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We find double-extreme black holes associated with the special geometry of the Calabi-Yau moduli space
with the prepotentiaF = STU. The area formula i§ TU-moduli independent and haSL(22)]® symmetry in
space of charges. The dual version of this theory without a prepotential treats the @lasymmetric vs
T,U moduli. We display the dual relation between ne®/T() black holes and stringy§TU) black holes
using a particular Sp(&) transformation. The area formula of one theory equals that of the dual theory when
expressed in terms of dual charges. We analyze the relation bet®ddd) (black holes to string triality of
black holes: §]TU), (T|US), (U|ST) solutions. In the democrati® TU-symmetric version we find that all
three S, T, and U duality symmetries are nonperturbative and mix electric and magnetic charges.
[S0556-282196)06122-X]

PACS numbg(s): 04.70.Bw, 04.62tv, 04.70.Dy, 11.25.Hf

I. INTRODUCTION We will focus mostly on STUsymmetric model
F=X1X?X3/X° and will find the moduli-independent
The nonperturbative properties of the future fundamental SL(2Z)]® symmetric area formula. The moduli of this
theory manifest themselves in the duality properties of théheory are coordinates of thgSU(1,1)/U(1)]® manifold.
area formulas of the supersymmetric black hole horizon. Th@®uality symmetry of this theory i$SL(2.2)]%. The dual
universal entropy-area formula of supersymmetric blackpartners of these black holéshere one of the moduli, e.g.,
holes is given by the central charge extremized in the moduls is singled out and whose imaginary part plays the role
spaceZs, and depends only on quantized charges. The uniof string coupling are already known[8]. The moduli
versal formula obtained by Ferrara and one of the autfidrs in this version of the theory are coordinates of
is S=A(p,q)/4=m|Zs|* with «=2(3/2) ford=4 (d=5).  [SU(1,1)/U(1)X[SO(2,2)/SO(2x SO(2)] manifold. S
This universal formula has various implementations induality, or SL(2Z) symmetry associated with tH& moduli
different theories. A particularly rich class of area formulasin string theory, has a nonperturbative character, whefeas
may be expected to exist IN=2 supersymmetric theories andU dualities, related to S@,2) symmetry, have perturba-
which are characterized by different choices of the holomortive character. Perturbative symmetries of string theory do
phic prepotential and/or symplectic sections. A beautiful in-not mix electric and magnetic charges. Stringy black holes
terplay between the geometry of specialhia manifolds treat one of the moduli on different footing than treating
[2—-6] and space-time geometry of supersymmetric blackothers. This is due to the fact that 11-dimensional supergrav-
holes has been discovered recemiyl,g|. ity has to be reduced td=10 first and this makes 11th
In this paper we will find the four-dimensiongdD)  component of the metric or the dilaton, special. If, however,
double-extreme black holes in a classNof 2 theories with  we are looking for exact nonperturbative solution of 11-
the prepotentiaF = dgo(X*XBXC)/X° [3]. These theories dimensional supergravity, we may expect some solutions
with real symmetric constant tensalgg are related to ge- Wwhere the radius of 11th, 6th, and 5th dimensions are all on
ometry occurring in five-dimensional supergra\i8} where  equal footing. These are o&TU black holes. They may be
the termfd g FA/\FBAAC is present in the action. These related toM, F, Y, or whatever fundamental theory which is
theories are also related to the special geometry of Calabiot the conventional theory of strings. To establish the rela-
Yau moduli spaces wheig, g are the intersection numbers tion between new $TU)-symmetric black holes and their
of the Calabi-Yau manifold, antf*=X"/X° are the moduli dual (S|TU) stringy partners is our main goal. In string tri-
fields of the Kéler clasg10]. The theories of this class are ality picture[13] the role of S may be replaced by or by
also referred to as “very special geometrj11] and “real U but still there is one moduli different from the others and
special geometry’[12]. only one duality symmetry is nonperturbative whereas the
other two are perturbative. We will find that all thr&eand
T and U duality symmetries in “democratic” black hole

“Electronic address: behrndt@qft2.physik.hu-berlin.de solutions are nonperturbative. This is not too surprising:
Electronic address: kallosh@renata.stanford.edu black holes are nonperturbative objects.

