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Does back reaction enforce the averaged null energy condition in semiclassical gravity?

Eanna E Flanagati and Robert M. Wald
Enrico Fermi Institute, 5640 South Ellis Avenue, University of Chicago, Chicago, lllinois 60637-1433
(Received 27 February 1996

The expectation valu€T ,p,) of the renormalized stress-energy tensor of quantum fields generically violates
the classical, local positive energy conditions of general relativity. Nevertheless, it is possil€ fatmay
still satisfy some nonlocal positive energy conditions. Most prominent among these nonlocal conditions is the
averaged null energy conditiddNEC), which states thaf (T, k?®k°d\=0 along any complete null geode-
sic, wherek? denotes the geodesic tangent, with affine parametdf the ANEC holds, then traversable
wormholes cannot occur. However, although the ANEC holds in Minkowski spacetime, it is known that the
ANEC can be violated in curved spacetimes if one is allowed to choose the spacetime and quantum state
arbitrarily, without imposition of the semiclassical Einstein equat®g,=8m(T,;,). In this paper, we inves-
tigate whether the ANEC holds for self-consistent solutions of the semiclassical Einstein equation. We study a
free, linear, massless scalar field with arbitrary curvature coupling in the context of perturbation theory about
the flat spacetime/vacuum solution, and we modify the perturbed semiclassical equations by the “reduction of
order” procedure to eliminate spurious solutions. We also restrict attention to the limit in which the length
scales determined by the state and metric are much larger than the Planck length. At first order in the metric
and state perturbations, and for pure states of the scalar field, we find that the ANEC integral vanishes, as it
must for any positivity result to hold. For mixed states, the ANEC integral can be negative. However, we prove
that if we average the ANEC integral transverse to the geodesic, using a suitable Planck scale smearing
function, a strictly positive result is obtained in all cases except for the trivial flat spacetime/vacuum solution.
Similar results hold for pure states at second order in perturbation theory, when we additionally specialize to
the situation where incoming classical gravitational radiation does not dominate the first-order metric pertur-
bation. These results suggest—in agreement with conclusions drawn by Ford and Roman from entirely inde-
pendent arguments—that if traversable wormholes do exist as self-consistent solutions of the semiclassical
equations, they cannot be macroscopic but must be “Planck scale.” In the course of our analysis, we inves-
tigate a number of more general issues relevant to doing perturbative expansions of the semiclassical equations
off of flat spacetime, including an analysis of the nature of the semiclassical Einstein equation and of prescrip-
tions for extracting physically relevant solutions. A large portion of our paper is devoted to the treatment of
these more general issu¢S0556-282(196)02520-9

PACS numbg(s): 04.62:+v, 03.65.Sq, 04.20.Gz, 04.25.Nx

I. INTRODUCTION AND SUMMARY tion. In particular, macroscopic traversable wormholes are
forbidden when this condition is satisfig¢d,2]. Moreover,
the positivity of locally measured energy density plays a key
A characteristic feature of general relativity is that it pro- rgle in the positive energy theorerid] and the singularity
vides a framework for understanding many objects and phetheorems[4,5], which predict that general relativity must
nomena in which spacetime behaves in ways that are qualjreak down at the end point of gravitational collapse.
tatively completely different from our everyday experience  However, it is well known that quantum fields violate all
and intuition. For example, solutions of Einstein’s equationthe local, pointwise energy conditiori§,7]. For example,
could in principle exist which describe the creation of closedthe Casimir vacuum for the electromagnetic field between
timelike curves or whose topologies are nontrivial. Whetherwo perfectly conducting plates has a negative local energy
or not such solutions exist depends on the nature of the matiensity; indirect effects of this have been observed experi-
ter that inhabits spacetime. mentally[8]. Squeezed states of light also violate the energy
For the types of matter normally considered to be physiconditions[9] and also have been produced experimentally
cally realistic, all observers measure locally non-negative enf10]. Energy condition violations are also fundamental to the
ergy densities in the approximation where matter is treate@vaporation of black holes, and also to particle production in
classically. This condition thaf,,u?uP=0 for all timelike  a gravitational fieldsuch as that sometimes hypothesized to
u® (known as the “weak energy condition’as well as other, seed galaxy formation in the early Univerga1].
similar, local positive energy conditions are sufficient to  These ubiquitous violations of energy conditions have led
strongly constrain the space of solutions to Einstein’s equapeople to consider the possibility that the semiclassical equa-
tions could admit solutions that are qualitatively very differ-
ent from classical solutions, such as solutions with a negative
*Present address: Cornell University, Newman Laboratory Arnowitt-Deser-Misner(ADM) mass or solutions in which
Ithaca, NY 14853-5001. Electronic address: gravitational collapse occurs without the formation of singu-
flanagan@spacenet.tn.cornell.edu larities. In particular, in recent years there has been consid-

A. Brief overview of the issues addressed here
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erable speculation that semiclassical solutions could exig®2], at the very least, it should be necessary for traversable
which contain macroscopic traversable wormholes, and, pewormholes to have a “Planck scale structure.”
haps, even describe the creation of closed timelike curves in Our analysis applies only to non-self-interacting quantum

an initially causally well-behaved spacetiftg12,13. fields. Thus, although the full semiclassical theory we are
Are such objects allowed in semiclassical gravity? Thereconsidering is nonlinear due to the coupling of the field to
are three different types of possibilitie$4,15. the classical metric, the quantum portion of the theory is

(i) The semiclassical equations might forbid traversabldinear. It is possible that semiclassical solutions for interact-
wormholes, the creation of closed timelike curves, and negaing fields could be qualitatively different from semiclassical
tive mass objects. The space of solutions of the semiclassicablutions for free field$32]. However, we are not aware of
equations would then not be very different qualitatively fromany evidence which suggests that this is the case, provided,
that of the classical equations. of course, that the energy conditions for the interacting fields

(if) The semiclassical equations might allow such objectsare satisfied classically.
but only in such a way that they always lie outside the do- An additional principal purpose of this paper is to inves-
main of validity of the semiclassical theory, either becausdigate the nature of the semiclassical Einstein equdtlo)
the curvature scales are Planckian somewhere in the corrand its solutions. In particular, this equation has a character
sponding spacetimes, or because the quantum fluctuations finat is very similar to the radiation reaction equation for a
the stress tensor are comparable to its expected value.  classical charged point particle. Equatidnl) contains time

(i) The semiclassical equations might allow such objectslerivatives of order higher than 2, and, correspondingly,
in situations where the semiclassical theory is a good apthere exist, in effect, “extra degrees of freedom” in its so-
proximation and the objects are “macroscopic” in si@s lutions, including so-called runaway solutions which grow
opposed to Planck scale exponentially in time. We build on recent work of Simon

In the last several years, a variety of evidence has accy33-36, and discuss in detail the pathologies that arise and
mulated that indicates against the third of these possibilitiegpossible resolutions. Our conclusion is that in the special
and in the direction of either the first or second. In particular,case of perturbation theory about flat spacetime, it is possible
the following evidence has been adduced against the posdi resolve the difficulties by a “reduction of order” prescrip-
bility of creating “time machines” via macroscopic, travers- tion, but that in general there are still open questions with
able wormholes: First, it has been argued that appropriateespect to the extraction of physical predictions from the
nonlocal energy conditions may hold, which prevent traverssemiclassical equations.
able wormholes(no less time machingsrom being pro-
ducz?gl]”f—hzq; fSE'e Seg- IB be|0Wf- Second, fI;[ has been ar- B. Nonlocal constraints on the stress-energy tensor

ued[27] that, for a wide variety of states in flat spacetime, . .
\g/]vhenever the expected value gf the energy densFi)ty is nega- We now briefly discuss, as background, the status of non-

tive, then the fluctuations in the stress tensor are comparab 8cal energy conditions in relativity, see Yurtse\[ﬂa_@] for a
to the expected valug28]. This suggests that the semiclas- recent review. Let i1, Gap) t_>e a globe_llly hyper_bohc space-
sical equations should not be trusted in the case of solutiontéme' let ¢ be a quantum field on this spacetime, and con-
which depend in a crucial way on energy condition vioIa-S.Ider the expected stress ten%ﬁr&@ on all states of this
tions, such as in the case of traversable wormholes. Finallyi€!d- Although at any given point in the spacetime we may

it has been argued that even if traversable wormholes coulf’00Se the state so as to make the energy density be arbi-

be produced, quantum field effects near a chronology hori'granly negative[19], there can exishonlocal constraints on

zon will result in a singulafT,p), which could prevent the the stress tensor—i.e., quantum field theory_ .does_ seem to
occurrence of closed timelike curvi29—31. restrict the amount and nature of energy condition violations.

A complete understanding of these nonlocal constraints is

additional evidence that nonlocal energy conditions whichot yet in hand, and the search for such an understanding is

are sufficiently strong to rule out the occurrence of macro°"€ of the key, active areas of research in semiclassical grav-

scopic, traversable wormholes may hold in semiclassicaty [19]. Nevertheless, the results that have been obtained to

gravity. We shall investigate the validity of the averaged nulldate[15_26'l4 suggest that _nonlocal .constraints on stress
energy condition(ANEC) in perturbation theory off of tensors may play a key role in restricting the space of solu-

Minkowski spacetime. The key new ingredient in our analy-t'ons of the semiclassical equations. The present paper will

sis is that we will impose the semiclassical Einstein equatior*?resent additional ewde_nce in this d|rect|on_.
The nonlocal constraints have the following general form

G —8m(T , 11 [37] Let f3(x) be a tensor distribution on the fixed space-
atl Ga) (Taol Geal) a3 time, (M,ga,p), such that the quantity

on the spacetime and quantum state. Although we shall find _ 4 ab

that the ANEC can be violated even for solutions of Eq. 5‘f d*xV=gF(x) Tap(X) 12
(1.2), we shall show that in perturbation theory, a transverse

smearing over several Planck lengths of the ANEC integrais classically positive. Denote [ f2°,g.4] the minimum

is sufficient to ensure positivity. Our results thus suggest thaever all quantum states of the expected value of the quantity
violations of the ANEC in semiclassical gravity may be con-(1.2). There are now three different possibilities. First, it is
fined to the Planck scale, where the semiclassical approximgossible that i 12°,9.q]= —, so that quantum field
tion itself is suspect. In particular, since violations of thetheory does not restrict the value &f This will be the case,
ANEC are necessary for producing traversable wormhole$or example, wherf2® is proportional to a four-dimensional
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6 function, so tha€ depends only on the value of the stressmass must be positivg41]. Finally, the positivity of the
tensor at one point. The second possibility is thatANEC integral along future complete null geodesics is suf-
Eminl 12°,9c4] is finite and negative, so that ficient to prove some singularity theorefi0].
The averaged null energy condition is therefore of consid-
erable interest. Is it enforced by quantum field theory? Early
J d4x\/__gfab(x)<Tab(X)>>gmin[fab'gcd] (1.3 investigations showed that it holds in Minkowski spacetime
for free scalar fields and electromagnetic fidlti§—18, and
for all quantum states. An interesting possibility—which ap-also in generic, curved two-dimensional spacetim#8].
pears worthy of further investigation—is that this may be theHowever, it has been shown that it can be violated in ge-
case whenevef®” is smooth and of compact support. A neric, curved four-dimensional spacetimds$,42), even if
specific conjecture of the forifi.3) has also been suggested the spacetime is nearly flat.
by Yurtsever[15] (see below. The failure of the ANEC in general spacetimes does not,
Ford and Romari20-26,14 have derived a number of however, sound a death knell for the program of deriving
results of the form(1.3) in both flat and curved spacetime global results in semiclassical gravity, since there are some
quantum field theory, which they call “quantum inequali- modifications of the original ANEC conjecture that may give
ties.” For example, Ford showed that the fldE of nega- rise to nontrivial constraints on solutions. One idea, sug-
tive energy through some surface in flat spacetime, whegested by Yurtsevdrl5], is simply to weaken the conjecture
averaged over a timAt, must satisfyAE=—#/At, aresult  from being an inequality of the typ@.4) to one of the type
reminiscent of the time-energy uncertainty relation excep{(1.3), in analogy with the gquantum inequalities of Roman
for the minus sigr{21]. Similar results can also be derived and Ford. In other words, a modified ANEC conjecture
for the spatial average of energy density over a ledgthin -~ would be that the quantit§[ f2°,0.,] is always finite and
two dimensiong38]. More recently, Ford and Roman have not —«, when the distributiorf2? is chosen such that the
derived constraints on the average over time of the energyuantity€ is the ANEC integral along a null geodesic. Yurt-
density measured at a particular point by inertial observersever shows that if this is true, then reasonable assumptions
[24] in flat spacetime, and they have argued that their resultabout the dependence &f,;,, on the spacetime geometry lead
can be extrapolated to curved spacetime so as to constraip the conclusion that macroscopic, static wormholes are ex-
certain types of traversable wormhole spacetimes to beluded; only Planck-scale wormholes d@p@ssibly allowed.

“Planck sqale” [14].' N . _ In this paper, however, we shall follow a different path by
The third possibility with respect to the quantity investigating the validity of the ANEC when the spacetime
Eminl F3%,0cq4] s that it vanish(or be positivg, so that and quantum state are constrained by the semiclassical Ein-

stein equation(1.1), since any violations of the ANEC oc-
4y [ cab curring when this equation fails to hold would not be physi-
f A= g P(x)(Tap(x))=0 (1.9 cally relevant. In order to analyze generic solutions to Eq.

(1.1), we will be forced to resort to perturbation theory about
for all quantum states. Inequalities of the fofin4) are usu-  the trivial solution, namely, Minkowski spacetime with the
ally called “averaged energy conditiong39]. An example  quantum field in the vacuum state. We use the “reduction of
of a constraint of this type is the well-known fact that in order” procedure to eliminate the unphysical solutions of the
Minkowski spacetime, the integral of the energy density oveperturbative semiclassical Einstein equation. We make the
a constant time slicé.e., the Hamiltoniapis a positive op-  additional approximation that “wavelengths are large com-
erator. pared to the Planck scale,” and for the portions of our analy-

A particular averaged energy condition—upon whichsis involving second-order perturbations, we also will need
much attention has been focused—is the averaged null efio assume that incoming classical gravitational radiation does

ergy condition(ANEC), which states that not dominate the metric perturbation at first order. In the
“note in proof” section of Ref[18], violations of the ANEC

T..)kakPdA =0, 1. for pure states were obtained at first _ord_er in dev!ation from

L< ab) 9 flatness. A key result of our analysis is that this type of

counterexample is eliminated by imposing the semiclassical
where the integral is along any complete, achronal null geoequation: When Eqg(1.1) holds, the ANEC integral always
desicy, k® denotes the geodesic tangent, anis an affine  vanishes for pure states at first order in deviation from flat-
parametef40]. The reason that this and other similar condi- ness. This result has the side consequence that we must go to
tions (with null replaced by timelikeare useful is that they second-order perturbation theory in order to give a complete
dovetail nicely with the methods used to prove global resultsinalysis of the positivity properties of the ANEC integral for
about spacetimes in general relativity. Many of the standarghure states in nearly flat spacetimes.
global results that were originally proved to hold when point-  As will be described in more detail in the next subsection,
wise energy conditions are satisfied can be shown to alsee shall show that the ANEC can be violated. However, a
hold under the weaker assumption that the stress tensor sauitabletransversely smearedINEC integral is always non-
isfies the ANEC. For example, in spacetimes in which thenegative in the context of our perturbation expansions. The
ANEC is satisfied, the topological censorship theorem ofcondition that a smeared ANEC integral always be non-
Friedman, Schleich, and Wit2] rules out traversable worm- negative in general spacetimes is clearly a much weaker con-
holes. Under the same hypotheses, the Penrose-Sorkidition than the usual ANEC. Nevertheless, when the width of
Wolgar positive mass theorem shows that the asymptotithe smearing function is of the order of the Planck length as
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it is in our analyses, the positivity of a smeared ANEC inte-wherein one characterizes a state bynitgoint distributions
gral would be sufficient to derive interesting constraints onon spacetime. We shall adopt this philosophy here and write
the spacetime geometry. For example, suppose that a spathe one-parameter family of states@ée). We shall denote
time contains a macroscpoic traversable wormhole. Then ithe expected stress-energy tensor in the statey (T,p),, -
must contain one geodesjcfor which the ANEC integral is In fact, since the expected stress-energy tensor is directly
negative. However, the transversely smeared ANEC integraletermined from only the two-point distributio®(x,y)
centered ony must be positive. There are now two qualita- =(d(x)d(y)),, of the quantum field, the higher order cor-
tively different possibilities—either the compensating posi-relation functions will play no role in our analysis. Thus, for
tive contribution to the smeared ANEC integral comes fromthe purposes of our analysis a “state” may be viewed as
within a few Planck lengths, or it comes from a macroscopicsynonymous with a two-point distribution on spacetime sat-
distance away, corresponding to the tail of the smearingsfying the wave equation in each variable, as well as the
function. positivity and Hadamard conditionsee Sec. Il C below

In the first case the stress tensor and Einstein tensor mugfowever, little harm would be done in most of our analysis
vary significantly over length scales of the order of thepelow by pretending thaiw(e) corresponds to a one-
Planck length, and therefore the spacetime presumably ligsarameter family of density matricep(e) in some fixed
outside the domain of validity of semlclgssmgl gravity. In th‘?HiIbert space, With Tp) =t p T a]-
second case, there can be macroscopic regions of spacetimey; is yseful to characterize the statée) by the behavior

in which the ANEC is violated. The existence of violations w ji5 correlation functions in the asymptotic past. Assuming
of the ANEC of this type was suggested by some results of,5; gujtable asymptotic conditions hold on the spacetime
Visser[43], and in Appendix E we present an explicit ex- (M,g.(2)), and statew(s), we may associate with(s) a

ample of an approximate self-consistent solution which Vvio-g;4¢e wi() on Minkowski spacetime which agrees with

lates the ANEC in this way. In this second case, however,, .y i the asymptotic past under an appropriate identifica-
the positivity of the smeared ANEC integral would restrict tion of (M,g.y(¢)) with Minkowski spacetime. In particular,

the amountof violation to be incredibly small compared to the two-point distributionG(x,y:), of w(g) can then be
the distant, positive mass. We argue in Appendix E belowcharacterized by the functiénF- (%,V:e)=Gp(X.y:&)
that such violations of the ANEC would be far to small to 5 (X,y) on Minkowski spacetinl1ne Where. (;‘ y',s), is
allow macroscopic traversable wormholes. Analogous argug, R'\(/)o-boint function ofw;(¢) and G,- o(X.y) ”i‘s t’hé Wo-
ments apply to spacetimes with negative asymptotic masg1 n n, A"

d with " ted ch | horizons. Thi oint function of the Minkowski vacuum statey, . For
and with compactly: generated chronology : adamard states;; (x,Y;&) will be a smooth bisolution of

provides evidence in favor of the secofud first) of the three the wave equation in Minkowski spacetime, whose initial

possi.bilities dis_cussed in Sec. | A. Consequeyytl_y, if the SeMiqta at past null infinity.7~, may be viewed as the freely
classical equations were to enforce the plosmwty of a trar;f'specifiable initial data for the staevhich, however, is sub-
versely smeared ANEC integral in general spacetimes, wit o ; ; e ’ )
smearing width of order of the Planck length, this would?eCt to the positivity constraints discussed in Sec. II.C. be

_ . . oo low).
ggoyﬁgepfgnn?\;:yaifsttrrlzngﬁ ggﬁig?;ﬂ?sgnysmal possibilities It is well known that the semiclassical Einstein equation is

L of a “higher derivative” character than the corresponding
Our positivity result for the transversely smeared ANECclassical equation, and that consequently there exist new—

integral in perturbation theory is the first nonlocal ConStraintersumably spurious—"degrees of freedom” in semiclassi-
on stress tensors that has been proved in a generic class é)al gravity, closely analogous to the “runaway” solutions

four-dimensional, curved spacetimes. Our perturbative resulf . oh oceur for the dynamics of a point charge in classical

suggests that something similar may be true in general SpacSl'ectrodynamics when radiation reaction effects are included.

ggnn?isc,laasg?caﬁonrsa?/?tu(ﬂa¥tr:::1a:hter]?jot;§2i?1vgc;rvgfi dﬁf’“gf{;‘zt'nrhus, in order to extract any physical predictions from the
9 y y semiclassical equations, we need a prescription either for ex-

theory—may be qualitatively similar to classical solutions. tracting the “physical solutions” to these equations or for

modifying the equations themselves so that the spurious so-

lutions no longer arise. We investigate this issue in depth in

Sec. IV. We conclude that—at least in the context of pertur-
We consider a massless scalar field with arbitrary coupation theory about flat spacetime—the “reduction of order”

pling, &, to the scalar curvature. We wish to consider a onealgorithm for modifying the equatior86] provides a satis-

parameter family(with parameter denoted hy) of space- factory means of eliminating the spurious solutions without

times (M,gap(¢)) and quantum states satisfying EQ.1),  (significantly sacrificing accuracy at “long wavelengths,”

with the spacetime reducing to Minkowski spacetime and the.e., in the regime where the dominant length scales in the

quantum state reducing to the vacuum state wdve®. Itis  solution are much larger than the Planck scale. The validity

somewhat awkward and overly restrictive to attempt to deof the ANEC is investigated in the context of solutions to the

scribe the one-parameter family of quantum states as thougleduced order perturbative semiclassical Einstein equation.

they were states in a single, fixed, Hilbert space, since in a We expand the one-parameter family of “in” states as

general, curved spacetim®1(g,p), there is no unique pre-

ferred Hilbert space of possible states, and, in general, there win(8) = 0ot s 0\ + 202+ O(e°) (1.6)

is no unique, preferred way of identifying the states occur-

ring in Hilbert space constructions in different spacetimes. It

is much more useful to adopt the algebraic approachand we expand the metric as

C. Brief summary of our assumptions and results



FIG. 1. The “scattering picture” for solutions of the semiclas-
sical equations. The spacetime metric is determinedibthe in-
coming first-order and second-order metric perturbathﬁg,éi“ and
h{2-nat 7 -, which describe freely propagating gravitational radia-
tion, and (i) the two-point functions={> and F{?) at 7~ of the
first- and second-order perturbation§’ and»{? to the incoming
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characterized by their “initial data” at past null infinity
J —, consisting of the incoming gravitational radiation
h{"andh(2)" as well as the incoming, freely propagating
(with respect ton,p) piecesFi(nl) and Fi(,f) of the two-point
functions associated with{}’ and »{?) (see Fig. L

The “transverse smearing” of the ANEC integral referred
to in the previous subsection is defined in Minkowski space-
time as follows. Lety be a null geodesic and let, £, x*,
x? be coordinates such that the geodesic is given by
{=xA=0, A=1,2, and such that the metric is

ds?=—2dndZ+ (dxh) 2+ (dx?)2. (1.9

Now let

's:f dxf d2AT, (N, £=0x1,x%)S(x!,x?), (1.10

where S is some positive function that is peakedxdt=0

and that falls off at large®. This is essentially an ANEC-
type integral, with an additional averaging in two spatial di-
rections transverse to the geodesic. Definitidrl0 can be
generalized in a natural way to general, curved spacetimes by
using Fermi-Walker-type coordinatésee Sec. V A below

statew;(s) of the scalar field. These determine, via the semiclasfOr detail9, provided, of course, that the smearing function,

sical equations, corresponding outgoing quantitieg at However,

S, vanishes outside the region where such coordinates are

we choose to parametrize the solutions in terms of the incomingvell defined.

quantities at7 .

Gan() = aptehgy +e?h+0(e%),  (1.7)
where 5,y is the flat, Minkowski metric. The metric pertur-
bationh{}) can be written as

hiy =hip "+ AhLY (1.8
where h{t)'" satisfies the linearized Einstein equation in
vacuum and represents incoming classical gravitation
waves atJ . The remaining portiom\h{}) is determined

from the first-order state perturbatias{’) via the reduced

order, perturbed semiclassical equations. There is a decom

position similar to Eq(1.8) for the second-order metric per-

turbationh{3). Note that to second order, solutions to the
reduced order, perturbative semiclassical equations can be

Let y(e) be a one-parameter family of null geodesics
in (M,g.,(g)), and letly(e) denote the smeared ANEC
integral along vy(¢). We expand I as |Ig
=elM+£2 P+ 0(e3). Using the reduced-order semiclas-
sical equations we calculate the dependence of the perturba-
tions of the ANEC integral on the initial data:

B

2 2 1 2 1),i
@12 FE hE,

n s n (11])

ave restrict attention to the case where the incoming two-

point functionsF {1 andF{? satisfy the regularity conditions
discussed in Appendix C. We choose the transverse smearing
function S(x) that enters into the definitiofl.10 of I to be

1

ST AT

(1.12

TABLE I. A summary of our results for the ANEC integral in the different cases. “Pure to first order”
indicates that the two-point function of the scalar field is pure to first order ifAlways >0" means that
the smeared ANEC integral is always strictly positive for all solutions of the equations except for the trivial,

flat spacetime/vacuum solution.

