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Inhomogeneous multidimensional cosmological models with a higher-dimensional space-time manifold
M =M XII[_;M; (n=1) are investigated under dimensional reduction to tensor-multiscalar theories. In the
Einstein conformal frame, these theories take the shape of a flabdel. For the singular case whévk, is
two dimensional, the dimensional reduction to dilaton gravity is preformed with different distinguished repre-
sentations of the actiofS0556-282(196)03320-9

PACS numbg(s): 04.50+h, 04.60.Kz, 98.80.Hw

I. INTRODUCTION tion. In our paper we shall give a more elegant way of di-
mensional reduction to tensor-multiscalar theories which re-
In recent years, scalar-tensor theories have received raeals explicitly the nature of the dilaton fields. For example,
newed interest. There are two reasons for this. First, exthe dilaton field with opposite sign in the kinetic term of the
tended inflatiorf1,2] which originally was based on standard Lagrangian is connected with a dynamical volume of the
Brans-Dicke(BD) theory[3] revives the scenario of inflation Whole internal space. In a conformal Einstein-Pauli frame, a
via a first-order transition. It provides a natur@on-fine- o-model representation of the theory under consideration can
tuned way to restore the original ideas of inflation while €asily be obtained.
avoiding the cosmological difficulties coming from vacuum-  In Sec. Il it is shown, for space-time dimensidnp>2
dominated exponential expansion obtained in general relativafter dimensional reduction, that, in teemodel representa-
ity. Second, scalar-tensor theories, generalizing standard Btion of our model, the metric on the space of scalar fields is
theory, can satisfy the solar system critef and other the flat Euclidean one. 1Dy=2, there is no conformal
present observation$] to arbitrary accuracy, but still di- Einsteir(-Paul) frame. This is actually no fault of the theory
verge from general relativity in the strong field limit. Thus, here, because in two dimensions the Einstein action is a to-
in the future, such theories may provide an important test opological invariant, whence it does not yield a dynamics of
general relativity. It should be noted in that context that, viathe two-geometry.
conformal transformation of the metric, we can write scalar- Nevertheless, it is worthwhile to consider here two-
tensor models equally well in the Jordan-Brans-Dicke framelimensional(2D) dilation gravity, which has been a subject
or in the Einstein-Pauli frame, and the question which framedf intensive investigations recent[1-23. In Sec. Il we
is a physical one is still open. obtain the action of 2D dilaton gravity under dimensional
Several ways to generalize standard BD theory were proreduction from cosmological models. Different representa-
posed. These theories can be split into three main group§ons are given, which correspond to different choices of con-
First, there are the theories with a BD parameiedepend- formal frames.
ing on the dilatonic scalar fielf5—14]. The second class is
represented by theories with more than one dilaton field Il. EFFECTIVE BD MODELS
[4,15,16. All other possible variations of the standard BD FROM MULTIDIMENSIONAL MODELS
model form the third group, containing, e.g., models in
which the dilaton couples with different strengths to both ~Let us now consider a multidimensional space-time mani-
visible matter and conjectured “dark” mattg5s]. fold
Scalar-tensor theories follow naturally as the low-energy
limit of various Kaluza-Klein theories. Among them, multi-
dimensional cosmological models with a space-time consist-
ing of n=2 Einstein spaces are most popular. Usually, theo-
ries with one interna! Einstein spacezé 2) are cons_ider(_ed The metric onM can be decomposed as
[17-19. The dimensional reduction of these theories yields

n

M=Myx[] M,. (2.7)
=1

only one dilaton field(such as in the original BD theory n .
Here, we show that this case is exceptional, with a midisu- 9:9(0)+E e2h' (g0, (2.2
perspace metric of degenerate signature. The model with i=1

n=2 was considered in the pap@0], where the emphasis
was on the problem of the internal dimensions compactificawherex are some coordinates M, and
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g @=g\P(x)dx“@dx". 2.3

With the Laplace-Beltrami operator dvi; defined by

\/79(0);“/

. (2.4

1/ d 'g(o (9X’u

we get the Ricci curvature scalg24]

RIgI=RIg™]+ 3 e—ZﬁiR[g“)]—,Zl (D;i&;+DiD))
i= i,j=

B ap <

IxX* ox”?

