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Study of a family of stationary and axially symmetric differentially rotating perfect fluids
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The geometrical analysis and interpretation of a family of stationary and axisymmetric differentially rotating
perfect fluids is performed. The family was first found by Senovilla and later by Mars and Senovilla under
completely different hypotheses, and contains an arbitrary function of a single coordinate so there exists a large
variety of behaviors. We find under which conditions the spacetime is axially symmetric with a well-defined
axis of symmetry and when it satisfies the energy conditions. By imposing the reasonable assumption that the
rotating body is finite in size we find two geometrically different classes of spacetimes. One of them represents
a topological three-sphere with special properties. The other class is very interesting from the physical point of
view, as it typically represents an isolated compact body with axial symmetry~with or without equatorial
symmetry!, and possible pointlike singularities at the north and south poles. There are even exotic examples in
this class, as these objects can contain central and/or toroidal empty holes. As far as we know, these models are
the more realistic explicit solutions produced so far by Einstein’s theory in order to describe the interior of
axially symmetric differentially rotating isolated compact bodies.@S0556-2821~96!04222-1#

PACS number~s!: 04.40.Nr, 04.20.Jb
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I. INTRODUCTION

There exist very few examples of explicit spacetimes d
scribing the geometry~and thus the gravitational field! inside
self-gravitating rotating bodies. Even in the equilibrium cas
when the metric can be assumed to be stationary and rest
ing the shape of the body to be axially symmetric, the num
ber of explicit nonvacuum solutions is indeed very sma
Furthermore, to understand the behavior of rotating se
gravitating bodies we have to face another major problem~in
addition to the lack of explicit solutions!: the lack of knowl-
edge of the exterior spacetime~usually vacuum! matching
properly with the given interior. Only when this exterior is
known can we give a full account of the properties of th
rotating body. However, this important question has not be
answered yet, neither from a theoretical point of view~an
existence and uniqueness theorem of the exterior given
interior! nor from a practical point of view sinceno explicit
global spacetime together with its interior is explicitly
known ~apart from static spherically symmetric cases an
spacetimes with cylindrical symmetry; see, e.g.,@1# and ref-
erences therein!. Until this existence problem is addresse
and global solutions~for compact rotating bodies! are found,
we have to be content with an analysis of the interior metr
whenever this is possible, keeping in mind that this kind
study is necessarily incomplete and somewhat specula
because the interpretation of the interior solution must
taken as tentative rather than definite until an exterior so
tion ~if any! is found.

Nevertheless, this does not mean that we can say noth
about the interior body under consideration. For instance,
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can undoubtedly assert under which circumstances the inte-
rior metric has well-defined axial symmetry, which type of
matter content is filling the rotating body, whether or not this
matter satisfies energy conditions, the shape and properties
of the limit surface~if it exists! where the body ends and the
exterior solution should be matched, etc. If we are dealing
with a family of interiors rather than with a single solution,
we can also perform a detailed study of the rigidly rotating
~including static! subcases and of the particular solutions
with a larger isometry group, which can give us some insight
into the interpretation of the general family. Finally, we can
also try to determine the properties and shapes of the interior
from the local metric tensor via some geometrical interpre-
tation of the coordinates. Thus, we see that the analysis of
the interior solution is still interesting and necessary~much
more so given the lack of explicit examples at hand!. In this
paper we shall perform one of these geometrical analyses for
a rather large family of stationary and axisymmetric perfect-
fluid solutions. This family was first found by one of us@2#
as the most general stationary and axisymmetric nonconvec-
tive and differentially rotating perfect-fluid solution satisfy-
ing the assumptions of being Petrov type D with the fluid
velocity vector lying in the two-planes spanned by the two
principal null directions, and with vanishing magnetic part of
the Weyl tensor with respect to the fluid velocity vector. The
family was later refound under completely different hypoth-
eses@3,4#: It is the most general differentially rotating sta-
tionary and axially symmetric nonconvective perfect fluid
admitting oneproper ~nonhomothetic! conformal motion.

The plan of the paper is as follows. In Sec. II we perform
a purely geometrical analysis of the line element without
imposing the perfect-fluid Einstein field equations. We give
the most general coordinate transformation which leaves the
form of the line element invariant and find under which con-
6166 © 1996 The American Physical Society



h

-

c

54 6167STUDY OF A FAMILY OF STATIONARY AND AXIALLY . . .
ditions the spacetime is indeed axially symmetric with
well-defined axis of symmetry. It is shown that in some sit
ations closed timelike curves~thus violating causality! will
occur. This allows us to restrict the physically interestin
situations. In Sec. III we write down and partially solve th
Einstein field equations, from where we see that the gen
perfect-fluid solution depends on an arbitrary function of o
coordinate. The remaining differential equations are sim
and can be seen as the equations of motion of a particle
three-dimensional Minkowski spacetime. In Sec. IV, w
study the matter content of the spacetime and impose
energy conditions everywhere inside the body, thereby f
ther restricting the physically relevant solutions contained
the family. In this section we also give the limit hypersurfa
of the interior body explicitly. In Sec. V we find all the
rigidly rotating solutions contained in the family. There exi
two different rigidly rotating subfamilies. One has a two
dimensional isometry group in general~apart from a particu-
lar case which reduces to the de Sitter spacetime! and the
other has a four-dimensional isometry group. The geome
of this second family can be easily interpreted, and this giv
us some ideas for the analysis of the general case. Then
Sec. VI, we classify the different possible behaviors of t
solutions and prove that there exist two physically we
behaved classes of solutions. The first represents a topo
cal three-sphere with two singularities at the north and so
poles and with a hole symmetrically distributed around t
equatorial plane. The other class is much more interes
and we devote the whole of Sec. VII to its study. In this la
class, there appear all types of possible shapes for the inte
body: Typically, they represent an isolated compact bo
with axial and equatorial symmetry, either prolatum, obl
tum, or irregular, and two pointlike singularities at the nor
and south poles. However, there are even more exotic
amples, as these objects can contain central and/or toro
empty holes. Finally, there are also cases of axially symm
ric compact objectswithout equatorial symmetry. As far as
we know, the models presented in Sec. VII are the best
more realistic explicit models produced so far by Einstein
theory in order to describe the interior of axially symmetr
differentially rotating isolated compact bodies.

II. GEOMETRICAL ANALYSIS OF THE LINE ELEMENT

As stated above, the subject of our study is the gene
solution for stationary and axisymmetric differentially rota
ing non-convective perfect fluids admitting a proper confo
mal motion. As shown in@2# and@3# the line element can be
written in the form

ds25
1

M2 F2mS dt1 s

m
df D 21 hm1s2

m
df21

dx2

hm1s2

1dy2G , ~1!

whereh,m,s are functions of onlyx andM depends only on
y. Expanding the term enclosed in brackets we find

ds25
1

M2 F2mdt222sdtdf1hdf21
dx2

hm1s2
1dy2G ,

~2!
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which shows that the only condition for the metric to be
nonsingular is

hm1s2.0, MÞ0.

Thus, the functionm can vanish despite the appearances in
Eq. ~1!. Note that the metric would also have the correct
Lorentzian signature whenhm1s2,0 with h.0 and
m,0. However, in this casex would be a time coordinate
and therefore these solutions would not be stationary, whic
is the case we are interested in.