*Electronic address: rahmfeld@Ileland.stanford.edu We will find that the area of the horizon in
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ASTY(p.q)=A8TY(p.q), (1)  version, without using the information on the solution in the

dual theory. Having obtained these two sets of double-
where the charges are related by particular SpY&luality  extreme black holes one can check that the solutions are
transformation. This transformation has been found@h actually connected by symplectic transformation. Or, one
and relates the symplectic sections and charges in two thegeould use the solution available on one side and perform a
ries. relevant symplectic transformation to get the double-extreme
The duality symmetry of this area formula is of an un- black holes of the dual theory and the mass-area formula in
usual form. The typical situation studied before was that théerms of dual charges. One can verify that the transformed
area as a function of charges was invariant under dualitgolution indeed solves the equations of the dual theory. In

transformation: Sec. Il we proceed with solving “stabilization equations”
A on the prepotential side and we consider the prepotential

A(p,q)=A(p,q). (20 F=xX2X3/X°. We derive the new mass-area formula for

this theory. In Sec. IV we show that alternative derivation of

h ic C : : P d=4 1411 h STUsymmetric, double-extreme black holes is possible: via
the quartic Cartan invariant of £n d=4,[14,1,19, where o ectic transformation from the dual version of the

the ZX.ZS unhatted §,q) are Acharges before duality trans- theory without the prepotential, i.e., from the theory where
formation and 28 hatted f,q) are charges after&rans- g js pot symmetric withT,U. In Sec. V these two sets of
formation. This duality transformation was a property of oney, |hje-extreme black holes are studied from the perspective
_spec_n‘lc theory: in this case, for examphés=8 supergravity ot gyring triality and the difference between the new and
in d=4. The equations of motion of this theory have hiddengyingy plack hole solutions is explained. In the outldslec.
symmetry and it manifests itself in-Bnvariance of the area V1) we point out the implication of our new=4 area for-
formula of the black holes of this theory with 1/8 of super- ., las for Calabi-Yau moduli space and the corresponding
symmetry unbroken: d=5 area formulas. We also comment on string loop correc-

N=8  AN=8/A AN _ = tions and their possible effect on supersymmetric black holes
AN%(p,q)=AN"%(p,§) = 4m\I(p,a) =4mI(P.Q). 3 andvice versa

The new phenomenon which we observe here by studying Il. SYMPLECTIC COVARIANCE
the black holes in the framework of special geometry is the OF “STABILIZATION EQUATIONS”
following. Black holes in two versions of the theory related
by symplectic transformation have two different area formu-
las, when the area of the original version is expressed i
terms of charges of original theory and the area of the trand

For exampleU-duality! invariant area formula is given by

Stabilization equations fon, complex moduli of super-
ymmetric black holes ilN= 2 theory near the horizon have
e form[1]

formed(dual) theory is expressed as a function of charges of A S
dual theory. However, these two area formulas are related as P _ 2'5" (4)
in Eq. (1). If one has the area in one theory and the transfor- aa 2iZM )’
mation which defines the dual theory is known, the area in
the other theory can be found using Efj). The reason for where the central chardé]
the area formulas to be different is that they carry different o _
symmetries:[SU(1,1)/U(1)® in one case andSU(1,1)/ 2(2,2,q,p) ==X (2)q, —F o (2)p"]
U(1)]X[S0O(2,2)/SO(2X SO(2)] in the other case. A A
The paper is organized as follows. In Sec. Il we discuss = (L7, =M,p™) ®)

the basic equationgl] defining the double-extreme black depends on moduli and onn2+2 conserved charges

holes ofN=2 theory[8] and the values of moduli as func- (p2.q.). (LA,M ) are covariantly holomorphic sections de-