Pure to first order

Mixed at first order

No smearing Smearing No smearing Smearing
First order ine =0 =0 Can be<0 Always >0
in long wavelength
limit
Second order iz Can be<0 Always >0 N/A N/A

in long wavelength limit
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wherex=(x1,x%), and A1 is greater than a certain critical pure states and mixed states behave qualitatively very differ-
length, A+ ¢, of the order of the Planck lengtsee Sec. VI  ently. One reason for thigvhich may be viewed as an arti-
below). We also specialize to the limit in which the length fact of semiclassical theorys that the linearity of the evo-
scales determined by the incoming state are much larger thdation law for states breaks down as a result of the coupling
the Planck length. With these assumptions, our results maip the classical metric. This arises only at second order in
be summarized as followsee Table | beloy perturbation theory. However, even at first order in perturba-
At first order in perturbation theory, we find tha) 1{  tion theory wherd (V[ »{"] depends linearly omo{}) it is
vanishes for pure incoming statesi) 1) is positive for  not true that positivity of () for all pure states would imply
mixed incoming states if the transverse smearing ledgth  positivity for mixed states. To see this, I& denote the
is chosen to be greater thar i, and(iii) 1Y can be made space of states, and 1€t denote the space of pure states.
negative if A is chosen to be sufficiently small, and in par- Then the space of allowed state perturbatiai}§ is not D
ticular, if there were no transverse smearing at all. Thus, théut is the tangent spack,,{ D) to D at wy=|0)(0|. Simi-
transverse smearing is a crucial ingredient in our analysidarly, the linear space of allowed pure state perturbations is
Note also that resulf) is a necessary condition fog to be  the tangent spack,,{ Dp) to Dp at wy. Now the key point is
always non-negative; ift") were nonvanishing for some in- that, althougtD is the convex hull oDp, T (D) is notthe
coming pure state, it could be made to have either sign bgonvex hull of T,,{ Dp) but is larger than it[The convex
choosing the sign of the first order perturbations approprihull of T,,{Dp) is just itself since it is a linear spage.
ately. (See below and also Sec. Il B for an explanation of Therefore, results for pure states do not generalize to mixed
why pure states and mixed states behave differently in thistates. Thus, the differences between pure and mixed states
regard) As was already mentioned in the previous subsecarise in our analysis because of our working in perturbation
tion, the analog of resuli) fails to hold when the semiclas- theory. Roughly speaking, we find that mixed states at first
sical Einstein equation is not imposed. order in perturbation theory behave very similarly to pure
Because the smeared ANEC integral vanishes at first orstates at second order.
der for pure states, it is necessary to go to second-order in
perturbation theory to see if the positivity of this integral can
be violated for pure states. A complete calculation of all The organization of this paper is as follows. In Sec. Il we
second-order effects would have required us to derive a forlay the foundations for our analysis by discussing in detail
mula for the complete corrections to the stress-energy tensehe full, nonlinear theory of semiclassical gravity. In Sec.
of the quantum field valid to second order in deviation from|l A, we specify the classical theory of gravity coupled to a
flatness. This would have been a major undertaking in itscalar field that we consider, and show that this theory satis-
own right, and we did not attempt to do this. Instead, wefies the ANEC classically in perturbation theory about flat
specialized to a limit in which not only are the lengthscalesspacetime. In Sec. Il B, we give a critical discussion of the
etermined by the incoming state much larger than the Planckniqueness and domain of validity of the corresponding
length, but, in addition, the incoming classical gravitationalsemiclassical Einstein equation. In particular, we argue that
radiation does not dominate the first-order metric perturbathe domain of validity of the equation is restrictedde-Lp,
tion. Under these conditions, the unknown term in thewhere £ is a characteristic length scale of a solution and
second-order stress-energy tensor is negligible. In is the Planck lengthgevenwhen the formal derivation of
Sec. VI, we calculate the three remaining terms inthe semiclassical theory is via the lariyelimit (whereN is
1AFD FE h()M and we show that in this limit?) is  the number of scalar fields coupled to grayitin Sec. Il C,
always positive. As before, the positivity only holds with we describe how the semiclassical theory can be reformu-
transverse smearing. lated in a manner very convenient for performing a pertur-
One unsatisfactory feature of our analysis is the follow-bative analysis about flat spacetime. The key elements in this
ing. The positivity of the transversely smeared ANEC inte-reformulation are(i) the quantum state is characterized a
gral holds in our perturbation expansion only when the transsmooth bisolutionF(x,y) of the wave equatiofiEg. (2.20
verse smearing functio8 falls off like x4 or more slowly.  below], which is obtained from the two point distribution by
In particular, the smeared ANEC integral with transversea suitable renormalizatior(ji) the equations of motion be-
smearing of compact support ot always positive. How- come coupled equations for the evolution of the spacetime
ever, in a curved spacetime, the Fermi-Walker-type coordimetric and the bisolutiof, and(iii) the in-vacuum expected
nates needed for the generalization of definiti@rlQ will value of the stress-tensor, which is a functional only of the
be well defined only in a neighborhood of the null geodesicspacetime metric, appears explicitly in the equations of mo-
in question. Thus, although we prove the positivity of ation.
smeared ANEC integral in the context of perturbation theory, In Sec. Ill, we perturbatively analyze the semiclassical
we do not even have an obvious candidate for a “smearetheory about the flat spacetime/vacuum solution to second
ANEC conjecture” outside of this context. Nevertheless, weorder in deviation from flatness. We start in Sec. Il A by
interpret our results as having the physical implications dederiving the appropriate perturbation equations. In Sec. IlI B,
scribed in the previous subsection. we describe some important differences between incoming
Finally, it is worth mentioning why we need to consider states which are pure to first order and those which are not
general, mixed incoming states instead of just pure states. lfwhich we call “mixed”). We also relate the property of
most situations, whatever is true for pure states will generalbeing pure to first order of the incoming state to a simple
ize trivially to mixed states. Here, however, it turns out thatalgebraic property of the first-order perturbation to the in-

D. Organization of this paper
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coming two point functiofEgs.(3.20 and (6.3) below]. In In Sec. V, we start our treatment of the ANEC by giving
Sec. lll C, we characterize completely the gauge freedom im general definition of a transversely smeared ANEC inte-
the second-order perturbation equations. In Sec. Il D, wagral, applicable to an arbitrary curved spacetime. This defi-
describe the explicit formulgEg. (3.32 below] for the (lin- nition is given in Sec. V A, and is based on the construction
earized in-vacuum expected stress tensor, which is a nonloef Fermi—Walker type coordinates in a neighborhood of the
cal function of the metric, and which appears in the first-geodesic under consideration. In Sec. V C we specialize this
order perturbation equation. Using this formula, we completalefinition to perturbation theory about flat spacetime. We
the specification of the first-order perturbation equation, andlerive explicit formulagEgs. (5.19 and (5.19 below] for
give the full, explicit form of this equatiofiEq. (3.38 be- the first-order and second-order smeared ANEC integrals,
low]. Finally, in Sec. Ill E we turn to the second-order per-1{Y and 1), in terms of the first-order and second-order
turbation equation. This equation contains a second-ordenetric perturbations. We also make a specific choice of
vacuum polarization term whose explicit form is as yet un-gauge which simplifies these expressions. The corresponding
known. We describe an appropriate limit—where the domi-expressions for the conventiorfahsmearedANEC integral
nant length scales in the solution are much larger than thare given in Sec. V BEgs.(5.10 and(5.11) below].
Planck length, and where in addition incoming classical In Sec. VI, we establish the results concerning the first-
gravitational waves do not dominate the first-order metricorder perturbation to the ANEC integral discussed in Sec. | C
perturbation—in which this unknown term can be neglectedabove. We begin in Sec. VI A by characterizing the precise
We derive the explicit form of the second-order perturbationclass of incoming states to which our analysis applies, and
equation appropriate to this limiEq. (3.59 below]. we establish some preliminary results concerning positivity
In Appendix A we give a detailed analysis of the exactproperties of the perturbations to the state’s two point func-
solutions to the first-order perturbation equation, and expliction. In Sec. VI B we derive the general solution of the re-
itly exhibit their well-known “extra degrees of freedom,” duced order, first-order semiclassical equatid20), ex-
which include pathological exponentially growing solutions. pressing it in terms of the perturbed two point function of the
At the start of Sec. IV, we explain our view that these extraincoming statd Eq. (6.23 below]. Using this expression, we
degrees of freedontand, in particular, the exponentially derive in Sec. VI C a general formula for the first-order per-
growing solutionslie outside the domain of validity of semi- tyrbationl{ to the transversely smeared ANEC integral for
classical theory, and, thus, are unphysical. However, it iS Nofhege solution§Eq. (6.27) below]. This general formula ap-
clear which, if any, solutions are “physical,” and this raises plies to both pure and mixed incoming states. We specialize
the issue of how to extract meaningful physical predictionsg incoming states which are pure to first order in Sec. VI D,
from the semiclassical equations. o where we show that{") vanishes. Finally, in Sec. VI E we
Sections IV A to IV D are devoted to an examination of gy, thay () is strictly positive in the long-wavelength limit
s_everal possible prescrlptlons for gxtractmg physical predlcf r incoming states which are not pure to first order.
tions from the semiclassical equations which were suggeste As discussed in Sec. | C above, a loophole left open by

by Simon[33-3§. We start in Sec. IV A by describing a the analysis of Sec. VI is that states which are pure at first

(_well-knovx_/n) close _analogy to_the Abraham—Lo_rentz caua; der might give rise to negative smeared ANEC integrals at
tion describing radiation reaction of charged point particles

in order to aid the subsequent discussion. In Sec. IV B, Wéaecond order, since the first-order perturbation to the

show that it is insufficient in general to analyze the solutionssmeamd ANEC integral vanishes. In Sec. VII, we address

of the semiclassical equation perturbatively order by order ifiS iSsue by analyzing the second-order, reduced-order per-
#: effects that are nonperturbative in can be physically turbation equation. We start by deriving a general formula
important, and can be described by the semiclassical equiRr the second-order perturbatioff’ to the smeared ANEC
tion within its domain of validity. In Sec. IV C, we argue that integral[Eq. (7.3) below]. This formula is valid only in the -
it is unsatisfactory to attempt to throw out by hand the patholong wavelength limit, and takes the form of an expansion in
logical solutions: in general, there is no natural, preferreddowers ofl2/£? and IfLp/L]L3/L?, whereL is the length
nonpathological subspace of the space of solutions to thécale characterizing the solution. The formula takes the form
equation. In Sec. IV D, we describe the method of reductiorPf @ piece that parallels exactly the corresponding first-order
of order, which is a systematic procedure for generating2xpression, together with two additional, new terms. These
modified equations of motion which eliminates the additionalnéw terms contain pieces quadratic in the incoming first-
degrees of freedom. We argue that this procedure provides@der state perturbation, as well as cross terms between the
satisfactory solution to the problem of extracting physicalincoming classical gravitational radiation and the incoming
predictions from the perturbed semiclassical equations, afirst-order state perturbation. The new terms arise at a high
though unresolved issues remain regarding its applicabilitprder in the long wavelength expansion, and thus are only
in more general contexts. We apply the reduction of orderelevant when the lower order terms vanish. In Sec. VII A,
method to the perturbative semiclassical equations to obtaiwe show that these new nonlinear terms actually vanish iden-
reduced-order perturbation equations at first order and seéically whenever the lower order terms vanish. In Sec. VII B,
ond order{Egs. (4.20 and(4.23 below. we use this result and exploit the parallels between the first-
Section IV completes our treatment of perturbative semi-order and second-order analyses to show tﬁa}tis strictly
classical gravity; the remainder of the paper is devoted to apositive in the long wavelength limit. This completes our
investigation of the ANEC in solutions of the reduced-orderderivation of the results described in Sec. | C above.
perturbation equations. Our final conclusions are given in Sec. VIILI.
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Some of the technical details in the discussion in the bodyime geometry is nonlocal and complicated, making calcula-
of the paper are relegated to Appendices C and D. The othdions outside of linear perturbation theory prohibitively dif-
AppendiceqA, B, and B contain discussions of side issues ficult. These difficulties do not appear in two-dimensional
which do not fit in with the flow of the body of the paper. As models, for the reasons explained in Rdb], and in recent
mentioned above, general exact solutions of the first-ordeyears there have been a variety of calculations of back reac-
perturbation equatiof8.38 are derived in Appendix A. Ap- tion effects on two-dimensional black hole backgrounds
pendix B shows that smeared ANEC integrals are positive t§46]. However, in four dimensions, most back reaction cal-
first order for mixed states for a particular subclass of theculations have been restricted to linear order perturbation
solutions found in Appendix A, in a certain region of the theory off some fixed backgroun@xcept for analyses of
two-dimensional parameter space which specifies the semiarious conformally flat spacetim§36,47]). Our back reac-
classical theory. We show that this mathematical analysision analysis is apparently the first to go beyond linear order
provides an alternative proof of the first-order ANEC resultsperturbation theory for a generic class of four-dimensional
derived in Sec. VI E, for this region in parameter space. Wespacetimes. We shall build upon and extend the work of
also show in Appendix B that there are some solutions of thédorowitz [48], who considered semiclassical gravity in per-
first-order perturbation equation which violate ANEC, eventurbation theory about flat spacetime to linear order, without
when all the exponentially growing or decaying pieces of theallowing perturbations to the incoming quantum state.
solutions are discarded, and even when the ANEC integral is
transversely smeared. Thus, the reduction-of-order method A. The classical equations
that we have adopted to deal with the pathologies of the L . .
semiclassical equations is necessary for the validity of our We now descrlbg in more de_ta|I the. model of gravity
results. Finally, Appendix E extends our proof of the non-CO“p_IEd to a scalar _f|eld that we will treat in our analy_3|s. We
negativity of the first-order perturbatidrél) to the smeared conS|der a scalar field> of arbitrary curvgtur_e coupling
ANEC integral to the situation where an external, classicaf”md arbitrary masen, so that the Lagrangian is
linearized stress tensor is coupled to gravity, in addition to 1
the quantum scalar field. This more general result applies to L= Ef d*x\— g{kR— g2V ,®V P — m?D2— ¢RD2},
examples of violations of ANEC over macroscopic regions 2.1)
discovered by Vissef43], discussed in Sec. | B above, and :
shows that themountof violation of ANEC is restricted to  \yherex=1/(87G). We will specialize later to the massless
be very small. We argue in Appendix E that this restriction iscase. The classical equations of motion are
strong enough to prevent the occurrence of macroscopic tra-
versable wormholes. kGap=Tap, (2.2

E. Conventions and

We use the metric signature-(+,+,+), and the sign [O0-m?—¢R]P =0, (2.3
conventions of Refs[44,5], as well as the abstract index
notation explained in Ref5]. The following is our conven- where the stress tensor is
tion for Fourier transforms. IfF=F(x) is a function on
Minkowski spacetime, then we define the Fourier transform  Tap=Va®Vp® — 20ap(VP)?— 3gapm* P2

to be + Gy ®2— 2V (DY, D) + 20, VPV D)].

E(k)zf d*xe Tk XF(x). (113 (2.4

In the classical theory, this stress tensor violates the point-
Similarly if f=1f(x) is a function on three-dimensional Eu- wise null energy condition fo€+#0, but satisfies the aver-
clidean space, we define its Fourier transform to be aged null energy condition for all negative valueséppro-
vided that suitable asymptotic fall-off conditions hold for
~ o s —ikx ®. More precisely, for any null geodesi®=x?(\) with
f(k)_f d*xe f(x). (1.14 affine parameteh and tangent vectox®=(d/d\)?, it fol-
lows from Egs.(2.2) and(2.4) that
We use gravitational units in which the speed of lighand
Newton’s gravitational constai@ are unity, so thati=_L3 a b D2 » (DD')?
whereLp is the Planck length. An index of notation is given J Gaph ™A d)\_J d)‘K— ®? +ag j d (k— ED?)?’
at the end of the paper in Table . (2.5

provided thaté<0 and @®')/(k—éP?)—0 as|\|—ox,

where primes denote derivatives with respect télowever,
Difficulties arise in the calculation of back reaction effectsfor at least some positive values &fit seems likely that the

in semiclassical gravity for several reasons. First, as we disANEC can be violated49].

cuss further in Sec. IV, there are problems associated with The failure of the classical stress-energy tengb4) to

spurious, runaway solutions to the equations. Second, theatisfy pointwise energy conditions whér 0, and its pos-

dependence of the renormalized stress tensor on the spaaible failure to satisfy the classical ANEC condition for posi-

Il. SEMICLASSICAL GRAVITY WITH BACK REACTION
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tive values of¢ indicates that this class of field theories may antee that either of them will even define Lorentz mejrics
not be suitable for a general study of the validity of ANEC in Thus, unless one eliminates all gauge freedom, the notion of
quantum field theory in curved spacetime. However, in thisan “expected metric” will make sense only in a limit where
paper, we shall be concerned only with a perturbative analythe fluctuations of the spacetime geometry about its mean
sis of solutions about Minkowski spacetime. In this case, itvalue are negligibly small. Such a limit undoubtedly would
follows immediately from Eq(2.9) that, for all values of haye to be contemplated in any case in order to justify a
¢, the classical ANEC condition holds for all solutions neargemiclassical approximation, but it is worth bearing in mind
the trivial solution of Minkowski spacetime witll=0.  nat the quantity one is trying to calculate in the semiclassi-

Thus, this class of quels should provide a gqod testing | theory is ill definedwithout complete gauge fixingex-
ground as to whether, in the context of perturbatlon_theorycept in this limit. Note that this same phenomenon would
quantum fields can attain violations of the ANEC which areg.cur in the calculation of the expected value of any gauge

classically forbidden. dependent quantity in any non-Abelian gauge theory.
There are at least two different approximation schemes by
B. The status of the semiclassical equations which the semiclassical equatid8.6) can be formally de-
and the local curvature ambiguity rived, and these give rise to distinct viewpoints on the range

of validity of this equatio{50-5J. In the first scheme one
formally expands a quantum metric and quantum scalar field
KGab[gcd]:ﬁab[gcd])w- (2.6  about Minkowski spacetimeor, more generally, any classi-
cal vacuum solutiori53]), and derives the equation of mo-

to describe the back reaction of the quantized matter degre&@n (2.6) for the expected metric by keeping only the “tree
of freedom on spacetime. However, as is well known, thell@grams” for gravitons and the “tree diagrams™ and “one-

exact status and domain of applicability of this equation is@0P" terms in the scalar field54,55. [As is well known,
far from clear, due mainly to the fact that we do not have gPredictions can be obtained at one-loop order despite the fact

complete, more fundamental theory of quantum gravity fromf‘hat the theory is nonrenormalizable, at the expense of hav-

which Eq. (2.6) could be derived. In addition there exist N9 {0 introduce two new, undetermined, coupling constants

pathological runaway-type solutions to these equations, a§t0 the theory; see Eq2.9) below] This loop expansion
analyzed in detail by Horowitg48] for the linearized equa- ormally correspo‘r)ds to an expansion in powersfiofso
tions. Proposals for dealing with these unphysical solution&€€Ping only the “one-loop™ terms corresponds to keeping
have been put forward by Simd83—36, and we will dis- only the lowest order correction ifi to the equations of
cuss Simon’s suggestions in detail in Sec. IV below. In thismotion. There is no obvious mathematical or physical justi-
subsection, we critically examine the origin, status, andfication for dropping the one-loop “graviton” terms, since
unigqueness of the semiclassical equations. Specifically, wi1® guantum effects of the metric field agepriori, just as
consider the following two basic issue§) How is the Importantas those of a scalar fi¢ls6,57. It is possible that

“semiclassical approximation” derived and what is its do- the neglect of the one-loop graviton terms could be justified
main of applicability: i.e., what is the class of statesand for certain choices of the state of the scalar and gravitational

classical metricg,y, for which the semiclassical approxima- fields—wherein the expected scalar stress-energy tensor
tion is good?(Il) How unique is the semiclassical Einstein dominates the corresponding effective graviton contribution,

equation(2.6) itself: i.e., how unique is the prescription to and the fluctuations in the scalar stress-energy tensor are

obtain the expected stress-energy ter@og)? suitably small — but we are not aware of any analysis dem-
, Y

With regard to the first issue, it should first be noted thatonstratlng this. However, in any case, the effects of the

equations presumably must correspond — from the vantagEq. (2.6) can be justified as a simplified model of the exact

point of a complete quantum theory of gravity — to the equations resulting from keeping all one-loop terms. Note

expected value c-Jf @ guantum metric operator in so“me Stat(f‘hat the one-loop graviton terms could be handled within this
However, we wish to emphasize here that the “average

value” of a metric which has nonzero amplitudes to corre—ﬁg%rofgmg“zgnbyigzagg%kthreom‘z[réclagzgglbsatfge?fng lﬂg\?\,r_
spond to different spacetime geometries is an intrinsically propagating 9 P '

gauge noncovariant concept; it cannot even be defined unle§¥S" the phenomenon described in the previous paragraph

an algorithm is diven which completely fixes all gauge free_would then manifest itself by the fact that, at second order in
9 'S gIver ' pietely gaug the perturbed metric, the difference between the Einstein ten-
dom, i.e., which rigidly fixes a coordinate system for each

spacetime geometry. This phenomenon can be seen evensirzs(t);irtlhtee nes)g:(:fr:ig] renf?ézgvzrdagg aesxgeft?gvxglr:"itgsghe
the simple case of a classical probability distribution which y 9

. - . (1) _energy tensor) would be gauge noncovariant.
assigns probability 1/2 to the spacetimd @) and prob Thus, in this first scheme, the semiclassical Einstein equa-

ability 1/2 to the spapet|md\4,gg2t))l). We2 could say that the jon (2.6) would be, at best, an approximate equation valid
expected metric oM is (gap) = (955 +955)/2. However, we  for certain states of the scalar and gravitational fields, and, at
could equally well have represented the second spacetime @frst, be a “model equation” whose properties should be
(M,z,//*ggzb)), where M —M is any diffeomorphism. The qualitatively similar to the equation resulting from a com-
expected metric would then be computed to beplete one-loop approximation. In either case, higher loop
(9h)= (g + y*g@)/2. However, (g,,) and (g.,) will  contributions would modify Eq(2.6) by terms proportional
not, in general, be gauge equivalgmor is there any guar- to quadratic and higher powers bf In the context of per-

It is natural to postulate the semiclassical equation
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turbation theory off of Minkowski spacetime, a formal ex- above, we will not view Eq(2.6) (or any other known equa-
pansion in powers ofi is equivalent to an expansion in tion) as adequate for describing phenomena where wave-
powers of 122 (keeping constants of nature suchiafixed),  lengths comparable tbp occur. This will justify our modi-
where £ denotes a typical lengthscale associated with a sofication of Eq.(2.6) in Sec. IV below using the reduction of
lution. Thus, from the viewpoint of this first scheme we order procedure, so that it still describes “long wavelength”
would expect there to be modifications to E2.6) which are  behavior accurately, but no longer predicts pathological be-
of order ~L3/£?, and consequently the domain of validity havior at the Planck scale.
of the equation is restricted td>Lp, wherelLp is the We now turn to a discussion of the second issue, i.e., the
Planck length. uniqueness of the right-hand side of Eg.6). If we assume

In the second scheme the semiclassical Einstein equatidhat the prescription for obtaining the expected stress tensor
(2.6 is formally derived from a fully quantum treatment by satisfies the axioms discussed in Réb), then the expected
imagining that there arl decoupled scalar fields present — stress tensor is unigue up the addition of local, conserved
all of which are in the same quantum state — and then takingurvature tensors. These are tensors which are functionals of
the limit N— oo, with GN=(const) (see, e.g., Ref58]). In the metric, and whose value at a point depend only on the
this “1/N expansion,” the graviton |oops are Suppressecgeometry in an arbitrarily small neighborhood of that point.
relative to the matter loops simply because theréhasealar ~ This ambiguity is assumed to be only a two-parameter am-
fields but only one graviton field. Note that since the scalaiguity [60,61], because in general spacetimes there are only
fields are fredi.e., non-self-interacting only one-loop terms  two independent conserved local curvature tensors of dimen-
in the scalar fields arise. Furthermore, in > limit, the ~ Sions (length)*, which are explicitly given by62]
fluctuations in the expected total stress-energy tensor of the

scalar fields becomes negligible. Thus, one formally obtains 1 ) % —g cdef
Eqg.(2.6) exactly in theN— oo limit. Corrections to this equa- Aab_fg ﬁﬁf d™xV=9gCcdeC

tion should be of order N or higher. Thus, one might ex-

pect that ifN is sufficiently large, Eq(2.6) would be a good =—-20R,,+ 2V, V,R+:0Rg.,— 1R?gap

approximation up to and beyond the curvature scale corre-
sponding to the effective Planck length in the rescaled
theory, L~Lp o= \/NLP. Indeed, estimates of the order of d
magnitude of successive terms in the loop expansion suppo"?‘tn
this viewpoint. However, it is far from clear that the loop 1 s
expansion would provide a good approximation in this re- - J 4y [—qR?
gime, so we do not believe that there are solid grounds for Bab \/—_g ﬁﬁ d x\/_gR
believing that “graviton effects” can be neglected for any 1
finite value of N when L~Lp . In other words, effects _ _ TR2q
which are nonperturbative ifi could be important at these 2VaVoR=20R Gyt 5 R Gap = 2R R (2.8
scales. One strong piece of evidence that this is the case is R
that this seems to be the only way to escape the conclusiohhus, if we denote bYT.p,) point spiit the stress tensor given by
that flat spacetime is unstatjgg8]. As we shall see in detail the point splitting algorithm(briefly reviewed in the next
in Appendix A below, pathological solutions of the linear- subsectiof then the appropriate right-hand side for E2}6)
ized version of Eq(2.6) exist on scale~Lp o, and we  must be of the form
will not regard these solutions as being physical. - .

We comment that the existence of these two different (Tab) ={Tab)point spiit™ ¥Aapt BBap - 2.9
points of view on the status of the semiclassical equation has
given rise to some controversies in the literature. Some imHere @ and g are dimensionless coefficients which can be
plications of the first point of view have been discussed afégarded as free parameters. Different renormalization
length by Simor{33-36 (see Sec. IV below for further dis- schemes predict different values @fand 3. Indeed,« and
cussion. On the other hand, Sudis9] disagreed with Si- B may be viewed as new “coupling constants” which must
mon’s analysis and argued that there should not be any cobe introduced into the theory as a result of the nonrenormal-
rections to Eq.(2.6). In our view, the existence of higher izability of quantum gravity(coupled to mattgrat one-loop
order corrections to Eq2.6) depends on whether or not one order. In quantum gravity, at highegraviton loop orders,
justifies that equation in terms of a one-loop approximatioradditional new “coupling constants” would have to be in-
or by the invocation of a N limit. Certainly, corrections to troduced as coefficients of the conserved local curvature

Eq. (2.6) will appear in the physically realistic case of finite terms of the appropriate dimension for that order; these

+3RRap+ (ReaR°h) gap— 4Rach R (2.7

N. would constitute a portion of th®(%2) and higher correc-
The viewpoint will shall adopt in this paper is the follow- tions to the semiclassical equation referred to above.
ing: We will appeal to the N limit to give a mathematically An important feature o T,;,) is that it has an anomalous

clean justification for ignoring graviton contributions to Eq. behavior under a scaling of the spacetime metric and the
(2.6). Thus, in ar: (or, equivalently, a “long wavelengthy”  corresponding scaling transformation of the state. To see this
expansion, we shall regard E@.6) as valid to all orders in more explicitly, consider, for simplicity, the case of a mass-
# (or, equivalently, to all orders in inverse wavelengthl-  less field. Under the scaling transformatiggy,— u2gap, we
though in most of our analyses we will not make use of itsmust scale the two-point functio, of the quantum field as
validity beyond order?. However, as already indicated G(x,y)— u~ 2G(x,y) in order to preserve Eq2.15 below.
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Physically, this scaling of the quantum state can be inter- Although the numerical values of the dimensionless coef-
preted as preserving the “particle content” of that state, sdicientsa and 8 are not known—and, indeed, are not deter-
that the new state in the new metjicg,;, corresponds sim- minable without a more complete theory—we shall assume
ply to increasing the wavelength of all of the particles by thebelow that their values are of order unity “at the Planck
factor u. Note that this required scaling db contrasts scale.” More precisely, if we defin(BTab>pointsp|n by choos-
sharply with the situation in the classical theory, where thﬁng the lengthscal@ arising in that prescription to bep,
amplitude,®, of the scalar field may be scaled in an arbitrarythen we shall assume that the correct formu|a<ﬁ5£b> is
manner independently of the scaling of the metric tensogiven by Eq.(2.9) with « and8 of order unity. However, our

[63]. In the classical theory, the stress-energy tensor alsgagits concerning ANEC will be valid for all values af
scales in a straightforward manner under any combined scal g,

ing transformation ofy,, and ®. However, the situation is
quite different in the semiclassical theory because one is
forced to introduce a lengthscaleg, in the prescription for _ _ _ _
defining(T,p). In particular, in the point splitting algorithm ~ €onsider now the semiclassical theory where the metric
(reviewed briefly in the next subsectiora length scale im- Jap IS treated classically, but where the scalar fididis
plicitly enters into the logarithmic term in the local Had- treated as a quantum field. The metric and quantum state,
amard subtraction terH(x,y) [45]; a length scale simi- @ are required to satisfy the semiclassical Einstein equation
larly enters all other regularization prescriptions as a(2:6- The coupled, evolving degrees of freedom in the semi-
“renormalization point” or “cutoff.” Under a change of this classical theory consist df) the metric, andii) all the ob-

C. The semiclassical equations

length scale\g— u\ o, We have[64,47 servables associated with the scalar field. These field observ-
' ' ables may be taken to be timepoint correlation functions
(Ta)[Gedr Mol =(Tap)[Ded Mol +4mINu[aAgp+ DBy, (D(Xq) - - - P(Xy)), in the given quantum statey. However,

(2.10 as we discuss further below, the expected value of the stress
tensor in any state is determined via the point splitting pro-
wherea, b are specific numerical coefficients that depend orcedure from a knowledge of only the two-point function,
the curvature couplingg [see Eq.(3.34 below]. Equiva-

lently, if we keep), fixed but scale the metric and state via G(X,y) =(P(X)D(Y)),, - (2.13
2 P Moreover, in free field theorywhich we are considering
Gab— 4 Gap, G(X.Y) = p “G(XY), (219 here the evolution of the two-point function is decoupled
btai from that of the highemn-point functions. Thus, if we are
we obtain only interested in the metric and not in other observables
_ depending on the state of the scalar field, we can regard the
2 — 2
(Tap) [ 9Nl =1 A Tap)[edsNo] semiclassical equations as a set of coupled equations for the
—Amp Anu[aA,,+ bByy]. (2.12 ~ Mmetric gap and the distributional bisolutio®(x,y) to the

scalar wave equatiof®.3). This is a key feature which sim-

- . : plifies our analysis. From this point of view, states which
Note that the ambiguity2.10 in (Tap) resulting from the iffer only in theirn-point functions fom+ 2 are effectively

need to introduce a length scale is subsumed by the mor% . . X o
general ambiguity given by Eq2.9). Indeed, one way of identical as far as semiclassical gravity is concerned.

o i ! ; The appropriate set of bidistributional solutions for a
describing the above anomalous scaling beha\@di0 is to given, fixed, globally hyperbolic spacetimdl(g,,) can be

say that a particular linear combination of the two new di- ;
; “ : y : “ : haracterized as follow[$5,45: Let S(M) denote the space
mensionless “coupling constantsd and 8 is a “runnin ¢ ; I ; )
Ping B 9 of smooth solutions of the Klein-Gordon equati@h3) with

coupling constant,” i.e., in effect, its value depends upon the .
scale one is considering. initial data of compact support on Cauchy surfaces, and let

The scaling behavior given by E(2.10 has two impor- C5(M) be the space of smooth test functions of compact

tant consequences. First, it shows ttat least part ofthe support on spacetime. Define the usual Klein-Gordon-like
ambiguity occurring in Eq(2.9) for a massless field cannot SYMPlectic product on pairs,G e S(M)

be eliminated by any criterion arising from the study of the ~

guantum field theory of that field propagating in a fixed clas- _ a

sical background spacetime, since that theory does not have QF.G)= LFVaGdE ' (214

a preferred length scale, whereas any prescription fixing

and 8 would have the effect of determining a length scale.whereZ, is any Cauchy surface. L&(f,g) denote the two-
(Although a massive field does have an associated lengtpoint bidistribution evaluated offintegrated against} test
scale—namely h—using this length scale to fiw and 3 functionsf,ge C;(M). ThenG(f,g) must be of the form
would give rise to singular behavior in tle— 0 limit.) The
second consequence is that the scaling behd@id0 will
affect the nature of solutions in the “long wavelength” limit.
As we will discuss in detail in Sec. Il E below, when we
perform an expansion in a “wavelength parametérs/£,  whereEf denotes the advanced minus retarded solution with
we will need to introduce terms which vary as powers ofsourcef. Furthermore, the symmetric pa&®)/2 of G must
In[Lp/£](L3/L£?) as well as powers df 2/ £2. satisfy the positivity condition&™)(f,f)=0 and

G(f,g9)= %G(l)(f,g)+ IEQ(Ef,Eg), (2.19
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GY(f,H)GY(g,9)=O(Ef,EQg)% (2.16  hold, with G;,(x,y) being the two-point function of the state
in Minkowski spacetime with the same initial data on past
Moreover, in order that the stress tensor be well defined, thaull infinity 7 ~ asG(x,y) [under a suitable identification of
two-point functionG(x,y) must be of so-called Hadamard 7~ for (M,g,,) with 7~ for (M,7,,)]. For a massive
form [65]. field, it is less clear precisely what asymptotic conditions on
To specify more explicitly the coupled evolution equa- (M,g,,) would suffice, but the necessary conditions presum-
tions for the metricg,p(x) and the two-point function ably would be qualitatively similar to those for a massless
G(x,y), we need to discuss the point splitting prescriptionfield. Note that the positivity condition will hold for
for calculating the stress tensor. L&t'(x,y) denote the lo- G(x,y) if and only if it holds forG;,(x,y). This is because,
cally constructed Hadamard bidistribution given by the algo-in general, the positivity conditiof2.16) can be expressed as
rithm described in Refg65,45,6@, specialized in the fol- a condition on initial data o X 3, where3, is any Cauchy
lowing way. Use the differential operator surfacd 65], and will be preserved under evolution. The two-
) point functionsG and G;, have the same initial data at
D=0L-m"—¢R. (2.17 J ~, and are both evolved forward using the homogeneous
wave equation with respect to the appropriate metig, for
G, map for Giy).

