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We find double-extreme black holes associated with the special geometry of the Calabi-Yau moduli space
with the prepotentialF5STU. The area formula isSTU-moduli independent and has@SL(2,Z)#3 symmetry in
space of charges. The dual version of this theory without a prepotential treats the dilatonS asymmetric vs
T,U moduli. We display the dual relation between new (STU) black holes and stringy (SuTU) black holes
using a particular Sp(8,Z) transformation. The area formula of one theory equals that of the dual theory when
expressed in terms of dual charges. We analyze the relation between (STU) black holes to string triality of
black holes: (SuTU), (TuUS), (UuST) solutions. In the democraticSTU-symmetric version we find that all
three S, T, and U duality symmetries are nonperturbative and mix electric and magnetic charges.
@S0556-2821~96!06122-X#

PACS number~s!: 04.70.Bw, 04.62.1v, 04.70.Dy, 11.25.Hf
I. INTRODUCTION

The nonperturbative properties of the future fundamen
theory manifest themselves in the duality properties of t
area formulas of the supersymmetric black hole horizon. T
universal entropy-area formula of supersymmetric bla
holes is given by the central charge extremized in the mod
spaceZfix and depends only on quantized charges. The u
versal formula obtained by Ferrara and one of the authors@1#
is S5A(p,q)/45puZfixua with a52(3/2) ford54 (d55).

This universal formula has various implementations
different theories. A particularly rich class of area formul
may be expected to exist inN52 supersymmetric theories
which are characterized by different choices of the holom
phic prepotential and/or symplectic sections. A beautiful
terplay between the geometry of special Ka¨hler manifolds
@2–6# and space-time geometry of supersymmetric bla
holes has been discovered recently@7,1,8#.

In this paper we will find the four-dimensional~4D!
double-extreme black holes in a class ofN52 theories with
the prepotentialF5dABC(X

AXBXC)/X0 @3#. These theories
with real symmetric constant tensorsdABC are related to ge-
ometry occurring in five-dimensional supergravity@9# where
the term*dABCF

A`FB`AC is present in the action. Thes
theories are also related to the special geometry of Cala
Yau moduli spaces wheredABC are the intersection number
of the Calabi-Yau manifold, andtA5XA/X0 are the moduli
fields of the Kähler class@10#. The theories of this class ar
also referred to as ‘‘very special geometry’’@11# and ‘‘real
special geometry’’@12#.
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We will focus mostly on STU-symmetric model
F5X1X2X3/X0, and will find the moduli-independent
@SL(2,Z)#3 symmetric area formula. The moduli of this
theory are coordinates of the@SU(1,1)/U(1)#3 manifold.
Duality symmetry of this theory is@SL(2,Z)#3. The dual
partners of these black holes~where one of the moduli, e.g.,
S is singled out and whose imaginary part plays the role
of string coupling! are already known@8#. The moduli
in this version of the theory are coordinates of
@SU(1,1)/U(1)#3@SO(2,2)/SO(2)3 SO(2)# manifold. S
duality, or SL(2,Z) symmetry associated with theS moduli
in string theory, has a nonperturbative character, whereasT
andU dualities, related to SO~2,2! symmetry, have perturba-
tive character. Perturbative symmetries of string theory do
not mix electric and magnetic charges. Stringy black holes
treat one of the moduli on different footing than treating
others. This is due to the fact that 11-dimensional supergrav-
ity has to be reduced tod510 first and this makes 11th
component of the metric or the dilaton, special. If, however,
we are looking for exact nonperturbative solution of 11-
dimensional supergravity, we may expect some solutions
where the radius of 11th, 6th, and 5th dimensions are all on
equal footing. These are ourSTU black holes. They may be
related toM , F, Y, or whatever fundamental theory which is
not the conventional theory of strings. To establish the rela-
tion between new (STU)-symmetric black holes and their
dual (SuTU) stringy partners is our main goal. In string tri-
ality picture @13# the role ofS may be replaced byT or by
U but still there is one moduli different from the others and
only one duality symmetry is nonperturbative whereas the
other two are perturbative. We will find that all threeS and
T and U duality symmetries in ‘‘democratic’’ black hole
solutions are nonperturbative. This is not too surprising:
black holes are nonperturbative objects.