X g(o)/“’

(2.9

With total dimensionD:==!_,D;, «*> a D-dimensional
gravitational coupling constant, an&g, the standard
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inhomogeneoud/,, ... ,M,. (Then, one has to work with
pil i in place ofR[g("].) The bare gravitational coupling
constant

(2.9

K —KOZ'M

might become infinite, while the truB,-dimensional cou-
pling constant o> is always finite. If Dy=4, then
ko>=8mGy, whereGy is the Newton constant. Then, the
action (2.6) remains well defined, even when some of the
volumesy; are infinite. After rewriting

1
= f d®x/|deg| E DiA[g?]p

Gibbons-Hawking boundary term, we consider an action of

the form

(2.6)

1
S= 52| d®x[deBlRIg1+ Sou
2k M

In the following we assume thaR[g"] is finite on
(M;,g"). Let us now consider the volumeg; of
(M;,g") and the total internal space volumpe satisfying

ZJM_dDiyﬂdeQ“)l, u=i1;[1 Mi- (2.7)

If all of the spacedM; (i=1,... ) are compact, then the

n n
%2 f dPox/[deg®[ [] P
= Mo =1

1
- A g(o g )
|0I eg'? (
= KS.Z Df dPox

a ! L9
_ (0)|y(0)Aw DB i
X axx(\“deg g1 e® &XVB)

volumesu; and u are finite, and so are also the numbers Va,B' n
i _ /|de'g(°)|g(°)* v H DB E D] ax
pi= | Py TdemTRIg") 29 . :
' =SeH— —zf dPox/[deg@ ] P
However, a noncompadt; might have infinite volumex; or K0/ Mo =t
infinite p; . Nevertheless, for the following we have to as- aﬁi Yl
sume only that all ratiop; /u;, i=1, ... n are finite. This X E DD — —, (2.10
o : - 9 axx ax”
is, in particular, the case whevi; is homogeneousThen, hi=1
Pi i
o Rlg"] the action is
|
is always constant and finite. In the special case, wheres
an Einsteinmanifold Ri{ g]=\'8¥ with constant\', it is 1 n
S= _ZJ dPox\[deg@[[] ¥
P _ _ 2k5) M, i=1
—=R[g"]=\'D;, n 28 o)
i
and, more specially, whekl; hasconstant curvature k hi=1
n
; ) (i)a—286

ﬂ=R[g(')]=kDi(Di—1). +i21 R[g"]e ]: (2.1

Mi
However, here we do not restriatpriori to Einstein or con-
stant curvature spaces. For convenience and beauty, in théere
following we will exemplify the dimensional reduction just
for the case of homogeneous spabés, . .. ,M,, although
the proceedure could be easily generalized for the case of Gij:=D;6;;—DiD;. (2.12
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Let us first consider the exceptional case 1:

1
S= —zj dPox[deg@[ePA"
2k Mg

x[R[g<°>]+D< 1)g O (ﬁ ‘;f

+ R[g(l)]ezﬁl}. (2.13

Here, forD,;>1 the kinetic term has a different sign than
usual, and foD ;=1 there is no kinetic term at all. Setting

b:=eP1F (2.14
it is
gt 11 d¢
X" Dy ¢ XM’
and, hence,
19¢ ip
:_ D (0) o=
f dPox | deg® I(qu[g ]-wg 3 X" ax"
+R[g(“]¢1‘2’Dl}, (2.15

with BD parameteiw= w(D,)=1/D,—1, depending on the
present extra dimensidp;. It is remarkable that the confor-
mal coupling constang; 4., in dimensiond+ 1 determines
the BD parameter for general extra dimensgbas

_4§c,d+l- (2-16)

w(d):= g 1=
Let us now examine the general case 1. Here it is useful
to diagonalize the metric tens¢.12). For the midisuper-
space metric

G:=G;dp'®dp = nydZedZ=-dz'edz
n
+> dZedZ, (2.17)
=2
the diagonalizing transformation
Z=T,p, i=1,...n (2.18
is given by(see alsd25])
n
=q7'2 DB,
j=1
n
2=[D;_1/31%]"2 Dy(B-B"Y, (219
j=i
i=2,...0n, where
q:=[D'/(D'—1)]1’2=—_1 D':=D-Dy
2 fc,D’Jrl
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Especially, we have