Now, let G, o(x,y) denote the two-point function of the
rdinary vacuum statewi,o, in Minkowski spacetime
M, 7ap), and letGy(x,y) be two-point function of the cor-

responding state,wg, in (M,g,,) Which approaches
f(x,y)=G(x,y)— GH(x,y) (2.18 Gino(X,y) in the asy'mptotic' past; in pther words, let
Gy(X,y) be the two-point function of the “in vacuum state”
will be well defined in a neighborhood of the “diagonal” in (M,ga,). For any Hadamard staté, in (M,gap) with
x=y of MxM and will be at leas€? for Hadamard states two-point functionG(x,y), we define
[65]. The expected value of the stress tensor will be given by
F(x,y)=G(x,y) =~ Go(X,y). (2.20

{Tao(X)pointspic= )I,IinXDabf(X'yHQ(x)gab(x)’ 219 then, clearlyF contains the same information as the bidis-
tribution G. However, the Hadamard condition @& now

whereD,,, is a particular second-order differential operatorcorresponds simply to the statement thgk,y) is a smooth

andQ is a particular local curvature invariai5]. Note that ~ function onM X M. Furthermore, Eq(2.19 is equivalent to

if we modify the prescription for calculating™ by truncat-  the statement tha is symmetric and real-valued. In addi-

ing the series after say four terms instead of three terms, thelfon, F(x,y) satisfies the wave equatid@.3) in each vari-

the regularized two-point functiof(x,y) will be altered, but able

the value(2.19 of (T.5(X)) point soiit Will Not be changed. As

explained in the pfre?/?ous?pgubsgection, we shall assume that DiF(xy)=DyF(x,y)=0, (229

the correct value o{Tay(x)) is given by Eq.(2.9 with « by virtue of the fact that the bidistribution&(x,y) and

and B of order unity. . : . L
In summary, the independent variables in the semiclassigO(X’y) each satisfy this equation. The only other restriction

. . ) ) on F is the positivity condition arising from the correspond-
cal evolution equations consist of a smooth metig(x) . dition(2.1 G
and a bidistributiorG(x,y). G(x,y) is required to satisfy the ing con ition(2.16 on G. :
) AN ' Since the expected stress teng®k),, has a linear de-
wave equation2.3) in each variable, as well as Eq®.19 endence on the two-point distributio®, associated with
and(2.16 and the Hadamard condition. Finally,, and G P P "

are required to satisfy the semiclassical Einstein equatioﬁ) » we have, for any Hadamard state,

(2.6), with (T,p,) given by Eqgs(2.9) and(2.19. The gauge (Tan)o={Ta) o+ (Tan)r - (2.22

freedom in this formulation of semiclassical gravity simply 0

consists of the diffeomorphismg:M— M, under which

Oap and G(x,y) get transformed by the natural action of
Although the above formulation of semiclassical gravity (Tap)e=limDypF (X,Y), (2.23

is fully satisfactory mathematically, the unknown variable y—X

G(x,y) has a distributional character, and it would be more . . . .

convenient to specify the independent degrees of freedom i¥¥ith Dap, being the same differential operator as appeared in

terms of a smooth function. This can be done as follows ifEd. (2.19. The vacuum polarization tergil,p),,, is func-

the physically relevant case of a spacetin\,§,,) which tional of the spacetime metri,,, alone. For massless fields,

becomes flat in the asymptotic past. First, we assume that thehas been evaluated by Horowif48] to first order in the

state is sufficiently regular and that the approach to flathnesgerturbed metric about flat spacetime, and we will make use

of the spacetime occurs at a sufficiently rapid rate thabf Horowitz' formula in our analysis below.

G(x,y) asymptotically approaches the two-point function Thus, in our reformulation of semiclassical theory, the

Gin(x,y) of a state,w;,, in Minkowski spacetime N1, 7,,).  independent variables consist of a smooth meggigx) and

For sufficiently regular states of a massless field, asymptotia smooth, symmetric, real-valued functiB(x,y) which sat-

flatness of M,g,;,) at null infinity should suffice for this to isfies the positivity condition arising from E¢2.16). The

Choose the length scaleg, implicitly appearing in the loga-
rithmic term inG"(x,y) to be the Planck length,, choose
wo=0 in the notation of Ref[45], and truncate the series
expansion after three terms. Then the regulated two-poi
function

Here as abovey, denotes the “in” vacuum state, and
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dynamical evolution equations are simply thdix,y) satisfy F=eFD+e2F?@ 4+ 0(e3),F= 8|:i<nl>+ 82|:i<n2>+ O(e3),
the wave equatiofi2.3) in each variable with respect to the

metricg,,, and thaty,, andF satisfy the semiclassical Ein- D=DO+ DV +0(?),
stein equatior(2.6) with stress-energy tensor given by Egs.
(2.22 and(2.23. We remark that a purely classical theory, pabng%uspglbuo(g), (3.2

where gravity is coupled to a statistical ensemble of scalar
field configurations, would differ from this version of semi- wherew;,, F, F;,, D, andD,, were defined in the previous
classical gravity only in the following two respects. First, in subsection. For the remainder of this paper the operators
the classical theory, the terti,p),,, would be absent from  D,,, DY), andD{}) will be implicitly understood to include
Eq.(2.22. One may view this term, which is proportional to the operation of taking the coincidence linyit-x; these
#, as describing the vacuum polarization effects occurring iroperators thus act on functions XM and take values in
the quantum theory. Second, the quantum mechanical podihe space of tensors di. Note that it would not make sense
tivity condition onF arising from Eq.(2.16) (which can be to introduce an expansion is of the family of states
viewed as a restriction on the space of allowed initial data for(€), as for different values o, these states act on the
F on3 X3 for any Cauchy surfack) is less restrictive than different algebras of observables corresponding to the differ-
the corresponding classical positivity condition. ent spacetimes. For this reason, we view the sidte) as a
Under our above assumptions about the asymptotic bgunctional of the “in” statew;,(g) on Minkowski spacetime
havior of states, it follows from Ed2.20 that in the asymp- and of the spacetime metrig,,(e), i.e., o= w[wj,,9cql,
totic pastF(x,y) approaches the smooth functiéi,(x,y) and we then expand;,(¢). Note that for a fixed metric

on Minkowski spacetime defined by Jap, the statew is a linear function ofw;, .
We write
Fin(X,y)=Gin(X,y) = Gin o X,Y)- (2.24
(Tav[Geal @in) =(Tabl eal) w004 - (3.2

Note thatF;, is just the usual “regularized” two-point func-
tion of the statew;, in Minkowski spacetime. It satisfies a This defines the tensdr,, on the left-hand side as a linear
positivity condition which ensures th&;, is the two-point map on the space of states on Minkowski spacetime which
distribution of a state in Minkowski spacetime. We may takes values in the space of conserved tensors on the space-
view Fi,(x,y) and a corresponding quantity describing thetime (M,g,,). Using the expansiofB.1) for g,,(&), we ex-
incoming classical gravitational radiatiofsee Eg. (1.8 press this linear map on Minkowski spacetime states in the
abovq as the freely specifiable “initial data” for semiclas- form as
sical gravity. In the next section, we will develop a system-
atic perturbation expansion for semiclassical solutions in Tao[Gca(8)]=Thy + e Tep[h ]+ X T5p[h?)]
terms of these “initial data.”

We conclude this section by reminding the reader of our +T;2b)[h(l)’h(l)]}+o(83)* 3.3

notation for the four different states under consideration () Lo .
s . . whereTyy is the usual stress tensor operator in Minkowski
here: (i) the state of interestw, on the curved spacetime a

(M,ggp) (ii) the “incoming state” w;, on Minkowski space- qucetime. Equati_o(8.3) deﬁn'es the ten;or‘féﬁ anq ngb)

time (M, 77.5), such that the-point functions ofw approach Whl_ch act on metric perturbations and pairs of metric pertur-
those ofw;, in the asymptotic pastii) the vacuum state, bations respectl\_/ely. . . . . .

;o in Minkowski spacetime, andiv) the corresponding _The per_turbat.we semmlasspal Einstein equations are ob-
“in-vacuum” state g in the curved spacetimeM,gay), tained by inserting the expansiof3.1) and (3.3 into Eq.

such that then-point functions of wy approach those of (2.6). We obtain, at first order,
win o IN the asymptotic past. The two-point functions of these GUTHOT=(TO Oy 4 (TOrRMT o 3.4
states are, respectivels, G;,, G, o, andGy. *Gap[N™1=(Tap 0 )+ (Tas [N ] 0ing) - (3.4
and at second order we get
Il. PERTURBATION THEORY ABOUT FLAT SPACETIME D D) wD
h'<]+ h'*'h
A. Derivation of the equations KGap[N]+ kG [,
— 0 2 1 1 1
In this section we derive the explicit form of the pertur- =(Tw i) H(TH[h], o) (TP, 00
bation expansion of the semiclassical equations off of the (21 m(1) Wl
Minkowski spacetime/vacuum solution, valid to second or- +H(Tap [N 0] 0in0). 39
der in deviation from flainess. L&M,gan(e),w(¢)) b€ @ pore the tensore® and G are defined by the identity
smooth one-parameter family of solutions of the semiclassi-
cal equations discussed in the last section, such that ., ah]=aGW[h]+a2G2)[h,h]+0(a?), (3.6)
[M,0ap(0)= 74p] is Minkowski spacetime and(0) is the
Minkowski vacuum statew;,o. We expand all relevant which holds for any tensdn.q, i.e., they are the linear and

guantities about =0 as follows: guadratic parts of the Einstein tensor. Explicit expressions
D 202 5 for G are given in for example Ref5], and forG(? in
Jab(&) = 7apT ehgpy +&°hy +O(e”), Ref. [67].

D .2 @ s Before discussing the explicit form of the terms appearing
Win= Win ot ewiy’ T e“wiy’ +0(e%), on the right sides of Eq$3.4) and(3.5), it may be useful to
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write the equations in the notation appropriate to the case o t (Ot )
where the one-parameter family of incoming staigg(e) sy l(X"y') = fMd XGret (X", X)Sx(X,Y")
corresponds to a one-parameter family of density matrices

p(e) on the usual Fock spacH of states on Minkowski hes ~ (Ot )
spacetime. If this family of density matrices is expanded as + JMd YGret (Y Y)sy(X",Y)
pe)=l0) 0l ep o5+ 00, (37 - [ o[ ave@i 06y y)
M M
then Eqgs.(3.4) and (3.5 can be rewritten as X3(X,Y), (3.13

O D 0 whereS=D{s,=DP)s,, and G(Q is the retarded Greens
kGap [NV ]=(0|Tgs[h'V]|0) +t[pMTep] (3.8 function for the differential operatd®®. Combining all of
the above results together with Eq2.22), (3.4), and (3.5
yields the fairly obvious relations

and
(T o) =DRF, (T o) =DRF,
kGNP ]+ xGEhY h()] (3.14
=t p@ T+t p M T h ] together with
+(0|TH[h@][0)+(0| TR [ h(V]|0). (3.9 (Te[hV],0ly)=DF
DR~ DR - DR,
In Egs. (3.4 and(3.5), the terms involvingw;, o are the (3.15
“vacuum polarization” terms, corresponding to the first '
term on the right-hand side of EqR2.22. The term Finally, we note that the perturbative semiclassical equa-

<T§ilb)[h(1)],wm,o> has been computed by Horow[#8] in the  tions have the following structure: we can specify arbitrarily
massless case, and we will review Horowitz’ results in Secthe incoming state perturbationd andw{? (or, more pre-
Il D below. The term(T&[h™),h(M],w;, o) has not been cisely, just their two-point functionsas well as the incom-
computed, and, to avoid having to do so, we will eventuallying metric perturbationsh{})'" and h{2'" [see Eq.(1.9
pass to an approximation in which this term can be neglectedbovd. We then may solve Eq$3.4) and(3.5) to obtain the
(see Sec. lll E below metric perturbation&’}) andh{?) [68].

We now derive explicit expressions for the non-vacuum-
polarization terms that appear in Eq8.4) and (3.5). From
Egs.(2.23 and (3.1) we obtain

B. Pure states versus mixed states

As discussed in the Introduction, our results concerning

the ANEC depend crucially on whether the incoming state
(Tan)e=eDYF P+ DYF@ + DPF ]+ 0(e3). wi, IS pure or mixed to first order in. Consider first the case
(3.10  where all the statesy;,(&), correspond to density matrices,

p(&), in the usual Fock space. Then the perturbed state will

Furthermore, from Eqg2.21) and(3.1), we obtain be pure to first order if and only if

p(e)=|¥(e))(W(e)|+O(e?), (3.16
D;O)F(l)(xay)ZO, where
V(e))=|0)+e| )P +0(e?). 31
’D&O)F(Z)(X,y)Z —'Dg(l)F(l)(X,y), (3.11 | (3)> | ) 8|lzb> (g) (3.17
Thus the state is pure to first-order if and only if
together with similar equations involving derivatives. pP=10)(yh| M+ D|y)(0], (3.18
SinceF—F;, in the asymptotic past, the solutions to these
equations are for some| y)M e H with (0|¢)M)=0. By contrast, the most
general first order density matrix perturbation is of the form
D=1 “ ~ ~
P =Fn p =100l M+ M y)(0]+ P~ (urP)[0)0], (319

where P is a positive, Hermitian trace class operator %n
such thatP|0)=0. Thus, the perturbed state is pure to first
order if and only ifP=0.

Here the quantityf[s,,s,] is defined for any sources By inspection, when E(3.18 holds, it can be seen that
s«(x,y) andsy(x,y) satisfyingD{Vs,=DP)s, , by the two-point functionF{") will have the property that its

FO=F2+g-DMFY,-DIVF]. (312

n
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mixed-frequency pafi.e., the part that is positive frequency perturbed two-point function for which the mixed-frequency
with respect to one variable and negative frequency wittpart vanishes, and “mixed perturbed two-point function” to
respect to the other; see E@.1) below| vanishes. More- mean one for which the mixed-frequency part does not van-
over, the converse is also true, since if the mixed-frequencish. For states in the usual Fock space—and, presumably,

part vanishes we have also for general algebraic states—a perturbed state will be
. a . pure to first order if and only if its perturbed two-point func-
t{ pMO_(u) P, (u)]=0 (3.20  tion is pure.
for any test functioru, where we have used the decomposi- C. Gauge freedom and transformations
tion In this subsection we analyze the gauge freedom in the

perturbation equations. The gauge freedom in the one-
parameter family of exact solutior®,g,,(g),w(e)) con-

of the field operator into its positive and negative frequencySIStS simply of one-p_aramef[er fa_1m|I|es of diffeomorphisms
: 2 . ¢,:M—M, where g, is the identity mag 69]. Here, these
parts.(In a conventional mode expansich, would consist

o i diffeomorphisms act simultaneously ag,, and the two-
of the annihilation operators aribl_ the creation operatops. point functionG of w.

Now since the operatd? is trace class, it is compact. Thus |t can be showrj70] that for an arbitrary one-parameter

there will exist an orthonormal basig;) of the space of family of diffeomorphismse, with ¢, being the identity

states orthogonal t0) such that map, there exist unique vector fielgd®) and £&2® on M,
such that, to ordes?,

P=P, +d_ (3.2

P:jzo pil (¥l (3.22 ¢8=D§(2)(8)°D§(1)(82/2). (3.29
for somep;=0, j=0,12.. ., where the convergence is in HereD.(\):M—M denotes the one-parameter group of dif-
the operator norm topology. Equatiof®19 and(3.20 now  feomorphisms generated by. The vector fieldss*® and
imply that £22) are given by the following formulas in terms of their

actions on test functionse Cg(M):

; pil| @ (W] g;)|[>=0. (3.23

gy f=i(focp> (3.29
a d8 & .

However, if®. (u)|;)=0 for all u, then|;)=10), which e=0
contradicts the fact thaij;) is orthogonal td0). Therefore
pj=0 for all j, and the incoming state is pure to first-order.

In addition, it follows immediately from Eq3.19 that if d2
pM) is a possible first-order state perturbation, thep® £y f= g2 (foee)
will be an allowable first-order state perturbation if and only &
if the state is pure to first order. This has the implication, ) o
which we discussed in the Introduction, that if the ANEC WhereL denotes the Lie derivative. Thus, the gauge freedom
integral is to be non-negative generally, it must vanish at first? the second-order perturbation equations can be param-
order for pure states, but not necessarily for mixed states. €trized by pairs of vector fields o [94]. _

For general, algebraic states there is a more abstract no- Now let T(e) be any one-parameter family of tensor
tion of purity, which defines a state to be pure if it cannot ~ fields onM (we suppress tensor indigesvhich has the ex-
be written in the forncw;+ (1—c)w, Wherew; andw, are ~ Pansion
distinct states and ©c<1 (see, e.g., Refl45]). Thus, the © 1)L .21 3
pure states are extreme boundary points of the convex linear T(e)=T"+eTV+e°T7+0(&”). (3.27)
space of all states. It should follow that for general algebraic _
states, ifw(1 is a possible first-order state perturbation off of 1"€n from Eq.(3.24 we can calculate t?e t(rlr;)msformanon
a pure state, ther wi(nl) will be an allowable first-order state propemes of the expansion coefficierts”, T, etc. We
perturbation if and only if the perturbed state is pure to firstflnd
order. In addition, the positivity condition, E42.16), ap-
plied to bothw;, o+ e w’) and i, o— s w{}) should then im-
ply the vanishing of the mixed-frequency part of the two- h
point function for general first-order pure states. Thus, the/Nere
conclusions of the previous paragraph should continue to ) (1) )
hold for general, algebraic states, although we have not at- TH=T"+ LT, (3.29
tempted to give a rigorous proof of these results.

Our analysis of the ANEC given in Sec. VI C below will and
divide into two cases, depending upon whether or not the 1 1
mixed frequency part of the perturbed two-point function T2 _ (2 0 0 1
vanishes. In the remainder of this paper, we shall use the TE=TE+ §£§(2)T( )+§/3§<1>/3§<1>T( "+ LT,
terminology “pure perturbed two-point function” to mean a (3.30

— L Lenf, (3.26

&=

O*T(e)=TO+eTV+£T?D+0(e%), (3.29
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Let us denote gauge transformed quantities by overbarsH, (x)= lim [— &' (o— a)® . (x)+ 2m7In[ — a/\?]6*(x)],
Then we find
(3.35

where o =x,x%/2, ® . (x) takes the value 1 inside the past
light cone and vanishes elsewhere, and it is understood that
the limit «— 0~ is taken after integrating against a test func-
tion. See Horowit448] or Jordan54] for more details.

a—0"

h(l)zh(l)+£§<1)7],

WZ): h(@ 4+ %Eg(zm-i- %£§(1)£§(1)7]+ £§<1)h(l),

cP=c", Gc?=G62+L,uG", Expression3.32) is essentially a special case of the gen-
L eral formula(2.9), but linearized and specialized to the in-
FO(x,y)=FD(x,y), coming vacuum state. As such it contains a linearized ver-
sion of the two-parameter local curvature ambiguity
F(z)(x,y)=F<2)(x,y)+£§(1>F(1)(x,y)+£‘§’(1)F(1)(x,y). described by the parametesisand 8. Also the logarithmic

(3.31) scaling described by Eg2.10 has a counterpart in Eq.
' (3.32: the distribution(3.35 has the property that

We use these formulas in Sec. VII below. H, () — Hy (x) =4 in( A ) 8%(x). (3.36

D. The linearized stress tensor and the explicit form Therefore the free parameteﬁs ﬁ, and\ are not indepen_
of the first-order perturbation equation dent. In Sec. Il B we chose to make=L,, thus fixing the

In this subsection we analyze the vacuum polarizationvalues ofe andg. In the linearized analysis here and below,
term appearing in the first order perturbation equat®d)  Wwe follow Horowitz [48] and choose that value af which
in the massless casey=0. This has been calculated by makesa=0. Thus, the two independent free parameters in
Horowitz [48] using an axiomatic approach, who obtained the linearized stress tensor ggeand A. Note that our as-
sumption discussed in Sec. Il B thatand 8 are “of order
<T;ﬂ[h(l)](><),win,o>=f d4y{HA(x—y)[aAgfb)(y) unity at the Planck scale” translates into the assumption that
. ) ) A~Lp, B~L1. (3.37)
+bB{; +aAll
ab (V)] ahap () Formula(3.32 completes the explicit specification of all
+BBglb)(x). (3.32  the terms appearing in the linearized semiclassical Einstein
equation(3.4). Thus, using Eq(3.14) and settinge=0, the
Here A and B{}) are the linearized versions of the local complete, explicit form of this equation is
curvature tensor€2.7) and (2.8):

DW= 5 DOFD 4+ 7 gD +f 4 _
AL = —20GW + 2V, VR~ 25 ORD, kG [N ]1=h Dy Fiy’ + A BBy (X) + 1 Md y{H\(Xx—y)

Bglb):_ZﬂabDR(l)"'ZVaVbR(l)' (3.33 X[aA(alb)(Y)"'nglb)(y)]}- (3.39
For later convenience, we have explicitly inserted the factors
of 4 appearing in this equatidi71]. It can be seen that the
right-hand side of E¢(3.38 contains terms involving fourth
derivatives of the perturbed metric, so the linearized semi-
€lassical Einstein equation has the nature of a fourth-order
integrodifferential equation rather than a second-order differ-
ential equation. As previously remarked, it can be solved by
specifying the source term

where R is the linearized Ricci scalar and the derivative
operatorsV2 and] are the zeroth-order derivative operators
associated with the flat metrig,,. The coefficienta and

b in Eq. (3.32 are constants which depend on the curvatur
coupling £. These coefficients were given by Horowitz for
the caseg=0 and &= 1/6; the general formulas can be de-
rived from point splitting and are

2
am o b O (33 Sav= (T oft)) = DIGFLY (339
477(9607°) 41r(576m°)
and solving for the metric perturbatidii}) . Its exact solu-
Note that the coefficierd is positive for all values of, and tions have been discussed in detail by HoroW#g], in the
moreover the corresponding coefficient for other fields suchspecial case of the homogeneous version of the equation,
as Maxwell and neutrino fields is also positi#s8]. This fact  without the source tern(8.39. In Appendix A we obtain all
will be be relevant in our analysis below. The quantities  solutions to Eq(3.38 whose spatial Fourier transforms ex-
B in Eq. (3.32 are free parameters, cf., the discussion afteiist, thereby generalizing the analysis of Horowitz to allow
Eq. (2.9. The parametek is a free parameter with dimen- for a nonvacuum incoming quantum state.
sions of length corresponding to the length scaledis- As found in Appendix A and in Ref48], the linearized
cussed in Sec. Il B. The quantity, is a distribution with  semiclassical Einstein equation has, in effect, more degrees
support on the past light cone, rather like the retardedf freedom than the corresponding classical equation, and
Green'’s function solution to the massless wave equation. Anew “runaway” solutions exist. Thus, presumably, not all of
explicit formula forH, is the exact solutions should be regarded as physical. Section
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IV below will be devoted to the issue of how to extract WhereF_i(rr]‘)(x,y) is the perturbed incoming initial data of
physical information from Eq(3.38 and equations of a some fixed(i.e., a independentstate
similar character.
on(e)=opnoteol +e?0@+0(e%).  (3.42
E. Explicit form of the second-order perturbation equation

in the “long wavelength” limit Without loss of generality, we may choosg, to have a

) o o characteristic length scal&,, of order the Planck length,
As we have previously indicated, we will find that the Lo~L,. We may then interpret the parameters measur-

ANEC integral vanishes identically for pure states to firsting the characteristic lengthscateof the initial state in units
order in deviation from flatness. This is a key necessary conf the Planck length.

dition for the validity of the ANEC, but it does not, by itself,  The quantity
provide strong evidence that any version of the ANEC actu-
ally holds for pure states. In order to investigate this issue sab=<Tg%> ,wfnl)> (3.43
further, it is necessary to gat least to second-order pertur-
bation theory. However, we are unable to do this for generahcts as a source term for the first-order metric perturbation,
perturbations because we do not have an explicit expressidﬂalb)(x;a), in the linearized semiclassical Einstein equation
for the term(T&h™),h(V], ;. ) appearing in Eq(3.5.  (3.4). For the family of incoming states given by E§.41),
Nevertheless, as we now shall describe, there are limiting,, scales as
circumstances under which this unknown term will be neg-
ligible compared with the other terms appearing in E435). San(X;i )=~ KT W) (x/ ). (3.44
These limiting circumstances correspond to the case of ) ) )
“long wavelengths”(compared with the Planck scalef the N order to examine the behavior of E@.4) under scaling,
field and perturbed metric, together with the condition that! IS convenient to make the change of variables
the first-order perturbed metric not be dominated by incomh®(x;a)=h®)(ax;a). If we substitute Eq(3.44) into Eq.
ing gravitational radiation. These conditions should encom{3.4) and use Eqs3.32 and(3.36), we find that the explicit
pass a wide range of physically interesting and potentiallyr dependence of the resulting equation is given by
achievable situations. In Sec. VIl below, we will perform an 1
analysis of the validity of the ANEC for pure states to second WA= —r/70) 1) Orp7 .
order in perturbation theory in this limit. xGap[h'']= —Al(Tap @i ) +(Tap [N '] 0in )]

We now give a precise description of the long wavelength |
limit in terms of one-parameter families of solutions to the T EZM)[F,(D]_ (3.45
semiclassical equations, in which the characteristic length a® 780
scaleL of a solution satisfie€— oo, while the length scales
that determine the semiclassical thedry,andX [the length
scale appearing in Eq3.38], are kept fixed. However, we
remark that this limit is equivalent to a limit in which
h= '—_%HO with £ and\/Lp fixed, i.e., the long wavelength s the linearized anomalous scaling contribution to the
limit is equivalent to & — 0 limit, as long as the length scale yacuum polarization discussed in Secs. 11 B and 11l D above;
A is taken to scale proportionally 1o . . see Vissef42] for extensive further discussion. Note that the

As previously discussed in Sec. Il B, under the scaling, dependence in E¢(3.45 exactly mirrors thefi depen-
Jab— @°Jap Of the spacetime metric, the natural scaling of gence in Eq(3.38), provided that we assume thet L [see
the two-point function(corresponding to keeping the particle gq (3.36 abovd. This is as expected from our remark above
content fixed but going to longer wavelengths by the factorzgncerning the equivalence of tie—0 and long wave-
a) is length limits, since

G(X,y)—a 2G(X,y). (3.40

Here

ZW=4x[aAl})+bB{})] (3.46)

L h

on

1
a?

