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Inhomogeneous multidimensional cosmological models with a higher-dimensional space-time manifold
M5M03) i51

n Mi (n>1) are investigated under dimensional reduction to tensor-multiscalar theories. In the
Einstein conformal frame, these theories take the shape of a flats model. For the singular case whereM0 is
two dimensional, the dimensional reduction to dilaton gravity is preformed with different distinguished repre-
sentations of the action.@S0556-2821~96!03320-6#
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I. INTRODUCTION

In recent years, scalar-tensor theories have received
newed interest. There are two reasons for this. First,
tended inflation@1,2# which originally was based on standar
Brans-Dicke~BD! theory@3# revives the scenario of inflation
via a first-order transition. It provides a natural~non-fine-
tuned! way to restore the original ideas of inflation whil
avoiding the cosmological difficulties coming from vacuum
dominated exponential expansion obtained in general rela
ity. Second, scalar-tensor theories, generalizing standard
theory, can satisfy the solar system criteria@4# and other
present observations@5# to arbitrary accuracy, but still di-
verge from general relativity in the strong field limit. Thu
in the future, such theories may provide an important tes
general relativity. It should be noted in that context that, v
conformal transformation of the metric, we can write scal
tensor models equally well in the Jordan-Brans-Dicke fra
or in the Einstein-Pauli frame, and the question which fra
is a physical one is still open.

Several ways to generalize standard BD theory were p
posed. These theories can be split into three main gro
First, there are the theories with a BD parameterv depend-
ing on the dilatonic scalar field@6–14#. The second class is
represented by theories with more than one dilaton fi
@4,15,16#. All other possible variations of the standard B
model form the third group, containing, e.g., models
which the dilaton couples with different strengths to bo
visible matter and conjectured ‘‘dark’’ matter@5#.

Scalar-tensor theories follow naturally as the low-ener
limit of various Kaluza-Klein theories. Among them, mult
dimensional cosmological models with a space-time cons
ing of n>2 Einstein spaces are most popular. Usually, th
ries with one internal Einstein space (n52) are considered
@17–19#. The dimensional reduction of these theories yie
only one dilaton field~such as in the original BD theory!.
Here, we show that this case is exceptional, with a midi
perspace metric of degenerate signature. The model
n>2 was considered in the paper@20#, where the emphasis
was on the problem of the internal dimensions compactifi
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tion. In our paper we shall give a more elegant way of di
mensional reduction to tensor-multiscalar theories which re
veals explicitly the nature of the dilaton fields. For example
the dilaton field with opposite sign in the kinetic term of the
Lagrangian is connected with a dynamical volume of the
whole internal space. In a conformal Einstein-Pauli frame,
s-model representation of the theory under consideration ca
easily be obtained.

In Sec. II, it is shown, for space-time dimensionD0.2
after dimensional reduction, that, in thes-model representa-
tion of our model, the metric on the space of scalar fields i
the flat Euclidean one. IfD052, there is no conformal
Einstein~-Pauli! frame. This is actually no fault of the theory
here, because in two dimensions the Einstein action is a t
pological invariant, whence it does not yield a dynamics o
the two-geometry.

Nevertheless, it is worthwhile to consider here two-
dimensional~2D! dilation gravity, which has been a subject
of intensive investigations recently@21–23#. In Sec. III we
obtain the action of 2D dilaton gravity under dimensiona
reduction from cosmological models. Different representa
tions are given, which correspond to different choices of con
formal frames.

II. EFFECTIVE BD MODELS
FROM MULTIDIMENSIONAL MODELS

Let us now consider a multidimensional space-time man
fold

M5M03)
i51

n

M i . ~2.1!

The metric onM can be decomposed as

g5g~0!1(
i51

n

e2b i ~x!g~ i !, ~2.2!

wherex are some coordinates ofM0, and
6186 © 1996 The American Physical Society
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g~0!5gmn
~0!~x!dxm

^dxn. ~2.3!