TLi=—, i=1,...n. (2.20
q
Let us determinéJ =T ! inverting Eq.(2.18 to
B= U' Z, i,j=1,...n. (2.21)
Equations (2.17 and (2.18 imply Gjj=ngTT,
i,j=1,...n, and hence,
U =G*Thm =G (T m;, i,i=1,...n, (222

where the tensor components of the inverse midisuperspace
metric are given as

ol 1
ij—__
G b, " 1o (2.23
With Eq. (2.20, we obtain especially
U =GITK py=—-GIT = t !
) "q(d'-1) o (D'-1)’
i=1,...n. (2.29
Using that, we can rewrite the acti¢@.11) as
1 " I
S= —2f dPox+/|deg@[[] e#
2KO M0 =1
ozt 9t 2 97" 97
(0) (ONv 0)\v
|R[g Itg IxXN ax¥ = (9X &X
n .
Jr(eqzl)—(z/D’)E R[g(i)]e—zzﬂzzu'kzk (2.25
=1
Let us define the BD field as
b:=ed7 = H L=y, (2.26
where
Uint: = Vint/ (2.27)

is a scale which renormalizes the internal space volume

Vint:= [ x-xm, 02 y\[det@/g@)[. Its  corresponding

Iogarlthmlc scale factor is the dilaton field. The derivative
of the latter is

J
—7Z
IxXH

1,
qeé w9

1:

(2.28

So, we can write the actiof2.25 as
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1 1 -
S= —zJ dPoxy/|deg | #R[g'”'] S= _ZJ d®ox|deg?|
2K0 Mg 2KO Mo

o n P
1d¢p dp iz o7 0 o, IP TP _
_ ONv_ 7 "7 (O = x{ R[§©@1— o O T V_V I) )
®g ¢ XN ox” ¢>i=22 axN ax¥ [g™] i,j2:1 9 axN ax (¢
n . (2.33
1- (2/D’ i)a—230_, Ulzk . .
+ot ! )21 RgM]e™ 2k=2Y% } (2.29 Note that theo-model metric (2.31 is flat such as the

midisuperspace metri(2.17); however, while Eq(2.17) is

, , _ Minkowskian, Eq.(2.31) is Euclidean. So we found equiva-
where noww=w(D')=1/D"'—1=—-4¢{.pr 1 iSthe BD pa- gt representations Eq@.11) and(2.33 of the same action
rameter, depending now on the total extra dimen&lénin g Kyt with different signature in their respective space of
the action(2.11) all scalar fieldsg', i=1,...n couple to  gcalar fields.
the curvatureR[g{?]. After the diagonalizatiori2.18), only In the casen= 1, with just one dilatonp, the action(2.33
one of the scalar fields, namely, the BD fiefdis coupled to  is equal to
the curvature. In the actiof2.29 scalar fieldsz' play the

: . 1 -
role of normal scalar matter fields coupled to the dilaton BD S= _f dPox/[deqi@| [R 5(0)
scalar ¢. Note that the kinetic terms for the fields, 2k5 Mg g™l RIg™]
i=2,...,n, have the usual normal sign. In contrast to the
action (2.15 with respect to its fieldp, Eqg. (2.29 contains _g(O),wa_‘P d¢ +RIgV]e (B/A)(p]_ (2.34
no self-interaction terms for any of its fieldg and z', ax* ax"
i=2,...0n. Rather, it contains $—2z' cross terms ; ; ; ; wetrinalika
(i=2,...n). These cross terms are, such as the fields E-Zhés_g%tlggdcf;(gir\:\égt;e%g;ﬁ]e stringlike” forrsee e.g.,
and ¢ themselves, of purely geometric nature. The excep-
tional case (2.15 corresponds formally to the case 1 b - ~ L
- © (0)
Z*=0,D,=0 (k=2, ... n) of Eq. (2.29. S= ZK(zJM d°oxy/|deg"™ | R[g"™]
For Dy#2, the action (2.29 can be written in a °
i i ig©
o-model representatiofil5). We define a new metrig, , _Q(O)}’-Vﬁ_@ anV—ZAe*ZW , (2.39
which yields the so-calleEinstein conformal frameand IXH IX
new scalar fields' (i=1,...,n) by ' .
where the constants are fixed by the conditions
2(0) _ 4(2/Dg—2)4(0) 1_ _ i
gl=¢?Pom2g), o= Alng, o¢'=7, . D 9 2 D-2
2A:=—-R[g'"], A\ '_)\C_Dl(DO—Z)' (2.39
i=2,...n, (2.30

