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Marc Marg
School of Mathematical Sciences, Queen Mary and Westfield College, Mile End Road, London E1 4NS, United Kingdom

JoseM. M. Senovilld
Departament de Bica Fonamental, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain

(Received 22 May 1996

The geometrical analysis and interpretation of a family of stationary and axisymmetric differentially rotating
perfect fluids is performed. The family was first found by Senovilla and later by Mars and Senovilla under
completely different hypotheses, and contains an arbitrary function of a single coordinate so there exists a large
variety of behaviors. We find under which conditions the spacetime is axially symmetric with a well-defined
axis of symmetry and when it satisfies the energy conditions. By imposing the reasonable assumption that the
rotating body is finite in size we find two geometrically different classes of spacetimes. One of them represents
a topological three-sphere with special properties. The other class is very interesting from the physical point of
view, as it typically represents an isolated compact body with axial symnfeithh or without equatorial
symmetry, and possible pointlike singularities at the north and south poles. There are even exotic examples in
this class, as these objects can contain central and/or toroidal empty holes. As far as we know, these models are
the more realistic explicit solutions produced so far by Einstein’s theory in order to describe the interior of
axially symmetric differentially rotating isolated compact bod{&0556-282(196)04222-1

PACS numbd(s): 04.40.Nr, 04.20.Jb

[. INTRODUCTION can undoubtedly assert under which circumstances the inte-
rior metric has well-defined axial symmetry, which type of
There exist very few examples of explicit spacetimes de-matter content is filling the rotating body, whether or not this
scribing the geometrgand thus the gravitational figlinside  matter satisfies energy conditions, the shape and properties
self-gravitating rotating bodies. Even in the equilibrium caseof the limit surface(if it exists) where the body ends and the
when the metric can be assumed to be stationary and restriaxterior solution should be matched, etc. If we are dealing
ing the shape of the body to be axially symmetric, the numwith a family of interiors rather than with a single solution,
ber of explicit nonvacuum solutions is indeed very small.we can also perform a detailed study of the rigidly rotating
Furthermore, to understand the behavior of rotating self{including stati¢ subcases and of the particular solutions
gravitating bodies we have to face another major prokiem with a larger isometry group, which can give us some insight
addition to the lack of explicit solutionisthe lack of knowl- into the interpretation of the general family. Finally, we can
edge of the exterior spacetimasually vacuum matching  also try to determine the properties and shapes of the interior
properly with the given interior. Only when this exterior is from the local metric tensor via some geometrical interpre-
known can we give a full account of the properties of thetation of the coordinates. Thus, we see that the analysis of
rotating body. However, this important question has not beetthe interior solution is still interesting and necessémnuch
answered yet, neither from a theoretical point of vieam  more so given the lack of explicit examples at hand this
existence and uniqueness theorem of the exterior given theaper we shall perform one of these geometrical analyses for
interior) nor from a practical point of view sinceo explicit  a rather large family of stationary and axisymmetric perfect-
global spacetime together with its interior is explicitly fluid solutions. This family was first found by one of []
known (apart from static spherically symmetric cases andas the most general stationary and axisymmetric nonconvec-
spacetimes with cylindrical symmetry; see, e[d@],and ref-  tive and differentially rotating perfect-fluid solution satisfy-
erences therejn Until this existence problem is addresseding the assumptions of being Petrov type D with the fluid
and global solutiongfor compact rotating bodigsre found, velocity vector lying in the two-planes spanned by the two
we have to be content with an analysis of the interior metricprincipal null directions, and with vanishing magnetic part of
whenever this is possible, keeping in mind that this kind ofthe Weyl tensor with respect to the fluid velocity vector. The
study is necessarily incomplete and somewhat speculativiamily was later refound under completely different hypoth-
because the interpretation of the interior solution must beeses[3,4]: It is the most general differentially rotating sta-
taken as tentative rather than definite until an exterior solutionary and axially symmetric nonconvective perfect fluid
tion (if any) is found. admitting oneproper (nonhomothetig conformal motion.
Nevertheless, this does not mean that we can say nothing The plan of the paper is as follows. In Sec. Il we perform
about the interior body under consideration. For instance, wa purely geometrical analysis of the line element without
imposing the perfect-fluid Einstein field equations. We give
the most general coordinate transformation which leaves the
*Also at Laboratori de Bica Matemtica, IEC, Barcelona, Spain. form of the line element invariant and find under which con-
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ditions the spacetime is indeed axially symmetric with awhich shows that the only condition for the metric to be
well-defined axis of symmetry. It is shown that in some situ-nonsingular is

ations closed timelike curveghus violating causalifywill

occur. This allows us to restrict the physically interesting hm+s2>0, M=#0.

situations. In Sec. Il we write down and partially solve the

Einstein field equations, from where we see that the generdlhus, the functiorm can vanish despite the appearances in
perfect-fluid solution depends on an arbitrary function of oneEd. (1). Note that the metric would also have the correct
coordinate. The remaining differential equations are simpld-orentzian signature wherhm+s?<0 with h>0 and
and can be seen as the equations of motion of a particle in@<0. However, in this casg would be a time coordinate
three-dimensional Minkowski spacetime. In Sec. IV, weand therefore these solutions would not be stationary, which
study the matter content of the spacetime and impose thie the case we are interested in.

energy conditions everywhere inside the body, thereby fur- From Eg.(1) it is obvious that there still remains some
ther restricting the physically relevant solutions contained infreedom in changing the coordinates but keeping the line
the family. In this section we also give the limit hypersurfaceelement invariant. This allowed change is an arbitr@myn-

of the interior body explicitly. In Sec. V we find all the singulay linear change involving the coordinatésand ¢,
rigidly rotating solutions contained in the family. There exist that is to say,

two different rigidly rotating subfamilies. One has a two- - -

dimensional isometry group in genefapart from a particu- t=a;tta,d, oP=bit+by,, a;b,—ab;#0. (3

lar case which reduces to the de Sitter spacetiama the

other has a four-dimensional isometry group. The geometr{Performing this change and reading the new coefficients

of this second family can be easily interpreted, and this gives _

us some ideas for the analysis of the general case. Then, in . m ~ 5 h

Sec. VI, we classify the different possible behaviors of the git=—yzr 9=z and 955= 2

solutions and prove that there exist two physically well-

behaved classes of solutions. The first represents a topologjre have

cal three-sphere with two singularities at the north and south

poles and with a hole symmetrically distributed around the m ai _bi 2a;b; m
equatorial plane. The other class is much more interesting ~ 2 2

and we devote the whole of Sec. VII to its study. In this last hl=| —a b —2azb, hl. @
class, there appear all types of possible shapes for the interior s a;a, —bib, ajb,+ayb; S

body: Typically, they represent an isolated compact body

with axial and equatorial symmetry, either prolatum, obla-From  this we can  evaluate Fﬁ+§2=(alb2
tum, or irregular, and two pointlike singularities at the north — g, )2(hm+s?) so that we must still perform the
and south poles. However, there are even more exofic €fnear change in the coordinate given by X=|a;b,
amples, as these objects can contain central and/or toroidal 3,b,|x in order to maintairexactlythe same forn(1).

empty holes. Finally, there are also cases of axially symmet- Except for the particular cases studied below, the isom-
ric compact objectsvithout equatorial symmetry. As far as ety group of the metri¢l) is Abelian, two dimensional, and

we know, the models presented in Sec. VIl are the best andts transitively on timelike two-surfaces. The two commut-
more realistic explicit models produced so far by Einstein'sing Killing vector fields are

theory in order to describe the interior of axially symmetric
differentially rotating isolated compact bodies. 9 9

