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Does back reaction enforce the averaged null energy condition in semiclassical gravity?
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Enrico Fermi Institute, 5640 South Ellis Avenue, University of Chicago, Chicago, Illinois 60637-1433

~Received 27 February 1996!

The expectation valuêTab& of the renormalized stress-energy tensor of quantum fields generically violates
the classical, local positive energy conditions of general relativity. Nevertheless, it is possible that^Tab& may
still satisfy some nonlocal positive energy conditions. Most prominent among these nonlocal conditions is the
averaged null energy condition~ANEC!, which states that*^Tab&k

akbdl>0 along any complete null geode-
sic, whereka denotes the geodesic tangent, with affine parameterl. If the ANEC holds, then traversable
wormholes cannot occur. However, although the ANEC holds in Minkowski spacetime, it is known that the
ANEC can be violated in curved spacetimes if one is allowed to choose the spacetime and quantum state
arbitrarily, without imposition of the semiclassical Einstein equation,Gab58p^Tab&. In this paper, we inves-
tigate whether the ANEC holds for self-consistent solutions of the semiclassical Einstein equation. We study a
free, linear, massless scalar field with arbitrary curvature coupling in the context of perturbation theory about
the flat spacetime/vacuum solution, and we modify the perturbed semiclassical equations by the ‘‘reduction of
order’’ procedure to eliminate spurious solutions. We also restrict attention to the limit in which the length
scales determined by the state and metric are much larger than the Planck length. At first order in the metric
and state perturbations, and for pure states of the scalar field, we find that the ANEC integral vanishes, as it
must for any positivity result to hold. For mixed states, the ANEC integral can be negative. However, we prove
that if we average the ANEC integral transverse to the geodesic, using a suitable Planck scale smearing
function, a strictly positive result is obtained in all cases except for the trivial flat spacetime/vacuum solution.
Similar results hold for pure states at second order in perturbation theory, when we additionally specialize to
the situation where incoming classical gravitational radiation does not dominate the first-order metric pertur-
bation. These results suggest—in agreement with conclusions drawn by Ford and Roman from entirely inde-
pendent arguments—that if traversable wormholes do exist as self-consistent solutions of the semiclassical
equations, they cannot be macroscopic but must be ‘‘Planck scale.’’ In the course of our analysis, we inves-
tigate a number of more general issues relevant to doing perturbative expansions of the semiclassical equations
off of flat spacetime, including an analysis of the nature of the semiclassical Einstein equation and of prescrip-
tions for extracting physically relevant solutions. A large portion of our paper is devoted to the treatment of
these more general issues.@S0556-2821~96!02520-9#

PACS number~s!: 04.62.1v, 03.65.Sq, 04.20.Gz, 04.25.Nx
I. INTRODUCTION AND SUMMARY

A. Brief overview of the issues addressed here

A characteristic feature of general relativity is that it pro
vides a framework for understanding many objects and p
nomena in which spacetime behaves in ways that are qu
tatively completely different from our everyday experienc
and intuition. For example, solutions of Einstein’s equati
could in principle exist which describe the creation of clos
timelike curves or whose topologies are nontrivial. Wheth
or not such solutions exist depends on the nature of the m
ter that inhabits spacetime.

For the types of matter normally considered to be phy
cally realistic, all observers measure locally non-negative
ergy densities in the approximation where matter is trea
classically. This condition thatTabu

aub>0 for all timelike
ua ~known as the ‘‘weak energy condition’’! as well as other,
similar, local positive energy conditions are sufficient
strongly constrain the space of solutions to Einstein’s eq
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tion. In particular, macroscopic traversable wormholes are
forbidden when this condition is satisfied@1,2#. Moreover,
the positivity of locally measured energy density plays a key
role in the positive energy theorems@3# and the singularity
theorems@4,5#, which predict that general relativity must
break down at the end point of gravitational collapse.

However, it is well known that quantum fields violate all
the local, pointwise energy conditions@6,7#. For example,
the Casimir vacuum for the electromagnetic field between
two perfectly conducting plates has a negative local energy
density; indirect effects of this have been observed experi-
mentally@8#. Squeezed states of light also violate the energy
conditions@9# and also have been produced experimentally
@10#. Energy condition violations are also fundamental to the
evaporation of black holes, and also to particle production in
a gravitational field~such as that sometimes hypothesized to
seed galaxy formation in the early Universe! @11#.

These ubiquitous violations of energy conditions have led
people to consider the possibility that the semiclassical equa-
tions could admit solutions that are qualitatively very differ-
ent from classical solutions, such as solutions with a negative
Arnowitt-Deser-Misner~ADM ! mass or solutions in which
gravitational collapse occurs without the formation of singu-
larities. In particular, in recent years there has been consid-
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erable speculation that semiclassical solutions could e
which contain macroscopic traversable wormholes, and, p
haps, even describe the creation of closed timelike curve
an initially causally well-behaved spacetime@1,12,13#.

Are such objects allowed in semiclassical gravity? The
are three different types of possibilities@14,15#.

~i! The semiclassical equations might forbid traversab
wormholes, the creation of closed timelike curves, and ne
tive mass objects. The space of solutions of the semiclass
equations would then not be very different qualitatively fro
that of the classical equations.

~ii ! The semiclassical equations might allow such objec
but only in such a way that they always lie outside the d
main of validity of the semiclassical theory, either becau
the curvature scales are Planckian somewhere in the co
sponding spacetimes, or because the quantum fluctuation
the stress tensor are comparable to its expected value.

~iii ! The semiclassical equations might allow such obje
in situations where the semiclassical theory is a good
proximation and the objects are ‘‘macroscopic’’ in size~as
opposed to Planck scale!.

In the last several years, a variety of evidence has ac
mulated that indicates against the third of these possibilit
and in the direction of either the first or second. In particul
the following evidence has been adduced against the po
bility of creating ‘‘time machines’’ via macroscopic, travers
able wormholes: First, it has been argued that appropr
nonlocal energy conditions may hold, which prevent trave
able wormholes~no less time machines! from being pro-
duced@14–26#; see Sec. I B below. Second, it has been
gued@27# that, for a wide variety of states in flat spacetim
whenever the expected value of the energy density is ne
tive, then the fluctuations in the stress tensor are compar
to the expected value@28#. This suggests that the semicla
sical equations should not be trusted in the case of soluti
which depend in a crucial way on energy condition viol
tions, such as in the case of traversable wormholes. Fina
it has been argued that even if traversable wormholes co
be produced, quantum field effects near a chronology h
zon will result in a singular̂Tab&, which could prevent the
occurrence of closed timelike curves@29–31#.

One of the principal purposes of this paper is to pres
additional evidence that nonlocal energy conditions whi
are sufficiently strong to rule out the occurrence of mac
scopic, traversable wormholes may hold in semiclassi
gravity. We shall investigate the validity of the averaged n
energy condition~ANEC! in perturbation theory off of
Minkowski spacetime. The key new ingredient in our ana
sis is that we will impose the semiclassical Einstein equat

Gab@gcd#58p^T̂ab@gcd#&, ~1.1!

on the spacetime and quantum state. Although we shall
that the ANEC can be violated even for solutions of E
~1.1!, we shall show that in perturbation theory, a transve
smearing over several Planck lengths of the ANEC integ
is sufficient to ensure positivity. Our results thus suggest t
violations of the ANEC in semiclassical gravity may be co
fined to the Planck scale, where the semiclassical approxi
tion itself is suspect. In particular, since violations of th
ANEC are necessary for producing traversable wormho
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@2#, at the very least, it should be necessary for traversable
wormholes to have a ‘‘Planck scale structure.’’

Our analysis applies only to non-self-interacting quantum
fields. Thus, although the full semiclassical theory we are
considering is nonlinear due to the coupling of the field to
the classical metric, the quantum portion of the theory is
linear. It is possible that semiclassical solutions for interact-
ing fields could be qualitatively different from semiclassical
solutions for free fields@32#. However, we are not aware of
any evidence which suggests that this is the case, provided,
of course, that the energy conditions for the interacting fields
are satisfied classically.

An additional principal purpose of this paper is to inves-
tigate the nature of the semiclassical Einstein equation~1.1!
and its solutions. In particular, this equation has a character
that is very similar to the radiation reaction equation for a
classical charged point particle. Equation~1.1! contains time
derivatives of order higher than 2, and, correspondingly,
there exist, in effect, ‘‘extra degrees of freedom’’ in its so-
lutions, including so-called runaway solutions which grow
exponentially in time. We build on recent work of Simon
@33–36#, and discuss in detail the pathologies that arise and
possible resolutions. Our conclusion is that in the special
case of perturbation theory about flat spacetime, it is possible
to resolve the difficulties by a ‘‘reduction of order’’ prescrip-
tion, but that in general there are still open questions with
respect to the extraction of physical predictions from the
semiclassical equations.

B. Nonlocal constraints on the stress-energy tensor

We now briefly discuss, as background, the status of non-
local energy conditions in relativity; see Yurtsever@19# for a
recent review. Let (M ,gab) be a globally hyperbolic space-
time, letf be a quantum field on this spacetime, and con-
sider the expected stress tensor^Tab& on all states of this
field. Although at any given point in the spacetime we may
choose the state so as to make the energy density be arbi
trarily negative@19#, there can existnonlocalconstraints on
the stress tensor—i.e., quantum field theory does seem to
restrict the amount and nature of energy condition violations.
A complete understanding of these nonlocal constraints is
not yet in hand, and the search for such an understanding is
one of the key, active areas of research in semiclassical grav-
ity @19#. Nevertheless, the results that have been obtained to
date @15–26,14# suggest that nonlocal constraints on stress
tensors may play a key role in restricting the space of solu-
tions of the semiclassical equations. The present paper will
present additional evidence in this direction.

The nonlocal constraints have the following general form
@37#. Let f ab(x) be a tensor distribution on the fixed space-
time, (M ,gab), such that the quantity

E5E d4xA2g fab~x!Tab~x! ~1.2!

is classically positive. Denote byEmin@ f ab,gcd# the minimum
over all quantum states of the expected value of the quantity
~1.2!. There are now three different possibilities. First, it is
possible thatEmin@ f ab,gcd#52`, so that quantum field
theory does not restrict the value ofE. This will be the case,
for example, whenf ab is proportional to a four-dimensional
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d function, so thatE depends only on the value of the stre
tensor at one point. The second possibility is th
Emin@ f ab,gcd# is finite and negative, so that

E d4xA2g fab~x!^Tab~x!&>Emin@ f ab,gcd# ~1.3!

for all quantum states. An interesting possibility—which a
pears worthy of further investigation—is that this may be t
case wheneverf ab is smooth and of compact support. A
specific conjecture of the form~1.3! has also been suggeste
by Yurtsever@15# ~see below!.

Ford and Roman@20–26,14# have derived a number o
results of the form~1.3! in both flat and curved spacetim
quantum field theory, which they call ‘‘quantum inequal
ties.’’ For example, Ford showed that the fluxDE of nega-
tive energy through some surface in flat spacetime, wh
averaged over a timeDt, must satisfyDE*2\/Dt, a result
reminiscent of the time-energy uncertainty relation exce
for the minus sign@21#. Similar results can also be derive
for the spatial average of energy density over a lengthDL in
two dimensions@38#. More recently, Ford and Roman hav
derived constraints on the average over time of the ene
density measured at a particular point by inertial observ
@24# in flat spacetime, and they have argued that their res
can be extrapolated to curved spacetime so as to cons
certain types of traversable wormhole spacetimes to
‘‘Planck scale’’ @14#.

The third possibility with respect to the quantit
Emin@ f ab,gcd# is that it vanish~or be positive!, so that

E d4xA2g fab~x!^Tab~x!&>0 ~1.4!

for all quantum states. Inequalities of the form~1.4! are usu-
ally called ‘‘averaged energy conditions’’@39#. An example
of a constraint of this type is the well-known fact that i
Minkowski spacetime, the integral of the energy density ov
a constant time slice~i.e., the Hamiltonian! is a positive op-
erator.

A particular averaged energy condition—upon whic
much attention has been focused—is the averaged null
ergy condition~ANEC!, which states that

E
g
^Tab&k

akbdl>0, ~1.5!

where the integral is along any complete, achronal null g
desicg, ka denotes the geodesic tangent, andl is an affine
parameter@40#. The reason that this and other similar cond
tions ~with null replaced by timelike! are useful is that they
dovetail nicely with the methods used to prove global resu
about spacetimes in general relativity. Many of the stand
global results that were originally proved to hold when poin
wise energy conditions are satisfied can be shown to a
hold under the weaker assumption that the stress tensor
isfies the ANEC. For example, in spacetimes in which t
ANEC is satisfied, the topological censorship theorem
Friedman, Schleich, and Witt@2# rules out traversable worm-
holes. Under the same hypotheses, the Penrose-So
Wolgar positive mass theorem shows that the asympto
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mass must be positive@41#. Finally, the positivity of the
ANEC integral along future complete null geodesics is suf-
ficient to prove some singularity theorems@40#.

The averaged null energy condition is therefore of consid-
erable interest. Is it enforced by quantum field theory? Early
investigations showed that it holds in Minkowski spacetime
for free scalar fields and electromagnetic fields@16–18#, and
also in generic, curved two-dimensional spacetimes@18#.
However, it has been shown that it can be violated in ge-
neric, curved four-dimensional spacetimes@18,42#, even if
the spacetime is nearly flat.

The failure of the ANEC in general spacetimes does not,
however, sound a death knell for the program of deriving
global results in semiclassical gravity, since there are some
modifications of the original ANEC conjecture that may give
rise to nontrivial constraints on solutions. One idea, sug-
gested by Yurtsever@15#, is simply to weaken the conjecture
from being an inequality of the type~1.4! to one of the type
~1.3!, in analogy with the quantum inequalities of Roman
and Ford. In other words, a modified ANEC conjecture
would be that the quantityEmin@ f ab,gab# is always finite and
not 2`, when the distributionf ab is chosen such that the
quantityE is the ANEC integral along a null geodesic. Yurt-
sever shows that if this is true, then reasonable assumptions
about the dependence ofEmin on the spacetime geometry lead
to the conclusion that macroscopic, static wormholes are ex-
cluded; only Planck-scale wormholes are~possibly! allowed.

In this paper, however, we shall follow a different path by
investigating the validity of the ANEC when the spacetime
and quantum state are constrained by the semiclassical Ein-
stein equation~1.1!, since any violations of the ANEC oc-
curring when this equation fails to hold would not be physi-
cally relevant. In order to analyze generic solutions to Eq.
~1.1!, we will be forced to resort to perturbation theory about
the trivial solution, namely, Minkowski spacetime with the
quantum field in the vacuum state. We use the ‘‘reduction of
order’’ procedure to eliminate the unphysical solutions of the
perturbative semiclassical Einstein equation. We make the
additional approximation that ‘‘wavelengths are large com-
pared to the Planck scale,’’ and for the portions of our analy-
sis involving second-order perturbations, we also will need
to assume that incoming classical gravitational radiation does
not dominate the metric perturbation at first order. In the
‘‘note in proof’’ section of Ref.@18#, violations of the ANEC
for pure states were obtained at first order in deviation from
flatness. A key result of our analysis is that this type of
counterexample is eliminated by imposing the semiclassical
equation: When Eq.~1.1! holds, the ANEC integral always
vanishes for pure states at first order in deviation from flat-
ness. This result has the side consequence that we must go t
second-order perturbation theory in order to give a complete
analysis of the positivity properties of the ANEC integral for
pure states in nearly flat spacetimes.

As will be described in more detail in the next subsection,
we shall show that the ANEC can be violated. However, a
suitabletransversely smearedANEC integral is always non-
negative in the context of our perturbation expansions. The
condition that a smeared ANEC integral always be non-
negative in general spacetimes is clearly a much weaker con-
dition than the usual ANEC. Nevertheless, when the width of
the smearing function is of the order of the Planck length as
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it is in our analyses, the positivity of a smeared ANEC int
gral would be sufficient to derive interesting constraints
the spacetime geometry. For example, suppose that a sp
time contains a macroscpoic traversable wormhole. The
must contain one geodesicg for which the ANEC integral is
negative. However, the transversely smeared ANEC inte
centered ong must be positive. There are now two qualit
tively different possibilities—either the compensating po
tive contribution to the smeared ANEC integral comes fro
within a few Planck lengths, or it comes from a macrosco
distance away, corresponding to the tail of the smear
function.

In the first case the stress tensor and Einstein tensor m
vary significantly over length scales of the order of t
Planck length, and therefore the spacetime presumably
outside the domain of validity of semiclassical gravity. In t
second case, there can be macroscopic regions of space
in which the ANEC is violated. The existence of violation
of the ANEC of this type was suggested by some results
Visser @43#, and in Appendix E we present an explicit e
ample of an approximate self-consistent solution which v
lates the ANEC in this way. In this second case, howev
the positivity of the smeared ANEC integral would restri
the amountof violation to be incredibly small compared t
the distant, positive mass. We argue in Appendix E bel
that such violations of the ANEC would be far to small
allow macroscopic traversable wormholes. Analogous ar
ments apply to spacetimes with negative asymptotic m
and with compactly generated chronology horizons. T
provides evidence in favor of the second~or first! of the three
possibilities discussed in Sec. I A. Consequently, if the se
classical equations were to enforce the positivity of a tra
versely smeared ANEC integral in general spacetimes, wi
smearing width of order of the Planck length, this wou
provide almost as strong a constraint on physical possibili
as the positivity of the ANEC integral itself.

Our positivity result for the transversely smeared ANE
integral in perturbation theory is the first nonlocal constra
on stress tensors that has been proved in a generic cla
four-dimensional, curved spacetimes. Our perturbative re
suggests that something similar may be true in general sp
times, and consequently that the behavior of solutions
semiclassical gravity—within the domain of validity of tha
theory—may be qualitatively similar to classical solutions

C. Brief summary of our assumptions and results

We consider a massless scalar field with arbitrary c
pling, j, to the scalar curvature. We wish to consider a on
parameter family~with parameter denoted by«) of space-
times „M ,gab(«)… and quantum states satisfying Eq.~1.1!,
with the spacetime reducing to Minkowski spacetime and
quantum state reducing to the vacuum state when«50. It is
somewhat awkward and overly restrictive to attempt to d
scribe the one-parameter family of quantum states as tho
they were states in a single, fixed, Hilbert space, since i
general, curved spacetime (M ,gab), there is no unique pre-
ferred Hilbert space of possible states, and, in general, th
is no unique, preferred way of identifying the states occ
ring in Hilbert space constructions in different spacetimes
is much more useful to adopt the algebraic approa
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wherein one characterizes a state by itsn-point distributions
on spacetime. We shall adopt this philosophy here and w
the one-parameter family of states asv(«). We shall denote
the expected stress-energy tensor in the statev by ^Tab&v .
In fact, since the expected stress-energy tensor is dire
determined from only the two-point distributionG(x,y)
[^F̂(x)F̂(y)&v of the quantum field, the higher order cor
relation functions will play no role in our analysis. Thus, fo
the purposes of our analysis a ‘‘state’’ may be viewed
synonymous with a two-point distribution on spacetime s
isfying the wave equation in each variable, as well as t
positivity and Hadamard conditions~see Sec. II C below!.
However, little harm would be done in most of our analys
below by pretending thatv(«) corresponds to a one-
parameter family of density matrices,r̂(«) in some fixed
Hilbert space, witĥ Tab&v5tr@ r̂T̂ab#.

It is useful to characterize the statev(«) by the behavior
of its correlation functions in the asymptotic past. Assumi
that suitable asymptotic conditions hold on the spaceti
„M ,gab(«)…, and state,v(«), we may associate withv(«) a
statev in(«) on Minkowski spacetime which agrees wit
v(«) in the asymptotic past under an appropriate identific
tion of „M ,gab(«)… with Minkowski spacetime. In particular,
the two-point distribution,G(x,y;«), of v(«) can then be
characterized by the functionF in(x,y;«)5Gin(x,y;«)
2Gin,0(x,y) on Minkowski spacetime, whereGin(x,y;«) is
the two-point function ofv in(«) andGin,0(x,y) is the two-
point function of the Minkowski vacuum state,v in,0 . For
Hadamard states,F in(x,y;«) will be a smooth bisolution of
the wave equation in Minkowski spacetime, whose initi
data at past null infinity,J2, may be viewed as the freely
specifiable initial data for the state~which, however, is sub-
ject to the positivity constraints discussed in Sec. II.C. b
low!.

It is well known that the semiclassical Einstein equation
of a ‘‘higher derivative’’ character than the correspondin
classical equation, and that consequently there exist new
presumably spurious—‘‘degrees of freedom’’ in semiclas
cal gravity, closely analogous to the ‘‘runaway’’ solution
which occur for the dynamics of a point charge in classic
electrodynamics when radiation reaction effects are includ
Thus, in order to extract any physical predictions from t
semiclassical equations, we need a prescription either for
tracting the ‘‘physical solutions’’ to these equations or fo
modifying the equations themselves so that the spurious
lutions no longer arise. We investigate this issue in depth
Sec. IV. We conclude that—at least in the context of pertu
bation theory about flat spacetime—the ‘‘reduction of orde
algorithm for modifying the equations@36# provides a satis-
factory means of eliminating the spurious solutions witho
~significantly! sacrificing accuracy at ‘‘long wavelengths,’
i.e., in the regime where the dominant length scales in
solution are much larger than the Planck scale. The valid
of the ANEC is investigated in the context of solutions to th
reduced order perturbative semiclassical Einstein equatio

We expand the one-parameter family of ‘‘in’’ states as

v in~«!5v in,01«v in
~1!1«2v in

~2!1O~«3! ~1.6!

and we expand the metric as
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gab~«!5hab1«hab
~1!1«2hab

~2!1O~«3!, ~1.7!

wherehab is the flat, Minkowski metric. The metric pertur
bationhab

(1) can be written as

hab
~1!5hab

~1!, in1Dhab
~1! , ~1.8!

where hab
(1),in satisfies the linearized Einstein equation

vacuum and represents incoming classical gravitatio
waves atJ 2. The remaining portionDhab

(1) is determined
from the first-order state perturbationv in

(1) via the reduced
order, perturbed semiclassical equations. There is a dec
position similar to Eq.~1.8! for the second-order metric per
turbationhab

(2) . Note that to second order, solutions to th
reduced order, perturbative semiclassical equations can

FIG. 1. The ‘‘scattering picture’’ for solutions of the semicla
sical equations. The spacetime metric is determined by~i! the in-
coming first-order and second-order metric perturbationshab

(1),in and
hab
(2),in atJ 2, which describe freely propagating gravitational radi
tion, and ~ii ! the two-point functionsF in

(1) and F in
(2) at J 2 of the

first- and second-order perturbationsv in
(1) andv in

(2) to the incoming
statev in(«) of the scalar field. These determine, via the semicl
sical equations, corresponding outgoing quantities atJ 1. However,
we choose to parametrize the solutions in terms of the incom
quantities atJ 2.
-

in
nal

om-
-
e
be

characterized by their ‘‘initial data’’ at past null infinity
J 2, consisting of the incoming gravitational radiation
hab
(1),in andhab

(2),in as well as the incoming, freely propagating
~with respect tohab) piecesF in

(1) andF in
(2) of the two-point

functions associated withv in
(1) andv in

(2) ~see Fig. 1!.
The ‘‘transverse smearing’’ of the ANEC integral referred

to in the previous subsection is defined in Minkowski space
time as follows. Letg be a null geodesic and letl, z, x1,
x2 be coordinates such that the geodesic is given b
z5xA50, A51,2, and such that the metric is

ds2522dldz1~dx1!21~dx2!2. ~1.9!

Now let

I s5E dlE d2xATll~l,z50,x1,x2!S~x1,x2!, ~1.10!

whereS is some positive function that is peaked atxA50
and that falls off at largexA. This is essentially an ANEC-
type integral, with an additional averaging in two spatial di-
rections transverse to the geodesic. Definition~1.10! can be
generalized in a natural way to general, curved spacetimes b
using Fermi-Walker-type coordinates~see Sec. V A below
for details!, provided, of course, that the smearing function,
S, vanishes outside the region where such coordinates a
well defined.

Let g(«) be a one-parameter family of null geodesics
in „M ,gab(«)…, and let I s(«) denote the smeared ANEC
integral along g(«). We expand I s as I s
5«I s

(1)1«2I s
(2)1O(«3). Using the reduced-order semiclas-

sical equations we calculate the dependence of the perturb
tions of the ANEC integral on the initial data:

I s
~1!5I s

~1!@F in
~1!#, I s

~2!5I s
~2!@F in

~1! ,F in
~2! ,hab

~1!, in#.
~1.11!

We restrict attention to the case where the incoming two
point functionsF in

(1) andF in
(2) satisfy the regularity conditions

discussed in Appendix C. We choose the transverse smeari
functionS(x) that enters into the definition~1.10! of I s to be

S~x!}
1

11x4/LT
4 , ~1.12!

-

a-

s-

ing
l,
TABLE I. A summary of our results for the ANEC integral in the different cases. ‘‘Pure to first order’’
indicates that the two-point function of the scalar field is pure to first order in«. ‘‘Always .0’’ means that
the smeared ANEC integral is always strictly positive for all solutions of the equations except for the trivia
flat spacetime/vacuum solution.

Pure to first order Mixed at first order
No smearing Smearing No smearing Smearing

First order in« 50 50 Can be,0 Always.0
in long wavelength

limit

Second order in« Can be,0 Always.0 N/A N/A
in long wavelength limit
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wherex5(x1,x2), andLT is greater than a certain critica
length,LT,crit , of the order of the Planck length~see Sec. VI
below!. We also specialize to the limit in which the length
scales determined by the incoming state are much larger t
the Planck length. With these assumptions, our results m
be summarized as follows~see Table I below!.

At first order in perturbation theory, we find that~i! I s
(1)

vanishes for pure incoming states,~ii ! I s
(1) is positive for

mixed incoming states if the transverse smearing lengthLT

is chosen to be greater thanLT,crit , and~iii ! I s
(1) can be made

negative ifLT is chosen to be sufficiently small, and in par
ticular, if there were no transverse smearing at all. Thus, t
transverse smearing is a crucial ingredient in our analys
Note also that result~i! is a necessary condition forI s to be
always non-negative; ifI s

(1) were nonvanishing for some in-
coming pure state, it could be made to have either sign
choosing the sign of the first order perturbations approp
ately. ~See below and also Sec. III B for an explanation o
why pure states and mixed states behave differently in t
regard.! As was already mentioned in the previous subse
tion, the analog of result~i! fails to hold when the semiclas-
sical Einstein equation is not imposed.

Because the smeared ANEC integral vanishes at first
der for pure states, it is necessary to go to second-orde
perturbation theory to see if the positivity of this integral ca
be violated for pure states. A complete calculation of a
second-order effects would have required us to derive a f
mula for the complete corrections to the stress-energy ten
of the quantum field valid to second order in deviation fro
flatness. This would have been a major undertaking in
own right, and we did not attempt to do this. Instead, w
specialized to a limit in which not only are the lengthscale
etermined by the incoming state much larger than the Plan
length, but, in addition, the incoming classical gravitation
radiation does not dominate the first-order metric perturb
tion. Under these conditions, the unknown term in th
second-order stress-energy tensor is negligible.
Sec. VII, we calculate the three remaining terms
I s
(2)@F in

(1) ,F in
(2) ,hab

(1),in#, and we show that in this limitI s
(2) is

always positive. As before, the positivity only holds with
transverse smearing.

One unsatisfactory feature of our analysis is the follow
ing. The positivity of the transversely smeared ANEC inte
gral holds in our perturbation expansion only when the tran
verse smearing functionS falls off like x24 or more slowly.
In particular, the smeared ANEC integral with transvers
smearing of compact support isnot always positive. How-
ever, in a curved spacetime, the Fermi-Walker-type coor
nates needed for the generalization of definition~1.10! will
be well defined only in a neighborhood of the null geodes
in question. Thus, although we prove the positivity of
smeared ANEC integral in the context of perturbation theor
we do not even have an obvious candidate for a ‘‘smear
ANEC conjecture’’ outside of this context. Nevertheless, w
interpret our results as having the physical implications d
scribed in the previous subsection.

Finally, it is worth mentioning why we need to conside
general, mixed incoming states instead of just pure states
most situations, whatever is true for pure states will gener
ize trivially to mixed states. Here, however, it turns out th
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pure states and mixed states behave qualitatively very differ-
ently. One reason for this~which may be viewed as an arti-
fact of semiclassical theory! is that the linearity of the evo-
lution law for states breaks down as a result of the coupling
to the classical metric. This arises only at second order in
perturbation theory. However, even at first order in perturba-
tion theory whereI s

(1)@v in
(1)# depends linearly onv in

(1) it is
not true that positivity ofI s

(1) for all pure states would imply
positivity for mixed states. To see this, letD denote the
space of states, and letDP denote the space of pure states.
Then the space of allowed state perturbationsv in

(1) is notD
but is the tangent spaceTvac(D) to D at v05u0&^0u. Simi-
larly, the linear space of allowed pure state perturbations is
the tangent spaceTvac(DP) toDP atv0. Now the key point is
that, althoughD is the convex hull ofDP , Tvac(D) is not the
convex hull ofTvac(DP) but is larger than it.@The convex
hull of Tvac(DP) is just itself since it is a linear space.#
Therefore, results for pure states do not generalize to mixed
states. Thus, the differences between pure and mixed state
arise in our analysis because of our working in perturbation
theory. Roughly speaking, we find that mixed states at first
order in perturbation theory behave very similarly to pure
states at second order.

D. Organization of this paper

The organization of this paper is as follows. In Sec. II we
lay the foundations for our analysis by discussing in detail
the full, nonlinear theory of semiclassical gravity. In Sec.
II A, we specify the classical theory of gravity coupled to a
scalar field that we consider, and show that this theory satis-
fies the ANEC classically in perturbation theory about flat
spacetime. In Sec. II B, we give a critical discussion of the
uniqueness and domain of validity of the corresponding
semiclassical Einstein equation. In particular, we argue that
the domain of validity of the equation is restricted toL@LP,
whereL is a characteristic length scale of a solution and
LP is the Planck length,evenwhen the formal derivation of
the semiclassical theory is via the largeN limit ~whereN is
the number of scalar fields coupled to gravity!. In Sec. II C,
we describe how the semiclassical theory can be reformu-
lated in a manner very convenient for performing a pertur-
bative analysis about flat spacetime. The key elements in this
reformulation are~i! the quantum state is characterized a
smooth bisolutionF(x,y) of the wave equation@Eq. ~2.20!
below#, which is obtained from the two point distribution by
a suitable renormalization,~ii ! the equations of motion be-
come coupled equations for the evolution of the spacetime
metric and the bisolutionF, and~iii ! the in-vacuum expected
value of the stress-tensor, which is a functional only of the
spacetime metric, appears explicitly in the equations of mo-
tion.