(e
N

Thus, in the context of perturbation theory off of flat space-
time, the transformation corresponding to keeping the in-
coming particle content the same but increasing the wav
length of the particles by the factowr is given by
Tab— @’ 7ap and F{— o~ 2F (Y for all n. Equivalently, by h(x,a)=h&N(x,a)+ AN (x,a),  (3.48
applying the diffeomorphisnx*— ax* to this transforma-
tion, we see that the “long wavelength limit” should corre- wherehglb)'i“ is the homogeneous solution to E8.45 with
spond to the larger limit of solutions to the perturbative e same initial data asM(x,a) at 7~ and AhQ) is the
semiclgssical equations on a fixed backgrouqd MinkowskKjetarded solution of that equation with sour@44. [Note,
spacetime, M, 7,p), With a one-parameter family of states powever, that on account of the higher derivative nature of
whosenth order(in ) perturbed incoming initial data varies £q. (3.45), there will be more initial data to specify for
as h{Y(x,a) than occurs for the classical linearized Einstein
— equation. This situation will be rectified when we replace Eq.
FV(xy a)=a F (Xl a,yla), (3.4)  (3.45 with the reduced order equatids.20 in Sec. IV D

The solution to the first-order perturbation equation with
es'ource(3.44) can be written agcf., Eq.(1.8) abovg
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below] To specify a one-parameter family of solutions, we (which is chosen to make(?) independent ofx in the large
are free to chose any scaling withwe wish for the initial o limit), then we find that

data forh{}) " [72]. However, a natural choice of scaling is

suggested by the following considerations. If we were solv- ?(-2):<T(o) afz)H i(T(l)[ (1] aﬂ)>

ing the classical linearized Einstein equation with source ab ab @in /T 28 Tap LX) @in

(3.44, the retarded solution would scale as

Ahgy(x;@) =a~?AhZy(x/). The retarded solutionh{y) to _ izKngg[ CARVE ”‘_jzg@[ JUCSVEN

the linearized semiclassical Einstein equation will not scale a a

this simply on account of the anomalous scaling appearing in 1

Eq. (3.45, but the dominant scaling behavior will still be of + (T XD ¥V, 0in 0)- (3.56
this form [see Eqs(3.50 and (3.52 below]. Thus, if we a ’
scale the initial data for the incoming gravitational radiation

so that neat/ - we have Here the quantityz2) is just the second-order part of the

anomalous scaling tensor
(1),in/y. N _ —2pR(1),in
hap " (Xi@) = “hgp " (x/ @), (3.49 Zp=4m[aA+bBap]: (3.57

then from Eq.(3.48 the first order semiclassical metric per- gqq Eqs(2.10), (3.33, and(3.46. In our calculation of the
turbation will not be dominated by incoming gravitational qecond-order perturbation to the ANEC integral in Sec. VII
radiation in the long wavelength limiee—. This is the below, we shall work t@(1/«?) beyond leading order, and
situation we wish to consider with regard to the second-orde{:cms(:)quem|y we can drop the last two vacuum polarization
perturbation equations. . terms from the right-hand side of E¢3.56). In particular,
Before considering the second order equations, itis usefyl . |, calculated term(TO XD, xD], w0 may be

to make the change of variables dropped. Moreover, in this equation we can replgEe by

. . . . (l’o) . - .
Xgﬁ(x,a)zazhglt))(ax,a). (3.50 its leading order approximatiog in the largea limit,
given by
From Eq.(3.45, we obtain
! KGRI 101= (T &) 358
kG xM1=(T4 ’Eitr})Hm_nglﬁ[X(l)] [see Egs(3.51) and (3.52 abovd. Making the change of
@ variablesh®(x; a)=h®)(ax; ), the resulting equation is
1
(T DT o Y _ - 1 Ina .
Z Talx Tl ong (359 KGR = (T ) + 223
With the above ansatz for the form of the incoming gravita- 1 R
tional radiation, thex dependence of™ will be given by + ?<T§1b)[h(2)],wm,o)
D= (104 na ang 12+ 0[(In@)?/a*], (3.52 LT oy oty K
X X OIZX CYZX ' ' +?<Tab[X 7], 0 >_?

where they(*)) are independent of. @0 (10 (10
We now turn to the second-order perturbation equation X G x™M?,x191+0
(3.5). Note that oncé1(}) has been obtained, this equation as
an equation foigy) has exactly the same structure as the, e NG WITH THE PATHOLOGICAL SOLUTIONS:!
flrstjqrder equation, except that the source term now mc_ll_Jdes SIMON’S PRESCRIPTION (S)
additional pieces constructed from the first-order quantities:
As seen in the previous section, a key feature of the lin-

|na>
=5/ (3.59

kGNP ]=s@+(THh?],0i,0), (3.53  earized semiclassical Einstein equation is that it fails to re-

main a second-order partial differential equation; rather it

where contains fourth-order time derivatives of the metric. Conse-
@ © @ Dr 1 (1) quently, the semiclassicgl equation_s haye more "‘(.jegrees of

Sab ={Tap »@in ) FH{(Tap ("], 0iy”) freedom” than the classical equations, i.e., additional free

functions — namely, the second and third time derivatives of
the metric — can be specified as initial data. Directly related
(3.59 to the presence of these additional degrees of freedom is the
existence — for all values of the free parametérg, and
Consider now the behavior of the source tef@rb4) under  \ — of new, “pathological” solutions of the semiclassical
the scaling given by Eq¥3.41), (3.42 and (3.49. If we  equations, which grow exponentially in time on a time scale
make the change of variables of order the Planck timésee Appendix A and Ref48]). In
— "2 addition, for all ¢, B, and N except for é&=1/6 and
Sap (X, @) =a’sg(aX, a) (359  A>My, there exist solutions with spatial wavelength

+H(TEHIN,h Y], 0 0) — «GB[h™ W],
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£>L, which oscillate in time at a frequency of order the Mass approaches the Planck mass—we will devote Sec. IV B
Planck frequency. to giving a clear justification for it and to distinguishing this
What attitude should one take to these solutions? If onélse of the semiclassical equations from using them to obtain
justifies the semiclassical equations via thil Bpproxima-  @Pproximate perturbative solutions.” _ _
tion (see Sec. IIB aboveand formally takes the limit The second issue that arises is that if the semiclassical
N—cc, one could view the semiclassical equations as holg€auations admit spurious solutions, by precisely what criteria

ing exactly. In that case, one should take all of its S°'U“O“Sdgty)viﬁiit?srggehggféﬁrnz glt\)/::nsg(ljlg:ggslz q Ft))hygicrgl)noirn a
seriously and conclude that flat spacetime is unstable ifoL: y y

semiclassical gravity. However, as already indicated in SecSeries of paperg34-3§. Simon actually makes a number of
9 Y ' y independent suggestions with regard to the semiclassical

Il B above, we do not adopt this view here. Rather, althoug%quations. In this section we will discuss all these sugges-

we view the semiclassical equations as accurate—for sufflgyns in detail. We will argue that, in a general context, all of
ciently largeN—to arbitrarily high order in a long wave- s 5 ggestions have shortcomings. However, we also will
length expansion, we nevertheless view them as approximaigqye that in the special case of perturbation theory about
equations, with domain of validity’>Lp. Hence, in our \inkowski spacetime, Simon’s “reduction of order” pro-
view, the solutions which grow exponentially on a time scaleposal [36] yields a satisfactory prescription for extracting
of order the Planck time or oscillate in tinfith significant  physical predictions from the semiclassical equations. In the
amplitude at frequencies of order the Planck frequency lieremaining sections of this paper, we then will investigate the
outside the domain of validity of the approximation. From validity of the ANEC for solutions to the “reduced order”
this point of view, the additional degrees of freedom admit-semiclassical equations.
ted by the semiclassical equations are merely artifacts of the The above mathematical and physical issues which arise
semiclassical approximation. In particular, from this point offrom the “higher derivative” nature of the semiclassical
view the exponentially growing solutions to the semiclassicakequations are not unique to this context. Indeed, in this re-
equations are spurious, and are not indicative of any physicgard, the semiclassical Einstein equation is closely analogous
instability of flat spacetime. A similar attitude toward the to the Abraham-Lorentz equation of motion for a classical
additional degrees of freedom admitted by the semiclassicalharged point particle including radiation reaction, which
equations would, of course, result from viewing the semi-also has exponentially growing, “runaway” solutiofi36].
classical equations as approximate equations, with unknowfor completeness and also to aid our analysis of the semi-
higher order correction terms of relative magnitudeclassical Einstein equation, we discuss tfisuch simpler
~L2/£? as discussed in Sec. Il B above and in H&#]. and well-studiedd example in Sec. IV A. In Sec. IV B, we
However, two nontrivial issues result from this viewpoint explain how solutions to the semiclassical equations can be
towards the “pathological” solutions, with regard to the ex- accurate even when they predict larggioba) deviations
traction of physical predictions from the semiclassical equafrom classical theory. The final two subsections critically
tions. First, if the domain of validity of the semiclassical analyze the “perturbative solutions” and the “reduction of
equations isC>Lp, then since the corrections to tokassi-  order” proposals discussed by Sim{38-34.
cal equations which appear in the semiclassical equations are
of relative magnitude-3/£2, it might seem that solutions to A. The analogy to radiation reaction of point particles

the semiclassical equations cannot accurately describe any R . . . .
situation where the deviation from a classical solution be- We begin this subsection with a discussion of the nature

comes large. In other words, in any circumstance whertgmd range of validity of the Abraham-Lorentz equation,

semiclassical theory makes a prediction significantly differ-zgﬂ%?gsssiggl Elijr:s?(lasir?:esssj(;?iclg Slteiglvzlleﬁ-lgrf]ct)t/]vi ?ﬁ;ttutshgfi;z?
ent from that of the classical theory, it might be expected toaIization of classical chc;r ed .oint articles is inconsistent
be highly inaccurate(Note that this difficulty would appear ! ged p P '

to be even more severe if one takes the view that the semﬁnd that this inconsistency is the source of the well-known

classical equations have unknown corrections of Ordeld_lfﬂculnes with the radiation reaction equation. More spe-

4 pa . .. cifically, consider a finite distribution of charge with some
Stb&’;ﬁd)t:{;hda;t\gigg ;ﬁi;;?iee,sﬂ;?rseomt)iglr?sbti I;:]tées%o%r}illg Sphys[cal size~ L. In the nonrela.\tlv!sUc' limit .the raQ|at|on

. . . reaction force on the charge distribution will be given by
sical equations. However, we shall argue in Sec. IV B belo 73]
that this is not the case: Semiclassical theory should be ab
to accurately describe phenomena where the deviations from Freact - )
classical behavior are locally small, but where, nevertheless, m ra+O[ra(L/c)], 4.1
long term cumulative effects result in very large global de-
viations from classical solutions. Furthermore, this ability of . . . .
semiclassical theory to accurately describe such phenomer‘f‘é{1erea is the accgleraﬂorr,n is the massq is the charge,
should the hold even in the case of finkewhen unknown C 'S the speed of light and
correction terms of order L‘F‘,/,C4 appear in the semiclassi-
cal Einstein equation. While this viewpoint on the domain of
validity of the semiclassical Einstein equation is fairly ) ) ) ) o )
widespread—e.g., it is commonly assumed that semiclassic&ne might think that the “point particle limit” can simply
gravity will give an accurate description of the black hole be obtained by lettingC—0, yielding the usual radiation
evaporation process until the stage where the black holesaction forceF,.,.—mra, without any unknown correction

=2(g%/m¢cd). (4.2
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terms. The difficulty with this is of course that all physical, independent of position, the general solution of Eq4.4)
finite distributions of charge satisfy for an arbitrary initial acceleration, at timet=0 is given

b
L=cT, 4.3 Y

assuming only that the electromagnetic self-energy’/ L a(t)=e'" ag— ﬂf dsE(rs)e S|+ EJ dsE(t+ 7s)e”S,
cannot exceed the externally measured mass ener mJo mJo
(i.e., that the “bare mass” for a finite distribution of charge (4.9
is always positive Therefore the limitC— 0 for fixed mass }
m and chargey is unphysical. The limitt—0, g—0 with ~ Wherea=X. It is clear that the choice of initial acceleration,
g%/ fixed presumably will exist and presumably will yield @, which makes the first term vanish is the unique choice
the unique ratidF,e,c/ 92 given by Eq.(4.1) (without correc- which generates a nonrunaway solution. Moreover, as is well
tion terms in the limit. However, for fixed mass and(non- ~ known, the nonrunaway solutions can be characterized as
zerg chargeq, there will always be an ambiguity in the those solutions which satisfy the integrodifferential equation
radiation reaction force that depends on the structure of thgiven in Jacksori73]
particle, which is of fractional magnitude 7/7*, where
7* is the time scale over which the acceleration is changing. .oq s

It should be noted that the restricti¢$.3 — and, corre- V= Efo dsE(x(t+7s),t+75)e > (4.6
spondingly, the presence of unknown correction terms of or-
der O(7) in the radiation reaction forcé4.1) — should . , . .
occur in any theory where classical electromagnetic fields are The runaway solutions qwckly evolve Into_a_regime

Where the unknown corrections to the radiation reaction

coupled to some other degrees of freedom with a contlnuoufsorce will become as large as the radiation reaction force

distribution of charge. In particular, in semiclassical QED, a. . * . :
) Lt . . Citself, i.e., wherer™ ~ 7 in the notation used above. There-
one-particle, nonrelativistic electron state is effectively a fi- . . : . e
fore these solutions lie outside the domain of validity of the

hite (_jlstrlbunon of charge W'th widtiL~cr/a, wherea is Abraham-Lorentz equation and are normally deemed to be
the fine structure constant, since the expected value of the

current operator will not be concentrated at a point but will unphysical.” Itis conventional to take the space of “physi-

typically have a width of order.. Hence, any “derivation” cal solutions” to be the six-dimensional space of nonrun-
of Eq. (4.1 for electrons from semiclassical QED should away solutions satisfying E¢.6). However, these solutions

also give rise to correction terms of the order indicated have the unphysical property that "preacceleration is re-
Thus, the status of the equation of motion for a non.relaqu'red at early timegbefore the electric field is turned pim

tivistic, charged particle in a given, fixed external electric-Order o avoid runaway behavior at late tinj@s]
field E' ged p 9 ' In summary, there are close parallels between the radia-

tion reaction equation and the semiclassical Einstein equa-
tion. In our discussions in the remainder of this section, we
%= ﬂE(x,t)+ ~, (4.4) will use the radiation reaction equgtion as a_simple example
m and model for the issues that arise. We will return to the
issue of obtaining “physical solutions” to the radiation re-
is closely analogous to that of the semiclassical Einsteimction equation and of the semiclassical Einstein equation in
equation. First, the domain of validity of this equation is the last two subsections of this section. However, we first
limited to the regimer* > 7, similar to the domain of validity ~address an important issue concerning the accuracy of solu-
L>L, of the semiclassical Einstein equation. Second, as ifions to such equations.
the case of the semiclassical Einstein equation, the small
parameter appearing in E@t.4) multiplies a term containing
higher order time derivatives than originally appeared in the
equation of motion, thereby effectively increasing the “num-
ber of degrees of freedom” of the system. This higher order As we have discussed, the equations we are considering
time derivative termrx is responsible for the existence of have only a limited domain of validity. More specifically,
so-called runaway solutions, which grow exponentially inEqg. (4.4) holds only whenr* > 7, whereas Eq(2.6) [as well
time. as its linearized version E¢3.38] has the domain of valid-
Consider now the space of solutions of the radiation reacity £>Lp. Indeed, the situation with regard to Ed.4) is
tion equation(4.4). If the electric fieldE is of compact sup- even worse in that there are unknown correction terms of
port in time, the runaway solutions will have the property order 72 in that equationfAs we have previously discussed,
thatx«exp(/7) for larget. Solutions which do not manifest similar unknown correction terms also would appear in Eq.
this runaway behavior form a six-dimensional submanifold(2.6) if one justifies that equation via the one-loop approxi-
of the nine-dimensional manifold of solutions to Eg.4), mation or takes\ to be finite in the IN approximation; see
since the nonrunaway solutions have vanishing acceleratioBec. Il B abovd.Since Eq.(4.4) differs from the correspond-
at late times(for E of compact support in time Indeed, ing equation without radiation reaction only by a term of
when the electric field is bounded above, it can be showmrder 7/7*, and Eq.(2.6) differs from the corresponding
that given any initial position and velocity, there exists aclassical equation only by terms of ordérg(/£)?, it might
unique initial acceleration generating a nonrunaway solutionseem that Eq94.4) or (2.6) can never be valid in any cir-
In particular, in the special case where the electric field icumstance where they predict large deviations from the cor-

B. The physical relevance of solutions
to the semiclassical equations
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responding classical behavior, i.e., in any circumstanceon is valid only whenZ>Lp, and, in that regime, the
where they have the potential to make dramatically new prehigher order perturbative solutions should merely make tiny
dictions. additional corrections to the first-order perturbative solution.
Indeed, it might appear that, at best, the only useful anghgain, however, first-order approximate perturbative solu-
reliable information that ever could be justifiably extractedtions would be of little interest.
from solutions to equations like the ones we are considering Simon[34-3§ has argued that one is not justified in go-
would be the information contained in “approximate, pertur-ing beyond approximate solutions of the ty{@e8), and that
bative solutions” to some finite order. To explain what is this therefore solves the problem of the pathological solu-
meant by this, let us focus attention on the radiation reactiofions[77]. As we now discuss, we disagree with this conclu-
equation(4.4). Suppose that we attempt to perturbatively sion. With regard to Eq4.4) it is indeed true that in generic
solve this equation order by order in an expansion in th&ijtuations the higher order correctiond)(t) for j=2, will
small parameter appearing in that equation. Thus, we seekpe sensitive to the unknown higher order corrections to the

approximate solutions of the form equation of motion, and that therefore only the approximate
J solution(4.8) will be physically meaningful. However, as we
(1) = xD(t) 7. 4 now explain, ther@re situations Wherg the hlgher. order cor-
() jgo ®r @D rectionsx!!) for all j=2 are not sensitive to the higher order

corrections to the equation of motion, and where, corre-

where each{)(t) will satisfy a differential equation that is spondingly, physically meaningful solutions to E¢.4) can
second order in time with sources constructed from the exbe obtained which go well beyond the approximatidr)
ternally applied fields and from théX with k<j. Note that ~and predict large radiation reaction effects. Similarly, there
there is no problem with runaway effects in constructing theare situations where E@2.6) may predict large deviations
approximate solutionz,(t), and, furthermore, for any given from classical behavior even though> L, everywhere. We
order J, an initial position and velocity will determine a now explain these comments in detail.
unique approximate solutiaxy (unlike the situation with the These situations where the higher order corrections to the
exact solutions[75]. solutions to Eq.(4.4 are not sensitive to the higher order

The key question here is: How can we be justified incorrections to the equation of motig4.4) itself arise when
keeping the higher order correctiond!)(t)# for j=2, to  radiation reaction effects are “locally small” but accumulate
the solutions, when the equation of motion itself is ambigu-secularly, so that they become large at late times. This oc-
ous atO(TZ)? More specifically, the equations f&g)(t) for curs, in particular, when the evolution time scale is set by
all j>1 are completely ambiguous because of the unknowmadiation reaction. A good example is the case of an electro-
correction terms appearing in E@.4). Thus, there is appar- magnetically bound particle in a Coulomb field undergoing a
ently no justification for going beyond the lowest order ap-radiation-reaction-driven inspiral. Clearly the approximate

proximate solution solution (4.8) will provide a poor description of the motion
once the radius of the orbit has shrunk by a factor of 2.
X1 (1) =xO(t) + = (1), (4.8  However, an accurate description of the motion will be pro-

vided by an appropriate solution of E@L.4), provided only

since unknown terms of order unity appear in the equationthat the time scale of the inspiral is much larger than the
for x?). If we stop with the approximate solutidd.8), the  orbital period, so that the radiation reaction effects are lo-
difficulties with the existence of additional degrees of free-cally small.
dom and the presence of “pathological” solutions to the To see this more concretely, suppose that the exact equa-
radiation reaction equations would not arise, since the pertion of motion (including all higher order correctiopsvere
turbative equations are not problematical. However, solueof the form
tions of the typg4.8) would not be of much interest, since— ]
whatever precise form the exact radiation reaction equations a= Qg+ 118+ alr%é. (4.9
take—one could not expect E.8) to be a good approxi-
mation WheneverTx(l)(t) becomes of Ordex(o)(t)' since Here Aext is the acceleration due to the eXterna”y applled
then the unknown higher order correctiond)(t) with electric field,«; is an unknown numerical coefficient of or-
j>1, to the solution should also be comparably large. Inder unity, andr;=7,=7. (We have temporarily distin-
other words, Eq(4.8) should be a poor approximation when- guished ther's that appear in the radiation reaction accelera-
ever radiation reaction has any significant effect upon thdion, and in the next order correction to this acceleration, to
motion of the particle. aid the following discussiohThen it is clear that effects that

Completely parallel remarks would apply to the case ofare quadratic and higher order in will be important in
the semiclassical Einstein equatith6) if one justifies that —describing the inspiral. However, contributions of ordgto
equation via the one-loop approximation, so that there arghe solution will give rise to small corrections to the inspiral
unknown corrections of order? [76]. However, even when of relative magnitudes 7/ 7, Whererp> 7 is the initial or-
we take our viewpoint of justifying this equation via the bital period. This can be seen by solving the exact equation
1/N approximation and thereby treat BG.6) as being valid  with a;=0, and checking a posteriori that ther2a term is
to all orders in%, the situation is not significantly different. always a small correction to the equation of motion when
Although we would be formally justified in going beyond the evaluated on this solutiofv8,79.
first order (in #) approximate perturbative solution, there Indeed, the above type of situation—where nonperturba-
apparently would be little point in doing so, since the equadive effects in a small parameter are large but can be reliably
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calculated even though the equation is known only to firsionly thatR>L, everywhere in the region of interest, where
order in that parameter—actually occurs quite commonly inR is the local radius of curvature. Even if there were un-
physics. A good example is provided by Newtonian hydro-known corrections to the semiclassical equations that are
dynamics. Dissipative terms in the hydrodynamic equationsigher order in#, these corrections should be qualitatively
normally have an effect on the fluid motion that is smallerynimportant in the black hole evaporation process—except
than the effects of the nondissipative terms by a fact@ét  near the singularity and near the final moments of evapora-
wheree is the ratio of a microscopic length scale to a mac-tion, where these unknown corrections become locally large.
roscopic length scale. Derivations of the hydrodynamic To summarize, given an equation of motion whose range
equations from statistical mechanics throw away small corof validity restricts a “correction term” in that equation to
rection terms of ordee?. However, effects that are nonper- pe locally very small, there, nevertheless, can be a wide
turbative ine in solutions to the equations will be meaning- range of circumstances where this equation can reliably pre-
ful when the macroscopic evolution time scale is determinediict phenomena where this correction term is responsible for
by dissipative effects. In this case the dissipative terms angroducing large deviations from the uncorrected motion. The
the higher order corrections are, in effect, boosted from beapproximate, perturbative solutioé.7) to any finite order

ing O(€) andO(€?), respectively, to bein@®(1) andO(e)  are completely inadequate for describing such phenomena.

respectively(relative to the nondissipative ters Even if the equation being considered is itself valid only to
To illustrate this claim with a simple, concrete example,first order in some small parameter, it can occur that solu-
consider the one-dimensional heat equation tions which are nonperturbative in this parameter are physi-

) cally meaningful. Therefore, it is of critical importance to
ANl (4.10 have a means of determining which solutions to these equa-

at T ax2 ' tions should be viewed as “physically relevant” and which

solutions should be deemed to be “spurious.” The next two

wherea=1?/7, andl andr are some microscopic length and subsections examine two proposals for extracting the physi-
time scales. First, we note that it is clear that effects whichcally relevant solutions.
are nonperturbative in the “small parametet’ are very
significant for the solutions. Indeed, if we choose initial data
of compact support, then at later times the temperafusd|
be nonzero outside the support of the initial data. However, A possible method for dealing with the additional degrees
the approximate perturbative solutions analogous td£€@  of freedom of the modified equations is to identify a pre-
(generated by expanding i) will be nonzero only in the ferred subclass of the space of exact solutions. This can be
support of the initial data. Therefore none of the approximatelone for the radiation reaction equation by simply discarding
perturbative solutions are even qualitatively accurate; nonthe runaway solutions, although the remaining solutions have
perturbative effects are vitally important. the unphysical feature of “preacceleration.” However, it is

Now suppose that there was a correction term to Egless clear what should be done when some of the additional
(4.10 of the form —ay(1%/7)9*T/9x*, wherea, is an un-  degrees of freedom are associated with oscillatory solutions
known numerical coefficient of order unity. Suppose that thenstead of exponential solutions, as occurs in the linearized
initial data are of the fornT(x,t=0)=f(x/L), whereL is  semiclassical equations. It is even less clear what should be
the macroscopic length scale over which the initial data varydone in the case of nonlinear equatiofssich as the full
We make the following rescaling of variables: bet Lp, semiclassical equatiopswhere the solutions might not
and lett=Ts, whereT=(£/1)?7 is the macroscopic evolu- cleanly separate into subclasses of the “correct size” on the
tion time scale associated with the heat conduction. Then thieasis of their late and/or early time behavior.