T
Il. GEOMETRICAL ANALYSIS OF THE LINE ELEMENT ¢

As stated above, the subject of our study is the generalNere is also a proper conformal Killing vector field given
solution for stationary and axisymmetric differentially rotat- by @/dy, which also commutes with the two Killing vectors.
ing non-convective perfect fluids admitting a proper confor-1Nis spacetime will be axially symmetric when there exists a
mal motion. As shown ifi2] and[3] the line element can be Killing field which vanishes as a vector on a two-surfaite

written in the form axis of symmetry and satisfies the regularity conditigsee,
e.g.,[5]). In order to find such a Killing vector, let us con-
1 s 2 hm+s? o dé® sider the change of variablé8) with a;=1, b;=0, which
dSZZW —m| dt+ Edg{) + m do+ hmt 2 implies
17 J J
+ dy2 , (1) n= — =D -
n a¢ b2 (9¢ + az ot y

whereh, m,s are functions of onli andM depends only on

y. Expanding the term enclosed in brackets we find so that we are considering a general Killing vector field of

the spacetime. In this case the transformation of the metric
dx? V2 coefficients given in Eq(4) takes the form
+ay
hm+ s? ’ ~ — _
@) h=b3h—asm—2b,a,s, S=h,s+a,m, m=m,

1
d82=—2

N —mdf—2sdtdp+hdgp?+
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and the change in the variabbe is written simply as Lemma 1The metric(1) possesses a regular axis of sym-
X=b,x. In order to impose thaj vanishes as a vector on a Metry atx=x, if and only if m(x;) >0, hm+s? vanishes at
two-surface we demand that its scalar product with an arbiX=Xy and its first derivative is finite and nonzero there. In

trary vector vanish on the axis of symmetry. In our case, thigaddition, the axial Killing vector is given by
is clearly equivalent to the existence of a valyeof x where

- 2 2 1 ( d  s(Xq) &)
- a T o
h(x;)=0 h(Xl):_(b_2> m(xy), Jmixy) |i h+s_2 ) dp  m(xy) at
2 dx m ( 1
=
a
3(x,)=0 S(X1)=— b—zm(xl). It might seem that the vanishing oim+s? at x, implies a

singularity in the metric due to the term o? in Eq. (2).
However, as is obvious from the intrinsic analysis we have
just performed, that is not the case at all. The coordinate
singularity in the metric can be solved trivially by making
the change of coordinate—x; + X?, so that the line element

First of all, we note thai(x,) must be positive because we
know thatg; must be a timelike Killing vector at least in a
neighborhood of the axigotice that on point®ff the axis
the two-surface of transitivity can be timelike with batfy

anddy spacelike, but this is impossibtm the axis where the becomes
transitivity surface becomes a one-dimensional)liriéhus, 5 1u2
the above two relations are in turn equivalent to 1 2 dX 2
dSZZW —mdtz_ZSdtd¢+hd¢ +m+dy .
a S(Xq)
B2 S i 52)(x) 0. (5) . . " e
b, m(Xy) As is now obvious, the condition of lemma 1 is simply that

) ) . o ) both hm+s? and its first derivative vanish a=0, and its
It is convenient to use the first relation in E®) to rewrite  gecond derivative is finite and nonzero there. Thus, the above

the functionh as line element is perfectly regular igyx. Nevertheless, we
5 132 prefer to maintain the coordinatebecause the line element
~ s S ; ; ;
h=b2 h+ — + G(x)) . where G(x)=— — —. takes .the nice and more symmetric fof® and also the field
m b m equations(see next sectignare autonomousgthey do not

depend explicitly on the independent variak)e
In order to assure that the symmetry we are considering is Let us now extract some important consequences of
indeed axial we must impose the regularity conditiaiso  lemma 1. When the metric coefficients satisfy the conditions

called elementary flatness conditjpmhich demands of lemma 1 at two different values, andx, andhm+s? is
. . positive between these values, it follows that the spacetime
V( 72)VP(5?) has two different axes of symmetry. In this situation, the
4—;72_’1’ range of variation of the coordinate must be restricted to

X1=<X=X, and lemma 1 implies that the two vector fields

on the axis of symmetry. In our case, this condition takes the
form d  s(Xq) @ d  s(xy) 4

dF)Z ﬁ_ m(Xy) at’ ﬁ_ m(xz) at

o ~b

~ hm+3s2
im ———
’)Zﬂble 4h

are proportional to axial Killing vectorgeach one with a
different axis of symmetry in principjeand, therefore, they

which can be rewritten in terms of the original functions andhave closed orbits. Unless they are proportional to each

coordinates as other, they generate a compact two-dimensional surface with
Lorentzian metric which necessarily contains closed timelike
52 curves(see[6]). Consequently, we must impose the condi-
h+— '
2 li m | d h+ il +G 2 1 o
—m(Xy) lim ———| — — =1

S(X1)  s(Xz)

X*Xih 4 = +G _
m(x;)  m(Xp)

(6

Obviously, the necessary and sufficient condition for the

symmetry to be axial is that the limit in this expression isin order to have a physically well-behaved spacetiive,
finite and strictly positive because then we can fix the consatisfying causality conditiopsin this case, there only exists
stantb, in order to satisfy the regularity condition. We al- one axial Killing vector field and its axis of symmetry has
ready know that the function+s?/m vanishes ak=x,, and  two connected components. In the coordinatesand ¢
also that both the functio® and its first derivative vanish adapted to the axial Killing vector, the condition that no
there (remember thak vanishes ak=x,). Then, a careful ~closed timelike curves exist reads

analysis of the above limit near=x; shows the following

fundamental result. h(x;)=s(x1)=0, h(x,)=s(x,)=0.
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Ill. EQUATIONS AND PROPERTIES must hold everywhere in order to describe true perfect fluids.
OF THE PERFECT FLUID In fact, from Eq.(7) we know thatm” and h” must have
opposite signs. Furthermore, the conditjpr- p>0 together
Our aim now is to concentrate on those particular metricavith Eg. (8) avoid these functions to change simultaneously
(1) which have an energy-momentum tensor of a perfectheir sign. However, they do not impose the specific condi-
fluid. As was first found ir[2] and later in[3] the Einstein ~ tionsm”=0 andh”<0. These come from the fact that one of
field equations in this case restrict the functidrfy) to sat- the field equations is quadratic in the second derivatives and

isfy it includes some solutions which do not describe a perfect
fluid (see[7] for a discussion The expression for the fluid
dMm\ 2 velocity vector can then be trivially evaluated and gives
d_y =ea’M?— v,
PR R SR
wherea andv are arbitrary constants ard= + 1. This equa- vh'm’ +s'?+4ea” 19¢
tion can be trivially solved to give one of the following pos- - ,
sibilities depending on the sign efand the different values _ My—h ﬁ+ S i (10)
of the constants andv [2] Jh'm' +s'2+4ea2\dt  h" dg)’
M(y)=Acoshay), v=a’A? where the second equality holds only at points with# 0.