From Eq.~1! it is obvious that there still remains some
freedom in changing the coordinates but keeping the line
element invariant. This allowed change is an arbitrary~non-
singular! linear change involving the coordinatest and f,
that is to say,

t5a1t̃1a2f̃, f5b1t̃1b2f̃, a1b22a2b1Þ0. ~3!

Performing this change and reading the new coefficients

g t̃ t̃ [2
m̃

M2 , g t̃ f̃[2
s̃

M2 , and gf̃f̃[
h̃

M2 ,

we have

S m̃

h̃

s̃
D 5S a1

2 2b1
2 2a1b1

2a2
2 b2

2 22a2b2

a1a2 2b1b2 a1b21a2b1
D S m

h

s
D . ~4!

From this we can evaluate h̃m̃1 s̃ 25(a1b2
2a2b1)

2(hm1s2) so that we must still perform the
linear change in the coordinatex given by x̃5ua1b2
2a2b1ux in order to maintainexactlythe same form~1!.

Except for the particular cases studied below, the isom
etry group of the metric~1! is Abelian, two dimensional, and
acts transitively on timelike two-surfaces. The two commut-
ing Killing vector fields are

]

]t
,

]

]f
.

There is also a proper conformal Killing vector field given
by ]/]y, which also commutes with the two Killing vectors.
This spacetime will be axially symmetric when there exists a
Killing field which vanishes as a vector on a two-surface~the
axis of symmetry! and satisfies the regularity condition~see,
e.g., @5#!. In order to find such a Killing vector, let us con-
sider the change of variables~3! with a151, b150, which
implies

hW [
]

]f̃
5b2

]

]f
1a2

]

]t
,

so that we are considering a general Killing vector field of
the spacetime. In this case the transformation of the metri
coefficients given in Eq.~4! takes the form

h̃5b2
2h2a2

2m22b2a2s, s̃5b2s1a2m, m̃5m,
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and the change in the variablex is written simply as
x̃5b2x. In order to impose thathW vanishes as a vector on
two-surface we demand that its scalar product with an ar
trary vector vanish on the axis of symmetry. In our case, t
is clearly equivalent to the existence of a valuex1 of x where

h̃~x1!50

s̃~x1!50
6 ⇔5 h~x1!52S a2b2D

2

m~x1!,

s~x1!52
a2
b2
m~x1!.

First of all, we note thatm(x1) must be positive because w
know that] t̃ must be a timelike Killing vector at least in a
neighborhood of the axis~notice that on pointsoff the axis
the two-surface of transitivity can be timelike with both]f̃
and] t̃ spacelike, but this is impossibleon the axis where the
transitivity surface becomes a one-dimensional line!. Thus,
the above two relations are in turn equivalent to

a2
b2

52
s~x1!

m~x1!
, ~hm1s2!~x1!50. ~5!

It is convenient to use the first relation in Eq.~5! to rewrite
the functionh̃ as

h̃5b2
2S h1

s2

m
1G~x! D , where G~x!52

1

b2
2

s̃ 2

m
.

In order to assure that the symmetry we are considering
indeed axial we must impose the regularity condition~also
called elementary flatness condition!, which demands

¹r~hW 2!¹r~hW 2!

4hW 2
→1,

on the axis of symmetry. In our case, this condition takes
form

lim
x̃→b2x1

h̃m̃1 s̃ 2

4h̃
S dh̃dx̃D

2

51,

which can be rewritten in terms of the original functions an
coordinates as

b2
2

4
m~x1! lim

x→x1

h1
s2

m

h1
s2

m
1G

F ddx S h1
s2

m
1GD G251.

Obviously, the necessary and sufficient condition for t
symmetry to be axial is that the limit in this expression
finite and strictly positive because then we can fix the co
stantb2 in order to satisfy the regularity condition. We a
ready know that the functionh1s2/m vanishes atx5x1, and
also that both the functionG and its first derivative vanish
there ~remember thats̃ vanishes atx5x1). Then, a careful
analysis of the above limit nearx5x1 shows the following
fundamental result.
a
bi-
his

e

is

the

d

he
is
n-
l-

Lemma 1.The metric~1! possesses a regular axis of sym-
metry atx5x1 if and only if m(x1).0, hm1s2 vanishes at
x5x1 and its first derivative is finite and nonzero there. In
addition, the axial Killing vector is given by

2

Am~x1!

1

u
d

dx S h1
s2

mD u~x1!
S ]

]f
2

s~x1!

m~x1!

]

]t D .
It might seem that the vanishing ofhm1s2 at x1 implies a
singularity in the metric due to the term indx2 in Eq. ~2!.
However, as is obvious from the intrinsic analysis we have
just performed, that is not the case at all. The coordinate
singularity in the metric can be solved trivially by making
the change of coordinatex→x11X2, so that the line element
becomes

ds25
1

M2 F2mdt222sdtdf1hdf21
4X2dX2

hm1s2
1dy2G .

As is now obvious, the condition of lemma 1 is simply that
both hm1s2 and its first derivative vanish atX50, and its
second derivative is finite and nonzero there. Thus, the above
line element is perfectly regular ingXX . Nevertheless, we
prefer to maintain the coordinatex because the line element
takes the nice and more symmetric form~2! and also the field
equations~see next section! are autonomous~they do not
depend explicitly on the independent variablex).

Let us now extract some important consequences of
lemma 1. When the metric coefficients satisfy the conditions
of lemma 1 at two different valuesx1 andx2 andhm1s2 is
positive between these values, it follows that the spacetime
has two different axes of symmetry. In this situation, the
range of variation of the coordinatex must be restricted to
x1<x<x2 and lemma 1 implies that the two vector fields

]

]f
2

s~x1!

m~x1!

]

]t
,

]

]f
2

s~x2!

m~x2!

]

]t

are proportional to axial Killing vectors~each one with a
different axis of symmetry in principle! and, therefore, they
have closed orbits. Unless they are proportional to each
other, they generate a compact two-dimensional surface with
Lorentzian metric which necessarily contains closed timelike
curves~see@6#!. Consequently, we must impose the condi-
tion

s~x1!

m~x1!
5

s~x2!

m~x2!
~6!

in order to have a physically well-behaved spacetime~i.e.,
satisfying causality conditions!. In this case, there only exists
one axial Killing vector field and its axis of symmetry has
two connected components. In the coordinatest and f
adapted to the axial Killing vector, the condition that no
closed timelike curves exist reads

h~x1!5s~x1!50, h~x2!5s~x2!50.
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III. EQUATIONS AND PROPERTIES
OF THE PERFECT FLUID

Our aim now is to concentrate on those particular met
~1! which have an energy-momentum tensor of a per
fluid. As was first found in@2# and later in@3# the Einstein
field equations in this case restrict the functionM (y) to sat-
isfy

S dMdy D 25ea2M22v,

wherea andv are arbitrary constants ande561. This equa-
tion can be trivially solved to give one of the following po
sibilities depending on the sign ofe and the different value
of the constantsa andv @2#

e511,H M ~y!5Acosh~ay!, v5a2A2,

M ~y!5Aeay, v50,

M ~y!5Asinh~ay!, v52a2A2,

e521, M ~y!5Acos~ay!, v52a2A2,

a50, M ~y!5Ay, v52A2,

whereA is an arbitrary nonvanishing constant and we h
used the linear change of variablesy1 const→y in order to
avoid superfluous constants inM (y). Analogously, the three
functionsm(x), h(x), ands(x) must satisfy the two ordinary
differential equations@2, 3#

h9m91s9250, ~7!