C. Extraction of a preferred subclass of “physical solutions”

modified heat equation takes the form One proposal for identifying a preferred subclass of
“physical solutions” is to admit only those solutions which
aT 9T T are “perturbatively expandable’[33] in the appropriate
Js  dp _ale,y_p‘l' 41D smal parametee (where e would be 7 in the radiation re-

action case, anfl or, equivalently, 142, in the semiclassical

where e=(l/£)?<1, and where the initial conditions are case. By “perturbatively expandable,” it is meant that the
T(p,0)=f(p). From the form of this equation it is clear that solution can be expressed as a convergent power series of the
the solutions will have important nonperturbative contribu-form (4.7) (with J=c), with eachx{)) satisfying the appro-
tions from the first term on the right-hand side, but that thepriate jth-order perturbation equation. Equivalently, the re-
second ternifor a;>0) will be a small correction of order quirement is that the solution should be connected to a solu-
€. tion with e=0 by a one-parameter family of exact solutions

The situation with regard to the semiclassical Einsteinwith parametere which is analytic ine. Note that it is es-
equation is closely analogous. Approximate perturbative sosential that analyticity ine be imposed, since it should be
lutions similar to Eq(4.7) to any finite order ik will not be  possible to connecgvery solution at finitee to a solution
adequate to describe such phenomena as the evaporation ovdh e=0 with a one-parameter family which is merely
black hole over time scales long enough for the black hole temoothin e [80].
lose a significant fraction of its initial mass. To describe this This proposal would appear to be of the correct character,
process, it will be necessary to consider effects that are norsince the perturbative equations have the correct number of
perturbative inA. It should be possible to calculate these degrees of freedom, and the “pathological solutions” do not
effects reliably from the semiclassical equations providechave analytic behavior in the small parametet e=0. This
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subsection is devoted to a critical examination of this pro-analytic ine. It follows that whenp is of compact support,
posal. Eq. (4.15 vyields the unique “perturbatively expandable”
To begin, consider the radiation reaction equation, andolution to Eq.(4.13. However, wherp fails to be of com-
suppose that the electric fielf(x,t) is analytic and indepen- pact support inw, it appears that there do not exiahy
dent of position. In this case it can be seen from Eqg4) perturbatively expandable solutions to E4.13). In essence,
that the series generated by solving order by order is the fact that one has a pole on the real axis oféhglane in
. the integrand of Eq(4.19—which is associated with the
q existence of new oscillatory modes—makes the analyticity
a(t) :zo ETnﬁE(t)' (412 pehavior ine at e=0 much worse than in the case where the
new degrees of freedom correspond to exponentially grow-
This is precisely the expansion inof the nonrunaway solu- ing or decaying mode@.e., when the poles occur away from
tion [the second term in Eq4.5]. Thus, when the series the realw axis). Although we have not obtained a complete
converges, the two coincide. It seems plausible that the “perproof that no perturbatively expandable solutions exist when
turbative expandability” criterion also will select the non- p(w) fails to be of compact support, we have verified that
runaway solutions in the more general case of an analytithe series
E which is position dependent. .
However, the criterion of “perturbative expandability” p
fails in the case of smooth but nonanalykc In particular, g(t):nzo (=D dt2" (t) (4.16
under the circumstances where E4.5 is applicable, it can
be seen that there are no solutions which are analyticin  which defines the perturbatively expandable solutions fails to
this case the serie@.12 will not converge. Indeed, when converge for some simple, analytic, very well-behaved
the electric field is smooth and of compact support in timechoices ofp, including Gaussian behavior in
(and hence non-analyjiceach term in the perturbative ex-  Thus, it appears that the criterion of perturbative expand-
pansion will consist of straight line motion both before andability is of very limited applicability. Even in cases where
after E is “turned on.” Therefore the summed series, if it the additional degrees of freedom have an exponentially
converges, must also have this property. However, thgrowing and/or decaying character, the criterion may fail.
summed series must also satisfy E44), and all exact so- However, when the additional degrees of freedom have an
lutions of this equation which have vanishing acceleration abscillatory character, it appears that perturbatively expand-
late times will exhibit preacceleration at early times. Conse-able solutions will exist only in very exceptional cases.
quently, the series which attempts to define the “perturba- One might seek some other criterion which would single
tively expandable” solutions cannot converge. out a preferred subclass of “physical solutions.” In the case
The criterion of “perturbative expandability” appears to where the additional degrees of freedom have an exponen-
fail much more dramatically wheiat least some ofthe  tially growing and/or decaying character, the nonrunaway
additional degrees of freedom are oscillatory in character, asolutions are, of course a natural candidate for this preferred
is the case for the semiclassical equations. As a simple modelibclasg81], although even in this case, these “physical

n

2n

of this phenomenon, consider the differential equation solutions” have unphysical features like “preacceleration”
o2 [74]. However, when the additional degrees of freedom have
211 |g(t)=p(t), 4.1 an oscillatory character, there seems little hope of singling
(6 dt? 9(=p(V .13 out a preferred subclass of solutions on any physical

. o ) . . . _grounds. The difficulties encountered in doing this can be
in t_he limit E.Ho. Nc_)te .th.at the Ime_arlzed s_emlclassmal Ein- seen in our above modéd.13: The issue of picking out a
steln. equation for |_nd|V|duaI spatial Fourler_ modes. of thepreferred “physical solution” is essentially equivalent to
metric perturbation is closely analogous to this equation Wlthpicking out a preferred Green’s function for the differential
g of the formg(t)=f"(t) + w3f(t). The general solution of qperator appearing in Ed4.13. Although it is possible to

Eq. (4.13 is given by mathematically identify preferred Green’s functidesg., the
1 retarded Green'’s function, the advanced Green’s function, or
g(t)= —f dssin([s|) p(t+se) +A(e)sin(t/€) their averagethere does not appear to be any grounds for
2 arguing that any one of these is “better behaved” or “more

4.14 physical” than the others.
' Note that the different solutions obtained by choosing dif-

The inhomogeneous, first term in this solution can also bderent Green's functions will all be tangent to the same ap-

+B(e)cogqt/e).

written as proximatg pe_rturbaﬁve solutiofin the sense of hgviqg the
_ same derivatives with respect ¢oat e=0). They will differ
glet by a function which is smooth i, but which is also non-
Ginhom(t) = P-V-f - 1= 2,2Pl@) (419 perturbative ine in the sense that all of its derivatives with

respect toe vanish ate=0. For example, in our simple
where P.V. means “principal value.” This term is just the model (4.13, the difference between the advanced and re-
average of the advanced and retarded solutions. tarded solutions is just
If p(w) is of compact support iro—which is amuch
stronger requirement thas(t) being an analytic function of

1 :
_ - _ —itle
t—then it is easy to show from E.15 that g non(t; €) is Gacv™ Gret Elm[e p(Le)], 4.1



6256 EANNA E. FLANAGAN AND ROBERT M. WALD 54

which is smooth ine ase—0 if p(t) is smooth. for d™x/dt™ into the expression fo@. We then discard the
We now turn our attention to a quite different idea: theresulting terms ifQ which are quadratic and higher order in
modification of the equations themselves so that all of theirr. We thereby obtain a new equation which is formally
solutions will be “physical.” equivalent to Eq(4.18 to orderr and which has the same
general form as Eq(4.18, but for which the term which
plays the role ofQ now contains at mostnf—1) time de-
rivatives of x. We then continue to iterate this procedure
In this SeCtion, we analyze the method of “Self-ConSiStentum" the maximum number of time derivatives x)fappear_
reduction of order”[36] as a means for obtaining physical jng in Q is reduced to §—1), at which point no further
predictions from the radiation reaction or semiclassical equareduction of differential order of the time derivatives can be
tions. Instead of seeking to identify a subset of “physicalachieved. The resulting equation is then of the same differ-
solutions™ to the given equation, this approach generates @ntial order in time as the original equation, £4.18), with
modified, second-order equation, which is “as accurate” or,— o Thus, we end up with an equation which, formally, is
“nearly as accurate” as the original equation, but whose«as accurate as” Eq(4.19 to order 7, but which does not
solutions are all well behaved and can be interpreted as beingntain any new “degrees of freedom.” Note that this final,
“physical.” The idea of reduction of order is quite old — it yequced order equation isniquely determinedy the re-
has been advocated in the context of the radiation reactiogyjrementsii) that it should contain only terms that are ze-
equation by Landau and Lifshi{82], Teitelooim[83], and ~ yoth order or first order irr, (ii) that it should be formally
Fordet {il.[i_34]. Itis also a stand_ard proce(_jure that is qsed_'”equivalent to Eq(4.18 to O(#?), andiii) that it should be
the derivation of post-Newtonian equations of motion inqf the form(4.18 where the right-hand side does not contain
classical relativity, see, e.g., Rg8S]. It has been used in the any derivatives with respect to time of order higher than
context of classical, higher derivative theories of gravity by, "1
Bel et. al.[86], and more recently it has been discussed in However, although the reduction of order algorithm is
detail in a wide variety of contexts, and in particular adVO'uniquer defined for any equation of the for.18 for a
cated in the context of semiclassical gravity by Sini8].  given choice of variables, it should be noted that some am-
The justification for this method can be understood ag,;qyities in the algorithm can be introduced by making a
follows. We are given an equation of motion which is be- . jependent change of variables: If one introduces a new
lieved to accurately describe phenomena with SUﬁ'C'e”“Wariableyzy(x;7-), rewrites Eq.(4.18 as an equation for
large length and/or time scales, e.g"> 7 for Eq. (4.4 oy "anq then neglects the terms of ordérand higher, the
£>Lp for Egs.(2.6) and (3.38. However, the given equa- reqiting reduced order equation fpmeed not be precisely
tion (presumably does not predict even qualitatively correct equivalent to the reduced order equation fof87]. How-
behavior outside of its range of validity. Now, generically, gyer  this inequivalence of the equations can occur only at
any solution to the given equation will have some nonvany qar2 and higher, and, thus, should not have an important
ishing Fourier components which lie outside the equation’Syect on the behavior of solutions in regimes where reduc-

domain of validity. For some solutions, these Fourier com+jon of order can be justifieftf., the discussion in Sec. IV B
ponents behave in such a pathological manner that the entitg,) .,

solution is dominated by the qualitatively incorrect behavior, Thé radiation reaction equatia#.4) provides a good il-

as occurs for the “runaway” solutions. However, a good | siration of how this procedure works and of its justifica-
remedy for this difficulty would be to modify the given equa- jo By following the steps described above, one obtains the
tion so that it is equivalent—to the desired accuracy—to theequation[82 83

given equation at large length and/or time scales but does not

predict any pathological behavior at small scalasd, thus, IE

presumably, is at least qualitatively correct in this regine - a4 + .5 T (%

the situations where it is applicable, the reduction of order *“m ExD+7 at(x't) T VIE(Y . (419
method achieves this goal.

The reduction of order algorithm for an ordinary or partigl This modified equation of motion is formally equivalent to
differential equation may be stated as follows. We start WItth (4.4 up to orderO(7), and differs from it at order

an equationor system of equationdor the unknown vari- O(72). Since the unmodified equatio#.4) has unknown

ablex of the general form corrections at orde®(7%), the modified radiation reaction

d"x equation(4.19 gives a description of the motion whose ex-

- =P+ 7Q, (4.18 pected accuracy in the regim&> 7 is just as high as that of

dt the original equatiori4.4). [Indeed, Eq.4.19 differs from

Eq. (4.4 at orderO(7?) merely by the termr?a, which is of

where 7 is a “small parameter.” Here we assume that the same order of magnitude as the expected corrections to
contains terms involving no more thah{ 1) time deriva- Eq. (4.4) discussed in Sec. IV A above due to the finite size
tives of x, but thatQ contains terms involvingn=n time  effects[88].] However, Eq.(4.19 suffers from none of the
derivatives ofx, so that the “small correction,”rQ, intro-  problems of the original equation. The modified equation of
duces time derivatives of the same or higher differential ormotion is second order in time, so there are no “new degrees
der as appeared in the original equation. To apply the redumf freedom” present. All of its solutions are well behaved,
tion of order procedure, we differentiate E¢4.18 (m—n) i.e, there are no runaway solutions nor any preacceleration
times with respect ta@, and substitute the resulting formula effects. We conclude that, in this case, the problem of patho-

D. Reduction of order—maodifying the original equation
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logical solutions can therefore be overcome by adopting Eqgiven source. Thus, it has no new “degrees of freedom™ nor
(4.19 as the equation of motion. does it admit any solutions with pathological behavior. Fur-
A refined version of the reduction of order method can bethermore, the exact solutions to this reduced order equation
applied when the original equation is known to higher than(4.20 will fail to satisfy the unmodified linearized semiclas-
first order in the small parameter, as occurs in semiclassicaical equatior(3.38 only by terms of orde©(#°%). Thus, we
gravity when the equations are justified via the N1/ap- shall adopt Eq(4.20 as the equation of motion for linear-
proximation, as discussed in Sec. Il B above. To illustratdzed semiclassical gravity in our subsequent analysis.
this refined version, consider, again, E¢.18), but in the Several facts should be noted concerning the above reduc-
case where this equation is known@{7?), so that there is tion of order of the first-order semiclassical equation. First,
possibly an additional explicit correction term present of thesolutions to the reduced order equatid20 actually corre-
form 72Q’. We wish the reduced order equation also to bespond precisely to the second-order “approximate perturba-
valid to O(7%). To achieve this, we eliminate the higher tive solutions” of Sec. IV B[i.e., the approximate perturba-
order derivatives from the termQ exactly as before, except tive solutions obtained by retaining terms dd(1),
that we now discard only the new terms which are cubic oO(%In%), and O(%)]. This very special situation arises be-
higher order inr. The resulting equation will then be of the cause all terms of orde®(%) which involve h®) in the
desired form at order, but there will remain a term of the unmodified equation(3.38 are proportional toGglb) and,
form 72Q, whereQ contains higher derivatives. However, thus, vanish in the classical limit. In more general situations,
these higher derivative contributions @can then be elimi- €ven for linear equations, solutions to reduced order equa-

nated by applying the same procedureQoas was previ- tions will differ significantly from approximate perturbative
ously applied t0Q. Clearly, this procedure can be general- solutions. As discussed above, in situations where the solu-

ized to any finite order irr. tions do differ and where the reduction of order procedure

Consider now the application of the reduction of orderc@n be j_ustified, solutions of the_ reduced (_)rder equations
procedure to the linearized semiclassical Einstein equatiofii’©uld give @ much better description of physical phenomena
(3.39, where the small parameterfis Equation(3.38 is an  (han approximate perturbative solutions.
integrodifferential equation for the metric perturbation rather S€cond, although we have formally treateds the small
than a local partial differential equation. In general, the reParameter, we Cozu_ld equivalently have started from Eq.
duction of order procedure could be ambiguous for suct3-49 and used 4 instead; cf., Eq(3.47) above and asso-
equations, since it may be possible to alter the apparent gi€iated d!sgu55|0n. A_closely an'alogous equwalence applies to
ferential order of terms in an integrand via integration byth€ radiation reaction equation: If we consider a one-
parts. However, since the right-hand side of E339 in-  Parameter Jamlly of electric fields given by
volves only derivatives of the linearized Einstein tensor,E(xtia)=a “Eo(xt/a) and define X(t;a)=x(at;a),
there is an obvious procedure in this case for obtaining dhenX satisfies the differential equation
reduced order equation valid to ordefor, equivalently, to
order 1°=(L,/L)? cf., Eqs.(3.38 and(3.45 abovd: We X = q Eo(X,1) + £ % (4.21)

merely substituteG{})=0 on the right-hand side of Eq. m

(3.38. However, the resulting equation is too trivial in that it , . . .
does not incorporate any of the effects of the curved spaceIE is clear that reducing order treatingalas the small pa-

time. In order to see these effects—and, thus, the dominarﬁ”F"”neFer is equivalent 'to treatingas the sm2aII parametgr.
curvature-related contributions to the ANEC at small curva- Third, We can only justify going t_o order™ (or highey in
tures and long wavelengths—we must go to second order | e reduction of order procedure in the context of the 1/
%. To do so, we apply to Eq(3.38 the above “refined imit. This is because, in the case of finite there will be
version” of the reduction of order algorithm to ordér. unknown corrections to Eq(3.38 at the same order

2 . . . . .
This corresponds to substitutirig,,/ « for Gglb) everywhere [O(~%)] as term; that we hf”‘V.e retained. .ThN.l'm't IS siill .
. . 0 necessary even if we specialize to the situation, discussed in
on the right-hand side of Eq3.38), wheres,,=D,Fi;

) ) ) in, Sec. Il E above, that the incoming gravitational radiation
Using Eq.(3.36), the resulting reduced order equation is  yqeg not dominate the first-order metric perturbation. To see
this, let us write the unknown corrections to the right-hand

KGGH (X) =fiSap+ 2 ZINA[ @ Aap(X) +bBab(X)] side of Eq.(3.38), for finite N, as

+h2) BBap(X +f d*x'Hy, (x—x' h? h?
BBap(0)+ || d™Hy (x=X") T Lal N1+ Tk 0P+ O(R2 N2, (422
X[aAap(X")+bBap(x")] 1 +O[A3(Infi)?], whereL ., andK,, are linear but otherwise unknown func-
tionals ofh® andw{}) respectively. Now if we assume that

(4.20 the incoming gravitational radiation satisfies condition
(3.49, then for all solutions of the equation{})7 [cf., Eq.
where 4, and B,,, are given by Eqs(3.33 with Gglb) re- (3.52 abovd, and the first term in Eq(4.22 can be ne-
placed bys,,,/ . As discussed in Sec. Il E above, the quan-glected. However, the second term will still be present unless
tity N/L, in Eq. (4.20 is an#-independent constant. This we letN—co.
modified equation is second order in time and simply has the Our final remark is that, in the largd limit, the original
form of the classical linearized Einstein equation with aequation(3.38 is formally known to all orders ik, whereas
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the reduced order equation is valid only to ordér There-  not obvious if and/or how the reduction of order procedure
fore, the reduced-order equati¢h 20 is slightly less accu- could be applied to the full, nonlinear semiclassical Einstein
rate than the original equation. However, this slight loss ofequation.
accuracy is unimportant since—for the reasons explained in Second, although the reduction of order algorithm can be
Sec. IV B above—the effect ad(%°) corrections should be applied to any system of local differential equations of the
negligible in the long wavelength limit. Note that if more form (4.18), in the case of partial differential equations, the
accurate equations were needed, it would be straightforwargrocedure is guaranteed only to reduce the differential order
to iterate the reduction of order procedure to obtain an equasf the time derivatives, not of the spatial derivatives. Con-
tion accurate to any desired orderinin Appendix B below  sider for example the equation in Minkowski spacetime
we shall effectively carry out reduction of order to arbitrarily
high order in#. Od=p+eH3V, V V. P (4.25
We now consider the second-order semiclassical Einstein
equation(3.5. As we have previously noted, the explicit for a scalar fieldP, whereH20¢ is a fixed tensor and is a
form of this equation is not known, since the term small parameter. The reduction of order procedure can be
(TAhM hM],w;, o) has not been evaluated. However, in used to eliminate the third-order time derivativedffrom
Sec. Il E above, we derived the explicit approximate formthe equation, but it does not eliminate the third-order spatial
(3.59 of this equation, which is valid for long wavelengths derivatives or all of the third-order mixed spatial and time
and when the incoming gravitational radiation does notderivatives. In particular, the resulting reduced-order equa-
dominate the first-order metric perturbation. The approxition is not hyperbolic, and presumably would not have a
mate equation3.59 also has the character of possessingwell-posed initial value formulation. Furthermore, in circum-
higher derivative terms multiplied by a small parameterstances where this happens, the reduction procedure will, in
(namely, 1#2), and has unknown correction terms of ordergeneral, necessitate breaking Lorentz covariance, i.e., one
O(Inalaf). Thus, we may apply the reduction of order algo- will obtain inequivalent reduced-order equations by carrying
rithm directly to this equation to obtain an equation whichout the procedure with respect to different choices of time
should be as accurate as E8.59 at long wavelengths but coordinate. Thus, it is only in the happy circumstance —
which has none of the pathological behavior at short wavesuch as in the case of E(.39 — where the reduction of
lengths. We obtain order procedure simultaneously eliminates all of the higher
order timeand space derivatives that this procedure is likely
(DrR(2) 1 (0) —2) Ina (1) 1 W ';0 yield an equation with satisfactory mathematical proper-
= ! _ (2074 — Ies.
«GaplM] a2<Tab @t a4zab[X I+ a4<Tab Fortunately, the above difficulties need not concern us
1 here. As we have discussed above, B4s20 and (4.23
><[X<2,0>],win’0>+ —4<T;t>[x<1'°>],5f§)> appear to provide a completely satisfactory solution to the
a problem of extracting physical predictions from perturbative

P (Ina)? semiclassical gravity. The remainder of this paper will be
- _4G;28[X<1,0),X<1,0>]+O( 5 ) (4.23  devoted to investigating whether the ANEC holds for solu-
@ @ tions to these reduced-order equations.
Herex(z'o) denotes the retarded solution to the equation V. THE GENERALIZED ANEC INTEGRAL
We now turn to the second of the two principal purposes
Dr,(207= /10 —2) . L. A
KGRy x'?01=(Thy o7 ). (4.24 of this paper, which is to analyze the positivity of the ANEC

integral in solutions of the perturbative, reduced order semi-

We shall use Eq4.23 in our analysis of the validity of the classical equations. Specifically, given the metric perturba-
ANEC to second-order ir: in Sec. VIl below. Note that tionsh{p(x) andh{P(x), we wish to investigate whether the
solutions to Eq.(4.23 also coincide with second-order ap- ANEC integral along any complete, achronal, null geodesic
proximate perturbative solutions. in the spacetimeN], nab+ghgl,}+82hgzb)) is non-negative to

As we have just argued, the reduction of order procedurerdere2. We shall find that this positivity property actually
is applicable to our perturbation analysis and, in a comfails, as already discussed in the introduction. Nevertheless,
pletely satisfactory manner, it solves the problem of the exwe do obtain a positivity result involving a transversely
istence of extra degrees of freedom and pathological soluismeared version of the ANEC integral, in which the null-null
tions possessed by the unmodified equations. However, isomponent of the stress tensor is averaged transversely to the
general, the method of reduction of order has some importargeodesic as well as along the geodesic. This transversely
limits to its applicability, and we now briefly mention two of smeared ANEC integral plays a key role in our main results.
these. In this section we define a third integral which we call a

First, the method is directly applicable only to local, or- generalized ANEC integral, which is an integral over all of
dinary or partial, differential equations, although we werespacetime, and which reduces to the transversely smeared
able to extend it in a natural manner to the integrodifferentiaANEC integral in a certain limifcf., Eq. (5.4) below]. This
equation(3.38. However, the full, nonlinear semiclassical generalized ANEC integral is useful as a technical tool in our
Einstein equation is a highly nonlocal equation, which is notproofs below. In this section we define the transversely
known to be even of an integrodifferential type. Thus, it issmeared and generalized ANEC integrals in general space-
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times. We also derive the perturbative expansion iof the  length A+, (ii) the smearing functio®, and(iii) the choice

usual and generalized ANEC integrals. of parallel propagated null vectoZ?® along y with
{*\,=—1. In Sec. V C below we derive explicit formulas
A. Definition of the generalized ANEC integral for these quantities.

Let v be any inextendible null geodesic in an arbitrary
spacetime, M ,qg,,)- To begin, fix a smooth, positive func-
tion S(x) on R?, with [S(x)d?x=1, which depends only on We now derive the expansion ifn of the usual ANEC
the magnituddx| of x. This smearing functiorwill control integral; the expansion of the generalized ANEC integral
the transverse smearing. Let be an affine parameter for will be considered in the following subsection. Suppose that
v, and denote by @ the null tangent vectad/o\. LetPbea  y(e) is a one-parameter family of curves & such that
fixed point on the geodesic, and introduce an orthonormal/(e) is a null geodesic with respect to the metgg,(¢).
basis\?, {2, €3 at P, A=1,2, where?{,=0, \3,=—1, This one-parameter family can be represented by a map
andeiebg.,= 6as. Extend this basis by parallel transport to I':RX(—&0,£0) = M:(\,e)—x*\,e), where for eache,
all of . Introduce Fermi-Walker-type coordinates the parametex is an affine parameter for the corresponding
x=(\,Z,x+ ,x2) in a neighborhoodV of v, such that the _geodesic. To ordes, this one-parameter fam_ily of geodesics
exponential map takes the vectgt®+xhed at the point IS characterized by the zeroth-order geodesicy(0) (a null
x(\) on v to the point with coordinatesk(g,x’%). Then the g(caodesm |£1 Mmkowskl spacetn?]eand by the vector field
vector field\®=(3/a\)? is a vector field on\ which is an U —(9/9)° on y. This vector field cannot be completely

extension of the tangent to the geodesic. lebe some freely specified ony but must satisfy the equation

B. Expansion of the ANEC integral

s nclon iy n 3 g e
define the functior®, e C*(M) by in order thaty(e) be a geodesic to order. Here the tensor
cW is given by
0,(\,{xr)= X(x) exp{—i[)\Z/Az (1)a ap (1) (Da
2mh, 2 Cla=—vah(l+2V hib2, (5.6)

S Under the gauge transformation3.24, we have
+{TAL] /TZTS(XT/AT)' (5D p.T=¢ T, and correspondingly
WherexTz(x%,xﬁ). By virtue of the truncating functiory, viopi=pd— g, (5.7)
the function ®, is well defined even where the Fermi-
Walker coordinates do not exist. We define the generalize
ANEC integral to be

Jhe gauge transformation properti@s31) and(5.7) are con-
Sistent with differential equatiofb.5).
Now let

IS(AVALIAT):fMd‘lXV_g(x)®y(X)Gab(X))\a)\b- (52) |(8): d)\Gab(S))\a(S))\b(S), (58)
()

yle

Clearly this quantity depends on our arbitrary choices Ofwhere)\
P, x,» {3, S, etc. However, there are two separate cases i
which this arbitrariness becomes unimportant. First, the limi

4(g) is the tangent toy(e). Let A2=\?(0) be the
?angent toy. Then it is easy to show that

lim lim 1A AL A7), (5.3 |(8)=8|(1)+32|(2)+O(83), (5.9

A=A AT=0 where
when it exists, should be independent of these arbitrary
choices, and for sufficiently well-behaved stress tensors 1 (M= J Gglg)\a)\b, (5.10
should reduce to the usual ANEC integral. Some of our re- Y
sults below will apply to the quantitys.3).
The second case in which we can obtain something whicf"d
does not depend on our arbitrary choicesPadind y is when
we specialize the definition to perturbation theory about flat |<2>=f [Gg@mveg};]mb. (5.1)
spacetime. Here we consider the transversely smeared ANEC Y

integral . . 2)
Here £, denotes the Lie derivative, af@?) is the complete

|_s(8:AT): lim lim I(A,A_ A7), (5.4) second-order perturbation in the Einstein tensor, given by
A—xA; —0
: GE=CHIN?1+GRN Y AY). (512
where At is fixed at a value of the order of the Planck
length. In perturbation theory about flat space we can choosthe second term in E@5.11) can be thought of as reflecting
N to be the entire spacetime agdo be unity, and obtain at the fact that the metric perturbations cause a change in the
each order ine quantities which depend only ofi) the  geodesic. Note that the quantitiés’) and |?) are gauge
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invariant(in the “active” sense in which we are considering system described in Sec. V A. Specifically, suppose that we
the gauge freedom herebut thatl(®> does depend on the are give a one-parameter family of metrigg,(¢) and a

gauge covariant vector fiele? on 7. fixed choice of gauge for each Now apply the diffeomor-
phism ¢, given by identifying the coordinates,,x; in the
C. Expansion of the generalized ANEC integral spacetime€M,g,,(0)) and (M,g.,(g)) [89]. This yields a

Consider now a corresponding analysis of the perturbativghOICe of gauge in which we have

expansion of the generalized ANEC integ(al2). For each ADa=) (@)= £<1):0(T1):0_ (5.18
finite &, the construction of the coordinate system described

in Sec. VA yields scalar fieldsh(e), {(¢), and The expression fot{?) in this gauge reduces to
o1(g)=8"Bxxg on the spacetiméM,g.(¢)), and also the
vector field \3(g)=(d/d\)%(e). Note that although these 2 0 0 2 Lu(l)e 1

objects are defined in terms of an algorithm to obtain a co- I(S = JM G(Cd)efQ(V)(X))‘a)‘b[Ggg(xHihg) (x)G;b)(x)].
ordinate system, they are themselves coordinate-independent (5.19
scalar and tensor fields. Their domain of definition is how-

ever restricted to some neighborhood of the geodssic In this gauge the vector field® described in Sec. V B van-
They can be expanded as ishes. Moreover it is straightforward to show mét} van-
ishes along the geodesig and thath{})A®\"=0 throughout

M. These consequences of our gauge choice will be used in
Sec. VII A below. Finally, we note that in the limik —oo,

AL ,At—0 of no transverse smearing, expressibri9 re-
duces to the previously obtained expressi®nll), since
h(el)e vanishes ony in our chosen gauge.

AMe)=NO0+ AP +0(e?), (5.13
{(e)={"V+e{M+0(e?),
O'T(S)ZU'(TO)+80'(T1)+O(82),

a — (O)a+ (l)a+ 2
A E)=A eh O(e%), VI. THE ANEC INTEGRAL IN FIRST-ORDER

where the expansion coefficients on the right-hand side are PERTURBATION THEORY
defined on all oM. Similarly the volume four-form can be |, this section we establish the results concering the

expanded  as eapcd&) = €upoqT & €poat O(5%),  Where first.order contribution to the ANEC integral which were dis-
eD=h{D/2. Inserting these expansions into H§.2  cussed in the Introduction. We start in Sec. VI A by charac-
yields terizing the precise class of incoming states we are consid-
WL 21 3 ering. In Sec. VI B we obtain the solutions of the reduced
ls(e)=¢ls +e17+0(&%), (5.19  order semiclassical equati¢d.20. We derive a general for-
mula for the first-order perturbatigs.15 to the transversely
smeared ANEC integral for these solutions in Sec. VIC.
Finally, we show that this vanishes for pure incoming states
IMV(ALAL ’AT):f €00V () GL (X)N\P. (5.15 in Sec. VID, and that for mixed states it is positive in the
M long wavelength limit in Sec. VI E.

where

) L . . In Appendix B below we consider a specific subclass of
Here ©,7(x) is given by the expressiofb.1) with x re-  gq|ytions of the original, unmodified semiclassical equation
placed by 1, and where the arguments of the expresSidn (3 4), given by the use of half advanced plus half retarded
are \=\(,7=7©, etc,, the inertial coordinates on Greens functions. We show that for these solutions, in the

Minkowski spa(?etime.(z) ' region A>\.;; of parameter space, a transversely smeared
The expression folg” is ANEC integral vanishes for pure states and is always strictly
positive for mixed states, even outside of the long wave-

|(2):f €0 @Oy G(Z))\a)\b’+f 0 g length I|m|t'. Although, as dlscussed_m Sec. IV C above, we

S M cdef® (X)Gab M cdefCab do not attribute any preferred physical status to these solu-

tions, expanding this result in &7 and In/a? provides an
0 1)br (0 0 0)bgg (1 . . . .
X[2\ @2\ (1@ (D) 4\ @2\ (b (D alternative demonstration of the results of this section for
1h(Dey (0)ay (0)bg (0) solutions of the reduced order equation in the long wave-
Tzhe TATEATROL T (516 length limit, at least fol\ >\ ;.