With the Laplace-Beltrami operator onM0 defined by

D@g~0!#5
1

Audetg~0!u

]

]xmSAudetg~0!ug~0!mn
]

]xnD , ~2.4!

we get the Ricci curvature scalar@24#

R@g#5R@g~0!#1(
i51

n

e22b iR@g~ i !#2 (
i , j51

n

~Did i j1DiD j !

3g~0!mn
]b i

]xm

]b j

]xn 22(
i51

n

DiD@g~0!#b i . ~2.5!

With total dimensionD:5( i50
n Di , k2 a D-dimensional

gravitational coupling constant, andSGH the standard
Gibbons-Hawking boundary term, we consider an action
the form

S5
1

2k2E
M
dDxAudetguR@g#1SGH. ~2.6!

In the following we assume thatR@g( i )# is finite on
(Mi ,g

( i )). Let us now consider the volumesm i of
(Mi ,g

( i )) and the total internal space volumem, satisfying

m i5E
Mi

dDiyAudetg~ i !u, m5)
i51

n

m i . ~2.7!

If all of the spacesMi ( i51, . . . ,n) are compact, then the
volumesm i andm are finite, and so are also the numbers

r i5E
Mi

dDiyAudetg~ i !uR@g~ i !#. ~2.8!

However, a noncompactMi might have infinite volumem i or
infinite r i . Nevertheless, for the following we have to a
sume only that all ratiosr i /m i , i51, . . . ,n are finite. This
is, in particular, the case whenMi is homogeneous. Then,

r i
m i

5R@g~ i !#

is always constant and finite. In the special case, whereMi is
anEinsteinmanifoldRj

k@g( i )#5l id j
k with constantl i , it is

r i
m i

5R@g~ i !#5l iDi ,

and, more specially, whenMi hasconstant curvature k,

r i
m i

5R@g~ i !#5kDi~Di21!.

However, here we do not restricta priori to Einstein or con-
stant curvature spaces. For convenience and beauty, in
following we will exemplify the dimensional reduction jus
for the case of homogeneous spacesM1 , . . . ,Mn , although
the proceedure could be easily generalized for the cas
of

s-

the
t

e of

inhomogeneousM1 , . . . ,Mn . ~Then, one has to work with
r i /m i in place ofR@g( i )#.! The bare gravitational coupling
constant

k25k0
2
•m ~2.9!

might become infinite, while the trueD0-dimensional cou-
pling constant k0

2 is always finite. If D054, then
k0

258pGN , whereGN is the Newton constant. Then, the
action ~2.6! remains well defined, even when some of the
volumesm i are infinite. After rewriting

1

k2E
M
dDxAudetgu(

i51

n

DiD@g~0!#b i

5
m

k2(
i51

n

DiE
M0

dD0xAudetg~0!u )
l51

n

eDlb
l

3
1

Audetg~0!u

]

]xl S Audetg~0!ug~0!ln
]

]xn b i D
5

1

k0
2(
i51

n

DiE
M0

dD0x

3F ]

]xl S Audetg~0!ug~0!ln)
l51

n

eDlb
l ]

]xn b i D
2Audetg~0!ug~0!ln

]b i

]xn)
l51

n

eDlb
l

(
j51

n

D j

]b j

]xlG
5SGH2

1

k0
2E

M0

dD0xAudetg~0!u )
l51

n

eDlb
l

3 (
i , j51

n

DiD jg
~0!ln

]b i

]xl

]b j

]xn , ~2.10!

the action is

S5
1

2k0
2E

M0

dD0xAudetg~0!u)
l51

n

eDlb
l

3HR@g~0!#2 (
i , j51

n

Gi j g
~0!ln

]b i

]xl

]b j

]xn

1(
i51

n

R@g~ i !#e22b iJ , ~2.11!

where

Gi j :5Did i j2DiD j . ~2.12!
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Let us first consider the exceptional casen51:

S5
1

2k0
2E

M0

dD0xAudetg~0!ueD1b1

3HR@g~0!#1D1~D121!g~0!ln
]b1

]xl

]b1

]xn

1R@g~1!#e22b1J . ~2.13!

