair. Hergg is the value of
A ¢ in the initial Euclidean region. Thus, the pair creation rate
. . . is given by
The corresponding probability measure is
Psy g T
. [=_>XS :exp[_—} (3.15
PSdS=EXF<T . (3.10 P Aeii( bo)

We divide this by the probability measuf8.5) for a uni- C. Discussion

verse without black holes to obtain the pair creation rate of Let us interpret this result. Since<Q\.z=<1, we get
black holes in de Sitter space: I'<1 and so black hole pair creation is suppressed. In the
early stages of inflation, wheA .4~1, the suppression is
Psds T weak, and black holes will be plentifully produced. How-
sz_ds = ex;< - K) ' (3.11 ever, those black holes will be very small, with a mass on the
order of the Planck mass. Larger black holes, corresponding
Thus, the probability for pair creation is very low, unless {0 lower values ofA at later stages of inflation, are expo-
A is close to the Planck valud,=1. nentially suppressed. We shall see in the following two sec-
tions that the small black holes typically evaporate immedi-
ately, while sufficiently large ones grow with the horizon and
survive long after inflation end&hat is, long in early uni-
Of course, the real universe does not have a cosmologicakerse termps
constant of order the Planck value. However, in inflationary We now understand how the standard prescription for pair
cosmology it is assumed that the universe starts out with areation, Eq(1.1), arises from this proposal: by E¢R.4),
very large effective cosmological constant, which arises from b
the potentialV of a scalar field¢. The exact form of the _e2xst _/oRe 4R
potential is not critical. So for simplicity, we chos&to be = Pss =ex— (2l g9 215)) (316
the potential of a field with mags, but the results would be
similar for a A ¢* potential. To account for the observed wherelR® denotes the real part of the Euclidean action of a
fluctuations in the microwave backgroufitd], m has to be ~ complex saddle-point solution. But we have seen that this is
on the order of 105 to 1@6 [20] The wave function? will equal to half of the action of the Complete Euclidean solu-
now depend on the three mettig; and the value of on tion. ThUS,IoijZIEzeXSl andlbg:2|§3ey and we recover Eq.
3. By a gauge choice one can taketo be constant oiX, (1.7.

B. Effective cosmological constant
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The prescription for the wave function of the universe has rp=r.=b(t). 4.7
long been one of the central, and arguably one of the most
disputed, issues in quantum cosmolddgy,21]. According  According to Eq.(4.5) they will expand slowly together dur-
to Vilenkin's tunneling proposal16], ¥ is given bye™! ing inflation as the scalar field rolls down to the minimum of
rather than bye™'. This choice of sign is inconsistent with the potentialV and the effective cosmological constant de-
Eq.(1.1), as it leads to the inverse result for the pair creationcreases. At the end of inflation they will be approximately
rate: T'tp=1M\gp. In our case, we would get equal tom ™.
I'rp=expH m/Aq). Thus, black hole pair creation would be ~ One can think of this increase of the horizons as a classi-
enhanced, rather than suppressed. de Sitter space would @@ effect, caused by a flow of energy momentum across
catastrophically unstable to the formation of black holesthem. If the scalar field were constant, its energy-momentum
Since the radius of the black holes is given by/ALg, large  tensor would act exactly such as a cosmological constant.
black holes would be even more likely than small ones.The flow of energy momentum across the horizon would be
Clearly, the tunneling proposal cannot be maintained. On th&ero. However, the scalar field is not constant but is rolling
other hand, Eq(3.15, which was obtained from the no downhill in the potential to the minimum a$=0. This
boundary proposal, is physically very reasonable. It allowgneans that there is an energy-momentum flow across the
topological fluctuations near the Planckian regime, but suphorizon equal to
presses the formation of large black holes at low energies.