In Sec. III, we perturbatively analyze the semiclassical
theory about the flat spacetime/vacuum solution to second
order in deviation from flatness. We start in Sec. III A by
deriving the appropriate perturbation equations. In Sec. III B,
we describe some important differences between incoming
states which are pure to first order and those which are not
~which we call ‘‘mixed’’!. We also relate the property of
being pure to first order of the incoming state to a simple
algebraic property of the first-order perturbation to the in-
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coming two point function@Eqs.~3.20! and ~6.3! below#. In
Sec. III C, we characterize completely the gauge freedom
the second-order perturbation equations. In Sec. III D,
describe the explicit formula@Eq. ~3.32! below# for the ~lin-
earized! in-vacuum expected stress tensor, which is a non
cal function of the metric, and which appears in the firs
order perturbation equation. Using this formula, we comple
the specification of the first-order perturbation equation, a
give the full, explicit form of this equation@Eq. ~3.38! be-
low#. Finally, in Sec. III E we turn to the second-order pe
turbation equation. This equation contains a second-or
vacuum polarization term whose explicit form is as yet u
known. We describe an appropriate limit—where the dom
nant length scales in the solution are much larger than
Planck length, and where in addition incoming classic
gravitational waves do not dominate the first-order met
perturbation—in which this unknown term can be neglecte
We derive the explicit form of the second-order perturbati
equation appropriate to this limit@Eq. ~3.59! below#.

In Appendix A we give a detailed analysis of the exa
solutions to the first-order perturbation equation, and exp
itly exhibit their well-known ‘‘extra degrees of freedom,’
which include pathological exponentially growing solution
At the start of Sec. IV, we explain our view that these ext
degrees of freedom~and, in particular, the exponentially
growing solutions! lie outside the domain of validity of semi-
classical theory, and, thus, are unphysical. However, it is
clear which, if any, solutions are ‘‘physical,’’ and this raise
the issue of how to extract meaningful physical predictio
from the semiclassical equations.

Sections IV A to IV D are devoted to an examination o
several possible prescriptions for extracting physical pred
tions from the semiclassical equations which were sugges
by Simon @33–36#. We start in Sec. IV A by describing a
~well-known! close analogy to the Abraham–Lorentz equ
tion describing radiation reaction of charged point particle
in order to aid the subsequent discussion. In Sec. IV B,
show that it is insufficient in general to analyze the solutio
of the semiclassical equation perturbatively order by order
\: effects that are nonperturbative in\ can be physically
important, and can be described by the semiclassical eq
tion within its domain of validity. In Sec. IV C, we argue tha
it is unsatisfactory to attempt to throw out by hand the path
logical solutions: in general, there is no natural, preferr
nonpathological subspace of the space of solutions to
equation. In Sec. IV D, we describe the method of reduct
of order, which is a systematic procedure for generat
modified equations of motion which eliminates the addition
degrees of freedom. We argue that this procedure provide
satisfactory solution to the problem of extracting physic
predictions from the perturbed semiclassical equations,
though unresolved issues remain regarding its applicabi
in more general contexts. We apply the reduction of ord
method to the perturbative semiclassical equations to ob
reduced-order perturbation equations at first order and s
ond order@Eqs.~4.20! and ~4.23! below#.

Section IV completes our treatment of perturbative sem
classical gravity; the remainder of the paper is devoted to
investigation of the ANEC in solutions of the reduced-ord
perturbation equations.
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In Sec. V, we start our treatment of the ANEC by givin
a general definition of a transversely smeared ANEC int
gral, applicable to an arbitrary curved spacetime. This de
nition is given in Sec. V A, and is based on the constructio
of Fermi–Walker type coordinates in a neighborhood of th
geodesic under consideration. In Sec. V C we specialize t
definition to perturbation theory about flat spacetime. W
derive explicit formulas@Eqs. ~5.15! and ~5.19! below# for
the first-order and second-order smeared ANEC integra
I s
(1) and I s

(2), in terms of the first-order and second-orde
metric perturbations. We also make a specific choice
gauge which simplifies these expressions. The correspond
expressions for the conventional~unsmeared! ANEC integral
are given in Sec. V B@Eqs.~5.10! and ~5.11! below#.

In Sec. VI, we establish the results concerning the firs
order perturbation to the ANEC integral discussed in Sec. I
above. We begin in Sec. VI A by characterizing the preci
class of incoming states to which our analysis applies, a
we establish some preliminary results concerning positiv
properties of the perturbations to the state’s two point fun
tion. In Sec. VI B we derive the general solution of the re
duced order, first-order semiclassical equation~4.20!, ex-
pressing it in terms of the perturbed two point function of th
incoming state@Eq. ~6.23! below#. Using this expression, we
derive in Sec. VI C a general formula for the first-order pe
turbationI s

(1) to the transversely smeared ANEC integral fo
these solutions@Eq. ~6.27! below#. This general formula ap-
plies to both pure and mixed incoming states. We special
to incoming states which are pure to first order in Sec. VI D
where we show thatI s

(1) vanishes. Finally, in Sec. VI E we
show thatI s

(1) is strictly positive in the long-wavelength limit
for incoming states which are not pure to first order.

As discussed in Sec. I C above, a loophole left open
the analysis of Sec. VI is that states which are pure at fi
order might give rise to negative smeared ANEC integrals
second order, since the first-order perturbation to t
smeared ANEC integral vanishes. In Sec. VII, we addre
this issue by analyzing the second-order, reduced-order p
turbation equation. We start by deriving a general formu
for the second-order perturbationI s

(2) to the smeared ANEC
integral @Eq. ~7.3! below#. This formula is valid only in the
long wavelength limit, and takes the form of an expansion
powers ofLP

2 /L2 and ln@LP/L#LP
2 /L2, whereL is the length

scale characterizing the solution. The formula takes the fo
of a piece that parallels exactly the corresponding first-ord
expression, together with two additional, new terms. The
new terms contain pieces quadratic in the incoming firs
order state perturbation, as well as cross terms between
incoming classical gravitational radiation and the incomin
first-order state perturbation. The new terms arise at a h
order in the long wavelength expansion, and thus are on
relevant when the lower order terms vanish. In Sec. VII A
we show that these new nonlinear terms actually vanish ide
tically whenever the lower order terms vanish. In Sec. VII B
we use this result and exploit the parallels between the fir
order and second-order analyses to show thatI s

(2) is strictly
positive in the long wavelength limit. This completes ou
derivation of the results described in Sec. I C above.

Our final conclusions are given in Sec. VIII.
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Some of the technical details in the discussion in the bo
of the paper are relegated to Appendices C and D. The o
Appendices~A, B, and E! contain discussions of side issue
which do not fit in with the flow of the body of the paper. A
mentioned above, general exact solutions of the first-or
perturbation equation~3.38! are derived in Appendix A. Ap-
pendix B shows that smeared ANEC integrals are positive
first order for mixed states for a particular subclass of
solutions found in Appendix A, in a certain region of th
two-dimensional parameter space which specifies the se
classical theory. We show that this mathematical analy
provides an alternative proof of the first-order ANEC resu
derived in Sec. VI E, for this region in parameter space. W
also show in Appendix B that there are some solutions of
first-order perturbation equation which violate ANEC, ev
when all the exponentially growing or decaying pieces of t
solutions are discarded, and even when the ANEC integra
transversely smeared. Thus, the reduction-of-order met
that we have adopted to deal with the pathologies of
semiclassical equations is necessary for the validity of
results. Finally, Appendix E extends our proof of the no
negativity of the first-order perturbationI s

(1) to the smeared
ANEC integral to the situation where an external, classi
linearized stress tensor is coupled to gravity, in addition
the quantum scalar field. This more general result applie
examples of violations of ANEC over macroscopic regio
discovered by Visser@43#, discussed in Sec. I B above, an
shows that theamountof violation of ANEC is restricted to
be very small. We argue in Appendix E that this restriction
strong enough to prevent the occurrence of macroscopic
versable wormholes.

E. Conventions

We use the metric signature (2,1,1,1), and the sign
conventions of Refs.@44,5#, as well as the abstract inde
notation explained in Ref.@5#. The following is our conven-
tion for Fourier transforms. IfF5F(x) is a function on
Minkowski spacetime, then we define the Fourier transfo
to be

F̃~k!5E d4xe2 ik•xF~x!. ~1.13!

Similarly if f5 f (x) is a function on three-dimensional Eu
clidean space, we define its Fourier transform to be

f̃ ~k!5E d3xe2 ik•xf ~x!. ~1.14!

We use gravitational units in which the speed of lightc and
Newton’s gravitational constantG are unity, so that\5LP

2

whereLP is the Planck length. An index of notation is give
at the end of the paper in Table II.

II. SEMICLASSICAL GRAVITY WITH BACK REACTION

Difficulties arise in the calculation of back reaction effec
in semiclassical gravity for several reasons. First, as we
cuss further in Sec. IV, there are problems associated w
spurious, runaway solutions to the equations. Second,
dependence of the renormalized stress tensor on the sp
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time geometry is nonlocal and complicated, making calcula-
tions outside of linear perturbation theory prohibitively dif-
ficult. These difficulties do not appear in two-dimensional
models, for the reasons explained in Ref.@45#, and in recent
years there have been a variety of calculations of back reac
tion effects on two-dimensional black hole backgrounds
@46#. However, in four dimensions, most back reaction cal-
culations have been restricted to linear order perturbation
theory off some fixed background~except for analyses of
various conformally flat spacetimes@36,47#!. Our back reac-
tion analysis is apparently the first to go beyond linear order
perturbation theory for a generic class of four-dimensional
spacetimes. We shall build upon and extend the work of
Horowitz @48#, who considered semiclassical gravity in per-
turbation theory about flat spacetime to linear order, without
allowing perturbations to the incoming quantum state.

A. The classical equations

We now describe in more detail the model of gravity
coupled to a scalar field that we will treat in our analysis. We
consider a scalar fieldF of arbitrary curvature couplingj
and arbitrary massm, so that the Lagrangian is

L5
1

2E d4xA2g$kR2gab¹aF¹bF2m2F22jRF2%,

~2.1!

wherek51/(8pG). We will specialize later to the massless
case. The classical equations of motion are

kGab5Tab , ~2.2!

and

@h2m22jR#F50, ~2.3!

where the stress tensor is

Tab5¹aF¹bF2 1
2gab~¹F!22 1

2gabm
2F2

1j@GabF
222¹a~F¹bF!12gab¹

c~F¹cF!#.

~2.4!

In the classical theory, this stress tensor violates the point
wise null energy condition forjÞ0, but satisfies the aver-
aged null energy condition for all negative values ofj, pro-
vided that suitable asymptotic fall-off conditions hold for
F. More precisely, for any null geodesicxa5xa(l) with
affine parameterl and tangent vectorla5(]/]l)a, it fol-
lows from Eqs.~2.2! and ~2.4! that

E Gabl
albdl5E dl

F82

k2jF2 14j2E dl
~FF8!2

~k2jF2!2
,

~2.5!

provided thatj,0 and (FF8)/(k2jF2)→0 as ulu→`,
where primes denote derivatives with respect tol. However,
for at least some positive values ofj, it seems likely that the
ANEC can be violated@49#.

The failure of the classical stress-energy tensor~2.4! to
satisfy pointwise energy conditions whenjÞ0, and its pos-
sible failure to satisfy the classical ANEC condition for posi-
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tive values ofj indicates that this class of field theories m
not be suitable for a general study of the validity of ANEC
quantum field theory in curved spacetime. However, in
paper, we shall be concerned only with a perturbative an
sis of solutions about Minkowski spacetime. In this case
follows immediately from Eq.~2.5! that, for all values of
j, the classical ANEC condition holds for all solutions ne
the trivial solution of Minkowski spacetime withF50.
Thus, this class of models should provide a good tes
ground as to whether, in the context of perturbation the
quantum fields can attain violations of the ANEC which a
classically forbidden.

B. The status of the semiclassical equations
and the local curvature ambiguity

It is natural to postulate the semiclassical equation

kGab@gcd#5^T̂ab@gcd#&v , ~2.6!

to describe the back reaction of the quantized matter deg
of freedom on spacetime. However, as is well known,
exact status and domain of applicability of this equation
far from clear, due mainly to the fact that we do not hav
complete, more fundamental theory of quantum gravity fr
which Eq. ~2.6! could be derived. In addition there exi
pathological runaway-type solutions to these equations
analyzed in detail by Horowitz@48# for the linearized equa
tions. Proposals for dealing with these unphysical soluti
have been put forward by Simon@33–36#, and we will dis-
cuss Simon’s suggestions in detail in Sec. IV below. In t
subsection, we critically examine the origin, status, a
uniqueness of the semiclassical equations. Specifically
consider the following two basic issues:~I! How is the
‘‘semiclassical approximation’’ derived and what is its d
main of applicability; i.e., what is the class of statesv and
classical metricsgab for which the semiclassical approxim
tion is good?~II ! How unique is the semiclassical Einste
equation~2.6! itself; i.e., how unique is the prescription
obtain the expected stress-energy tensor^T̂ab&?

With regard to the first issue, it should first be noted t
the classical metric,gab , appearing in the semiclassic
equations presumably must correspond — from the van
point of a complete quantum theory of gravity — to t
expected value of a quantum metric operator in some s
However, we wish to emphasize here that the ‘‘aver
value’’ of a metric which has nonzero amplitudes to cor
spond to different spacetime geometries is an intrinsic
gauge noncovariant concept; it cannot even be defined u
an algorithm is given which completely fixes all gauge fre
dom, i.e., which rigidly fixes a coordinate system for ea
spacetime geometry. This phenomenon can be seen ev
the simple case of a classical probability distribution wh
assigns probability 1/2 to the spacetime (M ,gab

(1)) and prob-
ability 1/2 to the spacetime (M ,gab

(2)). We could say that the
expected metric onM is ^gab&5(gab

(1)1gab
(2))/2. However, we

could equally well have represented the second spacetim
(M ,c* gab

(2)), wherec:M→M is any diffeomorphism. The
expected metric would then be computed to
^gab8 &5(gab

(1)1c* gab
(2))/2. However, ^gab& and ^gab8 & will

not, in general, be gauge equivalent~nor is there any guar
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antee that either of them will even define Lorentz metrics!.
Thus, unless one eliminates all gauge freedom, the notion of
an ‘‘expected metric’’ will make sense only in a limit where
the fluctuations of the spacetime geometry about its mean
value are negligibly small. Such a limit undoubtedly would
have to be contemplated in any case in order to justify a
semiclassical approximation, but it is worth bearing in mind
that the quantity one is trying to calculate in the semiclassi-
cal theory is ill defined~without complete gauge fixing! ex-
cept in this limit. Note that this same phenomenon would
occur in the calculation of the expected value of any gauge
dependent quantity in any non-Abelian gauge theory.

There are at least two different approximation schemes by
which the semiclassical equation~2.6! can be formally de-
rived, and these give rise to distinct viewpoints on the range
of validity of this equation@50–52#. In the first scheme one
formally expands a quantum metric and quantum scalar field
about Minkowski spacetime~or, more generally, any classi-
cal vacuum solution@53#!, and derives the equation of mo-
tion ~2.6! for the expected metric by keeping only the ‘‘tree
diagrams’’ for gravitons and the ‘‘tree diagrams’’ and ‘‘one-
loop’’ terms in the scalar field@54,55#. @As is well known,
predictions can be obtained at one-loop order despite the fact
that the theory is nonrenormalizable, at the expense of hav-
ing to introduce two new, undetermined, coupling constants
into the theory; see Eq.~2.9! below.# This loop expansion
formally corresponds to an expansion in powers of\, so
keeping only the ‘‘one-loop’’ terms corresponds to keeping
only the lowest order correction in\ to the equations of
motion. There is no obvious mathematical or physical justi-
fication for dropping the one-loop ‘‘graviton’’ terms, since
the quantum effects of the metric field are,a priori, just as
important as those of a scalar field@56,57#. It is possible that
the neglect of the one-loop graviton terms could be justified
for certain choices of the state of the scalar and gravitational
fields—wherein the expected scalar stress-energy tensor
dominates the corresponding effective graviton contribution,
and the fluctuations in the scalar stress-energy tensor are
suitably small — but we are not aware of any analysis dem-
onstrating this. However, in any case, the effects of the
graviton loops would be expected to be qualitatively similar
to the effects of the scalar field loops, so, at the very least,
Eq. ~2.6! can be justified as a simplified model of the exact
equations resulting from keeping all one-loop terms. Note
that the one-loop graviton terms could be handled within this
approximation by treating the metric perturbation as a linear
field propagating in a background classical spacetime. How-
ever, the phenomenon described in the previous paragraph
would then manifest itself by the fact that, at second order in
the perturbed metric, the difference between the Einstein ten-
sor of the expected metric and the expected value of the
Einstein tensor~which effectively acts as a ‘‘graviton stress
energy tensor’’! would be gauge noncovariant.

Thus, in this first scheme, the semiclassical Einstein equa-
tion ~2.6! would be, at best, an approximate equation valid
for certain states of the scalar and gravitational fields, and, at
worst, be a ‘‘model equation’’ whose properties should be
qualitatively similar to the equation resulting from a com-
plete one-loop approximation. In either case, higher loop
contributions would modify Eq.~2.6! by terms proportional
to quadratic and higher powers of\. In the context of per-
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turbation theory off of Minkowski spacetime, a formal e
pansion in powers of\ is equivalent to an expansion i
powers of 1/L2 ~keeping constants of nature such as\ fixed!,
whereL denotes a typical lengthscale associated with a
lution. Thus, from the viewpoint of this first scheme w
would expect there to be modifications to Eq.~2.6! which are
of order;LP

2 /L2, and consequently the domain of validit
of the equation is restricted toL@LP , where LP is the
Planck length.

In the second scheme the semiclassical Einstein equa
~2.6! is formally derived from a fully quantum treatment b
imagining that there areN decoupled scalar fields present —
all of which are in the same quantum state — and then tak
the limit N→`, with GN5(const) ~see, e.g., Ref.@58#!. In
this ‘‘1/N expansion,’’ the graviton loops are suppress
relative to the matter loops simply because there areN scalar
fields but only one graviton field. Note that since the sca
fields are free~i.e., non-self-interacting!, only one-loop terms
in the scalar fields arise. Furthermore, in theN→` limit, the
fluctuations in the expected total stress-energy tensor of
scalar fields becomes negligible. Thus, one formally obta
Eq. ~2.6! exactly in theN→` limit. Corrections to this equa-
tion should be of order 1/N or higher. Thus, one might ex
pect that ifN is sufficiently large, Eq.~2.6! would be a good
approximation up to and beyond the curvature scale co
sponding to the effective Planck length in the resca
theory,L;LP,eff5ANLp . Indeed, estimates of the order o
magnitude of successive terms in the loop expansion sup
this viewpoint. However, it is far from clear that the loo
expansion would provide a good approximation in this
gime, so we do not believe that there are solid grounds
believing that ‘‘graviton effects’’ can be neglected for an
finite value ofN when L;LP,eff . In other words, effects
which are nonperturbative in\ could be important at these
scales. One strong piece of evidence that this is the cas
that this seems to be the only way to escape the conclu
that flat spacetime is unstable@58#. As we shall see in detai
in Appendix A below, pathological solutions of the linea
ized version of Eq.~2.6! exist on scalesL;LP,eff , and we
will not regard these solutions as being physical.

We comment that the existence of these two differe
points of view on the status of the semiclassical equation
given rise to some controversies in the literature. Some
plications of the first point of view have been discussed
length by Simon@33–36# ~see Sec. IV below for further dis
cussion!. On the other hand, Suen@59# disagreed with Si-
mon’s analysis and argued that there should not be any
rections to Eq.~2.6!. In our view, the existence of highe
order corrections to Eq.~2.6! depends on whether or not on
justifies that equation in terms of a one-loop approximat
or by the invocation of a 1/N limit. Certainly, corrections to
Eq. ~2.6! will appear in the physically realistic case of fini
N.

The viewpoint will shall adopt in this paper is the follow
ing: We will appeal to the 1/N limit to give a mathematically
clean justification for ignoring graviton contributions to E
~2.6!. Thus, in an\ ~or, equivalently, a ‘‘long wavelength’’!
expansion, we shall regard Eq.~2.6! as valid to all orders in
\ ~or, equivalently, to all orders in inverse wavelength!, al-
though in most of our analyses we will not make use of
validity beyond order\2. However, as already indicate
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above, we will not view Eq.~2.6! ~or any other known equa-
tion! as adequate for describing phenomena where wave
lengths comparable toLP occur. This will justify our modi-
fication of Eq.~2.6! in Sec. IV below using the reduction of
order procedure, so that it still describes ‘‘long wavelength’’
behavior accurately, but no longer predicts pathological be
havior at the Planck scale.

We now turn to a discussion of the second issue, i.e., th
uniqueness of the right-hand side of Eq.~2.6!. If we assume
that the prescription for obtaining the expected stress tens
satisfies the axioms discussed in Ref.@45#, then the expected
stress tensor is unique up the addition of local, conserve
curvature tensors. These are tensors which are functionals
the metric, and whose value at a point depend only on th
geometry in an arbitrarily small neighborhood of that point.
This ambiguity is assumed to be only a two-parameter am
biguity @60,61#, because in general spacetimes there are onl
two independent conserved local curvature tensors of dimen
sions (length)24, which are explicitly given by@62#

Aab5
1

A2g

d

dgabE d4xA2gCcde fC
cde f

522hRab1
2
3¹a¹bR1 1

3hRgab2
1
3R

2gab

1 4
3RRab1~RcdR

cd!gab24RacbdR
cd ~2.7!

and

Bab5
1

A2g

d

dgabE d4xA2gR2

52¹a¹bR22hRgab1
1

2
R2gab22RRab . ~2.8!

Thus, if we denote bŷT̂ab&point split the stress tensor given by
the point splitting algorithm~briefly reviewed in the next
subsection!, then the appropriate right-hand side for Eq.~2.6!
must be of the form

^T̂ab&5^T̂ab&point split1aAab1bBab . ~2.9!

Herea andb are dimensionless coefficients which can be
regarded as free parameters. Different renormalizatio
schemes predict different values ofa andb. Indeed,a and
b may be viewed as new ‘‘coupling constants’’ which must
be introduced into the theory as a result of the nonrenorma
izability of quantum gravity~coupled to matter! at one-loop
order. In quantum gravity, at higher~graviton! loop orders,
additional new ‘‘coupling constants’’ would have to be in-
troduced as coefficients of the conserved local curvatur
terms of the appropriate dimension for that order; thes
would constitute a portion of theO(\2) and higher correc-
tions to the semiclassical equation referred to above.

An important feature of̂ T̂ab& is that it has an anomalous
behavior under a scaling of the spacetime metric and th
corresponding scaling transformation of the state. To see th
more explicitly, consider, for simplicity, the case of a mass-
less field. Under the scaling transformationgab→m2gab , we
must scale the two-point function,G, of the quantum field as
G(x,y)→m22G(x,y) in order to preserve Eq.~2.15! below.
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Physically, this scaling of the quantum state can be inte
preted as preserving the ‘‘particle content’’ of that state,
that the new state in the new metricm2gab corresponds sim-
ply to increasing the wavelength of all of the particles by th
factor m. Note that this required scaling ofG contrasts
sharply with the situation in the classical theory, where th
amplitude,F, of the scalar field may be scaled in an arbitrar
manner independently of the scaling of the metric tens
@63#. In the classical theory, the stress-energy tensor a
scales in a straightforward manner under any combined sc
ing transformation ofgab andF. However, the situation is
quite different in the semiclassical theory because one
forced to introduce a lengthscale,l0, in the prescription for
defining ^T̂ab&. In particular, in the point splitting algorithm
~reviewed briefly in the next subsection!, a length scale im-
plicitly enters into the logarithmic term in the local Had
amard subtraction termGH(x,y) @45#; a length scale simi-
larly enters all other regularization prescriptions as
‘‘renormalization point’’ or ‘‘cutoff.’’ Under a change of this
length scalel0→ml0, we have@64,42#

^Tab&@gcd ,ml0#5^Tab&@gcd ,l0#14p lnm@aAab1bBab#,
~2.10!

wherea, b are specific numerical coefficients that depend o
the curvature couplingj @see Eq.~3.34! below#. Equiva-
lently, if we keepl0 fixed but scale the metric and state vi

gab→m2gab ,G~x,y!→m22G~x,y!, ~2.11!

we obtain

^Tab&@m2gcd ,l0#5m22^Tab&@gcd ,l0#

24pm22lnm@aAab1bBab#. ~2.12!

Note that the ambiguity~2.10! in ^T̂ab& resulting from the
need to introduce a length scale is subsumed by the m
general ambiguity given by Eq.~2.9!. Indeed, one way of
describing the above anomalous scaling behavior~2.10! is to
say that a particular linear combination of the two new d
mensionless ‘‘coupling constants’’a and b is a ‘‘running
coupling constant,’’ i.e., in effect, its value depends upon t
scale one is considering.

The scaling behavior given by Eq.~2.10! has two impor-
tant consequences. First, it shows that~at least part of! the
ambiguity occurring in Eq.~2.9! for a massless field cannot
be eliminated by any criterion arising from the study of th
quantum field theory of that field propagating in a fixed cla
sical background spacetime, since that theory does not h
a preferred length scale, whereas any prescription fixinga
andb would have the effect of determining a length scal
~Although a massive field does have an associated len
scale—namely 1/m—using this length scale to fixa andb
would give rise to singular behavior in them→0 limit.! The
second consequence is that the scaling behavior~2.10! will
affect the nature of solutions in the ‘‘long wavelength’’ limit
As we will discuss in detail in Sec. III E below, when we
perform an expansion in a ‘‘wavelength parameter’’LP /L,
we will need to introduce terms which vary as powers
ln@LP /L#(LP

2 /L2) as well as powers ofLP2 /L2.
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Although the numerical values of the dimensionless coef-
ficientsa andb are not known—and, indeed, are not deter-
minable without a more complete theory—we shall assume
below that their values are of order unity ‘‘at the Planck
scale.’’ More precisely, if we definêT̂ab&point split by choos-
ing the lengthscalel0 arising in that prescription to beLP ,
then we shall assume that the correct formula for^T̂ab& is
given by Eq.~2.9! with a andb of order unity. However, our
results concerning ANEC will be valid for all values ofa
andb.

C. The semiclassical equations

Consider now the semiclassical theory where the metric
gab is treated classically, but where the scalar fieldF is
treated as a quantum field. The metric and quantum state
v are required to satisfy the semiclassical Einstein equation
~2.6!. The coupled, evolving degrees of freedom in the semi-
classical theory consist of~i! the metric, and~ii ! all the ob-
servables associated with the scalar field. These field observ
ables may be taken to be then-point correlation functions
^F̂(x1)•••F̂(xn)&v in the given quantum state,v. However,
as we discuss further below, the expected value of the stres
tensor in any state is determined via the point splitting pro-
cedure from a knowledge of only the two-point function,

G~x,y!5^F̂~x!F̂~y!&v . ~2.13!

Moreover, in free field theory~which we are considering
here! the evolution of the two-point function is decoupled
from that of the highern-point functions. Thus, if we are
only interested in the metric and not in other observables
depending on the state of the scalar field, we can regard th
semiclassical equations as a set of coupled equations for th
metric gab and the distributional bisolutionG(x,y) to the
scalar wave equation~2.3!. This is a key feature which sim-
plifies our analysis. From this point of view, states which
differ only in theirn-point functions fornÞ2 are effectively
identical as far as semiclassical gravity is concerned.

The appropriate set of bidistributional solutions for a
given, fixed, globally hyperbolic spacetime (M ,gab) can be
characterized as follows@65,45#: Let S(M ) denote the space
of smooth solutions of the Klein-Gordon equation~2.3! with
initial data of compact support on Cauchy surfaces, and le
C0

`(M ) be the space of smooth test functions of compact
support on spacetime. Define the usual Klein-Gordon-like
symplectic product on pairsF,GPS(M )

V~F,G!52E
S
F¹
↔

aGdSa, ~2.14!

whereS is any Cauchy surface. LetG( f ,g) denote the two-
point bidistribution evaluated on~‘‘integrated against’’! test
functions f ,gPC0

`(M ). ThenG( f ,g) must be of the form

G~ f ,g!5
1

2
G~1!~ f ,g!1

i

2
V~Ef ,Eg!, ~2.15!

whereEf denotes the advanced minus retarded solution with
sourcef . Furthermore, the symmetric partG(1)/2 of G must
satisfy the positivity conditionsG(1)( f , f )>0 and



t

n
-
s

-

us

-

n
-

in

se

e
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G~1!~ f , f !G~1!~g,g!>V~Ef ,Eg!2. ~2.16!

Moreover, in order that the stress tensor be well defined,
two-point functionG(x,y) must be of so-called Hadamar
form @65#.

To specify more explicitly the coupled evolution equ
tions for the metricgab(x) and the two-point function
G(x,y), we need to discuss the point splitting prescripti
for calculating the stress tensor. LetGH(x,y) denote the lo-
cally constructed Hadamard bidistribution given by the alg
rithm described in Refs.@65,45,66#, specialized in the fol-
lowing way. Use the differential operator

D[h2m22jR. ~2.17!

Choose the length scale,l0, implicitly appearing in the loga-
rithmic term inGH(x,y) to be the Planck lengthLp , choose
w050 in the notation of Ref.@45#, and truncate the serie
expansion after three terms. Then the regulated two-p
function

f ~x,y![G~x,y!2GH~x,y! ~2.18!

will be well defined in a neighborhood of the ‘‘diagonal
x5y of M3M and will be at leastC2 for Hadamard states
@65#. The expected value of the stress tensor will be given

^Tab~x!&point split5 lim
y→x
Dabf ~x,y!1Q~x!gab~x!, ~2.19!

whereDab is a particular second-order differential operat
andQ is a particular local curvature invariant@45#. Note that
if we modify the prescription for calculatingGH by truncat-
ing the series after say four terms instead of three terms,
the regularized two-point functionf (x,y) will be altered, but
the value~2.19! of ^Tab(x)&point split will not be changed. As
explained in the previous subsection, we shall assume
the correct value of̂Tab(x)& is given by Eq.~2.9!, with a
andb of order unity.