tions of charges. We refer to these equations as ‘“stabiliza® . . ;
tion equations.” The main property of these equations reI—pendlng on moduli. For double-extreme black hqigpwith

evant to present investigation is that they are symplectiérozen moduli these equations implicitly define the frozen

i ) . oduli as functions of charges.
covariant. Therefore, once the solution for moduli in terms o . .
; . : Symplectic transformation acts on charges as well as on
charges is known in one version of the theory, the dual so-

lution can be found by applying the symplectic transforma->¢1°"

tion to the known solution. We explain this for the case A A B X A B\/X
of ST 2,n] manifold, [SU(1,1)/U(1)]X[SO(2n)/SO(2) (? - P ’ = . (8
X SO(n)] symmetric theory which does not admit a prepo- q C DJ/\q F C DJ\F

tential and the dual version of it which admits the prepoten- _ . _
tial. We also explain that in both theories one has an optiond provides the relation between the dual versions of the

of solving for double-extreme black holes directly in eachtheory. Here,
eSp2n,+27 7
.
C D vt22) ™

U duality in the context of E symmetry should not be confused
with U duality in the context of SL(Z) symmetry related tdJ
moduli. Unfortunately, these two different dualities carry the sameStabilization equations are covariant under symplectic trans-
name in the current literature. formations
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A 2iZ[ A the stabilization equations or perform the dual rotation from
P _ — ® the known solution. In the next section we will first find the
aa 21ZMy | black holes directly ir§ TU-symmetric model.
since the central charge is invariant: Ill. DOUBLE-EXTREME BLACK HOLES IN THE STU
. . MODEL
—(1 Ay — M= (A8 . _ M. A
2=(L7aa = MapT) = (L7as = MapD), © The STU model[17] is described by the prepotential
and the sections are covariant. de XX XK
We are interested in dual relation between black holes of — kR k=123 6
. . . . F(X) 0 ’ L, 1! - (1 )
two theories. The first one can be defined in terms of a X
prepotentiz
For our case,
1 1y2y3
F=—dasct™BtC=Sy,ztt?, XO0=1, 10 XXX
2 ABC Nap ( ) F(X): XO . (17)
where Holomorphic section determined by that prepotential
dyos= 7 has a form: X F,) with Fy=(aF)/(sX") and A
=S, dage=| . ¢ "* | AB,C=12,...n+1, =(0i=1,2,3). Special coordinates are determined by
0 otherwis
(11 - X
z'=YG, X0=1. (18)
and
Tapg=diag +,—,—,...,=), @B=2,...n+1. Corresponding Klaler potential is
12 K=-I[-idy(z-2'(z-2(z-D". (19

This  prepotential  corresponds to the  product

manifold [SU(L,1)/U(1] X[SO(2n)/SO(2)x SOM)]. The  2nd We will use also

[SU(1,1)/U(1) coordinate is the axion-dilaton fied. The Z'=S, 2°=T, Z%=U. (20
remainingn complex modulit' are special coordinates of the ) ) _ )
SO(2n)/SO(2)XSOM) manifold. In  particular, when In terms of special coordinates the holomorphic sections
n=2 we have are given by
1 1 1 —-z72°73
F= EdABCtAtBtC=§S[(t2)2— (t32]. (13 A A 723
Xh= 2| Fa= A8 | (21
This theory is defined by three complex moduli and four 3 12
z z'z

gauge groups and the corresponding manifold is
[SU(1,1)/U(1)X[S0O(2,2)/SO(2X SO(2)].