Thus, the consideration of the cosmological pair production M=AT |a|b:i (4.9
of black holes lends strong support to the no boundary pro- ab ¢’ '
posal.

where A=47b? is the horizon areaJ,, is the energy-

IV. CLASSICAL EVOLUTION momentum tensor for the massive scalar field, given by
We shall now consider neutral black holes created at any 1 1 . 2,2

value ¢o>1 of the scalar field and analyze the different ab= 7, 0abdod~ g Gan(depd P+ m74%), (4.9

effects on their evolution. Before we take quantum effects . _

into account, we shall display the classical solution for aand|® is a null vector tangent to the horizon:

Universe containing a pair of black holes. We shall demon-

strate explicitly that it behaves according to the first law of |a:i+ } i (4.10

black hole mechanics. gt adx’ '

With a rescaled inflaton potential ) ]
One would expect the horizons to respond to this flow of

1, ., energy across them by an increase in area according to the
V($)=g-—m"¢, (4. first law of black hole mechanid22]:
the effective cosmological constant will be M= LA (4.11
87 ' |
Aer=m? 2. (4.2)

wherex is the surface gravity of the horizon. We will show
In the previous section we learned that the black hole radiuthat this equation is indeed satisfied if the horizon growth is
remains constant, atJA, in the Lorentzian regime. But this given by Eq.(4.5).
was for the simple model with fixed. The effective cos- The values ofx for general Schwarzschild—de Sitter so-
mological constant in Eq(.2) is slightly time dependent. lutions are derived in the Appendix. Because of the slow
Thus, we might expect the black hole size to change duringhange of the effective cosmological constant we can ap-

inflation. proximate the surface gravity at any tirhén our model by
Indeed, form/(2meo) <t<(¢e)/m, approximate Lorent- the surface gravity in the model with a fixed cosmological
zian solutions are given by 8] constantA = A(t). In the degenerate case which we are
considering nowx will thus be given by
()= po—mt, (4.3
k= \Agr=Ma. (4.12
1 t
a(t)= ——cos mf o(t')dt’ |, (4.4  Equation(4.11) becomes
Mey 0
me¢ d ( 4 ) 1 413
1 ir-yibrrd lewwary d Ealery B! .
b(t)= —— 4. 8w dt\m¢ ¢
(0= a0 4.5
which agrees with Eq(4.8).
ds’=—dt?+a(t)?dx?+b(t)2dQ3. (4.6) It should be pointed out that this calculation holds not

only for the black hole horizon, but also for the cosmological
Since we are dealing with a degenerate solution, the radliorizon. Moreover, an analogous calculation is possible for
r, andr. of the black hole and cosmological horizons arethe cosmological horizon in an ordinary inflationary Uni-
equal: verse without black holes. Thus, in hindsight we understand
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the slow growth of the cosmological horizon during inflation survive until the end of inflation. They would continue to

as a manifestation of the first law of black hole mechanics.grow slowly during the radiation era, until the temperature of
the radiation falls below that of the black holes. They will

V. QUANTUM EVOLUTION then start to evaporate. By E.15, however, such black
holes will be suppressed by a factor of
So far we have been neglecting the quantum properties of

the inflationary space-time presented above. It is well known I'=exp—wm™'). (5.2

that in a Schwarzschild—de Sitter universe, radiation is emit- ) _ .

ted both by the black hole and by the cosmological horizon ©On€ must, therefore, investigate the possibility that the

[23]. To treat this properly, one should include the one-loopsma” black holes, which can be cregted in at_)undance, start

effective action of all the low mass fields in the metric OUt SO nearly degenerate that they will grow with the cosmo-

g.,- By using a supersymmetric theory one might avoid'OQ'f,g" horizon until they have reached the “safe” size of

divergences in the one-loop term, but it would still be im-M - We need to determine how nearly equal the horizon

possibly difficult to calculate in any but very simple metrics. SIZ€S have to be initially so that the black hole survives until

Instead, we shall use an approximation in which the blackn€ end of inflation.