Thus, the angular velocity) of the fluid is given by the
expressio)=s"/h", and the fluid is always nonconvective
(U is on the{t, ¢}-planes, and differentially rotating except

B B o in the particular casg’/h” = const. These rigid rotation cases
e=—1, M(y)=Acogay), v=—a?A? are thoroughly studied in Sec. V. Of course, in the rigid case
the velocity vector of the fluid is shear free. In the general

case, howeveu is shearing and accelerating. The magnetic
whereA is an arbitrary nonvanishing constant and we havePart of the Weyl tensor with respect tovanisheg2]. Fur-
used the linear change of variable$ const—y in order to  thermore, the general solution is of Petrov typewith u

avoid superfluous constantsim(y). Analogously, the three lying in the two-planes generated by the two principal null
functionsm(x), h(x), ands(x) must satisfy the two ordinary directions of the Weyl tens¢®,3], so that the metrics belong

e=+14 M(y)=AeY, v=0,
M(y)=Asinhay), v=—a®A?

a=0, M(y)=Ay, v=-A?

differential equation$2, 3] to class | in Wainwright's classification of Petrov tyji®
perfect fluids[10].
h"m”+s"2=0, (7) Let us now briefly make some remarks on the Einstein
equationg(7) and (8). This system of two differential equa-
(hm+s?)"+4ea’=h'm’ +s'?, (8) tions for the three unknowrts, m, ands can be rewritten in

an elegant way by using the three-dimensional quadratic
where the prime means derivative with respeckid’here-  form
fore, the perfect-fluid solutions of the for(f) depend on an

arbitrary function of x. 0 30
The energy density and pressure are given by .
(87G=c=1) 2 0.0/, (1)
0 0 1

— 1 M2(h M 12 2
=3 MA(h'm"+s" 4 4ea”) +3u, which has signature {1,1,1). By defining the three-
dimensional vector
p=2M2?(h'm’+s'?+4ea?) —3v, )
v(xX)=(m,h,s),

so that the perfect fluid satisfies the linear equation of state
P g Equations(7) and(8) can be rewritten, respectively, as

/_L:p+6v. (9) ( o u) O (1;17)"—(1;"1;’)4‘4632:0, (12)
The fluid velocity one-form can be written after some calcu-where the dot means scalar product using the metrig.
lations as Therefore, the solutions of the perfect-fluid equations can be
viewed as the trajectories of a point moving in a three-
1 dimensional Minkowski spacetime with null acceleration
—my—h"+e;sym”)dt P

vector, and the coordinateis the parameter which describes
the trajectory. It is clear that Eq€L2) are invariant under the

—(ethym"+sy—h")de¢], homothetic transformations of the three-dimensional
Minkowski spacetime. This group of transformations in-

- MJh'm’ +5' 2+ 4ea?

wheree;= sgn@”). From this it follows that the conditions

m’=0, h"<0 We owe this elegant form to Dr. E. Ruiz.
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cludes the three-dimensional Lorentz group and the dilationsanishing atg, we have that the density is also zero at this
[which transform Eq(11) into the same form except for a point. However, at any point whege+ p vanishegandq is
global positive constant factar?]. Then, transforming the one of these poinjshe expressioiil0) for the fluid velocity

parameterx by x— vXx the invariance of the systeif12) is  ( diverges and a detailed analysis of the energy-momentum

obvious. It might be thought that this invariance could givetensor is necessary. It turns out that the momentum tensor is
rise to new solutions given a paI’tICU|ar one. This is not thQ'egL"ar atq and takes the form

case, though, because a direct calculation shows that the

group of transformations given by E@), which are gener- Topla=KaKglq,
ated by the coordinate freedo(d), is exactly the homothetic o
group just discussed. Thus, the transformation of a solutioM/here the one-fornk|, reads, explicitly,
of Egs.(12) by the homothetic group gives exactly the same

solution for the metrig1) written in another coordinate sys- _1 " "
. . : o =—(—my—h"+¢5sV
tem. We will use this freedom to write some explicit solu- Klq \/E( My=h"+esymodt
tions of (12) in its simplest possible form. The hitherto ex-
plicit solutions of the systerti), (8) are presented in Sec. V 1 _ _
(for rigid rotation and in the Appendix. - E(Elhvm +sy—h")ddlq.
IV. ENERGY CONDITIONS AND THE LIMIT SURFACE This one-form is null ag [obviously, assuming that the Ein-

The study of stationary and axisymmetric perfect-fluid so-StEIn equation£7) and(8) hold]. In consequence, in t_he case
v=0 the energy-momentum tensor describes a fluid moving

lutions has usually the main purpose of finding interior rnOd'on timelike curves which tend to null curves as we approach
els which may describe the gravitational field inside a com- PP

. o . the limit surface(defined as the points where the pressure
pact body(or at least a body with a limiting boundary which . S .
separates the self-gravitating fluid from its extexidgiven vanishes, where the fluid is in fact moving at the speed of

that the interior is intended to be a stationary body, the Iimit]Ight with a nonvanishing energy density. This situation is

hypersurfaceS can be visualized as a two-surface at rest ing\?:)igkﬁl%{str?aSi?uraIgtrriiflllIs\tgnibs%(ijrl]esEailggt;ihnetgr:“s%rwoar? t:]Oe
the reference frame of the stationary Killing vector, WhichIimit h ersurfac?e In thisycase thegbod is more and more
obviously implies that this hypersurface is timeliker yp : ’ y

equivalently the normal vector is spacelikéssuming that rar]f|eq anq it transforms into the vacuum in a smoot_h way.
the exterior of the body is vacuum and the nonexistence 0']1'h|s situation C?r_] o_nly b_e accompllshed by Qemandlng that
surface layers, the junction conditions between a perfectthe _nuII vectork is identically vanishing, which is clearly
fluid interior metric and its vacuum exterior impod@ that ~ €quivalent to
the pressure normal to the limit surface must vanish so that

we find that the limit boundary is determined by the well-
known condition of vanishing pressure:

m”|S:01 h”|S:01 S”|S:O,

giving very particular solutions with a physically plausible
pls=0. interpretation.

Therefore, we will concentrate on the more general solu-
The interior of the body is then taken as the region where th&on given in Eq.(13). It can be easily seen that thecan be
pressure is positivéin order to describe the behavior of s€t equal to 1 by redefiningy,m,s,x, and a, so that
known fluids where the pressure tends to expand the body! =cosh@y). Now, it is convenient to define a new coordi-
which is in equilibrium due to gravitational force#Another ~ nateY(y) by means of
physical condition on the perfect fluid is that the energy den-
sity is positive everywhere inside the body. Thus, in order to

have a tl_mellke hyper_surfac@ of vanishing pressure with Wpich allows to rewrite the line elemef2) in the form
the density non-negative there, we must choose the constan

sin(aY)=tanhay),

v in the equation of stat¢9) such thatv=0, so that the

dominant energy conditiofs] ds’=dY?+cog(aY)| —mdf—2sdtde+hdgp?
psu, wn=0 dx@

_ i _ +—]. (14)

is fulfilled everywhere. Then, the only physically reasonable hm+s

possibilities forM (y) are ] N o )
This form of writing the metric will be convenient later to

M(y)=Acosiay), v=a’A?, p<u, (13 interpret the coordinat® (and therebyy). In terms of this
coordinate, the density and pressure read
M(y)=Ae", v=0, p=u.
h'm’+s'?+4a? ) h'm’+s'?+4a?

