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Pair creation of black holes during inflation
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Black holes came into existence together with the universe through the quantum process of pair creation in
the inflationary era. We present the instantons responsible for this process and calculate the pair creation rate
from the no boundary proposal for the wave function of the universe. We find that this proposal leads to
physically sensible results, which fit in with other descriptions of pair creation, while the tunneling proposal
makes unphysical predictions. We then describe how the pair-created black holes evolve during inflation. In the
classical solution, they grow with the horizon scale during the slow roll down of the inflaton field; this is shown
to correspond to the flux of field energy across the horizon according to the first law of black hole mechanics.
When quantum effects are taken into account, however, it is found that most black holes evaporate before the
end of inflation. Finally, we consider the pair creation of magnetically charged black holes, which cannot
evaporate. In standard Einstein-Maxwell theory we find that their number in the presently observable universe
is exponentially small. We speculate how this conclusion may change if dilatonic theories are applied.
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I. INTRODUCTION

It is generally assumed that the universe began with
period of exponential expansion called inflation. This era
characterized by the presence of an effective cosmologi
constantLeff due to the vacuum energy of a scalar fieldf. In
generic models of chaotic inflation@1,2#, the effective cos-
mological constant typically starts out large and then d
creases slowly until inflation ends whenLeff'0. Corre-
spondingly, these models predict cosmic densi
perturbations to be proportional to the logarithm of the sca
On scales up to the current Hubble radiusHnow

21 , this agrees
well with observations of near scale invariance. However,
much larger length scales of orderHnow

21 exp(105), perturba-
tions are predicted to be on the order of 1. Of course, th
means that the perturbational treatment breaks down; but
an indication that black holes may be created, and thus w
rants further investigation.

An attempt to interpret this behavior was made by Lind
@3,4#. He noted that in the early stages of inflation, when th
strong density perturbations originate, the quantum fluctu
tions of the inflaton field are much larger than its classic
decrease per Hubble time. He concluded that, therefore, th
would always be regions of the inflationary universe whe
the field would grow, and so inflation would never end glo
bally ~‘‘eternal inflation’’!. However, this approach only al-
lows for fluctuations of the field. One should also consid
fluctuations which change the topology of space-time. Th
topology change corresponds to the formation of a pair
black holes. The pair creation rate can be calculated us
instanton methods, which are well suited to this nonpertu
bative problem.
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One usually thinks of black holes forming through gravi-
tational collapse, and so the inflationary era may seem a
unlikely place to look for black holes, since matter will be
hurled apart by the rapid cosmological expansion. Howeve
there are good reasons to expect black holes to form throug
the quantum process of pair creation. We have alread
pointed out the presence of large quantum fluctuations du
ing inflation. They lead to strong density perturbations and
thus potentially to spontaneous black hole formation. Bu
second, and more fundamentally, it is clear that in order to
pair createany object, there must be present a force which
pulls the pair apart. In the case of a virtual electron-positron
pair, for example, the particles can only become real if they
are pulled apart by an external electric field. Otherwise, the
would just fall back together and annihilate. The same hold
for black holes: examples in the literature include their pair
creation on a cosmic string@5#, where they are pulled apart
by the string tension; or the pair creation of magnetically
charged black holes on the background of Melvin’s Universe
@6#, where the magnetic field prevents them from recollaps
ing. In our case, the black holes will be separated by th
rapid cosmological expansion due to the effective cosmo
logical constant. So we see that this expansion, which w
naı̈vely expected to prevent black holes from forming, actu-
ally provides just the background needed for their quantum
pair creation.

Since inflation has ended, during the radiation and matter
dominated eras until the present time, the effective cosmo
logical constant was nearly zero. Thus, the only time when
black hole pair creation was possible in our universe wa
during the inflationary era, whenLeff was large. Moreover,
these black holes are unique since they can be so small th
quantum effects on their evolution are important. Such tiny
black holes could not form from the gravitational collapse of
normal baryonic matter, because degeneracy pressure w
support white dwarfs or neutron stars below the Chan
drasekhar limiting mass.
6312 © 1996 The American Physical Society
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54 6313PAIR CREATION OF BLACK HOLES DURING INFLATION . . .
In the standard semiclassical treatment of pair creatio
one finds two instantons: one for the background, and t
other for the objects to be created on the background. Fr
the instanton actionsI bg and I obj one calculates the pair cre-
ation rateG:

G5exp@2~ I obj2I bg!#, ~1.1!

where we neglect a prefactor. This prescription has been v
successfully used by a number of authors recently@7–13# for
the pair creation of black holes on various backgrounds.

In this paper, however, we will obtain the pair creatio
rate through a somewhat more fundamental, but equival
procedure: since we have a cosmological background,
can use the Hartle-Hawking no boundary proposal@14# for
the wave function of the universe. We will describe the cr
ation of an inflationary universe by a de Sitter-type gravit
tional instanton, which has the topology of a four-sphe
S4. In this picture, the universe starts out with the spatial si
of one Hubble volume. After one Hubble time, its spatia
volume will have increased by a factor ofe3'20. However,
by the de Sitter no hair theorem, we can regard each of th
20 Hubble volumes as having been nucleated independe
through gravitational instantons. With this interpretation, w
are allowing for black hole pair creation, since some of th
new Hubble volumes might have been created through a d
ferent type of instanton that has the topologyS23S2 and
thus represents a pair of black holes in de Sitter space@15#.
Using the framework of the no boundary proposal~reviewed
in Sec. II!, one can assign probability measures to both i
stanton types. One can then estimate the fraction of inflatio
ary Hubble volumes containing a pair of black holes by th
fractionG of the two probability measures. This is equivalen
to saying thatG is the pair creation rate of black holes on
de Sitter background. We will thus reproduce Eq.~1.1!.