We will find that the area of the horizon in
(STU)-symmetric theory equals the area of the horizon of
the (SuTU) dual theory
6293 © 1996 The American Physical Society
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A~STU!~p,q!5A~SuTU!~ p̂,q̂!, ~1!

where the charges are related by particular Sp(8,Z) duality
transformation. This transformation has been found in@6#
and relates the symplectic sections and charges in two th
ries.

The duality symmetry of this area formula is of an un
usual form. The typical situation studied before was that t
area as a function of charges was invariant under dua
transformation:

A~p,q!5A~ p̂,q̂!. ~2!

For example,U-duality1 invariant area formula is given by
the quartic Cartan invariant of E7 in d54, @14,1,15#, where
the 2328 unhatted (p,q) are charges before duality trans
formation and 2328 hatted (p̂,q̂) are charges after E7 trans-
formation. This duality transformation was a property of on
specific theory: in this case, for example,N58 supergravity
in d54. The equations of motion of this theory have hidde
symmetry and it manifests itself in E7 invariance of the area
formula of the black holes of this theory with 1/8 of supe
symmetry unbroken:

AN58~p,q!5AN58~ p̂,q̂!54pAJ~p,q!54pAJ~ p̂,q̂!.
~3!

The new phenomenon which we observe here by study
the black holes in the framework of special geometry is t
following. Black holes in two versions of the theory relate
by symplectic transformation have two different area form
las, when the area of the original version is expressed
terms of charges of original theory and the area of the tra
formed~dual! theory is expressed as a function of charges
dual theory. However, these two area formulas are related
in Eq. ~1!. If one has the area in one theory and the transfo
mation which defines the dual theory is known, the area
the other theory can be found using Eq.~1!. The reason for
the area formulas to be different is that they carry differe
symmetries:@SU(1,1)/U(1)#3 in one case and@SU(1,1)/
U(1)#3@SO(2,2)/SO(2)3SO(2)# in the other case.

The paper is organized as follows. In Sec. II we discu
the basic equations@1# defining the double-extreme black
holes ofN52 theory@8# and the values of moduli as func-
tions of charges. We refer to these equations as ‘‘stabiliz
tion equations.’’ The main property of these equations re
evant to present investigation is that they are symplec
covariant. Therefore, once the solution for moduli in terms
charges is known in one version of the theory, the dual s
lution can be found by applying the symplectic transform
tion to the known solution. We explain this for the cas
of ST@2,n# manifold, @SU(1,1)/U(1)#3@SO(2,n)/SO(2)
3SO(n)# symmetric theory which does not admit a prepo
tential and the dual version of it which admits the prepote
tial. We also explain that in both theories one has an opti
of solving for double-extreme black holes directly in eac

1U duality in the context of E7 symmetry should not be confused
with U duality in the context of SL(2,Z) symmetry related toU
moduli. Unfortunately, these two different dualities carry the sam
name in the current literature.
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version, without using the information on the solution in the
dual theory. Having obtained these two sets of double-
extreme black holes one can check that the solutions ar
actually connected by symplectic transformation. Or, one
could use the solution available on one side and perform a
relevant symplectic transformation to get the double-extreme
black holes of the dual theory and the mass-area formula in
terms of dual charges. One can verify that the transformed
solution indeed solves the equations of the dual theory. In
Sec. III we proceed with solving ‘‘stabilization equations’’
on the prepotential side and we consider the prepotentia
F5X1X2X3/X0. We derive the new mass-area formula for
this theory. In Sec. IV we show that alternative derivation of
STU-symmetric, double-extreme black holes is possible: via
symplectic transformation from the dual version of the
theory without the prepotential, i.e., from the theory where
S is not symmetric withT,U. In Sec. V these two sets of
double-extreme black holes are studied from the perspectiv
of string triality and the difference between the new and
stringy black hole solutions is explained. In the outlook~Sec.
VI ! we point out the implication of our newd54 area for-
mulas for Calabi-Yau moduli space and the corresponding
d55 area formulas. We also comment on string loop correc-
tions and their possible effect on supersymmetric black holes
and vice versa.