. . The stabilization equations are
If we introduce the notation g

. ) pr=ieXZ(zxA—zx1), (22)
t?=—(T+U), t*=—(T-U), 14 KiSE o=
ﬁ( ) \/E( ) (19 qr=ie"AZF,—ZF,). (23)
the prepotential becomes We can eliminate from these equations so that
F=STU (15) XAgy—pFy=ie€?Z(X Fy =X Fy). (24

This theory has the symmetry of the manifold This is the matrix equation we used [i] to solve for the

[SU(1,1)/U(1)3, which corresponds to the embedding of solution of frozen moduli. In what follows we will solve for
[SU(l'l)/U(l)]z’ into SO(2,2)/SO(2XSO(2).  The z! as a function of charges. The solution fBrandz® can be
STU-symmetric theory with the cubic holomorphic prepo- obtalneg |nhan anal((j)gl(_)us way as a result of symmetry be-
tential (15) is associated with particular Calabi-Yau moduli tw?_('an the three E‘O ull. A S)=(1.0 01
space. It is related to the dual version of the theory via sym- ere are tde components[( I, )=( ’h)’ (0, )
plectic transformatiori]. We will study this relation in the (1:1), (2,3), and (3,2), respectivglyfrom the matrix
context of black holes in Sec. IV. equation(24) we need, for the derivation af,

There are two possibilities to find double-extreme black Qo+ pi22B=i1eK22(252223— 77 2%2%) (25)
holes in the theory with the prepotential. Either directly solve ’

q,— p°Z?B=ieX?z(22-2723), (26)

2We are using here notation pE6]. a2t —plz2B=ieN?z(z'2?2 - 7'2%Z3), (27
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Q32— p?2t % =ieN?2(z%2%7* - 722777, (28)
0,28 — p®2t8=ieN?2(z32% - °2°77). (29)

Using Egs.(25 and (26) we can eliminate the factor

ieX2z and obtain

—
2 3:qlz +q0

p0ZT—pT* (30
Using Eqgs.(27) and(30) we can obtain a simple formula
for iek?z;
(p%z'—ph
K25 _
ieki2z T2 (32)

Substituting Eq(31) into Egs.(28) and(29), respectively,
we can express” andz® in terms ofz! and the charges only:

(p°z'—ay)
(p%2'—phH)”

(pz'—a3)

Z ZW, and?=

(32

Finally, using Eq.(30) and the above equations to elimi-

natez? andz® we are getting a quadratic equation ot

(p-a)—2p'a; , (p'do+ai02)
zH)°+ yans =
(z) (P°a;—p?%P%) ©  (p°aq;—p?p®)

0, (33

where

(p-9)=(p%p) + (p'ay) + (p?dz) + (p3as)=p"ay
(39

and the solution for® moduli is

2 (P@-2p'q . (W
2(p°p°—p°qy)  2(p°p*—p°ay)’

(35

where

W(p*,qa)=—(p-a@)2+4[(p*a.)(p?dz) + (p'dy) (p3as)

+(p3d3)(p2d2)1— 4p°010,03+ 4dop p?p>.
(36)

The functionW(p™,q,) is symmetric under transformations:

plep?-p? andg,—q,—qs. Finally, the solutions for all
three complex moduli are

_[(p-a)—2p'q] i VW
2(3d;jp'p*—p°a)
There is no summation oveérin p'q; . For the solution to be

consistent we have to requil&>0, otherwise the moduli
are real and the Kder potential is not defined.

(37
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exchange symmetries, we want to choose common signs for
all. In fact, it turns out that only the - is consistent as we
shall see. '

With these expressions for the the Kéhler potential
equation(19) is easily computed. We find

W3/2
e K== , (39
(1)1(1)2(1)3
where
;= (3d;;p'p*—p°q)). (39

It is also useful to calculate the product of threg's
which appears to be positive:

w1003= 5 {(p°)2W+[2p*p?p3—p°(p-q)]?}>0,
(40

with A=0,1,2,3,

For the Kaler potentiale™® to be positive we have to
pick up only one choice of sign for each imaginary part of
the special coordinates in E(B7); it has to be negative:

3/2

C[p-g)—2p'gl-ivWwW_
= K_ 0 =€ "=
2(3djp’'p“—p-a;)

We can proceed now with the calculation of the central
charge to find the black hole mass, which for double-extreme

black holes is proportional to the area of the black hole ho-
rizon. We find that