In Sec. III A we follow this procedure using a simplified
model of inflation, with a fixed cosmological constant, be
fore going to a more realistic model in Sec. III B. In Sec
III C we show that the usual description of pair creatio
arises naturally from the no boundary proposal, and Eq.~1.1!
is recovered. We find that Planck size black holes can
created in abundance in the early stages of inflation. Larg
black holes, which would form near the end of inflation, a
exponentially suppressed. The tunneling proposal@16#, on
the other hand, predicts a catastrophic instability of de Sit
space and is unable to reproduce Eq.~1.1!.

We then investigate the evolution of black holes in a
inflationary universe. In Sec. IV their classical growth i
shown to correspond to energy-momentum flux across
black hole horizon. Taking quantum effects into account, w
find in Sec. V that the number of neutral black holes th
survive into the radiation era is exponentially small. On th
other hand, black holes with a magnetic charge can also
pair created during inflation. They cannot decay, becau
magnetic charge is topologically conserved. Thus, they s
vive and should still be around today. In Sec. VI, howeve
we show that such black holes would be too rare to be fou
in the observable universe. We summarize our results in S
VII. We use units in whichmP5\5c5k51.
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II. NO BOUNDARY PROPOSAL

We shall give a brief review; more comprehensive treat
ments can be found elsewhere@17#. According to the no
boundary proposal, the quantum state of the universe is d
fined by path integrals over Euclidean metricsgmn on com-
pact manifoldsM . From this it follows that the probability of
finding a three metrichi j on a spacelike surfaceS is given
by a path integral over allgmn on M that agree withhi j on
S. If the space-time is simply connected~which we shall
assume!, the surfaceS will divide M into two parts,M1 and
M2 . One can then factorize the probability of findinghi j
into a product of two wave functions,C1 and C2 . C1

(C2) is given by a path integral over all metricsgmn on the
half-manifoldM1 (M2) which agree withhi j on the bound-
ary S. In most situationsC1 equalsC2 . We shall, there-
fore, drop the suffixes and refer toC as the wave function of
the universe. Under inclusion of matter fields, one arrives a
the prescription

C@hi j ,FS#5E D~gmn ,F!exp@2I ~gmn ,F!#, ~2.1!

where (hi j ,FS) are the three-metric and matter fields on a
spacelike boundaryS and the path integral is taken over all
compact Euclidean four geometriesgmn that haveS as their
only boundary and matter field configurationsF that are
regular on them;I (gmn ,F) is their action. The gravitational
part of the action is given by

I E52
1

16pEM1

d4xg1/2~R22L!2
1

8pES
d3xh1/2K,

~2.2!

whereR is the Ricci scalar,L is the cosmological constant,
andK is the trace ofKi j , the second fundamental form of
the boundaryS in the metricg.

The wave functionC depends on the three metrichi j and
on the matter fieldsF onS. It does not, however, depend on
time explicitly, because there is no invariant meaning to time
in cosmology. Its independence of time is expressed by th
fact that it obeys the Wheeler-DeWitt equation. We shall no
try to solve the Wheeler-DeWitt equation directly, but we
shall estimateC from a saddle-point approximation to the
path integral.

We give here only a brief summary of this semiclassica
method; the procedure will become clear when we follow it
through in the following section. We are interested in two
types of inflationary universes: one with a pair of black
holes, and the other without. They are characterized b
spacelike sections of different topology. For each of thes
two universes, we have to find a classical Euclidean solutio
to the Einstein equations~an instanton!, which can be ana-
lytically continued to match a boundaryS of the appropriate
topology. We then calculate the Euclidean actionsI of the
two types of solutions. Semiclassically, it follows from Eq.
~2.1! that the wave function is given by

C5exp~2I !, ~2.3!

where we neglect a prefactor. We can thus assign a probab
ity measure to each type of universe:
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P5uCu25exp~22IRe!, ~2.4!

where the superscript Re denotes the real part. As expla
in the introduction, the ratio of the two probability measur
gives the rate of black hole pair creation on an inflationa
backgroundG.

III. CREATION OF NEUTRAL BLACK HOLES

The solutions presented in this section are discussed m
more rigorously in an earlier paper@18#. We shall assume
spherical symmetry. Before we introduce a more realis
inflationary model, it is helpful to consider a simpler situ
tion with a fixed positive cosmological constantL but no
matter fields. We can then generalize quite easily to the c
where an effective cosmological ‘‘constant’’ arises from
scalar field.

A. Fixed cosmological constant

1. The de Sitter solution

First, we consider the case without black holes: a hom
geneous isotropic universe. SinceL.0, its spacelike sec-
tions will simply be round three-spheres. The wave functi
is given by a path integral over all metrics on a four manifo
M1 bounded by a round three-sphereS of radiusaS . The
corresponding saddle-point solution is the de Sitter spa
time. Its Euclidean metric is that of a round four-sphere
radiusA3/L:

ds25dt21a~t!2dV3
2 , ~3.1!

wheret is Euclidean time,dV3
2 is the metric on the round

three-sphere of unit radius, and

a~t!5A3

L
sinAL

3
t. ~3.2!

For aS50, the saddle-point metric will only be a singl
point. For 0,aS,A3/L it will be part of the Euclidean four-
sphere, and whenaS5A3/L, the saddle-point metric will be
half the four-sphere. WhenaS.A3/L there will be no real
Euclidean metric which is a solution of the field equatio
with the given boundary conditions. However, we can rega
Eq. ~3.2! as a function on the complext plane. On a
line parallel to the imaginary t axis defined by
tRe5A(3/L)(p/2), we have

a~t!utRe5A~3/L!~p/2!5A3

L
coshAL

3
t Im. ~3.3!

This describes a Lorentzian de Sitter hyperboloid, witht Im

serving as a Lorentzian time variable. One can thus const
a complex solution, which is the analytical continuatio
of the Euclidean four-sphere metric. It is obtained b
choosing a contour in the complext plane from 0 totRe

5A(3/L)(p/2) and then parallel to the imaginaryt axis.
One can regard this complex solution as half the Euclide
four-sphere joined to half of the Lorentzian de Sitter hype
boloid ~Fig. 1!.
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The Lorentzian part of the metric will contribute a purely
imaginary term to the action. This will affect the phase of the
wave function but not its amplitude. The real part of the
action of this complex saddle-point metric will be the action
of the half Euclidean four-sphere:

I dS
Re52

3p

2L
. ~3.4!