In summary, the independent variables in the semicla
cal evolution equations consist of a smooth metricgab(x)
and a bidistributionG(x,y). G(x,y) is required to satisfy the
wave equation~2.3! in each variable, as well as Eqs.~2.15!
and ~2.16! and the Hadamard condition. Finally,gab andG
are required to satisfy the semiclassical Einstein equa
~2.6!, with ^Tab& given by Eqs.~2.9! and ~2.19!. The gauge
freedom in this formulation of semiclassical gravity simp
consists of the diffeomorphismsw:M→M , under which
gab andG(x,y) get transformed by the natural action ofw.

Although the above formulation of semiclassical grav
is fully satisfactory mathematically, the unknown variab
G(x,y) has a distributional character, and it would be mo
convenient to specify the independent degrees of freedom
terms of a smooth function. This can be done as follows
the physically relevant case of a spacetime (M ,gab) which
becomes flat in the asymptotic past. First, we assume tha
state is sufficiently regular and that the approach to flatn
of the spacetime occurs at a sufficiently rapid rate t
G(x,y) asymptotically approaches the two-point functio
Gin(x,y) of a state,v in , in Minkowski spacetime (M ,hab).
For sufficiently regular states of a massless field, asympt
flatness of (M ,gab) at null infinity should suffice for this to
the
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hold, withGin(x,y) being the two-point function of the state
in Minkowski spacetime with the same initial data on pas
null infinity J 2 asG(x,y) @under a suitable identification of
J 2 for (M ,gab) with J 2 for (M ,hab)#. For a massive
field, it is less clear precisely what asymptotic conditions o
(M ,gab) would suffice, but the necessary conditions presum
ably would be qualitatively similar to those for a massles
field. Note that the positivity condition will hold for
G(x,y) if and only if it holds forGin(x,y). This is because,
in general, the positivity condition~2.16! can be expressed as
a condition on initial data onS3S, whereS is any Cauchy
surface@65#, and will be preserved under evolution. The two
point functionsG and Gin have the same initial data at
J 2, and are both evolved forward using the homogeneo
wave equation with respect to the appropriate metric (gab for
G, hab for Gin).

Now, letGin,0(x,y) denote the two-point function of the
ordinary vacuum state,v in,0 , in Minkowski spacetime
(M ,hab), and letG0(x,y) be two-point function of the cor-
responding state,v0, in (M ,gab) which approaches
Gin,0(x,y) in the asymptotic past; in other words, let
G0(x,y) be the two-point function of the ‘‘in vacuum state’’
in (M ,gab). For any Hadamard state,v, in (M ,gab) with
two-point functionG(x,y), we define

F~x,y!5G~x,y!2G0~x,y!. ~2.20!

Then, clearly,F contains the same information as the bidis
tribution G. However, the Hadamard condition onG now
corresponds simply to the statement thatF(x,y) is a smooth
function onM3M . Furthermore, Eq.~2.15! is equivalent to
the statement thatF is symmetric and real-valued. In addi-
tion, F(x,y) satisfies the wave equation~2.3! in each vari-
able

DxF~x,y!5DyF~x,y!50, ~2.21!

by virtue of the fact that the bidistributionsG(x,y) and
G0(x,y) each satisfy this equation. The only other restrictio
on F is the positivity condition arising from the correspond
ing condition~2.16! onG.

Since the expected stress tensor^Tab&v has a linear de-
pendence on the two-point distribution,G, associated with
v, we have, for any Hadamard state,v,

^Tab&v5^Tab&v0
1^Tab&F . ~2.22!

Here as abovev0 denotes the ‘‘in’’ vacuum state, and

^Tab&F[ lim
y→x
DabF~x,y!, ~2.23!

with Dab being the same differential operator as appeared
Eq. ~2.19!. The vacuum polarization term̂Tab&v0

is func-

tional of the spacetime metricgab alone. For massless fields,
it has been evaluated by Horowitz@48# to first order in the
perturbed metric about flat spacetime, and we will make u
of Horowitz’ formula in our analysis below.

Thus, in our reformulation of semiclassical theory, th
independent variables consist of a smooth metricgab(x) and
a smooth, symmetric, real-valued functionF(x,y) which sat-
isfies the positivity condition arising from Eq.~2.16!. The
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dynamical evolution equations are simply thatF(x,y) satisfy
the wave equation~2.3! in each variable with respect to th
metricgab , and thatgab andF satisfy the semiclassical Ein
stein equation~2.6! with stress-energy tensor given by Eq
~2.22! and ~2.23!. We remark that a purely classical theor
where gravity is coupled to a statistical ensemble of sca
field configurations, would differ from this version of sem
classical gravity only in the following two respects. First,
the classical theory, the term̂Tab&v0

would be absent from
Eq. ~2.22!. One may view this term, which is proportional t
\, as describing the vacuum polarization effects occurring
the quantum theory. Second, the quantum mechanical p
tivity condition onF arising from Eq.~2.16! ~which can be
viewed as a restriction on the space of allowed initial data
F onS3S for any Cauchy surfaceS) is less restrictive than
the corresponding classical positivity condition.

Under our above assumptions about the asymptotic
havior of states, it follows from Eq.~2.20! that in the asymp-
totic pastF(x,y) approaches the smooth functionF in(x,y)
on Minkowski spacetime defined by

F in~x,y!5Gin~x,y!2Gin,0~x,y!. ~2.24!

Note thatF in is just the usual ‘‘regularized’’ two-point func-
tion of the statev in in Minkowski spacetime. It satisfies a
positivity condition which ensures thatGin is the two-point
distribution of a state in Minkowski spacetime. We ma
view F in(x,y) and a corresponding quantity describing th
incoming classical gravitational radiation@see Eq. ~1.8!
above# as the freely specifiable ‘‘initial data’’ for semiclas
sical gravity. In the next section, we will develop a system
atic perturbation expansion for semiclassical solutions
terms of these ‘‘initial data.’’

We conclude this section by reminding the reader of o
notation for the four different states under considerati
here: ~i! the state of interest,v, on the curved spacetime
(M ,gab) ~ii ! the ‘‘incoming state’’v in on Minkowski space-
time (M ,hab), such that then-point functions ofv approach
those ofv in in the asymptotic past~iii ! the vacuum state,
v in,0 in Minkowski spacetime, and~iv! the corresponding
‘‘in-vacuum’’ state v0 in the curved spacetime (M ,gab),
such that then-point functions ofv0 approach those of
v in,0 in the asymptotic past. The two-point functions of the
states are, respectively,G, Gin , Gin,0 , andG0.

III. PERTURBATION THEORY ABOUT FLAT SPACETIME

A. Derivation of the equations

In this section we derive the explicit form of the pertu
bation expansion of the semiclassical equations off of
Minkowski spacetime/vacuum solution, valid to second o
der in deviation from flatness. Let„M ,gab(«),v(«)… be a
smooth one-parameter family of solutions of the semiclas
cal equations discussed in the last section, such
@M ,gab(0)5hab# is Minkowski spacetime andv(0) is the
Minkowski vacuum state,v in,0 . We expand all relevant
quantities about«50 as follows:

gab~«!5hab1«hab
~1!1«2hab

~2!1O~«3!,

v in5v in,01«v in
~1!1«2v in

~2!1O~«3!,
.
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F5«F ~1!1«2F ~2!1O~«3!,F in5«F in
~1!1«2F in

~2!1O~«3!,

D5D~0!1«D~1!1O~«2!,

Dab5Dab
~0!1«Dab

~1!1O~«2!, ~3.1!

wherev in , F, F in , D, andDab were defined in the previous
subsection. For the remainder of this paper the operators
Dab , Dab

(1) , andDab
(2) will be implicitly understood to include

the operation of taking the coincidence limity→x; these
operators thus act on functions onM3M and take values in
the space of tensors onM . Note that it would not make sense
to introduce an expansion in« of the family of states
v(«), as for different values of«, these states act on the
different algebras of observables corresponding to the differ-
ent spacetimes. For this reason, we view the statev(«) as a
functional of the ‘‘in’’ statev in(«) on Minkowski spacetime
and of the spacetime metricgab(«), i.e., v5v@v in ,gcd#,
and we then expandv in(«). Note that for a fixed metric
gab , the statev is a linear function ofv in .

We write

^Tab@gcd#,v in&[^Tab@gcd#&v[v in ,gcd]
. ~3.2!

This defines the tensorTab on the left-hand side as a linear
map on the space of states on Minkowski spacetime which
takes values in the space of conserved tensors on the spac
time (M ,gab). Using the expansion~3.1! for gab(«), we ex-
press this linear map on Minkowski spacetime states in the
form as

Tab@gcd~«!#5Tab
~0!1«Tab

~1!@h~1!#1«2$Tab
~1!@h~2!#

1Tab
~2!@h~1!,h~1!#%1O~«3!, ~3.3!

whereTab
(0) is the usual stress tensor operator in Minkowski

spacetime. Equation~3.3! defines the tensorsTab
(1) andTab

(2)

which act on metric perturbations and pairs of metric pertur-
bations respectively.

The perturbative semiclassical Einstein equations are ob-
tained by inserting the expansions~3.1! and ~3.3! into Eq.
~2.6!. We obtain, at first order,

kGab
~1!@h~1!#5^Tab

~0! ,v in
~1!&1^Tab

~1!@h~1!#,v in,0& ~3.4!

and at second order we get

kGab
~1!@h~2!#1kGab

~2!@h~1!,h~1!#

5^Tab
~0! ,v in

~2!&1^Tab
~1!@h~1!#,v in

~1!&1^Tab
~1!@h~2!#,v in,0&

1^Tab
~2!@h~1!,h~1!#,v in,0&. ~3.5!

Here the tensorsG(1) andG(2) are defined by the identity

Gab@h1ah#5aGab
~1!@h#1a2Gab

~2!@h,h#1O~a3!, ~3.6!

which holds for any tensorhcd , i.e., they are the linear and
quadratic parts of the Einstein tensor. Explicit expressions
for G(1) are given in for example Ref.@5#, and forG(2) in
Ref. @67#.

Before discussing the explicit form of the terms appearing
on the right sides of Eqs.~3.4! and~3.5!, it may be useful to
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write the equations in the notation appropriate to the ca
where the one-parameter family of incoming statesv in(«)
corresponds to a one-parameter family of density matri
r̂(«) on the usual Fock spaceH of states on Minkowski
spacetime. If this family of density matrices is expanded

r̂~«!5u0&^0u1«r̂~1!1«2r̂ ~2!1O~«3!, ~3.7!

then Eqs.~3.4! and ~3.5! can be rewritten as

kGab
~1!@h~1!#5^0uTab

~1!@h~1!#u0&1tr@ r̂~1!Tab
~0!# ~3.8!

and

kGab
~1!@h~2!#1kGab

~2!@h~1!,h~1!#

5tr@ r̂~2!Tab
~0!#1tr@ r̂~1!Tab

~1!@h~1!##

1^0uTab
~1!@h~2!#u0&1^0uTab

~2!@h~1!,h~1!#u0&. ~3.9!

In Eqs. ~3.4! and ~3.5!, the terms involvingv in,0 are the
‘‘vacuum polarization’’ terms, corresponding to the firs
term on the right-hand side of Eq.~2.22!. The term
^Tab

(1)@h(1)#,v in,0& has been computed by Horowitz@48# in the
massless case, and we will review Horowitz’ results in S
III D below. The term^Tab

(2)@h(1),h(1)#,v in,0& has not been
computed, and, to avoid having to do so, we will eventua
pass to an approximation in which this term can be neglec
~see Sec. III E below!.

We now derive explicit expressions for the non-vacuum
polarization terms that appear in Eqs.~3.4! and ~3.5!. From
Eqs.~2.23! and ~3.1! we obtain

^Tab&F5«Dab
~0!F ~1!1«2@Dab

~0!F ~2!1Dab
~1!F ~1!#1O~«3!.

~3.10!

Furthermore, from Eqs.~2.21! and ~3.1!, we obtain

Dx
~0!F ~1!~x,y!50,

Dx
~0!F ~2!~x,y!52Dx

~1!F ~1!~x,y!, ~3.11!

together with similar equations involvingy derivatives.
SinceF→F in in the asymptotic past, the solutions to the
equations are

F ~1!5F in
~1!

F ~2!5F in
~2!1E@2Dx

~1!F in
~1! ,2Dy

~1!F in
~1!#. ~3.12!

Here the quantityE@sx ,sy# is defined for any sources
sx(x,y) andsy(x,y) satisfyingDy

(0)sx5Dx
(0)sy , by
se
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E@sx ,sy#~x8,y8!5E
M
d4xGret

~0!~x8,x!sx~x,y8!

1E
M
d4yGret

~0!~y8,y!sy~x8,y!

2E
M
d4xE

M
d4yGret

~0!~x8,x!Gret
~0!~y8,y!

3 s̃~x,y!, ~3.13!

where s̃5Dy
(0)sx5Dx

(0)sy , andGret
(0) is the retarded Greens

function for the differential operatorD(0). Combining all of
the above results together with Eqs.~2.22!, ~3.4!, and ~3.5!
yields the fairly obvious relations

^Tab
~0! ,v in

~1!&5Dab
~0!F in

~1! , ^Tab
~0! ,v in

~2!&5Dab
~0!F in

~2! ,
~3.14!

together with

^Tab
~1!@h~1!#,v in

~1!&5Dab
~1!F in

~1!

1Dab
~0!E@2Dx

~1!F in
~1! ,2Dy

~1!F in
~1!#.

~3.15!

Finally, we note that the perturbative semiclassical equa
tions have the following structure: we can specify arbitrarily
the incoming state perturbationsv in

(1) andv in
(2) ~or, more pre-

cisely, just their two-point functions!, as well as the incom-
ing metric perturbationshab

(1),in and hab
(2),in @see Eq.~1.8!

above#. We then may solve Eqs.~3.4! and~3.5! to obtain the
metric perturbationshab

(1) andhab
(2) @68#.

B. Pure states versus mixed states

As discussed in the Introduction, our results concerning
the ANEC depend crucially on whether the incoming state
v in is pure or mixed to first order in«. Consider first the case
where all the states,v in(«), correspond to density matrices,
r̂(«), in the usual Fock space. Then the perturbed state wi
be pure to first order if and only if

r̂~«!5uC~«!&^C~«!u1O~«2!, ~3.16!

where

uC~«!&5u0&1«uc&~1!1O~«2!. ~3.17!

Thus the state is pure to first-order if and only if

r̂ ~1!5u0&^cu~1!1 ~1!uc&^0u, ~3.18!

for someuc& (1)PH with ^0uc& (1)50. By contrast, the most
general first order density matrix perturbation is of the form

r̂ ~1!5u0&^cu~1!1 ~1!uc&^0u1 P̂2~ trP̂!u0&^0u, ~3.19!

where P̂ is a positive, Hermitian trace class operator onH
such thatP̂u0&50. Thus, the perturbed state is pure to first
order if and only ifP̂50.

By inspection, when Eq.~3.18! holds, it can be seen that
the two-point functionF in

(1) will have the property that its
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mixed-frequency part@i.e., the part that is positive frequenc
with respect to one variable and negative frequency w
respect to the other; see Eq.~6.1! below# vanishes. More-
over, the converse is also true, since if the mixed-freque
part vanishes we have

tr@ r̂~1!F̂2~u!F̂1~u!#50 ~3.20!

for any test functionu, where we have used the decompo
tion

F̂5F̂11F̂2 ~3.21!

of the field operator into its positive and negative frequen
parts.~In a conventional mode expansion,F̂1 would consist
of the annihilation operators andF̂2 the creation operators.!
Now since the operatorP̂ is trace class, it is compact. Thu
there will exist an orthonormal basisuc j& of the space of
states orthogonal tou0& such that

P̂5(
j50

`

pj uc j&^c j u ~3.22!

for somepj>0, j50,1,2 . . . , where the convergence is i
the operator norm topology. Equations~3.19! and~3.20! now
imply that

(
j
pj uuF̂1~u!uc j&uu250. ~3.23!

However, if F̂1(u)uc j&50 for all u, then uc j&5u0&, which
contradicts the fact thatuc j& is orthogonal tou0&. Therefore
pj50 for all j , and the incoming state is pure to first-orde

In addition, it follows immediately from Eq.~3.19! that if
r̂ (1) is a possible first-order state perturbation, then2 r̂ (1)

will be an allowable first-order state perturbation if and on
if the state is pure to first order. This has the implicatio
which we discussed in the Introduction, that if the ANE
integral is to be non-negative generally, it must vanish at fi
order for pure states, but not necessarily for mixed state

For general, algebraic states there is a more abstract
tion of purity, which defines a statev to be pure if it cannot
be written in the formcv11(12c)v2 wherev1 andv2 are
distinct states and 0,c,1 ~see, e.g., Ref.@45#!. Thus, the
pure states are extreme boundary points of the convex lin
space of all states. It should follow that for general algebr
states, ifv in

(1) is a possible first-order state perturbation off
a pure state, then2v in

(1) will be an allowable first-order state
perturbation if and only if the perturbed state is pure to fi
order. In addition, the positivity condition, Eq.~2.16!, ap-
plied to bothv in,01«v in

(1) andv in,02«v in
(1) should then im-

ply the vanishing of the mixed-frequency part of the tw
point function for general first-order pure states. Thus,
conclusions of the previous paragraph should continue
hold for general, algebraic states, although we have not
tempted to give a rigorous proof of these results.

Our analysis of the ANEC given in Sec. VI C below wi
divide into two cases, depending upon whether or not
mixed frequency part of the perturbed two-point functio
vanishes. In the remainder of this paper, we shall use
terminology ‘‘pure perturbed two-point function’’ to mean
y
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perturbed two-point function for which the mixed-frequency
part vanishes, and ‘‘mixed perturbed two-point function’’ to
mean one for which the mixed-frequency part does not va
ish. For states in the usual Fock space—and, presumab
also for general algebraic states—a perturbed state will
pure to first order if and only if its perturbed two-point func-
tion is pure.

C. Gauge freedom and transformations

In this subsection we analyze the gauge freedom in th
perturbation equations. The gauge freedom in the on
parameter family of exact solutions„M ,gab(«),v(«)… con-
sists simply of one-parameter families of diffeomorphism
w« :M→M , wherew0 is the identity map@69#. Here, these
diffeomorphisms act simultaneously ongab and the two-
point functionG of v.

It can be shown@70# that for an arbitrary one-parameter
family of diffeomorphismsw« with w0 being the identity
map, there exist unique vector fieldsja(1) and ja(2) on M ,
such that, to order«2,

w«5Dj~2!~«!+Dj~1!~«2/2!. ~3.24!

HereDt(l):M→M denotes the one-parameter group of dif
feomorphisms generated byta. The vector fieldsja(1) and
ja(2) are given by the following formulas in terms of their
actions on test functionsfPC0

`(M ):

ja~1!¹af5
d

d«
~ f +w«!U

«50

~3.25!

and

ja~2!¹af5
d2

d«2
~ f +w«!U

«50

2Lj~1!Lj~1! f , ~3.26!

whereL denotes the Lie derivative. Thus, the gauge freedo
in the second-order perturbation equations can be para
etrized by pairs of vector fields onM @94#.

Now let T(«) be any one-parameter family of tensor
fields onM ~we suppress tensor indices!, which has the ex-
pansion

T~«!5T~0!1«T~1!1«2T~2!1O~«3!. ~3.27!

Then from Eq.~3.24! we can calculate the transformation
properties of the expansion coefficientsT(0), T(1), etc. We
find

w«*T~«!5T~0!1«T̄~1!1«2T̄~2!1O~«3!, ~3.28!

where

T̄~1!5T~1!1Lj~1!T~0!, ~3.29!

and

T̄~2!5T~2!1
1

2
Lj~2!T~0!1

1

2
Lj~1!Lj~1!T~0!1Lj~1!T~1!.

~3.30!
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Let us denote gauge transformed quantities by overb
Then we find

h̄~1!5h~1!1Lj~1!h,

h̄~2!5h~2!1 1
2Lj~2!h1 1

2Lj~1!Lj~1!h1Lj~1!h~1!,

Ḡ~1!5G~1!, Ḡ~2!5G~2!1Lj~1!G~1!,

F̄ ~1!~x,y!5F ~1!~x,y!,

F̄ ~2!~x,y!5F ~2!~x,y!1Lj~1!
x F ~1!~x,y!1Lj~1!

y F ~1!~x,y!.
~3.31!

We use these formulas in Sec. VII below.

D. The linearized stress tensor and the explicit form
of the first-order perturbation equation

In this subsection we analyze the vacuum polarizati
term appearing in the first order perturbation equation~3.4!
in the massless case,m50. This has been calculated b
Horowitz @48# using an axiomatic approach, who obtained

^Tab
~1!@h~1!#~x!,v in,0&5E

M
d4y$Hl~x2y!@aAab

~1!~y!

1bBab
~1!~y!#%1aAab

~1!~x!

1bBab
~1!~x!. ~3.32!

HereAab
(1) andBab

(1) are the linearized versions of the loca
curvature tensors~2.7! and ~2.8!:

Aab
~1!522hGab

~1!1 2
3¹a¹bR

~1!2 2
3habhR~1!,

Bab
~1!522habhR~1!12¹a¹bR

~1!, ~3.33!

whereR(1) is the linearized Ricci scalar and the derivativ
operators¹a andh are the zeroth-order derivative operato
associated with the flat metrichab . The coefficientsa and
b in Eq. ~3.32! are constants which depend on the curvatu
coupling j. These coefficients were given by Horowitz fo
the casesj50 andj51/6; the general formulas can be de
rived from point splitting and are

a5
1

4p~960p2!
, b5

~126j!2

4p~576p2!
. ~3.34!

Note that the coefficienta is positive for all values ofj, and
moreover the corresponding coefficient for other fields su
as Maxwell and neutrino fields is also positive@48#. This fact
will be be relevant in our analysis below. The quantitiesa,
b in Eq. ~3.32! are free parameters, cf., the discussion af
Eq. ~2.9!. The parameterl is a free parameter with dimen
sions of length corresponding to the length scalel0 dis-
cussed in Sec. II B. The quantityHl is a distribution with
support on the past light cone, rather like the retard
Green’s function solution to the massless wave equation.
explicit formula forHl is
ars.

on
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Hl~x!5 lim
a→02

@2d8~s2a!Q1~x!12p ln@2a/l2#d4~x!#,

~3.35!

wheres5xax
a/2, Q1(x) takes the value 1 inside the past

light cone and vanishes elsewhere, and it is understood tha
the limit a→02 is taken after integrating against a test func-
tion. See Horowitz@48# or Jordan@54# for more details.

Expression~3.32! is essentially a special case of the gen-
eral formula~2.9!, but linearized and specialized to the in-
coming vacuum state. As such it contains a linearized ver-
sion of the two-parameter local curvature ambiguity
described by the parametersa andb. Also the logarithmic
scaling described by Eq.~2.10! has a counterpart in Eq.
~3.32!: the distribution~3.35! has the property that

Hl8~x!2Hl~x!54p ln~l/l8!d4~x!. ~3.36!

Therefore the free parametersa, b, andl are not indepen-
dent. In Sec. II B we chose to makel5Lp , thus fixing the
values ofa andb. In the linearized analysis here and below,
we follow Horowitz @48# and choose that value ofl which
makesa50. Thus, the two independent free parameters in
the linearized stress tensor areb and l. Note that our as-
sumption discussed in Sec. II B thata andb are ‘‘of order
unity at the Planck scale’’ translates into the assumption tha

l;LP , b;1. ~3.37!

Formula~3.32! completes the explicit specification of all
the terms appearing in the linearized semiclassical Einstein
equation~3.4!. Thus, using Eq.~3.14! and settinga50, the
complete, explicit form of this equation is

kGab
~1!@h~1!#5\Dab

~0!F in
~1!1\bBab

~1!~x!1\E
M
d4y$Hl~x2y!

3@aAab
~1!~y!1bBab

~1!~y!#%. ~3.38!

For later convenience, we have explicitly inserted the factors
of \ appearing in this equation@71#. It can be seen that the
right-hand side of Eq.~3.38! contains terms involving fourth
derivatives of the perturbed metric, so the linearized semi-
classical Einstein equation has the nature of a fourth-orde
integrodifferential equation rather than a second-order differ-
ential equation. As previously remarked, it can be solved by
specifying the source term

sab5^Tab
~0! ,v in

~1!&5Dab
~0!F in

~1! ~3.39!

and solving for the metric perturbationhab
(1) . Its exact solu-

tions have been discussed in detail by Horowitz@48#, in the
special case of the homogeneous version of the equation
without the source term~3.39!. In Appendix A we obtain all
solutions to Eq.~3.38! whose spatial Fourier transforms ex-
ist, thereby generalizing the analysis of Horowitz to allow
for a nonvacuum incoming quantum state.

As found in Appendix A and in Ref.@48#, the linearized
semiclassical Einstein equation has, in effect, more degree
of freedom than the corresponding classical equation, and
new ‘‘runaway’’ solutions exist. Thus, presumably, not all of
the exact solutions should be regarded as physical. Sectio
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IV below will be devoted to the issue of how to extra
physical information from Eq.~3.38! and equations of a
similar character.

E. Explicit form of the second-order perturbation equation
in the ‘‘long wavelength’’ limit

As we have previously indicated, we will find that th
ANEC integral vanishes identically for pure states to fi
order in deviation from flatness. This is a key necessary c
dition for the validity of the ANEC, but it does not, by itself
provide strong evidence that any version of the ANEC ac
ally holds for pure states. In order to investigate this iss
further, it is necessary to go~at least! to second-order pertur
bation theory. However, we are unable to do this for gene
perturbations because we do not have an explicit expres
for the term ^Tab

(2)@h(1),h(1)#,v in,0& appearing in Eq.~3.5!.
Nevertheless, as we now shall describe, there are limi
circumstances under which this unknown term will be ne
ligible compared with the other terms appearing in Eq.~3.5!.
These limiting circumstances correspond to the case
‘‘long wavelengths’’~compared with the Planck scale! of the
field and perturbed metric, together with the condition th
the first-order perturbed metric not be dominated by inco
ing gravitational radiation. These conditions should enco
pass a wide range of physically interesting and potentia
achievable situations. In Sec. VII below, we will perform a
analysis of the validity of the ANEC for pure states to seco
order in perturbation theory in this limit.

We now give a precise description of the long waveleng
limit in terms of one-parameter families of solutions to th
semiclassical equations, in which the characteristic len
scaleL of a solution satisfiesL→`, while the length scales
that determine the semiclassical theory,LP andl @the length
scale appearing in Eq.~3.38!#, are kept fixed. However, we
remark that this limit is equivalent to a limit in which
\5LP

2→0 with L andl/LP fixed, i.e., the long wavelength
limit is equivalent to a\→0 limit, as long as the length scal
l is taken to scale proportionally toLp .

As previously discussed in Sec. II B, under the scali
gab→a2gab of the spacetime metric, the natural scaling
the two-point function~corresponding to keeping the partic
content fixed but going to longer wavelengths by the fac
a) is

G~x,y!→a22G~x,y!. ~3.40!

Thus, in the context of perturbation theory off of flat spac
time, the transformation corresponding to keeping the
coming particle content the same but increasing the wa
length of the particles by the factora is given by
hab→a2hab andF in

(n)→a22F in
(n) for all n. Equivalently, by

applying the diffeomorphismxm→axm to this transforma-
tion, we see that the ‘‘long wavelength limit’’ should corre
spond to the largea limit of solutions to the perturbative
semiclassical equations on a fixed background Minkow
spacetime, (M ,hab), with a one-parameter family of state
whosenth order~in «) perturbed incoming initial data varie
as

F in
~n!~x,y;a!5a22F̄ in

~n!~x/a,y/a!, ~3.41!
ct
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where F̄ in
(n)(x,y) is the perturbed incoming initial data of

some fixed~i.e., a independent! state

v̄ in~«!5v in,01«v̄ in
~1!1«2v̄ in

~2!1O~«3!. ~3.42!

Without loss of generality, we may choosev̄ in to have a
characteristic length scale,L0, of order the Planck length,
L0;Lp . We may then interpret the parametera as measur-
ing the characteristic lengthscaleL of the initial state in units
of the Planck length.

The quantity

sab5^Tab
~0! ,v in

~1!& ~3.43!

acts as a source term for the first-order metric perturbation
hab
(1)(x;a), in the linearized semiclassical Einstein equation

~3.4!. For the family of incoming states given by Eq.~3.41!,
sab scales as

sab~x;a!5a24^Tab
~0! ,v̄ in

~1!&~x/a!. ~3.44!

In order to examine the behavior of Eq.~3.4! under scaling,
it is convenient to make the change of variables
ĥ(1)(x;a)[h(1)(ax;a). If we substitute Eq.~3.44! into Eq.
~3.4! and use Eqs.~3.32! and~3.36!, we find that the explicit
a dependence of the resulting equation is given by

kGab
~1!@ ĥ~1!#5

1

a2@^Tab
~0! ,v̄ in

~1!&1^Tab
~1!@ ĥ~1!#,v in,0&#

1
lna

a2 Zab
~1!@ ĥ~1!#. ~3.45!

Here

Zab
~1![4p@aAab

~1!1bBab
~1!# ~3.46!

is the linearized anomalous scaling contribution to the
vacuum polarization discussed in Secs. II B and III D above
see Visser@42# for extensive further discussion. Note that the
a dependence in Eq.~3.45! exactly mirrors the\ depen-
dence in Eq.~3.38!, provided that we assume thatl}LP @see
Eq. ~3.36! above#. This is as expected from our remark above
concerning the equivalence of the\→0 and long wave-
length limits, since

1

a2;
LP
2

L2 5
\

L2 . ~3.47!