In Eq. (2.359 \ is the dilatonic coupling constant. For
_ ) "™ ) Dy=10 andA =0 (e.g., for a Ricci flat internal spagethis
whereA:=*[w(D")+(Do—1)/(Do—2)]™" Note that this  action describes the scalar-tengioe., Yang-Mills-free part
transformation is regular forw(D')#wcp,, Where of the bosonic sector from the ten-dimensional Einstein-
wc,DO::_(Do_l)/(DO_Z)E_%gc_,éo is the conformal pa- Yang-Mills supergravity that occurs as low energy limit

; . : - from superstring theory.
rameter for dimensionD,. Taking into account that : .
—1<w(D')=<0 for D'=1 and w(0)=¢, one obtains: If For arbitraryA #0, the action(2.395 corresponds to the

Do>2, Eq.(2.30 is regular for amD' >0, with A2>0. For scalar-tensor sector of an effective string action in dimension

Do=2 or D'=0, Eq.(2.30 is singular. It is singular with Do, only if the dilatonic coupling is fixed to
A?=0 if (Dy,D')=(0,2). If Dy=1, Eq.(2.30 is singular
for D'=1, but regular for anyD’'>1. In the latter case
A?<0, and a real redefinition of the complex field,
o'—|¢, yields again a Minkowskian metric in the space of The coupling(2.37) is obtained for our models with Eq.
scalar fields. (2.36 only in the limit of infinite internal dimension:

For Dy>2, with the flato-model metric

2.y 2_
MNi=Ai=p (2.37)

No—N5=

D> for D;—o0. (2.39
do=0,de'®dgl, (oj)=diag+1,...,+1), (2.3) 0
Especially for the ten-dimensional effective action, the re-
wherei,j=1, ... n, and the potential quired value of\?= } is obtained just in this limit, while, for
A =0 above, the value ok was completely arbitrary. In-
n . deed,A =0 is a critical value for the string theories, whence
V(gh=—e" BAS Rrgie 252U (2.32  A#0 occurs just for noncritical string theories.
i=1 The action(2.35 can equivalently be obtained from a
multidimensional cosmological model with a usual cosmo-
where B:=1-2/D’'—D,/(Dy—2), the action(2.29 then logical termA, if the internal spacéM, is a Ricci flat Ein-
reads stein space, i.eR[g']=0. Then, the equivalence to our pre-



6190

vious model is given by exchangirfg— 1+ 1—D;, which
case
2)], and the correspondence to non-

obviously leaves Dy invariant. In this
=D1/[(D—2)(Do—

critical string theories is again given in the lin{2.38.
Finally, note that forD,— 2, both couplings\? and A2

become asymptotically equal t®—2)

internal space.

Ill. 2D DILATON GRAVITY
FROM INHOMOGENEOUS COSMOLOGY

~1 Hence, in the
limit Dg—2, our models become, independently from the
internal dimensionD 4, equivalent to effective low energy
models of string theory, for any scalar curvaturé /2 of the
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D, 1
QZ.:_ -
' (D, +1)TF P17
yields
X o &(1) Dy K
2A=—-R[g"V]=~ (Dt DI 01~ (k) 1K
(3.6

and the action(3.4) now reads

1 . . .
S=-—> f d?’xy|deg'?e ?{R[§\”]-2Ae” (Z0 7},
2K Mo
3.7

Let us now consider in more detail the dimensional reduclf we assume that the dilaton field is specifically given

tion to a space-time of dimensiddy=2. In this case the
conformal transformation(2.30 is singular, whence the
model of Eqg.(2.29 can not be expressed in a conformal
Einstein-Pauli frame. This is not a fault of the theory, but

through the geometry oW, and the dimensioD, of M4,
according to

e 29 = (k+1)(R[§O])¥, (3.9

rather corresponds to the well-known fact that two-then the action(3.7) takes the forni23,30-32

dimensional Einstein equations are empty, i.e., they do not
imply a dynamics[21,22. Thus, we shall consider two-

dimensional dilaton gravity only.