Thus, the magnitude of the wave function will still be
e3p/2L, corresponding to the probability measure

PdS5expS 3p

L D . ~3.5!

2. The Schwarzschild–de Sitter solution

We turn to the case of a universe containing a pair of
black holes. Now, the cross sectionsS have topology
S23S1. Generally, the radius of theS2 varies along theS1.
This corresponds to the fact that the radius of a black hole
immersed in de Sitter space can have any value between zer
and the radius of the cosmological horizon. The minimal
two-sphere corresponds to the black hole horizon, the maxi-
mal two-sphere to the cosmological horizon. The saddle-
point solution corresponding to this topology is the
Schwarzschild–de Sitter universe. However, the Euclidean
section of this space-time typically has a conical singularity
at one of its two horizons and thus does not represent a
regular instanton. This is discussed in detail in the Appendix.
There we show that the only regular Euclidean solution is the
degenerate case where the black hole has the maximum pos
sible size. It is also known as the Nariai solution and given
by the topological product of two round two-spheres:

ds25dt21a~t!2dx21b~t!2dV2
2 , ~3.6!

where x is identified with period 2p, dV2
25du2

1sin2udw2, and

FIG. 1. The creation of a de Sitter universe. The lower region is
half of a Euclidean four-sphere, embedded in five-dimensional Eu-
clidean flat space. The upper region is a Lorentzian four-
hyperboloid, embedded in five-dimensional Minkowski space.
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54 6315PAIR CREATION OF BLACK HOLES DURING INFLATION . . .
a~t!5A1

L
sinALt, b~t!5A1

L
5const. ~3.7!

In this case the radiusb of the S2 is constant in theS1

direction. The black hole and the cosmological horizon ha
equal radius 1/AL and no conical singularities are presen
Thus, by requiring the smoothness of the Euclidean solutio
the instanton approach not only tells us about probabil
measures, but also about the size of the black hole. Th
will be no saddle-point solution unless we specif
bS51/AL. We are then only free to choose the radiusaS of
the one-sphere onS. For this variable, the situation is similar
to the de Sitter case. There will be real Euclidean sadd
point metrics onM1 for aS<1/AL. For largeraS there will
again be no Euclidean saddle point, but we find that

a~t!utRe5A~1/L!~p/2!5A1

L
coshALt Im. ~3.8!

This corresponds to the Lorentzian section of the degener
Schwarzschild–de Sitter space-time, in which theS1 ex-
pands rapidly, while the two-sphere~and, therefore, the black
hole radius! remains constant. Again, we can construct
complex saddle point, which can be regarded as half a E
clideanS23S2 joined to half of the Lorentzian solution. The
real part of the action will be the action of the half of
EuclideanS23S2:

ISdS
Re 52

p

L
. ~3.9!

The corresponding probability measure is

PSdS5expS 2p

L D . ~3.10!

We divide this by the probability measure~3.5! for a uni-
verse without black holes to obtain the pair creation rate
black holes in de Sitter space:

G5
PSdS

PdS
5expS 2

p

L D . ~3.11!

Thus, the probability for pair creation is very low, unles
L is close to the Planck value,L51.

B. Effective cosmological constant

Of course, the real universe does not have a cosmolog
constant of order the Planck value. However, in inflationa
cosmology it is assumed that the universe starts out with
very large effective cosmological constant, which arises fro
the potentialV of a scalar fieldf. The exact form of the
potential is not critical. So for simplicity, we choseV to be
the potential of a field with massm, but the results would be
similar for a lf4 potential. To account for the observed
fluctuations in the microwave background@19#, m has to be
on the order of 1025 to 1026 @20#. The wave functionC will
now depend on the three metrichi j and the value off on
S. By a gauge choice one can takef to be constant onS,
ve
t.
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and we shall do so for simplicity. Forf.1 the potential acts
like an effective cosmological constant

Leff~f!58pV~f!. ~3.12!

One proceeds in complete analogy to the fixed cosmolog
cal constant case. For small three-geometries andf.1,
there will be real Euclidean metrics onM1 , with f almost
constant. If the three-geometries are rather larger, there w
again, not be any real Euclidean saddle-point metrics. The
will, however, be complex saddle points. These can, aga
be regarded as a Euclidean solution joined to a Lorentzi
solution, although neither the Euclidean nor Lorentzian me
rics will be exactly real. Apart from this subtlety, which is
dealt with in Ref.@18#, the saddle-point solutions are similar
to those for a fixed cosmological constant, with the time
dependentLeff replacingL. The radius of the pair-created
black holes will now be given by 1/ALeff. As before, the
magnitude of the wave function comes from the real part o
the action, which is determined by the Euclidean part of th
metric. This real part will be

I S3
Re

52
3p

2Leff~f0!
~3.13!

in the case without black holes, and

I S23S1
Re

52
p

Leff~f0!
~3.14!

in the case with a black hole pair. Here,f0 is the value of
f in the initial Euclidean region. Thus, the pair creation rat
is given by

G5
PS23S1

PS3
5expF2

p

Leff~f0!
G . ~3.15!

C. Discussion

Let us interpret this result. Since 0,Leff&1, we get
G,1 and so black hole pair creation is suppressed. In th
early stages of inflation, whenLeff'1, the suppression is
weak, and black holes will be plentifully produced. How-
ever, those black holes will be very small, with a mass on th
order of the Planck mass. Larger black holes, correspondi
to lower values ofLeff at later stages of inflation, are expo-
nentially suppressed. We shall see in the following two se
tions that the small black holes typically evaporate immed
ately, while sufficiently large ones grow with the horizon an
survive long after inflation ends~that is, long in early uni-
verse terms!.