~hm1s2!914ea25h8m81s82, ~8!

where the prime means derivative with respect tox. There-
fore, the perfect-fluid solutions of the form~1! depend on an
arbitrary function of x.

The energy density and pressure are given
(8pG5c51)

m5 1
4 M

2~h8m81s8214ea2!13v,

p5 1
4 M

2~h8m81s8214ea2!23v,

so that the perfect fluid satisfies the linear equation of st

m5p16v. ~9!

The fluid velocity one-form can be written after some cal
lations as

u5
1

MAh8m81s8214ea2
@~2mA2h91e1sAm9!dt

2~e1hAm91sA2h9!df#,

wheree1[ sgn(s9). From this it follows that the condition

m9>0, h9<0
rics
fect

s-
s

ave

by

ate

cu-

s

must hold everywhere in order to describe true perfect fluids.
In fact, from Eq.~7! we know thatm9 and h9 must have
opposite signs. Furthermore, the conditionm1p.0 together
with Eq. ~8! avoid these functions to change simultaneously
their sign. However, they do not impose the specific condi-
tionsm9>0 andh9<0. These come from the fact that one of
the field equations is quadratic in the second derivatives and
it includes some solutions which do not describe a perfect
fluid ~see@7# for a discussion!. The expression for the fluid
velocity vector can then be trivially evaluated and gives

uW 5
M

Ah8m81s8214ea2
SA2h9

]

]t
2e1Am9

]

]f D
5

MA2h9

Ah8m81s8214ea2
S ]

]t
1
s9

h9

]

]f D , ~10!

where the second equality holds only at points withh9Þ0.
Thus, the angular velocityV of the fluid is given by the
expressionV5s9/h9, and the fluid is always nonconvective
(uW is on the$t,f%-planes!, and differentially rotating except
in the particular cases9/h95const. These rigid rotation cases
are thoroughly studied in Sec. V. Of course, in the rigid case
the velocity vector of the fluid is shear free. In the general
case, however,uW is shearing and accelerating. The magnetic
part of the Weyl tensor with respect touW vanishes@2#. Fur-
thermore, the general solution is of Petrov typeD with uW
lying in the two-planes generated by the two principal null
directions of the Weyl tensor@2,3#, so that the metrics belong
to class I in Wainwright’s classification of Petrov typeD
perfect fluids@10#.

Let us now briefly make some remarks on the Einstein
equations~7! and ~8!. This system of two differential equa-
tions for the three unknownsh, m, ands can be rewritten in
an elegant way1 by using the three-dimensional quadratic
form

S 0 1
2 0

1
2 0 0

0 0 1
D , ~11!

which has signature (21,1,1). By defining the three-
dimensional vector

vW ~x!5~m,h,s!,

Equations~7! and ~8! can be rewritten, respectively, as

~vW 9•vW 9!50, ~vW •vW !92~vW 8•vW 8!14ea250, ~12!

where the dot means scalar product using the metric~11!.
Therefore, the solutions of the perfect-fluid equations can be
viewed as the trajectories of a point moving in a three-
dimensional Minkowski spacetime with null acceleration
vector, and the coordinatex is the parameter which describes
the trajectory. It is clear that Eqs.~12! are invariant under the
homothetic transformations of the three-dimensional
Minkowski spacetime. This group of transformations in-

1We owe this elegant form to Dr. E. Ruiz.
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cludes the three-dimensional Lorentz group and the dilatio
@which transform Eq.~11! into the same form except for a
global positive constant factorn2#. Then, transforming the
parameterx by x→nx the invariance of the system~12! is
obvious. It might be thought that this invariance could gi
rise to new solutions given a particular one. This is not t
case, though, because a direct calculation shows that
group of transformations given by Eq.~4!, which are gener-
ated by the coordinate freedom~3!, is exactly the homothetic
group just discussed. Thus, the transformation of a solut
of Eqs.~12! by the homothetic group gives exactly the sam
solution for the metric~1! written in another coordinate sys
tem. We will use this freedom to write some explicit solu
tions of ~12! in its simplest possible form. The hitherto ex
plicit solutions of the system~7!, ~8! are presented in Sec. V
~for rigid rotation! and in the Appendix.

IV. ENERGY CONDITIONS AND THE LIMIT SURFACE

The study of stationary and axisymmetric perfect-fluid s
lutions has usually the main purpose of finding interior mo
els which may describe the gravitational field inside a co
pact body~or at least a body with a limiting boundary whic
separates the self-gravitating fluid from its exterior!. Given
that the interior is intended to be a stationary body, the lim
hypersurfaceS can be visualized as a two-surface at rest
the reference frame of the stationary Killing vector, whic
obviously implies that this hypersurface is timelike~or
equivalently the normal vector is spacelike!. Assuming that
the exterior of the body is vacuum and the nonexistence
surface layers, the junction conditions between a perfe
fluid interior metric and its vacuum exterior imposes@8# that
the pressure normal to the limit surface must vanish so t
we find that the limit boundary is determined by the we
known condition of vanishing pressure:

puS50.

The interior of the body is then taken as the region where
pressure is positive~in order to describe the behavior o
known fluids where the pressure tends to expand the b
which is in equilibrium due to gravitational forces!. Another
physical condition on the perfect fluid is that the energy de
sity is positive everywhere inside the body. Thus, in order
have a timelike hypersurfaceS of vanishing pressure with
the density non-negative there, we must choose the cons
v in the equation of state~9! such thatv>0, so that the
dominant energy condition@6#

p<m, m>0

is fulfilled everywhere. Then, the only physically reasonab
possibilities forM (y) are

M ~y!5Acosh~ay!, v5a2A2, p,m, ~13!

M ~y!5Aeay, v50, p5m.

Our aim now is to show that the second possibility is
rather unusual case, so that we can restrict out attentio
the first possibility. In order to see this, let us consider t
casev50 and choose a pointq located onS. The equation
of state isp5m everywhere and, given that the pressure
ns
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vanishing atq, we have that the density is also zero at this
point. However, at any point wherem1p vanishes~andq is
one of these points! the expression~10! for the fluid velocity
uW diverges and a detailed analysis of the energy-momentum
tensor is necessary. It turns out that the momentum tensor i
regular atq and takes the form

Tabuq5kakbuq ,

where the one-formkuq reads, explicitly,

kuq5
1

A2
~2mA2h91e1sAm9!dt

2
1

A2
~e1hAm91sA2h9!dfuq .

This one-form is null atq @obviously, assuming that the Ein-
stein equations~7! and~8! hold#. In consequence, in the case
v50 the energy-momentum tensor describes a fluid moving
on timelike curves which tend to null curves as we approach
the limit surface~defined as the points where the pressure
vanishes!, where the fluid is in fact moving at the speed of
light with a nonvanishing energy density. This situation is
not likely to occur in realistic bodies and the only way to
avoid it is having a strictly vanishing Einstein tensor on the
limit hypersurface. In this case, the body is more and more
rarified and it transforms into the vacuum in a smooth way.
This situation can only be accomplished by demanding tha
the null vectorkW is identically vanishing, which is clearly
equivalent to

m9uS50, h9uS50, s9uS50,

giving very particular solutions with a physically plausible
interpretation.