Our aim now is to show that the second possibility is a#= WJF%‘ » P= W_?’a .
rather unusual case, so that we can restrict out attention to (15)
the first possibility. In order to see this, let us consider the
casev =0 and choose a poimt located onS. The equation These expressions show that the spacetitdg has a curva-
of state isp=u everywhere and, given that the pressure isture singularity at
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X

b —4a?x, m=x, s= const,

h=CIn(

The equation determining the limit hypersurface of the fluidwhereC=0 andb>0. It can be seen that the isometry group

is given by

hlm/+s/2+4a2
:T=CO§(aY),

7

where the pressure vanishes. The range for the coordinate

where this equation has solution is clearly defined b
—4a’<h'm’ +s'?<8a?. Thus, the interior region of the
self-gravitating body is given by

" vje Lol [T TS
23~ |YI= Farceo 1232

<h,m,+S,2$832,

when —4a?

m & [y 12 2
— —<Y<-— when h'm’+s'“>8a".

2a 2a (18

of this solution is two dimensional in general, and its energy
density and pressure read

C
K= 2xcod(ay) 3

C

— _ 2
P= 4xcos(ayY) 3a%,

a?,

so thatx=0 is a singularity of the spacetime whenever it

ybelongs to the allowed range for. This metric was first

found by one of ug9] as the most general stationary and
axisymmetric rigidly rotating perfect fluid with Petrov type
D and the fluid velocity vector lying in the two-planes gen-
erated at each point by the two principal null directions of
the Weyl tensor(thus belonging to class | in Wainwright's
classification 10]). The magnetic part of the Weyl tensor in

the direction ofu is zero and the existence of this solution
was first proven by Colling11], which in particular implied
that a theorem due to Glags2] was untrue. The static limit
of this solution is obtained whese=0 and was first pre-
sented by Barne$l3]. This static limit is, however, not

We learn from these expressions that the curvature Si”9U|ar§'pherically symmetric.

ties (16) are always reachable going through the interior of
the body. In the following sections we shall give a geometri-

cal interpretation of the perfect-fluid metri¢s4) discussing,
in particular, the shape of the limit surfaBand the location
of the two singularities.

V. RIGIDLY ROTATING CASES

Let us now find the rigidly rotating solutions contained in
the system(12). This is important because of two reasons.
On the one hand, they will give the rigid limit of the differ-
entially rotating solutions and, in particular, the static limit of
the family, which in some sense will tell us what is the
resulting spacetime when the rotation is “switched off.” On
the other hand, these rigid solutions include the perfect-flui
metrics contained in Eq(l) with a larger isometry group
acting on the hypersurfacgs= const. This follows because
the angular velocity) of the perfect fluid is invariant under
the action of the isometry group and, sdepends at most
on the coordinate, it must be constanthus giving a rigid

solution when the isometry group acts on the hypersurfaces

generated by the coordinates¢, andx. These more sym-
metric solutions may give us some insight into the interpre
tation of the general solution.

The rigidly rotating solutions are characterized by the

condition ) =const, and then we can always chotossich
that the fluid velocity vector is proportional . From the
explicit form of () and Eq.(7) it follows that

rigid rotation: s"=m"=0.

We must now distinguish two possibilities depending on

whetherm is a constant or depends explicitly on In the

second case, we can perform a linear change on the variable

x and use the freedort8) with b;=0 (in order to maintain

uxd,) to setm=x and s=const. Equatior(8) can now be
trivially integrated and the final solution is

s+2ax o
q’20$(= s cogaY), sinysing=

There is also a special case with a larger group of sym-
metries defined byC=0 (for s#0 since whenC=0 and
s=0 we havehm+s?<0 everywhere and the metric has not
the signature we have been assuming throughdtiis spe-
cial metric is of positive constant curvature so that in fact it
is locally the well-known de Sitter solutiotalthough in a
rather strange coordinate systerRor the sake of complete-
ness, we give explicitly the coordinate change from the co-
ordinates we are using to more standard ones. It reads

_[s _\/§1
T= Z(t+2a¢), o= 7(23.(]5—0,

s—2a
2s

X

cogay)
and brings the metric into the standard form

1
ds?=—coSxdT?+ ;[dxz+sinZX(d02+sin20dcp2)].

Obviously, we only obtain the portion of the de Sitter metric

which is static since the metric in the original coordinates
was static.

The analysis of the functionm+ s? for this rigid solution
shows that, in generalQ#0), there appear two possible
ranges for the coordinate One of these ranges always in-
cludesx=0, which is a curvature singularity as we have
seen, and finishes at the first zerchah+ s. The other range
appears only when

C?  exp(y1-16a’s’/C?)
P<—,
16a 1+1-16a%s?/C?

C  exp—1-16a%s?/C?)
< =
8ba® = 1-1-16a%%C2 '
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and thenhm+s? vanishes at two other values &fbeing The metric(20) has a regular axis of symmetry a0
positive between them. Both these axes are regular, but thend its isometry group is four dimensional, acting multiply
application of the remark following lemma 1 proves that theytransitively on timelike hypersurfaces, and, therefore, the
have different axial Killing vectors and therefore this space-isotropy group at each point is a spatial rotation. The infini-
time (unless in the static case=0) always contains closed tesimal generators of the isometry group are given by
timelike curves.

Let us now consider the other rigid case, whanis a -~ 0 . - -~
constant. We can use the same coordinate freedom as before 1= s (axial Killing), &= —
to setm=1 ands=cx, wherec is an arbitrary constar{the

other case of vanishingn does not give a perfect fluid _ 9 S(r,k) 4 S2(r/2 k) @
Equation(7) can be integrated and the full solution is §3=sm¢ﬁ+cos¢(m%+cw ﬁ)’
c2+4a?
h=-— 3 x2+ax+pB, m=1, s=cx,

_ g . (2(r,k) 9 _3Arl2,k) 4
Ea=CoSp o SIS 96 T TS (re) o)
wherea and B are arbitrary constants. The expressions for ’ ’
the energy density and pressure of this solution are where the prime in these expressions denotes derivative with
24 492 21 402 respect to the variable. The Lie algebra of this isometry
= ¢"+da 1322, p= ¢"tda 332 group can be easily evaluated to give
4cog(aY) ’ 4cos(ay) ’

which do not depend on the coordinateAn easy calcula- [61,62]=[61,8]=[61,8]= 0, [&2:65]= 64,
tion shows that this metric contains a four-dimensional isom- =
Zg)o/ugt:]:?sugei?:étrt;]erefore, it is worth saying some words [&),Ea]= — &g [53,54]:_,(52_551_

First of all, we note that the coordinatesind ¢ are still

not uniquely determined. The allowed linear char@jdeav- Let us now make some considerations concerning this so-
ing h, m, ands invariant is lution that will also be true for the general case when the
isometry group is only two dimensional. Although we know

d—A1d, t—t+ALP, (19)  that this solution has a well-defined axis of symmetry at any

. ) o point of the spacetime because of the high symmetry it con-
and the axis of symmetry of this solution is placed at thetains, we need only to consider those axes of symmetry such

roots of the equation that the corresponding axial Killing vector is a linear combi-
2_ 452 nation ofd,, andd; because this is the situation in the general
hims s2= 0 12 X2+ ax+ B=0 solution. These axes of symmetry are located at

hm+s?=0 or, equivalently, wher& (r,«)=0. In the two
. : , casesk=0 and k=—1 the only value ofr such that this
and these zeros must be simple in order to satisfy the regusy yression vanishes is=0 and, in consequence, the coordi-
larity condition on the ,aX'S'hThUS' the constaalsc, a, and  ater can take arbitrarily large values. The norm of the axial
B are restricted to satisfy the condition Killing vector is given by the functiom, which reads now

a?—2B(c?>—4a%)>0.