We now understand how the standard prescription for pa
creation, Eq.~1.1!, arises from this proposal: by Eq.~2.4!,

G5
PS23S1

PS3
5exp@2~2I S23S1

Re
22I S3

Re
!#, ~3.16!

whereIRe denotes the real part of the Euclidean action of
complex saddle-point solution. But we have seen that this
equal to half of the action of the complete Euclidean solu
tion. Thus,I obj52I S23S1

Re and I bg52I S3
Re, and we recover Eq.

~1.1!.
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The prescription for the wave function of the universe h
long been one of the central, and arguably one of the m
disputed, issues in quantum cosmology@14,21#. According
to Vilenkin’s tunneling proposal@16#, C is given by e1I

rather than bye2I . This choice of sign is inconsistent with
Eq. ~1.1!, as it leads to the inverse result for the pair creat
rate: GTP51/GNBP. In our case, we would ge
GTP5exp(1p/Leff). Thus, black hole pair creation would b
enhanced, rather than suppressed. de Sitter space wou
catastrophically unstable to the formation of black hol
Since the radius of the black holes is given by 1/ALeff, large
black holes would be even more likely than small on
Clearly, the tunneling proposal cannot be maintained. On
other hand, Eq.~3.15!, which was obtained from the no
boundary proposal, is physically very reasonable. It allo
topological fluctuations near the Planckian regime, but s
presses the formation of large black holes at low energ
Thus, the consideration of the cosmological pair product
of black holes lends strong support to the no boundary p
posal.

IV. CLASSICAL EVOLUTION

We shall now consider neutral black holes created at
value f0.1 of the scalar field and analyze the differe
effects on their evolution. Before we take quantum effe
into account, we shall display the classical solution for
Universe containing a pair of black holes. We shall demo
strate explicitly that it behaves according to the first law
black hole mechanics.

With a rescaled inflaton potential

V~f!5
1

8p
m2f2, ~4.1!

the effective cosmological constant will be

Leff5m2f2. ~4.2!

In the previous section we learned that the black hole rad
remains constant, at 1/AL, in the Lorentzian regime. But this
was for the simple model with fixedL. The effective cos-
mological constant in Eq.~4.2! is slightly time dependent.
Thus, we might expect the black hole size to change dur
inflation.

Indeed, forp/(2mf0),t,(f0)/m, approximate Lorent-
zian solutions are given by@18#

f~ t !5f02mt, ~4.3!

a~ t !5
1

mf0
coshFmE

0

t

f~ t8!dt8G , ~4.4!

b~ t !5
1

mf~ t !
, ~4.5!

ds252dt21a~ t !2dx21b~ t !2dV2
2 . ~4.6!

Since we are dealing with a degenerate solution, the r
r b and r c of the black hole and cosmological horizons a
equal:
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According to Eq.~4.5! they will expand slowly together dur-
ing inflation as the scalar field rolls down to the minimum of
the potentialV and the effective cosmological constant de-
creases. At the end of inflation they will be approximately
equal tom21.

One can think of this increase of the horizons as a class
cal effect, caused by a flow of energy momentum acros
them. If the scalar field were constant, its energy-momentum
tensor would act exactly such as a cosmological constan
The flow of energy momentum across the horizon would be
zero. However, the scalar field is not constant but is rolling
downhill in the potential to the minimum atf50. This
means that there is an energy-momentum flow across th
horizon equal to

Ṁ5ATabl
al b5

1

f2 , ~4.8!

where A54pb2 is the horizon area,Tab is the energy-
momentum tensor for the massive scalar field, given by

Tab5
1

4p
]af]bf2

1

8p
gab~]cf]cf1m2f2!, ~4.9!

and l a is a null vector tangent to the horizon:

l a5
]

]t
1
1

a

]

]x
. ~4.10!

One would expect the horizons to respond to this flow o
energy across them by an increase in area according to t
first law of black hole mechanics@22#:

Ṁ5
k

8p
Ȧ, ~4.11!

wherek is the surface gravity of the horizon. We will show
that this equation is indeed satisfied if the horizon growth is
given by Eq.~4.5!.

The values ofk for general Schwarzschild–de Sitter so-
lutions are derived in the Appendix. Because of the slow
change of the effective cosmological constant we can ap
proximate the surface gravity at any timet in our model by
the surface gravity in the model with a fixed cosmological
constantL5Leff(t). In the degenerate case which we are
considering now,k will thus be given by

k5ALeff5mf. ~4.12!

Equation~4.11! becomes

Ṁ5
mf

8p

d

dt S 4p

m2f2D5
1

f2 , ~4.13!

which agrees with Eq.~4.8!.
It should be pointed out that this calculation holds not

only for the black hole horizon, but also for the cosmological
horizon. Moreover, an analogous calculation is possible fo
the cosmological horizon in an ordinary inflationary Uni-
verse without black holes. Thus, in hindsight we understan
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the slow growth of the cosmological horizon during inflatio
as a manifestation of the first law of black hole mechanic

V. QUANTUM EVOLUTION

So far we have been neglecting the quantum propertie
the inflationary space-time presented above. It is well kno
that in a Schwarzschild–de Sitter universe, radiation is em
ted both by the black hole and by the cosmological horiz
@23#. To treat this properly, one should include the one-lo
effective action of all the low mass fields in the metr
gmn . By using a supersymmetric theory one might avo
divergences in the one-loop term, but it would still be im
possibly difficult to calculate in any but very simple metric
Instead, we shall use an approximation in which the bla
hole and cosmological horizons radiate thermally with te
peratures

Tb5
kb

2p
, Tc5

kc

2p
. ~5.1!