Here, forD1.1 the kinetic term has a different sign tha
usual, and forD151 there is no kinetic term at all. Settin

f:5eD1b1, ~2.14!

it is

]b1

]xl 5
1

D1

1

f

]f

]xl ,

and, hence,

S5
1

2k0
2E

M0

dD0xAudetg~0!u H fR@g~0!#2vg~0!ln
1

f

]f

]xl

]f

]xn

1R@g~1!#f122/D1J , ~2.15!

with BD parameterv5v(D1)51/D121, depending on the
present extra dimensionD1. It is remarkable that the confor
mal coupling constantjc,d11 in dimensiond11 determines
the BD parameter for general extra dimensiond as

v~d!:5
1

d
21[24jc,d11 . ~2.16!

Let us now examine the general casen.1. Here it is useful
to diagonalize the metric tensor~2.12!. For the midisuper-
space metric

G:5Gi j db i
^db j5hkldz

k
^dzl52dz1^dz1

1(
i52

n

dzi ^dzi , ~2.17!

the diagonalizing transformation

zi5Ti jb
j , i51, . . . ,n ~2.18!

is given by~see also@25#!

z15q21(
j51

n

D jb
j ,

zi5@Di21 /S i21S i #
1/2(

j5 i

n

D j~b j2b i21!, ~2.19!

i52, . . . ,n, where

q:5@D8/~D821!#1/25
1

2Ajc,D811

, D8:5D2D0 ,

Sk :5(
i5k

n

Di .
n
g

-

Especially, we have

T1i5
Di

q
, i51, . . . ,n. ~2.20!

Let us determineU5T21 inverting Eq.~2.18! to

b i5Ui
jz
j , i , j51, . . . ,n. ~2.21!

Equations ~2.17! and ~2.18! imply Gi j5hklT
k
iT

l
j ,

i , j51, . . . ,n, and hence,

Ui
j5GikTlkh l j5Gik~Tt!k

lh l j , i , j51, . . . ,n, ~2.22!

where the tensor components of the inverse midisuperspac
metric are given as

Gi j5
d i j

Di
1

1

12D8
. ~2.23!

With Eq. ~2.20!, we obtain especially

Ui
15Gi j Tkjhk152Gi j T1 j5

1

q~D821!
5

1

AD8~D821!
,

i51, . . . ,n. ~2.24!

Using that, we can rewrite the action~2.11! as

S5
1

2k0
2E

M0

dD0xAudetg~0!u)
l51

n

eDlb
l

3HR@g~0!#1g~0!ln
]z1

]xl

]z1

]xn 2(
i52

n

g~0!ln
]zi

]xl

]zi

]xn

1~eqz
1
!2 ~2/D8!(

i51

n

R@g~ i !#e22(k52
n Uk

i zkJ . ~2.25!

Let us define the BD field as

f:5eqz
1
5)

l51

n

eDlb
l
[v int , ~2.26!

where

v int :5Vint /m ~2.27!

is a scale which renormalizes the internal space volum
Vint :5*M13•••3Mn

dD8yAudet(g/g(0))u. Its corresponding

logarithmic scale factor is the dilaton fieldz1. The derivative
of the latter is

]

]xm z
15

1

qf
]mf. ~2.28!