(p%)?W+[2p*p?p3—p°(p-q)]°
aW '

>0. (41

W1Worw3

ekz7=

(42

We deduce for the mass/area

ez WP (PPW[2p'p%p - p%(p- )]’
W1WorwW3 4W !
(43
which finally gives the beautiful result
YT I A 112
2z=M?=,—=[W(p",q\)]"* (44)

This is a very nice and simple expression for the area which
relies on the fact that the numerator of the second expression
in Eq. (43) and the product of the; cancel. Thus, we have
completely described the double-extreme black hole solu-
tions with frozen moduli in th&& TU-symmetric theory. The
geometry is that of extreme Reissner—Nordstitype with

the mass/area formula as function of quantized charges given
in Eqg. (36):

1/4\ -2 1/4\ 2
dsz:<1+[W(p,q)] ) dtz_(H[W(p;q)] )df@.

(49)

At this point the choice of signs in the imaginary part of It is instructive to remind that our mass/area formula has also
the moduli is ambiguous. However, to preserve the obvious nice symplectic-invariant form, as explained i8]
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vze Lo (IMN+ReNImAN 1ReN) s (_ReN]mN_l)AE) pz)
= E(P ,da) (—ImA~ReN)d (ImN~1)A= fix\ A3
1 [(UmF+ReFIMF'ReF),s (—ReFIMF~1),*| [p* 46
——E(P +da) (—ImF~1ReF)2 (ImF~1HA* fix\ A= ’ 49

where the period matriXV"as well as the second derivative The symplectic transformation between the theory without
of the prepotentiaF are functions of moduli which at the the prepotentialiversion with carefsto the one with the
fixed point near the black hole horizon become functions oforepotential(version without carejsis [6]
charges, as defined in E@1).

If we parametrize all three moduli in terms of axion-

dilaton fields ABl_(A B
' o Sp(8,2) s c b=l A (55
Z=a'—-ie 71, 47
where with
- (p-q)—2p' w
g P9 L /_’ 49) 0 0 0
2(Di 2(l)i 1 0 —-1 -1
A: = )
the Kéhler potential is J2{-1 0 0 O
e K=—8ImSIMTImMU=8e 7e "2 73,  (49) 0 0 -1
This parametrization is possible under the condition that all 0 -1 0 O
three combination of charges are positive, 1lo o o o
®;>0. (50) B_ﬁ 0 -1 00 0
0 0 00O

IV. DUAL ROTATION

OF DOUBLE-EXTREME BLACK HOLES . . . . .
Starting with the prepotentidf=STU in terms of special

The double-extreme black holes for this model withoutcoordinates we have the holomorphic section
the prepotential for the general case of arbitnargs well as
for n=2 have been found befol&]. The resume of this

black hole forn=2 is the following. The solution is defined ! -STU

in terms of four magnetic and four electric charges A S _ TU

(p*,q,) with A=0,1,2,3. The frozen moduli are giveny Xt= T Fa= su (57)
U ST

_p-a-ilpa- (p- )4

2 1
P After symplectic transformation defined in Ed6) and (56)
03 31 on3 o ~3 e get, for the sections with carets,
X3-xt s(p*-phH—(§°-aY) wed ons Wi

T TSP 2

S (51)

1-TU sX
—X3-XES(—pP-phH—(— -G 1| =mruy | L | sk .
U==5—<3%7 = o2 a0z 0 I Xh=— v Fa= 2o | =SmasX®,
X"=X S(p”-p9)—(a°—0a%) V2| —(1+TU) —SX
and the mass/area formula is T=-u -sX
(58
— A
_M2— " _TA2A2_ (& . AY2112
ZZ=M 4m [p7a™=(p- )" 64 where the metric igp,s =(+ + — —). This theory does not