The solution to the first-order perturbation equation with
source~3.44! can be written as@cf., Eq. ~1.8! above#

hab
~1!~x,a!5hab

~1!, in~x,a!1Dhab
~1!~x,a!, ~3.48!

wherehab
(1),in is the homogeneous solution to Eq.~3.45! with

the same initial data ashab
(1)(x,a) at J 2 andDhab

(1) is the
retarded solution of that equation with source~3.44!. @Note,
however, that on account of the higher derivative nature o
Eq. ~3.45!, there will be more initial data to specify for
hab
(1)(x,a) than occurs for the classical linearized Einstein
equation. This situation will be rectified when we replace Eq
~3.45! with the reduced order equation~4.20! in Sec. IV D
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below.# To specify a one-parameter family of solutions, w
are free to chose any scaling witha we wish for the initial
data forhab

(1),in @72#. However, a natural choice of scaling
suggested by the following considerations. If we were so
ing the classical linearized Einstein equation with sou
~3.44!, the retarded solution would scale a
Dhab

cl (x;a)5a22Dh̄ab
cl (x/a). The retarded solutionDhab

(1) to
the linearized semiclassical Einstein equation will not sc
this simply on account of the anomalous scaling appearin
Eq. ~3.45!, but the dominant scaling behavior will still be o
this form @see Eqs.~3.50! and ~3.52! below#. Thus, if we
scale the initial data for the incoming gravitational radiati
so that nearJ 2 we have

hab
~1!, in~x;a!5a22h̄ab

~1!, in~x/a!, ~3.49!

then from Eq.~3.48! the first order semiclassical metric pe
turbation will not be dominated by incoming gravitation
radiation in the long wavelength limita→`. This is the
situation we wish to consider with regard to the second-or
perturbation equations.

Before considering the second order equations, it is us
to make the change of variables

xab
~1!~x,a![a2hab

~1!~ax,a!. ~3.50!

From Eq.~3.45!, we obtain

kGab
~1!@x~1!#5^Tab

~0! ,v̄ in
~1!&1

lna

a2 Zab
~1!@x~1!#

1
1

a2 ^Tab
~1!@x~1!#,v in,0&. ~3.51!

With the above ansatz for the form of the incoming gravi
tional radiation, thea dependence ofx (1) will be given by

x~1!5x~1,0!1
lna

a2 x~1,1!1
1

a2x~1,2!1O@~ lna!2/a4#, ~3.52!

where thex (1,j ) are independent ofa.
We now turn to the second-order perturbation equat

~3.5!. Note that oncehab
(1) has been obtained, this equation

an equation forhab
(2) has exactly the same structure as t

first-order equation, except that the source term now inclu
additional pieces constructed from the first-order quantiti

kGab
~1!@h~2!#5sab

~2!1^Tab
~1!@h~2!#,v in,0&, ~3.53!

where

sab
~2!5^Tab

~0! ,v in
~2!&1^Tab

~1!@h~1!#,v in
~1!&

1^Tab
~2!@h~1!,h~1!#,v in,0&2kGab

~2!@h~1!,h~1!#.

~3.54!

Consider now the behavior of the source term~3.54! under
the scaling given by Eqs.~3.41!, ~3.42! and ~3.49!. If we
make the change of variables

s̄ab
~2!~x,a![a4sab

~2!~ax,a! ~3.55!
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~which is chosen to makes̄ab
(2) independent ofa in the large

a limit !, then we find that

s̄ab
~2!5^Tab

~0! ,v̄ in
~2!&1

1

a2 ^Tab
~1!@x~1!#,v̄ in

~1!&

2
1

a2kGab
~2!@x~1!,x~1!#1

lna

a4 Zab
~2!@x~1!,x~1!#

1
1

a4^Tab
~2!@x~1!,x~1!#,v in,0&. ~3.56!

Here the quantityZab
(2) is just the second-order part of the

anomalous scaling tensor

Zab[4p@aAab1bBab#; ~3.57!

see Eqs.~2.10!, ~3.33!, and ~3.46!. In our calculation of the
second-order perturbation to the ANEC integral in Sec. VI
below, we shall work toO(1/a2) beyond leading order, and
consequently we can drop the last two vacuum polarizatio
terms from the right-hand side of Eq.~3.56!. In particular,
the uncalculated term^Tab

(2)@x (1),x (1)#,v in,0& may be
dropped. Moreover, in this equation we can replacex (1) by
its leading order approximationx (1,0) in the largea limit,
given by

kGab
~1!@x~1,0!#5^Tab

~0! ,v̄ in
~1!& ~3.58!

@see Eqs.~3.51! and ~3.52! above#. Making the change of
variablesĥ(2)(x;a)[h(2)(ax;a), the resulting equation is

kGab
~1!@ ĥ~2!#5

1

a2 ^Tab
~0! ,v̄ in

~2!&1
lna

a2 Zab
~1!@ ĥ~2!#

1
1

a2 ^Tab
~1!@ ĥ~2!#,v in,0&

1
1

a4 ^Tab
~1!@x~1,0!#,v̄ in

~1!&2
k

a4

3Gab
~2!@x~1,0!,x~1,0!#1OS lna

a6 D . ~3.59!

IV. DEALING WITH THE PATHOLOGICAL SOLUTIONS:
SIMON’S PRESCRIPTION „S…

As seen in the previous section, a key feature of the lin
earized semiclassical Einstein equation is that it fails to re
main a second-order partial differential equation; rather
contains fourth-order time derivatives of the metric. Conse
quently, the semiclassical equations have more ‘‘degrees
freedom’’ than the classical equations, i.e., additional fre
functions — namely, the second and third time derivatives o
the metric — can be specified as initial data. Directly relate
to the presence of these additional degrees of freedom is t
existence — for all values of the free parametersj, b, and
l — of new, ‘‘pathological’’ solutions of the semiclassical
equations, which grow exponentially in time on a time scal
of order the Planck time~see Appendix A and Ref.@48#!. In
addition, for all j, b, and l except for j51/6 and
l.lcrit , there exist solutions with spatial wavelength
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L@Lp which oscillate in time at a frequency of order th
Planck frequency.

What attitude should one take to these solutions? If o
justifies the semiclassical equations via the 1/N approxima-
tion ~see Sec. II B above! and formally takes the limit
N→`, one could view the semiclassical equations as ho
ing exactly. In that case, one should take all of its solutio
seriously and conclude that flat spacetime is unstable
semiclassical gravity. However, as already indicated in S
II B above, we do not adopt this view here. Rather, althou
we view the semiclassical equations as accurate—for su
ciently largeN—to arbitrarily high order in a long wave-
length expansion, we nevertheless view them as approxim
equations, with domain of validityL@LP . Hence, in our
view, the solutions which grow exponentially on a time sca
of order the Planck time or oscillate in time~with significant
amplitude! at frequencies of order the Planck frequency l
outside the domain of validity of the approximation. From
this point of view, the additional degrees of freedom adm
ted by the semiclassical equations are merely artifacts of
semiclassical approximation. In particular, from this point o
view the exponentially growing solutions to the semiclassic
equations are spurious, and are not indicative of any physi
instability of flat spacetime. A similar attitude toward th
additional degrees of freedom admitted by the semiclassi
equations would, of course, result from viewing the sem
classical equations as approximate equations, with unkno
higher order correction terms of relative magnitud
;LP

2 /L2 as discussed in Sec. II B above and in Ref.@34#.
However, two nontrivial issues result from this viewpoin

towards the ‘‘pathological’’ solutions, with regard to the ex
traction of physical predictions from the semiclassical equ
tions. First, if the domain of validity of the semiclassica
equations isL@LP , then since the corrections to theclassi-
cal equations which appear in the semiclassical equations
of relative magnitudeLP

2 /L2, it might seem that solutions to
the semiclassical equations cannot accurately describe
situation where the deviation from a classical solution b
comes large. In other words, in any circumstance whe
semiclassical theory makes a prediction significantly diffe
ent from that of the classical theory, it might be expected
be highly inaccurate.~Note that this difficulty would appear
to be even more severe if one takes the view that the se
classical equations have unknown corrections of ord
;LP

4 /L4.! If that were the case, there would be little point i
studying the detailed properties of solutions to the semicla
sical equations. However, we shall argue in Sec. IV B belo
that this is not the case: Semiclassical theory should be a
to accurately describe phenomena where the deviations fr
classical behavior are locally small, but where, neverthele
long term cumulative effects result in very large global d
viations from classical solutions. Furthermore, this ability o
semiclassical theory to accurately describe such phenom
should the hold even in the case of finiteN when unknown
correction terms of order;LP

4 /L4 appear in the semiclassi-
cal Einstein equation. While this viewpoint on the domain o
validity of the semiclassical Einstein equation is fairl
widespread—e.g., it is commonly assumed that semiclass
gravity will give an accurate description of the black hol
evaporation process until the stage where the black h
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mass approaches the Planck mass—we will devote Sec. IV B
to giving a clear justification for it and to distinguishing this
use of the semiclassical equations from using them to obtain
‘‘approximate perturbative solutions.’’

The second issue that arises is that if the semiclassica
equations admit spurious solutions, by precisely what criteria
do we determine whether a given solution is ‘‘physical’’ or
not? This issue has recently been addressed by Simon in
series of papers@34–36#. Simon actually makes a number of
independent suggestions with regard to the semiclassica
equations. In this section we will discuss all these sugges-
tions in detail. We will argue that, in a general context, all of
the suggestions have shortcomings. However, we also will
argue that in the special case of perturbation theory abou
Minkowski spacetime, Simon’s ‘‘reduction of order’’ pro-
posal @36# yields a satisfactory prescription for extracting
physical predictions from the semiclassical equations. In the
remaining sections of this paper, we then will investigate the
validity of the ANEC for solutions to the ‘‘reduced order’’
semiclassical equations.

The above mathematical and physical issues which arise
from the ‘‘higher derivative’’ nature of the semiclassical
equations are not unique to this context. Indeed, in this re-
gard, the semiclassical Einstein equation is closely analogous
to the Abraham-Lorentz equation of motion for a classical
charged point particle including radiation reaction, which
also has exponentially growing, ‘‘runaway’’ solutions@36#.
For completeness and also to aid our analysis of the semi
classical Einstein equation, we discuss this~much simpler
and well-studied! example in Sec. IV A. In Sec. IV B, we
explain how solutions to the semiclassical equations can be
accurate even when they predict large~global! deviations
from classical theory. The final two subsections critically
analyze the ‘‘perturbative solutions’’ and the ‘‘reduction of
order’’ proposals discussed by Simon@33–36#.

A. The analogy to radiation reaction of point particles

We begin this subsection with a discussion of the nature
and range of validity of the Abraham-Lorentz equation,
analogous to our discussion in Sec. II B of the status of the
semiclassical Einstein equation. It is well-known that the ide-
alization of classical, charged point particles is inconsistent,
and that this inconsistency is the source of the well-known
difficulties with the radiation reaction equation. More spe-
cifically, consider a finite distribution of charge with some
physical size;L. In the nonrelativistic limit the radiation
reaction force on the charge distribution will be given by
@73#

Freact
m

5tȧ1O@tä~L/c!#, ~4.1!

wherea is the acceleration,m is the mass,q is the charge,
c is the speed of light and

t[ 2
3 ~q2/mc3!. ~4.2!

One might think that the ‘‘point particle limit’’ can simply
be obtained by lettingL→0, yielding the usual radiation
reaction forceFreact5mtȧ, without any unknown correction
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terms. The difficulty with this is of course that all physica
finite distributions of charge satisfy

L*ct, ~4.3!

assuming only that the electromagnetic self-energy;q2/L
cannot exceed the externally measured mass energymc2

~i.e., that the ‘‘bare mass’’ for a finite distribution of charg
is always positive!. Therefore the limitL→0 for fixed mass
m and chargeq is unphysical. The limitL→0, q→0 with
q2/L fixed presumably will exist and presumably will yield
the unique ratioFreact/q

2 given by Eq.~4.1! ~without correc-
tion terms! in the limit. However, for fixed massm and~non-
zero! chargeq, there will always be an ambiguity in the
radiation reaction force that depends on the structure of
particle, which is of fractional magnitude*t/t* , where
t* is the time scale over which the acceleration is changi

It should be noted that the restriction~4.3! — and, corre-
spondingly, the presence of unknown correction terms of
der O(t2) in the radiation reaction force~4.1! — should
occur in any theory where classical electromagnetic fields
coupled to some other degrees of freedom with a continu
distribution of charge. In particular, in semiclassical QED,
one-particle, nonrelativistic electron state is effectively a
nite distribution of charge with widthL;ct/a, wherea is
the fine structure constant, since the expected value of
current operator will not be concentrated at a point but w
typically have a width of orderL. Hence, any ‘‘derivation’’
of Eq. ~4.1! for electrons from semiclassical QED shou
also give rise to correction terms of the order indicated.

Thus, the status of the equation of motion for a nonre
tivistic, charged particle in a given, fixed external electr
field E,

ẍ5
q

m
E~x,t !1tx

B

, ~4.4!

is closely analogous to that of the semiclassical Einst
equation. First, the domain of validity of this equation
limited to the regimet*@t, similar to the domain of validity
L@Lp of the semiclassical Einstein equation. Second, as
the case of the semiclassical Einstein equation, the sm
parameter appearing in Eq.~4.4! multiplies a term containing
higher order time derivatives than originally appeared in t
equation of motion, thereby effectively increasing the ‘‘num
ber of degrees of freedom’’ of the system. This higher ord
time derivative termtx& is responsible for the existence o
so-called runaway solutions, which grow exponentially
time.

Consider now the space of solutions of the radiation re
tion equation~4.4!. If the electric fieldE is of compact sup-
port in time, the runaway solutions will have the proper
that ẍ}exp(t/t) for large t. Solutions which do not manifes
this runaway behavior form a six-dimensional submanifo
of the nine-dimensional manifold of solutions to Eq.~4.4!,
since the nonrunaway solutions have vanishing accelera
at late times~for E of compact support in time!. Indeed,
when the electric field is bounded above, it can be sho
that given any initial position and velocity, there exists
unique initial acceleration generating a nonrunaway soluti
In particular, in the special case where the electric field
l,
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independent of positionx, the general solution of Eq.~4.4!
for an arbitrary initial accelerationa0 at time t50 is given
by

a~ t !5et/tFa02 q

mE0
`

dsE~ts!e2sG1
q

mE0
`

dsE~ t1ts!e2s,

~4.5!

wherea5 ẍ. It is clear that the choice of initial acceleration,
a0, which makes the first term vanish is the unique choice
which generates a nonrunaway solution. Moreover, as is we
known, the nonrunaway solutions can be characterized a
those solutions which satisfy the integrodifferential equation
given in Jackson@73#

v̇5
q

mE0
`

dsE„x~ t1ts!,t1ts…e2s. ~4.6!

The runaway solutions quickly evolve into a regime
where the unknown corrections to the radiation reaction
force will become as large as the radiation reaction force
itself, i.e., wheret*;t in the notation used above. There-
fore these solutions lie outside the domain of validity of the
Abraham-Lorentz equation and are normally deemed to b
‘‘unphysical.’’ It is conventional to take the space of ‘‘physi-
cal solutions’’ to be the six-dimensional space of nonrun-
away solutions satisfying Eq.~4.6!. However, these solutions
have the unphysical property that ‘‘preacceleration’’ is re-
quired at early times~before the electric field is turned on! in
order to avoid runaway behavior at late times@74#.

In summary, there are close parallels between the radia
tion reaction equation and the semiclassical Einstein equa
tion. In our discussions in the remainder of this section, we
will use the radiation reaction equation as a simple exampl
and model for the issues that arise. We will return to the
issue of obtaining ‘‘physical solutions’’ to the radiation re-
action equation and of the semiclassical Einstein equation i
the last two subsections of this section. However, we firs
address an important issue concerning the accuracy of sol
tions to such equations.

B. The physical relevance of solutions
to the semiclassical equations

As we have discussed, the equations we are considerin
have only a limited domain of validity. More specifically,
Eq. ~4.4! holds only whent*@t, whereas Eq.~2.6! @as well
as its linearized version Eq.~3.38!# has the domain of valid-
ity L@LP . Indeed, the situation with regard to Eq.~4.4! is
even worse in that there are unknown correction terms o
ordert2 in that equation.@As we have previously discussed,
similar unknown correction terms also would appear in Eq.
~2.6! if one justifies that equation via the one-loop approxi-
mation or takesN to be finite in the 1/N approximation; see
Sec. II B above.# Since Eq.~4.4! differs from the correspond-
ing equation without radiation reaction only by a term of
order t/t* , and Eq. ~2.6! differs from the corresponding
classical equation only by terms of order (LP /L)2, it might
seem that Eqs.~4.4! or ~2.6! can never be valid in any cir-
cumstance where they predict large deviations from the cor
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responding classical behavior, i.e., in any circumsta
where they have the potential to make dramatically new
dictions.

Indeed, it might appear that, at best, the only useful
reliable information that ever could be justifiably extract
from solutions to equations like the ones we are conside
would be the information contained in ‘‘approximate, pert
bative solutions’’ to some finite order. To explain what
meant by this, let us focus attention on the radiation reac
equation ~4.4!. Suppose that we attempt to perturbative
solve this equation order by order in an expansion in
small parametert appearing in that equation. Thus, we se
approximate solutions of the form

xJ~ t !5(
j50

J

x~ j !~ t !t j , ~4.7!

where eachx( j )(t) will satisfy a differential equation that i
second order in time with sources constructed from the
ternally applied fields and from thex(k) with k, j . Note that
there is no problem with runaway effects in constructing
approximate solutionsxJ(t), and, furthermore, for any give
order J, an initial position and velocity will determine
unique approximate solutionxJ ~unlike the situation with the
exact solutions! @75#.

The key question here is: How can we be justified
keeping the higher order corrections,x( j )(t)t j for j>2, to
the solutions, when the equation of motion itself is ambi
ous atO(t2)? More specifically, the equations forx( j )(t) for
all j.1 are completely ambiguous because of the unkno
correction terms appearing in Eq.~4.4!. Thus, there is appar
ently no justification for going beyond the lowest order a
proximate solution

x1~ t !5x~0!~ t !1tx~1!~ t !, ~4.8!

since unknown terms of order unity appear in the equa
for x(2). If we stop with the approximate solution~4.8!, the
difficulties with the existence of additional degrees of fre
dom and the presence of ‘‘pathological’’ solutions to t
radiation reaction equations would not arise, since the
turbative equations are not problematical. However, s
tions of the type~4.8! would not be of much interest, since—
whatever precise form the exact radiation reaction equat
take—one could not expect Eq.~4.8! to be a good approxi
mation whenevertx(1)(t) becomes of orderx(0)(t), since
then the unknown higher order corrections,x( j )(t)t j with
j.1, to the solution should also be comparably large.
other words, Eq.~4.8! should be a poor approximation whe
ever radiation reaction has any significant effect upon
motion of the particle.

Completely parallel remarks would apply to the case
the semiclassical Einstein equation~2.6! if one justifies that
equation via the one-loop approximation, so that there
unknown corrections of order\2 @76#. However, even when
we take our viewpoint of justifying this equation via th
1/N approximation and thereby treat Eq.~2.6! as being valid
to all orders in\, the situation is not significantly differen
Although we would be formally justified in going beyond th
first order ~in \) approximate perturbative solution, the
apparently would be little point in doing so, since the eq
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tion is valid only whenL@LP , and, in that regime, the
higher order perturbative solutions should merely make tiny
additional corrections to the first-order perturbative solution.
Again, however, first-order approximate perturbative solu-
tions would be of little interest.

Simon@34–36# has argued that one is not justified in go-
ing beyond approximate solutions of the type~4.8!, and that
this therefore solves the problem of the pathological solu-
tions @77#. As we now discuss, we disagree with this conclu-
sion. With regard to Eq.~4.4! it is indeed true that in generic
situations the higher order corrections,x( j )(t) for j>2, will
be sensitive to the unknown higher order corrections to the
equation of motion, and that therefore only the approximate
solution~4.8! will be physically meaningful. However, as we
now explain, thereare situations where the higher order cor-
rectionsx( j ) for all j>2 are not sensitive to the higher order
corrections to the equation of motion, and where, corre-
spondingly, physically meaningful solutions to Eq.~4.4! can
be obtained which go well beyond the approximation~4.8!
and predict large radiation reaction effects. Similarly, there
are situations where Eq.~2.6! may predict large deviations
from classical behavior even thoughL@LP everywhere. We
now explain these comments in detail.

These situations where the higher order corrections to the
solutions to Eq.~4.4! are not sensitive to the higher order
corrections to the equation of motion~4.4! itself arise when
radiation reaction effects are ‘‘locally small’’ but accumulate
secularly, so that they become large at late times. This oc-
curs, in particular, when the evolution time scale is set by
radiation reaction. A good example is the case of an electro-
magnetically bound particle in a Coulomb field undergoing a
radiation-reaction-driven inspiral. Clearly the approximate
solution ~4.8! will provide a poor description of the motion
once the radius of the orbit has shrunk by a factor of 2.
However, an accurate description of the motion will be pro-
vided by an appropriate solution of Eq.~4.4!, provided only
that the time scale of the inspiral is much larger than the
orbital period, so that the radiation reaction effects are lo-
cally small.

To see this more concretely, suppose that the exact equa
tion of motion ~including all higher order corrections! were
of the form

a5aext1t1ȧ1a1t2
2ä. ~4.9!

Here aext is the acceleration due to the externally applied
electric field,a1 is an unknown numerical coefficient of or-
der unity, and t15t25t. ~We have temporarily distin-
guished thet ’s that appear in the radiation reaction accelera-
tion, and in the next order correction to this acceleration, to
aid the following discussion.! Then it is clear that effects that
are quadratic and higher order int1 will be important in
describing the inspiral. However, contributions of ordert2

2 to
the solution will give rise to small corrections to the inspiral
of relative magnitude&t/tp , wheretp@t is the initial or-
bital period. This can be seen by solving the exact equation
with a150, and checking a posteriori that thea1t2

2ä term is
always a small correction to the equation of motion when
evaluated on this solution@78,79#.

Indeed, the above type of situation—where nonperturba-
tive effects in a small parameter are large but can be reliably
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calculated even though the equation is known only to fir
order in that parameter—actually occurs quite commonly
physics. A good example is provided by Newtonian hydr
dynamics. Dissipative terms in the hydrodynamic equatio
normally have an effect on the fluid motion that is smalle
than the effects of the nondissipative terms by a factor;e,
wheree is the ratio of a microscopic length scale to a ma
roscopic length scale. Derivations of the hydrodynam
equations from statistical mechanics throw away small co
rection terms of ordere2. However, effects that are nonper
turbative ine in solutions to the equations will be meaning
ful when the macroscopic evolution time scale is determin
by dissipative effects. In this case the dissipative terms a
the higher order corrections are, in effect, boosted from b
ing O(e) andO(e2), respectively, to beingO(1) andO(e)
respectively~relative to the nondissipative terms!.

To illustrate this claim with a simple, concrete exampl
consider the one-dimensional heat equation

]T

]t
5s

]2T

]x2
, ~4.10!

wheres5 l 2/t, andl andt are some microscopic length and
time scales. First, we note that it is clear that effects whi
are nonperturbative in the ‘‘small parameter’’s are very
significant for the solutions. Indeed, if we choose initial da
of compact support, then at later times the temperatureT will
be nonzero outside the support of the initial data. Howev
the approximate perturbative solutions analogous to Eq.~4.7!
~generated by expanding ins) will be nonzero only in the
support of the initial data. Therefore none of the approxima
perturbative solutions are even qualitatively accurate; no
perturbative effects are vitally important.

Now suppose that there was a correction term to E
~4.10! of the form2a1( l

4/t)]4T/]x4, wherea1 is an un-
known numerical coefficient of order unity. Suppose that th
initial data are of the formT(x,t50)5 f (x/L), whereL is
the macroscopic length scale over which the initial data va
We make the following rescaling of variables: letx5Lr,
and lett5Ts, whereT5(L/ l )2t is the macroscopic evolu-
tion time scale associated with the heat conduction. Then
modified heat equation takes the form

]T

]s
5

]2T

]r2
2a1e

]4T

]r4
, ~4.11!

where e5( l /L)2!1, and where the initial conditions are
T(r,0)5 f (r). From the form of this equation it is clear tha
the solutions will have important nonperturbative contribu
tions from the first term on the right-hand side, but that th
second term~for a1.0) will be a small correction of order
e.

The situation with regard to the semiclassical Einste
equation is closely analogous. Approximate perturbative s
lutions similar to Eq.~4.7! to any finite order in\ will not be
adequate to describe such phenomena as the evaporation
black hole over time scales long enough for the black hole
lose a significant fraction of its initial mass. To describe th
process, it will be necessary to consider effects that are n
perturbative in\. It should be possible to calculate thes
effects reliably from the semiclassical equations provid
st
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only thatR@Lp everywhere in the region of interest, where
R is the local radius of curvature. Even if there were un-
known corrections to the semiclassical equations that are
higher order in\, these corrections should be qualitatively
unimportant in the black hole evaporation process—except
near the singularity and near the final moments of evapora-
tion, where these unknown corrections become locally large.

To summarize, given an equation of motion whose range
of validity restricts a ‘‘correction term’’ in that equation to
be locally very small, there, nevertheless, can be a wide
range of circumstances where this equation can reliably pre-
dict phenomena where this correction term is responsible for
producing large deviations from the uncorrected motion. The
approximate, perturbative solutions~4.7! to any finite order
are completely inadequate for describing such phenomena.
Even if the equation being considered is itself valid only to
first order in some small parameter, it can occur that solu-
tions which are nonperturbative in this parameter are physi-
cally meaningful. Therefore, it is of critical importance to
have a means of determining which solutions to these equa-
tions should be viewed as ‘‘physically relevant’’ and which
solutions should be deemed to be ‘‘spurious.’’ The next two
subsections examine two proposals for extracting the physi-
cally relevant solutions.

C. Extraction of a preferred subclass of ‘‘physical solutions’’

A possible method for dealing with the additional degrees
of freedom of the modified equations is to identify a pre-
ferred subclass of the space of exact solutions. This can be
done for the radiation reaction equation by simply discarding
the runaway solutions, although the remaining solutions have
the unphysical feature of ‘‘preacceleration.’’ However, it is
less clear what should be done when some of the additional
degrees of freedom are associated with oscillatory solutions
instead of exponential solutions, as occurs in the linearized
semiclassical equations. It is even less clear what should be
done in the case of nonlinear equations~such as the full
semiclassical equations!, where the solutions might not
cleanly separate into subclasses of the ‘‘correct size’’ on the
basis of their late and/or early time behavior.

One proposal for identifying a preferred subclass of
‘‘physical solutions’’ is to admit only those solutions which
are ‘‘perturbatively expandable’’@33# in the appropriate
small parametere ~wheree would bet in the radiation re-
action case, and\ or, equivalently, 1/a2, in the semiclassical
case!. By ‘‘perturbatively expandable,’’ it is meant that the
solution can be expressed as a convergent power series of the
form ~4.7! ~with J5`), with eachx( j ) satisfying the appro-
priate j th-order perturbation equation. Equivalently, the re-
quirement is that the solution should be connected to a solu-
tion with e50 by a one-parameter family of exact solutions
with parametere which is analytic ine. Note that it is es-
sential that analyticity ine be imposed, since it should be
possible to connecteverysolution at finitee to a solution
with e50 with a one-parameter family which is merely
smoothin e @80#.

This proposal would appear to be of the correct character,
since the perturbative equations have the correct number of
degrees of freedom, and the ‘‘pathological solutions’’ do not
have analytic behavior in the small parametere at e50. This
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subsection is devoted to a critical examination of this pr
posal.

To begin, consider the radiation reaction equation, a
suppose that the electric fieldE(x,t) is analytic and indepen-
dent of position. In this case it can be seen from Eq.~4.4!
that the series generated by solving order by order int is

a~ t !5 (
n50

`
q

m
tn

dn

dtn
E~ t !. ~4.12!

This is precisely the expansion int of the nonrunaway solu-
tion @the second term in Eq.~4.5!#. Thus, when the series
converges, the two coincide. It seems plausible that the ‘‘p
turbative expandability’’ criterion also will select the non
runaway solutions in the more general case of an anal
E which is position dependent.

However, the criterion of ‘‘perturbative expandability’
fails in the case of smooth but nonanalyticE. In particular,
under the circumstances where Eq.~4.5! is applicable, it can
be seen that there are no solutions which are analytic int. In
this case the series~4.12! will not converge. Indeed, when
the electric field is smooth and of compact support in tim
~and hence non-analytic!, each term in the perturbative ex
pansion will consist of straight line motion both before an
after E is ‘‘turned on.’’ Therefore the summed series, if
converges, must also have this property. However,
summed series must also satisfy Eq.~4.4!, and all exact so-
lutions of this equation which have vanishing acceleration
late times will exhibit preacceleration at early times. Cons
quently, the series which attempts to define the ‘‘perturb
tively expandable’’ solutions cannot converge.

The criterion of ‘‘perturbative expandability’’ appears t
fail much more dramatically when~at least some of! the
additional degrees of freedom are oscillatory in character
is the case for the semiclassical equations. As a simple mo
of this phenomenon, consider the differential equation

S e2
d2

dt2
11Dg~ t !5r~ t !, ~4.13!

in the limit e→0. Note that the linearized semiclassical Ei
stein equation for individual spatial Fourier modes of th
metric perturbation is closely analogous to this equation w
g of the formg(t)5 f 9(t)1v0

2f (t). The general solution of
Eq. ~4.13! is given by

g~ t !5
1

2E dssin~ usu!r~ t1se!1A~e!sin~ t/e!

1B~e!cos~ t/e!. ~4.14!

The inhomogeneous, first term in this solution can also
written as

ginhom~ t !5P.V.E dv

2p

eivt

12e2v2 r̃~v!, ~4.15!

where P.V. means ‘‘principal value.’’ This term is just th
average of the advanced and retarded solutions.

If r̃(v) is of compact support inv—which is amuch
stronger requirement thanr(t) being an analytic function of
t—then it is easy to show from Eq.~4.15! thatginhom(t;e) is
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analytic ine. It follows that whenr̃ is of compact support,
Eq. ~4.15! yields the unique ‘‘perturbatively expandable’
solution to Eq.~4.13!. However, whenr̃ fails to be of com-
pact support inv, it appears that there do not existany
perturbatively expandable solutions to Eq.~4.13!. In essence,
the fact that one has a pole on the real axis of thev plane in
the integrand of Eq.~4.15!—which is associated with the
existence of new oscillatory modes—makes the analytic
behavior ine at e50 much worse than in the case where th
new degrees of freedom correspond to exponentially gro
ing or decaying modes~i.e., when the poles occur away from
the realv axis!. Although we have not obtained a comple
proof that no perturbatively expandable solutions exist wh
r̃(v) fails to be of compact support, we have verified th
the series

g~ t !5 (
n50

`

~21!ne2n
d2nr

dt2n
~ t ! ~4.16!

which defines the perturbatively expandable solutions fails
converge for some simple, analytic, very well-behav
choices ofr, including Gaussian behavior int.