II. SYMPLECTIC COVARIANCE
OF ‘‘STABILIZATION EQUATIONS’’

Stabilization equations fornv complex moduli of super-
symmetric black holes inN52 theory near the horizon have
the form @1#

S pL

qL
D 5ReS 2i Z̄LL

2i Z̄ML
D , ~4!

where the central charge@6#

Z~z,z̄,q,p!5eK~z, z̄ !/2@XL~z!qL2FL~z!pL#

5~LLqL2MLp
L! ~5!

depends on moduli and on 2nv12 conserved charges
(pL,qL). (L

L,ML) are covariantly holomorphic sections de-
pending on moduli. For double-extreme black holes@8# with
frozen moduli these equations implicitly define the frozen
moduli as functions of charges.

Symplectic transformation acts on charges as well as on
sections

S p̂q̂D 5S A B

C DD S pqD , S X̂
F̂
D 5S A B

C DD S XF D , ~6!

and provides the relation between the dual versions of the
theory. Here,

S A B

C DD PSp~2nv12,Z!. ~7!

Stabilization equations are covariant under symplectic trans
formations
e
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S p̂L

q̂L
D 5ReS 2i Z̄ L̂L

2i Z̄M̂LD , ~8!

since the central charge is invariant:

Z5~LLqL2MLp
L!5~ L̂Lq̂L2M̂Lp̂

L!, ~9!

and the sections are covariant.
We are interested in dual relation between black holes

two theories. The first one can be defined in terms o
prepotential2

F5
1

2
dABCt

AtBtC5Shabt
atb, X051, ~10!

where

t15S, dABC5S d1ab5hab

0 otherwiseD , A,B,C51,2, . . . ,n11,

~11!

and

hab5diag~1,2,2, . . . ,2 !, a,b52, . . . ,n11.
~12!

This prepotential corresponds to the produ
manifold @SU(1,1)/U(1)#3@SO(2,n)/SO(2)3 SO(n)#. The
@SU(1,1)/U(1)# coordinate is the axion-dilaton fieldS. The
remainingn complex modulit i are special coordinates of th
SO(2,n)/SO(2)3SO(n) manifold. In particular, when
n52 we have

F5
1

2
dABCt

AtBtC5
1

2
S@~ t2!22~ t3!2#. ~13!

This theory is defined by three complex moduli and fo
gauge groups and the corresponding manifold
@SU(1,1)/U(1)3@SO(2,2)/SO(2)3SO(2)#.

If we introduce the notation

t2[
1

A2
~T1U !, t3[

1

A2
~T2U !, ~14!

the prepotential becomes

F5STU. ~15!

This theory has the symmetry of the manifol
@SU(1,1)/U(1)#3, which corresponds to the embedding
@SU(1,1)/U(1)#2 into SO(2,2)/SO(2)3SO(2). The
STU-symmetric theory with the cubic holomorphic prepo
tential ~15! is associated with particular Calabi-Yau modu
space. It is related to the dual version of the theory via sy
plectic transformation@6#. We will study this relation in the
context of black holes in Sec. IV.

There are two possibilities to find double-extreme bla
holes in the theory with the prepotential. Either directly sol

2We are using here notation of@16#.
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the stabilization equations or perform the dual rotation from
the known solution. In the next section we will first find the
black holes directly inSTU-symmetric model.

III. DOUBLE-EXTREME BLACK HOLES IN THE STU
MODEL

TheSTUmodel @17# is described by the prepotential

F~X!5
di jkX

iXjXk

X0 , i , j ,k51,2,3. ~16!

For our case,

F~X!5
X1X2X3

X0 . ~17!

Holomorphic section determined by that prepotential
has a form: (XL,FL) with FL5(]F)/(]XL) and L
5(0,i51,2,3). Special coordinateszi are determined by

zi5
Xi

X0 , X051. ~18!

Corresponding Ka¨hler potential is

K52 ln@2 idi jk~z2 z̄! i~z2 z̄! j~z2 z̄!k#. ~19!

and we will use also

z15S, z25T, z35U. ~20!

In terms of special coordinates the holomorphic sections
are given by

XL5S 1

z1

z2

z3
D , FL5S 2z1z2z3

z2z3

z1z3

z1z2
D . ~21!

The stabilization equations are

pL5 ieK/2~ Z̄XL2ZX̄L!, ~22!

qL5 ieK/2~ Z̄FL2ZF̄L!. ~23!

We can eliminateZ̄ from these equations so that

XLqS2pLFS5 ieK/2Z~X̄LFS2XLF̄S!. ~24!