admit any prepotentidl6].
We can now relate the known results of the version with-
3We are choosing the negative sign for the imaginary pargof out a prepotentialfor which we use variables with a caréd
here for the sake of the dual rotation to the prepotential versionthe ones obtained here. From E¢8) and (56) we find the
using the symplectic matri¢56) below. transformation betweep,q andp,q to be
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" p°-a; 7
—p*-p°
-p°-q;
p 1| p*-p? 59
aal 2 p'+do
—02—03
p*—do
L d2—03 |
This transformation gives us the relations
p?=2(p’p*~p°qy) =20y, (60)
p-d=p-q-2p'qy, (61)
hence we find
S=1zy, (62

whereS is the first moduli field of the version without the
prepotential, andwith a little more work we have
P*a°—(p-q)°=W. (63

ForT andU we get, using the relation between char&s,

U S(P-PH-(63-§Y)  SpP-as
@ st 2 O
yo SRR - (—E-ah) _SpP-ay

S(P°-pH-(4°-g>  sp°-pt ¥
(65)

V. STRING TRIALITY AND STU BLACK HOLES

Our results allow for a comparison with the string triality
picture as described iL3]. There, a six-dimensional string,
described by the low energy action

Rg+ GMNoy® oy ®

1
|e=ﬁf d®x\-Ge™®

1

12

GMQGNRGPSHMNPHQRS) (66)

with M,N=0,...,5 wasconsidered. This string might be a

truncated version of a heterotic or a type Il string. Upon

toroidal compactification t® =4 one obtains & =2 super-

gravity theory coupled to three vector multiplets. The four-
dimensional metric is related to the six-dimensional one by

_ gﬂv"'A,TAgGmn A,TGmn) 67)

G =
MN AgGmn Gmn
where the space-time indices ater=0,1,2,3 and the inter-

nal indices aram,n=1,2. Two more vectors arise from the
reduction of theB field.
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One also finds six scalars, four of which are moduli of the
two-torus. We parametrize the internal metric and two-form
as

 [e"%m+ad —a,
Gmn=e"3 ”2( _a, 1 ) (68)
and
Bmn=az€mn. (69
71, the four-dimensional dilaton, is given by
e n=e *\deG,,=e (*" 72, (70)

The sixth scalar is the axiam, which arises from dualization
of the three-form field strength in four dimensions.

The scalars are typically combined into three complex
scalars, which in notation suitable for our previous sections
are

Zl:S: al—ie_”l,

22=T=a2_iein2, (71)

Z3=U=a3—ief’73.

Here, S is the axion-dilation field of the heterotic string,
andU are the Kaler form and the complex structure of the
torus, respectively. These three scalars are obviously the
ones considered so far in this paper. The four vectors are
combined to a vectoAZ with a=1,2,3,4. Details can be
found, e.g., if13]. In fact, the electric and magnetic charges
can be put together to an @p vector as given in the earlier
chapters.

The symmetry of this theory is SL2)x0(2,2,2)/
0O(2)X0(2). The SL(2Z) component is the famous du-
ality, a conjectured nonperturbative symmetry of string
theory. The second factor, which is just a product of two SL
(2,2) plus their exchange, is related to perturbative
T-duality symmetry. In the followingT duality will denote
the duality symmetry generated by the first SIAR2,which
acts on the Kaler form, whereas the second one is called
U duality and it acts on the complex structuge All three
symmetries act on the scalars by

a;z;+ bi

- Cizi+di (72)

Z;

with a;d; —b;c;=1. The electric and magnetic charges trans-
form as vectors under the three duality symmetfigbere
the SF8) vector has to be converted into an SL{2jector
[13])].