We start with the case with one dilatams=1. The action

(2.13 can be written in the “stringlike” form29-31]

1
S=5 | dx e e #| Rig®
2K Mo

Jdo Jdo
1))Vl —2[(1k)+m]o
+amg O oy 5 } (3.0
where
1 1
(T:Z_ED]_B,
. Dl_l
m:= D, ’
D
ki=— ! ,
D;+1
2A:=—-R[g"¥]. (3.2

By a conformal transformation @{’) to

G,=e *"g,), (33

we can formulate the action without kinetic dilation term, as

1 — ~
S= Z—ZJ d?x+/|deg ©|e 27{R[g (@]-2Ae (2K},
KoJ Mg
(3.9

The 2D actionq3.1) and (3.4) are invariant under homoge-

neous conformal transformations
0 - 0 1
§°:=0"25, gh:=0"2g), (3.5

where() is constant. Applying Eq(3.5 with

1 - v
s=5o | dxJaeB RGO
KoJ Mg

1 < v
:_2j d’xy|deg'[(RIGODMPY. (3.9
2kg Mg

In the general case of multiscalar fields, the kinetic term of
the dilaton can be removed by an obvious analogous proce-
dure. The “stringlike” form of the action(2.25) is

1
S= —QJ d?xy|degV]e 2"
2kq Mg

do do 97" o7
% 074 (0w g —
[R[g I+amg R o =9 o
n P
— e 2k EmaS oA o= 23] U7 (3.10
=
where now
1
o =—§qzl,
_ 1 D'-1
m.—?—T,
k: ol
. D,_‘r_l!
2A;:=—R[g"] (.19

With Eq. (3.11), the conformal transformatio¢8.3) yields
1 —
S= —zf d?x+/|dely (V]e 2"
ZKO M

i7" 97
axN gx”

fR[g ©1- 2 g O—x

n

_e (20 gp g2 U

=1

(3.12
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In Eq. (3.12) there is no kinetic term of the dilaton field. The  Although, in the exceptional dimensions, the models
kinetic terms of all extra scalar fieldshave the normal sign. (2.29 and(2.33 are mathematically inequivalent, the ques-
The extra fields' play the role of usual matter, coupling to tion remains, as for all other dimensions, which model is the

the dilaton fieldo. physical one. The difference in the exceptional cases is that,
in principle, this question could be decided by experiments
IV. CONCLUSIONS AND DISCUSSION on aclassicallevel. For the dimensio®,>2, the two mod-