Therefore, we will concentrate on the more general solu-
tion given in Eq.~13!. It can be easily seen that theA can be
set equal to 1 by redefiningh,m,s,x, and a, so that
M5cosh(ay). Now, it is convenient to define a new coordi-
nateY(y) by means of

sin~aY!5tanh~ay!,

which allows to rewrite the line element~2! in the form

ds25dY21cos2~aY!F2mdt222sdtdf1hdf2

1
dx2

hm1s2G . ~14!

This form of writing the metric will be convenient later to
interpret the coordinateY ~and therebyy). In terms of this
coordinate, the density and pressure read

m5
h8m81s8214a2

4cos2~aY!
13a2, p5

h8m81s8214a2

4cos2~aY!
23a2.

~15!

These expressions show that the spacetime~14! has a curva-
ture singularity at
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Y56
p

2a
. ~16!

The equation determining the limit hypersurface of the flu
is given by

S:
h8m81s8214a2

12a2
5cos2~aY!, ~17!

where the pressure vanishes. The range for the coordinax
where this equation has solution is clearly defined
24a2,h8m81s82<8a2. Thus, the interior region of the
self-gravitating body is given by

p

2a
.uYu>

1

a
arccosSAh8m81s8214a2

12a2 D when 24a2

,h8m81s82<8a2,

2
p

2a
,Y,

p

2a
when h8m81s82.8a2. ~18!

We learn from these expressions that the curvature singu
ties ~16! are always reachable going through the interior
the body. In the following sections we shall give a geome
cal interpretation of the perfect-fluid metrics~14! discussing,
in particular, the shape of the limit surfaceS and the location
of the two singularities.

V. RIGIDLY ROTATING CASES

Let us now find the rigidly rotating solutions contained
the system~12!. This is important because of two reason
On the one hand, they will give the rigid limit of the differ
entially rotating solutions and, in particular, the static limit
the family, which in some sense will tell us what is th
resulting spacetime when the rotation is ‘‘switched off.’’ O
the other hand, these rigid solutions include the perfect-fl
metrics contained in Eq.~1! with a larger isometry group
acting on the hypersurfacesy5 const. This follows because
the angular velocityV of the perfect fluid is invariant unde
the action of the isometry group and, asV depends at mos
on the coordinatex, it must be constant~thus giving a rigid
solution! when the isometry group acts on the hypersurfa
generated by the coordinatest, f, andx. These more sym-
metric solutions may give us some insight into the interp
tation of the general solution.

The rigidly rotating solutions are characterized by t
conditionV5const, and then we can always chooset such
that the fluid velocity vector is proportional to] t . From the
explicit form of V and Eq.~7! it follows that

rigid rotation: s95m950.

We must now distinguish two possibilities depending
whetherm is a constant or depends explicitly onx. In the
second case, we can perform a linear change on the var
x and use the freedom~3! with b150 ~in order to maintain
uW }] t) to setm5x and s5const. Equation~8! can now be
trivially integrated and the final solution is
id
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h5ClnS xbD24a2x, m5x, s5 const,

whereC>0 andb.0. It can be seen that the isometry group
of this solution is two dimensional in general, and its energ
density and pressure read

m5
C

4xcos2~aY!
13a2, p5

C

4xcos2~aY!
23a2,

so thatx50 is a singularity of the spacetime whenever it
belongs to the allowed range forx. This metric was first
found by one of us@9# as the most general stationary and
axisymmetric rigidly rotating perfect fluid with Petrov type
D and the fluid velocity vector lying in the two-planes gen-
erated at each point by the two principal null directions o
the Weyl tensor~thus belonging to class I in Wainwright’s
classification@10#!. The magnetic part of the Weyl tensor in
the direction ofuW is zero and the existence of this solution
was first proven by Collins@11#, which in particular implied
that a theorem due to Glass@12# was untrue. The static limit
of this solution is obtained whens50 and was first pre-
sented by Barnes@13#. This static limit is, however, not
spherically symmetric.

There is also a special case with a larger group of sym
metries defined byC50 ~for sÞ0 since whenC50 and
s50 we havehm1s2<0 everywhere and the metric has not
the signature we have been assuming throughout!. This spe-
cial metric is of positive constant curvature so that in fact i
is locally the well-known de Sitter solution~although in a
rather strange coordinate system!. For the sake of complete-
ness, we give explicitly the coordinate change from the co
ordinates we are using to more standard ones. It reads

T5A s

2a
~ t12af!, w5Asa

2
~2af2t !,

cosx5As12ax

2s
cos~aY!, sinxsinu5As22ax

2s
cos~aY!

and brings the metric into the standard form

ds252cos2xdT21
1

a2
@dx21sin2x~du21sin2udw2!#.

Obviously, we only obtain the portion of the de Sitter metric
which is static since the metric in the original coordinates
was static.

The analysis of the functionhm1s2 for this rigid solution
shows that, in general (CÞ0), there appear two possible
ranges for the coordinatex. One of these ranges always in-
cludesx50, which is a curvature singularity as we have
seen, and finishes at the first zero ofhm1s2. The other range
appears only when

s2,
C2

16a2
,

exp~A1216a2s2/C2!

11A1216a2s2/C2

,
C

8ba2
<
exp~2A1216a2s2/C2!

12A1216a2s2/C2
,
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and thenhm1s2 vanishes at two other values ofx being
positive between them. Both these axes are regular, but
application of the remark following lemma 1 proves that th
have different axial Killing vectors and therefore this spac
time ~unless in the static cases50) always contains closed
timelike curves.

Let us now consider the other rigid case, whenm is a
constant. We can use the same coordinate freedom as be
to setm51 ands5cx, wherec is an arbitrary constant~the
other case of vanishingm does not give a perfect fluid!.
Equation~7! can be integrated and the full solution is

h52
c214a2

2
x21ax1b, m51, s5cx,

wherea andb are arbitrary constants. The expressions
the energy density and pressure of this solution are

m5
c214a2

4cos2~aY!
13a2, p5

c214a2

4cos2~aY!
23a2,

which do not depend on the coordinatex. An easy calcula-
tion shows that this metric contains a four-dimensional iso
etry group and, therefore, it is worth saying some wor
about its geometry.

First of all, we note that the coordinatest andf are still
not uniquely determined. The allowed linear change~3! leav-
ing h, m, ands invariant is

f→A1f, t→t1A2f, ~19!

and the axis of symmetry of this solution is placed at t
roots of the equation

hm1s250⇔ c224a2

2
x21ax1b50,

and these zeros must be simple in order to satisfy the re
larity condition on the axis. Thus, the constantsa, c, a, and
b are restricted to satisfy the condition

a222b~c224a2!.0.

Depending on the sign ofc224a2 ~which can also vanish!,
there appear three different possibilities which, after usin
change of coordinates of the type~19!, a change of variable
in the coordinatex, and some redefinitions of constants, ca
be written as

ds25dY21cos2~aY!H 2Fdt1 c̃S2S r2 ,k DdfG2
1b2S2~r ,k!df21b2dr2J , ~20!

whereb and c̃ are arbitrary constants,k can take the values
61 or 0, we have puta2[( c̃218kb2)/16b4, and the func-
tion S(r ,k) has the usual definition

S~r ,k!5H sinhr if k521,

r if k50,

sinr if k51.
the
ey
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for

m-
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The metric~20! has a regular axis of symmetry atr50
and its isometry group is four dimensional, acting multiply
transitively on timelike hypersurfaces, and, therefore, th
isotropy group at each point is a spatial rotation. The infin
tesimal generators of the isometry group are given by

j1W5
]

]f
~axial Killing!, j2W5

]

]t
,

j3W5sinf
]

]r
1cosfS S8~r ,k!