This is the matrix equation we used in@8# to solve for the
solution of frozen moduli. In what follows we will solve for
z1 as a function of charges. The solution forz2 andz3 can be
obtained in an analogous way as a result of symmetry be-
tween the three moduli.

Here are the components@(L,S)5(1,0), (0,1),
(1,1), (2,3), and (3,2), respectively# from the matrix
equation~24! we need, for the derivation ofz1,

q01p1z2z35 ieK/2Z~ z̄ 1z̄ 2z̄ 32 z̄ 1z2z3!, ~25!

q12p0z2z35 ieK/2Z~z2z32 z̄ 2z̄ 3!, ~26!

q1z
12p1z2z35 ieK/2Z~ z̄ 1z2z32z1z̄ 2z̄ 3!, ~27!
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q3z
22p2z1z25 ieK/2Z~ z̄ 2z2z12z2z̄ 2z̄ 1!, ~28!

q2z
32p3z1z35 ieK/2Z~ z̄ 3z3z12z3z̄ 3z̄ 1!. ~29!

Using Eqs.~25! and ~26! we can eliminate the factor
ieK/2Z and obtain

z2z35
q1z̄

11q0
p0z̄ 12p1

. ~30!

Using Eqs.~27! and~30! we can obtain a simple formula
for ieK/2Z:

ieK/2Z5
~p0z12p1!

~ z̄ 12z1!
. ~31!

Substituting Eq.~31! into Eqs.~28! and~29!, respectively,
we can expressz2 andz3 in terms ofz1 and the charges only:

z̄ 25
~p2z12q3!

~p0z12p1!
, and z̄ 35

~p3z12q2!

~p0z12p1!
. ~32!

Finally, using Eq.~30! and the above equations to elim
natez2 andz3 we are getting a quadratic equation forz1:

~z1!21
~p•q!22p1q1
~p0q12p2p3!

z12
~p1q01q1q2!

~p0q12p2p3!
50, ~33!

where

~p•q!5~p0q0!1~p1q1!1~p2q2!1~p3q3![pLqL ,
~34!

and the solution forz1 moduli is

z15
~p•q!22p1q1
2~p3p22p0q1!

7 i
AW

2~p3p22p0q1!
, ~35!

where

W~pL,qL!52~p•q!214@~p1q1!~p
2q2!1~p1q1!~p

3q3!

1~p3q3!~p
2q2!#24p0q1q2q314q0p

1p2p3.

~36!

The functionW(pL,qL) is symmetric under transformations
p1↔p2↔p3 andq1↔q2↔q3 . Finally, the solutions for all
three complex moduli are

zi5
@~p•q!22piqi #7 iAW
2~3di jkp

jpk2p0qi !
. ~37!

There is no summation overi in piqi . For the solution to be
consistent we have to requireW.0, otherwise the moduli
are real and the Ka¨hler potential is not defined.

At this point the choice of signs in the imaginary part o
the moduli is ambiguous. However, to preserve the obvio
i-

:

f
us

exchange symmetries, we want to choose common signs fo
all. In fact, it turns out that only the ‘‘2 ’’ is consistent as we
shall see.

With these expressions for thezi the Kähler potential
equation~19! is easily computed. We find

e2K56
W3/2

v1v2v3
, ~38!

where

v i5~3di jkp
jpk2p0qi !. ~39!

It is also useful to calculate the product of threev i ’s
which appears to be positive:

v1v2v35
1
4 $~p0!2W1@2p1p2p32p0~p•q!#2%.0,

~40!

with L50,1,2,3,
For the Kähler potentiale2K to be positive we have to

pick up only one choice of sign for each imaginary part of
the special coordinates in Eq.~37!; it has to be negative:

zi5
@~p•q!22piqi #2 iAW
2~3di jkp

jpk2p0qi !
⇒e2K5

W3/2

v1v2v3
.0. ~41!

We can proceed now with the calculation of the central
charge to find the black hole mass, which for double-extreme
black holes is proportional to the area of the black hole ho-
rizon. We find that

eKZZ̄5
~p0!2W1@2p1p2p32p0~p•q!#2

4W
. ~42!