hole and cosmological horizons radiate thermally with tem- !f we take the thermal radiation into account, the flow
peratures across the horizons now consists of two parts: the classical

term due to the energy flow of the scalar field, as well as the
net radiation energy transfer, given by Stefan’s law. Apply-

Tb=ﬁ, Tc=ﬁ. (5.1) ing the first law of black hole mechanics to each horizon, we
2 2 get
This quantum effect must also be included in the calcula- Kp - b2 4 .
tion of the energy flow across the horizons. For the saddle- g, 0= MTp— (A Ty— 0AcTe), (5.3

point metric, Eq.(4.6), it has no consequence: in the Nariai

solution the black hole and cosmological horizons have the ‘. .

same radius and surface gravity. Thus, they radiate at the —CAC: m2r§+(aAbTﬁ—aAcT‘C‘), (5.9

same rate. That means they will be in thermal equilibrium. 8w

The black holes will not evaporate, because they will b here o=

absorbing as much as they radiate. Instead, their evolutio

will be governed by the classical growth described above.
However, the Nariai metric is an idealizatio(Strictly

2/60 is the Stefan-Boltzmann constant. Using
Eq. (5.1), we obtain two coupled differential equations for
the horizon radii:

speaking, it does not even contain a black hole, but rather ) 1 1

two acceleration horizonsBecause of quantum fluctuations rp=—1o| m?r3— m(rﬁxﬁ— r2xd)|, (5.5
there will be small deviations from the saddle-point solution, Kol

corresponding to a Schwarzschild—de Sitter space-time 1

which is not quite degenerate. The radiusf the two-sphere M= m2r§+ (rﬁxg‘— rgxﬁ) ) (5.6)
will not be exactly constant along th®', but will have a Kele 240m

maximumr . and a minimunt, which we identify with the
cosmological and the black hole horizons, respectiv@lie
other black hole horizon of the pair will lie beyond the cos-
mological horizon and will not be visible in our universe.
Since the black hole horizon is slightly smaller, it will have a
higher temperature than that of the cosmological horizon
Therefore, the black hole will radiate more than what it re-
ceives. There will thus be a net transfer of energy from the () =b(t)[1—et)], rdt)=bt)[1+et)], (5.7
smaller horizon to the larger one. This will cause the larger

horizon to grow faster, and the smaller one to shrink until thewith ey<1. The surface gravities can also be expressed in

black hole vanishes completely. We show below that blackerms ofe (see Appendix to first order they are given by
holes can still grow with the cosmological horizon until the

end of inflation, if they are either created sufficiently large, 2
or start out very nearly degenerate. However, we shall see ALY YY) 1- §€(t)
that none of these conditions is easily satisfied.

Black holes created during the final stages of inflation willWe assume thdb(t) behaves as in Eq4.5 for the Nariai
survive until the end of inflation simply because they will be solution as long a%(t)<1. Equations(5.5 and (5.6) are
relatively large and cold. One can estimate the minimum sizéhen identically satisfied to zeroth order i In the first
they must have by treating them as evaporating Schwarzsrder, they give an evolution equation fer
child black holes, which have a lifetime on the order of
M3, whereM is the mass at which the black hole is created. - (2, 1 1
In terms of the value of the scalar field at creation, €e=|zMm b+ﬁ b3 €
M~by=(m¢y) 1. Inflation ends after a time ofpy/m.

Therefore, black holes created éay<m~Y? will certainly ~ This equation can be integrated to give

The exact functional relation between the surface gravi-
ties and the horizon radii is generally nontrivial. However,
the above evolution equations can be simplified if one takes
into account that a nucleated black hole pair must be very
nearly degenerate if it is to survive until the end of inflation.
We can, therefore, write

l+2 t
§6()