S~r ,k!

]

]f
1 c̃

S2~r /2 ,k!

S~r ,k!

]

]t D ,
j4W5cosf

]

]r
2sinfS S8~r ,k!

S~r ,k!

]

]f
1 c̃

S2~r /2 ,k!

S~r ,k!

]

]t D ,
where the prime in these expressions denotes derivative w
respect to the variabler . The Lie algebra of this isometry
group can be easily evaluated to give

@j1W ,j2W #5@j1W ,j3W #5@j1W ,j4W #5 0W , @j2W ,j3W #5j4W ,

@j2W ,j4W #52j3W , @j3W ,j4W #52kj2W2
c̃

2
j1W .

Let us now make some considerations concerning this s
lution that will also be true for the general case when th
isometry group is only two dimensional. Although we know
that this solution has a well-defined axis of symmetry at an
point of the spacetime because of the high symmetry it co
tains, we need only to consider those axes of symmetry su
that the corresponding axial Killing vector is a linear combi
nation of]f and] t because this is the situation in the genera
solution. These axes of symmetry are located a
hm1s250 or, equivalently, whereS(r ,k)50. In the two
casesk50 andk521 the only value ofr such that this
expression vanishes isr50 and, in consequence, the coordi
nater can take arbitrarily large values. The norm of the axia
Killing vector is given by the functionh, which reads now

h~r !5b2S2~r ,k!2 c̃ 2S4S r2 ,k D .
Obviously, this function vanishes at the axisr50 and is
strictly positive in a neighborhood of this axis. However, in
the cases,k50 and k521 ~then necessarilyc̃Þ0), for
large enough values ofr this function becomes negative and
in fact, tends to2` when r→1`. Thus, in these cases,
k50 ork521, the solution contains closed timelike curves
and violates causality. In the remaining casek511 we have

~hm1s2!~r !5b2S2~r ,11!5b2sin2r .

As this function vanishes again forr5p, the solution will
have another axis of symmetry there. The axial Killing vec
tor with the axis of symmetry atr5p is given by the fol-
lowing combination of]f and] t :

]

]f
2 c̃

]

]t
.
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If c̃Þ0, it is clear that the solution contains closed timeli
curves~see the remark after lemma 1! so that the solution is
not physically well defined. Ifc̃50, this axial Killing vector
coincides with the one with axis atr50 @this corresponds to
the situation when the condition~6! is satisfied# and the met-
ric is perfectly well behaved. This particular metric wit
c̃50 andk51 reads

ds25dY21cos2S Y

A2bD ~2dt21b2sin2rdf21b2dr2!.

The spacelike hypersurfacest5 const are three-spheres
Thus, we can identify the geometrical meaning of the spa
like coordinatesf, r , andY. In factf is clearly the azimuth
of the three-sphere,r is the colatitude angle of each two
sphereY5 const@these two-spheres have a radius given
b2cos2(Y/A2b)# and Y is the latitude angle along any cir
cumferencef5 const,r5 const. The two connected compo
nents atr50 andr5p of the axis of symmetry of the axia
Killing vector ]f are part of a single curve because th
meet at the north and south poles of the three-sphere, w
Y56bp/A2, respectively. This geometrical meaning of th
spacelike coordinates will be of some help in the gene
cases studied in the next sections.

VI. ANALYSIS OF THE DIFFERENT TYPES
OF SOLUTIONS

First of all, let us note that the geometrical meaning
f is obviously standard and will hold for every spacetim
described by the metric~14! with a regular axis of symmetry
The same happens for the interpretation oft because all the
metrics are stationary. The interpretation of the coordina
x andY is certainly more involved. We are now going to se
that there exist two different cases of physical interest. In o
of them the interpretation of the coordinatesx andY is simi-
lar to that of the more symmetric cases analyzed in the p
vious section. In the other, more interesting case, the coo
natesx and Y can be visualized as similar to the typic
bipolar coordinates of the Euclidian plane@14#. In order to
show this we have to consider some of the consequence
the system of differential equations~7!, ~8!.

Choosing the coordinatest andf in the metric~14! so
that ]f is the true axial Killing vector, we know that bot
metric coefficientsh ands vanish on the axis of symmetry
located at some valuex5x1, which we can set without loss
of generality atx150 by performing a change of variable
x→x1 const. Thus we haveh(0)5s(0)50. We will con-
centrate in studying those solutions for which the inter
region of the body reaches the axis of symmetryx50. The
reason for this lies in the fact that trying to interpret th
geometry of an interior solution which does not contain t
axis of symmetry is a much more speculative and uncl
task. In fact, we could not even assure whether the solutio
indeed axially symmetric or not until the exterior solutio
were known. Thus, we will assumeh8m81s82.24a2 at
least in a neighborhood of the axisx50 @see the expression
for the pressure in Eq.~15!#. There appear then two com
pletely different situations depending on whether

case A: h8m81s82.24a2, ;x.0, ~21!
ke
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so that for everyx there exists a range ofY describing the
interior of the body, or

case B: ' x̄.0, ~h8m81s82!~ x̄!524a2. ~22!

Case A will be the subject of this section. From a physic
point of view, case B is much more interesting, and will b
considered in detail in the last section.

From now to the end of this section we assume that E
~21! holds. We know that the axial Killing vector must be
spacelike at least in a neighborhood of the axis and, actua
the regularity condition imposesh8(0).0 so thath grows to
positive values whenx becomes positive. Furthermore,h9 is
nonpositive everywhere so that the functionh tends to stop
its growing andh8 possibly tends to cross again to negativ
values. In order to find all the possible behaviors for th
functionsh, m, ands which give physically well-motivated
solutions, let us first suppose thath8 becomes negative some-
where. Then, from the fact thath9<0, there must exist an-
other valuex2.0 where the functionh vanishes. As dis-
cussed above, the only way in which this kind of behavio
gives a physical spacetime~i.e., not containing closed time-
like curves! is by also havings(x2)50. In this case, there
only exists one axial Killing vector with an axis of symmetry
with two connected components, and the coordinatex takes
values inside the finite interval (0,x2). In consequence, the
interpretation ofx as an angle@like in the more symmetric
solution ~20! with k51# holds. By analogy with the more
symmetric case, we can finally interpret the hypersurfac
t5 const in Eq.~14! as topologically equivalent to three-
spheres with two connected components of the axis of sy
metry which, in fact, belong to the same curve and meet
the two singular pointsY56p/2a ~located, respectively, at
the north and south poles of the three-sphere!. In this case,
these two singularities can be viewed as two ‘‘points’’ lo
cated on the axis of symmetry. When a limit surfaceS of the
fluid exists, it follows from the variation ranges of the coor
dinateY describing the interior of the body that the regio
with positive pressure is given by the whole three-sphe
except for a patch which is symmetric around the equator
plane~it is clear from our interpretation ofY thatY50 is the
equatorial plane of the solution!. Finally, it is obvious from
Eq. ~17! definingS and the fact that the range of variation o
x is bounded that this two-surface~at each instant of time! is
compact whenever it exists.