This quantum effect must also be included in the calcu
tion of the energy flow across the horizons. For the sadd
point metric, Eq.~4.6!, it has no consequence: in the Nari
solution the black hole and cosmological horizons have
same radius and surface gravity. Thus, they radiate at
same rate. That means they will be in thermal equilibriu
The black holes will not evaporate, because they will
absorbing as much as they radiate. Instead, their evolu
will be governed by the classical growth described above

However, the Nariai metric is an idealization.~Strictly
speaking, it does not even contain a black hole, but rat
two acceleration horizons.! Because of quantum fluctuation
there will be small deviations from the saddle-point solutio
corresponding to a Schwarzschild–de Sitter space-t
which is not quite degenerate. The radiusb of the two-sphere
will not be exactly constant along theS1, but will have a
maximumr c and a minimumr b , which we identify with the
cosmological and the black hole horizons, respectively.~The
other black hole horizon of the pair will lie beyond the co
mological horizon and will not be visible in our universe!
Since the black hole horizon is slightly smaller, it will have
higher temperature than that of the cosmological horiz
Therefore, the black hole will radiate more than what it r
ceives. There will thus be a net transfer of energy from
smaller horizon to the larger one. This will cause the larg
horizon to grow faster, and the smaller one to shrink until
black hole vanishes completely. We show below that bla
holes can still grow with the cosmological horizon until th
end of inflation, if they are either created sufficiently larg
or start out very nearly degenerate. However, we shall
that none of these conditions is easily satisfied.

Black holes created during the final stages of inflation w
survive until the end of inflation simply because they will b
relatively large and cold. One can estimate the minimum s
they must have by treating them as evaporating Schwa
child black holes, which have a lifetime on the order
M3, whereM is the mass at which the black hole is create
In terms of the value of the scalar field at creatio
M'b05(mf0)

21. Inflation ends after a time off0 /m.
Therefore, black holes created atf0<m21/2 will certainly
n
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survive until the end of inflation. They would continue to
grow slowly during the radiation era, until the temperature of
the radiation falls below that of the black holes. They will
then start to evaporate. By Eq.~3.15!, however, such black
holes will be suppressed by a factor of

G5exp~2pm21!. ~5.2!

One must, therefore, investigate the possibility that the
small black holes, which can be created in abundance, sta
out so nearly degenerate that they will grow with the cosmo
logical horizon until they have reached the ‘‘safe’’ size of
m21/2. We need to determine how nearly equal the horizon
sizes have to be initially so that the black hole survives unti
the end of inflation.

If we take the thermal radiation into account, the flow
across the horizons now consists of two parts: the classic
term due to the energy flow of the scalar field, as well as th
net radiation energy transfer, given by Stefan’s law. Apply-
ing the first law of black hole mechanics to each horizon, we
get

kb

8p
Ȧb5m2r b

22~sAbTb
42sAcTc

4!, ~5.3!

kc

8p
Ȧc5m2r c

21~sAbTb
42sAcTc

4!, ~5.4!

where s5p2/60 is the Stefan-Boltzmann constant. Using
Eq. ~5.1!, we obtain two coupled differential equations for
the horizon radii:

ṙ b5
1

kbr b
Fm2r b

22
1

240p
~r b

2kb
42r c

2kc
4!G , ~5.5!

ṙ c5
1

kcr c
Fm2r c

21
1

240p
~r b

2kb
42r c

2kc
4!G . ~5.6!

The exact functional relation between the surface gravi
ties and the horizon radii is generally nontrivial. However,
the above evolution equations can be simplified if one take
into account that a nucleated black hole pair must be ver
nearly degenerate if it is to survive until the end of inflation.
We can, therefore, write

r b~ t !5b~ t !@12e~ t !#, r c~ t !5b~ t !@11e~ t !#, ~5.7!

with e0!1. The surface gravities can also be expressed i
terms ofe ~see Appendix!; to first order they are given by

kb5
1

b~ t ! F11
2

3
e~ t !G , kc5

1

b~ t ! F12
2

3
e~ t !G . ~5.8!

We assume thatb(t) behaves as in Eq.~4.5! for the Nariai
solution as long ase(t)!1. Equations~5.5! and ~5.6! are
then identically satisfied to zeroth order ine. In the first
order, they give an evolution equation fore:

ė5S 23m2b1
1

180p

1

b3D e. ~5.9!

This equation can be integrated to give
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e~ t !5e0S f

f0
D 2/3expH 1

720p
m2f0

4F12S f

f0
D 4G J .

~5.10!

For the unsuppressed, Planck size black holes we h
f05m21. If they grow with the horizon, they will reach the
safe size, which corresponds tof5m21/2, after a time

tsafe5m22~12m1/2!. ~5.11!

If a Planck size black hole is to have survived until this tim
i.e., if e(tsafe)<1, then the initial difference in horizon sizes
may not have been larger than

e0
max5m1/3expF2

m22

720p
~12m2!G . ~5.12!

The probabilityP(e0<e0
max) that the two horizons start

out so nearly equal obviously depends on the distribution
the initial sizes of the two horizons. The semiclassical trea
ment of the quantum fluctuations which cause the geome
to differ from the degenerate case, for general values of
effective cosmological constant, is an interesting problem
itself, and beyond the scope of this paper. We hope to ret
to it in a forthcoming paper on complex solutions in quantu
cosmology. However, here we are working at the Plan
scale, so that the semiclassical approximation will bre
down anyway. It, therefore, seems reasonable to assume
the initial sizes of the horizons are distributed roughly un
formly between zero and a few Planck lengths. This mea
that

P~e0<e0
max!'e0

max'expS 2
m22

720p D . ~5.13!

Sincem'1026, we conclude by comparison with the sup
pression factor~5.2! that it is considerably less efficient to
create Planck size black holes which would grow to the sa
size than just to create the large black holes. Both proces
however, are exponentially suppressed.

VI. CHARGED BLACK HOLES

Although, nearly all neutral black holes will evaporat
during inflation, those that have a magnetic charge will n
be able to because there are no magnetically charged
ticles for them to radiate. They can only evaporate down
the minimum mass necessary to support their magne
charge. Let us, therefore, introduce a Maxwell term in th
action and reexamine the pair creation of primordial bla
holes:

I52
1

16pEM1

d4xg1/2~R22L2FmnF
mn!