We deduce for the mass/area

ZZ̄5M25
W3/2

v1v2v3

~p0!2W1@2p1p2p32p0~p•q!#2

4W
,

~43!

which finally gives the beautiful result

ZZ̄5M25
A

4p
5@W~pL,qL!#1/2. ~44!

This is a very nice and simple expression for the area which
relies on the fact that the numerator of the second expressio
in Eq. ~43! and the product of thev i cancel. Thus, we have
completely described the double-extreme black hole solu-
tions with frozen moduli in theSTU-symmetric theory. The
geometry is that of extreme Reissner–Nordstro¨m-type with
the mass/area formula as function of quantized charges give
in Eq. ~36!:

ds25S 11
@W~p,q!#1/4

r D 22

dt22S 11
@W~p,q!#1/4

r D 2dxW2.
~45!

It is instructive to remind that our mass/area formula has also
a nice symplectic-invariant form, as explained in@1,8#:
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M252
1

2
~pL,qL!S ~ ImN1ReNImN21ReN!LS ~2ReNImN21!L

S

~2ImN21ReN!S
L ~ ImN21!LS D

fix

S pS

qS
D

52
1

2
~pL,qL!S ~ ImF1ReFImF21ReF !LS ~2ReFImF21!L

S

~2ImF21ReF !S
L ~ ImF21!LS D

fix

S pS

qS
D , ~46!
where the period matrixN as well as the second derivativ
of the prepotentialF are functions of moduli which at the
fixed point near the black hole horizon become functions
charges, as defined in Eq.~41!.

If we parametrize all three moduli in terms of axion
dilaton fields,

zi5ai2 ie2h i, ~47!

where

ai5
~p•q!22piqi

2v i
, e2h i5A W

2v i
, ~48!

the Kähler potential is

e2K528 ImSImTImU58e2h1e2h2e2h3. ~49!

This parametrization is possible under the condition that
three combination of charges are positive,

v i.0. ~50!

IV. DUAL ROTATION
OF DOUBLE-EXTREME BLACK HOLES

The double-extreme black holes for this model witho
the prepotential for the general case of arbitraryn as well as
for n52 have been found before@8#. The resume of this
black hole forn52 is the following. The solution is defined
in terms of four magnetic and four electric charg
( p̂L,q̂L) with L50,1,2,3. The frozen moduli are given by3

S5
p̂•q̂2 i @ p̂2q̂22~ p̂•q̂!2#1/2

p̂2
, ~51!

T5
X̂32X̂1

X̂02X̂2 5
S̄~ p̂32 p̂1!2~ q̂32q̂1!

S̄~ p̂02 p̂2!2~ q̂02q̂2!
, ~52!

U5
2X̂32X̂1

X̂02X̂2 5
S̄~2 p̂32 p̂1!2~2q̂32q̂1!

S̄~ p̂02 p̂2!2~ q̂02q̂2!
, ~53!

and the mass/area formula is

ZZ̄5M25
A

4p
5@ p̂2q̂22~ p̂•q̂!2#1/2. ~54!

3We are choosing the negative sign for the imaginary part oS
here for the sake of the dual rotation to the prepotential vers
using the symplectic matrix~56! below.
e

of

-

all

ut

es

The symplectic transformation between the theory without
the prepotential~version with carets! to the one with the
prepotential~version without carets! is @6#

Sp~8,Z!{S A B

C DD 5S A B

2B AD ~55!

with

A5
1

A2 S 1 0 0 0

0 0 21 21

21 0 0 0

0 0 1 21

D ,
B5

1

A2 S 0 21 0 0

0 0 0 0

0 21 0 0

0 0 0 0

D . ~56!

Starting with the prepotentialF5STU in terms of special
coordinates we have the holomorphic section

XL5S 1

S

T

U

D , FL5S 2STU

TU

SU

ST

D . ~57!

After symplectic transformation defined in Eqs.~6! and~56!
we get, for the sections with carets,

X̂L5
1

A2 S 12TU

2~T1U !

2~11TU!

T2U
D , F̂L5S SX̂0

SX̂1

2SX̂2

2SX̂3
D 5ShLSX̂

S,

~58!

where the metric ishLS5(1122). This theory does not
admit any prepotential@6#.