Thus, it appears that the criterion of perturbative expan
ability is of very limited applicability. Even in cases wher
the additional degrees of freedom have an exponentia
growing and/or decaying character, the criterion may fa
However, when the additional degrees of freedom have
oscillatory character, it appears that perturbatively expa
able solutions will exist only in very exceptional cases.

One might seek some other criterion which would sing
out a preferred subclass of ‘‘physical solutions.’’ In the ca
where the additional degrees of freedom have an expon
tially growing and/or decaying character, the nonrunaw
solutions are, of course a natural candidate for this prefer
subclass@81#, although even in this case, these ‘‘physic
solutions’’ have unphysical features like ‘‘preacceleration
@74#. However, when the additional degrees of freedom ha
an oscillatory character, there seems little hope of singl
out a preferred subclass of solutions on any physi
grounds. The difficulties encountered in doing this can
seen in our above model~4.13!: The issue of picking out a
preferred ‘‘physical solution’’ is essentially equivalent t
picking out a preferred Green’s function for the differenti
operator appearing in Eq.~4.13!. Although it is possible to
mathematically identify preferred Green’s functions~e.g., the
retarded Green’s function, the advanced Green’s function
their average! there does not appear to be any grounds
arguing that any one of these is ‘‘better behaved’’ or ‘‘mo
physical’’ than the others.

Note that the different solutions obtained by choosing d
ferent Green’s functions will all be tangent to the same a
proximate perturbative solution~in the sense of having the
same derivatives with respect toe at e50). They will differ
by a function which is smooth ine, but which is also non-
perturbative ine in the sense that all of its derivatives with
respect toe vanish ate50. For example, in our simple
model ~4.13!, the difference between the advanced and
tarded solutions is just

gadv2gret52
1

e
Im@e2 i t /er̃~1/e!#, ~4.17!
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which is smooth ine ase→0 if r(t) is smooth.
We now turn our attention to a quite different idea: th

modification of the equations themselves so that all of th
solutions will be ‘‘physical.’’

D. Reduction of order—modifying the original equation

In this section, we analyze the method of ‘‘self-consiste
reduction of order’’@36# as a means for obtaining physica
predictions from the radiation reaction or semiclassical equ
tions. Instead of seeking to identify a subset of ‘‘physic
solutions’’ to the given equation, this approach generates
modified, second-order equation, which is ‘‘as accurate’’
‘‘nearly as accurate’’ as the original equation, but whos
solutions are all well behaved and can be interpreted as be
‘‘physical.’’ The idea of reduction of order is quite old — it
has been advocated in the context of the radiation react
equation by Landau and Lifshitz@82#, Teitelboim @83#, and
Fordet al. @84#. It is also a standard procedure that is used
the derivation of post-Newtonian equations of motion
classical relativity, see, e.g., Ref.@85#. It has been used in the
context of classical, higher derivative theories of gravity b
Bel et. al. @86#, and more recently it has been discussed
detail in a wide variety of contexts, and in particular advo
cated in the context of semiclassical gravity by Simon@36#.

The justification for this method can be understood
follows. We are given an equation of motion which is be
lieved to accurately describe phenomena with sufficien
large length and/or time scales, e.g.,t*@t for Eq. ~4.4! or
L@LP for Eqs. ~2.6! and ~3.38!. However, the given equa-
tion ~presumably! does not predict even qualitatively correc
behavior outside of its range of validity. Now, generically
any solution to the given equation will have some nonva
ishing Fourier components which lie outside the equation
domain of validity. For some solutions, these Fourier com
ponents behave in such a pathological manner that the en
solution is dominated by the qualitatively incorrect behavio
as occurs for the ‘‘runaway’’ solutions. However, a goo
remedy for this difficulty would be to modify the given equa
tion so that it is equivalent—to the desired accuracy—to t
given equation at large length and/or time scales but does
predict any pathological behavior at small scales~and, thus,
presumably, is at least qualitatively correct in this regime!. In
the situations where it is applicable, the reduction of ord
method achieves this goal.

The reduction of order algorithm for an ordinary or partia
differential equation may be stated as follows. We start wi
an equation~or system of equations! for the unknown vari-
ablex of the general form

dnx

dtn
5P1tQ, ~4.18!

where t is a ‘‘small parameter.’’ Here we assume thatP
contains terms involving no more that (n21) time deriva-
tives of x, but thatQ contains terms involvingm>n time
derivatives ofx, so that the ‘‘small correction,’’tQ, intro-
duces time derivatives of the same or higher differential o
der as appeared in the original equation. To apply the red
tion of order procedure, we differentiate Eq.~4.18! (m2n)
times with respect tot, and substitute the resulting formula
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for dmx/dtm into the expression forQ. We then discard the
resulting terms inQ which are quadratic and higher order in
t. We thereby obtain a new equation which is formally
equivalent to Eq.~4.18! to ordert and which has the same
general form as Eq.~4.18!, but for which the term which
plays the role ofQ now contains at most (m21) time de-
rivatives of x. We then continue to iterate this procedure
until the maximum number of time derivatives ofx appear-
ing in Q is reduced to (n21), at which point no further
reduction of differential order of the time derivatives can be
achieved. The resulting equation is then of the same diffe
ential order in time as the original equation, Eq.~4.18!, with
t50. Thus, we end up with an equation which, formally, is
‘‘as accurate as’’ Eq.~4.18! to ordert, but which does not
contain any new ‘‘degrees of freedom.’’ Note that this final,
reduced order equation isuniquely determinedby the re-
quirements:~i! that it should contain only terms that are ze-
roth order or first order int, ~ii ! that it should be formally
equivalent to Eq.~4.18! to O(t2), and~iii ! that it should be
of the form~4.18! where the right-hand side does not contain
any derivatives with respect to time of order higher than
n21.

However, although the reduction of order algorithm is
uniquely defined for any equation of the form~4.18! for a
given choice of variables, it should be noted that some am
biguities in the algorithm can be introduced by making a
t-dependent change of variables: If one introduces a ne
variable y5y(x;t), rewrites Eq.~4.18! as an equation for
y, and then neglects the terms of ordert2 and higher, the
resulting reduced order equation fory need not be precisely
equivalent to the reduced order equation forx @87#. How-
ever, this inequivalence of the equations can occur only
ordert2 and higher, and, thus, should not have an importan
effect on the behavior of solutions in regimes where reduc
tion of order can be justified@cf., the discussion in Sec. IV B
above#.

The radiation reaction equation~4.4! provides a good il-
lustration of how this procedure works and of its justifica-
tion. By following the steps described above, one obtains th
equation@82,83#

ẍ5
q

m FE~x,t !1t
]E

]t
~x,t !1t~ ẋ•“ !E~x,t !G . ~4.19!

This modified equation of motion is formally equivalent to
Eq. ~4.4! up to orderO(t), and differs from it at order
O(t2). Since the unmodified equation~4.4! has unknown
corrections at orderO(t2), the modified radiation reaction
equation~4.19! gives a description of the motion whose ex-
pected accuracy in the regimet*@t is just as high as that of
the original equation~4.4!. @Indeed, Eq.~4.19! differs from
Eq. ~4.4! at orderO(t2) merely by the termt2ä, which is of
the same order of magnitude as the expected corrections
Eq. ~4.4! discussed in Sec. IV A above due to the finite size
effects@88#.# However, Eq.~4.19! suffers from none of the
problems of the original equation. The modified equation o
motion is second order in time, so there are no ‘‘new degree
of freedom’’ present. All of its solutions are well behaved,
i.e, there are no runaway solutions nor any preacceleratio
effects. We conclude that, in this case, the problem of path
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logical solutions can therefore be overcome by adopting
~4.19! as the equation of motion.

A refined version of the reduction of order method can
applied when the original equation is known to higher th
first order in the small parameter, as occurs in semiclass
gravity when the equations are justified via the ‘‘1/N’’ ap-
proximation, as discussed in Sec. II B above. To illustra
this refined version, consider, again, Eq.~4.18!, but in the
case where this equation is known toO(t2), so that there is
possibly an additional explicit correction term present of t
form t2Q8. We wish the reduced order equation also to
valid to O(t2). To achieve this, we eliminate the highe
order derivatives from the termtQ exactly as before, excep
that we now discard only the new terms which are cubic
higher order int. The resulting equation will then be of th
desired form at ordert, but there will remain a term of the
form t2Q̃, where Q̃ contains higher derivatives. Howeve
these higher derivative contributions toQ̃ can then be elimi-
nated by applying the same procedure toQ̃ as was previ-
ously applied toQ. Clearly, this procedure can be genera
ized to any finite order int.

Consider now the application of the reduction of ord
procedure to the linearized semiclassical Einstein equa
~3.38!, where the small parameter is\. Equation~3.38! is an
integrodifferential equation for the metric perturbation rath
than a local partial differential equation. In general, the r
duction of order procedure could be ambiguous for su
equations, since it may be possible to alter the apparent
ferential order of terms in an integrand via integration b
parts. However, since the right-hand side of Eq.~3.38! in-
volves only derivatives of the linearized Einstein tenso
there is an obvious procedure in this case for obtaining
reduced order equation valid to order\ @or, equivalently, to
order 1/a25(Lp /L)2, cf., Eqs.~3.38! and~3.45! above#: We
merely substituteGab

(1)50 on the right-hand side of Eq
~3.38!. However, the resulting equation is too trivial in that
does not incorporate any of the effects of the curved spa
time. In order to see these effects—and, thus, the domin
curvature-related contributions to the ANEC at small curv
tures and long wavelengths—we must go to second orde
\. To do so, we apply to Eq.~3.38! the above ‘‘refined
version’’ of the reduction of order algorithm to order\2.
This corresponds to substituting\sab /k for Gab

(1) everywhere
on the right-hand side of Eq.~3.38!, wheresab[Dab

(0)F in
(1)

Using Eq.~3.36!, the resulting reduced order equation is

kGab
~1!~x!5\sab12p\2ln\@aAab~x!1bBab~x!#

1\2H bBab~x!1E
M
d4x8Hl/Lp

~x2x8!

3@aAab~x8!1bBab~x8!#J 1O@\3~ ln\!2#,

~4.20!

whereAab andBab are given by Eqs.~3.33! with Gab
(1) re-

placed bysab /k. As discussed in Sec. III E above, the qua
tity l/Lp in Eq. ~4.20! is an \-independent constant. Thi
modified equation is second order in time and simply has
form of the classical linearized Einstein equation with
Eq.
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given source. Thus, it has no new ‘‘degrees of freedom’’ nor
does it admit any solutions with pathological behavior. Fur-
thermore, the exact solutions to this reduced order equation
~4.20! will fail to satisfy the unmodified linearized semiclas-
sical equation~3.38! only by terms of orderO(\3). Thus, we
shall adopt Eq.~4.20! as the equation of motion for linear-
ized semiclassical gravity in our subsequent analysis.

Several facts should be noted concerning the above reduc-
tion of order of the first-order semiclassical equation. First,
solutions to the reduced order equation~4.20! actually corre-
spond precisely to the second-order ‘‘approximate perturba-
tive solutions’’ of Sec. IV B@i.e., the approximate perturba-
tive solutions obtained by retaining terms ofO(1),
O(\ ln\), andO(\)#. This very special situation arises be-
cause all terms of orderO(\) which involve h(1) in the
unmodified equation~3.38! are proportional toGab

(1) and,
thus, vanish in the classical limit. In more general situations,
even for linear equations, solutions to reduced order equa-
tions will differ significantly from approximate perturbative
solutions. As discussed above, in situations where the solu-
tions do differ and where the reduction of order procedure
can be justified, solutions of the reduced order equations
should give a much better description of physical phenomena
than approximate perturbative solutions.

Second, although we have formally treated\ as the small
parameter, we could equivalently have started from Eq.
~3.45! and used 1/a2 instead; cf., Eq.~3.47! above and asso-
ciated discussion. A closely analogous equivalence applies to
the radiation reaction equation: If we consider a one-
parameter family of electric fields given by
E(x,t;a)5a22E0(x,t/a) and define X(t;a)5x(at;a),
thenX satisfies the differential equation

Ẍ5
q

m
E0~X,t !1

t

a
X
B

~4.21!

It is clear that reducing order treating 1/a as the small pa-
rameter is equivalent to treatingt as the small parameter.

Third, we can only justify going to order\2 ~or higher! in
the reduction of order procedure in the context of the 1/N
limit. This is because, in the case of finiteN, there will be
unknown corrections to Eq.~3.38! at the same order
@O(\2)# as terms that we have retained. The 1/N limit is still
necessary even if we specialize to the situation, discussed in
Sec. III E above, that the incoming gravitational radiation
does not dominate the first-order metric perturbation. To see
this, let us write the unknown corrections to the right-hand
side of Eq.~3.38!, for finite N, as

\2

N
Lab@h

~1!#1
\2

N
Kab@v in

~1!#1O~\3,1/N2!, ~4.22!

whereLab andKab are linear but otherwise unknown func-
tionals ofh(1) andv in

(1) respectively. Now if we assume that
the incoming gravitational radiation satisfies condition
~3.49!, then for all solutions of the equation,hab

(1)}\ @cf., Eq.
~3.52! above#, and the first term in Eq.~4.22! can be ne-
glected. However, the second term will still be present unless
we letN→`.

Our final remark is that, in the largeN limit, the original
equation~3.38! is formally known to all orders in\, whereas
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the reduced order equation is valid only to order\2. There-
fore, the reduced-order equation~4.20! is slightly less accu-
rate than the original equation. However, this slight loss
accuracy is unimportant since—for the reasons explained
Sec. IV B above—the effect ofO(\3) corrections should be
negligible in the long wavelength limit. Note that if mor
accurate equations were needed, it would be straightforw
to iterate the reduction of order procedure to obtain an eq
tion accurate to any desired order in\. In Appendix B below
we shall effectively carry out reduction of order to arbitrari
high order in\.

We now consider the second-order semiclassical Eins
equation~3.5!. As we have previously noted, the explic
form of this equation is not known, since the ter
^Tab

(2)@h(1),h(1)#,v in,0& has not been evaluated. However,
Sec. III E above, we derived the explicit approximate for
~3.59! of this equation, which is valid for long wavelength
and when the incoming gravitational radiation does n
dominate the first-order metric perturbation. The appro
mate equation~3.59! also has the character of possessi
higher derivative terms multiplied by a small paramet
~namely, 1/a2), and has unknown correction terms of ord
O(lna/a6). Thus, we may apply the reduction of order alg
rithm directly to this equation to obtain an equation whic
should be as accurate as Eq.~3.59! at long wavelengths but
which has none of the pathological behavior at short wa
lengths. We obtain

kGab
~1!@ ĥ~2!#5

1

a2 ^Tab
~0! ,v̄ in

~2!&1
lna

a4 Zab
~1!@x~2,0!#1

1

a4 ^Tab
~1!

3@x~2,0!#,v in,0&1
1

a4^Tab
~1!@x~1,0!#,v̄ in

~1!&

2
k

a4Gab
~2!@x~1,0!,x~1,0!#1OS ~ lna!2

a6 D . ~4.23!

Herex (2,0) denotes the retarded solution to the equation

kGab
~1!@x~2,0!#5^Tab

~0! ,v̄ in
~2!&. ~4.24!

We shall use Eq.~4.23! in our analysis of the validity of the
ANEC to second-order in« in Sec. VII below. Note that
solutions to Eq.~4.23! also coincide with second-order ap
proximate perturbative solutions.

As we have just argued, the reduction of order proced
is applicable to our perturbation analysis and, in a co
pletely satisfactory manner, it solves the problem of the e
istence of extra degrees of freedom and pathological so
tions possessed by the unmodified equations. However
general, the method of reduction of order has some impor
limits to its applicability, and we now briefly mention two o
these.

First, the method is directly applicable only to local, o
dinary or partial, differential equations, although we we
able to extend it in a natural manner to the integrodifferent
equation~3.38!. However, the full, nonlinear semiclassica
Einstein equation is a highly nonlocal equation, which is n
known to be even of an integrodifferential type. Thus, it
of
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not obvious if and/or how the reduction of order procedure
could be applied to the full, nonlinear semiclassical Einstein
equation.

Second, although the reduction of order algorithm can be
applied to any system of local differential equations of the
form ~4.18!, in the case of partial differential equations, the
procedure is guaranteed only to reduce the differential order
of the time derivatives, not of the spatial derivatives. Con-
sider for example the equation in Minkowski spacetime

hF5r1eHabc¹a¹b¹cF ~4.25!

for a scalar fieldF, whereHabc is a fixed tensor ande is a
small parameter. The reduction of order procedure can be
used to eliminate the third-order time derivative ofF from
the equation, but it does not eliminate the third-order spatial
derivatives or all of the third-order mixed spatial and time
derivatives. In particular, the resulting reduced-order equa-
tion is not hyperbolic, and presumably would not have a
well-posed initial value formulation. Furthermore, in circum-
stances where this happens, the reduction procedure will, in
general, necessitate breaking Lorentz covariance, i.e., one
will obtain inequivalent reduced-order equations by carrying
out the procedure with respect to different choices of time
coordinate. Thus, it is only in the happy circumstance —
such as in the case of Eq.~3.38! — where the reduction of
order procedure simultaneously eliminates all of the higher
order timeandspace derivatives that this procedure is likely
to yield an equation with satisfactory mathematical proper-
ties.

Fortunately, the above difficulties need not concern us
here. As we have discussed above, Eqs.~4.20! and ~4.23!
appear to provide a completely satisfactory solution to the
problem of extracting physical predictions from perturbative
semiclassical gravity. The remainder of this paper will be
devoted to investigating whether the ANEC holds for solu-
tions to these reduced-order equations.

V. THE GENERALIZED ANEC INTEGRAL

We now turn to the second of the two principal purposes
of this paper, which is to analyze the positivity of the ANEC
integral in solutions of the perturbative, reduced order semi-
classical equations. Specifically, given the metric perturba-
tionshab

(1)(x) andhab
(2)(x), we wish to investigate whether the

ANEC integral along any complete, achronal, null geodesic
in the spacetime (M ,hab1«hab

(1)1«2hab
(2)) is non-negative to

order«2. We shall find that this positivity property actually
fails, as already discussed in the introduction. Nevertheless
we do obtain a positivity result involving a transversely
smeared version of the ANEC integral, in which the null-null
component of the stress tensor is averaged transversely to th
geodesic as well as along the geodesic. This transversely
smeared ANEC integral plays a key role in our main results.
In this section we define a third integral which we call a
generalized ANEC integral, which is an integral over all of
spacetime, and which reduces to the transversely smeare
ANEC integral in a certain limit@cf., Eq. ~5.4! below#. This
generalized ANEC integral is useful as a technical tool in our
proofs below. In this section we define the transversely
smeared and generalized ANEC integrals in general space
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times. We also derive the perturbative expansion in« of the
usual and generalized ANEC integrals.

A. Definition of the generalized ANEC integral

Let g be any inextendible null geodesic in an arbitra
spacetime, (M ,gab). To begin, fix a smooth, positive func
tion S(x) onR2, with *S(x)d2x51, which depends only on
the magnitudeuxu of x. This smearing functionwill control
the transverse smearing. Letl be an affine parameter fo
g, and denote byla the null tangent vector]/]l. LetP be a
fixed point on the geodesic, and introduce an orthonorm
basisla, za, eA

a at P, A51,2, wherezaza50, laza521,
andeA

aeB
bgab5dAB . Extend this basis by parallel transport t

all of g. Introduce Fermi-Walker-type coordinate
x5(l,z,xT

1 ,xT
2) in a neighborhoodN of g, such that the

exponential map takes the vectorzza1xT
AeA

a at the point
x(l) on g to the point with coordinates (l,z,xT

A). Then the
vector fieldla[(]/]l)a is a vector field onN which is an
extension of the tangent to the geodesic. Letx be some
smooth function which is unity in a neighborhood ofg and
which vanishes outsideN. Fix lengthsL, LL , andLT and
define the functionQgPC`(M ) by

Qg~l,z,xT!5
x~x!

A2pLL

expH 2
1

2
@l2/L2

1z2/LL
2#J 1

LT
2 S~xT /LT!, ~5.1!

wherexT5(xT
1 ,xT

2). By virtue of the truncating functionx,
the function Qg is well defined even where the Ferm
Walker coordinates do not exist. We define the generaliz
ANEC integral to be

I s~L,LL ,LT!5E
M
d4xA2g~x!Qg~x!Gab~x!lalb. ~5.2!

Clearly this quantity depends on our arbitrary choices
P, x, za, S, etc. However, there are two separate cases
which this arbitrariness becomes unimportant. First, the lim

lim
L→`

lim
LL ,LT→0

I s~L,LL ,LT!, ~5.3!

when it exists, should be independent of these arbitr
choices, and for sufficiently well-behaved stress tens
should reduce to the usual ANEC integral. Some of our
sults below will apply to the quantity~5.3!.

The second case in which we can obtain something wh
does not depend on our arbitrary choices ofP andx is when
we specialize the definition to perturbation theory about fl
spacetime. Here we consider the transversely smeared AN
integral

Ī s~«;LT!5 lim
L→`

lim
LL→0

I s~L,LL ,LT!, ~5.4!

where LT is fixed at a value of the order of the Planc
length. In perturbation theory about flat space we can cho
N to be the entire spacetime andx to be unity, and obtain at
each order in« quantities which depend only on~i! the
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lengthLT , ~ii ! the smearing functionS, and~iii ! the choice
of parallel propagated null vectorza along g with
zala521. In Sec. V C below we derive explicit formulas
for these quantities.

B. Expansion of the ANEC integral

We now derive the expansion in« of the usual ANEC
integral; the expansion of the generalized ANEC integral
will be considered in the following subsection. Suppose that
g(«) is a one-parameter family of curves onM such that
g(«) is a null geodesic with respect to the metricgab(«).
This one-parameter family can be represented by a map
G:R3(2«0 ,«0)→M :(l,«)→xa(l,«), where for each«,
the parameterl is an affine parameter for the corresponding
geodesic. To order«, this one-parameter family of geodesics
is characterized by the zeroth-order geodesicg5g(0) ~a null
geodesic in Minkowski spacetime!, and by the vector field
vc5(]/]«)c on g. This vector field cannot be completely
freely specified ong but must satisfy the equation

lblc¹b¹cv
a1Cbc

~1!alblc50, ~5.5!

in order thatg(«) be a geodesic to order«. Here the tensor
C(1) is given by

Cbc
~1!a52¹ahbc

~1!12¹~bhc)
~1!a . ~5.6!

Under the gauge transformation~3.24!, we have
G→Ḡ5w«

21+G, and correspondingly

va→ v̄a5va2j~1!a. ~5.7!

The gauge transformation properties~3.31! and~5.7! are con-
sistent with differential equation~5.5!.

Now let

I ~«!5E
g~«!

dlGab~«!la~«!lb~«!, ~5.8!

wherela(«) is the tangent tog(«). Let la5la(0) be the
tangent tog. Then it is easy to show that

I ~«!5«I ~1!1«2I ~2!1O~«3!, ~5.9!

where

I ~1!5E
g
Gab

~1!lalb, ~5.10!

and

I ~2!5E
g
@Gab

~2!1LvGab
~1!#lalb. ~5.11!

HereLv denotes the Lie derivative, andGab
(2) is the complete

second-order perturbation in the Einstein tensor, given by

Gab
~2!5Gab

~1!@h~2!#1Gab
~2!@h~1!,h~1!#. ~5.12!

The second term in Eq.~5.11! can be thought of as reflecting
the fact that the metric perturbations cause a change in the
geodesic. Note that the quantitiesI (1) and I (2) are gauge
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invariant~in the ‘‘active’’ sense in which we are considerin
the gauge freedom here!, but that I (2) does depend on the
gauge covariant vector fieldva on g.

C. Expansion of the generalized ANEC integral

Consider now a corresponding analysis of the perturba
expansion of the generalized ANEC integral~5.2!. For each
finite «, the construction of the coordinate system describ
in Sec. V A yields scalar fieldsl(«), z(«), and
sT(«)[dABxA

TxB
T on the spacetime„M ,gab(«)…, and also the

vector field la(«)[(]/]l)a(«). Note that although these
objects are defined in terms of an algorithm to obtain a
ordinate system, they are themselves coordinate-indepen
scalar and tensor fields. Their domain of definition is ho
ever restricted to some neighborhood of the geodesicg.
They can be expanded as

l~«!5l~0!1«l~1!1O~«2!, ~5.13!

z~«!5z~0!1«z~1!1O~«2!,

sT~«!5sT
~0!1«sT

~1!1O~«2!,

la~«!5l~0!a1«l~1!a1O~«2!,

where the expansion coefficients on the right-hand side
defined on all ofM . Similarly the volume four-form can be
expanded as eabcd(«)5eabcd

(0) 1«eabcd
(1) 1O(«2), where

e (1)5he
(1)ee (0)/2. Inserting these expansions into Eq.~5.2!

yields

I s~«!5«I s
~1!1«2I s

~2!1O~«3!, ~5.14!

where

I s
~1!~L,LL ,LT!5E

M
ecde f

~0! Qg
~0!~x!Gab

~1!~x!lalb. ~5.15!

Here Qg
(0)(x) is given by the expression~5.1! with x re-

placed by 1, and where the arguments of the expression~5.1!
are l5l (0),z5z (0), etc., the inertial coordinates o
Minkowski spacetime.

The expression forI s
(2) is

I s
~2!5E

M
ecde f

~0! Qg
~0!~x!Gab

~2!lalb,1E
M

ecde f
~0! Gab

~1!

3@2l~0!al~1!bQg
~0!1l~0!al~0!bQg

~1!

1 1
2he

~1!el~0!al~0!bQg
~0!#. ~5.16!

Since the smearing functionS in Eq. ~5.2! depends only on
the magnitudesT[xT

2 of xT , the functionQg
(1) that appears

in Eq. ~5.16! is given by

Qg
~1!~x!5

]Qg

]l
l~1!~x!1

]Qg

]z
z~1!~x!1

]Qg

]sT
sT

~1!~x!. ~5.17!

As in the previous subsection, the quantitiesI s
(1) and I s

(2)

are gauge invariant. We now specialize to a particular cho
of gauge, which is just that associated with the coordin
g

tive

ed

co-
dent
w-

are

n

ice
ate

system described in Sec. V A. Specifically, suppose that w
are give a one-parameter family of metricsgab(«) and a
fixed choice of gauge for each«. Now apply the diffeomor-
phismw« given by identifying the coordinatesl,z,xT

A in the
spacetimes„M ,gab(0)… and „M ,gab(«)… @89#. This yields a
choice of gauge in which we have

l~1!a5l~1!5z~1!5sT
~1!50. ~5.18!

The expression forI s
(2) in this gauge reduces to

I s
~2!5E

M
ecde f

~0! Qg
~0!~x!lalb@Gab

~2!~x!1 1
2he

~1!e~x!Gab
~1!~x!#.

~5.19!

In this gauge the vector fieldva described in Sec. V B van-
ishes. Moreover it is straightforward to show thathab

(1) van-
ishes along the geodesicg, and thathab

(1)lalb50 throughout
M . These consequences of our gauge choice will be used
Sec. VII A below. Finally, we note that in the limitL→`,
LL ,LT→0 of no transverse smearing, expression~5.19! re-
duces to the previously obtained expression~5.11!, since
he
(1)e vanishes ong in our chosen gauge.

VI. THE ANEC INTEGRAL IN FIRST-ORDER
PERTURBATION THEORY

In this section we establish the results concerning th
first-order contribution to the ANEC integral which were dis-
cussed in the Introduction. We start in Sec. VI A by charac
terizing the precise class of incoming states we are consi
ering. In Sec. VI B we obtain the solutions of the reduced
order semiclassical equation~4.20!. We derive a general for-
mula for the first-order perturbation~5.15! to the transversely
smeared ANEC integral for these solutions in Sec. VI C
Finally, we show that this vanishes for pure incoming state
in Sec. VI D, and that for mixed states it is positive in the
long wavelength limit in Sec. VI E.

In Appendix B below we consider a specific subclass o
solutions of the original, unmodified semiclassical equatio
~3.4!, given by the use of half advanced plus half retarde
Greens functions. We show that for these solutions, in th
region l.lcrit of parameter space, a transversely smeare
ANEC integral vanishes for pure states and is always strictl
positive for mixed states, even outside of the long wave
length limit. Although, as discussed in Sec. IV C above, we
do not attribute any preferred physical status to these sol
tions, expanding this result in 1/a2 and lna/a2 provides an
alternative demonstration of the results of this section fo
solutions of the reduced order equation in the long wave
length limit, at least forl.lcrit .

A. Characterization of incoming states

In the remainder of the paper we do not deal with fully
general states. Rather, we restrict attention to a subclass
states whose two-point functions have suitable differentiabi
ity properties and fall-off properties at infinity when re-
stricted to spatial slices. More specifically, letS denote the
hypersurfacet50 in Minkowski spacetime, and letV be the
class of smooth functions onS3S all of whose derivatives
areL1 on S3S. We consider states whose two-point func-
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tion perturbationsF in
(1)(x,t;x8,t8) andF in

(2)(x,t;x8,t8) and as-
sociated time derivatives ]F in

( j )/]t, ]F in
( j )/]t8, and

]2F in
( j )/(]t]t8), for j51,2 all lie in V when restricted to

S3S. Our choice of class of states is dictated mostly
convenience and is not the most general class of states
which our results are valid; however it is a sufficiently larg
class of states to be interesting.

We can expressF in5«F in
(1)1«2F in

(2) as

F in~x,x8!5E d3kE d3k8 f ~k,k8!eik•xeik8•x8

1E d3kE d3k8g~k,k8!eik•xe2 ik8•x81c.c.

~6.1!

Here as in Appendix C, boldface vectors are spatial, thr
dimensional vectors, whilek5ka denotes a four-vector. Also
it is understood thatka5(k,vk) wherevk5uku. Equation
~6.1! essentially defines the functionsf and g as suitable
complex linear combinations of the spatial Fourier tran
forms of the four functionsF in , ]F in /]t, ]F in /]t8, and
]2F in /(]t]t8) restricted toS3S, whereS is the Cauchy
surfacet50; see Eq.~C3! below. Note that the functionsf
andg are formally related to the conventional creation a
annihilation operatorsâk

† and âk by

f ~k,k8!}^âkâk8&, g~k,k8!}^âk8
† âk&. ~6.2!