. (6.8

(5.9
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23 o \? inflation, though in smaller numbers than neutral black holes.
e(t)= eo<¢7) exp{ mm2¢g[l_ ((ﬁT) H However, once created, they can disappear only if they meet
0 0 (5.10 a black hole with the opposite charge, which is unlikely. So
' they should still be around today.
For the unsuppressed, Planck size black holes we have We shall estimate the number of primordial charged black
do=m"1. If they grow with the horizon, they will reach the holes present in the observable universe. For the purpose of

safe size, which corresponds ¢#o=m~*?, after a time calculating the pair creation rate during inflation, we can use
72 " the solutions for a fixed cosmological constant, sidcg
tsare=M “(1—m™). (5.1 changes slowly. There exists a three-parameter family of

. ) ) o Lorentzian charged Schwarzschild—de Sitter solutions. They
If a Planck size black hole is to have survived until this time, 5, usually called Reissner—Nordstrade Sitter solutions

i.e., if €(tsard <1, then the initial difference in horizon sizes 44 |abeled by the chargeand the “mass”u of the black

may not have been larger than hole, and by the cosmological constant
Eg]ax:mll3ex[{_ m—2 (1—m?)|. (5.12 ds?=—U(r)dt?+U(r) *dré+r2dQ2, 6.2
720w
where
The probability P(ey< eg'™) that the two horizons start )
out so nearly equal obviously depends on the distribution of U(r)=1— 2_:“+ qQ EArZ 6.3
the initial sizes of the two horizons. The semiclassical treat- r re 3 ' '

ment of the quantum fluctuations which cause the geometrgv . ]

to differ from the degenerate case, for general values of th#/e are interested in the cases where the black holes are
effective cosmological constant, is an interesting problem bynagnetically, rather than electrically, charged. Then, the
itself, and beyond the scope of this paper. We hope to returfylaxwell field is given by

to it in a forthcoming paper on complex solutions in quantum o

cosmology. However, here we are working at the Planck F=qsingdé/\d¢. 6.4
scale, so that the semiclassical approximation will break |, 4 appropriate region of the parameter spagehas
dhow'n _qn?/w_ay. It fthﬁreLorg, seems reasonable to as?ljme Afee positive roots, which we denote, in ascending order, by
the initial sizes of the horizons are distributed roughly uni-, . "5n4r and interpret as the inner and outer black hole

formly between zero and a few Planck lengths. This meanfq i;ongs and the cosmological horizon. They can serve as an
that alternative parametrization of the solutions. For general val-
-2 ues ofq, u, andA the metric(6.2) has no regular Euclidean

). (5.13 section. The black holes which can be pair created through
regular instantons lie on three intersecting hypersurfaces in
the parameter spag¢@4], as seen in Fig. 2. They are called

i ~ —6 I i -
oo ol LA oot o e . GO helkewarm and hcharged Nariaoltons
P ' y the cold case, the instanton is made regular by setting

create Planck size black holes which would grow to the safe —r,, which corresponds to an extremal black hole. The

size than just to create the large black holes. Both processes
J . 9 : P Skewarm hypersurface is characterized by the condition
however, are exponentially suppressed. - .
g= um. It corresponds to a nonextremal black hole which has
the same surface gravity and temperature as the cosmological
horizon. This property is shared by the charged Nariai solu-

Although, nearly all neutral black holes will evaporate tion, which hasr,=r.. For q=0, its mass is given by
during inflation, those that have a magnetic charge will note=1/(3yA) and it coincides with the neutral Nariai Uni-
be able to because there are no magnetically charged paferse we discussed earlier. For larger charge and mass, it is
ticles for them to radiate. They can only evaporate down tctill the direct product of two round two-spheres; however,
the minimum mass necessary to support their magnetiwith different radii. The cold, lukewarm, and de Sitter solu-
charge. Let us, therefore, introduce a Maxwell term in thetions all coincide forqg=ux=0. The largest possible mass
action and reexamine the pair creation of primordial blackand charge for the lukewarm solution ds= u=3/(43A),
holes: where it coincides with the charged Nariai solution. The
largest possible mass and charge for any regular instanton is
attained at the point where the charged Nariai and the cold
hypersurfaces meet. Thistracold case hasj=1/(2y/A) and
w=2/(32A). It admits two distinct solutions of different
actions. All of these solutions are presented and discussed in
detail in the comprehensive paper by Mann and Rd43,
where the actions are calculated as well. We shall now apply
The S?x S? bubbles in space-time foam can now carry mag-these results in the context of inflation.
netic flux. The action of the Maxwell field will reduce their Let us consider an inflationary scenario in which the ef-
probability with respect to neutral bubbles. Thus, magnetifective cosmological constamt.4=m¢ starts out near the
cally charged black holes will also be pair created duringPlanck value and then decreases slowly. As in the neutral