We can now relate the known results of the version with-
out a prepotential~for which we use variables with a caret! to
the ones obtained here. From Eqs.~6! and ~56! we find the
transformation betweenp̂,q̂ andp,q to be

f
ion,
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F p̂L

q̂L
G5

1

A2 3
p02q1

2p22p3

2p02q1

p22p3

p11q0

2q22q3

p12q0

q22q3

4 . ~59!

This transformation gives us the relations

p̂252~p2p32p0q1!52v1 , ~60!

p̂•q̂5p•q22p1q1 , ~61!

hence we find

S5z1 , ~62!

whereS is the first moduli field of the version without the
prepotential, and~with a little more work! we have

p̂2q̂22~ p̂•q̂!25W. ~63!

ForT andU we get, using the relation between charges~59!,

T5
S̄~ p̂32 p̂1!2~ q̂32q̂1!

S̄~ p̂02 p̂2!2~ q̂02q̂2!
5
S̄p22q3

S̄p02p1
5z2 , ~64!

U5
S̄~2 p̂32 p̂1!2~2q̂32q̂1!

S̄~ p̂02 p̂2!2~ q̂02q̂2!
5
S̄p32q2

S̄p02p1
5z3 .

~65!

V. STRING TRIALITY AND STU BLACK HOLES

Our results allow for a comparison with the string trialit
picture as described in@13#. There, a six-dimensional string,
described by the low energy action

I 65
1

2k2E d6xA2Ge2FSRG1GMN]MF]NF

2
1

12
GMQGNRGPSHMNPHQRSD ~66!

with M ,N50,...,5 wasconsidered. This string might be a
truncated version of a heterotic or a type II string. Upo
toroidal compactification toD54 one obtains aN52 super-
gravity theory coupled to three vector multiplets. The fou
dimensional metric is related to the six-dimensional one b

GMN5S gmn1Am
mAn

nGmn Am
mGmn

An
nGmn Gmn

D . ~67!

where the space-time indices arem,n50,1,2,3 and the inter-
nal indices arem,n51,2. Two more vectors arise from the
reduction of theB field.
y

n

r-
y

One also finds six scalars, four of which are moduli of the
two-torus. We parametrize the internal metric and two-form
as

Gmn5eh32h2S e22h31a3
2 2a3

2a3 1
D , ~68!

and

Bmn5a2emn . ~69!

h1, the four-dimensional dilaton, is given by

e2h15e2FAdetGmn5e2~F1h2!. ~70!

The sixth scalar is the axiona1 which arises from dualization
of the three-form field strength in four dimensions.

The scalars are typically combined into three complex
scalars, which in notation suitable for our previous sections
are

z15S5a12 ie2h1,

z25T5a22 ie2h2, ~71!

z35U5a32 ie2h3.

Here,S is the axion-dilation field of the heterotic string,T
andU are the Ka¨hler form and the complex structure of the
torus, respectively. These three scalars are obviously the
ones considered so far in this paper. The four vectors are
combined to a vectorAm

a with a51,2,3,4. Details can be
found, e.g., in@13#. In fact, the electric and magnetic charges
can be put together to an SP~8! vector as given in the earlier
chapters.

The symmetry of this theory is SL(2,Z)3O(2,2,Z)/
O(2)3O(2). The SL(2,Z) component is the famousS du-
ality, a conjectured nonperturbative symmetry of string
theory. The second factor, which is just a product of two SL
(2,Z) plus their exchange, is related to perturbative
T-duality symmetry. In the following,T duality will denote
the duality symmetry generated by the first SL(2,Z), which
acts on the Ka¨hler form, whereas the second one is called
U duality and it acts on the complex structureU. All three
symmetries act on the scalars by

zi→
aizi1bi
cizi1di

~72!

with aidi2bici51. The electric and magnetic charges trans-
form as vectors under the three duality symmetries@where
the SP~8! vector has to be converted into an SL(2)3 vector
@13#! #.

This theory is precisely the one studied in@8#. In @13# it
was found that the theory allows two~or five, according to
taste! dual descriptions where the roles ofS, T, andU get
interchanged. For example,S is the dilaton/axion field for the
heterotic string, the Ka¨hler form for the type IIA string and
the complex structure of the type IIB string. However, all
those theories were of the same type, in the sense that~at
least in the truncated versions considered here! two symme-
tries were perturbative and one was nonperturbative.
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This is easily seen by considering~for example! the four-
dimensional heterotic Lagrangian~in the absence of axionic
fields!