2
1

8pES
d3xh1/2K. ~6.1!

TheS23S2 bubbles in space-time foam can now carry ma
netic flux. The action of the Maxwell field will reduce their
probability with respect to neutral bubbles. Thus, magne
cally charged black holes will also be pair created durin
ave
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inflation, though in smaller numbers than neutral black holes.
However, once created, they can disappear only if they mee
a black hole with the opposite charge, which is unlikely. So
they should still be around today.

We shall estimate the number of primordial charged black
holes present in the observable universe. For the purpose o
calculating the pair creation rate during inflation, we can use
the solutions for a fixed cosmological constant, sinceLeff
changes slowly. There exists a three-parameter family of
Lorentzian charged Schwarzschild–de Sitter solutions. They
are usually called Reissner–Nordstro¨m–de Sitter solutions
and labeled by the chargeq and the ‘‘mass’’m of the black
hole, and by the cosmological constantL:

ds252U~r !dt21U~r !21dr21r 2dV2
2 , ~6.2!

where

U~r !512
2m

r
1
q2

r 2
2
1

3
Lr 2. ~6.3!

We are interested in the cases where the black holes ar
magnetically, rather than electrically, charged. Then, the
Maxwell field is given by

F5qsinudu`df. ~6.4!

In an appropriate region of the parameter space,U has
three positive roots, which we denote, in ascending order, by
r i , r o , andr c and interpret as the inner and outer black hole
horizons and the cosmological horizon. They can serve as an
alternative parametrization of the solutions. For general val-
ues ofq, m, andL the metric~6.2! has no regular Euclidean
section. The black holes which can be pair created through
regular instantons lie on three intersecting hypersurfaces in
the parameter space@24#, as seen in Fig. 2. They are called
thecold, the lukewarm, and thecharged Nariaisolutions. In
the cold case, the instanton is made regular by setting
r i5r o , which corresponds to an extremal black hole. The
lukewarm hypersurface is characterized by the condition
q5m. It corresponds to a nonextremal black hole which has
the same surface gravity and temperature as the cosmologica
horizon. This property is shared by the charged Nariai solu-
tion, which hasr o5r c . For q50, its mass is given by
m51/(3AL) and it coincides with the neutral Nariai Uni-
verse we discussed earlier. For larger charge and mass, it i
still the direct product of two round two-spheres; however,
with different radii. The cold, lukewarm, and de Sitter solu-
tions all coincide forq5m50. The largest possible mass
and charge for the lukewarm solution isq5m53/(4A3L),
where it coincides with the charged Nariai solution. The
largest possible mass and charge for any regular instanton i
attained at the point where the charged Nariai and the cold
hypersurfaces meet. Thisultracoldcase hasq51/(2AL) and
m52/(3A2L). It admits two distinct solutions of different
actions. All of these solutions are presented and discussed in
detail in the comprehensive paper by Mann and Ross@11#,
where the actions are calculated as well. We shall now apply
these results in the context of inflation.

Let us consider an inflationary scenario in which the ef-
fective cosmological constantLeff5mf starts out near the
Planck value and then decreases slowly. As in the neutra
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case, one would expect the creation of charged black holes
be least suppressed for largeL, i.e., at the earliest stage of
inflation. However, unlike the neutral case, a magnetical
charged black hole cannot be arbitrarily small since it mu
carry at least one unit of magnetic charge:

q05
1

2e0
, ~6.5!

wheree05Aa is the unit of electric charge, anda'1/137 is
the fine structure constant. In the following we shall onl
consider black holes withq5q0, since they are the first to be
created, and since more highly charged black holes are
ponentially suppressed relative to them. We see from Fig.
that pair creation first becomes possible through the ultraco
instanton U1, when Leff has decreased to the value o
LU51/(4q0

2)5a. Since this solution has relatively high ac-
tion, however, black hole production becomes more efficie
at a slightly later time. It will then occur mainly through the
charged Nariai instanton, which has lower action than th
cold black hole. When

Leff5LE5~4A326!a, ~6.6!

the pair creation rate reaches its peak and is given by

G5exp@2~ I E2I dS!#

5expF2
~21A3!p

2a G , ~6.7!

FIG. 2. The hypersurfaces in the parameter space of t
Reissner–Nordstro¨m–de Sitter solution which admit regular instan-
tons. The plot is of the dimensionless quantitiesm2L vs q2L. The
points N and D represent the uncharged Nariai and de Sitter so
tions. The curve DC corresponds to the lukewarm instantons. At
it meets the curve NU of charged Nariai instantons. The cold in
stantons lie on the curve CU; the point U represents the two ultr
cold solutions.
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by Eq. ~1.1!. As Leff decreases further, the pair creation rate
starts to decrease and soon becomes vastly suppressed. F

0,Leff,LC5
3

4
a, ~6.8!

the lukewarm instanton has the lowest action,

I luke52
3p

Leff
1pA 3

aLeff
. ~6.9!

It will, therefore, dominate the black hole production until
the end of inflation.

If we ask how many charged black holes were produced
during the entire inflationary era, we have to take into ac-
count that the density of the black holes pair created at th
early stages of inflation will be reduced by the subsequen
inflationary expansion. As a consequence, most of the
charged primordial black holes in our universe were pro-
duced near the end of inflation, as we shall show here. Th
number of such black holes per Hubble volume pair create
during one Hubble time whenf5fpc is given by

G~fpc!5exp@2~ I luke2I dS!#

5expF2A3

a

p

mfpc
G . ~6.10!