So, we can write the action~2.25! as
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S5
1

2k0
2E

M0

dD0xAudetg~0!u H fR@g~0!#

2vg~0!ln
1

f

]f

]xl

]f

]xn 2f(
i52

n

g~0!ln
]zi

]xl

]zi

]xn

1f12 ~2/D8!(
i51

n

R@g~ i !#e22(k52
n Uk

i zkJ , ~2.29!

where nowv5v(D8)51/D821[24jc,D811 is the BD pa-
rameter, depending now on the total extra dimensionD8. In
the action~2.11! all scalar fieldsb i , i51, . . . ,n couple to
the curvatureR@g(0)#. After the diagonalization~2.18!, only
one of the scalar fields, namely, the BD fieldf, is coupled to
the curvature. In the action~2.29! scalar fieldszi play the
role of normal scalar matter fields coupled to the dilaton B
scalar f. Note that the kinetic terms for the fieldszi ,
i52, . . . ,n, have the usual normal sign. In contrast to th
action ~2.15! with respect to its fieldf, Eq. ~2.29! contains
no self-interaction terms for any of its fieldsf and zi ,
i52, . . . ,n. Rather, it contains f2zi cross terms
( i52, . . . ,n). These cross terms are, such as the fieldszi

andf themselves, of purely geometric nature. The exce
tional case ~2.15! corresponds formally to the cas
zk[0, Dk[0 (k52, . . . ,n) of Eq. ~2.29!.

For D0Þ2, the action ~2.29! can be written in a
s-model representation@15#. We define a new metricĝmn

(0)

which yields the so-calledEinstein conformal frame, and
new scalar fieldsw i ( i51, . . . ,n) by

ĝmn
~0!5f~2/D022!gmn

~0! , w152Alnf, w i5zi ,

i52, . . . ,n, ~2.30!

whereA:56@v(D8)1(D021)/(D022)#1/2. Note that this
transformation is regular for v(D8)Þvc,D0

, where

vc,D0
:52(D021)/(D022)[2 1

4jc,D0

21 is the conformal pa-

rameter for dimensionD0. Taking into account that
21,v(D8)<0 for D8>1 andv(0)5`, one obtains: If
D0.2, Eq.~2.30! is regular for anyD8.0, withA2.0. For
D052 or D850, Eq. ~2.30! is singular. It is singular with
A250 if (D0 ,D8)5(0,2). If D051, Eq. ~2.30! is singular
for D851, but regular for anyD8.1. In the latter case
A2,0, and a real redefinition of the complex field
w1→uw1u, yields again a Minkowskian metric in the space
scalar fields.

For D0.2, with the flats-model metric

ds5s i j dw i
^dw j , ~s i j !5 diag~11, . . . ,11!, ~2.31!

wherei , j51, . . . ,n, and the potential

V~w i !52e2 ~B/A! w1(
i51

n

R@g~ i !#e22(k52
n Uk

i wk, ~2.32!

where B:5122/D82D0 /(D022), the action~2.29! then
reads
D

e

p-
e

,
of

S5
1

2k0
2E

M0

dD0xAudetĝ~0!u

3H R̂@ ĝ~0!#2 (
i , j51

n

s i j ĝ
~0!ln

]w i

]xl

]w j

]xn 2V~w i !J .
~2.33!

Note that thes-model metric ~2.31! is flat such as the
midisuperspace metric~2.17!; however, while Eq.~2.17! is
Minkowskian, Eq.~2.31! is Euclidean. So we found equiva-
lent representations Eqs.~2.11! and~2.33! of the same action
S, but with different signature in their respective space o
scalar fields.

In the casen51, with just one dilatonw, the action~2.33!
is equal to

S5
1

2k0
2E

M0

dD0xAudetĝ~0!u H R̂@ ĝ~0!#

2ĝ~0!mn
]w

]xm

]w

]xn 1R@g~1!#e2 ~B/A! wJ . ~2.34!

This action can be written in the ‘‘stringlike’’ form~see e.g.,
@26–28# and references therein!

S5
1

2k0
2E

M0

dD0xAudetĝ~0!u H R̂@ ĝ~0!#

2ĝ~0!mn
]w

]xm

]w

]xn 22Le22lwJ , ~2.35!

where the constants are fixed by the conditions

2L:52R@g~1!#, l2:5lc
25

D22

D1~D022!
. ~2.36!