L5A2gSR2
1

2( ~]h i !
22

1

4
~e2h12h22h3F1F1

1e2h12h21h3F2F21e2h11h21h3F3F3

1e2h11h22h3F4F4! D . ~73!

Clearly, h2→2h2 andh3→2h3 ~accompanied by an ex
change of a few field strengths! are off-shell symmetries,
whereash1→2h1 requires dualizations of field strengths.

How does theSTUmodel considered in this paper tie i
with those three~or six! string theories?4 Obviously, it can-
not correspond to either of those, since it treatsS, T, and
-

n

U on equal footing. This is already clear from the prepoten-
tial, but also the action gives some insights. It can be ob-
tained from

LV5ImNLSFLFS1ReNLSFL*FS. ~74!

We find

FLS5S 2di jkzizjzk 23dmi jz
izj

23dli j z
izj 6dmliz

i D , ~75!

from which one can deduce

NLS5F̄LS12i
~ ImFLV!~ ImFPS!XVXP

~ Im FVP!XVXP , ~76!

whereXL5(1,z1,z2,z3). We do not try to expressN in full
generality; however, we note that the lower three by three
matrixNi j has the extremely simple form
Ni j5S 2 ie1h12h22h3 a3 a2

a3 2 ie2h11h22h3 a1

a2 a1 2 ie2h12h21h3
D . ~77!
i

The vector part of the Lagrangian in the absence of a
axionlike fields is then given by

LV52~e2h12h22h3F0F01e1h12h22h3F1F1

1e2h11h22h3F2F21e2h12h21h3F3F3!. ~78!

Note that this Lagrangian has perfect exchange (1↔2↔3)
symmetry, but it is not invariant under anyh i→2h i duality
transformation~accompanied by the appropriate exchange
vector fields!. Hence, the theory has neitherS, nor T, nor
U duality ~in the notation of@13#! realized off-shell.

We can also compare howS, T, andU dualities~72! are
realized as SP~8! matrices. For this we go first in a bas
(SuTU) ~heterotic string compactified on a two-torus!. This
can be done by the symplectic rotation

C:~pL,qL!→~ p̃L,q̃L!5~p0,2q1 ,p
2,p3uq0 ,p1,q2 ,q3!.

~79!

In this new basis the SL(2,Z) transformations are realized b
a matrix ~55! with @19#

4This question was also addressed in a slightly different contex
Ref. @18#.
ny

of

s

y

S→
aS1b

cS1d
: by aA5dD5add i j ;

bB5cC5bcS 0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

D , ~80!

T→
aT1b

cT1d
: by B5C50,

A5~DT!215S d 0 c 0

0 a 0 2b

b 0 a 0

0 2c 0 d

D , ~81!

U→
aU1b

cU1d
: by B5C50,

A5~DT!215S d 0 0 c

0 a 2b 0

0 2c d 0

b 0 0 a

D . ~82!

As we can see, in this basis only theS duality is nonpertur-
bative~exchange of electric with magnetic charges! whereas

t in
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the T andU dualities act diagonally, i.e., exchange elect
with electric and magnetic with magnetic quantum numbe
Finally, to get the transformation for our original charges w
have to invert the transformationC. Combining all symplec-
tic transformations we find for our charges in theSTUbasis
the transformations

S pL

qL
D→1

dp01cp1

bp01ap1

dp21cq3

dp31cq2

aq02bq1

2cq01dq1

bp31aq2

bp21aq3

2
SL~2!S

;

1
dp01cp2

dp11cq3

bp01ap2

dp31cq1

aq02bq2

bp31aq1

2cq01dq2

bp11aq3

2
SL~2!T

;

31
dp01cp3

dp11cq2

dp21cq1

bp01ap3

aq02bq3

bp21aq1

bq11aq2

2cq01dq3

2
SL~2!U

. ~83!

As expected, one finds thatW as given in Eq.~36! or the
area of the horizon~mass! is invariant under these transfor
mations„or @SL(2)#3 symmetric….