Since the smearing functio® in Eq. (5.2) depends only on
the magnituderr=x3 of x;, the function®" that appears
in Eq. (5.16 is given by In the remainder of the paper we do not deal with fully
general states. Rather, we restrict attention to a subclass of
states whose two-point functions have suitable differentiabil-
ity properties and fall-off properties at infinity when re-
stricted to spatial slices. More specifically, Etdenote the

As in the previous subsection, the quantiti€8 and1{®)  hypersurfacé=0 in Minkowski spacetime, and 18t be the
are gauge invariant. We now specialize to a particular choicelass of smooth functions abx 3, all of whose derivatives
of gauge, which is just that associated with the coordinat@areL! on 3 X3. We consider states whose two-point func-

A. Characterization of incoming states

0.,

0
DD (y) = 7\ (1)
057(x) N A (X) + 9

90
(1) Y (1)
(x)+ p Tch (x). (6.17
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tion perturbation& {V(x,t;x’,t') andF{?)(x,t;x’,t') and as-
sociated time derivatives aF)/at, gF(D/at’, and
?FQI(atat’), for j=1,2 all lie in V when restricted to _ B a9 _
3 3. Our choice of class of states is dictated mostly by NUS:M is a positive operator o*(R") &L%(R"), which
convenience and is not the most general class of states fHEpth, in_particular, thatg is a positive operator on
which our results are valid; however it is a sufficiently IargeL (R°):
class of states to be interesting.

We can exprest,=eF{M+2F(?) as f d3kf d3k’ g(k,k")U(K)T(k")*=0. (6.7)

J d3kf d3k'Ui(k,wk)*Mij(k,k’)ﬁj(k’,wk,)BO. (66)

Fin(x,x’)zf dgkf d3k’ f(k, k' )elk gk’ X' For Fock space states, E5.7) is just the statement that
(®, (u)Td_(u))=0 for any test functioru. Note also that
5 3 koK ! the corresponding classical positivity condition, which re-
+f d kf d°k’g(k,k")e™"e +c.c. quires that the two-point function be the expected value of
O (x)P(y) with respect to some positive measure on the
(6.1) space of field configurations, is the stronger condition that

Here as in Appendix C, boldface vectors are spatial, three- g f
dimensional vectors, whilk=k® denotes a four-vector. Also f* g+ |=0. (6.9
it is understood thak®=(k,w,) where w,=|k|. Equation 9

(6.1) essentially defines the functiorfsand g as suitable
complex linear combinations of the spatial Fourier trans- We now insert expansior($.3) into the positivity condi-
forms of the four functionsF,,, dF;,/dt, dF,,/dt’, and tion (6.5 and expand order by order i to determine the
9?Fi,/(atat’) restricted toS X3, where is the Cauchy restrictions on the incoming state perturbations. We obtain at
surfacet=0; see Eq(C3) below. Note that the functions first order that
andg are formally related to the conventional creation and

annihilation operatora, anda, by g¥=0 (6.9

in the sense of Eq6.7), while f*) can be chosen arbitrarily.

flkkD (@), glk,k)<(aga). (6.2 At second order we obtain the restriction off) that
Note also that the part of the two-point function that is purely P 0][ g@ V[P 0
positive frequency or purely negative frequency is given by o 1llfv« 3 llo 1/=0 (6.10
the functionf, while the “mixed-frequency”part(the part

that is positive frequency with respect to one variable and
negative frequency with respect to the ofhisrgiven by the  whereP is the projection operator onto the kernelgdt). In

functiong. particular, wherg"=0 this reduces to
We expandf andg as
g? o
f=efM+2f(2+0(d), fUx 3 [=0. (6.12)
g=egM+&%g@+0(e3). (6.3

Next, we introduce an alternative, convenient set of coor-
dinates on the light cone in momentum space. Recall that we
have defined inertial coordinatés¢,x3,x5 on Minkowski
spaceM, and also a null orthonormal basi$, {2, €}, €3,
whereA? is the tangent to the zeroth order geodegidhus,

X8= AN+ {2+ %1, Wherex;=x7e,, A=1,2. We introduce
corresponding coordinates 8,k on momentum space such
that

In the terminology introduced in Sec. Il B above, we refer to
the first-order perturbed two-point functiér®) as “pure” if
and only ifg®™=0; otherwiseF (" is said to be “mixed.”

The functionsf and g cannot be chosen arbitrarily but
must satisfy the positivity conditiof2.16), which for Fock
space states is just the statement that

((u)d(u)"H=0 (6.4 K= A3+ BLA+ ks 6.12

for all complex smearing functions. For general, algebraic In these coordinates the positive light cone volume element
statesw;, the positivity condition is equivalent to the posi- can be written as

tivity of the operator 3

O (k% 8(k?)d*k= d—5(w—wk)dw

g f 2wy
Mj; frogrrdl) (6.5 " k_IZ_
Z(ﬂ)ﬁdzkﬁ( 7—@)0'7-
whereJ(k, k") =% 8%(k—k’)/(16m3w,), in the sense that for

all uje Cy(M), 1=j=<2, (6.13
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Therefore solutions of the wave equation can be represente,gé b(K) = Sy(K)Sap+ Sp(K) (Kakp — 7apK2)SS, (6.18
by functions of 8 and of the two dimensional vectds .
These null coordinates on momentum space, which are spe-
cially adapted to the given null geodesjc will be useful ~ Where
throughout our computations below. _
The first-order two-point functiofr{") has an expansion Si(k)=1+167aL2k?H, (k), (6.19
analogous to Eq6.1) but with f andg replaced byf(*) and
g®. We can rewrite this expansion in terms of the coordi-5 4
nates introduced above as

Fi(x,x") fdﬁfdkTrdﬂf Sy(k)=(8m)

2LITE sl L alk o xaik’ox!
XAkl T(B.kr: B ky)e™ "e We have epr|C|tIy included factors @# = L2 in these for-
n K KelkXe iK' X' LT mulas. The tensas,, is the spacetime Fourler transform of
G(B.kriB’ kr)e ccl the source tenso(3.43 discussed above. Note that Egs.
(6.19  (6.18—(6.20 could also be obtained by expanding the exact
solutions (A5)—(A8) given in Appendix A in powers ofi

a+ 2b

L HA(k)+2/3L2} (6.20

e 1) a_ 1
Here = wyay {0, §=wywig™, and and %In(%) (assumingh=+7% as discussed in Sec. Il E
1 K2 above.
-~ | gy T 6.1 Next we rewrite the source tenssy, in terms of the
wy B : (6.19 ; . . . . .
\/5 2B regularized two-point function of the incoming state. Using

Egs.(1.13, (2.4), and(6.1), we find that
It it understood in these equations ttkat k? is given by Eq.

(6.12 with y= k%/(Z,B) Finally, as briefly discussed in Ap-

pendix C, our assumed regulanty properties on the incomingg (D . i) , , ,
state imply thatf and § are continuous as functions of 2n )4—f d kf Ak [F D (kK ) gap(k, k") 8*(k+k' 1)
(B.kt,B’,ks) and satisfy, for any integeM,

+g (k. k) ok, — k') 84 (k—k' —1)+c.cl,
(6.22)

~ Cn
max | f|, < 6.1
){| | |g|} (1+wﬁ+wi,)Nfl ( 6)

for some constanty, wherewy is given by Eq.(6.15. where

B. Solutions of the reduced-order equation

In Appendix C we show that for states in the above class oan(K,K') = (26— 1)K akp) + (53— 28) 7apkck’®

the stress tensdi8.43 which acts as a source in the semi-

classical equations is drf tensor field on Minkowski space- + &(kakp+ KKp). (6.22
time. Consequently its spacetime Fourier transform exists as

an L? function. In Appendix C we show that the Fourier
transforms,, is actually continuous everywhere away from
the light cone, and is bounded everywhere except for al
(integrable divergence at the origin in momentum space.
Thus, we may use Fourier transform methods to solve the

Inserting Eq.(6.21) into Eq. (6.18 yields the null-null
Igomponent of the linearized Einstein tensor

(reduced ordérsemiclassical equations. K'é“)(l)ab)\a)\b:f d3kf d3k’ f O (k,k")I(k, k")
The reduced-order semiclassical equati®20 expresses
the linearized Einstein tensdﬁg].g[h(l)] in terms of the X 3*(K+K = 1)+ gDk, k") Ik, — k')
source tensof3.43. In our analysis below we shall not need
to solve Eq.(4.20 for the metric perturbatioh(aj[)); it will be X 8*k—k'=I)+c.c. (6.23

sufficient to work directly with the linearized Einstein tensor.

We now take the Fourier transform of E¢.20. We use the o
following formula given by Horowitz{48] for the Fourier —Here the function] is given by
transform of the distributiof, :

H,(K) = — 27 IN\3k?| + 2y — 1— i wsgr(k%) O (—k?)], J(k,k")
(6.17) (2m)*
wherey is Euler's constant an® is the step function. Here +(N-K)ZH+(1—-6&)(N-k+N-Kk')2(k-K')

and below tildes denote Fourier transforms. Using Egs.
(3.33 and (3.36) we obtain X Sy(k+k"). (6.29

=S(k+k){(26=D(A-K)(N-K' )+ E[(N-k)?
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By using the techniques of Appendix C, it is possible to +gP(k,k)I(k,—k )OO (k—Kk")]+c.c.  (6.29
show that the linearized Einstein teng6r23 has the same _ 4
regularity properties as were proved in Appendix C for theHere @‘YO) is the Fourier transform of the smearing function

source tenso(3.43. (5.D:
. _ _ ~ 1 -
C. The first-order ANEC integral: General formula ®(yo)(%/3,kT): ‘/ZWAGXP[ - 5[32A2+ Y’ A2]{S(ktAT).
We now calculate the first-order perturbation to the gen- (6.26

eralized ANEC integra(5.15 and express it in terms of the ) )
functions £ and g characterizing the incoming state 1he existence of the integra6.29 follows from the regu-

(1) combining Eas(5.15 and (6.23 vields that larity properties of the function$™) and g discussed in
@in ining Eqs(5.19 623y Appendix C: they are continuous away from the light cone,

1 and have an integrable divergencé/(wyw\) at the origin.
W_=| 43 3T £(1) , 1\ @ (0) / Now by combining the alternative representat{6riL4) of
ls Kf d kf dLE (kKD KD) 857 (k k) the two-point function with Eq96.25 and(6.26), we obtain

lim |<sl>(A,AL,AT)=%Fd—Bf deTFdﬁi,f a2k (k,k)I(k,K)V2mAexd — (B+ B8')2A2/2]S (Kr+ ki) A+]
0

A —0 0 B
—i—E °°d_ 2 “a ’ d2 1 A ’ ’ N2 A2
Kfo BBJ’ d kao ﬁ’ f kTg(k,k )J(k, k )\IZWAGXF{ (ﬂ :8 ) A /2]

X (ky—kJ)A7]+c.c. (6.27)

Note that Eqs(6.15 and (6.16 imply that for k;#0, the the (Fourier transformedEinstein tensor could have a distri-
integrands vanish more rapidly than any power fas  butional component on the line. However, the argument in
B—0, thereby assuring convergence of the integrals in EgAppendix C shows that there is no such distributional com-

(6.27 despite the factors of B/coming from the light cone ponent of the linearized Einstein tensor, so the ANEC inte-
volume element. gral must vanish, as our calculation above shows explicitly.

As explained in the Introduction, the res(#:28 that the
ANEC integral vanishes to first order for incoming states that
are pure to first order is one of the key results of this paper.

We now show that in the limif\ — oo, the pure frequency It eliminates the counterexample to the ANEC given in Ref.
contribution to the ANEC integralthe first term in Eq. [18]. Moreover, the vanishing of the ANEC integral to first-
(6.27] vanishes. This can be seen from the fact that in therder is a necessary condition for the ANEC integral to be
limit A—o, the exponential factor in this term becomes positive generally; any nonzero first-order contribution for
5(B+B') and that therefore the entire expression vanishegdure states could be arranged to be negative by choosing the

D. Pure incoming states

Therefore, wherg®=0 we have sign of the first order state perturbation appropriately. More-
over, in this situation any transverse smearing could not help.
lim  lim |(51)(A,AL ,A7)=0, (6.28 The above result applies for solutions to the reduced-order

A—w AL, A7—0 equation which are accurate t©(%2). However, it is

straightforward to extend this result to all ordersiinthat is,

and thus whenever the usual ANEC integral exists, it musto solutions of reduced-order equations which are accurate to
vanish. higher order in%. The only difference is that the functions

There is a simple, intuitive way to understand this result.S; andS, appearing in Eq(6.24 are slightly altered, which
The ANEC integral is the integral along a line in position does not affect the argument. More precisely, these functions
space, and thus becomes the integral over a hyperglaee are replaced by expansions to the appropriate ordérand
hyperplanex®k,=0) of the Fourier transformed Einstein fInf of the functions ¥, andF,/(F;F3), as can be seen
tensorG{}) in momentum space. Now, for states whose first-from Appendix B below.
order perturbed two-point function is puree., for which ~ Finally we remark that a limiting case of the above result
g"=0), the linearized Einstein tensor has support insidd" which the bapk reaction is dlaleq to zero is just the fe_lct
and on the light cone in momentum space. This can be sedhat the ANEC integral in Minkowski spacetime of a matrix
from Eq.(6.23 and the fact that ik andk’ are future point- element of the forng0| T())| ™) must vanish; see E¢3.18
ing null vectors, therk+k' is a future pointing null or time- above. This fact can also be deduced from the result previ-
like vector. Therefore, the only possible contribution to theously established by Klinkhnammad6] and by Wald and
ANEC integral must be concentrated on the null liké  Yurtsever[18] that the ANEC integral of the expected value
«A? in momentum space. Although this line is of measureof Tg%) in Minkowski spacetime is non-negative for a large
zero,a priori there still could be a nonvanishing result since class of states.
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E. Mixed incoming states

We now turn to the situation where we allow an arbitrary,

mixed incoming state. Using Eq&.17), (6.19), (6.24), and
(6.27) we find that

|_(Sl)(AT)E lim lim |él)(A,AL,AT)
AH”AL*’O

([ d®Aky~ ~ ~
= f 22 (A K(AkT)S(Araks), (6.29

where

1672

F(Akq) =

[“ap[ dctip ek akn, 630

and

2
T

K(Aky)=1— — In(AAk2). (6.31)

2
O‘)C

Here wZ=1/(32n%al}), A=\exply—1/2), andy is Eulers
constant. Note that the continuity gfand the fall-off prop-

EANNA E. FLANAGAN AND ROBERT M. WALD

d”Aky i Ak X1 T
le(X)= @mze TF(Aky), (6.39
i.e., | is just the Fourier transform of the functioh There-
fore we can rewrite the formulé.29 as

) d?Akr~ ~ ~
000 [ G Te(AKDR(AK)S(A k). (639

In other words, the ANEC integral with back reaction is just
the test field ANEC integrdl-(x7) in Minkowski spacetime
convolved against the smearing functi®fx;/Ay), and
against the distributiorK (x7) obtained fromK(ky) by an
inverse Fourier transform.

Note that it follows from the analysis in Appendix D that
the distributionK(xt) is given by a smooth function away
from the originx;y=0, but not at the origin. However, the
convolution KeoS)(xy) is a smooth function for alk; for
our choice of smearing function given by E&.40 below.
We also remark that Eq#6.15), (6.16 and(6.30 imply that
the function|k+|NF (k1) is L for anyN, which by Eq.(6.24)
shows that the “test field ANEC integral” functiolx(xt) is
smooth. This fact will be important in our analysis in Sec.

erty (6.16 is sufficient to guarantee the existence of the in-y| E2 pelow.

tegrals(6.29 and (6.30. Also, note that there is no longer
any dependence on the curvature coupling in ®®}9, due
to cancelations in Eq6.24 whenk'=—k.

The functionK in Eq. (6.29 is essentially the facto,;
that appears in Eq6.18 (and is also related by an expan-
sion in# to the Greens function B/ that appears in Appen-
dix A). The second term involvin§, in Eq. (6.18 does not
contribute to the ANEC integrdb.29, because it has a ten-
sorial structure in momentum space proportional to

Kakp— nabkz- (6.32

1. Non-negativity of the ANEC integral in Minkowski spacetime

From previous analyses by Klinkhammft6] and by
Wald and Yurtseve18], it is known that the test field
ANEC integral I (x1) is always non-negative for a large
class of states. This result forms a key element in our proof
below that the smeared ANEC integfél35 is always non-
negative for suitable choices of the smearing funcgoiVe
give a short proof of the result here, in order to lay the
foundations for later analyses.

First we give a motivational nonrigorous argument, which

In the original Minkowski space coordinates this correspond@PPlies only to states in the usual Fock space. Use the de-

to the differential operatai®/d\ 2, which gives rise to a total

composition(3.21) of the field operator into positive fre-

derivative in the ANEC integral and gives a vanishing con-dUency and negative frequency parts. Then we obtain from
tribution. More precisely, the contribution to the first-order EQ- (2.4) that, up to total derivatives with respectxo

perturbationl ®) vanishes identically, and the the contribu-
tion to the first-order perturbation of the generalized ANEC

integral M) vanishes once the limit — is taken.

(6.36

where primes denote derivatives with respechtorhe co-

TO NN = (D )24 (D )2+ 2D D,

The formula(6.29 has a simple physical interpretation in |ons on the left-hand side denote normal ordering. The first
terms of an ANEC integral computed in flat spacetime with-yyo terms on the right-hand side integrate to zero when we

out back reaction, as we now describe. kétdenote the null

integrate along the geodesic because this picks out the zero-

geodesic in Minkowski spacetime obtained by displacing thgrequency part, and the last term is a manifestly non-negative

geodesicy transversely by an amountx;. Define

|F(xT)=f (TaD @l NP, (6.33
Y

operator. Hence the ANEC “operator” is hon-negative.
We now give a rigorous proof of the positivity of
I (x7); it follows directly from our general formulé6.34)
for 1 and the positivity condition on the two-point function
expressed in our coordinateg,k+). From Eq.(6.9), choos-

This is just the ANEC integral obtained from the incoming ing U to be a suitable Gaussian and taking an appropriate

statewithout including the effects of back reaction, i.e., in

limit allows us to deduce that

the test field approximation, and with no transverse smear-

ing. It is independent of our choice @f and hence it is a

function on the two-dimensional space of vectors perpen-

dicular toA?, where two vectors are identified if they differ
by a multiple of \?. Using Eq.(6.29 in the limit where

| | dkaisokrimokn=0. €3

for all By. Therefore, from Eqs(6.30 and(6.34) the quan-

K—1 and S—1, and applied to a transversely displacedtity |(0) is non-negative. It is clear that the same is true for

state, we obtain

Ie(X7).
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2. The long wavelength limit As we have just discussed, the leading coeffici@®3

We now specialize to the long wavelength limit discussedS &Ways non-negative. However, as we now show, there do
in Sec. Ill E above. We also assume tigab#0, i.e., that ~©€Xist states for whichg(0) vanishes, and this opens up pos-
the first-order perturbed two-point function is mixed. First Sibilities for violations of the ANEC. Leh(,ky) be a func-
we show that the unsmeared ANEC integral may be negalion on the positive light cone satisfying
tive, and then show that for suitable choices of the smearing -dp
function S, the transversely smeared ANEC integral is al- j —f d?k7|h(B.k7)[?=1,
ways positive (not merely non-negatiyein the limit o B
LI/Lp—. Note that it would be inconsistent to analyze the
solutions to the reduced order semiclassical equatdo?0
outside of this limit, as correction terms GI(L;‘)/[,“) were

(6.46

and let|o) be the one-particle state

thrown away in the derivation of these equations.

If we assume an incoming state of the fofG41), then

the test field ANEC integral varies as

(6.38

where ¢ is the test field ANEC integral of the statal®
Consequently the  Fourier transform  scales

le(xr;a)=a 3 p(xr/a),

Te(Akr;a)=a *Tr(aAky). Substituting this into Eq.

=d A
0= FB | kiodhisioao). @

Choose the incoming state perturbatiaff’ to be that given
by the density matrix perturbation

p™'=—=10)0+|o)(al. (6.48
aaThen the functiorg is given by
9(B.kr;B' k) =h(B.kp)h(B’ kp)*. (6.49

(6.39 and making a change of variable in the integral yields

Ak

(¢

AtAKy

(¢

d?Aky — ~
Tgl)(AT)ZCfsJ’ @) I r(Ak)K

(6.39

We now choose the smearing function to be

S(xr)= (6.40

T+]xq*
Its Fourier transform has the expansion for snkall
S(ky) =1+ vok2In(|ky|) + v1k2+0O(|kq]3), (6.41)

where v¢>0 [90]. Substituting Eqs(6.31) and (6.41) into
Eq. (6.39 and expanding in h? yields that

) A Ina C (Ina)?
K|S (AT):;g'FB?‘F?‘FOT, (642)
where
A= f (T WHINNP=1£(0), (6.43
Y
B=1o(AT— AT i) (VHE)(0), (6.44
and
A7 ci=8 \FL 6.4
T,crit— O V_O p- (6.49

Note that the sign of the coefficiera in the formula

If we now choose any smooth functian(x;) of compact
support, and choosh(g8,kt)=h,(B)v(k;) for some suit-
ableh,, then from Eqgs(6.30), (6.34 and(6.49 we find that

e (xg) oo (x7) |2, (6.50
Hence in particular we can choose a state which achieves
I(0)=0. o o

Now when A=1¢(0)=0, then the quantityvl(0) is
always positive or zero. This is becauis€xt)=0 always,
I(0)=0, andlg is smooth as discussed above. It is clear
that we can find states for whichlz(0)=0 but
V%IF(O)io. Therefore, we find thati) in the limit of no
smearing[i.e., Ar—0, S(x;)— 6%(x7)], B can be negative
and therefore for sufficiently large, the ANEC integral can
be negative, andii) from Eq. (6.44), when the transverse
smearing length is larger than the critical leng®45, B is
always non-negative.

So far we have shown that the smeared, first-order ANEC
integral is always non-negative to order4/beyond leading
order. However, from Eq(6.50 it is clear that there exist
incoming states for whicB= 0; for instance one can choose
the functionv (x1) to vanish in a neighborhood of the origin.
WhenA=B=0, the expression for the coefficieBtis

1 d2k ~
C= 5 ro(A3= A% o) [ 5o BT (ko).
(6.51)
We now shall show that wheA=B=0, for At> A+ . we
haveC=0, with equality holding if and only ig*=0.

To prove this result, we note first that 4=B=0, then
we havel F(O)=V$IF(0)=0. However| ¢ is a smooth, non-

(2.10 for the anomalous scaling of the stress energy detefegative function, and hence it follows that all the deriva-
mines the sign of the coefficie® without smearing. As tives of I at the origin up to and including third order van-
previously mentioneda is positive for the scalar field we are ish. In Appendix D, we show that this implies that the
considering, for all values of the curvature couplfiefj, Eq.  coefficientC is always strictly positive unless the function
(3.34) abovd, and is also positive for neutrino and Maxwell 1:(Xy) vanishes identically. We now show thigi(x1) can-
fields[48]. If a had been negative, the coefficidBitwould  not vanish identically unlesg®=0, i.e., unless the per-
have been positive without any transverse smearing. turbed two-point function is pure to first order. Thus, in the
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mixed case, in order to establish positivity of the smeared To calculate the second-order contribution to the ANEC
ANEC integral in the long wavelength limit for nearly flat integral, we shall need the second-order contributi®i?
spacetimes, it is not necessary to continue the expansiaa the Einstein tensor. Deflnm@(z)(x):a“ngb)(x/a) we
(6.42 to higher powers in X, nor is it necessary to go to find from Eq.(4.20 that
second order ir.

To prove thatl ((x7) vanishes identically if and only if (2) _ﬂ) 1

Y — (2,0

g®=0, we start by writing =(Tap @ >+ Z p[x 7]

0= | gtz 652 + TR, o+ TR0}
23

wherel - (x1, ) is defined by Eqs6.30 and(6.34) with the +0O[(Ina)?/ a*]. (7.2
integral overB omitted. Moreover Eq(6.37) implies that

le(Xr,B8)=0 always, and sincég(xr)=Ig(xr)=0 we de- Here we have used the definitions
duce thatl (x1,8) =0 for all x; and 8. Hence ) ~ )
FixT.B) T p hO(x;a)=hD(x/a;a)=a 2xV(x/a; ) (7.2

f d?k:9( 8.kt ;B kr+Aky)=0 (6.53  for j=1,2, and have used the fact thg@t) can be replaced
with its leading order approximatiop™®® to adequate accu-
for all Akr. racy, cf., Eq.(3.52 above. The leading order metric pertur-
Next we obtain a canonical representation for the functlorbat,onSX(l 9 and x29 are given by Eqs(3.58 and (4.24).

g(k.k’). Let K be the measure spacRY,du), with measure  Finally, we insert the expansiaff.1) into Eq. (5.19 to ob-
du=dgd%k;. Theng is a continuous complex function on  tain
KX K which satisfiesg(k,k’)=g(k’,k)*. Moreover Eq.
(6.16 implies thatg is bothL! andL? on XK. TheL? 2. 1
property ofg together with its positivity property6.37) im- s :_f
plies that it defines a positive, compact, self-adjoint operator
G on L%(K) [91]. Hence by the Hilbert-Schmidt theorem, Ina 1
there is a complete orthonormal bagis of L?(XC) such that + ?Z;%[X(Z'O)]“L ?<Tglb)[x(2’0)]’“’in'0>

AL
A | g oy

* 1 1
G(kK)= 2 Naga(K)en(k)*, (6.54 + AT X 0L 0R) + 5 xOATE ol
=
for some\,=0, where the convergence is in the operator +O[(|na')2/a4]]. (7.3
norm on the space of bounded operatorsL3k). Now
inserting the decompositiof6.54) into Eq. (6.53 and spe- We now exploit the close similarity between the first-
cializing to Akt=0 we find that order and second-order perturbation equations. For the re-

scaled incoming stat€3.41), the first-order, reduced-order

2 2 equation(4.20 can be alternatively written in a form more
2 A f d’kvl@n(B,kr)[*=0. (659 Ciosely parallel with Eq(4.23:
Since\,,=0 for all n, we obtain thag=0. KGglg[ﬁ(l)]: %(Tw) —tl>>+ a 2Z D107
By combining all the results in this subsection we find @
that for states whose perturbed two-point function is mixed, (Ina)
the transversely smeared ANEC integral fof> At ¢ will 4<T(1)[X 197, win+O )
always be strictly positive for sufficiently large, for solu-
tions of the reduced-order, first-order semiclassical equation (7.4
(4.20.

This equation when inserted into E&.10 will produce the
expansion6.42. Therefore it can be seen that the first three
terms in Eq.(7.3) are exactly analogous to those obtained
from the first-order analysis, and that consequently (B
can be rewritten as

VIl. PURE INCOMING STATES
AND THE SECOND-ORDER PERTURBATION
EQUATIONS

The above results establish that for mixed incoming 3 o @
states, the leading order contribution to the smeared ANEC ~ ls"(Aq)=lim lim «I"(A, AL, Ay)

integral is always positive. However, for pure incoming A=A —0

states the_ ANE_C integral vanishes@g¢), and ther_efore we A .lna C+AC (Ina)

need to investigate the second-order perturbation equation =—+B—5+ 5 , (7.5
(4.23. In this section we calculate th®(e?) contribution @ @ @

(5.19 to the transversely smeared ANEC integral for solu-
tions to Eq.(4.23, and show that it is positive in the long in analogy with Eq.(6.42. Here the coefficients, B, and
wavelength limit. C are functions only of the state perturbatFﬁ?) and have
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the exact same functional dependence?ﬁf? as the coeffi- that these formal arguments could be translated into rigorous

cientsA, B, andC in Eq. (6.42 have Onaitnl) Furthermore, arguments along the lines of the analysis given in Sec. VIE 1

the relevant positivity conditions oﬁfnz) also are the same as above, and using the positivity condition. However, we have
not attempted to do so.

corresponding conditions ant>); see Sec. VII B below. The It is not difficult to See that the last term in E67.3)

in 1
coefficient AC in Eq. (7.5 is defined to the contribution vanishes. Since to the appropriate order in?lthe trans-
verse smearing is unimportant for this term, after the limit

from the last two terms in Eq.7.3), and depends both on
il andaﬁf_) as well as thelfroeely specifiable incoming piece . ., i taken it can be written as
of the metric perturbation(;”.
Our strategy for proving the positivity of the second-order 1
ANEC integral is the following. First, in Sec. VII A we show FJ d)\XE:l,O)c<T(a%) ,ai(;]l)>)\a)\b_ (7.6
thatAC=0 wheneveA=B=0. In Sec. VIl B, we show that aJy
the space of allowed second-order state perturbations is ef-
fectively the same as that of the first-order perturbations, an

then to appeal to the first-order analysis. g|owever, our choice of gauge guarantees ﬁ{a@c:O along

v. In particular this will be true to each order in thea®/
expansion of Eq(3.52), so that)(glb'o) also vanishes oy, and
R therefore this term vanishes.