—h2y'2 =254 r
Depending on the sign af?—4a? (which can also vanish h(r)=b=24(r,)—c% E’K)'
there appear three different possibilities which, after using a
change of coordinates of the typ#9), a change of variable Obviously, this function vanishes at the axiss0 and is
in the coordinatex, and some redefinitions of constants, canstrictly positive in a neighborhood of this axis. However, in
be written as the casesxk=0 and x=—1 (then necessaril+0), for
5 large enough values ofthis function becomes negative and,

dt+’622(£ K)d(ﬁ} in fact, tends to—o whenr— +. Thus, in these cases,

2’ k=0 or k= —1, the solution contains closed timelike curves
and violates causality. In the remaining case + 1 we have

dsz=dY2+c052(aY)[ -

+b252(r, k) d 2+ bzdrz}, (20 (hm+s2)(r)=b25.2(r,+1) = bZsirfr.
whereb andC are arbitrary constants, can take the values ag this function vanishes again for=, the solution will

*+1 or 0, we have pua’=(C*+8xb?)/160%, and the func-  have another axis of symmetry there. The axial Killing vec-
tion 2(r, ) has the usual definition tor with the axis of symmetry at= 1 is given by the fol-
sinfr if xk—=—1 lowing combination ofd, andd;

S(rok)=9Tr if «=0, d d
sinrif k=1. dp T at’
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If T+#0, it is clear that the solution contains closed timelikeso that for everyx there exists a range of describing the
curves(see the remark after lemma 4o that the solution is interior of the body, or

not physically well defined. [€=0, this axial Killing vector _ b — )
coincides with the one with axis at=0 [this corresponds to case B: 3x>0, (h'm'+s'9)(x)=—4a" (22
the situation when the conditigi) is satisfied and the met-
ric is perfectly well behaved. This particular metric with
c=0 andx=1 reads

Case A will be the subject of this section. From a physical
point of view, case B is much more interesting, and will be
considered in detail in the last section.
v From now to the end of this section we assume that Eq.
_) (—dt2+ b2sirfrd 2+ b2dr?). (21) holds. We know that the axial Killing vector must be
J2b spacelike at least in a neighborhood of the axis and, actually,
the regularity condition imposés (0)>0 so thath grows to
The spacelike hypersurfaces= const are three-spheres. positive values whem becomes positive. Furthermolite, is
Thus, we can identify the geometrical meaning of the spacenonpositive everywhere so that the functiortends to stop
like coordinatesp, r, andY. In fact ¢ is clearly the azimuth jts growing anch’ possibly tends to cross again to negative
of the three-sphere;, is the colatitude angle of each two- yalyes. In order to find all the possible behaviors for the
sphereY= const[these two-spheres have a radius given byfynctionsh, m, ands which give physically well-motivated
b?cos(Y/y2b)] and Y is the latitude angle along any cir- solutions, let us first suppose thetbecomes negative some-
cumferencep= constr = const. The two connected compo- where. Then, from the fact that’<0, there must exist an-
nents afr =0 andr = of the axis of symmetry of the axial other valuex,>0 where the functiorh vanishes. As dis-
Killing vector d,4 are part of a single curve because theycussed above, the only way in which this kind of behavior
meet at the north and south poles of the three-sphere, wheggves a physical spacetiniee., not containing closed time-
Y==bn/\2, respectively. This geometrical meaning of thelike curves is by also havings(x,)=0. In this case, there
spacelike coordinates will be of some help in the generabnly exists one axial Killing vector with an axis of symmetry

ds?=dY?+cog

cases studied in the next sections. with two connected components, and the coordixatakes
values inside the finite interval (0,). In consequence, the

VI. ANALYSIS OF THE DIFFERENT TYPES interpretation ofx as an anglglike in the more symmetric
OF SOLUTIONS solution (20) with «=1] holds. By analogy with the more

Fi fall 1 hat th ical . fsymmetric case, we can finally interpret the hypersurfaces
Irst of all, let us note that the geometrical meaning of, Z ¢qnq¢ jn Eq.(14) as topologically equivalent to three-

g’ s QSV(;OESB;] standa}rd4an_cihwill hOIId for gvefry spacetime gy ares with two connected components of the axis of sym-
escribed by the metrid4) with a regular axis of symmetry. o4 \which, in fact, belong to the same curve and meet at

The same happ_ens for the interpretatiprt tiecause all t.he the two singular point¥ = = 77/2a (located, respectively, at
metrics are stationary. The interpretation of the coordlnate;Lsne north and south poles of the three-spheire this case

x andY is certainly more involved. We are now going t0 S€€heqe two singularities can be viewed as two “points” lo-
that there exist two different cases of physical interest. In ON€ated on the axis of symmetry. When a limit surf&ef the

of them the interpretation of the coordinateandY is simi- g exists, it follows from the variation ranges of the coor-

lar to that of the more symmetric cases analyzed in the preginaie v describing the interior of the body that the region
vious section. In the other, more interesting case, the coord|z ., positive pressure is given by the whole three-sphere

natesx and Y can be visualized as similar to the typical P : :
: . L except for a patch which is symmetric around the equatorial
bipolar coordinates of the Euclidian plah&4]. In order to Eh y P y N

h hi h i £ th ane(it is clear from our interpretation of thatY =0 is the
show this we have to consider some of the consequences f \aiorial plane of the solutipnFinally, it is obvious from
the system of differential equatiol(s), (8).

Choosi h di de in th ic(14 Eq. (17) definingS and the fact that the range of variation of
oosing the coor ma’Fet_san ¢ in the metric(14) so x is bounded that this two-surfacat each instant of timds
that g, is the true axial Killing vector, we know that both compact whenever it exists

metric coefficientsh ands vanls_,h on the axis of_symmetry Having found which are the physical solutions in the case
located at some value=xq, which we can set without loss

. : : thath’ becomes negative somewhere, we can now consider
of generality ax,=0 by performing a change of variables the remaining situation in which’=0 everywhere. From

x—x+ const. Thus we havb(0)=s(0)=0. We will con-  yhe tact thath”<0 everywhere it follows thah’ has a finite
centrate in studying those solutions for which the INterion; it when x—s -+ oo

region of the body reaches the axis of symmetsy0. The

reason for this lies in the fact that trying to interpret the lim h'(x)=?=0= lim h"(x)=0,

geometry of an interior solution which does not contain the . X— o0

axis of symmetry is a much more speculative and unclear

task. In fact, we could not even assure whether the solution iwhere y is a (possibly zerp constant. We are now going to
indeed axially symmetric or not until the exterior solution Show that in this case the self-gravitating body is either non-
were known. Thus, we will assumie’'m’ +s'2>—4a2 at finite or contains a singularity at some valueofin both

least in a neighborhood of the axis=0 [see the expression cases, the spacetime is not suitable to describe an isolated
for the pressure in Eq(15)]. There appear then two com- rotating body with an asymptotically flat exterior and there-

pletely different situations depending on whether fore we will not try to interpret it. . _
Let us first suppose thatm+s? vanishes at some point

case A: h'm’+s'?>—4a% Vx>0, (21)  x,>0. From the remark after lemma 1 and the fact that now
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the functionh is strictly positive forx>0, we have that the
spacetime contains necessarily closed timelike curves and