m
P(eg<e€) ) ~el ™~ exr{ ~ 7o0m

VI. CHARGED BLACK HOLES

I= d*xg"AR—2A—F , F*")

Tom ),

1
~ & Ld3xhl’2K. (6.2
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FIG. 3. The action of the different types of Reissner—
Nordstran—de Sitter instantons, as a fraction of the action of the de
Sitter instanton] 4= — 37/ A. Note that the point U does not cor-
respond to an instanton solution in this diagram; the two ultracold
instantons are labeled by;land U,. E is the instanton with the
righest pair creation rate during inflation.

FIG. 2. The hypersurfaces in the parameter space of th
Reissner—Nordstro—de Sitter solution which admit regular instan-
tons. The plot is of the dimensionless quantitig\ vs g?A. The
points N and D represent the uncharged Nariai and de Sitter sol
tions. The curve DC corresponds to the lukewarm instantons. At
it meets the curve NU of charged Nariai instantons. The cold in-

stantons lie on the curve CU; the point U represents the two uItrapy Eq.(1.1). As A¢q decreases further, the pair creation rate

cold solutions starts to decrease and soon becomes vastly suppressed. For

case, one would expect the creation of charged black holes to
be least suppressed for large i.e., at the earliest stage of
inflation. However, unlike the neutral case, a magnetically
charged black hole cannot be arbitrarily small since it musthe lukewarm instanton has the lowest action,
carry at least one unit of magnetic charge:

! 3T o — 6.9
1 = . .
6.5 luke Aot T al o

QOZZ_eO’

3
O<Aeﬁ<AC=Za, (6.9

It will, therefore, dominate the black hole production until
whereey= Ja is the unit of electric charge, ang~1/137 is  the end of inflation.
the fine structure constant. In the following we shall only If we ask how many charged black holes were produced
consider black holes with=qy, since they are the first to be during the entire inflationary era, we have to take into ac-
created, and since more highly charged black holes are exount that the density of the black holes pair created at the
ponentially suppressed relative to them. We see from Fig. garly stages of inflation will be reduced by the subsequent
that pair creation first becomes possible through the ultracoléhflationary expansion. As a consequence, most of the
instanton Y, when A.; has decreased to the value of charged primordial black holes in our universe were pro-
AY=1/(4g3) = a. Since this solution has relatively high ac- duced near the end of inflation, as we shall show here. The
tion, however, black hole production becomes more efficienhumber of such black holes per Hubble volume pair created
at a slightly later time. It will then occur mainly through the during one Hubble time wheth= ¢, is given by
charged Nariai instanton, which has lower action than the

cold black hole. When I'(ppo)=exfd — (lue—las)]
Ae=AF=(4\3-6)a, (6.6) —exg — \ﬁ 7
ff ( @ ex M) (6.10

the pair creation rate reaches its peak and is given by
At the end of inflation, these black holes have a number