We now show that whenevér=B=0, the last two terms The more interesting term in E¢f.3) is the second to last
in Eq. (7.3 vanish, and that consequenthyC=0. The argu- term, which can be shown to be proportiogat the relevant

ments in this subsection will be mostly formal; we believe order in 1k?) to

A. Vanishing of the additional terms

J oo amnens.= | oo [ ovolhel - p ey, oy aEd hens
Y Y Y

(7.7)
|
where we have used E(B.15. The meaning of the notation SR = DDyl + 10 242
in the first term is that the functioR{>) is acted on by the Pl <Al//| | ><(/i| 14)
first-order change in the operatdy,, induced by the metric X{0|+Q—(1+1trQ)|0){0], (7.10
perturbationy*?, and similarly for the second term. Now

since {19 satisfies Eq.(3.58, it has a contribution both for some] )@ e H with (0] )@=0, wpere@ is a positive,

from the perturbation to the incoming state and from INCOM-, - itian trace class operator such tR46)=0. SinceQ is

ing classical gravitational radiation. Thus, E@.7) contains | h il exi h | £1h
both a contribution quadratic in the incoming state perturba:[race class there will exist an orthonormal basts) of the

. : _ space of states orthogonal |®) such that
tion w) and a cross term betweas?) and the incoming " gonal @)
classical gravitational radiation.

Consider first the second term in EJ.7). As mentioned A -
above we are assuming that the coefficiehtandB vanish, Q‘,Zo %l (¥l (7.19
since from Eq(7.5) this is the only case in which the terms
(7.7) are relevant. Therefore for someq;=0, j=0,12.... Theoverall density matrix
R will be positive toO(&2) whenever the perpendicular projec-
A=f (T wfy\a\b=0. (7.8 tions of |¢)™) and| ) into the kernel ofQ are orthogonal
Y

to each other.

. . . e We now give a nonrigorous argument for the vanishing of
The key idea that we now use is that this condition impose ; ; ;
constraints onw!? which in turn imposes constraints on the second term in Bdz.7). It we insert Eq(7.10 into Eq.

~ ) - in P > (7.8), then the contribution from the two terms in .10

iy’ sufficient to ensure that the second term in E47)  jnyolving | )@ will vanish for the reason explained in Sec.

vanishes. _ _ VI D. Therefore, using the formulés.36) and following the
We now restrict attention to the case of Fock space stategrgument given in Sec. VI E 1, we find that

Since the state is pure to first-order, the first-order perturba-
tion to the density matrix is given by

_ i I = | =] | ¢
/3(1):|0><¢|(1)+(1)|¢><0|, (7.9 2 qlf <¢J ( dA di 4

T
for some |¢)MeH with (0]4)P=0. The most general +f dn{ Wy <d®+) (dq>+> gD ) =0 (7.12
second-order density matrix perturbation is then dx d\ ' '
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D replaced by

the terms on the left-hand side are individually non- negauve)((l 0 The first term in Eq.7.18 can be seen to vanish

and hence they all vanish. It follows that
@, (1,0,0|¢) V=0, (7.13

where primes denote derivatives with respecit@and the

notation means that the operator is evaluated on the geodes(gﬂ)[)((l Ona\P=
v. Next, using Eq(7.9), we can rewrite the second term in

Eqg. (7.7) in an alternative notation as

2Re| dANAAY(O|V ,dOV, dD| )V, (7.14
Y

using Eq.(5.6) and the fact thath{))=0 on y and that
hglb))\a)\b vanishes identically in our choice of gauge. Using
Eqgs.(3.58), (6.36), and(7.9), we find that the second term in
Eq. (7.18 contains the factor

(2/k)Re(0|D’, (X,0,02| ) (7.19

which vanishes by Eq.7.13. Therefore the expressidii.7)
should vanish.

B. Smeared positivity result

We now explain how to adapt the perturbative smeared

1 .. . .
Here &Y s the first-order change to the field operator in- positivity result of Sec. VI to the present situation. The co-

duced by the metric perturbathvlal 0 Next, split up the
zeroth-order operatob(o) into its positive and negative fre-

efficientsA, B, andC in Sec. VI were expressed in terms of
the functionl ¢(x7) (the flat spacetime ANEC integral along

quency parts. The negative frequency parts will annihilateransversely displaced geodesics in the s@afg), and the
the vacuum on the left, and the positive frequency part camnly properties of this function necessary to prove the result

be commuted through the® term (since the statel®) and

was that it was a pothlse pOSItIVG smooth function. Corre-

|y)1) are orthogonal giving a result which vanishes by spondingly the coefficientd, B, andC can be expressed in

condition(7.13.

Consider now the first term in E¢7.7). To calculate this
we need the explicit form of the operatby, that enters into
the point splitting prescription(2.19 for calculating the
stress tensor. The general expressiorfigy is given by/cf.,
Eq. (2.4 abovg

(1) 1 cd
F (X X ) ab_zgabg Scd+§GabS
— &(VoVpS—0a509), (7.15
where
S(x)= lim F{M(x,x"), (7.16
x" —x
Sap(X)= lim V,, V F{P(x,x")
x' —x
=— lim V,VoF Y (x,x' )+ V,V,S2, (7.17
x' —Xx

and G, is the Einstein tensornNote that we are using a

nonstandard notation in which the coincidence limit is im- -

plicitly understood in the symbdD,,.) Now the operator
D(l)[X(lo)] in the expansiori3.1) will contain pieces linear
Xab
Xabo) The pieces that are linear ji;% will give a vanish-
ing contribution to the first term in Eq.7.7) since X(l 0)

vanishes alongy in our choice of gauge. The remaining

piece of DY) yields
fdwgﬂ[)(ﬂ'@]l:;,})xaxb: —gJ dN(VS)CLyoANP
Y Y

+gf dNGL X O1SNANP,
Y

(7.18

and pieces that are linear in the derivative of

terms of the analogous function

|(2)(X )—f <T(0) 5&2)>)\a)\b_ (7.20
This quantity can be expressed in terms of the mixed fre-
quency partg® of the second-order two-point function by
equations analogous to Eg&.30 and (6.34. However,
from Eq.(6.11) we find thatg® obeys a stronger positivity
condition thang® in the case we are considering when
g®M=0. In particular,g® satisfies an analog of Eq6.9)
and it follows that the fuqctiprﬁ?.ZO)Amust be non-negative.
Hence the coefficients, B, andC obey the same posi-
tivity conditions as the coefficientd, B, and C: A>0

B=0 whenevelA 0, andC>0 wheneveA=B=0. More-
over, the casd=B=C=0 can be excluded in the following
way. If all these coefficients vanish, an argument similar to
that given in Sec. VI E2 shows that the operafiin Eq.
(7.10 must vanish, and that consequentiy)=p™=0.
Therefore, by defining’' = £ we see that we are really deal-
ing with a first-order perturbation instead of a second-order
perturbation.

Since we showed above thalC=0 whenever
=B=0, we conclude from Eq(7.5 that for sufficiently
large «, for pure states the transversely smeared ANEC in-
tegral is positive.

C. Second-order vacuum polarization

As we have explained, the second-order vacuum polariza-
tion term(T&hM, hM],w;, ) is not explicitly known, but
arises at sufficiently high order in our long wavelength ex-
pansion that it can be neglected, when we assume that in-
coming gravitational radiation does not dominate the first-
order metric perturbation. However, if we drop the
assumption on incoming gravitational radiation, and assume
in addition an incoming vacuum state, then we can derive a
condition that this unknown vacuum term must satisfy in
order for the ANEC not to be violated. This condition pro-
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vides an additional test of the ANEC hypothesis which isgeneral solutions of the semiclassical equations to rule out
independent of our analysis above. Moreover, if the condimacroscopic traversable wormholes.

tion is satisfied, then it can be shown that without any as-

sumptions restricting the incoming classical gravitational ra- ACKNOWLEDGMENTS

diation, that the transversely smeared ANEC integral is .

always non-negative for solutions of the reduced-order equa- We are grateful to Bob Geroch for suggesting the argu-

tions, for general, nonvacuum incoming states, in the longnent used in Appendix B, and for bringing to our attention
wavelength limit. he relevance of the heat equati@hl0 to the discussion in

The condition we find, by carrying out a reduction of Sec. IV B. We also thank Matt Visser for some useful con-

order to the appropriate order of the perturbative semiclassi‘ersations. This research was supported by NSF Grant Nos.

of Gh®]=0, and let h® be any solution of ©29%
GHh@1+GRhW hW]=0. Thus, the spacetime
(M, 72+ el +£2h(3)) satisfies the vacuum Einstein equa-
tion to second order and consists of classical gravitational
waves. Then the quantity In this appendix we derive all of the exact solutions to the
D@ nD) Dr @) fi_rst—order semicla:?‘sical equati¢B.38 whose spatia}l Fou-
(Tep W h Y] 0in ) +(Tgp[h'" T wing (72D rier transforms exist. Some of these exact solutions have
) , been discussed by Horowif28], in the special case of the
describes the expected in-vacuum stress-energy tensor of the ogeneous version of the equation, without the source
quantum field to second order on this spacetime. Moreovekerm (3.43. Here we generalize the treatment of Horowitz to
the stress tensc(r?.ZJ% does not depend on which solution gjio\ for first-order perturbations to the quantum state. To
h® of G+ GEh™M),hM]=0 is chosen, and thus is solve Eq.(3.38 we can fix the incoming state perturbation
a function only ofh®™. The condition is that the ANEC (1) (this is freely specifiable up to some regularity condi-
integral of the quantity(7.21) should always be non- tons discussed in Appendix)Cand solve for the metric
negative. We conjecture that this is the case. perturbatiorh(}). Because the equation dependsh&H only
through its linearized Einstein tensfY), we can first solve
VIIl. CONCLUSIONS for G and then use this to obtain(*), as suggested by

In this section we recap briefly our main assumptions andiorowitz [48].
assess the significance of our results. We have examined the The exact solutions to E¢3.38 are closely analogous to
positivity of (transversely smearedNEC integrals for so- the solutions of the Klein-Gordon equation with negative
lutions of the reduced-order semiclassical Einstein equatiofnass squared
Three small parameters have appeared in our analysis: 2 —
measuring the deviation of the metric from the flat metric (H=mHPx)=p(x), (A1)
and of the quantum state from the incoming vacudmor  where p(x)=p(x,t) is a source. We start by recalling the
equivalentlny,/ﬁz, our “long wavelength” expansion pa- nature of the solutions of EA1). The general solution can
rameter, and finally N, whereN is the number of scalar be written in terms of the spatial Fourier transfopifk,t) of
fields coupled to gravity. We have calculated the ANEC in-the source a®=® _+ P, where
tegral to leading order in IV, to quadratic order i, and to
the first three nonvanishing terms Lrﬁ/ﬁz. We restricted
our analysis to the case where incoming gravitational radia-
tion does not dominate the first-order metric perturbation.
Apart from this restriction, we have shown that the trans- o e Nl 41
versely smeared ANEC integral for nearly flat spacetimes is * f,wdt Coymoskt ~ 13 @) plk 1 )} (A2)
always strictly positive along every null geodesic in the long
wavelength limit, except in the trivial case of the vacuumand
state in Minkowski spacetime, where the ANEC integral

APPENDIX A: EXACT SOLUTIONS
OF FIRST-ORDER PERTURBATION EQUATIONS

3
ik- x|

e X A(k)e'et+B(k)e ekt

<D>(X,t)=f

k|>m(27)3

3

vanishes identically. D _(xt)= ek C(k)e ki + D(k)e <kt
There were several independent places in our analysis in <(xb |k|<m(27-r)3 (k) (k)

which, a priori, a violation of ANEC could easily have

arisen. In particular, the ANEC integral for pure states need n J'w di'G t—t" k) DKt A3

not have vanished at first order in the coefficient(6.51) —o sym.expk alp(kt)]. (A3)

need not have been of a defenite sign; or any one of the extra

terms that appear at second ordersinin the coefficient Here = Vk2—m?, K= Jm?—k?, Goym,oskl; @)
AC need not have been identically vanishing. Indeed, severat sin(@|t))/(20), Geym expft; k) = —e~*/(2x), and the func-
times during the course of this work we believed to havetions A(Kk), ... ,D(k) are arbitrary except for the reality
discovered a serious violation of ANEC, only to find on conditions A(—k)=A(k)*, etc. Following Horowitz, we
more careful analysis that this was not the case. Thereforayill refer to the portion(A2) of the solution as the tachyon-
we consider our results to be evidence in favor of the coniike or oscillatory part, and the portioA\3) as the exponen-
jecture that ANEC comes sufficiently close to holding in tial part.
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Gsymexpll) that we choose to use in E¢A3). Of course,
other Green’s functions appropriate to different boundary
conditions do exist in the time domain, b8ty exp(t) is the
only one whose Fourier transform exists. Hence, solving Eqg.
(A1) using Fourier transform methods will reproduce the last
term in Eq.(A3). The freely specifiable first two terms in Eq.
(A3) are not directly obtained, but clearly again can be writ-
ten down by inspection, using the location of the poles in
G(w).

We now turn to a similar analysis of the semiclassical
equation Eq(3.38. We can obtain very general solutions to
the equation by determining the analytic structureinf the
appropriate Green’s function in the Fourier domain. See Sec.
VI B and Appendix C for a discussion of the existence of the
Fourier transform of the source ter8.43. Using Egs.

W /@ (3.38, (3.33, and(6.17) we find the following formal ex-
¢ pression for the general Fourier transformable solution
FIG. 2. An illustration of the dependence of the locations of the _ Sab Fo(k)

poles of the Green's function B{(k) on the parameters,, the KG;ZQ(k): (Kakp— 7apk?)'SS, (A5)
frequency of the plane wave mode in question, anthe additional

free parameter with dimensions of length that appears in the quan-
tum theory but not in the classical theory. In general there are four
poles of the form*z,, +z,, where the locations of the two poles _1_ 21,29

z, and z, are as follows. In the hatched region below the curve, Fa(k)=1~16malpkH,(k), (A6)
there is one real pole and one imaginary pole. Above the curve and

below the dashed line, in the left region both poles are imaginary, F,(k)=(8)
and in the right region both poles are real. Finally, in the region
above the dashed line, both poles are compley, is a critical

length of order the Planck length, and is a critical frequency of ~and
order the Planck frequency.

Fi(K) | F1(K)F(K)

here

2 217 2
3a+2b|LaH(k+2BL3|, (A7)

Fa(k)=1+6L3K’[ B+bH,(k)]. (A8)
We explicitly display these solutions to the negative mass ) ) ) ,
squared Klein-Gordon equation because the solutions to the While Eq.(AS) is not the general solution we are looking
semiclassical equatiof8.39 have a very similar character. for,_ it is st_ralghtforwa_rd to write down the general solution

In particular these solutions can be divided into “oscilla- P inspection, essentially by adding extra terms to @c)
tory” and “exponential” pieces. We will obtain the general that correspond to poles of the functionsFi/ and
solutions by spacetime Fourier methods. As background, wé/(F1F3). Consider first the function &4. From Eqgs(6.17)
start by recalling how to obtain the soluti¢a2) and(A3) of ~ and(A6) we can writeF; as the limit of a function analytic
Eq. (A1) by spacetime Fourier transform{as opposed to ©n the upper halfo plane: Fi(k)=lim._o+G;(k,wtie),

merely spatial Fourier transforms where

It is clear that the “tachyonlike” portionb-. of the gen- 2 o
eral solution can be straightforwardly obtained using Fourier Gk =1+ 2 AN 02— o2 A9
transforms, when the sourggx,t) is sufficiently well be- (kiw) wcz (M@= )], (A9)

haved. The Fourier transform with respect to time of the ~

Green’s function obtained from E¢A1) has two poles on w,=|k|, w§=l/(32772aL§), A=\exp(y—1/2), andy is Eu-
the realw axis, and the choice ofi‘€” regularization pre- ler's constant. The functio®; has branch cuts on the real
scription is equivalent to the choice of Green’s function; foraxis atw> wy, andw< — wy. The poles in the Green’s func-
instance, as is well known, demanding tfiw) be analytic  tion are just the zeros d&,. These location of these zeros
in the upper half plane yields the retarded Greens functiondepend orh andw in the following way(see Fig. 2 Define
The freely specifiable first term in EGA2) can clearly be

written down by inspection using the location of the poles of Neir=4mlLpe” 7y 2a, (A10)
the Green'’s function. o )

The situation is slightly different for the exponentially which |s.af|xed length of the order of the Planck Iength..Let
growing or decaying portiotA3) of the solution. In this case Zi» 1=<i=<4, denote the four roots of the equation
the Green'’s function in the Fourier domain 1+2zIn[2\?w;]=0. These complex roots depend only on the

ratioA/\ ;. Then the zeros of the Green’s functigho) are

G(w)*1/(w?+ «?) (Ad)

wi=oi—02Z[Mhg], 1<i<4. (A11)
has no poles on the real axis, and hence Fourier transform
methods produce a unique Green’s function in the time dowhen A=\, there are four complex zeros w,* w*,
main, which is just the particular Green’s function wherew=ag+ip lies in the first quadrant. Whern= X\ ;
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there are three separate cases. When-exflw?)/ w’>\?,
then there are two real roots ¢ and two imaginary roots
+iBo. When expt wdwd)l wZ<\?, then if w,> o, there are
four real roots* ag,*ay, and if w<w. there are four
imaginary roots*iBg,=*ip.

The analytic structure of the functionF4(k) is some-
what simpler. There exists a uniqug>0 depending on
N such that the locus of the zeros dfy(k) is k?
— w2 W2=K2

The general solution to E¢3.38 can be written as

Ggilb):Gélb),inhom_'_Gglb),free_FGglg,free,'l'_ (AlZ)
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lar, there will be a portion of the general solution which has
the form of an integral over the values bkffor which both
poles are real. This expression will have the same form as
®. of Eq. (A2), except thatA andB are replaced by trans-
verse traceless tensors, and the quantityis replaced by
either of two independent constants depending onlyxon
(i.e., there is a sum of two termsThis portion of the general
solution was obtained by Horowif28]. It can be written as

Glavhyod X)ab= fHLab(k)eik‘x. (A15)

Here H is the union of two spacelike hyperbdkd= k'f>0

. . . 2_1,2 H
We discuss these three terms in turn. The inhomogeneo®d k“=k3>0 in momentum space, whelg andk, are

part of the solution is given by
d*k
(2m*

Fa(k)
F1(k)F3(k)

§ab
Fa(k)

KGg][))’inhontX)Z ik-x

+ (Kakp— ﬂabkz)gg

(A13)

In this expression it is understood that the poles on the real

o axis in the functions ¥, and 1F; are regulated with the
appropriatei e prescription to pick out the “half retarded
plus half advanced” type contribution from each pajé/e

choose this particular prescription for convenience, it would
clearly be possible to use instead for example the “retarded”

type contribution from each poleAs discussed above, poles
on the realw axis will occur only forA <A for the func-
tion 1/F4, but will occur for all values ol for the function

1/F;. Note also that in the conformally coupled case

£=1/6, the trace of the source tensg}, vanishes, and hence
the second term in EqA13) vanishes. However, as we dis-
cuss below, the freely specifiable piece of the solution ass
ciated with the second term in EGA13) [Eq. (A16) below]
does not vanish even for conformal coupling.

The second terns{})™®in Eq. (A12) is the freely speci-

fiable, homogeneous piece of the general solution associated

with the Greens function E/4(K). In the case\ >\, it can
be written ad92]

KG;]E)),free(X) — f d3k eik»X[Cab(k)efiaoteﬁot

+D,p(k)etwte Pt +cc.  (Al4)
HereC,,(k) andD,,(k) are arbitrary except that they must
be traceless and satisfyk®C,,=1?D,,=0, where
k?=(k,ag+iBp) and 12=(k,—ag—iBy). The quantities
ag and B, depend on the mode frequenay=|k|, and on

constants depending only an The tensot_,,(k) is a freely
specifiable transverse traceless tensorFbmvhich falls off
sufficiently fast at infinity.

The third termG{}) ™7 in Eq. (A12) is a purely trans-
verse, freely specifiable piece of the solution which is asso-
ciated with the Green’s function B4. It can be written as
[92]

f d3k €K [ E(k)e K+ F (k)™ k] (Kakp— 7a5K?)
[k|<kg

+f dk e X1 (ke +J(k)e™ ]
[kI>ko

X (KaKp— 7a5K?) + C.C. (A16)

Here v,= Vk?>—k3, k= +k5—k?, and the functiong, F,

I, andJ are freely specifiable functions &f Thus, there are
both tachyonlike and exponentially growing modes of this
type for all values oh. Also, as remarked above, this freely
specifiable transverse piece of the solution does not vanish in

0t_he conformally coupled case= 1/6, despite the fact that the

the analogous transverse contribution to the inhomogeneous
piece of the general solutidithe second term in EqA13)
abovg does vanish for conformal coupling.
Finally, we remark that exact solutions to the alternative,
fescaled versior3.45 of the first-order perturbation equa-
tion can be obtained from the above analysis using the sub-
stitutions  h{)—a?h{) L,—L,/@, \—Ma and
Sab— San=(Tan , @y )-

APPENDIX B: ANEC INTEGRAL

FOR EXACT SOLUTIONS

In this appendix we consider the specific subclsd the
solutions of the exact, first-order, semiclassical equation dis-
cussed in Appendix A, given by using half advanced plus
half retarded Green'’s function to obtain the linearized Ein-

the length scalé. as indicated by EqALL). This is purely  stein tensor. In the case of exponential-type modes discussed
an exponentially growing and/or decaying-type solution andn Sec. IV C above, the use of this Green’s function to pick
has no oscillatory parts. out a class of solutions is equivalent to throwing away the
The homogeneous ter@ is more complicated in runaway solutions by hand. For the oscillatory type modes,
the case\ <\ . In this case there are again freely specifi- this choice of Greens function yields a particular subclass of
able terms for each of the poles ofFl/(see Fig. 2 The solutions. We shall show that the solutions Snhhave the
poles off the real axis will give exponentially growing and/or property that their transversely smeared ANEC integral is
decaying terms, and the poles on the real axis will give “ta-always non-negative, even outside of the long wavelength
chyonlike™ contributions analogous to EEA2). In particu-  limit, wheneverh >\ ;. However, we also shall show that

(1),free
ab
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some exact solutions outside of this subclass do violate the
ANEC. T T T
As explained in Sec. IV C above, we see no reason to I
view solutions inS as being more physically meaningful 1000
than other subclasses of exact solutions. However, given a
solution in S, any other exact solution obtained from the
same incoming state will have the same perturbative expan- —~
sion in 1k? and In/a? [or equivalently, ina andzIn(%)]. o
This perturbative series up to any finite order also should ..
coincide with what would be obtained by carrying the reduc-
tion of order procedure of the semiclassical equation to the
appropriate order in &7 and solving exactly the new,
reduced-order equation. Thus, an expansion ia?1and 0
Ina/a? of the positivity result of this appendix provides an -
alternative proof of the results we established in Sec. VI A —
above for the solutions of the reduced-order equaf#b20),
at least forh >\ ;. In other words, we can use the analysis
of the solutions inS as a mathematical tool to to establish a ) .
positivity result for solutions of the reduced-order equations, _F'C- 3. The ANEC integral for exact, "half advanced plus half
The alternative proof that this appendix provides also give&€tarded” solutions to the semiclassical equation can be expressed
insight into the otherwise mysterious positivity properties of " ("M of the functio¢(xr) (which is obtained from the ANEC
e ; . . integral in Minkowski spacetime evaluated on transversely dis-
the coefficientsA, B, and C (with and without smearing e . . :
. . placed geodesigsntegrated against a particular functiéty (x7)
discussed in Sec. VI E2 above. L with width of order of the Planck length, see E§.39 above. Here
i We now tL_’m to a proof (,)f the positivity ‘,)f the ANEC we plot the functionK; as a function of the transverse distance
integral for this class of solutions. The analysis of the ANEC

' ! > ! ‘|| from the original geodesic, in the case whare 1.2\ ;. The
integral for the exact solutions to the unmodified semiclassiz,ct that this function is negative for some values of its argument

cal equation parallels that given in Sec. VIB for the solu-impiies that there are incoming states for which the ANEC integral
tions of the reduced-order equation, with the only differencenciuding back reaction is negative.

being that the function$; andS, of Eqgs.(6.19 and(6.20

are replaced by the expressions-{l/and F,/F3, respec-

tively, where the function§, F,, andF; were defined in

Appendix A. Correspondingly we again pbtain the formmawheresd”(xT)=S(xT/AT) is a “dilated” smearing function
(6.39, except that the functiorK(xy) is replaced by andK, S, denotes the convolution df, and Sy . Since
Ki(xr), where we know|(X7) is positive, to make the integréB2) posi-
tive it suffices to find smearing functions whose convolutions
with K, are pointwise positive everywhere. We now show
AkZ . ) -1 that for the choicg6.40 of smearing function, there exists
1+ len(szkT) (B1)  someA;>0 such that the functioB(xy/A+) will satisfy the
€ positive convolution condition. In fact, our proof below can
. be easily extended to apply émy positive smearing function
Note that ifA >\ . thenK (k1) is a continuous function; which does not fall off at largg; more rapidly tharkK; does
its Fourier transformK,(x;) is L2 and is continuous every- (x|x|~4); in other words, any function which falls off
where away from the origin. The functioK(x;) for  slowly enough will be a suitable smearing function when
A =12\ is shown in Fig. 3. FON <\, expressior(B1)  sufficiently “dilated.”
blows up at some finite value 0k;| so thatk, is not even We now outline a proof of that the convolution is point-
L2, In this case an appropriate regularization prescription wise positive. We would like to show that there exists some
should be understood to apply to the form&35, the A such that the function
precise prescription being determined by the fact that we are
choosing half retarded plus half advanced solutions. The
regularization prescription yields a well-defined distribution
Ki, with well-defined distributional Fourier transform
K1(x1). We assume from now on that>\.;;; however, it
is possible that the results in this appendix continue to hol

500

|x,| (in Planck lengths)

Ky (Aky) =

Il(A,xO)EAzf d?x K 1(AX) S(X+ Xg) (B3)

qs positive for allx,. (For the remainder of this appendix, we

for A<\t dro ; .
. . p the subscripT on A;.) Clearly, for any fixedx,, we
tiOI’II:Z;.??:) Eq.(6.39, the smeared ANEC integral is propor- can find aA such that the integralB3) is positive, since