At the end of inflation, these black holes have a numbe
density per Hubble volume of

dend~fpc!5G~fpc!fpc
3 expF2

3

2
fpc
2 G , ~6.11!

he

lu-
C
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FIG. 3. The action of the different types of Reissner–
Nordström–de Sitter instantons, as a fraction of the action of the de
Sitter instanton,I dS523p/L. Note that the point U does not cor-
respond to an instanton solution in this diagram; the two ultracold
instantons are labeled by U1 and U2. E is the instanton with the
highest pair creation rate during inflation.
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where the cubic factor is due to the growth of the Hubb
radius and the exponential factor reflects the inflationary
pansion of space.

Since we are dealing with exponential suppressions, pr
tically all primordial magnetically charged black holes in th
Universe were created at the value offpc which makes
dendmaximal. This occurs for

fpc
max'S p2

3am2D 1/6, ~6.12!

so that the approximate total number per Hubble volume
the end of inflation is given by

Dend'dend~fpc
max!

'S p2

3am2D 1/2expF2S 9p2

16am2D 1/3G . ~6.13!

We take the values of the Hubble radius to be

Hend
215m21, Heq

2151054, Hnow
21 51059, ~6.14!

respectively at the end of inflation, at the time of equal r
diation and matter density, and at the present time. The
fore, since the end of inflation the density has been redu
by a factor of 10291m23/2 and the Hubble volume has in
creased by 10177m3. We multiply Dend by these factors to
obtain the number of primordial black holes in the presen
observed universe:

Dnow'1086S p2m

3a D 1/2expF2S 9p2

16am2D 1/3G . ~6.15!

With a51/137 andm51026, the exponent will be on the
order of2105. Thus, in ordinary Einstein-Maxwell theory, i
is very unlikely that the observed universe contains even o
magnetic black hole.

However, in theories with a dilaton both the value of th
electric charge and the effective Newton’s constant can v
with time. If both were much higher in the past, the effectiv
value ofam2 would not be so small and the present numb
of magnetic black holes could be much higher. We are c
rently working on this question.

VII. SUMMARY AND CONCLUSIONS

Since the quantum pair creation of black holes can
investigated semiclassically using instanton methods, it
been widely used as a theoretical laboratory to obt
glimpses at quantum gravity. The inflationary era is the on
time when we can reasonably expect the effect to have ta
place in our own universe. We chose to work in a ve
simple model of chaotic inflation, which allowed us to e
pose quite clearly all the important qualitative features
black hole pair creation. The inflationary universe was a
proximated as a de Sitter solution with a slowly varyin
cosmological constant. Similarly, neutral black holes pr
duced during inflation were described by a degener
Schwarzschild–de Sitter solution. Their pair creation ra
was estimated from the no boundary proposal, by compar
the probability measures assigned to the two solutions.
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found that Planck size black holes are plentifully produce
but at later stages in inflation, when the black holes would b
larger, the pair creation rate is exponentially suppresse
This fits in with the usual instanton prescriptions for pai
creation. The tunneling proposal, on the other hand, fails
make physically reasonable predictions. The consideration
black hole pair creation thus lends support to the no boun
ary proposal.

We analyzed the classical and quantum evolution of ne
tral primordial black holes. Classically, the black hole hori
zon and the cosmological horizon have the same area a
temperature. The two horizons grow slowly during inflation
We showed that this is due to the classical flow of scalar fie
energy across them, according to the first law of black ho
mechanics. Quantum effects, however, prevent the geome
from being perfectly degenerate, causing the black hole to
hotter than the cosmological horizon. As a consequenc
practically all neutral black holes evaporate before the end
inflation.

Finally, we turned to magnetically charged black holes
which can also be pair created during inflation. Even if the
have only one unit of charge, they cannot evaporate com
pletely and would still exist today. The pair creation rate i
highest during the early stages of inflation, when the effe
tive cosmological constant is still relatively large. Black
holes created at that time, however, will be diluted by th
inflationary expansion. Most of the charged primordial blac
holes were, therefore, created near the end of the inflationa
era, where they would not be diluted as strongly. Howeve
in Einstein-Maxwell theory they are so heavily suppresse
that we must conclude that there are no primordial blac
holes in the observable universe. It will, therefore, be inte
esting to examine inflationary models that include a dilato
field. One would expect to obtain a much higher number o
primordial black holes, which may even allow us to con
strain some of these models.
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APPENDIX

In this Appendix we show how to calculate the surfac
gravities of the two horizons in the Schwarzschild–de Sitte
solution. This space-time possesses a regular Euclidean s
tion only in the degenerate~Nariai! case, where the two ho-
rizons have the same radius. Neutral black holes pair crea
during inflation will, therefore, start out nearly degenerate
We present a suitable coordinate transformation for th
nearly degenerate metric, introducing a small parametere,
which parametrizes the deviation from degeneracy. The su
face gravities and Euclidean action are calculated to seco
order in e, yielding a negative mode in the action. We ex
plain why our results differ from those obtained in Ref.@15#.

The Lorentzian Schwarzschild–de Sitter solution has th
metric
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ds252U~r !dt21U~r !21dr21r 2dV2
2 , ~A1!

where

U~r !512
2m

r
2
1

3
Lr 2. ~A2!

For 0,m,(1/3)L21/2, U has two positive rootsr b and r c ,
corresponding to the black hole and the cosmological ho
zon. The space-time admits a timelike Killing vector field

K5g t

]

]t
, ~A3!

whereg t is a normalization constant. The surface gravitie
kb andkc , given by

kb,c5 lim
r→rb,c

F ~Ka¹aKb!~K
c¹cK

b!

2K2 G1/2, ~A4!

depend on the choice ofg t . To obtain the correct value for
the surface gravity, one must normalize the Killing vector i
the right way. In the Schwarzschild case (L50) the natural
choice is to haveK2521 at infinity; this corresponds to
g t51 for the standard Schwarzschild metric. However, i
our case there is no infinity, and it would be a mistake to s
g t51. Instead, one needs to find the radiusr g for which the
orbit of the Killing vector coincides with the geodesic going
through r g at constant angular variables. This is the two
sphere at which the effects of the cosmological expansi
and the black hole attraction balance out exactly. An o
server atr g will need no acceleration to stay there, just like
an observer at infinity in the Schwarzschild case. One mu
normalize the Killing vector on this ‘‘geodesic orbit.’’ Note
that this is a general prescription which will also give th
correct result in the Schwarzschild limit. It is straightforward
to show that

r g5S 3m

L D 1/3, ~A5!

so that

g t5U~r g!
21/25@12~9Lm2!1/3#21/2. ~A6!