This theory is precisely the one studied[B]. In [13] it
was found that the theory allows twor five, according to
tastg dual descriptions where the roles 8f T, andU get
interchanged. For examplB,is the dilaton/axion field for the
heterotic string, the Kiaer form for the type IIA string and
the complex structure of the type IIB string. However, all
those theories were of the same type, in the sense(dhat
least in the truncated versions considered hare symme-
tries were perturbative and one was nonperturbative.
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This is easily seen by consideriiiipr example the four-
dimensional heterotic Lagrangidm the absence of axionic
fields)

1 1
L= v—g( R— 52 (am)*— e 727 IEIEL
+e 2t IsE2E2 4 @ mt 2t mapSES

+e Tt T mEARY) | (73

Clearly, 7,— — 7, and 73— — 53 (accompanied by an ex-
change of a few field strengthsre off-shell symmetries,
whereasrn,— — n4 requires dualizations of field strengths.
How does theSTU model considered in this paper tie in
with those thredor six) string theories?Obviously, it can-
not correspond to either of those, since it tregtsT, and

U on equal footing. This is already clear from the prepoten-
tial, but also the action gives some insights. It can be ob-
tained from

Ly=ImN, s F* F*+ReN, s F** 7~ (74)
We find

2diijiZjZk _Sdmijzizj

Fiv= - . 7
AZ _3d|ijZIZJ de”ZI ’ ( 5)
from which one can deduce
— ImF IMF s ) XX
Nyo—F s+ 21 UMFa0)(MFris) -

(Im Fop)XoxT

whereX*=(1,7*,7%,z%). We do not try to expres4/ in full
generality; however, we note that the lower three by three
matrix \j; has the extremely simple form

—jetm—m2mm3 as a,
Mj — as —je~mtn2mm3 a; . (77
a, a, —ie~mm Mt
|
The vector part of the Lagrangian in the absence of any aS+b
axionlike fields is then given by csrg Py aA=dD=add;;
0 1 00
Ly=—(e” M~ m2" 13O0+ et M m2m msFL 1 0 0 O
+e mt TP 2y emmm et 88y - (78) bB=cC=bc 00 0 1’ (80)
0 010
Note that this Lagrangian has perfect exchange;@k—3)
symmetry, but it is not invariant under any— — »; duality - aT+b by B=C=0
transformationaccompanied by the appropriate exchange of cT+d '
vector fields. Hence, the theory has neith8r nor T, nor d c 0
U duality (in the notation of13]) realized off-shell.
We can also compare ho®; T, andU dualities(72) are A=(DT)"1= 0 a 0 -b (81)
realized as Sf8) matrices. For this we go first in a basis b 0 a 0]
(S|TU) (heterotic string compactified on a two-toyughis 0 —c 0 d
can be done by the symplectic rotation
au+ by B=C=0
~A = : y = =0,
C:(pA,qA)H(pA,qA)=(po,—ql,pz.p3|qo,p1,q2,q3>.79 cu+d
( d 0 c
-b 0
. . : . A=(DT)"'= (82
In this new basis the SL(2) transformations are realized by -¢ d O
a matrix (55) with [19] b 0 a

“This question was also addressed in a slightly different context ifAs we can see, in this basis only tBeduality is nonpertur-

Ref.[18].

bative (exchange of electric with magnetic charpedereas
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the T andU dualities act diagonally, i.e., exchange electric Heg
. . . h . 1
with electric and magnetic with magnetic quantum numbers. 3 7 s
Finally, to get the transformation for our original charges we §
have to invert the transformatiah Combining all symplec- 5 f T
tic transformations we find for our charges in tB& U basis 7 g 7
the transformations
dp®+cpt w2 e’
bp®+ap! /
2 e
dp°+cqs; _*71 \
(pA) dp®+ca, 7
— ;
aa ado—ba, FIG. 1. Duality transformations in th8 TU model. The funda-
—cp+da; mental field strengths are not located on one side.
bp*+aq, then the three underlying string theorig®terotic, type lla
bp?+ags or type llb. When all three theories are symmetrized by
SU2)s going to theSTU basis, immediately all dualities become
dp®+cp? nonperturbative.