In Eq. ~2.35! l is the dilatonic coupling constant. For
D0510 andL50 ~e.g., for a Ricci flat internal space!, this
action describes the scalar-tensor~i.e., Yang-Mills-free! part
of the bosonic sector from the ten-dimensional Einstein
Yang-Mills supergravity that occurs as low energy limi
from superstring theory.

For arbitraryLÞ0, the action~2.35! corresponds to the
scalar-tensor sector of an effective string action in dimensio
D0, only if the dilatonic coupling is fixed to

l2:5ls
25

1

D022
. ~2.37!

The coupling ~2.37! is obtained for our models with Eq.
~2.36! only in the limit of infinite internal dimension:

lc
2→ls

25
1

D022
for D1→`. ~2.38!

Especially for the ten-dimensional effective action, the re
quired value ofl25 1

8 is obtained just in this limit, while, for
L50 above, the value ofl was completely arbitrary. In-
deed,L50 is a critical value for the string theories, whence
LÞ0 occurs just for noncritical string theories.

The action~2.35! can equivalently be obtained from a
multidimensional cosmological model with a usual cosmo
logical termL, if the internal spaceM1 is a Ricci flat Ein-
stein space, i.e.,R@g1#50. Then, the equivalence to our pre-
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vious model is given by exchangingD21↔12D1, which
obviously leaves D0 invariant. In this case
lc
25D1 /@(D22)(D022)#, and the correspondence to non

critical string theories is again given in the limit~2.38!.
Finally, note that forD0→2, both couplingsls

2 and lc
2

become asymptotically equal to (D022)21. Hence, in the
limit D0→2, our models become, independently from th
internal dimensionD1, equivalent to effective low energy
models of string theory, for any scalar curvature2L/2 of the
internal space.

III. 2D DILATON GRAVITY
FROM INHOMOGENEOUS COSMOLOGY

Let us now consider in more detail the dimensional redu
tion to a space-time of dimensionD052. In this case the
conformal transformation~2.30! is singular, whence the
model of Eq.~2.29! can not be expressed in a conform
Einstein-Pauli frame. This is not a fault of the theory, b
rather corresponds to the well-known fact that tw
dimensional Einstein equations are empty, i.e., they do
imply a dynamics@21,22#. Thus, we shall consider two-
dimensional dilaton gravity only.

We start with the case with one dilaton,n51. The action
~2.13! can be written in the ‘‘stringlike’’ form@29–31#

S5
1

2k0
2E

M0

d2xAudetg~0!ue22sHR@g~0!#

14mg~0!ln
]s

]xl

]s

]xn 22Le22[~1/k!1m]sJ , ~3.1!

where

s:52
1

2
D1b

1,

m:5
D121

D1
,

k:52
D1

D111
,

2L:52R@g~1!#. ~3.2!

By a conformal transformation ofgmn
(0) to

g̃ mn
~0!5e22msgmn

~0! , ~3.3!

we can formulate the action without kinetic dilation term,

S5
1

2k0
2E

M0

d2xAudetg̃ ~0!ue22s$R̃@ g̃ ~0!#22Le2~2/k!s%.

~3.4!

The 2D actions~3.1! and ~3.4! are invariant under homoge
neous conformal transformations

ǧmn
~0! :5V22g̃ mn

~0! , ǧmn
~1! :5V22gmn

~1! , ~3.5!

whereV is constant. Applying Eq.~3.5! with
-

e

c-

l
t
-
ot

s

V2:52
D1

~D111!11 1/D1

1

2L

yields

2Ľ:52Ř@ ǧ~1!#52
D1

~D111!11 1/D1
5

k

~k11!11 1/k

~3.6!

and the action~3.4! now reads

S5
1

2k0
2E

M0

d2xAudetǧ~0!ue22s$Ř@ ǧ~0!#22Ľe2 ~2/k! s%.

~3.7!