T=exg —(IE=149] density per Hubble volume of
(2+\3)m 3
= exp[ - (6.7) dend bpd) =T (bp0) ¢Scexp[ - §¢§4, (6.1
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where the cubic factor is due to the growth of the Hubblefound that Planck size black holes are plentifully produced,
radius and the exponential factor reflects the inflationary exbut at later stages in inflation, when the black holes would be
pansion of space. larger, the pair creation rate is exponentially suppressed.
Since we are dealing with exponential suppressions, pracfhis fits in with the usual instanton prescriptions for pair
tically all primordial magnetically charged black holes in the creation. The tunneling proposal, on the other hand, fails to
Universe were created at the value ¢f. which makes make physically reasonable predictions. The consideration of
deng maximal. This occurs for black hole pair creation thus lends support to the no bound-
16 ary proposal. . _
max ™ We analyzed the classical and quantum evolution of neu-
bpe ”(3am2) ' (6.12 tral primordial black holes. Classically, the black hole hori-
zon and the cosmological horizon have the same area and
so that the approximate total number per Hubble volume atemperature. The two horizons grow slowly during inflation.

the end of inflation is given by We showed that this is due to the classical flow of scalar field
energy across them, according to the first law of black hole
Deng™ dend ¢pmcax) mechanics. Quantum effects, however, prevent the geometry
5 12 2 13 from being perfectly degenerate, causing the black hole to be
~ Tr_) exr{ _ (i) } (6.13  hotter than the cosmological horizon. As a consequence,
3am? 16am? practically all neutral black holes evaporate before the end of
inflation.
We take the values of the Hubble radius to be Finally, we turned to magnetically charged black holes,

which can also be pair created during inflation. Even if they
have only one unit of charge, they cannot evaporate com-
pletely and would still exist today. The pair creation rate is

é?:ﬁgﬁtgﬁéy nita':th eer 32ﬂ s(i)tf mgﬁg():t’ tz;]tether etg:;r?t (::megu?:];?'highest during the early stages of inflation, when the effec-
Y, P ' Sive cosmological constant is still relatively large. Black

fore, since the end of inflation the density has been reduceiglioles created at that time, however, will be diluted by the

91— 312 .
by a factor of 10 "m and the Hubble volume has in inflationary expansion. Most of the charged primordial black

7~n3 H
grbetgisne(tjhgﬁulgbn;r'o\:verimg:g?all)ll tﬁggf(t%lglse?f tLaeCtorLssécr)\tl holes were, therefore, created near the end of the inflationary
P P yera, where they would not be diluted as strongly. However,

observed universe: in Einstein-Maxwell theory they are so heavily suppressed

Homm L, Hol=10% H L=10° (6.14

w2m) 12 92 \U3 that we must conclude that there are no primordial black
D how™ 1085<_ exp{ - (—2> } (6.15  holes in the observable universe. It will, therefore, be inter-
Sa 16am esting to examine inflationary models that include a dilaton

field. One would expect to obtain a much higher number of

With «=1/137 andm=10 °, the exponent will be on the rimordial black holes, which may even allow us to con-
order of—1C°. Thus, in ordinary Einstein-Maxwell theory, it prim ' y
strain some of these models.

is very unlikely that the observed universe contains even onée
magnetic black hole.

However, in theories with a dilaton both the value of the
electric charge and the effective Newton’s constant can vary
with time. If both were much higher in the past, the effective  We thank Gary Gibbons and Simon Ross for many inter-
value ofam? would not be so small and the present numberesting discussions. R.B. gratefully acknowledges financial
of magnetic black holes could be much higher. We are cursupport from EPSRC, St. John’s College, and the Studien-
rently working on this question. stiftung des deutschen Volkes.
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VIl. SUMMARY AND CONCLUSIONS