els are mathematically equivalent; so on the classical level it
We started from multidimensional cosmology. The corre-cannot be decided which is the physical one. However, if one
sponding metric is, from one side, a generalization of thejemands that the gravitational interaction is generated by a
Friedmann metric, which corresponds here to the specigdyre massless spin-two gravitémithout scalar spin-zero ad-
case where alMo,My, ... M, are spaces of constant cur- mixture), then, reasoning similar as [84], Eq. (2.33 rather
vature. From another side, our metric generalizes the anisgnhgn Eq.(2.29 has to be taken as the physical model.
tropic Kasner metric. In contrast to tiispatially homoge- Taking into account the conformal relation of scalar-
neous Friedmann and Kasner metrics, our mUltidimenSionqbnsor theories to fourth)r h|gher) order gravity(see' e.g.,
metric is, in general, éspatlall)b inhomogeneous one with [35])’ the recent debate on the physica| metﬂﬁ_gq con-
scale factors depending on spatial coordinatesVigf We  cerns also the corresponding scalar-tensor theories. The re-
obtained effective BD formulations for multidimensional sult of this pure|y classical debate was rather poor: It main|y
models via dimensional reduction dvl,. Self-interaction  confirms Brang40], who pointed out that, once the weak
terms appear exclusively in the degenerate ¢ask where  equivalence principle holds true in a given frafire[40] it is
there is only one scalar field. For=2 scalar fields, the the frame of the original higher-order gravityit will be
BD-like effective action(2.29 contains¢—z' cross terms, viplated in any nontrivially conformally related frame. How-
between the BD field¢ and the other scalar fields',  ever, the choice of the frame with respect to which a test
i=2,...n, instead. particle of ordinary matter moves along geodesics remains
In the case of only one internal spabé,, the actions arbitrary for classical scalar-tensor theories. So, the frame of
obtained after dimensional reduction of the multidimensionaBrans and Dickd3] might be the physical one, giving geo-
Einstein-Hilbert one may be written in stringlike form. Thus, desic paths for minimally coupled test matter, or likewise the
the associated field equations have the same form as for tiEnstein-Pauli frame might be the physical one. [il],
(scalay bosonic sector of the superstring theory in the lowHawking argued that black holes might follow geodesics in
energy limit. The corresponding effective models of stringthe Einstein-Pauli frame but violate tlstrong equivalence
theory are obtained from our models in the limit of infinite principle in the BD frame, while the latter provides geodesic
internal dimensiorD;— . paths for usual test matter. For massive objects such as black
The BD-like effective action(2.29, which has a holes, this phenomenon is known as the Nordtvedt effect
Minkowskian metric in the space of scalar fields,(v&ith  [42]. Furthermore, Ch¢43] showed that in the BD frame,
few exceptional casgsequivalent to a conformal Einstein quantum corrections enforce also a violation of theak
a-model action(2.33, which has an Euclidean metric in the equivalence principle. We believe, therefore, that the issue of
space of scalar fields. The case of a one-dimensional Unthe physical frame will be resolved finally only by a quantum
verse is exceptional: There, the metric in the spacé&esf)  theory of gravity. Since such a theory might not be subject to
scalar fields of a conformal Einsteio-model is also any equivalence principle, the latter might no longer serve as
Minkowskian. the guiding principle for the physical metric. However, gen-
With the effective dimensioiD, of the Universe and the eralized arguments of Chi®4,43 give some hint that the
total extra dimensiol ', the singular cases of the conformal Einstein-Pauli framgwhen quantum corrections are small
transformation are given bfpy,=2 or D’'=0, where Eq. enough not to destroy any frame af)atlight then, neverthe-
(2.30 is undefined, or byp=Dy+D’'=2, whereA in Eq. less, be taken as the physical one.
(2.30 is zero. In these exceptional cases our model is not It should, however, be noted that our multiscalar-tensor
conformal to an Einsteinian one. However, one should als¢heories differ essentially from usual scalar-tensor theories:
keep in mind that Einstein equations in a two-dimensionalThere, some “ordinary” matter field is minimally coupled to
space-time do not imply any dynami¢see[21,22). For a the geometry, either in the Jordan-Brans-Dicke frame or,
space-time withDy=2, the dimensional reduction of the equally well, in the Einstein-Pauli framsee alsq35]). We
multidimensional model can be written as a “stringlike” di- saw above that, arguing on the basis of a classical equiva-
laton gravity, representable in the for(8.12, where the lence principle for the ordinary matter only, there is no way
dilaton appears without kinetic term, and all extra fieldsto select the physical frame. However, in our models all sca-
couple to the dilaton with normal signs of their kinetic terms.lar fields are derived from a multidimensional geometry,
If there are no fields besides the dilaton, then the action cawhich determinesall couplings ofall scalar fields to the
be represented in the for(B8.9) (see als$23,30—33), which  geometry and among one another. These couplings can be
has a nontrivial variation only for nonvanishing extra dimen-tested, in principle, by experiments, thus selecting the physi-
sionD,>0. cally admissible multiscalar-tensor theories and their corre-
A conformal equivalence transformation between twosponding multidimensional counterparts. Because of this pre-
scalar-tensor Lagrangian models becoming singular at spelictive power, it is tempting to postulate that any
cific parameterghere given by the exceptional dimensipns multiscalar-tensor model should derive ifscalaj fields
is a familiar effect. Such singularities yielding inequivalent from a higher-dimensional geometry, i.e., @talaj matter
models were also discussed[B83]. should have some geometric origin.



6192 M. RAINER AND A. ZHUK 54

ACKNOWLEDGMENTS useful comments concerning the principle of equivalence.
A.Z. also thanks Professor Kleinert and the Freie Univesita
This work was supported in part by DAAIM.R.), by  Berlin, Professor H. v. Borzeszkowski and Technische Uni-
DFG Grant No. 436 UKR-17/7/98A.Z.), and DFG Grant Versitd, Berlin, as erll as the members of the Gravitation-
No. RUS 113/7/0. M.R., appreciating the hospitality of col- SProjekt at UniversitaPotsdam for their hospitality. We are
leagues at IPM in Tehran, is grateful for discussions with V.also grateful to H.-J. Schmidt for useful comments on the
Karimipour, A. Mustafazade, and especially H. Salehi forsubject.

[1] D. La and P. J. Steinhardt, Phys. Rev. Lég, 376 (1989. [23] T. Klosch and T. Strobl, Class. Quantum Gra8, 965(1996.
[2] D. La and P. J. Steinhardt, Phys. Lett2B0, 375(1989. [24] V. D. Ivashchuk and V. N. Melnikov, Gravit. Cosmdl.301
[3] C. Brans and R. H. Dicke, Phys. Re24, 925 (1961). (1995.
[4] T. Damour and J. H. Taylor, Phys. Rev.43, 1840(1992. [25] V. D. Ivashchuk, V. N. Melnikov, and A. I. Zhuk, Nuovo
[5] T. Damour, G. W. Gibbons, and C. Gundlach, Phys. Rev. Lett. Cimento B104, 575(1989.