If we assume that the dilaton field is specifically given
through the geometry onM0 and the dimensionD1 of M1,
according to

e22s:5~k11!~Ř@ ǧ~0!# !k, ~3.8!

then the action~3.7! takes the form@23,30–32#

S5
1

2k0
2E

M0

d2xAudetǧ~0!u~Ř@ ǧ~0!# !k11

5
1

2k0
2E

M0

d2xAudetǧ~0!u~Ř@ ǧ~0!# !1/~D111!. ~3.9!

In the general case of multiscalar fields, the kinetic term of
the dilaton can be removed by an obvious analogous proce
dure. The ‘‘stringlike’’ form of the action~2.25! is

S5
1

2k0
2E

M0

d2xAudetg~0!ue22s

3HR@g~0!#14mg~0!ln
]s

]xl

]s

]xn 2(
i52

n

g~0!ln
]zi

]xl

]zi

]xn

2e22~1/k 1m!s(
i51

n

2L ie
22( j52

n U j
i zjJ , ~3.10!

where now

s :52
1

2
qz1,

m:5
1

q2
5
D821

D8
,

k:52
D8

D811
,

2L i :52R@g~ i !#. ~3.11!

With Eq. ~3.11!, the conformal transformation~3.3! yields

S5
1

2k0
2E

M0

d2xAudetg̃ ~0!ue22s

3H R̃@ g̃ ~0!#2(
i52

n

g̃ ~0!ln
]zi

]xl

]zi

]xn

2e2~2/k!s(
i51

n

2L ie
22( j52

n U j
i zjJ . ~3.12!
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In Eq. ~3.12! there is no kinetic term of the dilaton field. Th
kinetic terms of all extra scalar fieldszi have the normal sign.
The extra fieldszi play the role of usual matter, coupling t
the dilaton fields.

IV. CONCLUSIONS AND DISCUSSION

We started from multidimensional cosmology. The corr
sponding metric is, from one side, a generalization of t
Friedmann metric, which corresponds here to the spe
case where allM0 ,M1 , . . . ,Mn are spaces of constant cur
vature. From another side, our metric generalizes the an
tropic Kasner metric. In contrast to the~spatially! homoge-
neous Friedmann and Kasner metrics, our multidimensio
metric is, in general, a~spatially! inhomogeneous one with
scale factors depending on spatial coordinates ofM0. We
obtained effective BD formulations for multidimensiona
models via dimensional reduction onM0. Self-interaction
terms appear exclusively in the degenerate case~2.15! where
there is only one scalar field. Forn>2 scalar fields, the
BD-like effective action~2.29! containsf2zi cross terms,
between the BD fieldf and the other scalar fieldszi ,
i52, . . . ,n, instead.

In the case of only one internal spaceM1, the actions
obtained after dimensional reduction of the multidimension
Einstein-Hilbert one may be written in stringlike form. Thu
the associated field equations have the same form as for
~scalar! bosonic sector of the superstring theory in the lo
energy limit. The corresponding effective models of strin
theory are obtained from our models in the limit of infinit
internal dimensionD1→`.

The BD-like effective action ~2.29!, which has a
Minkowskian metric in the space of scalar fields, is~with
few exceptional cases! equivalent to a conformal Einstein
s-model action~2.33!, which has an Euclidean metric in th
space of scalar fields. The case of a one-dimensional U
verse is exceptional: There, the metric in the space of~real!
scalar fields of a conformal Einsteins-model is also
Minkowskian.