APK (AX)—8%(x) as A—x. Let Ayin(Xo) denote the
smallest numbeA ; such that the integrdB3) is positive for
all A>A,. Then we need just to show that,,(Xo) is
bounded above as a function xf, so that there exists some
2 o . 1
f A"l p(xr)[K 1o Sai] (x7). (B2) positive A which works for allx.
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To show this we suppose conversely that there exist&inally, there will be a contribution from the corresponding
some sequence\( ,Xq;) such thatAj— and region in whichK; is negative, which with the above choice
of € is bounded below by- K~ (1+ 7)S(xo)/A?. Combining
these bounds and choosing=(2+ 4K ™) ! yields that

|1(A] ,XOJ')ZO. (B4)
Now suppose that the sequenkg; is bounded. Then by -C; 1
passing to a subsequence we can without loss of generality 11(A,Xo)= WﬂL 21K (B1))

assume that xp;—X, for some X, so that

(Aj* X0j)—(0X%). However, the functionl (A,X) iS  whereC, is a constant, whenever the conditiéB10) is
jointly continuous as a function oA "' and x, even at satisfied. It clearly follows that the function (X) is
A~1=0, as can be deduced from the formula bounded above for large,. This contradicts the unbounded-
ness of the above sequenkg , and we conclude that the
function A ,in(Xo) is bounded above for aX,.
_ 2 -1 We conclude that there is some fixed length such that
Il_f YKLy S+ A ) (B9 for the smearing functio6.40), the ANEC integraB2) is
) ) ) always non-negative. It is clear on dimensional grounds that
and by using the properties of the functiddandK,. Hence  the critical value ofAt is of order of the Planck length. We
it follows thatl1(Aj,Xo ) —=11(%,X0) = S(X0) >0. This con-  yemark that this positivity result would not hold for any
tradicts Eq_.(B4) above, and so we conclude that the S€-smearing function which falls off more rapidly thak,|.
quencexo, is unbounded. _ Thus, for example, there is no positivity result for Gaussian
To exclude the possibility of the existence of such a setransverse smearing. However, as mentioned above, our
quence withx,; unbounded, we now derive an estimate fOfproof could easily be modified to apply to smearing func-
the function 1,(A,xo) for large xo. First, we note that tions that fall off more slowly thaK,|.
Ky(x)~—|x|~* at large|x|, and in particular that there exists  Finally, we consider the exact solutions of E8.38 out-
ako>0 andey>0 such that for ale<eo, side of the subclas$ of half retarded plus half advanced
solutions. We now show that when<\ ., there exist exact
solutions outside o which violate the ANEC, even when
transversely smearedt can be shown that violations of the
ANEC do not occur whem\ >\, if we we discard the
exponentially growing and decaying pieces of the solutjons.
Using the momentum space coordinaggsy, k1, the first-
order ANEC integral5.10 can be written as

[Ki(x)|<e (B6)

whenever|x|=kqe ¥ [90]. Moreover, from the formula
(6.40 for S(x) we can show that for any with 0<#<1,
there existk;>0 such that

(1= 7)S(Xo)=S(x+Xq)<(1+ 7)S(Xo) (B7)

1 x _
|<1>=—f dyf dkrGp (B=0,7,kr)A2\P.
whenever|x|<k;|xo|. Let K™ be the integral ofK,| over (2m)*® | . Tab T
the domain whereK, is positive, and similarly define (B12)

> . . . . .
K™>0, so that For the tachyon type solutiofA15), the linearized Einstein

tensor can be written as

1=fd2xK1(x)=K+—K‘. (B8)  _ .
Gab(B,7.k1)=8(=2yB+Ki—K)) Fap(B.v.kr),  (B13)

. 2 . X where F,,, is transverse and traceless but otherwise freely
0<e<ey , we can split up this integral into three different specifiable andk.=k /|ks|. From Egs.(B12) and (B13)
parts: There is a contribution from the region where>P ST AT as- ’

|x|>koe YA, which is bounded below by CoeA? from  and writingky=(cosy.siny), it follows that
Eq. (B6), for some constart,. There is a contribution from

the portion of the regiofx|<koe™ Y4/ A in whichK is posi-

tive. Using Eq. (B7), this will be bounded below by D= 5
K™ (1— 5)S(xo)/A?, if (2m)

Consider now the integral(B3). For any e with

0 27 1
—» 0 0

Since Fup(B,v.ky) is freely specifiable away from
Koe™ YA <Kkq|Xo|. (B9) 2By+k5=0, itis clear that in generdf?) is nonvanishing
and can be of either sign. Moreover, it is easy to see that a
We can ensure that this condition holds by choosingnegativel) cannot always be made positive by transverse
e=(Kq|xo| A/kg) ~#; this requires that smearing in this case.
Note that ifh{})(x;a) is a one-parameter family of exact
solutions such that the ANEC is violated, then it will still be
|0l A=(ko/ky) eg M. (B10)  true that the ANEC will be satisfied order by order invd/
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and Inw/a?. In other words, the violations of the ANEC are f 1 1
nonperturbative in 12, or equivalently inf.
P a Y g 111 1 -1 -1
f*| 41 -1 -1 1
g* 1 -1 1 -1
APPENDIX C: EXISTENCE OF SPACETIME FOURIER E(k k')
TRANSFORM OF EXPECTED STRESS-ENERGY _ !
TENSOR iF (kK" g
. _ . X ~ (C3
In this paper we have imposed a condition on the iF (kKK oy
Minkowski spacetime in-states we consider, which requires _E /
F,It’(kyk M (o)

that the two-point functions be smooth and have suitable

falloff properties at spatial infinity. In this appendix we de-

rive some implications of these falloff assumptions, whichOur assumptions o imply that f and g are continuous

are used in the body of the paper. away fromk=0 andk’ =0 and satisfy, for any intege,
We start by describing the class of states we are consid-

ering. Let the two-point bidistribution of the state be

max{| f(k,k")[.[g(k,k")[}

(C4

, , , Cn 1 1
G(x,X")=Gp(x,x") +F(x,x"), (Cy $(1+k2—+k,2)N(1+ w_k)(1+w_|<'

where Go(x,x") is the vacuum two-point bidistribution in for some constan€y . [Note that the requirement that the
Minkowski spacetimgwhich was denote@;  in the body  total energy of the state be finite should imply an inequality
of the paper. Throughout this appendix, we drop the sub- of the form (C4) but without the 1+ 1/w, factors and with

scripts “in” that appeared in the body of the paper. Also the N=5/2+ ¢.] Moreover our assumptions imply the functions

conditions onF that we discuss below apply to both the %Ewkwk’f and§=w,w, g defined before Eq(6.15 are at

functionsF () andF{? that appear in the body of the paper, |eastC?, a fact which is used in the body of the paper.
and our conclusions about the expected stress tensor in the Now the expected stress tensor in the st&@#) will be
state(C1) clearly then will apply to the source ter(8.43  aytomatically smooth, from the relation
and to the first term in Eq.3.54.

The functionF is determined by the restrictions of the
four functions F, dF/at, dF/at’, and °F/(dtat’) to
3 X3, whereY is the hypersurface=0. We assume that all Tap(X)=DapF (x,X") (€5
these functions lie in the cla3sdefined in Sec. VI —that is,
that they are smooth and that all of their spatial derivativesind the fact that the initial data fér on 3 X 3 is smooth, so
areL' on 3 x 3. Note that imposing this condition on any that F itself is smooth orM X M. Therefore its Fourier trans-
other surface of constant time would yield the same class ofm T, (k) exists as a distribution. We now investigate the
states (It would be sufficient for all of our results to assume yeqylarity properties of this distribution. In our notation be-
only that the all spatial derivatives up to 17th order Bfe  |ow we make use ofs functions; the steps can be made
we have not investigated what the sharp falloff requirementsigorous by integrating all equations on both sides against a

are) _ smooth test tensor fieli®®(x) of compact support om.
As in the body of the paper, we can express the two-poinfhe expression foD,, is given in Eq.(7.15 above. We
function in terms of functiond andg via restrict attention below to the piece

’

F(x,x')zf d3kf d3k’ f(k, k' )ek ek x Eabua):J d*xe "2 lim V, V. F(x,x')  (C6)

x' —x

3 31,7 "\ aik-xq—ik’-x’
+J d kf dk’g(k.k")e™ e +e.c., of this expression; a similar analysis applies to the other type
(C2) of term involvingV,V,S in Eq. (7.15. From Eqgs(C1) and
(C2) we obtain that

wherek=(k,wy), o =|k|, and “c.c.” means the complex
conjugate. This equation definésandg to be suitable com-
plex linear combinations of the spatial Fourier transforms of
the above-mentioned four functions restricted>t >.: we
have wherel ,=(l,w) and

Sap(la) =Fap(la) + Fap(—12)*, (C7)
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Fan(l,@)= J A’k (1) 80— o+ o )gk,k—1)

X(l,—n’)b—5(w—wk—wk,|)f(k,|—k)

X(1,n")pl. (C8

Heren andn’ are unit vectors in the directions & and
k—1, respectively. We write the integral ovkras

© 1 2
f dkﬁj. dMJ. doy,
0 -1 0

where u is the cosine of the angle betwekrandl. The
function in the first term in Eq(C8) can be rewritten as

(C9

|k~ ol
O[k—(w+N/210(1 - |o]) 8(u—pa(k |, 0))—-—,

kl
(C10
and similarly theé function in the second term becomes

|k~ o]
kI

O[1/2— |k— w/2]10(0—1) 8(u— mo(k,|, @)
(C1)

Here O is the step function, angk; and u, are the appro-
priate values ofx that are enforced by thé& function. Equa-
tions (C8)—(C11) yield

O—la)) (-
Fanlo)e =0 [ dk[ deik-o)?

X[(LN)a(1.n")pg (KK =1](11)

O [y
| (0—1)2
X (K= @)2[(1n)a(1,—n")pf (k1K) T(2).

(C12

From the properties of the functiorisandg and the form of
Eqg. (C12, it is clear thatF,, and hence als&,(l,w) is

6275

f |e?°F! (1, 0)|?d®ldw

<C fmdlfl d Jw L Ul
7% 0 (o2 [1HK+(Kk—w)ZN [
(C13

whereC, is a constant, which is finite fo=5. A similar
analysis applies to the second term in E912), and to the
other types of term involving ,V,,S in Eq. (7.15.

APPENDIX D: FOURIER TRANSFORM
OF THE FUNCTION k 2In[k?]

In this appendix we prove the following result which is
used in the body of the paper.

Lemma Let h( x) be a non-negative, smooth?! function
on R? such that

h(0)=h;(0)=h;;(0)=h ;;(0)=0, (D1)

where the commas denote partial derivatives. Then

f dzk[f d?xe'k *h(x)

with equality iff h=0.

Proof. The essential idea is that the Fourier transform of
k?In(k?) consists of a smooth positive function away from
the origin, plus distributional contributions at the origin
whose effects are unimportant because of the cond{fxr.

Using polar coordinates k,¢,x,xy defined by
xX= (xcosy,xsiny), k= (kcos(y+ ¢),ksin(y+¢)), we can write
the integral(D2) as

k2In(k?)=0, (D2)

2 o0
J dXIimJ dxh(x,x)Z(K,x), (D3)
0 K—ooJ 0
where
K 27 )
I(K,X)Ef dkf dek3In(k?)e' >, (D4)
0 0

and u=cosp. By evaluating the integral ovés in Eq. (D4)
and using the identities

continuous everywhere away from the light cone, and that

[I|Fap(l, ) is bounded in a neighborhood &f0. Similar
conclusions apply to the entire stress teribgy(k).
Finally, we note that the stress tendty,(k) is L2, from

which it follows thatT,,(x) is L? on Minkowski spacetime.

We can prove this using formukC12) as follows. Lete?®

be any constant tensor, and fe}, denote the first term in
Eq. (C12. Then from Eqg.(C4) and using the fact that the

8 functions in Eq.(C8) enforce|k—I|=|w—k|, it follows
that

f() 1—p?
d = | def’
f A f ef'(w) “ (D5)
and
f(p) o (2uPD(1-p?)
| domtt= [ ot ™=t 09
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it can be shown that suggests that similar violations would occur in self-
consistent solutions with back reaction. Moreover, these vio-
2 lations of the ANEC would not be confined to a Planck-scale
I(K,x)=127r/x3+f deAZ(K, X, u). (D7)  tube surrounding a particular null geodesic, but would in-
0 stead occur over a macroscopic region. In this appendix we
review Vissers argument and show that — at least in the
context of perturbation theory off of Minkowski spacetime
— his class of examples is consistent with our positivity
results. We also present a simple explicit model which illus-
(InK)IKPp™ trates this point, and discuss implications for the existence of
———F——cogKux) (D8) ’
X" traversable wormholes.
A key element in Visser's argument is a method for ob-
or taining approximate self-consistent solutions to the semiclas-
sical equations, starting from solutions of the classical Ein-
(INK)IKP " stein equation. Essentially, the idea is an extension of our
TS'”(KMX)' (D9)  |ong wavelength or smatl expansion beyond the context of
perturbation theory about flat spacetime. We now describe
whereq, p, w, andn are integers with &q<1, O<p=<5, this approximation scheme in a language similar to that we

HereAZ(K,x,u) consists of linear combinations of terms of
the form

O=w=8, and G=n=3. have used in the body of the paper. Met, be some classical
After integrating ovei, the contribution from such terms field with stress tensoFS,[ W ,,0cq], and letg(®), ¥ () pe
becomes proportional to a solution of the classical Einstein equation
ol aK P, W
GrenK ) (INK)TKELT, (D10 KGal 059 1= T ¥, g3 1. (ED)

where g, n(X)=h(x,x)/x" is the restriction of the smooth
function h(x)/x" to the line at angley in the x plane, and

@'X,n is the (one-dimensionalcosine or sine transform of this
function. The functiorg, , is smooth because of the condi-

Now consider an additional quantum fie(flj and let us seek
solutions of the semiclassical equation

tion (D1) since O<n=3. It follows thatg, ,(K) will fall off KGap[ Gedl = TS e, Oeal +{ Tan) [ Geal- (E2
at largeK faster than any power @€, and hence the absolute
value of the expressio(D10) is bounded above by Now if the state of the quantum field is the incoming vacuum
state, then the second term on the right-hand side above will
||nK|qu,uWCp be in order of magnitude- LE,/E“, whereas the first term
Tt (uK)P L (D11)  should be~1/£2, wherel is the lengthscale determined by

the classical background solutigy}) Therefore if£>Lp,
where we have chosen the power tofp¢ 1 andC, is a  the quantum stress tensor can be treated as a small perturba-
constant. Carrying out the integral overyields an expres- tion, and a leading order approximation to the self-consistent

sion which is bounded above at lareby solution will be given by
[InK[9KPC’ (012 Jab=0ap+0O5y, YoI=wHO+yl®  (E3)
C"+ Kp+l ’

N whereg(}) and ¥ ™ are calculated from the linearized ver-
whereC’ and C" are additional constants that dependmn  sjon of Eq.(E2) with source(T,,)[g{?] as well as the lin-
andw. Now it can be seen that these terms give a vanishingarized field equation fob®. At leading order, in regions of
contribution in the limitK —o in Eq. (D3). Thus, from Eq.  pe spacetime wher@®(®) and ¥ vanish, the Einstein

(D7) the original integralD2) can be written as tensor for this self-consistent solution will be just the test
field quantum stress tensor on the classical background, as
27 o 127 claimed by Vissef43].
fo deO dxh(x, x) 7?} (D13) Consider now the application of this scheme to the Boul-
ware vacuum outside a Schwarschild black hole. This state is
which is manifestly positive. unphysical because the expected stress tensor diverges on the

horizon. However, Visser argues that the expected stress ten-
sor far from the horizon will likely be approximately the
same as the stress tensor for the static vacuum state outside a
spherical star with radius close to its Schwarschild radius.
(The stress tensors will not be exactly the same because the
As mentioned in the Introduction, in a very recent paperexpected stress tensor in the static vacuum state does have a
Visser [43] has shown that the expected stress tensor of aonlocal dependence on the spacetime geométherefore,
scalar field in the Boulware vacuum outside a Schwarzschildhe approximate self-consistent solution obtained from the
black hole violates the ANEC. Visser argued that this resulabove scheme starting from a compact star and a test quan-

APPENDIX E: CONSISTENCY OF OUR RESULTS WITH
EXAMPLES OF NEGATIVE (UNSMEARED) ANEC
INTEGRALS IN SELF-CONSISTENT SOLUTIONS
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tum field in the static vacuum state should violate the ANEC 12ma . . 1

over macroscopically large regions far from the star. =~ —Kz—|u')\|F, (E7)
It might appear that this violation of the ANEC is quali- T

tatively different from the cases treated in our analysis in the

body of the paper, and, thus, that new possibilities are OPeRhereA is the length of the component af perpendicular
for severe violations of the ANEC. However, we shall nowy \a g3ndu? ie.. the impact parameter of the null geodesic

argue that this is not the case by showing that examples Qfjth respect to the point mass. EquatitE?) is essentially
this type also exist in the context of perturbation theory offihe |arger, weak gravity limit of Visser's counterexample to
of Minkowski spacetime, and that these examples satisfy ouf,e ANEC involving a static star.

smeared version of the ANEC provided only that stress- Tp,s the ANEC integral is negative along all geodesics
energy of the classical matter itself satisfies the ANEC. Toyyay from the point mass in the self-consistent solution.
see this, consider perturb;gg Minkowski spacetime by addingyeyertheless, this is consistent with our result of positivity of
a classical stress tensbfy . For example this could be the smeared ANEC, since in calculating the smeared ANEC in-
linearized stress tensor for a static spherical star. The f|rstfegra| for a geodesic a distandg from the point mass, the
order m_etnc pertu_rpauon in the semlclassmgl theory W'”negative contributiodE7) will be compensated by the posi-
then satisfy a modified version of E¢B.4) wherein the term  tive contribution from the point masses stress tensor itself,

TS is added to the right-hand side. When one goes to thvhich also scales likd 1 * because of our smearing function
long wavelength limit and performs a reduction of order, one(1.12) [93].

finds that, to lowest order, the metric perturbation satisfies This example illustrates that our results are consistent

EQ. (4.20 with 7is,y, replaced byT{p"®. (Note that the re- with having negative ANEC integrals over a macroscopic
sulting equation simply says thattimes the Einstein tensor region. The price one must pay is that the amount of ANEC
of the semiclassical solution is just the sum of the classicaliolation is restricted to be very small compared to distant
stress tensnglb)‘C' and the vacuum polarization stress tensormass scales. We now give a crude argument which suggests
in the spacetimeny,+ hg'b where Gglg[hc']:Tglb)vc', in that the restriction is easily sufficient to prevent the existence
agreement with our discussion abgvelowever, our proof ©Of macroscopic traversable wormholes. Let us characterize
of the positivity of the smeared ANEC integral given in Sec.the region with a negative ANEC integral by the quantity
VIE above used only the positivity of the ordinary With dimensions of mass
Minkowski ANEC integral fors,,. Thus, if T(H ® satisfies
the ANEC in Minkowski spacetime, our analysis shows that
the smeared ANEC integral in the semiclassical spacetime _ ) a b
will be positive to first order. M*‘f d XTJ AN Taph*A”, (E8)

A simple example will illustrate these points. Consider a
point massm moving along the geodesig?®(7)=ru? in
Minkowski spacetime. LehC, be the linearized gravitational and suppose that there is a region of positive ANEC integral

field of this point mass, which is given by a distance~A away characterized by the malsk, . Then,
in order of magnitude, our result implies that

~ +3
e (= 47 Matb Fomanl (2o (g ,
K k2 Lp

M+(—> M, =0. (E9)

Next, using Eq.(3.32 we can calculate the expected stress

tensor in the incoming vacuum state on the spacetime with

metric 74+ hC}, which is given by Consider now a static macroscopic wormhole, and suppose
that the wormhole can be characterized by one length scale

~ L. On dimensional grounds, the energy density required to
~ . 2mmH(K) g 9y y req

— - -, H 2 . .
T oK) = S(K-0)[2ak2u,u,— (2a/3+ 2b) (KK, hold it open shquld be be_: of (_)rdef—_l_lﬁ . (This is con-
K firmed by explicit calculations in specific examples by Ford
_ c and Roman[14].) Consequently we hav&l_~—L, and,
MapkKe)]. EY  therefore,

From this stress tensor we can obtain a second linearized
metric perturbatiorhd,2"™™ Finally, we calculate the ANEC

a4
integral along the geodesié(\)=A2+\\?2 of the Einstein M 2(A) r
tensor of the spacetimeg,,+ hS,+h%2"™™ which is given L) T

by

Since the distancA to the positive mass region should be
=L, we obtainM ;. =10"*M ,(£/1cm)®, which is a ridicu-
luously large mass. Moreover, the natural requirement that
the A be larger than the gravitational radilvs, of the posi-
Using Eqgs.(6.17), (D13), and(E5) we obtain forA+#0 tive mass yields the restrictio<(Lp/A)3Lp=<Lp.

1 ~ . o
= ay baiky-A .
| = (Zw)gj d*kG,p(K)NANPEKTAS(K-N).  (E6)
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TABLE II. In this table, for the aid of the reader, we list in alphabetical order some of the symbols that appear in the paper. We do not
list symbols whose meaning is very conventional, or symbols which are used only in the immediate vicinity of where they are introduced.
For each item listed, we give a brief description, and also a reference to the equation in the text where the symbol first appears, or after which
the symbol is first introduced. Except in special cases, we do not list separately the following variants of symbols: symbols with tildes or
symbols with the superscript®), (1), or (2). Theformer always denote a Fourier transform, and the latter superscripts always denote
expansion coefficients in an expansion of a quantity in powees of

(M, 13p).

Symbol Meaning Equation in which Other relevant
first appears equations
a Coefficient that controls the anomalous scaling (2.10 (3.39
A Expansion coefficient in long wavelength expansion (6.42
Aap Fourth-rank local curvature tensor (2.7 (2.10
Aglb) Linearized local curvature( t)ensor for metric perturbation (3.33 (3.32
h&h
Aglb)[-] Operator that acts on metric perturbations to yield a local (3.45 (3.4
curvature tensor
Aab Local curvature tensor at zeroth order invd/expansion (4.20 (3.4
b Coefficient that controls the anomalous scaling (2.10 (3.39
B Expansion coefficient in long wavelength expansion (6.42
Bab Fourth rank local curvature tensor (2.8 (2.10
Bglb) Linearized local curvature( t)ensor for metric perturbation (3.33 (3.32
h&b
Bglg[-] Operator that acts on metric perturbations to yield a local (3.45 (3.46
curvature tensor
Bab Local curvature tensor at zeroth order inrd/expansion (4.20 (3.4
C Expansion coefficient in long wavelength expansion (6.42
D (Dx,D,) D’'Alembertian-type wave operatdwrt x or y) (2.17
Dab Operator arising in point splitting prescription, consisting (2.19 (7.19
of differential operator followed byimplicit)
coincidence limit
DY First order change i, due to metric perturbatioh} (3.0
DY Operator that acts on metric perturbations giving first-order 3.1
change inD,
&sx,8y] Operator taking sources ands, to bisolution of wave (3.13
equation
Fin Regularized two-point function of incoming statg, . (2.29
F_in Regularized two-point function of rescaled incoming state (3.4) (3.42
Wip -
1(K), F5(K), F3(k) Functions arising in exact solutions (A6)—(A8) (A5)
f “Pure frequency” part of two-point function, in momentum (6.2 (C2
space
f same ag® but multiplied by|k||k’| (6.19 (6.14
GY Linearized Einstein tensor for metric perturbatiof}) (3.6)
Gglb)[ -1 Operator that acts on metric perturbation to give linearized (3.6
Einstein tensor
G Second order part of Einstein tensor, dependindigh (5.12
andh(®
Egj} Rescaled version of second-order part of Einstein tensor (5.12
ngb)[ -] Operator that acts on pairs of metric perturbations (3.6
g “Mixed frequency” part of two-point function, in (6.2 (C2
momentum space
g Same ag™™ but multiplied by|k||k’'| (6.19 (6.14
G Two-point bidistribution of the state on (M,gap)- (2.13
Gy Two-point bidistribution of the in vacuum state, on (2.20
(M 1gab) .
Gi, Two-point bidistribution of the in state;, on (M, 7,p). (2.20
Gino Two-point bidistribution of the vacuum state, , on (2.20
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Symbol Meaning Equation in which Other relevant
first appears equations
h() h Metric perturbations (3.1
ﬁglb) ﬁgzb) Rescaled metric perturbations in treatment of (3.449 (7.2
long-wavelength limit
H, Horowitz distribution that enters the expression for (3.35 (3.32
vacuum polarization
H Usual Fock space of states on Minkowski spacetime (3.5
[ 1@ 2 ANEC integral and its expansion coefficients (5.8
ls, 10 1@ Generalized ANEC integral and its expansion coefficients (5.2
1, 10 1@ Limiting form of generalized ANEC integral, with only (5.4)
transverse smearing
I e(X7) ANEC integral without back reaction as a function of (6.33 (6.39
transverse displacement
1e(xy) Same ad¢ but for rescaled incoming state, (6.38
J(k,k") Function that arises in solutions of reduced-order (6.29 (6.27
semiclassical equations
k,k? kt Coordinates on momentum space (6.12
K(x7), K(Kq) Distribution that describes the effect of back reaction on (6.31 (6.39
the ANEC integral for solutions of
reduced-order equations
Ky(x7), Ky (k) Function that describes the effect of back reaction on the (B1) (B2)
ANEC integral for solutions of original
semiclassical equations
KoKy, ks Fixed, Planck-scale frequencies controlling tachyon-type (A15) (A16)
solutions
L Length scale of incoming state or of semiclassical (2.6
solution
N Number of scalar fields in the N/expansion (2.6
Sab Source tensor in linearized semiclassical equation (3.39 (nB)
S(x7) Transverse smearing function (5.1 (5.2
Sap, S Coincidence limits of derivatives of two-point function (7.16,(7.17)
Taol9eal Linear map on states oM, ,;,) returning conserved (3.2
stress tensor onM,g.,p)
T Usual Minkowski spacetime stress tenglimear map on (3.3
state$
T, T, Expansion coefficients of ,.[ gcq(e)] that act on metric (3.3
perturbations or pairs of metric perturbations and return
linear maps on Minkowski spacetime states
X1 Two dimensional transverse coordinate on Minkowski (5.2 (6.12
spacetime
Zab Combination of fourth-rank local curvature tensors that (3.57 (2.10
enters into anomalous scaling of stress tensor
z{y Linearized form ofZ,, for metric perturbatiorn(} (3.46 (3.32, (3.36
Zglb)[-] Operator that acts on metric perturbations to yield (3.46
anomalous scaling tensor
Parameter used to characterize long-wavelength limit (3.4)
Unknown numerical coefficient of local curvature term in (2.9 (3.32
stress tensor
ag Real part of complex frequency in oscillatory modes of (A1)

exact solutions
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TABLE Il. (Continued.

Symbol Meaning Equation in which Other relevant
first appears equations
B Coordinate on momentum space (6.12
B Unknown numerical coefficient of local curvature term in (2.9 (3.32
stress tensor
Bo Imaginary part of complex frequency in oscillatory modes (A11)
of exact solutions
y Null geodesic in spacetimeM,g,;), also zeroth-order (5.2
geodesic in M1, 7,p)
y Coordinate on momentum space (6.12
€ Basic expansion parameter of perturbation expansion .7 (1.6
€ Generic small parameter in discussion of higher order Sec. IVC
time derivative equations of motion
4 Null coordinate on Minkowski spacetime, also a (5.1 (5.195
Fermi-Walker coordinate onM,g,;,) in a neighborhood
of the null geodesic
(C) Step function (6.17
0, Function entering definition of generalized ANEC integral (5.1 (5.195
K Inverse of Newtons constant 2.1
N Affine parameter along geodesjc also Fermi-Walker (5.1 (6.12
coordinate on 1,g,,) in a neighborhood of, also null
coordinate on Minkowski spacetime
A Undetermined length scale appearing in expression for (3.32 (6.17
linearized stress tensor
A Rescaled version of above length scale (6.3)) (A9)
Nerit Critical value of length scala (A10)
A2 Tangent vector to geodesig also vector field on (5.1 (6.12
Minkowski spacetime
A, At AL Lengthscales entering definition of generalized ANEC (5.9 (5.2
integral
A Used in Appendix B instead of ;. (B3)
A it Critical value of transverse smearing length scale (6.45
Vo Numerical coefficient in expansion of Fourier space (6.4
smearing function
3 Curvature coupling coefficient 2.1
p®, p Expansion coefficients of incoming state for Fock space 3.7
states
; D, FZ) Expansion coefficients of rescaled incoming state for (7.9,(7.10
Fock space states
T Time scale characterizing radiation reaction effects (4.2
Generic small parameter in discussion of reduction of (4.18
order
T Evolution time scale for solutions of radiation reaction 4.3
equation
ci;+ , ol Positive and negative frequency pieces of field operator (3.2)
X, x@ Rescaled versions of metric perturbatidily , h2) (3.50 (7.2)
xE0, x (20 Leading order approximations tgy, x2 in long (3.52 (3.59,(4.24)
wavelength expansion
Win 0 Vacuum state on Minkowski spacetime (1.6
0P, o Expansion coefficients of incoming, Minkowski spacetime (1.6
state
o, o2 Expansion coefficients of rescaled, incoming, Minkowski (3.42
spacetime state
¢ Critical frequency of the order of the Planck length (6.3) (A9)
(,") Product notation for stress tensors acting on Minkowski (3.2

spacetime states
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