Having found which are the physical solutions in the ca
that h8 becomes negative somewhere, we can now consi
the remaining situation in whichh8>0 everywhere. From
the fact thath9<0 everywhere it follows thath8 has a finite
limit when x→1`:

lim
x→1`

h8~x!5g2>0⇒ lim
x→1`

h9~x!50,

whereg is a ~possibly zero! constant. We are now going to
show that in this case the self-gravitating body is either no
finite or contains a singularity at some value ofx. In both
cases, the spacetime is not suitable to describe an isola
rotating body with an asymptotically flat exterior and there
fore we will not try to interpret it.

Let us first suppose thathm1s2 vanishes at some point
x2.0. From the remark after lemma 1 and the fact that no
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the functionh is strictly positive forx.0, we have that the
spacetime contains necessarily closed timelike curves
the solution is unphysical unless (hm1s2)8(x2)50. When
this happens, we know also by lemma 1 thatx5x2 is not a
regular axis of symmetry of the spacetime. Let us show t
the rotating body is infinite in size. In fact, the length of
curve t5 const,f5 const, andY5 const completely con-
tained in the interior of the body~it can be trivially seen that
such a curve always exists in the case under considerat!
from the axis of symmetryx50 to the valuex5x2 is pro-
portional to the expression

E
0

x2 dx

Ahm1s2
, ~23!

which diverges at least logarithmically given that bo
hm1s2 and its derivative vanish atx5x2. Thus, in this case
the metric does not represent in any way a limited obje
because the size of the body is not finite, and we will n
consider this kind of solutions any further in this paper~al-
though nonfinite sources can be used sometimes to mo
situations such as accretion disks or similar!.

Another possible behavior forhm1s2 is that there exists
some finite valuex5x2 where this function diverges~and
does not vanish for 0,x,x2). Obviously, the function must
diverge to1` and it is clear that all the derivatives o
hm1s2 also diverge to1` when we approachx5x2. In
particular, from the unboundedness of the second deriva
of this function and the Einstein equation~8! it follows that
h8m81s82 also diverges to1`. The expressions for the
density and pressure, Eqs.~15!, show that the spacetime con
tains a true singularity atx5x2 which, moreover, is located
at a finite distance from the axis of symmetry given that t
length~23! is now finite. This singularity is much worse tha
those located atY56p/2a because this is an extended sin
gularity fully contained inside the body. Therefore, this u
physical solution must be also ruled out in the description
rotating finite bodies.

We can thus move to the last possible behavior
hm1s2; namely, this function remains positive and finite fo
all valuesx.0. We are going to show that, again, either th
body is nonfinite or contains a singularity at a finite distanc
In order to prove this, let us assume first that the spacetim
regular. This implies, in particular, that the density and pre
sure remain bounded for allx.0. Expressions~15! show
that this happens if and only if there exists a positive co
stantK such that

h8m81s8214a2,K18a2, ;x.0.

From Eq.~8! we find that this condition is in turn equivalen
to

~hm1s2!9,K, ;x.0.

Then, by integrating twice and remembering th
(hm1s2)(0)50 we find

~hm1s2!~x!,
K

2
x21dx, ;x.0,

whered is an arbitrary positive constant. Therefore, we ha
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0

` dx

Ahm1s2
.E

0

` dx

Ax@d1~K/2!x#
.

Now, the integral on the right-hand side is obviously diver-
gent and, therefore, the integral on the left-hand side is als
divergent. But this last integral is proportional to the proper
length along anx-coordinate curve from the axis tox5`,
and thusif the spacetime is regular, then the body is not of
finite size. The other possibility is that the spacetime is sin
gular at some value ofx.0, and in this case this singularity
can be trivially seen to be at a finite distance from the axis
~even in the extreme case of the singularity placed a
x51`), as we had claimed. Thus, we have exhausted th
whole of case A given in Eq.~21! and we can consider the
more interesting case B.

VII. PHYSICALLY INTERESTING SOLUTIONS

In this section we analyze and interpret the solutions fo
case B defined in Eq.~22! assuming also that bothh and
hm1s2 remain positive in the interval (0,x̄). These last con-
ditions onh andhm1s2 can be assumed because otherwise
the considerations made in the previous section would sti
hold. Now, the situation with respect to the coordinatex is
quite different than before, as its range of variation has to b
restricted to the interval (0,x̄) not becausex is an angular
coordinate but rather because the body has a limiting surfac

In order to interpret the coordinatesx andY and to ascer-
tain the shape of the body in this case, we first remark that, a
each possible value ofx̂P(0,x̄), two different possibilities
appear: either (h8m81s82)( x̂).8a2 or (h8m81s82)( x̂)
<8a2. In the first case, and as follows from Eq.~18!, the
coordinateY varies from2p/2a to p/2a, and in particular
Y50 ~which is the equatorial plane, as we shall presently
see! belongs to the interior of the body at this particular
x5 x̂. For all thesex̂, the hypersurfacesx5 x̂ go through the

FIG. 1. System of bispherical coordinates for the Euclidian
three-dimensional space.
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interior of the body from the singularity atY52p/2a up to
the other singularity atY5p/2a. In the second case, on th
contrary, we see from Eq.~18! that the range of the coordi
nateY has a symmetric ‘‘hole,’’ so to speak, around th
value Y50. This second possibilityalwaysappears in the
case B under consideration as we approach the maxim
value x̄ of x @because of Eq.~22!#. For these valuesx̂, the
hypersurfacesx5 x̂ start at one singularity and go up to th
limit surfaceS, then they cross the ‘‘hole’’ aroundY50
through the exterior of the body, then reemerge inside
body from another part ofS, and finally reach the other sin
gularity.

Thus, an interpretation of the shape and location of
two singularitiesY56p/2a will give us a possible interpre-
e
-
e

um

e

the
-

the

tation for x. Remember that, in the previously analyzed
cases, these singularities were just single points placed sy
metrically on the axis of symmetry. We are going to see th
this interpretation still holds now. To that end, let us stud
the shape of the limit surfaceS as seen from the exterior.
This can certainly be done if we assume that the metrics a
matchable to some vacuum exterior atS, because then the
matching conditions provide the exterior standard Weyl co
ordinates$r,z% ~see@15#! on the same surfaceS. This is a
standard computation which produces, by using Eq.~17!, the
result

r~x!uS5
1

12a2
Ahm1s2~h8m81s8214a2!uS ,
dz

dx
uS56

2~8a22h8m82s82!~h8m81s8214a2!23~h8m81s82!8~hm1s2!8

24A3a2A8a22h8m82s82
uS ,
a

h
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where, of course, these formulas are valid only on the hyp
surfaceS. As we can see from the first of these relations a
Eq. ~22!, the Weyl cylindrical radiusruS vanishes atx̄ ~re-
member thatr50 is the axis as seen from the exterior!. But
this x̄ corresponds toY56p/2a on S, that is to say, to the
singularities. Therefore, these two singularities are alw
two single points~at each instant of time! placed at the in-
tersection of the limit surface of the body with the axis. T
above formulas allow also for the explicit checking of all th
assertions we shall make in what follows concerning
shape of the limit surface.

If we now remember that the hypersurfacesx5 x̂ go from
one singularity to the other~with or without a ‘‘hole’’!, we
can visualize them, at each instant of time, as figures
revolution around the axis, all of them intersecting at the a
at the two points Y56p/2a. In particular, the
(x50)-surface degenerates to a single line on the axis go
from Y51p/2a down to Y52p/2a. The surfaces
Y5const at each timet are then the correspondingorthogo-
nal family of surfaces of revolution around the axis, an
thus, in particular,Y50 corresponds to the equatorial plan
andY56p/2a degenerate to two single points. These co
dinates$x,Y% are therefore similar to the standard bipol
coordinates in the Euclidian plane@14#, and the set
$x,Y,f% is analogous to the system of bispherical coor
nates in flat three-space@14#, as can be checked in Fig.
where we represent them.