. . . APPENDIX
Since the quantum pair creation of black holes can be

investigated semiclassically using instanton methods, it has In this Appendix we show how to calculate the surface
been widely used as a theoretical laboratory to obtairgravities of the two horizons in the Schwarzschild—de Sitter
glimpses at quantum gravity. The inflationary era is the onlysolution. This space-time possesses a regular Euclidean sec-
time when we can reasonably expect the effect to have takeifion only in the degenerat@Nariai) case, where the two ho-
place in our own universe. We chose to work in a veryrizons have the same radius. Neutral black holes pair created
simple model of chaotic inflation, which allowed us to ex- during inflation will, therefore, start out nearly degenerate.
pose quite clearly all the important qualitative features ofWe present a suitable coordinate transformation for the
black hole pair creation. The inflationary universe was apnearly degenerate metric, introducing a small parameter
proximated as a de Sitter solution with a slowly varying which parametrizes the deviation from degeneracy. The sur-
cosmological constant. Similarly, neutral black holes pro-face gravities and Euclidean action are calculated to second
duced during inflation were described by a degeneraterder in e, yielding a negative mode in the action. We ex-
Schwarzschild—de Sitter solution. Their pair creation rateplain why our results differ from those obtained in Réfb)].

was estimated from the no boundary proposal, by comparing The Lorentzian Schwarzschild—de Sitter solution has the
the probability measures assigned to the two solutions. Wenetric
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ds?=—U(r)dt?+U(r) " *dr?+r2dQ3, (A1) 79=27y_ Ik. (A9)

where Usually, only one of the two horizons can be made regu-
lar in this way, since their surface gravities will be different.
They will be equal only foru=(1/3)A Y2, when the two
roots ofU coincide. In this degenerate case one can remove
both conical singularities simultaneously and obtain a regular
For 0<u<(1/3)A~%2, U has two positive roots, andr., instanton. As was first pointed out ifL5], the fact that
corresponding to the black hole and the cosmological horir =r_ does not mean that the Euclidean region shrinks to
zon. The space-time admits a timelike Killing vector field zero. The coordinate syste(A8) clearly becomes inappro-
priate whenu approaches its upper limit: the range iof
K=y, 9 (A3) becomes arbitrarily narrow while the metric coefficient
at’ U(r) ! grows without bound. One must, therefore, perform

. o ~_an appropriate coordinate transformation. If we write
where vy, is a normalization constant. The surface gravities

2
U(r)=1—T——Ar2. (A2)

Ky, and k¢, given by 9u?A=1-3€%, O0=e<l1, (A10)
- (K2V 1K) (K°V KP) ]2 Al the degenerate case correspondste0. We then define
Koo~ |rrn —KZ2 ' (A4 hew time and radial coordinatesand y by
—Ib,c
depend on the choice aof;. To obtain the correct value for 1 1
. . - . r=——|1— =€ U,
the surface gravity, one must normalize the Killing vector in eJA 2

the right way. In the Schwarzschild cask€0) the natural

choice is to havek?=—1 at infinity; this corresponds to 1

v.=1 for the standard Schwarzschild metric. However, in r=—

our case there is no infinity, and it would be a mistake to set VA
=1. Instead, one needs to find the radiygor which the

orb|t of the Killing vector coincides with the geodesic going With this choice ofy, we havey,= A to second order in

throughr, at constant angular variables. This is the two-€, so that the Killing vector

sphere at which the effects of the cosmological expansion

and the black hole attraction balance out exactly. An ob- Ka— \/Ki

server atr 4 will need no acceleration to stay there, just like

an observer at infinity in the Schwarzschild case. One must

normalize the Killing vector on this “geodesic orbit.” Note has unit length on the geodesic orbit. We have chosen the

that this is a general prescription which will also give the new radial coordinatg so thatU vanishes to fourth order in

correct result in the Schwarzschild limit. It is straightforward € for cosy==1. This is necessary sind¢ contains no zero

(A11)

1. 4
1+ ecosy— g€2+ §e3cos>( .