. These transformations can be nicely visualized in the
dp +cds form of a cube, as it was done ji3]. Figure 1 shows how
bp®+ap? the dualities transform the field strengths into each other and
dp+cq their duals in the $TU) model. Figures 1 and 2 also illus-

1 : trate the crucial difference with theS(TU), (T|US), and
ago—baqp ’ (U|ST) models of[13] (Fig. 2. In the STU theory, the
bp®+ag, fundamental field strength®r electric chargesare located

around F°, whereas in the §TU), (T|US), and U|ST)
—CQptdd, models the fundamental fields were located on one side of
bp'+ags a2 the cube, allowing two dualities to be perturbative.

T The black holes with vanishing axions and finite scalars
dp®+cp® all have four charges. These charges must be located on four
dot+c corners of the cube which are NOT connected by edges.

P Y2 Hence, the choices one has agep*, p?,p® (with product of
dp?+cq, four chargesqyplp?p® positive and p°q;,d,,9; (with
bp’+ap? product of four chargep®q;q,0; negative, which is con-

(83)  sistent with our results. In th®-, T-, or U-string picture one
ago—bas always needed two electric and two magnetic charges.
bp®+aq,
VI. OUTLOOK

bg; +ad;,

—cqo+das In conclusion, we have found a new typed# 4 super-
SL2)y symmetric black holes in the context Nf=2 special geom-

4 2

As expected, one finds th®¥ as given in Eq(36) or the
area of the horizorimass is invariant under these transfor-
mations(or [SL(2)]® symmetrio.

Let us turn back to the Lagrangia(83) and (78). Both
Lagrangians are on-shell equivalent, LagrandiaB) corre-
sponds to the $|TU) basis whereas Lagrangid#8) is our
(STU) basis and the transformatidhmaps both. This trans-
formation is a dualization of /; and a renaming
(Fo,F1,F>,Fs)—1I2(F1,F3,F4,F,). Note that under dual-
ization, the prefactor ofF; gets inverted. This dualization
makes all duality symmetries in th&TU) basis nonpertur-
bative. The statement that in this symmetric basis none of the
dualities is perturbative is equivalent to the statement that
there is no basis in which all of the dualities are perturbative.

_*F

*F

*F

FIG. 2. Duality transformations in th§, T, andU strings. The

The most we can achieve is to make only one nonperturbgyndamental field strengths are located on one side and two duality
tive and two perturbative. We have considered the casgymmetries are perturbative. The field strengths have different in-
where theS transformation is nonperturbative. On equal dices from Fig. 1, because the ones here are fundam@rsing
footing we could takeT or U. These three possibilities fix fields.
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etry related to Calabi-Yau threefold. The main differencecharges at the fixed poirtZ=0 for particular example of
with the existing supersymmetric black holes is a completelyd,gc. It can be used to find also the area of the five-
democratic treatment of all moduli of the theofihis is due  dimensional black holes as the function of charges for this
to our use of the version of special geometry with the pretheory.
potential F=d,g(XAXBX©)/X? [3] where dpgc are real It remains to be seen if it is possible to address the issue
symmetric constant tensors. A particular model of this typeof quantum corrections in string theory using extreme black
with F=STU gives no preference to any of the moduli and holes of classical moduli spaces as the starting point. In this
therefore, none of them can play a role of coupling constantpaper we have established a duality relation between stringy
This makes the newSTU) black holes different from (§TU), (T|US)-,and U|ST) black holes and “demo-
stringy (S TU), (T|US), and U|ST) black holes[8,13], cratic” STUblack holes. Stringy black holes were known to
where one of the moduli§ in heterotic caseT in type lla  be related to each other by the so-called triality in such a way
case andJ in type llb cas¢ does play the role of the cou- that only one ofS, T,U dualities was nonperturbatiid 3].
pling constant. The “democratic” black holes give us some new insights
One may try to relate our ned=4 black holes tad=5 into the spectrum of states of the fundamental theory: all
supersymmetric black holes described[if. The area for- dualities there are nonperturbative.
mula found there depends on symmetric terdsc as

Zi=[0*¥(@)] *dads, A~{[d*B(q)] 'gaqs}®,
(84
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