64, 123(1990. [26] M. B. Green, J. H. Schwarz, and E. WitteByperstring Theory
[6] R.V. Wagoner, Phys. Rev. b, 3209(1970. (Cambridge University Press, Cambridge, England, 1986
[7] K. Nordtvedt, Jr., Astrophys. 161, 1059(1970. [27] T. Maki and K. Shiraishi, Class. Quantum Gral0, 2171
[8] J. D. Barrow and K. Maeda, Nucl. PhyB341, 294 (1990. (1993.

(9] Z.g\;.oStelnhardt and F. S. Acceta, Phys. Rev. 1641.2740 [28] V. D. Ivashchuk and V. N. Melnikov, “Multidimensional ex-
[10] A. R. Liddle and D. Wands, Phys. Rev. 45, 2665(1992.
[11] J. D. Barrow, Phys. Rev. @7, 5329(1993.

[12] J. D. Barrow, Phys. Rev. @8, 3592(1993.
[13] J. P. Mimoso and D. Wands, Phys. Rev5D 477 (1995.
[14] A. Serna and J. M. Alimi, Phys. Rev. B3, 3074(1996); 53,

tremal dilatonic black holes in string-like model with cosmo-
logical term,” Report No. hep-th/96031Q@npublished

[29] C. G. Callan, Jr., S. B. Giddings, J. A. Harvey, and A.
Strominger, Phys. Rev. B5, R1005(1992.

[30] S. Mignemi, Phys. Rev. 30, R4733(1994.

[31] S. Mignemi and H.-J. Schmidt, Class. Quantum Gr£;.849

3087(1996.
[15] T. Damour and G. Esposito-Farese, Class. Quantum Grav. (1995.

2665(1992. [32] G. Magnano, M. Ferraris, and M. Francaviglia, Gen. Relativ.
[16] A. L. Berkin and R. W. Hellings, Phys. Rev. B9, 6442 Gravit. 19, 465 (1987).

(1994. [33] M. Rainer, Int. J. Mod. Phys. @, 397 (1995.
[17] L. Amendola, E. W. Kolb, M. Litterio, and F. Occhionero, [34] Y. M. Cho, Phys. Rev. Let68, 3133(1992.

Phys. Rev. D42, 1944(1990. [35] G. Magnano and L. M. Sokotowski, Phys. Rev.HD, 5039
[18] R. Holman, E. W. Kolb, S. L. Vadas, and Y. Wang, Phys. Rev. (1994.

D 43, 995(1991). [36] S. Cotsakis, Phys. Rev. @7, 1145 (1993; 49, 1145E)
[19] A. S. Majumdar and S. K. Sethi, Phys. Rev. 4B, 5315 (1994.

(1992. [37] P. Tessandier, Phys. Rev. %2, 6195(1995.
[20] V. A. Berezin, G. Domenech, M. L. Levians, C. O. Lousto, [38] H.-J. Schmidt, Phys. Rev. B2, 6198(1995.

and N. D. Umezez, Gen. Relativ. Gravitl, 1177(1989. [39] S. Cotsakis, Phys. Rev. B2, 6199(1995.

[21] E. Abdalla, M. C. B. Abdalla, and K. D. Roth&lonperturba-  [40] C. H. Brans, Class. Quantum Gra.L197 (1988.
tive Methods in Two-Dimensional Quantum Field Theory[41] S. Hawking, Commun. Math. Phy25, 167 (1971J).

(World Scientific, Singapore, 1991 [42] K. Nordtvedt, Jr., Phys. Rew.69, 1017(1968.
[22] E. Abdalla, M. C. B. Abdalla, D. Dalmazi, and A. Zad2D- [43] Y. M. Cho, in Proceedings of the International Workshop on
Gravity in Non-Critical Strings. Discrete and Continuum Ap- Gravitation and Fifth Force Seoul, Korea, 1995, edited by

proaches(Springer-Verlag, Berlin, 1994 Sung-Won Kim(Kyung Moon Sa, Seoul, 1995pp. 46-55.