Note also that the part of the two-point function that is pure
positive frequency or purely negative frequency is given
the function f , while the ‘‘mixed-frequency’’part~the part
that is positive frequency with respect to one variable a
negative frequency with respect to the other! is given by the
functiong.

We expandf andg as

f5« f ~1!1«2f ~2!1O~«3!,

g5«g~1!1«2g~2!1O~«3!. ~6.3!

In the terminology introduced in Sec. III B above, we refer
the first-order perturbed two-point functionF in

(1) as ‘‘pure’’ if
and only ifg(1)50; otherwiseF in

(1) is said to be ‘‘mixed.’’
The functionsf and g cannot be chosen arbitrarily bu

must satisfy the positivity condition~2.16!, which for Fock
space states is just the statement that

^F̂~u!F̂~u!†&>0 ~6.4!

for all complex smearing functionsu. For general, algebraic
statesv in the positivity condition is equivalent to the pos
tivity of the operator

Mi j5F g f

f * g*1JG , ~6.5!

whereJ(k,k8)5\d3(k2k8)/(16p3vk), in the sense that for
all ujPC0

`(M ), 1< j<2,
by
for
e

ee-

s-

nd

ly
by

nd

to

t

i-

E d3kE d3k8ũi~k,vk!*Mi j ~k,k8!ũ j~k8,vk8!>0. ~6.6!

Thus,M is a positive operator onL2(R3)%L2(R3), which
implies, in particular, thatg is a positive operator on
L2(R3):

E d3kE d3k8g~k,k8!ũ~k!ũ~k8!*>0. ~6.7!

For Fock space states, Eq.~6.7! is just the statement tha
^F̂1(u)

†F̂1(u)&>0 for any test functionu. Note also that
the corresponding classical positivity condition, which r
quires that the two-point function be the expected value
F(x)F(y) with respect to some positive measure on t
space of field configurations, is the stronger condition tha

F g f

f * g* G>0. ~6.8!

We now insert expansions~6.3! into the positivity condi-
tion ~6.5! and expand order by order in« to determine the
restrictions on the incoming state perturbations. We obtain
first order that

g~1!>0 ~6.9!

in the sense of Eq.~6.7!, while f (1) can be chosen arbitrarily
At second order we obtain the restriction ong(2) that

FP 0

0 1GF g~2! f ~1!

f ~1!* J GFP 0

0 1G>0, ~6.10!

whereP is the projection operator onto the kernel ofg(1). In
particular, wheng(1)50 this reduces to

F g~2! f ~1!

f ~1!* J G>0. ~6.11!

Next, we introduce an alternative, convenient set of co
dinates on the light cone in momentum space. Recall that
have defined inertial coordinatesl,z,xT

1 ,xT
2 on Minkowski

spaceM , and also a null orthonormal basisla, za, e1
a , e2

a ,
wherela is the tangent to the zeroth order geodesicg. Thus,
xa5lla1zza1xT , wherexT5xT

AeA , A51,2. We introduce
corresponding coordinatesg,b,kT on momentum space suc
that

ka5gla1bza1kT . ~6.12!

In these coordinates the positive light cone volume elem
can be written as

Q~k0!d~k2!d4k5
d3k

2vk
d~v2vk!dv

5Q~b!
db

2b
d2kTdS g2

kT
2

~2b!
Ddg.

~6.13!
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Therefore solutions of the wave equation can be represen
by functions ofb and of the two dimensional vectorkT .
These null coordinates on momentum space, which are s
cially adapted to the given null geodesicg, will be useful
throughout our computations below.

The first-order two-point functionF in
(1) has an expansion

analogous to Eq.~6.1! but with f andg replaced byf (1) and
g(1). We can rewrite this expansion in terms of the coord
nates introduced above as

F in
~1!~x,x8!5E

0

`db

b E d2kTE
0

`db8

b8
E

3d2kT8@ f̂ ~b,kT ;b8,kT8 !eik•xeik8•x8

1ĝ~b,kT ;b8,kT8 !eik•xe2 ik8•x81c.c.#.

~6.14!

Here f̂5vkvk8 f
(1), ĝ5vkvk8g

(1), and

vk5
1

A2
S b1

kT
2

2b D . ~6.15!

It it understood in these equations thatk5ka is given by Eq.
~6.12! with g5kT

2/(2b). Finally, as briefly discussed in Ap-
pendix C, our assumed regularity properties on the incom
state imply that f̂ and ĝ are continuous as functions o
(b,kT ,b8,kT8) and satisfy, for any integerN,

max$u f̂ u,uĝu%<
CN

~11vk
21vk8

2
!N21 ~6.16!

for some constantCN , wherevk is given by Eq.~6.15!.

B. Solutions of the reduced-order equation

In Appendix C we show that for states in the above cla
the stress tensor~3.43! which acts as a source in the sem
classical equations is anL2 tensor field on Minkowski space-
time. Consequently its spacetime Fourier transform exists
an L2 function. In Appendix C we show that the Fourie
transforms̃ab is actually continuous everywhere away from
the light cone, and is bounded everywhere except for
~integrable! divergence at the origin in momentum spac
Thus, we may use Fourier transform methods to solve
~reduced order! semiclassical equations.

The reduced-order semiclassical equation~4.20! expresses
the linearized Einstein tensorGab

(1)@h(1)# in terms of the
source tensor~3.43!. In our analysis below we shall not nee
to solve Eq.~4.20! for the metric perturbationhab

(1) ; it will be
sufficient to work directly with the linearized Einstein tenso
We now take the Fourier transform of Eq.~4.20!. We use the
following formula given by Horowitz@48# for the Fourier
transform of the distributionHl :

H̃l~k!522p@ lnl2uk2u12g212 ipsgn~k0!Q~2k2!#,
~6.17!

whereg is Euler’s constant andQ is the step function. Here
and below tildes denote Fourier transforms. Using E
~3.33! and ~3.36! we obtain
ted

pe-

i-

ing
f

ss
i-

as
r

an
e.
the

d

r.

qs.

kG̃ab
~1!~k!5S1~k!s̃ab1S2~k!~kakb2habk

2!s̃c
c , ~6.18!

where

S1~k!51116paLP
2k2H̃l~k!, ~6.19!

and

S2~k!5~8p!F S 23 a12bDLP2 H̃l~k!12bLP
2 G . ~6.20!

We have explicitly included factors ofG\[Lp
2 in these for-

mulas. The tensors̃ab is the spacetime Fourier transform of
the source tensor~3.43! discussed above. Note that Eqs.
~6.18!–~6.20! could also be obtained by expanding the exact
solutions~A5!–~A8! given in Appendix A in powers of\
and \ ln(\) ~assumingl}A\ as discussed in Sec. III E
above!.

Next we rewrite the source tensors̃ab in terms of the
regularized two-point function of the incoming state. Using
Eqs.~1.13!, ~2.4!, and~6.1!, we find that

s̃ab~ l !

~2p!4
5E d3kE d3k8@ f ~1!~k,k8!sab~k,k8!d4~k1k82 l !

1g~1!~k,k8!sab~k,2k8!d4~k2k82 l !1c.c.#,

~6.21!

where

sab~k,k8!5~2j21!k~akb)8 1~ 1
222j!habkck8

c

1j~kakb1ka8kb8!. ~6.22!

Inserting Eq.~6.21! into Eq. ~6.18! yields the null-null
component of the linearized Einstein tensor

kG̃~1!~ l !abl
alb5E d3kE d3k8 f ~1!~k,k8!J~k,k8!

3d4~k1k82 l !1g~1!~k,k8!J~k,2k8!

3d4~k2k82 l !1c.c. ~6.23!

Here the functionJ is given by

J~k,k8!

~2p!4
5S1~k1k8!$~2j21!~l•k!~l•k8!1j@~l•k!2

1~l•k8!2#%1~126j!~l•k1l•k8!2~k•k8!

3S2~k1k8!. ~6.24!



t

h

e

54 6263DOES BACK REACTION ENFORCE THE AVERAGED . . .
By using the techniques of Appendix C, it is possible
show that the linearized Einstein tensor~6.23! has the same
regularity properties as were proved in Appendix C for t
source tensor~3.43!.

C. The first-order ANEC integral: General formula

We now calculate the first-order perturbation to the ge
eralized ANEC integral~5.15! and express it in terms of the
functions f (1) and g(1) characterizing the incoming stat
v in
(1) . Combining Eqs.~5.15! and ~6.23! yields that

I s
~1!5

1

kE d3kE d3k8@ f ~1!~k,k8!J~k,k8!Q̃g
~0!~k1k8!
o

e

n-

1g~1!~k,k8!J~k,2k8!Q̃g
~0!~k2k8!]1c.c. ~6.25!

Here Q̃g
(0) is the Fourier transform of the smearing function

~5.1!:

Q̃g
~0!~g,b,kT!5A2pLexpH 2

1

2
@b2L21g2LL

2#J S̃~kTLT!.

~6.26!

The existence of the integral~6.25! follows from the regu-
larity properties of the functionsf (1) and g(1) discussed in
Appendix C: they are continuous away from the light cone,
and have an integrable divergence}1/(vkvk8) at the origin.

Now by combining the alternative representation~6.14! of
the two-point function with Eqs.~6.25! and~6.26!, we obtain
lim
LL→0

I s
~1!~L,LL ,LT!5

1

kE0
`db

b E d2kTE
0

`db8

b8
E d2kT8 f̂ ~k,k8!J~k,k8!A2pLexp@2~b1b8!2L2/2#S̃@~kT1kT8 !LT#

1
1

kE0
`db

b E d2kTE
0

`db8

b8
E d2kT8 ĝ~k,k8!J~k,2k8!A2pLexp@2~b2b8!2L2/2#

3S̃@~kT2kT8 !LT#1c.c. ~6.27!
in
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Note that Eqs.~6.15! and ~6.16! imply that for kTÞ0, the
integrands vanish more rapidly than any power ofb as
b→0, thereby assuring convergence of the integrals in E
~6.27! despite the factors of 1/b coming from the light cone
volume element.

D. Pure incoming states

We now show that in the limitL→`, the pure frequency
contribution to the ANEC integral@the first term in Eq.
~6.27!# vanishes. This can be seen from the fact that in
limit L→`, the exponential factor in this term become
d(b1b8) and that therefore the entire expression vanish
Therefore, wheng(1)50 we have

lim
L→`

lim
LL ,LT→0

I s
~1!~L,LL ,LT!50, ~6.28!

and thus whenever the usual ANEC integral exists, it m
vanish.

There is a simple, intuitive way to understand this resu
The ANEC integral is the integral along a line in positio
space, and thus becomes the integral over a hyperplane~the
hyperplanelaka50) of the Fourier transformed Einstein
tensorG̃ab

(1) in momentum space. Now, for states whose fir
order perturbed two-point function is pure~i.e., for which
g(1)50), the linearized Einstein tensor has support ins
and on the light cone in momentum space. This can be s
from Eq.~6.23! and the fact that ifk andk8 are future point-
ing null vectors, thenk1k8 is a future pointing null or time-
like vector. Therefore, the only possible contribution to th
ANEC integral must be concentrated on the null lineka

}la in momentum space. Although this line is of measu
zero,a priori there still could be a nonvanishing result sinc
q.

the
s
es.

ust

lt.
n

st-

ide
een

e

re
e

the ~Fourier transformed! Einstein tensor could have a distri-
butional component on the line. However, the argument
Appendix C shows that there is no such distributional com
ponent of the linearized Einstein tensor, so the ANEC int
gral must vanish, as our calculation above shows explicitl

As explained in the Introduction, the result~6.28! that the
ANEC integral vanishes to first order for incoming states th
are pure to first order is one of the key results of this pap
It eliminates the counterexample to the ANEC given in Re
@18#. Moreover, the vanishing of the ANEC integral to first
order is a necessary condition for the ANEC integral to b
positive generally; any nonzero first-order contribution fo
pure states could be arranged to be negative by choosing
sign of the first order state perturbation appropriately. Mor
over, in this situation any transverse smearing could not he

The above result applies for solutions to the reduced-ord
equation which are accurate toO(\2). However, it is
straightforward to extend this result to all orders in\, that is,
to solutions of reduced-order equations which are accurate
higher order in\. The only difference is that the functions
S1 andS2 appearing in Eq.~6.24! are slightly altered, which
does not affect the argument. More precisely, these functio
are replaced by expansions to the appropriate order in\ and
\ ln\ of the functions 1/F1 andF2 /(F1F3), as can be seen
from Appendix B below.

Finally we remark that a limiting case of the above resu
in which the back reaction is dialed to zero is just the fa
that the ANEC integral in Minkowski spacetime of a matrix
element of the form̂0uT̂ab

(0)uc& (1) must vanish; see Eq.~3.18!
above. This fact can also be deduced from the result pre
ously established by Klinkhammar@16# and by Wald and
Yurtsever@18# that the ANEC integral of the expected valu
of T̂ab

(0) in Minkowski spacetime is non-negative for a larg
class of states.
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E. Mixed incoming states

We now turn to the situation where we allow an arbitra
mixed incoming state. Using Eqs.~6.17!, ~6.19!, ~6.24!, and
~6.27! we find that

Ī s
~1!~LT![ lim

L→`

lim
LL→0

I s
~1!~L,LL ,LT!

5E d2DkT
~2p!2

F̃~DkT!K̃~DkT!S̃~LTDkT!, ~6.29!

where

F̃~DkT!5
16p3

k E
0

`

dbE d2kTĝ~b,kT ;b,kT1DkT!, ~6.30!

and

K̃~DkT!512
DkT

2

vc
2 ln~ l̂2DkT

2!. ~6.31!

Herevc
251/(32p2aLp

2), l̂5lexp(g21/2), andg is Euler’s
constant. Note that the continuity ofĝ and the fall-off prop-
erty ~6.16! is sufficient to guarantee the existence of the
tegrals~6.29! and ~6.30!. Also, note that there is no longe
any dependence on the curvature coupling in Eq.~6.29!, due
to cancelations in Eq.~6.24! whenk852k.

The functionK̃ in Eq. ~6.29! is essentially the factorS1
that appears in Eq.~6.18! ~and is also related by an expan
sion in\ to the Greens function 1/F1 that appears in Appen
dix A!. The second term involvingS2 in Eq. ~6.18! does not
contribute to the ANEC integral~6.29!, because it has a ten
sorial structure in momentum space proportional to

kakb2habk
2. ~6.32!

In the original Minkowski space coordinates this correspon
to the differential operatord2/dl2, which gives rise to a total
derivative in the ANEC integral and gives a vanishing co
tribution. More precisely, the contribution to the first-ord
perturbationI (1) vanishes identically, and the the contrib
tion to the first-order perturbation of the generalized ANE
integral I s

(1) vanishes once the limitL→` is taken.
The formula~6.29! has a simple physical interpretation i

terms of an ANEC integral computed in flat spacetime wi
out back reaction, as we now describe. Letg8 denote the null
geodesic in Minkowski spacetime obtained by displacing
geodesicg transversely by an amount2xT . Define

I F~xT!5E
g8

^Tab
~0! ,v in

~1!&lalb. ~6.33!

This is just the ANEC integral obtained from the incomin
statewithout including the effects of back reaction, i.e., i
the test field approximation, and with no transverse sme
ing. It is independent of our choice ofz, and hence it is a
function on the two-dimensional space of vectors perp
dicular tola, where two vectors are identified if they diffe
by a multiple of la. Using Eq. ~6.29! in the limit where
K̃→1 and S̃→1, and applied to a transversely displac
state, we obtain
ry,

in-
r

-
-

-

ds

n-
er
u-
C

n
th-

the

g
n
ar-

en-
r

ed

I F~xT!5E d2DkT
~2p!2

eiDkT•xTF̃~DkT!, ~6.34!

i.e., I F is just the Fourier transform of the functionF̃. There-
fore we can rewrite the formula~6.29! as

Ī s
~1!~LT!5E d2DkT

~2p!2
Ĩ F~DkT!K̃~DkT!S̃~LTDkT!. ~6.35!

In other words, the ANEC integral with back reaction is just
the test field ANEC integralI F(xT) in Minkowski spacetime
convolved against the smearing functionS(xT /LT), and
against the distributionK(xT) obtained fromK̃(kT) by an
inverse Fourier transform.

Note that it follows from the analysis in Appendix D that
the distributionK(xT) is given by a smooth function away
from the originxT50, but not at the origin. However, the
convolution (K+S)(xT) is a smooth function for allxT for
our choice of smearing function given by Eq.~6.40! below.
We also remark that Eqs.~6.15!, ~6.16! and~6.30! imply that
the functionukTuNF̃(kT) is L1 for anyN, which by Eq.~6.24!
shows that the ‘‘test field ANEC integral’’ functionI F(xT) is
smooth. This fact will be important in our analysis in Sec.
VI E2 below.

1. Non-negativity of the ANEC integral in Minkowski spacetime

From previous analyses by Klinkhammar@16# and by
Wald and Yurtsever@18#, it is known that the test field
ANEC integral I F(xT) is always non-negative for a large
class of states. This result forms a key element in our proo
below that the smeared ANEC integral~6.35! is always non-
negative for suitable choices of the smearing functionS. We
give a short proof of the result here, in order to lay the
foundations for later analyses.

First we give a motivational nonrigorous argument, which
applies only to states in the usual Fock space. Use the de
composition~3.21! of the field operator into positive fre-
quency and negative frequency parts. Then we obtain from
Eq. ~2.4! that, up to total derivatives with respect tol,

:T̂ab
~0! :lalb5~F̂28 !21~F̂18 !212F̂28 F̂18 , ~6.36!

where primes denote derivatives with respect tol. The co-
lons on the left-hand side denote normal ordering. The first
two terms on the right-hand side integrate to zero when we
integrate along the geodesic because this picks out the zero
frequency part, and the last term is a manifestly non-negative
operator. Hence the ANEC ‘‘operator’’ is non-negative.

We now give a rigorous proof of the positivity of
I F(xT); it follows directly from our general formula~6.34!
for I F and the positivity condition on the two-point function
expressed in our coordinates (b,kT). From Eq.~6.9!, choos-
ing u to be a suitable Gaussian and taking an appropriate
limit allows us to deduce that

E d2kTE d2kT8 ĝ~b0 ,kT ;b0 ,kT8 !>0, ~6.37!

for all b0. Therefore, from Eqs.~6.30! and ~6.34! the quan-
tity I F(0) is non-negative. It is clear that the same is true for
I F(xT).
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2. The long wavelength limit

We now specialize to the long wavelength limit discuss
in Sec. III E above. We also assume thatg(1)Þ0, i.e., that
the first-order perturbed two-point function is mixed. Fir
we show that the unsmeared ANEC integral may be ne
tive, and then show that for suitable choices of the smear
function S, the transversely smeared ANEC integral is a
ways positive ~not merely non-negative! in the limit
L/LP→`. Note that it would be inconsistent to analyze th
solutions to the reduced order semiclassical equation~4.20!
outside of this limit, as correction terms ofO(Lp

4/L4) were
thrown away in the derivation of these equations.

If we assume an incoming state of the form~3.41!, then
the test field ANEC integral varies as

I F~xT ;a!5a23Ī F~xT /a!, ~6.38!

where Ī F is the test field ANEC integral of the statev̄ in
(1)

Consequently the Fourier transform scales
Ĩ F(DkT ;a)5a21 Ĩ F(aDkT). Substituting this into Eq.
~6.35! and making a change of variable in the integral yiel

Ī s
~1!~LT!5a23E d2DkT

~2p!2
Ĩ F~DkT!K̃FDkT

a G S̃FLTDkT
a G .

~6.39!

We now choose the smearing function to be

S~xT!5
1

11uxTu4
. ~6.40!

Its Fourier transform has the expansion for smallkT

S̃~kT!511n0kT
2ln~ ukTu!1n1kT

21O~ ukTu3!, ~6.41!

wheren0.0 @90#. Substituting Eqs.~6.31! and ~6.41! into
Eq. ~6.39! and expanding in 1/a2 yields that

k Ī s
~1!~LT!5

A

a3 1B
lna

a5 1
C

a5 1OF ~ lna!2

a7 G , ~6.42!

where

A5E
g
^Tab

~0! ,v̄ in
~1!&lalb5 Ī F~0!, ~6.43!

B5n0~LT
22LT,crit

2 !~“T
2 Ī F!~0!, ~6.44!

and

LT,crit58pA a

n0
Lp . ~6.45!

Note that the sign of the coefficienta in the formula
~2.10! for the anomalous scaling of the stress energy de
mines the sign of the coefficientB without smearing. As
previously mentioned,a is positive for the scalar field we are
considering, for all values of the curvature coupling@cf., Eq.
~3.34! above#, and is also positive for neutrino and Maxwe
fields @48#. If a had been negative, the coefficientB would
have been positive without any transverse smearing.
d

t
a-
ing
l-

e

as

s

er-

l

As we have just discussed, the leading coefficient~6.43!
is always non-negative. However, as we now show, there d
exist states for whichĪ F(0) vanishes, and this opens up pos-
sibilities for violations of the ANEC. Leth(b,kT) be a func-
tion on the positive light cone satisfying

E
0

`db

b E d2kTuh~b,kT!u251, ~6.46!

and letus& be the one-particle state

us&5E
0

`db

b E d2kTAvkh~b,kT!âk
†u0&. ~6.47!

Choose the incoming state perturbationv̄ in
(1) to be that given

by the density matrix perturbation

r̂̄ ~1!52u0&^0u1us&^su. ~6.48!

Then the functionĝ is given by

ĝ~b,kT ;b8,kT8 !}h~b,kT!h~b8,kT8 !* . ~6.49!

If we now choose any smooth functionv(xT) of compact
support, and chooseh(b,kT)5h1(b) ṽ(kT) for some suit-
ableh1, then from Eqs.~6.30!, ~6.34! and~6.49! we find that

Ī F~xT!}uv~xT!u2. ~6.50!

Hence in particular we can choose a state which achiev
Ī F(0)50.
Now whenA5 Ī F(0)50, then the quantity¹T

2 Ī F(0) is
always positive or zero. This is becauseĪ F(xT)>0 always,
Ī F(0)50, and Ī F is smooth as discussed above. It is clea
that we can find states for whichĪ F(0)50 but
¹T
2 Ī F(0)Þ0. Therefore, we find that~i! in the limit of no

smearing@i.e., LT→0, S(xT)→d2(xT)#, B can be negative
and therefore for sufficiently largea, the ANEC integral can
be negative, and~ii ! from Eq. ~6.44!, when the transverse
smearing length is larger than the critical length~6.45!, B is
always non-negative.

So far we have shown that the smeared, first-order ANE
integral is always non-negative to order 1/a2 beyond leading
order. However, from Eq.~6.50! it is clear that there exist
incoming states for whichB50; for instance one can choose
the functionv(xT) to vanish in a neighborhood of the origin.
WhenA5B50, the expression for the coefficientC is

C5
1

2
n0~LT

22LT,crit
2 !E d2k

~2p!2
ln@LT

2kT
2#kT

2 Ĩ̄ F~kT!.

~6.51!

We now shall show that whenA5B50, for LT.LT,crit we
haveC>0, with equality holding if and only ifg(1)50.

To prove this result, we note first that ifA5B50, then
we haveI F(0)5¹T

2I F(0)50. However,I F is a smooth, non-
negative function, and hence it follows that all the deriva
tives of I F at the origin up to and including third order van-
ish. In Appendix D, we show that this implies that the
coefficientC is always strictly positive unless the function
I F(xT) vanishes identically. We now show thatĪ F(xT) can-
not vanish identically unlessg(1)50, i.e., unless the per-
turbed two-point function is pure to first order. Thus, in the
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mixed case, in order to establish positivity of the smear
ANEC integral in the long wavelength limit for nearly fla
spacetimes, it is not necessary to continue the expans
~6.42! to higher powers in 1/a, nor is it necessary to go to
second order in«.

To prove thatI F(xT) vanishes identically if and only if
g(1)50, we start by writing

I F~xT!5E
0

`

dbI F~xT ,b! ~6.52!

whereI F(xT ,b) is defined by Eqs.~6.30! and~6.34! with the
integral overb omitted. Moreover Eq.~6.37! implies that
I F(xT ,b)>0 always, and sinceI F(xT)5 Ī F(xT)50 we de-
duce thatI F(xT ,b)50 for all xT andb. Hence

E d2kTĝ~b,kT ;b,kT1DkT!50 ~6.53!

for all DkT .
Next we obtain a canonical representation for the functi

ĝ(k,k8). LetK be the measure space (R3,dm), with measure
dm5dbd2kT . Then ĝ is a continuous complex function on
K3K which satisfiesĝ(k,k8)5ĝ(k8,k)* . Moreover Eq.
~6.16! implies thatĝ is both L1 and L2 on K3K. The L2
property ofĝ together with its positivity property~6.37! im-
plies that it defines a positive, compact, self-adjoint opera
Ĝ on L2(K) @91#. Hence by the Hilbert-Schmidt theorem
there is a complete orthonormal basiswn of L

2(K) such that

ĝ~k,k8!5 (
n50

`

lnwn~k!wn~k8!* , ~6.54!

for someln>0, where the convergence is in the operat
norm on the space of bounded operators onL2(K). Now
inserting the decomposition~6.54! into Eq. ~6.53! and spe-
cializing toDkT50 we find that

(
n50

`

lnE d2kTuwn~b,kT!u250. ~6.55!

Sinceln>0 for all n, we obtain thatĝ50.
By combining all the results in this subsection we fin

that for states whose perturbed two-point function is mixe
the transversely smeared ANEC integral forLT.LT,crit will
always be strictly positive for sufficiently largea, for solu-
tions of the reduced-order, first-order semiclassical equat
~4.20!.

VII. PURE INCOMING STATES
AND THE SECOND-ORDER PERTURBATION

EQUATIONS

The above results establish that for mixed incomin
states, the leading order contribution to the smeared ANE
integral is always positive. However, for pure incomin
states the ANEC integral vanishes toO(«), and therefore we
need to investigate the second-order perturbation equa
~4.23!. In this section we calculate theO(«2) contribution
~5.19! to the transversely smeared ANEC integral for sol
tions to Eq.~4.23!, and show that it is positive in the long
wavelength limit.
ed
t
ion

on

tor
,

or

d
d,

ion

g
C
g

tion

u-

To calculate the second-order contribution to the ANEC
integral, we shall need the second-order contribution~5.12!
to the Einstein tensor. DefiningḠab

(2)(x)5a4Gab
(2)(x/a) we

find from Eq.~4.20! that

Ḡab
~2!5^Tab

~0! ,v̄ in
~1!&1

lna

a2 Zab
~1!@x~2,0!#

1
1

a2 $^Tab
~1!@x~2,0!#,v in,0&1^Tab

~1!@x~1,0!#,v̄ in
~1!&%

1O@~ lna!2/a4#. ~7.1!

Here we have used the definitions

h~ j !~x;a!5ĥ~ j !~x/a;a!5a22x~ j !~x/a;a! ~7.2!

for j51,2, and have used the fact thatx (1) can be replaced
with its leading order approximationx (1,0) to adequate accu-
racy, cf., Eq.~3.52! above. The leading order metric pertur-
bationsx (1,0) andx (2,0) are given by Eqs.~3.58! and ~4.24!.
Finally, we insert the expansion~7.1! into Eq. ~5.19! to ob-
tain

I s
~2!5

1

ka3E
M

ecde f
~0! Qg

~0!S L

a
,
LT

a
,
LL

a DlalbH ^Tab
~0! ,v̄ in

~2!&

1
lna

a2 Zab
~1!@x~2,0!#1

1

a2 ^Tab
~1!@x~2,0!#,v in,0&

1
1

a2^Tab
~1!@x~1,0!#,v̄ in

~1!&1
1

2a2xc
~1,0!c^Tab

~0! ,v̄ in
~1!&

1O@~ lna!2/a4#J . ~7.3!

We now exploit the close similarity between the first-
order and second-order perturbation equations. For the re-
scaled incoming state~3.41!, the first-order, reduced-order
equation~4.20! can be alternatively written in a form more
closely parallel with Eq.~4.23!:

kGab
~1!@ ĥ~1!#5

1

a2 ^Tab
~0! ,v̄ in

~1!&1
lna

a4 Zab
~1!@x~1,0!#

1
1

a4 ^Tab
~1!@x~1,0!#,v in,0&1OS ~ lna!2

a6 D .
~7.4!

This equation when inserted into Eq.~5.10! will produce the
expansion~6.42!. Therefore it can be seen that the first three
terms in Eq.~7.3! are exactly analogous to those obtained
from the first-order analysis, and that consequently Eq.~7.3!
can be rewritten as

k Ī s
~2!~LT![ lim

L→`

lim
LL→0

kI s
~2!~L,LL ,LT!

5
Â

a3 1B̂
lna

a5 1
Ĉ1DC

a5 1OF ~ lna!2

a7 G , ~7.5!

in analogy with Eq.~6.42!. Here the coefficientsÂ, B̂, and
Ĉ are functions only of the state perturbationv̄ in

(2) and have
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the exact same functional dependence onv̄ in
(2) as the coeffi-

cientsA, B, andC in Eq. ~6.42! have onv̄ in
(1) Furthermore,

the relevant positivity conditions onv̄ in
(2) also are the same a

corresponding conditions onv̄ in
(1) ; see Sec. VII B below. The

coefficientDC in Eq. ~7.5! is defined to the contribution
from the last two terms in Eq.~7.3!, and depends both on
v̄ in
(1) andv̄ in

(2) as well as the freely specifiable incoming piec
of the metric perturbationxab

(1,0).
Our strategy for proving the positivity of the second-ord

ANEC integral is the following. First, in Sec. VII A we show
thatDC50 wheneverÂ5B̂50. In Sec. VII B, we show that
the space of allowed second-order state perturbations is
fectively the same as that of the first-order perturbations, a
then to appeal to the first-order analysis.

A. Vanishing of the additional terms

We now show that wheneverÂ5B̂50, the last two terms
in Eq. ~7.3! vanish, and that consequentlyDC50. The argu-
ments in this subsection will be mostly formal; we believ
s

e

er

ef-
nd

e

that these formal arguments could be translated into rigorou
arguments along the lines of the analysis given in Sec. VI E1
above, and using the positivity condition. However, we have
not attempted to do so.

It is not difficult to see that the last term in Eq.~7.3!
vanishes. Since to the appropriate order in 1/a2 the trans-
verse smearing is unimportant for this term, after the limit
L→` is taken it can be written as

1

2a2E
g
dlxc

~1,0!c^Tab
~0! ,v̄ in

~1!&lalb. ~7.6!