fm dx fw dx
> .
the solution is unphysical unlessifi+s?)’(x,)=0. When o vhm+s*  Jo yx[5+(K/2)x]

this happens, we know also by lemma 1 tkatx, is not a . . L . .
regular axis of symmetry of the spacetime. Let us show thalt\low’ the integral on the right-hand side is obviously diver-

the rotating body is infinite in size. In fact, the length of agent and, therefqre, thg integra! on the Ieft-hand side is also
curve t= const, = const, andy = .const cc')mpletely con- divergent. But this last integral is proportional to the proper

tained in the interior of the bodfit can be trivially seen that length along arx-coordinate curve from the axis to=r,

such a curve always exists in the case under consideyatio ﬂﬁet?fzsg t_lr_]ﬁesggger“n:)z;isbirlﬁguifsa{h;?(iﬂgge :g;?/n:z ?Sogicr)]f_
from the axis of symmetrx=0 to the valuex=x, is pro- ) b y P

portional to the expression gular at some value of>0, and ir_1 t_his case this singularity_
can be trivially seen to be at a finite distance from the axis
w»  dx (even in the extreme case of the singularity placed at
f —_— (23 Xx=+®), as we had claimed. Thus, we have exhausted the
o Jhm+s2 whole of case A given in Eq21) and we can consider the

. . _ . more interesting case B.
which diverges at least logarithmically given that both g

hm+ s? and its derivative vanish at=x,. Thus, in this case
the metric does not represent in any way a limited object
because the size of the body is not finite, and we will not
consider this kind of solutions any further in this pagaF
though nonfinite sources can be used sometimes to mod
situations such as accretion disks or similar

Another possible behavior fdrm-+s? is that there exists
some finite valuex=x, where this function diverge&nd
does not vanish for €x<x,). Obviously, the function must
diverge to +o and it is clear that all the derivatives of
hm+s? also diverge to+% when we approack=x,. In
particular, from the unboundedness of the second derivativ
of this fur;ction and the Einstein equatié8) it follows that
h'm’+s’< also diverges tot+o. The expressions for the ; — ; L
density and pressure,gEc{SS), show that tﬁe spacetime con- each p-oss_lble va!ue, OTE,Z(O’Z()’ tW02 dlfferer)t POSS,'E'I'E'GS
tains a true singularity at=x, which, moreover, is located appezar. elther_ 'm’+s'%)(x)>8a" or (h'm’'+s"%)(x)
at a finite distance from the axis of symmetry given that theS8a : In the f|r§t case, and as follows from_ E@.S)Z the
length(23) is now finite. This singularity is much worse than coordlnat(_aY varies from— 77_/2a to m/2a, and in particular
those located aY = = 7/2a because this is an extended sin- ¥ ~ 0 (which is the e_quat_onal plane, as we sh_aII pre_sently
gularity fully contained inside the body. Therefore, this un-S€8. Pelongs to the interior of the body at this particular
physical solution must be also ruled out in the description of<—*- For all thesex, the hypersurfaces=Xx go through the
rotating finite bodies.

We can thus move to the last possible behavior for —
hm-+ s?; namely, this function remains positive and finite for z
all valuesx>0. We are going to show that, again, either the
body is nonfinite or contains a singularity at a finite distance.
In order to prove this, let us assume first that the spacetime is
regular. This implies, in particular, that the density and pres-
sure remain bounded for ak>0. Expressiong15) show
that this happens if and only if there exists a positive con-
stantK such that

VII. PHYSICALLY INTERESTING SOLUTIONS

In this section we analyze and interpret the solutions for
pse B defined in Eq22) assuming also that both and
m+ s? remain positive in the interval (0). These last con-
ditions onh andhm+s? can be assumed because otherwise
the considerations made in the previous section would still
hold. Now, the situation with respect to the coordinates
quite different than before, as its range of variation has to be
restricted to the interval (8) not because is an angular
8oordinate but rather because the body has a limiting surface.

In order to interpret the coordinatgsandY and to ascer-

tain the shape of the body in this case, we first remark that, at

h'm’+s'2+4a%2<K+8a2, Vx>0.

From Eq.(8) we find that this condition is in turn equivalent
to

(hm+s?)"<K, Vx>0.

Then, by integrating twice and remembering that
(hm+s?)(0)=0 we find

K
(hm+ 52)(x)<5x2+ 8x, Vx>0,

FIG. 1. System of bispherical coordinates for the Euclidian
whereé is an arbitrary positive constant. Therefore, we havehree-dimensional space.
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interior of the body from the singularity &t= —7/2a up to  tation for x. Remember that, in the previously analyzed
the other singularity a¥ = r/2a. In the second case, on the cases, these singularities were just single points placed sym-
contrary, we see from E18) that the range of the coordi- metrically on the axis of symmetry. We are going to see that
nate Y has a symmetric “hole,” so to speak, around the this interpretation still holds now. To that end, let us study
value Y=0. This second possibilitalways appears in the the shape of the limit surfacE as seen from the exterior
case B under consideration as we approach the maximurbhis can certainly be done if we assume that the metrics are
value x of x [because of Eq(22)]. For these valueg, the  matchable to some vacuum exterior @itbecause then the
hypersurfacex =X start at one singularity and go up to the matching conditions provide the exterior standard Weyl co-
limit surface S, then they cross the “hole” around=0  ordinates{p,z} (see[15]) on the same surfac8. This is a
through the exterior of the body, then reemerge inside thstandard computation which produces, by using &), the
body from another part o6, and finally reach the other sin- result
gularity. 1
Thus, an interpretation of the shape and location of the _ e P BNy 2
two singularitiesy = * 7r/2a will give us a possible interpre- p(X)|S—@ hm+s*(h'm’+s"*+42%)]s,

dz +2(8a2—h’m’—s’z)(h’m’+s’2+4a2)—3(h’m’+s’2)’(hm+sz)’

dx'S — 24\3a%\/8a2—h'm’ —s'? s

where, of course, these formulas are valid only on the hyperth’m’ +s'2)(x,) =8a? [the existence of at least one such
surfaceS. As we can see from the first of these relations andvalue is necessary from E2)]. In this case, the shape of
Eq. (22), the Weyl cylindrical radiugp|s vanishes ak (re-  the limit surface is presented in Fig. 2: The axis from one
member thap=0 is the axis as seen from the exteyidut  singularity to the other is completely contained in the body,
this x corresponds t&'=* 7/2a on S, that is to say, to the which presents manifestly equatorial symmefisee Eq.
singularities. Therefore, these two singularities are always$17)]. The proper length from the axis to the surface along

two single points(at each instant of timeplaced at the in-  the equatorial planéhe “equatorial radius) is given sim-
tersection of the limit surface of the body with the axis. Thep)y py

above formulas allow also for the explicit checking of all the

assertions we shall make in what follows concerning the %  dx

shape of the limit surface. Req:f Eh—
If we now remember that the hypersurfacesx go from o Vhm+s?