Once we have given a precise interpretation for the co
dinates$x,Y% in case B, we can now study and classify th
different shapes and properties of the interior body and
limit surface. Of course, given the enormous freedom s
available in choosing the functionsh,m, ands, the possibili-
ties are endless. However, we can certainly provide a qu
tative classification of the different cases of interest that m
appear.

A. Typical isolated compact bodies with equatorial symmetry

This case arises when (h8m81s82)(0).8a2 and there
only exists one positive valuex5x2, x̄ in which
er-
nd
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(h8m81s82)(x2)58a2 @the existence of at least one such
value is necessary from Eq.~22!#. In this case, the shape of
the limit surface is presented in Fig. 2: The axis from on
singularity to the other is completely contained in the body
which presents manifestly equatorial symmetry@see Eq.
~17!#. The proper length from the axis to the surface alon
the equatorial plane~the ‘‘equatorial radius’’! is given sim-
ply by

Req5E
0

x2 dx

Ahm1s2
, ~24!

while the proper distance from the centerx5Y50 to one of
the singularities~the ‘‘radius along the axis’’! is

Rax5
p

2a
. ~25!

The ‘‘north and south poles’’ are the singularities and th
shape of the limit surface is oblatum, prolatum, or irregula
depending on the explicit forms of the functionsh,m, and
s and on the constanta, as is obvious from Eqs.~24! and
~25!. Notice that, in general, the shape of the limit surfac
can adopt very irregular forms and, in fact, the distance
orthogonal to the axis and up to the surfaceS can have
several local maxima. Some examples illustrating these b
haviors are shown in Fig. 3~a! and Fig. 3~b!.

B. Isolated compact bodies with equatorial symmetry
and a centered hole

This case arises when (h8m81s82)(0),8a2 and there
exist just a couple of valuesx2 andx3 (0,x2,x3, x̄) such
that h8m81s8228a2 changes its sign atx5x2 and x5x3.
Notice that, in this case, these values must appear in pa
because of Eq.~22!. The limit surface has now two con-
nected components, the inner and the outer surfaces of
body as shown for a typical case in Fig. 4. The shapes
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these two connected components can vary as much as in
previous case, and both of them can adopt very regular
irregular forms. However, the inner surface is always co
pletely regular~it has no singularities!. Obviously, this type
of configuration for a self-gravitating perfect fluid can be
equilibrium only because of the differential rotation. In th
case, there are no such concepts as equatorial radius, etc
some other typical appropriate distances can be compu
without difficulty ~such as the proper distance between t
inner and outer surfaces along the equatorial plane!.

C. Isolated compact bodies with equatorial symmetry
and a toroidal hole

This case is defined by (h8m81s82)(0).8a2 together
with the existence of exactly three valuesx2 ,x3, and x4
(0,x2,x3,x4, x̄) where h8m81s8228a2 changes its
sign. Now, the axis from one singularity to the other is aga
completely contained in the body. However, there is a h
around the equatorial plane for allxP(x2 ,x3). Because of
the axial symmetry, this hole appears as similar~topologi-
cally! to a standard torus. A typical example is represented
Fig. 5, where we can see that there are again two conne
components of the limit surface; the inner one does not

FIG. 2. Typical isolated body with equatorial symmetry. Th
shadowed region represents the interior of the body and the
singularities in the north and south poles are indicated by two d
The coordinate linesx const andY const, which are similar to the
bispherical coordinates, are also shown. Notice that we have cho
these coordinates such that all thex const lines reach the singulari
ties tangent to one another. This means that the coordinates$x,Y%
do not cover the whole two-dimensional plane. Any other simi
interpretation for$x,Y% could be possible with the only result o
changing the form of the bodies as seen from the exterior but w
out changing the main features of the interior body. The verti
line through the two singularities is the axis of symmetry and t
three-dimensional picture is obtained by rotating the figure arou
this axis, as indicated by the circular arrow. This will be the case
all the following figures.
the
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tersect the axis and is completely regular. The exact forms o
the inner and outer surfaces depend completely on the sp
cific functionsh,m, and s, and there is a great variety of
possibilities.

The distance along the axis from the ‘‘center’’x5Y50
up to the ‘‘north pole’’ singularity is exactly Eq.~25! again.
On the other hand, the equatorial distance from the axis t
the outer surface cannot be computed now because we ne
to know the exterior metric in the toroidal hole. Thus, the
outer appearance of this body~prolatum, oblatum, etc.!
seems to be uncertain at this stage. Nevertheless, we c
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FIG. 3. ~a! Isolated compact body with equatorial symmetry and
a more irregular profile. The allowed shapes are those in which th
coordinate linesx const entering inside the body when coming from
the equatorial plane remain inside the body until they reach th
singularities. ~b! Another example with an even more irregular
shape. This figure indicates how the cases with either centered hol
or toroidal holes~see Figs. 4–7! may appear.
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always give a lower bound for the equatorial radius defin
by the sum of the equatorial distance from the axis to t
inner surface plus the distance from this inner surface up
the outer surface, that is to say,

Req.E
0

x2 dx

Ahm1s2
1E

x3

x4 dx

Ahm1s2
. ~26!

This lower limit forReq together with its evident generaliza

FIG. 4. Isolated compact body with equatorial symmetry and
centered hole. Now the axis is not completely contained inside
body.

FIG. 5. Isolated compact body with equatorial symmetry and
toroidal hole.
ed
he
to

-

tion to other distances orthogonal to the axis allows to ascer
tain the outer form of the body in some situations.

D. Compact bodies with equatorial symmetry
and a set of toroidal holes

This case is the generalization of the previous one to the
existence of a finite number~say,n) of toroidal holes in the
interior of the body. Thus, it is defined by the conditions
(h8m81s82)(0).8a2 together with the existence of exactly
2n11 values

x2 ,x3 , . . . ,x2n12~0,x2,x3,•••,x2n12, x̄!

whereh8m81s8228a2 changes its sign. The axis from one
singularity to the other is completely contained in the body,
and there appearn holes around the equatorial plane, each of
them for the valuesxP(x2 j ,x2 j11), with j51,2, . . . ,n. Be-
cause of the axial symmetry, each of these holes resemble
~topologically! a standard torus. A simple example of this
case is presented in Fig. 6, where we see that now there ar
n11 connected components of the limit surface:n of them
are inner surfaces and correspond to each of the toroida
holes and the remaining one is the outer surface. None of th
n inner surfaces intersect the axis, and all of them are com
pletely regular. The exact forms of the inner and outer sur-
faces depend again on the specific forms ofh,m, ands.

Expression~25! gives again the distance along the axis
from the ‘‘center’’ x5Y50 up to the ‘‘north pole’’ singu-
larity. Concerning the equatorial distance from the axis to the
outer surface, we can only give a lower bound as in the
previous case. This lower bound is the trivial generalization
of that defined by Eq.~26! and reads

a
the

a

FIG. 6. Isolated compact body with equatorial symmetry and
three toroidal holes. Notice that an arbitrary number of interior
toroidal holes are allowed~see main text!. These toroidal holes can
also have many different shapes.
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Req.E
0

x2 dx

Ahm1s2
1(

j51

n E
x2 j11

x2 j12 dx

Ahm1s2
.