However, our choice of gauge guarantees thatxab
(1)50 along

g. In particular this will be true to each order in the 1/a2

expansion of Eq.~3.52!, so thatxab
(1,0) also vanishes ong, and

therefore this term vanishes.
The more interesting term in Eq.~7.3! is the second to last

term, which can be shown to be proportional~at the relevant
order in 1/a2) to
E
g
dl^Tab

~1!@x~1,0!#,v̄ in
~1!&lalb,5E

g
dlDab

~1!@x~1,0!#F in
~1!lalb1E

g
dlDab

~0!EF2Dx
~1!@x~1,0!#F in

~1! ,2Dy
~1!@x~1,0!#F in

~1!Glalb,

~7.7!
f

where we have used Eq.~3.15!. The meaning of the notation
in the first term is that the functionF in

(1) is acted on by the
first-order change in the operatorDab induced by the metric
perturbationx (1,0), and similarly for the second term. Now
since xab

(1,0) satisfies Eq.~3.58!, it has a contribution both
from the perturbation to the incoming state and from inco
ing classical gravitational radiation. Thus, Eq.~7.7! contains
both a contribution quadratic in the incoming state perturb
tion v̄ in

(1) and a cross term betweenv̄ in
(1) and the incoming

classical gravitational radiation.
Consider first the second term in Eq.~7.7!. As mentioned

above we are assuming that the coefficientsÂ andB̂ vanish,
since from Eq.~7.5! this is the only case in which the term
~7.7! are relevant. Therefore

Â5E
g
^Tab

~0! ,v̄ in
~2!&lalb50. ~7.8!

The key idea that we now use is that this condition impos
constraints onv̄ in

(2) which in turn imposes constraints o
v̄ in
(1) sufficient to ensure that the second term in Eq.~7.7!

vanishes.
We now restrict attention to the case of Fock space sta

Since the state is pure to first-order, the first-order pertur
tion to the density matrix is given by

r̂̄ ~1!5u0&^cu~1!1 ~1!uc&^0u, ~7.9!

for some uc& (1)PH with ^0uc& (1)50. The most general
second-order density matrix perturbation is then
m-

a-

s

es
n

tes.
ba-

r̂̄ ~2!5uc&~1!~1!^cu1u0&^cu~2!1 ~2!uc&

3^0u1Q̂2~11trQ̂!u0&^0u, ~7.10!

for someuc& (2)PH with ^0uc& (2)50, whereQ̂ is a positive,
Hermitian trace class operator such thatQ̂u0&50. SinceQ̂ is
trace class there will exist an orthonormal basisuc j& of the
space of states orthogonal tou0& such that

Q̂5(
j50

`

qj uc j&^c j u ~7.11!

for some qj>0, j50,1,2 . . . . The overall density matrix
will be positive toO(«2) whenever the perpendicular projec-
tions of uc& (1) anduc& (2) into the kernel ofQ̂ are orthogonal
to each other.

We now give a nonrigorous argument for the vanishing o
the second term in Eq.~7.7!. If we insert Eq.~7.10! into Eq.
~7.8!, then the contribution from the two terms in Eq.~7.10!
involving uc& (2) will vanish for the reason explained in Sec.
VI D. Therefore, using the formula~6.36! and following the
argument given in Sec. VI E1, we find that

(
j
qjE dlK c jUS dF̂1

dl
D †S dF̂1

dl
D Uc j L

1E dlK ~1!cUS dF̂1

dl
D †S dF̂1

dl
D Uc~1!L 50. ~7.12!
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6268 54ÉANNA É. FLANAGAN AND ROBERT M. WALD
From the arguments given in Sec. VI E1, it is clear that a
the terms on the left-hand side are individually non-negativ
and hence they all vanish. It follows that

F̂18 ~l,0,0!uc&~1!50, ~7.13!

where primes denote derivatives with respect tol and the
notation means that the operator is evaluated on the geod
g. Next, using Eq.~7.9!, we can rewrite the second term in
Eq. ~7.7! in an alternative notation as

2ReE
g
dllalb^0u¹~aF̂

~0!¹b)F̂
~1!uc&~1!. ~7.14!

Here F̂(1) is the first-order change to the field operator in
duced by the metric perturbationxab

(1,0) . Next, split up the
zeroth-order operatorF̂(0) into its positive and negative fre-
quency parts. The negative frequency parts will annihila
the vacuum on the left, and the positive frequency part c
be commuted through theF̂(1) term ~since the statesu0& and
uc& (1) are orthogonal!, giving a result which vanishes by
condition ~7.13!.

Consider now the first term in Eq.~7.7!. To calculate this
we need the explicit form of the operatorDab that enters into
the point splitting prescription~2.19! for calculating the
stress tensor. The general expression forDab is given by@cf.,
Eq. ~2.4! above#

DabF in
~1!~x,x8!5Sab2

1

2
gabg

cdScd1jGabS

2j~¹a¹bS2gabhS!, ~7.15!

where

S~x!5 lim
x8→x

F in
~1!~x,x8!, ~7.16!

Sab~x!5 lim
x8→x

¹a8¹bF in
~1!~x,x8!

52 lim
x8→x

¹a¹bF in
~1!~x,x8!1¹a¹bS/2, ~7.17!

andGab is the Einstein tensor.~Note that we are using a
nonstandard notation in which the coincidence limit is im
plicitly understood in the symbolDab .) Now the operator
Dab
(1)@x (1,0)# in the expansion~3.1! will contain pieces linear

in xab
(1,0) and pieces that are linear in the derivative o

xab
(1,0). The pieces that are linear inxab

(1,0) will give a vanish-
ing contribution to the first term in Eq.~7.7! since xab

(1,0)

vanishes alongg in our choice of gauge. The remaining
piece ofDab

(1) yields

E
g
dlDab

~1!@x~1,0!#F in
~1!lalb52jE

g
dl~¹cS!Cab

~1!clalb

1jE
g
dlGab

~1!@x~1,0!#Slalb,

~7.18!
ll
e,

esic

-

te
an

-

f

where Cab
(1)c is given by Eq.~5.6! with hab

(1) replaced by
xab
(1,0). The first term in Eq.~7.18! can be seen to vanish

using Eq. ~5.6! and the fact thathab
(1)50 on g and that

hab
(1)lalb vanishes identically in our choice of gauge. Using
Eqs.~3.58!, ~6.36!, and~7.9!, we find that the second term in
Eq. ~7.18! contains the factor

Gab
~1!@x~1,0!#lalb5~2/k!Rê 0uF̂18 ~l,0,0!2uc&~1!, ~7.19!

which vanishes by Eq.~7.13!. Therefore the expression~7.7!
should vanish.

B. Smeared positivity result

We now explain how to adapt the perturbative smeared
positivity result of Sec. VI to the present situation. The co-
efficientsA, B, andC in Sec. VI were expressed in terms of
the functionI F(xT) ~the flat spacetime ANEC integral along
transversely displaced geodesics in the statev̄ in

(1)), and the
only properties of this function necessary to prove the result
was that it was a pointwise positive smooth function. Corre-
spondingly the coefficientsÂ, B̂, andĈ can be expressed in
terms of the analogous function

I F
~2!~xT![E

g8
^Tab

~0! ,v̄ in
~2!&lalb. ~7.20!

This quantity can be expressed in terms of the mixed fre-
quency partg(2) of the second-order two-point function by
equations analogous to Eqs.~6.30! and ~6.34!. However,
from Eq. ~6.11! we find thatg(2) obeys a stronger positivity
condition thang(1) in the case we are considering when
g(1)50. In particular,g(2) satisfies an analog of Eq.~6.9!
and it follows that the function~7.20! must be non-negative.

Hence the coefficientsÂ, B̂, and Ĉ obey the same posi-
tivity conditions as the coefficientsA, B, and C: Â>0,
B̂>0 wheneverÂ50, andĈ>0 wheneverÂ5B̂50. More-
over, the caseÂ5B̂5Ĉ50 can be excluded in the following
way. If all these coefficients vanish, an argument similar to
that given in Sec. VI E2 shows that the operatorQ̂ in Eq.
~7.10! must vanish, and that consequentlyuc&5 r̄ (1)50.
Therefore, by defining«85«2 we see that we are really deal-
ing with a first-order perturbation instead of a second-order
perturbation.

Since we showed above thatDC50 whenever
Â5B̂50, we conclude from Eq.~7.5! that for sufficiently
largea, for pure states the transversely smeared ANEC in-
tegral is positive.

C. Second-order vacuum polarization

As we have explained, the second-order vacuum polariza
tion term ^Tab

(2)@h(1),h(1)#,v in,0& is not explicitly known, but
arises at sufficiently high order in our long wavelength ex-
pansion that it can be neglected, when we assume that in
coming gravitational radiation does not dominate the first-
order metric perturbation. However, if we drop the
assumption on incoming gravitational radiation, and assume
in addition an incoming vacuum state, then we can derive a
condition that this unknown vacuum term must satisfy in
order for the ANEC not to be violated. This condition pro-
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vides an additional test of the ANEC hypothesis which
independent of our analysis above. Moreover, if the con
tion is satisfied, then it can be shown that without any a
sumptions restricting the incoming classical gravitational r
diation, that the transversely smeared ANEC integral
always non-negative for solutions of the reduced-order eq
tions, for general, nonvacuum incoming states, in the lo
wavelength limit.

The condition we find, by carrying out a reduction o
order to the appropriate order of the perturbative semiclas
cal equations, is the following. Lethab

(1) be any solution
of Gab

(1)@h(1)#50, and let hab
(2) be any solution of

Gab
(1)@h(2)#1Gab

(2)@h(1),h(1)#50. Thus, the spacetime
(M ,hab1«hab

(1)1«2hab
(2)) satisfies the vacuum Einstein equa

tion to second order and consists of classical gravitation
waves. Then the quantity

^Tab
~2!@h~1!,h~1!#,v in,0&1^Tab

~1!@h~2!#,v in,0& ~7.21!

describes the expected in-vacuum stress-energy tensor of
quantum field to second order on this spacetime. Moreov
the stress tensor~7.21! does not depend on which solution
h(2) of Gab

(1)@h(2)#1Gab
(2)@h(1),h(1)#50 is chosen, and thus is

a function only ofh(1). The condition is that the ANEC
integral of the quantity~7.21! should always be non-
negative. We conjecture that this is the case.

VIII. CONCLUSIONS

In this section we recap briefly our main assumptions a
assess the significance of our results. We have examined
positivity of ~transversely smeared! ANEC integrals for so-
lutions of the reduced-order semiclassical Einstein equati
Three small parameters have appeared in our analysis«,
measuring the deviation of the metric from the flat metr
and of the quantum state from the incoming vacuum;\ or
equivalentlyLp

2/L2, our ‘‘long wavelength’’ expansion pa-
rameter, and finally 1/N, whereN is the number of scalar
fields coupled to gravity. We have calculated the ANEC in
tegral to leading order in 1/N, to quadratic order in«, and to
the first three nonvanishing terms inLp

2/L2. We restricted
our analysis to the case where incoming gravitational rad
tion does not dominate the first-order metric perturbatio
Apart from this restriction, we have shown that the tran
versely smeared ANEC integral for nearly flat spacetimes
always strictly positive along every null geodesic in the lon
wavelength limit, except in the trivial case of the vacuum
state in Minkowski spacetime, where the ANEC integr
vanishes identically.

There were several independent places in our analysis
which, a priori, a violation of ANEC could easily have
arisen. In particular, the ANEC integral for pure states ne
not have vanished at first order in«; the coefficient~6.51!
need not have been of a defenite sign; or any one of the ex
terms that appear at second order in« in the coefficient
DC need not have been identically vanishing. Indeed, seve
times during the course of this work we believed to hav
discovered a serious violation of ANEC, only to find o
more careful analysis that this was not the case. Therefo
we consider our results to be evidence in favor of the co
jecture that ANEC comes sufficiently close to holding i
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general solutions of the semiclassical equations to rule out
macroscopic traversable wormholes.
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APPENDIX A: EXACT SOLUTIONS
OF FIRST-ORDER PERTURBATION EQUATIONS

In this appendix we derive all of the exact solutions to the
first-order semiclassical equation~3.38! whose spatial Fou-
rier transforms exist. Some of these exact solutions have
been discussed by Horowitz@48#, in the special case of the
homogeneous version of the equation, without the source
term ~3.43!. Here we generalize the treatment of Horowitz to
allow for first-order perturbations to the quantum state. To
solve Eq.~3.38! we can fix the incoming state perturbation
v in
(1) ~this is freely specifiable up to some regularity condi-

tions discussed in Appendix C!, and solve for the metric
perturbationhab

(1) . Because the equation depends onh(1) only
through its linearized Einstein tensorG(1), we can first solve
for G(1) and then use this to obtainh(1), as suggested by
Horowitz @48#.

The exact solutions to Eq.~3.38! are closely analogous to
the solutions of the Klein-Gordon equation with negative
mass squared

~h2m2!F~x!5r~x!, ~A1!

where r(x)5r(x,t) is a source. We start by recalling the
nature of the solutions of Eq.~A1!. The general solution can
be written in terms of the spatial Fourier transformr̃(k,t) of
the source asF5F,1F. , where

F.~x,t !5E
uku.m

d3k

~2p!3
eik•xFA~k!eivkt1B~k!e2 ivkt

1E
2`

`

dt8Gsym,osc~ t2t8;vk!r̃~k,t8!G , ~A2!

and

F,~x,t !5E
uku,m

d3k

~2p!3
eik•xFC~k!ekkt1D~k!e2kkt

1E
2`

`

dt8Gsym,expt~ t2t8;kk!r̃~k,t8!G . ~A3!

Here vk5Ak22m2, kk5Am22k2, Gsym,osc(t;v)
5sin(vutu)/(2v), Gsym,expt(t;k)52e2kutu/(2k), and the func-
tions A(k), . . . ,D(k) are arbitrary except for the reality
conditions A(2k)5A(k)* , etc. Following Horowitz, we
will refer to the portion~A2! of the solution as the tachyon-
like or oscillatory part, and the portion~A3! as the exponen-
tial part.
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We explicitly display these solutions to the negative ma
squared Klein-Gordon equation because the solutions to
semiclassical equation~3.38! have a very similar character
In particular these solutions can be divided into ‘‘oscill
tory’’ and ‘‘exponential’’ pieces. We will obtain the genera
solutions by spacetime Fourier methods. As background,
start by recalling how to obtain the solution~A2! and~A3! of
Eq. ~A1! by spacetime Fourier transforms~as opposed to
merely spatial Fourier transforms!.

It is clear that the ‘‘tachyonlike’’ portionF. of the gen-
eral solution can be straightforwardly obtained using Four
transforms, when the sourcer(x,t) is sufficiently well be-
haved. The Fourier transform with respect to time of t
Green’s function obtained from Eq.~A1! has two poles on
the realv axis, and the choice of ‘‘i e ’’ regularization pre-
scription is equivalent to the choice of Green’s function; f
instance, as is well known, demanding thatG̃(v) be analytic
in the upper half plane yields the retarded Greens funct
The freely specifiable first term in Eq.~A2! can clearly be
written down by inspection using the location of the poles
the Green’s function.

The situation is slightly different for the exponentiall
growing or decaying portion~A3! of the solution. In this case
the Green’s function in the Fourier domain

G̃~v!}1/~v21k2! ~A4!

has no poles on the real axis, and hence Fourier transf
methods produce a unique Green’s function in the time
main, which is just the particular Green’s functio

FIG. 2. An illustration of the dependence of the locations of t
poles of the Green’s function 1/F1(k) on the parametersvk , the
frequency of the plane wave mode in question, andl, the additional
free parameter with dimensions of length that appears in the qu
tum theory but not in the classical theory. In general there are f
poles of the form6z1, 6z2, where the locations of the two pole
z1 and z2 are as follows. In the hatched region below the curv
there is one real pole and one imaginary pole. Above the curve
below the dashed line, in the left region both poles are imagina
and in the right region both poles are real. Finally, in the reg
above the dashed line, both poles are complex.lcrit is a critical
length of order the Planck length, andvc is a critical frequency of
order the Planck frequency.
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Gsym,expt(t) that we choose to use in Eq.~A3!. Of course,
other Green’s functions appropriate to different boundary
conditions do exist in the time domain, butGsym,expt(t) is the
only one whose Fourier transform exists. Hence, solving Eq
~A1! using Fourier transform methods will reproduce the last
term in Eq.~A3!. The freely specifiable first two terms in Eq.
~A3! are not directly obtained, but clearly again can be writ-
ten down by inspection, using the location of the poles in
G̃(v).

We now turn to a similar analysis of the semiclassical
equation Eq.~3.38!. We can obtain very general solutions to
the equation by determining the analytic structure inv of the
appropriate Green’s function in the Fourier domain. See Sec
VI B and Appendix C for a discussion of the existence of the
Fourier transform of the source term~3.43!. Using Eqs.
~3.38!, ~3.33!, and ~6.17! we find the following formal ex-
pression for the general Fourier transformable solution

kG̃ab
~1!~k!5

s̃ab
F1~k!

1
F2~k!

F1~k!F3~k!
~kakb2habk

2!s̃c
c , ~A5!

where

F1~k!51216paLP
2k2H̃l~k!, ~A6!

F2~k!5~8p!F S 23 a12bDLP2 H̃l~k!12bLP
2 G , ~A7!

and

F3~k!5116LP
2k2@b1bH̃l~k!#. ~A8!

While Eq.~A5! is not the general solution we are looking
for, it is straightforward to write down the general solution
by inspection, essentially by adding extra terms to Eq.~A5!
that correspond to poles of the functions 1/F1 and
1/(F1F3). Consider first the function 1/F1. From Eqs.~6.17!
and~A6! we can writeF1 as the limit of a function analytic
on the upper halfv plane: F1(k)5 lime→01G1(k,v1 i e),
where

G1~k,v!511Fvk
22v2

vc
2 G ln@ l̂2~vk

22v2!#, ~A9!

vk5uku, vc
251/(32p2aLp

2), l̂5lexp(g21/2), andg is Eu-
ler’s constant. The functionG1 has branch cuts on the real
axis atv.vk andv,2vk . The poles in the Green’s func-
tion are just the zeros ofG1. These location of these zeros
depend onl andvk in the following way~see Fig. 2!. Define

lcrit54pLpe
2gA2a, ~A10!

which is a fixed length of the order of the Planck length. Let
zi , 1< i<4, denote the four roots of the equation
11zln@zl̂2vc

2#50. These complex roots depend only on the
ratiol/lcrit . Then the zeros of the Green’s function~A9! are

v i5Avk
22vc

2zi@l/lcrit#, 1< i<4. ~A11!

When l>lcrit , there are four complex zeros6v,6v* ,
wherev5a01 ib0 lies in the first quadrant. Whenl<lcrit
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there are three separate cases. When exp(2vc
2/vk

2)/vk
2.l̂2,

then there are two real roots6a0 and two imaginary roots
6 ib0. When exp(2vc

2/vk
2)/vk

2,l̂2, then ifvk.vc there are
four real roots6a0 ,6a08 , and if vk,vc there are four
imaginary roots6 ib0 ,6 ib08 .

The analytic structure of the function 1/F3(k) is some-
what simpler. There exists a uniquek0.0 depending on
l such that the locus of the zeros ofF3(k) is k2

5vk
22w25k0

2

The general solution to Eq.~3.38! can be written as

Gab
~1!5Gab

~1!, inhom1Gab
~1!,free1Gab

~1!,free,T . ~A12!

We discuss these three terms in turn. The inhomogeneo
part of the solution is given by

kGab
~1!, inhom~x!5E d4k

~2p!4
eik•xF s̃ab

F1~k!

1
F2~k!

F1~k!F3~k!
~kakb2habk

2!s̃c
cG .

~A13!

In this expression it is understood that the poles on the re
v axis in the functions 1/F1 and 1/F3 are regulated with the
appropriatei e prescription to pick out the ‘‘half retarded
plus half advanced’’ type contribution from each pole.~We
choose this particular prescription for convenience, it wou
clearly be possible to use instead for example the ‘‘retarded
type contribution from each pole.! As discussed above, poles
on the realv axis will occur only forl,lcrit for the func-
tion 1/F1, but will occur for all values ofl for the function
1/F3. Note also that in the conformally coupled cas
j51/6, the trace of the source tensorsab vanishes, and hence
the second term in Eq.~A13! vanishes. However, as we dis-
cuss below, the freely specifiable piece of the solution ass
ciated with the second term in Eq.~A13! @Eq. ~A16! below#
does not vanish even for conformal coupling.

The second termGab
(1),free in Eq. ~A12! is the freely speci-

fiable, homogeneous piece of the general solution associa
with the Greens function 1/F1(k). In the casel.lcrit , it can
be written as@92#

kGab
~1!,free~x!5E d3k eik•x@Cab~k!e2 ia0teb0t

1Dab~k!e1 ia0te2b0t#1c.c. ~A14!

HereCab(k) andDab(k) are arbitrary except that they must
be traceless and satisfykaCab5 l aDab50, where
ka5(k,a01 ib0) and l a5(k,2a02 ib0). The quantities
a0 andb0 depend on the mode frequencyvk5uku, and on
the length scalel as indicated by Eq.~A11!. This is purely
an exponentially growing and/or decaying-type solution an
has no oscillatory parts.

The homogeneous termGab
(1),free is more complicated in

the casel,lcrit . In this case there are again freely specifi
able terms for each of the poles of 1/F1 ~see Fig. 2!. The
poles off the real axis will give exponentially growing and/o
decaying terms, and the poles on the real axis will give ‘‘ta
chyonlike’’ contributions analogous to Eq.~A2!. In particu-
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lar, there will be a portion of the general solution which has
the form of an integral over the values ofk for which both
poles are real. This expression will have the same form as
F. of Eq. ~A2!, except thatA andB are replaced by trans-
verse traceless tensors, and the quantitym2 is replaced by
either of two independent constants depending only onl
~i.e., there is a sum of two terms!. This portion of the general
solution was obtained by Horowitz@48#. It can be written as

Gtachyon
~1! ~x!ab5E

H
Lab~k!eik•x. ~A15!

HereH is the union of two spacelike hyperbolak25k1
2.0

and k25k2
2.0 in momentum space, wherek1 and k2 are

constants depending only onl. The tensorLab(k) is a freely
specifiable transverse traceless tensor onH which falls off
sufficiently fast at infinity.

The third termGab
(1),free,T in Eq. ~A12! is a purely trans-

verse, freely specifiable piece of the solution which is asso-
ciated with the Green’s function 1/F3. It can be written as
@92#

E
uku,k0

d3k eik•x@E~k!ekkt1F~k!e2kkt#~kakb2habk
2!

1E
uku.k0

d3k eik•x@ I ~k!einkt1J~k!e2 inkt#

3~kakb2habk
2!1c.c. ~A16!

Here nk5Ak22k0
2, kk5Ak022k2, and the functionsE, F,

I , andJ are freely specifiable functions ofk. Thus, there are
both tachyonlike and exponentially growing modes of this
type for all values ofl. Also, as remarked above, this freely
specifiable transverse piece of the solution does not vanish i
the conformally coupled casej51/6, despite the fact that the
the analogous transverse contribution to the inhomogeneou
piece of the general solution@the second term in Eq.~A13!
above# does vanish for conformal coupling.

Finally, we remark that exact solutions to the alternative,
rescaled version~3.45! of the first-order perturbation equa-
tion can be obtained from the above analysis using the sub
stitutions hab

(1)→a2ĥab
(1) Lp→Lp /a, l→l/a and

sab→ s̄ab[^Tab
(0) ,v̄ in

(1)&.

APPENDIX B: ANEC INTEGRAL
FOR EXACT SOLUTIONS

In this appendix we consider the specific subclassS of the
solutions of the exact, first-order, semiclassical equation dis
cussed in Appendix A, given by using half advanced plus
half retarded Green’s function to obtain the linearized Ein-
stein tensor. In the case of exponential-type modes discusse
in Sec. IV C above, the use of this Green’s function to pick
out a class of solutions is equivalent to throwing away the
runaway solutions by hand. For the oscillatory type modes,
this choice of Greens function yields a particular subclass of
solutions. We shall show that the solutions inS have the
property that their transversely smeared ANEC integral is
always non-negative, even outside of the long wavelength
limit, wheneverl.lcrit . However, we also shall show that
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some exact solutions outside of this subclass do violate
ANEC.

As explained in Sec. IV C above, we see no reason
view solutions inS as being more physically meaningfu
than other subclasses of exact solutions. However, give
solution in S, any other exact solution obtained from th
same incoming state will have the same perturbative exp
sion in 1/a2 and lna/a2 @or equivalently, in\ and\ ln(\)#.
This perturbative series up to any finite order also sho
coincide with what would be obtained by carrying the redu
tion of order procedure of the semiclassical equation to
appropriate order in 1/a2 and solving exactly the new
reduced-order equation. Thus, an expansion in 1/a2 and
lna/a2 of the positivity result of this appendix provides a
alternative proof of the results we established in Sec.
above for the solutions of the reduced-order equation~4.20!,
at least forl.lcrit . In other words, we can use the analys
of the solutions inS as a mathematical tool to to establish
positivity result for solutions of the reduced-order equation
The alternative proof that this appendix provides also giv
insight into the otherwise mysterious positivity properties
the coefficientsA, B, andC ~with and without smearing!
discussed in Sec. VI E2 above.

We now turn to a proof of the positivity of the ANEC
integral for this class of solutions. The analysis of the ANE
integral for the exact solutions to the unmodified semiclas
cal equation parallels that given in Sec. VI B for the sol
tions of the reduced-order equation, with the only differen
being that the functionsS1 andS2 of Eqs.~6.19! and ~6.20!
are replaced by the expressions 1/F1 and F2 /F3, respec-
tively, where the functionsF1, F2, andF3 were defined in
Appendix A. Correspondingly we again obtain the formu
~6.35!, except that the functionK(xT) is replaced by
K1(xT), where

K̃1~DkT!5F11
DkT

2

vc
2 ln~ l̂2DkT

2!G21

. ~B1!

Note that ifl.lcrit thenK̃1(kT) is a continuous function;
its Fourier transformK1(xT) is L

2 and is continuous every-
where away from the origin. The functionK1(xT) for
l51.2lcrit is shown in Fig. 3. Forl,lcrit , expression~B1!
blows up at some finite value ofukTu so thatK̃1 is not even
L2. In this case an appropriatei e regularization prescription
should be understood to apply to the formula~6.35!, the
precise prescription being determined by the fact that we
choosing half retarded plus half advanced solutions. T
regularization prescription yields a well-defined distributio
K̃1, with well-defined distributional Fourier transform
K1(xT). We assume from now on thatl.lcrit ; however, it
is possible that the results in this appendix continue to h
for l<lcrit .

From Eq.~6.35!, the smeared ANEC integral is propor
tional to

E d2xTI F~xT!@K1+ Sdil#~xT!, ~B2!
the
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whereSdil(xT)5S(xT /LT) is a ‘‘dilated’’ smearing function
andK1+ Sdil denotes the convolution ofK1 andSdil . Since
we know I F(xT) is positive, to make the integral~B2! posi-
tive it suffices to find smearing functions whose convolutions
with K1 are pointwise positive everywhere. We now show
that for the choice~6.40! of smearing function, there exists
someLT.0 such that the functionS(xT /LT) will satisfy the
positive convolution condition. In fact, our proof below can
be easily extended to apply toanypositive smearing function
which does not fall off at largexT more rapidly thanK1 does
(}uxTu24); in other words, any function which falls off
slowly enough will be a suitable smearing function when
sufficiently ‘‘dilated.’’

We now outline a proof of that the convolution is point-
wise positive. We would like to show that there exists some
L such that the function

I 1~L,x0![L2E d2xK1~Lx!S~x1x0! ~B3!

is positive for allx0. ~For the remainder of this appendix, we
drop the subscriptT on LT .) Clearly, for any fixedx0, we
can find aL such that the integral~B3! is positive, since
L2K1(Lx)→d2(x) as L→`. Let Lmin(x0) denote the
smallest numberL0 such that the integral~B3! is positive for
all L.L0. Then we need just to show thatLmin(x0) is
bounded above as a function ofx0, so that there exists some
positiveL which works for allx0.

FIG. 3. The ANEC integral for exact, ‘‘half advanced plus half
retarded’’ solutions to the semiclassical equation can be expressed
in terms of the functionI F(xT) ~which is obtained from the ANEC
integral in Minkowski spacetime evaluated on transversely dis-
placed geodesics! integrated against a particular functionK1(xT)
with width of order of the Planck length, see Eq.~6.39! above. Here
we plot the functionK1 as a function of the transverse distance
uxTu from the original geodesic, in the case wherel51.2lcrit . The
fact that this function is negative for some values of its argument
implies that there are incoming states for which the ANEC integral
including back reaction is negative.
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To show this we suppose conversely that there ex
some sequence (L j ,x0,j ) such thatL j→` and

I 1~L j ,x0,j !50. ~B4!

Now suppose that the sequencex0,j is bounded. Then by
passing to a subsequence we can without loss of gener
assume that x0,j→ x̂0 for some x̂0, so that
(L j

21 ,x0,j )→(0,x̂0). However, the functionI 1(L,x0) is
jointly continuous as a function ofL21 and x0 even at
L2150, as can be deduced from the formula

I 15E d2yK1~y!S~x01L21y! ~B5!

and by using the properties of the functionsS andK1. Hence
it follows that I 1(L j ,x0,j )→I 1(`,x0)5S( x̂0).0. This con-
tradicts Eq.~B4! above, and so we conclude that the s
quencex0,j is unbounded.

To exclude the possibility of the existence of such a s
quence withx0,j unbounded, we now derive an estimate f
the function I 1(L,x0) for large x0. First, we note that
K1(x);2uxu24 at largeuxu, and in particular that there exist
a k0.0 ande0.0 such that for alle,e0,

uK1~x!u<e ~B6!

whenever uxu>k0e
21/4 @90#. Moreover, from the formula

~6.40! for S(x) we can show that for anyh with 0,h,1,
there existsk1.0 such that

~12h!S~x0!<S~x1x0!<~11h!S~x0! ~B7!

wheneveruxu<k1ux0u. Let K1 be the integral ofuK1u over
the domain whereK1 is positive, and similarly define
K2.0, so that

15E d2xK1~x!5K12K2. ~B8!