Equation~A4! then yields

kb,c5
1

2AU~r g!
U ]U

]r U
r5rb,c

. ~A7!

In order to consider the pair production of black holes, w
need to find a Euclidean instanton which can be analytica
continued to the metric~A1!. The obvious ansatz is

ds25U~r !dt21U~r !21dr21r 2dV2
2 , ~A8!

wheret is Euclidean time. Again, one can define a consta
gt which will normalize the timelike Killing vector on the
geodesic orbit. In order to avoid a conical singularity at
horizon, one needs to identifyt with an appropriate period
t id, which is related to the surface gravity on the horizon b
ri-
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t id52pgt /k. ~A9!

Usually, only one of the two horizons can be made regu
lar in this way, since their surface gravities will be different.
They will be equal only form5(1/3)L21/2, when the two
roots ofU coincide. In this degenerate case one can remov
both conical singularities simultaneously and obtain a regula
instanton. As was first pointed out in@15#, the fact that
r b5r c does not mean that the Euclidean region shrinks t
zero. The coordinate system~A8! clearly becomes inappro-
priate whenm approaches its upper limit: the range ofr
becomes arbitrarily narrow while the metric coefficient
U(r )21 grows without bound. One must, therefore, perform
an appropriate coordinate transformation. If we write

9m2L5123e2, 0<e!1, ~A10!

the degenerate case corresponds toe→0. We then define
new time and radial coordinatesc andx by

t5
1

eAL
S 12

1

2
e2Dc,

r5
1

AL
F11ecosx2

1

6
e21

4

9
e3cosxG . ~A11!

With this choice ofc, we havegc5AL to second order in
e, so that the Killing vector

Ka5AL
]

]c
~A12!

has unit length on the geodesic orbit. We have chosen th
new radial coordinatex so thatU vanishes to fourth order in
e for cosx561. This is necessary sinceU contains no zero
and first order terms and we intend to calculate all quantitie
to second nontrivial order ine:

U~x!5sin2xe2F12
2

3
ecosx1

2

3
e2cos2x1

8

9
e2G .

~A13!

Thus, the black hole horizon corresponds tox5p and the
cosmological horizon tox50.

The new metric obtained from the coordinate transforma
tions ~A11! is

ds25
1

L S 12
2

3
ecosx1

2

3
e2cos2x2

1

9
e2D sin2xdc2

1
1

L S 11
2

3
ecosx2

2

9
e2cos2x Ddx2

1
1

L S 112ecosx1e2cos2x2
1

3
e2DdV2

2 . ~A14!

In the degenerate case,e50, this is the Nariai metric: the
topological product of two round two-spheres, each of radiu
1/AL. There are no conical singularities if the Euclidean
timec is identified with a period 2p. For generale, the two
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horizons cannot be made regular simultaneously; it is cle
from a geometrical standpoint thatc must be identified with
period

cc,b
id 52pAgxxux50,pS ]

]x
AgccU

x50,p
D 21

52pS 16
2

3
e2

1

6
e2D ~A15!

to prevent a conical singularity at the cosmological or bla
hole horizon, respectively.

One can calculate the surface gravitieskc and kb using
the Euclidean version of Eq.~A4! and the Killing vector
~A12!; equivalently, one could use the relation
k52pgc /c

id to obtain the same result:

kc,b5ALS 17
2

3
e1

11

18
e2D . ~A16!

This equation is useful for the analysis of the radiation e
ergy flux in a nearly degenerate Lorentzia
Schwarzschild–de Sitter universe, since each horizon ra
ates approximately thermally with the temperatu
T5k/2p.

We will now calculate the Euclidean action of the metri
~A14! and show that it possesses a negative mode in
direction of decreasing black hole mass. The total instant
action is given by

I52
LV
8p

2
Acdc
8p

2
Abdb
8p

, ~A17!

whereV is the four-volume of the geometry,Ac,b are the
horizon areas, anddc,b are the conical deficit angles at the
ar

ck

n-
n
di-
re

c
the
on

horizons. Of course, all of these quantities depend on the
value we choose forc id. Obvious options are: to leave it at
2p even in the nondegenerate case, thus introducing a defici
angle on the cosmological horizon and an excess angle at th
black hole horizon, or as an alternative, to make one of the
two horizons regular, thereby causing a larger excess or defi
cit at the other horizon. The most interesting of these cases is
the one in which we choose a regular cosmological horizon.
In this case, the metric~A14! will lie on the interpolation
between the Euclidean Nariai and de Sitter universes, since
the latter has only a cosmological horizon, which ought to be
regular. The Euclidean actions for these universes are
22p/L for the Nariai, and23p/L for the de Sitter. Since
no intermediate solution is known, one would expect the
action to decrease monotonically as one moves away from
the Nariai solution. In other words, this particular perturba-
tion of the Nariai metric should correspond to a negative
mode in the action. Indeed, if we identifyc with the period
cc
id the action in Eq.~A17! turns out as

I52
2p

L
2
17p

9L
e21O~e4!. ~A18!

~The same result is obtained for the periodcb
id while for

c id52p the negative mode is given by220pe2/9L.!
The coordinate transformations, the perturbed Nariai met-

ric, and the negative mode given here differ from those of
Ref. @15# for various reasons. The authors of@15# did not
ensure thatU50 on the horizons, and the Killing vector was
not renormalized properly. Also, they identified Euclidean
time with period 2p even in the nondegenerate case, which
is not appropriate to the physical situation we are trying to
analyze.
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