Let us turn back to the Lagrangians~73! and ~78!. Both
Lagrangians are on-shell equivalent, Lagrangian~73! corre-
sponds to the (SuTU) basis whereas Lagrangian~78! is our
(STU) basis and the transformationC maps both. This trans-
formation is a dualization ofF1 and a renaming
(F0 ,F1 ,F2 ,F3)→1/2(F1 ,F3 ,F4 ,F2). Note that under dual-
ization, the prefactor ofF1 gets inverted. This dualization
makes all duality symmetries in the (STU) basis nonpertur-
bative. The statement that in this symmetric basis none of
dualities is perturbative is equivalent to the statement t
there is no basis in which all of the dualities are perturbati
The most we can achieve is to make only one nonpertur
tive and two perturbative. We have considered the c
where theS transformation is nonperturbative. On equ
footing we could takeT or U. These three possibilities fix
ric
rs.
e

-

the
hat
ve.
ba-
ase
al

then the three underlying string theories~heterotic, type IIa
or type IIb!. When all three theories are symmetrized by
going to theSTU basis, immediately all dualities become
nonperturbative.

These transformations can be nicely visualized in the
form of a cube, as it was done in@13#. Figure 1 shows how
the dualities transform the field strengths into each other and
their duals in the (STU) model. Figures 1 and 2 also illus-
trate the crucial difference with the (SuTU), (TuUS), and
(UuST) models of @13# ~Fig. 2!. In the STU theory, the
fundamental field strengths~or electric charges! are located
aroundF0, whereas in the (SuTU), (TuUS), and (UuST)
models the fundamental fields were located on one side of
the cube, allowing two dualities to be perturbative.

The black holes with vanishing axions and finite scalars
all have four charges. These charges must be located on four
corners of the cube which are NOT connected by edges.
Hence, the choices one has areq0 ,p

1,p2,p3 ~with product of
four chargesq0p

1p2p3 positive! and p0,q1 ,q2 ,q3 ~with
product of four chargesp0q1q2q3 negative!, which is con-
sistent with our results. In theS-, T-, orU-string picture one
always needed two electric and two magnetic charges.

VI. OUTLOOK

In conclusion, we have found a new type ofd54 super-
symmetric black holes in the context ofN52 special geom-

FIG. 1. Duality transformations in theSTUmodel. The funda-
mental field strengths are not located on one side.

FIG. 2. Duality transformations in theS,T, andU strings. The
fundamental field strengths are located on one side and two duality
symmetries are perturbative. The field strengths have different in-
dices from Fig. 1, because the ones here are fundamentalS-string
fields.
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etry related to Calabi-Yau threefold. The main differen
with the existing supersymmetric black holes is a complet
democratic treatment of all moduli of the theory. This is due
to our use of the version of special geometry with the p
potential F5dABC(X

AXBXC)/X0 @3# where dABC are real
symmetric constant tensors. A particular model of this ty
with F5STU gives no preference to any of the moduli an
therefore, none of them can play a role of coupling constan
This makes the new (STU) black holes different from
stringy (SuTU), (TuUS), and (UuST) black holes@8,13#,
where one of the moduli (S in heterotic case,T in type IIa
case andU in type IIb case! does play the role of the cou
pling constant.

One may try to relate our newd54 black holes tod55
supersymmetric black holes described in@1#. The area for-
mula found there depends on symmetric tensordABC as

Zfix5A@dAB~q!#21qAqB, A;$@dAB~q!#21qAqB%3/4,
~84!

where@dAB(q)#215@dAB„t(z)…u] iZ50#
21 and (dAB)21 is the

inverse ofdABCt
C. Equation~84! applies in particular to 11-

dimensional supergravity compactified on Calabi-Yau thre
fold.

The new result found in this paper for four-dimension
black holes is the value of the modulitA as the function of
ce
ely

re-

pe
d
ts.

-

e-

al

charges at the fixed point] iZ50 for particular example of
dABC . It can be used to find also the area of the five-
dimensional black holes as the function of charges for thi
theory.

It remains to be seen if it is possible to address the issu
of quantum corrections in string theory using extreme black
holes of classical moduli spaces as the starting point. In thi
paper we have established a duality relation between string
(SuTU), (TuUS)-,and (UuST) black holes and ‘‘demo-
cratic’’ STUblack holes. Stringy black holes were known to
be related to each other by the so-called triality in such a wa
that only one ofS,T,U dualities was nonperturbative@13#.
The ‘‘democratic’’ black holes give us some new insights
into the spectrum of states of the fundamental theory: a
dualities there are nonperturbative.
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