Consider now the integral~B3!. For any e with
0,e,e0 , we can split up this integral into three differen
parts: There is a contribution from the region whe
uxu.k0e

21/4/L, which is bounded below by2C0eL2 from
Eq. ~B6!, for some constantC0. There is a contribution from
the portion of the regionuxu,k0e

21/4/L in whichK1 is posi-
tive. Using Eq. ~B7!, this will be bounded below by
K1(12h)S(x0)/L

2, if

k0e
21/4/L<k1ux0u. ~B9!

We can ensure that this condition holds by choosi
e5(k1ux0uL/k0)

24; this requires that

ux0uL>~k0 /k1!e0
21/4. ~B10!
ists
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Finally, there will be a contribution from the corresponding
region in whichK1 is negative, which with the above choice
of e is bounded below by2K2(11h)S(x0)/L

2. Combining
these bounds and choosingh5(214K2)21 yields that

I 1~L,x0!>
2C1

x0
4L2 1

1

2~11x0
4!
, ~B11!

whereC1 is a constant, whenever the condition~B10! is
satisfied. It clearly follows that the functionLmin(x0) is
bounded above for largex0. This contradicts the unbounded-
ness of the above sequencex0,j , and we conclude that the
functionLmin(x0) is bounded above for allx0.

We conclude that there is some fixed lengthLT such that
for the smearing function~6.40!, the ANEC integral~B2! is
always non-negative. It is clear on dimensional grounds tha
the critical value ofLT is of order of the Planck length. We
remark that this positivity result would not hold for any
smearing function which falls off more rapidly thanuK1u.
Thus, for example, there is no positivity result for Gaussian
transverse smearing. However, as mentioned above, ou
proof could easily be modified to apply to smearing func-
tions that fall off more slowly thanuK1u.

Finally, we consider the exact solutions of Eq.~3.38! out-
side of the subclassS of half retarded plus half advanced
solutions. We now show that whenl,lcrit , there exist exact
solutions outside ofS which violate the ANEC, even when
transversely smeared.~It can be shown that violations of the
ANEC do not occur whenl.lcrit , if we we discard the
exponentially growing and decaying pieces of the solutions.!
Using the momentum space coordinatesb, g, kT , the first-
order ANEC integral~5.10! can be written as

I ~1!5
1

~2p!3
E

2`

`

dgE d2kTG̃ab
~1!~b50,g,kT!lalb.

~B12!

For the tachyon type solution~A15!, the linearized Einstein
tensor can be written as

G̃ab~b,g,kT!5d~22gb1kT
22k0

2!Fab~b,g,k̂T!, ~B13!

whereFab is transverse and traceless but otherwise freely
specifiable andk̂T5kT /ukTu. From Eqs.~B12! and ~B13!,
and writing k̂T5(cosx,sinx), it follows that

I ~1!5
1

~2p!3
E

2`

`

dgE
0

2p

dx
1

2k0
Fab~0,g,x!lalb. ~B14!

Since Fab(b,g,k̂T) is freely specifiable away from
2bg1k0

250, it is clear that in generalI (1) is nonvanishing
and can be of either sign. Moreover, it is easy to see that
negativeI (1) cannot always be made positive by transverse
smearing in this case.

Note that ifhab
(1)(x;a) is a one-parameter family of exact

solutions such that the ANEC is violated, then it will still be
true that the ANEC will be satisfied order by order in 1/a2
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and lna/a2. In other words, the violations of the ANEC ar
nonperturbative in 1/a2, or equivalently in\.

APPENDIX C: EXISTENCE OF SPACETIME FOURIER
TRANSFORM OF EXPECTED STRESS-ENERGY

TENSOR

In this paper we have imposed a condition on t
Minkowski spacetime in-states we consider, which requi
that the two-point functions be smooth and have suita
falloff properties at spatial infinity. In this appendix we d
rive some implications of these falloff assumptions, whi
are used in the body of the paper.

We start by describing the class of states we are con
ering. Let the two-point bidistribution of the state be

G~x,x8!5G0~x,x8!1F~x,x8!, ~C1!

whereG0(x,x8) is the vacuum two-point bidistribution in
Minkowski spacetime~which was denotedGin,0 in the body
of the paper!. Throughout this appendix, we drop the su
scripts ‘‘in’’ that appeared in the body of the paper. Also t
conditions onF that we discuss below apply to both th
functionsF in

(1) andF in
(2) that appear in the body of the pape

and our conclusions about the expected stress tensor in
state~C1! clearly then will apply to the source term~3.43!
and to the first term in Eq.~3.54!.

The functionF is determined by the restrictions of th
four functions F, ]F/]t, ]F/]t8, and ]2F/(]t]t8) to
S3S, whereS is the hypersurfacet50. We assume that al
these functions lie in the classV defined in Sec. VI — that is,
that they are smooth and that all of their spatial derivativ
areL1 on S3S. Note that imposing this condition on an
other surface of constant time would yield the same class
states.~It would be sufficient for all of our results to assum
only that the all spatial derivatives up to 17th order areL1;
we have not investigated what the sharp falloff requireme
are.!

As in the body of the paper, we can express the two-po
function in terms of functionsf andg via

F~x,x8!5E d3kE d3k8 f ~k,k8!eik•xeik8•x8

1E d3kE d3k8g~k,k8!eik•xe2 ik8•x81c.c.,

~C2!

wherek5(k,vk), vk5uku, and ‘‘c.c.’’ means the complex
conjugate. This equation definesf andg to be suitable com-
plex linear combinations of the spatial Fourier transforms
the above-mentioned four functions restricted toS3S: we
have
e
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int

of

S f

g

f *

g*
D 5

1

4F 1 1 1 1

1 1 21 21

1 21 21 1

1 21 1 21
G

3S F̃~k,k8!

i F̃ ,t~k,k8!/vk

i F̃ ,t8~k,k8!/vk8

2F̃ ,tt8~k,k8!/~vkvk8!

D . ~C3!

Our assumptions onF imply that f and g are continuous
away fromk50 andk850 and satisfy, for any integerN,

max$u f ~k,k8!u,ug~k,k8!u%

<
CN

~11k21k82!N S 11
1

vk
D S 11

1

vk8
D ~C4!

for some constantCN . @Note that the requirement that the
total energy of the state be finite should imply an inequality
of the form ~C4! but without the 111/vk factors and with
N55/21e.# Moreover our assumptions imply the functions
f̂[vkvk8 f and ĝ[vkvk8g defined before Eq.~6.15! are at
leastC0, a fact which is used in the body of the paper.

Now the expected stress tensor in the state~C1! will be
automatically smooth, from the relation

Tab~x!5DabF~x,x8! ~C5!

and the fact that the initial data forF onS3S is smooth, so
thatF itself is smooth onM3M . Therefore its Fourier trans-
form T̃ab(k) exists as a distribution. We now investigate the
regularity properties of this distribution. In our notation be-
low we make use ofd functions; the steps can be made
rigorous by integrating all equations on both sides against a
smooth test tensor fieldf ab(x) of compact support onM .
The expression forDab is given in Eq.~7.15! above. We
restrict attention below to the piece

S̃ab~ l a!5E d4xe2 i l ax
a
lim
x8→x

¹a¹b8F~x,x8! ~C6!

of this expression; a similar analysis applies to the other type
of term involving¹a¹bS in Eq. ~7.15!. From Eqs.~C1! and
~C2! we obtain that

S̃ab~ l a!5Fab~ l a!1Fab~2 l a!* , ~C7!

wherel a5( l,v) and
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Fab~ l,v!5E d3kvkvk2 l~1,n!a@d~v2vk1vk2 l!g~k,k2 l!

3~1,2n8!b2d~v2vk2vk2 l! f ~k,l2k!

3~1,n8!b#. ~C8!

Here n and n8 are unit vectors in the directions ofk and
k2 l, respectively. We write the integral overk as

E
0

`

dkk2E
21

1

dmE
0

2p

dwk , ~C9!

wherem is the cosine of the angle betweenk and l. The d
function in the first term in Eq.~C8! can be rewritten as

Q@k2~v1 l !/2#Q~ l2uvu!d„m2m1~k,l ,v!…
uk2vu
kl

,

~C10!

and similarly thed function in the second term becomes

Q@ l /22uk2v/2u#Q~v2 l !d„m2m2~k,l ,v!…
uk2vu
kl

.

~C11!

HereQ is the step function, andm1 andm2 are the appro-
priate values ofm that are enforced by thed function. Equa-
tions ~C8!–~C11! yield

Fab~ l,v!}
Q~ l2uvu!

l E
~ l1v!/2

`

dkE dwkk
2~k2v!2

3@~1,n!a~1,n8!bg~k,k2 l!#~m1!

2
Q~v2 l !

l E
~v2 l !/2

~v1 l !/2
dkE dwkk

2

3~k2v!2@~1,n!a~1,2n8!bf ~k,l2k!#~m2!.

~C12!

From the properties of the functionsf andg and the form of
Eq. ~C12!, it is clear thatFab and hence alsoS̃ab( l,v) is
continuous everywhere away from the light cone, and t
u luFab( l,v) is bounded in a neighborhood ofl50. Similar
conclusions apply to the entire stress tensorT̃ab(k).

Finally, we note that the stress tensorT̃ab(k) is L
2, from

which it follows thatTab(x) is L
2 on Minkowski spacetime.

We can prove this using formula~C12! as follows. Leteab

be any constant tensor, and letFab
I denote the first term in

Eq. ~C12!. Then from Eq.~C4! and using the fact that the
d functions in Eq.~C8! enforce uk2 lu5uv2ku, it follows
that
hat

E ueabFab
I ~ l,v!u2d3ldv

<C0E
0

`

dlE
2 l

l

dvH E
~ l1v!/2

`

dk
k2~k2v!2

@11k21~k2w!2#N J 2,
~C13!

whereC0 is a constant, which is finite forN>5. A similar
analysis applies to the second term in Eq.~C12!, and to the
other types of term involving¹a¹bS in Eq. ~7.15!.

APPENDIX D: FOURIER TRANSFORM
OF THE FUNCTION k T

2ln†kT
2
‡

In this appendix we prove the following result which is
used in the body of the paper.

Lemma. Let h~ x! be a non-negative, smooth,L1 function
on R2 such that

h~0!5h,i~0!5h,i j ~0!5h,i jk~0!50, ~D1!

where the commas denote partial derivatives. Then

E d2kF E d2xeik•xh~x!Gk2ln~k2!>0, ~D2!

with equality iff h[0.
Proof. The essential idea is that the Fourier transform of

k2ln(k2) consists of a smooth positive function away from
the origin, plus distributional contributions at the origin
whose effects are unimportant because of the condition~D1!.

Using polar coordinates k,w,x,x defined by
x5(xcosx,xsinx), k5„kcos(x1w),ksin(x1w)…, we can write
the integral~D2! as

E
0

2p

dx lim
K→`

E
0

`

dxh~x,x!I~K,x!, ~D3!

where

I~K,x![E
0

K

dkE
0

2p

dwk3ln~k2!eikxm, ~D4!

andm[cosw. By evaluating the integral overk in Eq. ~D4!
and using the identities

E dw
f ~m!

m2 5E dw f 8~m!
12m2

m
~D5!

and

E dw
f ~m!

m4 5E dw f 8~m!
~2m211!~12m2!

3m3 , ~D6!
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it can be shown that

I~K,x!512p/x31E
0

2p

dwDI~K,x,m!. ~D7!

HereDI(K,x,m) consists of linear combinations of terms o
the form

~ lnK !qKpmw

xn
cos~Kmx! ~D8!

or

~ lnK !qKpmw

xn
sin~Kmx!, ~D9!

whereq, p, w, andn are integers with 0<q<1, 0<p<5,
0<w<8, and 0<n<3.

After integrating overx, the contribution from such terms
becomes proportional to

g̃x,n~Km!~ lnK !qKpmw, ~D10!

wheregx,n(x)[h(x,x)/xn is the restriction of the smooth
function h(x)/xn to the line at anglex in the x plane, and
g̃x,n is the~one-dimensional! cosine or sine transform of this
function. The functiongx,n is smooth because of the cond
tion ~D1! since 0<n<3. It follows thatg̃x,n(K) will fall off
at largeK faster than any power ofK, and hence the absolut
value of the expression~D10! is bounded above by

u lnKuqKpmwCp

11~mK !p11 , ~D11!

where we have chosen the power to bep11 andCp is a
constant. Carrying out the integral overw yields an expres-
sion which is bounded above at largeK by

u lnKuqKpC8

C91Kp11 , ~D12!

whereC8 andC9 are additional constants that depend onp
andw. Now it can be seen that these terms give a vanish
contribution in the limitK→` in Eq. ~D3!. Thus, from Eq.
~D7! the original integral~D2! can be written as

E
0

2p

dxE
0

`

dxh~x,x!F12px3 G , ~D13!

which is manifestly positive.

APPENDIX E: CONSISTENCY OF OUR RESULTS WITH
EXAMPLES OF NEGATIVE „UNSMEARED… ANEC
INTEGRALS IN SELF-CONSISTENT SOLUTIONS

As mentioned in the Introduction, in a very recent pap
Visser @43# has shown that the expected stress tensor o
scalar field in the Boulware vacuum outside a Schwarzsc
black hole violates the ANEC. Visser argued that this res
f

i-

e

ing

er
f a
hild
ult

suggests that similar violations would occur in self-
consistent solutions with back reaction. Moreover, these vio-
lations of the ANEC would not be confined to a Planck-scale
tube surrounding a particular null geodesic, but would in-
stead occur over a macroscopic region. In this appendix we
review Vissers argument and show that — at least in the
context of perturbation theory off of Minkowski spacetime
— his class of examples is consistent with our positivity
results. We also present a simple explicit model which illus-
trates this point, and discuss implications for the existence of
traversable wormholes.

A key element in Visser’s argument is a method for ob-
taining approximate self-consistent solutions to the semiclas-
sical equations, starting from solutions of the classical Ein-
stein equation. Essentially, the idea is an extension of our
long wavelength or small\ expansion beyond the context of
perturbation theory about flat spacetime. We now describe
this approximation scheme in a language similar to that we
have used in the body of the paper. LetCcl be some classical
field with stress tensorTab

cl @Ccl ,gcd#, and letgab
(0) , Ccl,(0) be

a solution of the classical Einstein equation

kGab@gcd
~0!#5Tab

cl @Ccl,~0!,gcd
~0!#. ~E1!

Now consider an additional quantum fieldF̂, and let us seek
solutions of the semiclassical equation

kGab@gcd#5Tab
cl @Ccl ,gcd#1^T̂ab&@gcd#. ~E2!

Now if the state of the quantum field is the incoming vacuum
state, then the second term on the right-hand side above will
be in order of magnitude;LP

2 /L4, whereas the first term
should be;1/L2, whereL is the lengthscale determined by
the classical background solutiongab

(0) Therefore ifL@LP ,
the quantum stress tensor can be treated as a small perturba
tion, and a leading order approximation to the self-consistent
solution will be given by

gab5gab
~0!1gab

~1! , Ccl5Ccl,~0!1Ccl,~1!, ~E3!

wheregab
(1) andCcl,(1) are calculated from the linearized ver-

sion of Eq.~E2! with source^Tab&@gab
(0)# as well as the lin-

earized field equation forCcl. At leading order, in regions of
the spacetime whereCcl,(0) andCcl,(1) vanish, the Einstein
tensor for this self-consistent solution will be just the test
field quantum stress tensor on the classical background, as
claimed by Visser@43#.

Consider now the application of this scheme to the Boul-
ware vacuum outside a Schwarschild black hole. This state is
unphysical because the expected stress tensor diverges on th
horizon. However, Visser argues that the expected stress ten
sor far from the horizon will likely be approximately the
same as the stress tensor for the static vacuum state outside
spherical star with radius close to its Schwarschild radius.
~The stress tensors will not be exactly the same because the
expected stress tensor in the static vacuum state does have
nonlocal dependence on the spacetime geometry.! Therefore,
the approximate self-consistent solution obtained from the
above scheme starting from a compact star and a test quan
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tum field in the static vacuum state should violate the ANE
over macroscopically large regions far from the star.

It might appear that this violation of the ANEC is qual
tatively different from the cases treated in our analysis in
body of the paper, and, thus, that new possibilities are o
for severe violations of the ANEC. However, we shall no
argue that this is not the case by showing that example
this type also exist in the context of perturbation theory
of Minkowski spacetime, and that these examples satisfy
smeared version of the ANEC provided only that stre
energy of the classical matter itself satisfies the ANEC.
see this, consider perturbing Minkowski spacetime by add
a classical stress tensorTab

(1),cl . For example this could be the
linearized stress tensor for a static spherical star. The fi
order metric perturbation in the semiclassical theory w
then satisfy a modified version of Eq.~3.4! wherein the term
Tab
(1),cl is added to the right-hand side. When one goes to

long wavelength limit and performs a reduction of order, o
finds that, to lowest order, the metric perturbation satisfi
Eq. ~4.20! with \sab replaced byTab

(1),cl. ~Note that the re-
sulting equation simply says thatk times the Einstein tenso
of the semiclassical solution is just the sum of the class
stress tensorTab

(1),cl and the vacuum polarization stress tens
in the spacetimehab1hab

cl where Gab
(1)@hcl#5Tab

(1),cl , in
agreement with our discussion above.! However, our proof
of the positivity of the smeared ANEC integral given in Se
VI E above used only the positivity of the ordinar
Minkowski ANEC integral forsab . Thus, if Tab

(1),cl satisfies
the ANEC in Minkowski spacetime, our analysis shows th
the smeared ANEC integral in the semiclassical spacet
will be positive to first order.

A simple example will illustrate these points. Consider
point massm moving along the geodesicxa(t)5tua in
Minkowski spacetime. Lethab

cl be the linearized gravitationa
field of this point mass, which is given by

h̃ab
cl ~kW !5

4p

k

m@uaub1
1
2hab#

kW2
d~kW•uW !. ~E4!

Next, using Eq.~3.32! we can calculate the expected stre
tensor in the incoming vacuum state on the spacetime w
metrichab1hab

cl which is given by

T̃ab~kW !5
2pmH̃l~k!

k
d~kW•uW !@2akW2uaub2~2a/312b!~kakb

2habk
ckc!#. ~E5!

From this stress tensor we can obtain a second linear
metric perturbationhab

quantum Finally, we calculate the ANEC
integral along the geodesicxa(l)5Da1lla of the Einstein
tensor of the spacetimehab1hab

cl 1hab
quantum, which is given

by

I5
1

~2p!3
E d4kG̃ab~k!lalbeikT•Dd~kW•lW !. ~E6!

Using Eqs.~6.17!, ~D13!, and~E5! we obtain forDTÞ0
C

i-
the
pen
w
s of
off
our
ss-
To
ing

rst-
ill

the
ne
es

r
ical
or

c.
y

at
ime

a

l

ss
ith

ized

I52
12ma

k2 uuW •lW u
1

DT
4 , ~E7!

whereDT is the length of the component ofDa perpendicular
to la andua, i.e., the impact parameter of the null geodesic
with respect to the point mass. Equation~E7! is essentially
the larger , weak gravity limit of Visser’s counterexample to
the ANEC involving a static star.

Thus, the ANEC integral is negative along all geodesics
away from the point mass in the self-consistent solution
Nevertheless, this is consistent with our result of positivity of
smeared ANEC, since in calculating the smeared ANEC in
tegral for a geodesic a distanceDT from the point mass, the
negative contribution~E7! will be compensated by the posi-
tive contribution from the point masses stress tensor itself
which also scales likeDT

24 because of our smearing function
~1.12! @93#.

This example illustrates that our results are consisten
with having negative ANEC integrals over a macroscopic
region. The price one must pay is that the amount of ANEC
violation is restricted to be very small compared to distant
mass scales. We now give a crude argument which sugges
that the restriction is easily sufficient to prevent the existence
of macroscopic traversable wormholes. Let us characteriz
the region with a negative ANEC integral by the quantity
with dimensions of mass

M25E d2xTE dlTabl
alb, ~E8!

and suppose that there is a region of positive ANEC integra
a distance;D away characterized by the massM1 . Then,
in order of magnitude, our result implies that

M21S LPD D 4M1>0. ~E9!

Consider now a static macroscopic wormhole, and suppos
that the wormhole can be characterized by one length sca
L. On dimensional grounds, the energy density required to
hold it open should be be of order;21/L2. ~This is con-
firmed by explicit calculations in specific examples by Ford
and Roman@14#.! Consequently we haveM2;2L, and,
therefore,

M1*S D

LP
D 4L.

Since the distanceD to the positive mass region should be
*L, we obtainM1*10130M((L/1cm)5, which is a ridicu-
luously large mass. Moreover, the natural requirement tha
theD be larger than the gravitational radiusM1 of the posi-
tive mass yields the restrictionL&(LP /D)

3LP<LP .
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TABLE II. In this table, for the aid of the reader, we list in alphabetical order some of the symbols that appear in the paper. We do n
list symbols whose meaning is very conventional, or symbols which are used only in the immediate vicinity of where they are introduce
For each item listed, we give a brief description, and also a reference to the equation in the text where the symbol first appears, or after wh
the symbol is first introduced. Except in special cases, we do not list separately the following variants of symbols: symbols with tildes
symbols with the superscripts(0), (1), or (2). Theformer always denote a Fourier transform, and the latter superscripts always denote
expansion coefficients in an expansion of a quantity in powers of«.

Symbol Meaning Equation in which Other relevant
first appears equations

a Coefficient that controls the anomalous scaling ~2.10! ~3.34!
A Expansion coefficient in long wavelength expansion ~6.42!
Aab Fourth-rank local curvature tensor ~2.7! ~2.10!

Aab
(1) Linearized local curvature tensor for metric perturbation

hab
(1)

~3.33! ~3.32!

Aab
(1)@•# Operator that acts on metric perturbations to yield a local

curvature tensor
~3.45! ~3.46!

Aab Local curvature tensor at zeroth order in 1/a2 expansion ~4.20! ~3.46!
b Coefficient that controls the anomalous scaling ~2.10! ~3.34!
B Expansion coefficient in long wavelength expansion ~6.42!
Bab Fourth rank local curvature tensor ~2.8! ~2.10!

Bab
(1) Linearized local curvature tensor for metric perturbation

hab
(1)

~3.33! ~3.32!

Bab
(1)@•# Operator that acts on metric perturbations to yield a local

curvature tensor
~3.45! ~3.46!

Bab Local curvature tensor at zeroth order in 1/a2 expansion ~4.20! ~3.46!
C Expansion coefficient in long wavelength expansion ~6.42!

D (Dx ,Dy) D’Alembertian-type wave operator~wrt x or y) ~2.17!
Dab Operator arising in point splitting prescription, consisting ~2.19! ~7.15!

of differential operator followed by~implicit!
coincidence limit

Dab
(1) First order change inDab due to metric perturbationhab

(1) ~3.1!

Dab
(1)@•# Operator that acts on metric perturbations giving first-order

change inDab

~3.1!

E@sx ,sy# Operator taking sourcessx andsy to bisolution of wave
equation

~3.13!

F in Regularized two-point function of incoming statev in . ~2.24!

F̄ in Regularized two-point function of rescaled incoming state
v̄ in .

~3.41! ~3.42!

F1(k), F2(k), F3(k) Functions arising in exact solutions ~A6!–~A8! ~A5!

f ‘‘Pure frequency’’ part of two-point function, in momentum
space

~6.1! ~C2!

f̂ Same asf (1) but multiplied byukuuk8u ~6.15! ~6.14!

Gab
(1) Linearized Einstein tensor for metric perturbationhab

(1) ~3.6!

Gab
(1)@•# Operator that acts on metric perturbation to give linearized

Einstein tensor
~3.6!

Gab
(2) Second order part of Einstein tensor, depending onhab

(1)

andhab
(2)

~5.12!

Ḡab
(2) Rescaled version of second-order part of Einstein tensor ~5.12!

Gab
(2)@•,•# Operator that acts on pairs of metric perturbations ~3.6!

g ‘‘Mixed frequency’’ part of two-point function, in
momentum space

~6.1! ~C2!

ĝ Same asg(1) but multiplied byukuuk8u ~6.15! ~6.14!
G Two-point bidistribution of the statev on (M ,gab). ~2.13!
G0 Two-point bidistribution of the in vacuum statev0 on

(M ,gab).
~2.20!

Gin Two-point bidistribution of the in statev in on (M ,hab). ~2.20!
Gin,0 Two-point bidistribution of the vacuum statev in,0 on

(M ,hab).
~2.20!
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TABLE II. ~Continued!.

Symbol Meaning Equation in which Other relevant
first appears equations

hab
(1) hab

(2) Metric perturbations ~3.1!

ĥab
(1) ĥab

(2) Rescaled metric perturbations in treatment of
long-wavelength limit

~3.44! ~7.2!

Hl Horowitz distribution that enters the expression for
vacuum polarization

~3.35! ~3.32!

H Usual Fock space of states on Minkowski spacetime ~3.5!

I , I (1), I (2) ANEC integral and its expansion coefficients ~5.8!

I s , I s
(1) I s

(2) Generalized ANEC integral and its expansion coefficients ~5.2!

Ī s , Ī s
(1) Ī s

(2) Limiting form of generalized ANEC integral, with only
transverse smearing

~5.4!

I F(xT) ANEC integral without back reaction as a function of
transverse displacement

~6.33! ~6.34!

Ī F(xT) Same asI F but for rescaled incoming statev̄ in ~6.38!

J(k,k8) Function that arises in solutions of reduced-order
semiclassical equations

~6.24! ~6.27!

k,ka,kT Coordinates on momentum space ~6.12!

K(xT), K̃(kT) Distribution that describes the effect of back reaction on
the ANEC integral for solutions of

reduced-order equations

~6.31! ~6.35!

K1(xT), K̃1(kT) Function that describes the effect of back reaction on the
ANEC integral for solutions of original

semiclassical equations

~B1! ~B2!

k0 ,k1 ,k2 Fixed, Planck-scale frequencies controlling tachyon-type
solutions

~A15! ~A16!

L Length scale of incoming state or of semiclassical
solution

~2.6!

N Number of scalar fields in the 1/N expansion ~2.6!

sab Source tensor in linearized semiclassical equation ~3.39! ~II B !

S(xT) Transverse smearing function ~5.1! ~5.2!

Sab , S Coincidence limits of derivatives of two-point function ~7.16!,~7.17!

Tab@gcd# Linear map on states on (M ,hab) returning conserved
stress tensor on (M ,gab)

~3.2!

Tab
(0) Usual Minkowski spacetime stress tensor~linear map on

states!
~3.3!

Tab
(1)@•#, Tab

(2)@•,•# Expansion coefficients ofTab@gcd(«)# that act on metric
perturbations or pairs of metric perturbations and return

linear maps on Minkowski spacetime states

~3.3!

xT Two dimensional transverse coordinate on Minkowski
spacetime

~5.1! ~6.12!

Zab Combination of fourth-rank local curvature tensors that
enters into anomalous scaling of stress tensor

~3.57! ~2.10!

Zab
(1) Linearized form ofZab for metric perturbationhab

(1) ~3.46! ~3.32!, ~3.36!

Zab
(1)@•# Operator that acts on metric perturbations to yield

anomalous scaling tensor
~3.46!

a Parameter used to characterize long-wavelength limit ~3.41!

a Unknown numerical coefficient of local curvature term in
stress tensor

~2.9! ~3.32!

a0 Real part of complex frequency in oscillatory modes of
exact solutions

~A11!
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TABLE II. ~Continued!.

Symbol Meaning Equation in which Other relevant
first appears equations

b Coordinate on momentum space ~6.12!
b Unknown numerical coefficient of local curvature term in

stress tensor
~2.9! ~3.32!

b0 Imaginary part of complex frequency in oscillatory modes
of exact solutions

~A11!

g Null geodesic in spacetime (M ,gab), also zeroth-order
geodesic in (M ,hab)

~5.2!

g Coordinate on momentum space ~6.12!
« Basic expansion parameter of perturbation expansion ~1.7! ~1.6!
e Generic small parameter in discussion of higher order

time derivative equations of motion
Sec. IV C

z Null coordinate on Minkowski spacetime, also a
Fermi-Walker coordinate on (M ,gab) in a neighborhood

of the null geodesic

~5.1! ~5.15!

Q Step function ~6.17!
Qg Function entering definition of generalized ANEC integral ~5.1! ~5.15!
k Inverse of Newtons constant ~2.1!
l Affine parameter along geodesicg, also Fermi-Walker

coordinate on (M ,gab) in a neighborhood ofg, also null
~5.1! ~6.12!

coordinate on Minkowski spacetime
l Undetermined length scale appearing in expression for

linearized stress tensor
~3.32! ~6.17!

l̂ Rescaled version of above length scalel ~6.31! ~A9!

lcrit Critical value of length scalel ~A10!

la Tangent vector to geodesicg, also vector field on
Minkowski spacetime

~5.1! ~6.12!

L, LT , LL Lengthscales entering definition of generalized ANEC
integral

~5.1! ~5.2!

L Used in Appendix B instead ofLT . ~B3!

LT,crit Critical value of transverse smearing length scale ~6.45!
n0 Numerical coefficient in expansion of Fourier space

smearing function
~6.41!

j Curvature coupling coefficient ~2.1!
r̂ (1), r̂ (2) Expansion coefficients of incoming state for Fock space

states
~3.7!

r̂̄, r (1), r̂̄ (2) Expansion coefficients of rescaled incoming state for
Fock space states

~7.9!,~7.10!

t Time scale characterizing radiation reaction effects ~4.2!
t Generic small parameter in discussion of reduction of

order
~4.18!

t* Evolution time scale for solutions of radiation reaction
equation

~4.3!

F̂1 , F̂2 Positive and negative frequency pieces of field operator ~3.21!

xab
(1) , xab

(2) Rescaled versions of metric perturbationshab
(1) , hab

(2) ~3.50! ~7.2!

xab
(1,0) , xab

(2,0) Leading order approximations toxab
(1) , xab

(2) in long
wavelength expansion

~3.52! ~3.58!,~4.24!

v in,0 Vacuum state on Minkowski spacetime ~1.6!

v in
(1) , v in

(2) Expansion coefficients of incoming, Minkowski spacetime
state

~1.6!

v̄ in
(1) , v̄ in

(2) Expansion coefficients of rescaled, incoming, Minkowski
spacetime state

~3.42!

vc Critical frequency of the order of the Planck length ~6.31! ~A9!

^•,•& Product notation for stress tensors acting on Minkowski
spacetime states

~3.2!
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