The comparison of this lower limit forReq with Rax of Eq.
~25! gives information on the outer shapes of the body.

E. Compact bodies with equatorial symmetry and central
and toroidal holes

In this case we have (h8m81s82)(0),8a2, so that there
is a central hole, and also we allow for the existence on
toroidal holes. Thus, there exist exactly 2(n11) values
x2 ,x3 ,•••,x2n13 (0,x2,x3,••• ,x2n13, x̄) where
h8m81s8228a2 changes its sign. Then holes around the
equatorial plane are defined then by the valuesx
P(x2 j11 ,x2 j12), with j51,2, . . . ,n. The central hole is ob-
viously defined by the valuesxP(0,x2). Now, there are
n12 connected components of the limit surface,n11 of
them are inner surfaces and the remaining one is the o
surface. Among then11 inner surfaces,n of them corre-
spond to the toroidal holes and the other to the central h
All the inner surfaces are completely regular. These prop
ties can be seen in the example represented in Fig. 7.

F. Compact bodies with no equatorial symmetry

This is, in fact, the last qualitatively different possibility
It is uniquely defined by the condition (h8m81s82)(x)
,8a2 for all possiblexP(0,x̄). Thus, the ‘‘hole’’ around the
equatorial plane appears for all values ofx, and therefore no
single point of the equatorial plane belongs to the interior
the body. It follows that, actually, the body has two differe
connected parts, as ‘‘two drops of water,’’ placed symme
cally with respect to the equatorial plane, each of them c
taining one of the singularitiesY56p/2a; see Fig. 8. Nev-

FIG. 7. Isolated compact body with equatorial symmetry, o
centered hole, and two toroidal holes. Again an arbitrary numbe
toroidal holes is allowed and many different shapes for them
possible.
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ertheless, we must choose just one of the connected interiors
~both are identical upon reflection! as the interior of the
body, because the representation of the exterior between
‘‘drops’’ cannot be guaranteed unless we know the vacuum
exterior solution valid at that region. In order to fix ideas, we
shall always choose the ‘‘drop’’ with positive values ofY.
Thus, now the interior of the body is simply the interior of
the upper ‘‘drop,’’ which doesnot have equatorial symme-
try, as is manifest. These interiors have the advantage that
they only contain one singularity, placed at the ‘‘north
pole,’’ the rest of the limit surface being completely regular.
Their exterior appearance can adopt many different shapes
as, for example, the irregular form given in the example of
Fig. 9. In general, this family of solutions can be thought as
the limit of the first family given in this section~i.e., typical
isolated compact bodies with equatorial symmetry! when
x2→0, so that the equatorial radius~24! for those metrics
approaches zero. In the limit, there appear two bodies touch-
ing each other tangentially at a single point in the center
x5Y50. When this point disappears the new family we are
considering arises.

Another interesting remark regarding this family without
equatorial symmetry is that, by makingh8m81s82 closer
and closer to24a2 for all x, we get smaller and smaller
‘‘drops’’ placed around the singularitiesY56p/2a. In the
limit ( h8m81s82)(x)524a2, we would simply have the
two pointsY56p/2a as the interior body. In fact, it can be
seen that in this limit the metric is regular and corresponds to
the de Sitter metric which appeared in the rigid cases studied
in Sec. V.

Apart from the Wahlquist family of perfect-fluid solutions
@18–20# ~which have rigid rotation!, and as far as we know,
the models presented in this section are the best available
explicit solutions describing the interior of axially symmetric

ne
r of
are

FIG. 8. Compact bodies with no equatorial symmetry. In this
case no point on the equatorial plane belongs to the interior of the
body and, therefore, the interior has two connected components
each one containing one of the singularities.
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differentially rotating isolated compact bodies. It remains t
question of the matching of these models to some appro
ate exterior solutions.
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APPENDIX: OTHER EXPLICIT SOLUTIONS

Before finishing this paper let us briefly discuss the po
sibility of finding explicit solutions of the system~12!. Even
though the system seems to be not very difficult to handle
has a geometrical interpretation as trajectories in a thr
dimensional Minkowski spacetime, and it contains an ar
trary function in its general solution, it is very difficult in
deed to find explicit functionsh, m, and s satisfying the
system. Apart from the rigid metrics we have explicitly wri
ten above, only two other particular solutions of the syst
have been found. The first one was given in the paper wh
the family was presented@2# and reads

m5xxA19/10~x1/A102ea2lx21/A10!,

h5xx2A19/10~rx1/A102ea2nx21/A10!,

s5x~x1/A102ea2kx21/A10!,

where the constantsl , r , n, andk are given by the values

l5 20
2907~19A10264!~2315A19!, r52 1

216~19A10164!,

n5 5
323~2325A19!, k5 360

323,

FIG. 9. Compact body with no equatorial symmetry and a ve
irregular shape. This body has only one singularity.
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@in the original paper@2# there also appeared two arbitrary
constants which, however, can be absorbed into the coordi-
nates by using a transformation of the type~4!#. As explained
in previous sections we can restrict ourselves to the case
e511. For this solution there exist two disconnected re-
gions wherehm1s2.0. They are given by

0<x<S 1080~52A19!a2

323~82A10! D A10/2

or

S 1080~51A19!a2

323~82A10! D A10/2

<x<1`.

It can be checked by direct calculation that in both regions
the inequality

h8m81s82>24a2

holds. The solution in the first region has a regular axis of
symmetry at the nonzero extremum of the interval and con-
tains a singularity atx50 which is located at a finite distance
from the axis of symmetry. Similarly, the solution in the
second region has a regular axis of symmetry at the finite
extremum of the interval and contains a singularity at
x51` also located at a finite distance from the axis. Thus,
as discussed above, none of these explicit solutions are
physically reasonable.

The other explicitly known solution was found by Garcı´a
@16# in the particular casea50 ~which consequently does
not give a physically well-behaved solution, as discussed in
the text!. The metric coefficients are now

m5x2n1b, h5xn1b, s5xbA2~122b!3

b~3b22!2
,

whereb is a constant satisfying

0,b, 1
2

andn is a positive constant given by

n25b21
2~b21!2~122b!

223b
.

In the paper where this solution was presented there ap-
peared two other arbitrary constants which again can be re-
absorbed in the coordinates. Evaluatinghm1s2 for this so-
lution we find

hm1s25S 11
2~122b!3

b~3b22!2D x2b,

so that the axis of symmetry would be located atx50 if it
exists. The derivative of this function diverges atx50 and,
therefore, because of lemma 1, we can say that the solution is
not axially symmetric.

These solutions have a particularity which is worth com-
ment. The explicit expressions for the density and pressure
of these solutions show that they diverge when the coordi-
natex tends to zero. Thus, the would-be axis of symmetry is
a true singularity of the spacetime and the regularity condi-

ry
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tions we imposed above cannot be applied in this singu
case~in the definition of axial symmetry it is assumed th
existence of a two-surface of fixed points in the manifold s
that they are necessarily regular points!. We point out that in
lar
e
o

the case of singular axes of symmetry there does not exist
appropriate theory to decide when a given singular spaceti
is indeed representing a singular axially symmetric spac
time or not~see@17# for a more detailed discussion!.
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