With the effective dimensionD0 of the Universe and the
total extra dimensionD8, the singular cases of the conforma
transformation are given byD052 or D850, where Eq.
~2.30! is undefined, or byD5D01D852, whereA in Eq.
~2.30! is zero. In these exceptional cases our model is
conformal to an Einsteinian one. However, one should a
keep in mind that Einstein equations in a two-dimension
space-time do not imply any dynamics~see@21,22#!. For a
space-time withD052, the dimensional reduction of the
multidimensional model can be written as a ‘‘stringlike’’ di
laton gravity, representable in the form~3.12!, where the
dilaton appears without kinetic term, and all extra fiel
couple to the dilaton with normal signs of their kinetic term
If there are no fields besides the dilaton, then the action
be represented in the form~3.9! ~see also@23,30–32#!, which
has a nontrivial variation only for nonvanishing extra dime
sionD1.0.

A conformal equivalence transformation between tw
scalar-tensor Lagrangian models becoming singular at s
cific parameters~here given by the exceptional dimension!
is a familiar effect. Such singularities yielding inequivale
models were also discussed in@33#.
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Although, in the exceptional dimensions, the models
~2.29! and ~2.33! are mathematically inequivalent, the ques-
tion remains, as for all other dimensions, which model is the
physical one. The difference in the exceptional cases is that
in principle, this question could be decided by experiments
on aclassicallevel. For the dimensionD0.2, the two mod-
els are mathematically equivalent; so on the classical level it
cannot be decided which is the physical one. However, if one
demands that the gravitational interaction is generated by a
pure massless spin-two graviton~without scalar spin-zero ad-
mixture!, then, reasoning similar as in@34#, Eq. ~2.33! rather
than Eq.~2.29! has to be taken as the physical model.

Taking into account the conformal relation of scalar-
tensor theories to fourth-~or higher-! order gravity~see, e.g.,
@35#!, the recent debate on the physical metric@36–39# con-
cerns also the corresponding scalar-tensor theories. The re
sult of this purely classical debate was rather poor: It mainly
confirms Brans@40#, who pointed out that, once the weak
equivalence principle holds true in a given frame~in @40# it is
the frame of the original higher-order gravity!, it will be
violated in any nontrivially conformally related frame. How-
ever, the choice of the frame with respect to which a test
particle of ordinary matter moves along geodesics remains
arbitrary for classical scalar-tensor theories. So, the frame of
Brans and Dicke@3# might be the physical one, giving geo-
desic paths for minimally coupled test matter, or likewise the
Einstein-Pauli frame might be the physical one. In@41#,
Hawking argued that black holes might follow geodesics in
the Einstein-Pauli frame but violate thestrong equivalence
principle in the BD frame, while the latter provides geodesic
paths for usual test matter. For massive objects such as blac
holes, this phenomenon is known as the Nordtvedt effect
@42#. Furthermore, Cho@43# showed that in the BD frame,
quantum corrections enforce also a violation of theweak
equivalence principle. We believe, therefore, that the issue of
the physical frame will be resolved finally only by a quantum
theory of gravity. Since such a theory might not be subject to
any equivalence principle, the latter might no longer serve as
the guiding principle for the physical metric. However, gen-
eralized arguments of Cho@34,43# give some hint that the
Einstein-Pauli frame~when quantum corrections are small
enough not to destroy any frame at all! might then, neverthe-
less, be taken as the physical one.

It should, however, be noted that our multiscalar-tensor
theories differ essentially from usual scalar-tensor theories:
There, some ‘‘ordinary’’ matter field is minimally coupled to
the geometry, either in the Jordan-Brans-Dicke frame or,
equally well, in the Einstein-Pauli frame~see also@35#!. We
saw above that, arguing on the basis of a classical equiva
lence principle for the ordinary matter only, there is no way
to select the physical frame. However, in our models all sca-
lar fields are derived from a multidimensional geometry,
which determinesall couplings ofall scalar fields to the
geometry and among one another. These couplings can b
tested, in principle, by experiments, thus selecting the physi-
cally admissible multiscalar-tensor theories and their corre-
sponding multidimensional counterparts. Because of this pre-
dictive power, it is tempting to postulate that any
multiscalar-tensor model should derive its~scalar! fields
from a higher-dimensional geometry, i.e., all~scalar! matter
should have some geometric origin.
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