one singularity to the othgwith or without a “hole™), we

can visualize them, at each instant of time, as figures ofvhile the proper distance from the centet Y=0 to one of

revolution around the axis, all of them intersecting at the axighe singularitiegthe “radius along the axis)'is

at the two points Y=*xm/2a. In particular, the

(x=0)-surface degenerates to a single line on the axis going T

from Y=+m/2a down to Y=-m/2a. The surfaces Rax=55- (25

Y =const at each time are then the correspondimmgthogo-

nal family of surfaces of revolution around the axis, andThe “north and south poles” are the singularities and the
thus, in particulary=0 corresponds to the equatorial plane shape of the limit surface is oblatum, prolatum, or irregular
adez + 7r/2a degenerate to_tw_o single points. These. Coor'depending on the explicit forms of the functiohsm, and
dmate_s{x,Y} are thereforg _s,lmllar to the standard blpolarS and on the constard, as is obvious from Eqs24) and
coordinates in the Euclidian plangl4], and the set (o5 Notice that, in general, the shape of the limit surface
{X'Y'¢.} is analogous to the system of b|spher|qal C.Oord"can adopt very irregular forms and, in fact, the distances
nates in flat three-spadd4], as can be checked in Fig. 1 orthogonal to the axis and up to the surfaecan have

where we represent them. . ; X
Once we have given a precise interpretation for the coor—sev.eral local maxima. Some examples illustrating these be-
haviors are shown in Fig.(8 and Fig. 3b).

dinates{x,Y} in case B, we can now study and classify the
different shapes and properties of the interior body and its
limit surface. Of course, given the enormous freedom still ~ B. Isolated compact bodies with equatorial symmetry
available in choosing the functiofsm, ands, the possibili- and a centered hole
ties are endless. However, we can certainly provide a quali- This case arises wherh(m’ +s'2)(0)<8a? and there
tative classification of the different cases of interest that mayyist just a couple of values, andx; (0<X,<xX3<Xx) such
appear. that h'm’ +s’2—8a? changes its sign at=x, and x=Xx.
Notice that, in this case, these values must appear in pairs
because of Eq(22). The limit surface has now two con-
This case arises wherh(m’+s'?)(0)>8a? and there nected components, the inner and the outer surfaces of the
only exists one positive valuex=x,<x in which  body as shown for a typical case in Fig. 4. The shapes of

(24)

A. Typical isolated compact bodies with equatorial symmetry
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Y const. yconst.

xconst. x const.

plane of symmetry plane of symmetry

ALSLULIAS Jo SiXe
ALBUILLAS Jo SIxe

FIG. 2. Typical isolated body with equatorial symmetry. The
shadowed region represents the interior of the body and the two
singularities in the north and south poles are indicated by two dots. Y const.
The coordinate linex const andY const, which are similar to the :
bispherical coordinates, are also shown. Notice that we have chosen
these coordinates such that all theonst lines reach the singulari-
ties tangent to one another. This means that the coordifef¥$
do not cover the whole two-dimensional plane. Any other similar
interpretation for{x,Y} could be possible with the only result of
changing the form of the bodies as seen from the exterior but with-
out changing the main features of the interior body. The vertical
line through the two singularities is the axis of symmetry and the
three-dimensional picture is obtained by rotating the figure around
this axis, as indicated by the circular arrow. This will be the case in
all the following figures.

x const.

plane of symmetry

AQSLULLIAS JO SIXR

these two connected components can vary as much as in the
previous case, and both of them can adopt very regular or
irregular forms. However, the inner surface is always com-
pletely regular(it has no singularities Obviously, this type  (©)
of configuration for a self-gravitating perfect fluid can be in
equilibrium only because of the differential rotation. In this  FiG. 3. () Isolated compact body with equatorial symmetry and
case, there are no such concepts as equatorial radius, etc., Buhore irregular profile. The allowed shapes are those in which the
some other typical appropriate distances can be computeghordinate linex const entering inside the body when coming from
without difficulty (such as the proper distance between thehe equatorial plane remain inside the body until they reach the
inner and outer surfaces along the equatorial plane singularities. (b) Another example with an even more irregular
shape. This figure indicates how the cases with either centered holes

C. Isolated compact bodies with equatorial symmetry or toroidal holes(see Figs. 4-j7may appear.

and a toroidal hole tersect the axis and is completely regular. The exact forms of

This case is defined byh(m’+s'?)(0)>8a? together the inner and outer surfaces depend completely on the spe-
with the existence of exactly three valugs,x;, and x,  cific functionsh,m, ands, and there is a great variety of
(0<x,<x3<x4<x) Where h'm’+s'?—8a® changes its possibilities.
sign. Now, the axis from one singularity to the other is again The distance along the axis from the “centex=Y=0
completely contained in the body. However, there is a holaip to the “north pole” singularity is exactly Eq25) again.
around the equatorial plane for adle (x,,x3). Because of On the other hand, the equatorial distance from the axis to
the axial symmetry, this hole appears as sim{lapologi- the outer surface cannot be computed now because we need
cally) to a standard torus. A typical example is represented ito know the exterior metric in the toroidal hole. Thus, the
Fig. 5, where we can see that there are again two connectediter appearance of this bodyprolatum, oblatum, etg.
components of the limit surface; the inner one does not inseems to be uncertain at this stage. Nevertheless, we can
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yconst. |

x const. X const.

plane of symmetry plane of symmetry

ALSLULUAS JO Spie
AQSLULUAS JO Stxe

FIG. 4. Isolated compact body with equatorial symmetry and a FIG. 6. Isolated compact body with equatorial symmetry and
centered hole. Now the axis is not completely contained inside theéhree toroidal holes. Notice that an arbitrary number of interior
body. toroidal holes are allowetsee main text These toroidal holes can

also have many different shapes.
always give a lower bound for the equatorial radius defined
by the sum of the equatorial distance from the axis to th
inner surface plus the distance from this inner surface up
the outer surface, that is to say,

te[ion to other distances orthogonal to the axis allows to ascer-
fain the outer form of the body in some situations.

R J’Xz dx fxz; dx (26 D. Compact bodies with equatorial symmetry
+ : i
e o vhm+s?2 Jxs Jhm+s? and a set of toroidal holes

This case is the generalization of the previous one to the

This lower limit for Re, together with its evident generaliza- €xistence of a finite numbesay,n) of toroidal holes in the
interior of the body. Thus, it is defined by the conditions
(h'm’ +s'?)(0)>8a? together with the existence of exactly

> 2n+1 values

X2, X3, ... ,X2n+2(0<X2<X3< cee <X2I"I+2< )

Y const.

whereh’m’ +s’2—8a? changes its sign. The axis from one
singularity to the other is completely contained in the body,
and there appear holes around the equatorial plane, each of
them for the values e (Xj ,X2j+1), with j=1,2,... n. Be-
cause of the axial symmetry, each of these holes resembles
(topologically) a standard torus. A simple example of this
case is presented in Fig. 6, where we see that now there are
n+1 connected components of the limit surfaneof them
are inner surfaces and correspond to each of the toroidal
holes and the remaining one is the outer surface. None of the
n inner surfaces intersect the axis, and all of them are com-
pletely regular. The exact forms of the inner and outer sur-
faces depend again on the specific form$1ph, ands.
Expression(25) gives again the distance along the axis
from the “center” x=Y=0 up to the “north pole” singu-
larity. Concerning the equatorial distance from the axis to the
outer surface, we can only give a lower bound as in the
FIG. 5. Isolated compact body with equatorial symmetry and aprevious case. This lower bound is the trivial generalization
toroidal hole. of that defined by Eq(26) and reads

x const.

plane of symmetry

AQOUILLIAS JO SIXe
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Y const.

xconst. x const.