(A12)

to show that and first order terms and we intend to calculate all quantities
to second nontrivial order ia:
3,LL 1/3
ng(f) : (AS) 2 2 8
U(x)=sirfye? 1—§6COS)(+§€ZCOSZX+ 562
so that (A13)
=U(rgy) 2=[1—(9Au?) ™3~ 12 (A6)  Thus, the black hole horizon correspondsyte 7 and the
) ) cosmological horizon tgy=0.
Equation(A4) then yields The new metric obtained from the coordinate transforma-
tions (A11) is
1 ouU (A7)
Kbe™ S | 5
' ar 2 2 1
2VU(rg) "=be ds?= (1—§ECO$(+—6 Cos2x——e )smzxdzp

In order to consider the pair production of black holes, we
need to find a Euclidean instanton which can be analytically —
continued to the metri€Al). The obvious ansatz is A

2 2
3€CO0 g€ cos’-)()dx

ds?=U(r)d72+U(r) " tdr2+r2dQ2, (A8)

1
- 1+2€CO$(+62C052X—§EZ dQ%. (A14)

TR

where is Euclidean time. Again, one can define a constant

v, which will normalize the timelike Killing vector on the In the degenerate case=0, this is the Nariai metric: the

geodesic orbit. In order to avoid a conical singularity at atopological product of two round two-spheres, each of radius

horizon, one needs to identify with an appropriate period 1/JA. There are no conical singularities if the Euclidean
'd which is related to the surface gravity on the horizon bytime ¢ is identified with a period . For generak, the two
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horizons cannot be made regular simultaneously; it is cleahnorizons. Of course, all of these quantities depend on the
from a geometrical standpoint thétmust be identified with  value we choose fog'. Obvious options are: to leave it at
period 24 even in the nondegenerate case, thus introducing a deficit
J 1 angle on the cosmological horizon and an excess angle at the
lﬂgb:ZW\/g_MXom(&—@ ) black h_ole horizon, or as an aItemanve, to make one of thg
X X=0.m two horizons regular, thereby causing a larger excess or defi-
cit at the other horizon. The most interesting of these cases is
(A15) the one in which we choose a regular cosmological horizon.
In this case, the metriCA14) will lie on the interpolation
between the Euclidean Nariai and de Sitter universes, since
to prevent a conical singularity at the cosmological or blackthe |atter has only a cosmological horizon, which ought to be
hole horizon, respectively. regular. The Euclidean actions for these universes are
One can calculate the surface gravitiesand «, using ~ —27/A for the Nariai, and—3#/A for the de Sitter. Since
the Euclidean version of EqA4) and the Killing vector no intermediate solution is known, one would expect the
(Al12); equivalently, one could use the relation action to decrease monotonically as one moves away from

l+r—e— =€

=2 3 6

k=2my,/ " to obtain the same result: the Nariai solution. In other words, this particular perturba-
2 11 tion of the Nariai metric should correspond to a negative
Kep= \/K( 1I§e+Eez). (A16)  mode in the action. Indeed, if we identify with the period
zp'cd the action in Eq(A17) turns out as

This equation is useful for the analysis of the radiation en-

ergy flux in a nearly degenerate Lorentzian 2w 1w 24 Ot A18

Schwarzschild—de Sitter universe, since each horizon radi- =T A oA € TOle (AL8)

ates approximately thermally with the temperature

T=«k/27.

We will now calculate the Euclidean action of the metric (The same result is obtained for the per|¢{j’ while for

id_ ; e i 2
(A14) and show that it possesses a negative mode in th‘/ej 27 the negative mode IS given by 20me"/9A.) .
s . . The coordinate transformations, the perturbed Nariai met-
direction of decreasing black hole mass. The total instanton

action is given by ric, and the neg_ative mode given here differ from those of
Ref. [15] for various reasons. The authors [df5] did not
AV A, Ao ensure thatd =0 on the horizons, and the Killing vector was
T~ 87 87 8m'° (A7) not renormalized properly. Also, they identified Euclidean
time with period 27 even in the nondegenerate case, which
whereV is the four-volume of the geometry, are the is not appropriate to the physical situation we are trying to
horizon areas, and,, are the conical deficit angles at the analyze.
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