plane of symmetry plane of symmetry

AQDWILIAS JO Sine
ADBLLILUAS Jo stxe

FIG. 7. Isolated compact body with equatorial symmetry, one FIG. 8. Compact bodies with no equatorial symmetry. In this
centered hole, and two toroidal holes. Again an arbitrary number o€ase no point on the equatorial plane belongs to the interior of the
toroidal holes is allowed and many different shapes for them ardody and, therefore, the interior has two connected components

possible. each one containing one of the singularities.
n
R.> sz dx Y JXZJ” dx ertheless, we must choose just one of the connected interiors
T o yhmrs? =1 Dy, Jhmts? (both are identical upon reflectipras the interior of the
body, because the representation of the exterior between
The comparison of this lower limit foReq with R, of EQ.  “drops” cannot be guaranteed unless we know the vacuum

(25 gives information on the outer shapes of the body.  exterior solution valid at that region. In order to fix ideas, we
shall always choose the “drop” with positive values f
E. Compact bodies with equatorial symmetry and central Thus, now the interior of the body is simply the interior of
and toroidal holes the upper “drop,” which doesot have equatorial symme-
try, as is manifest. These interiors have the advantage that
they only contain one singularity, placed at the “north
pole,” the rest of the limit surface being completely regular.
Their exterior appearance can adopt many different shapes,
as, for example, the irregular form given in the example of
Fig. 9. In general, this family of solutions can be thought as
the limit of the first family given in this sectiofi.e., typical
isolated compact bodies with equatorial symmetwhen

In this case we haveh(m’ +s’?)(0)<8a?, so that there
is a central hole, and also we allow for the existencen of
toroidal holes. Thus, there exist exactlyn2(1) values
X2, X3, - Xonra  (0<Xp<X3<-'+ <Xon:3<X) Where
h’'m’+s’?2—8a? changes its sign. Tha holes around the
equatorial plane are defined then by the values
€ (Xgj+1,X2j+2), With j=1,2, ... n. The central hole is ob-

viously defined by the values e (Oxp). Now, there are X,—0, so that the equatorial radi24) for those metrics

n+2 connected components of the limit surfacet 1 of h he limit. th bodi h
them are inner surfaces and the remaining one is the outdPProacnes z€ero. In the limit, there appear two bodies touch-

. ing each other tangentially at a single point in the center
surface. Among then+1 inner surfacesn of them corre-

spond to the toroidal holes and the other to the central hole)f:Y.IO'. Wheﬂ this point disappears the new family we are
considering arises.

A” the inner surfapes are completely regular. The_se PIOPEr* " Another interesting remark regarding this family without
ties can be seen in the example represented in Fig. 7. : . } P
equatorial symmetry is that, by making m’+s’< closer

and closer to—4a? for all x, we get smaller and smaller
“drops” placed around the singularitieé= = 7r/2a. In the

This is, in fact, the last qualitatively different possibility. limit (h’m’+s’?)(x)=—4a2, we would simply have the
It is uniquely defined by the conditionh(m’+s’?)(x) two pointsY = = 7r/2a as the interior body. In fact, it can be
< 8a? for all possiblex e (0x). Thus, the “hole” around the  seen that in this limit the metric is regular and corresponds to
equatorial plane appears for all valuesxofand therefore no the de Sitter metric which appeared in the rigid cases studied
single point of the equatorial plane belongs to the interior ofin Sec. V.
the body. It follows that, actually, the body has two different  Apart from the Wahlquist family of perfect-fluid solutions
connected parts, as “two drops of water,” placed symmetri-{18—20 (which have rigid rotation and as far as we know,
cally with respect to the equatorial plane, each of them conthe models presented in this section are the best available
taining one of the singularitie¥= = 7/2a; see Fig. 8. Nev- explicit solutions describing the interior of axially symmetric

F. Compact bodies with no equatorial symmetry
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> [in the original papef2] there also appeared two arbitrary
constants which, however, can be absorbed into the coordi-
nates by using a transformation of the ty@g]. As explained

¥ const. in previous sections we can restrict ourselves to the case
e=+1. For this solution there exist two disconnected re-
gions wherehm+s?>0. They are given by

x const. ]_08(15— \/1—9)3_2) v‘E/Z

osx<| ——— 77

o 3238—-/10)

é“ or

3

3 plane of symmetry A

g (108Q5+ J19)a2)| 12
- <SX<+00,

3238-/10)

It can be checked by direct calculation that in both regions
the inequality

h'm’ +s'2=—4a?

holds. The solution in the first region has a regular axis of
symmetry at the nonzero extremum of the interval and con-

FIG. 9. Compact body with no equatorial symmetry and a verytains a singularity at=0 which is located at a finite distance
irregular shape. This body has only one singularity. from the axis of symmetry. Similarly, the solution in the

second region has a regular axis of symmetry at the finite

differentially rotating isolated compact bodies. It remains theextremum of the interval and contains a singularity at
guestion of the matching of these models to some approprk=+ also located at a finite distance from the axis. Thus,
ate exterior solutions. as discussed above, none of these explicit solutions are
physically reasonable.

The other explicitly known solution was found by Garci
[16] in the particular cas@=0 (which consequently does

This work has been partially supported by the Spanishot give a physically well-behaved solution, as discussed in
Ministerio de Educacio y Ciencia under Project No. PB93- the tex}). The metric coefficients are now

1050 and Grant No. EX95 409857181.M.). 51=35)3
mex-"*8, hx'*B, s—xBr o 2P
APPENDIX: OTHER EXPLICIT SOLUTIONS B(3B—2)

Before finishing this paper let us briefly discuss the posWhereg is a constant satisfying

sibility of finding explicit solutions of the systerfi2). Even 0<p<i

though the system seems to be not very difficult to handle, it 2

has a geometrical interpretation as trajectories in a threegnd y is a positive constant given by

dimensional Minkowski spacetime, and it contains an arbi-

trary function in its general solution, it is very difficult in- . o 2AB—1)*(1-2B)

deed to find explicit function$, m, and s satisfying the vi=p 2—-38 '

system. Apart from the rigid metrics we have explicitly writ-

ten above, only two other particular solutions of the systenin the paper where this solution was presented there ap-
have been found. The first one was given in the paper wher@eéared two other arbitrary constants which again can be re-
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the family was presentef®] and reads absorbed in the coordinates. Evaluatimg+ s? for this so-
lution we find
m=xx T x 10— ea?|x ~1\10), 2 2(1-2pB)%)
hm+s°=| 1+ 335=2)7° x2B,
h:XX7 v19/1 rxl/v“m_ eaanflj\;m) B( B_ )
so that the axis of symmetry would be locateckatO if it
s=x(x¥10_ g2k x~ 1I0) exists. The derivative of this function divergesxat0 and,

therefore, because of lemma 1, we can say that the solution is
not axially symmetric.

These solutions have a particularity which is worth com-
ment. The explicit expressions for the density and pressure
1= %()17(19@_ 64)(23+5V19), r=- 21?3(19@+ 64), of these solutions show that they diverge when the coordi-

natex tends to zero. Thus, the would-be axis of symmetry is
n= 3%3(23—5\/1—9), k=353, a true singularity of the spacetime and the regularity condi-

where the constants r, n, andk are given by the values
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tions we imposed above cannot be applied in this singulathe case of singular axes of symmetry there does not exist an
case(in the definition of axial symmetry it is assumed the appropriate theory to decide when a given singular spacetime
existence of a two-surface of fixed points in the manifold sois indeed representing a singular axially symmetric space-
that they are necessarily regular pojni#/e point out that in  time or not(see[17] for a more detailed discussipn
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