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We treat the calculation of gravitational radiation using the mixed timelike-null initial value formulation of
general relativity. The determination of an exterior radiative solution is based on boundary values on a timelike
world tubeI” and on characteristic data on an outgoing null cone emanating from an initial cross section of
I'. We present the details of a three-dimensional computational algorithm which evolves this initial data on a
numerical grid, which is compactified to include future null infinity as finite grid points. A code implementing
this algorithm is calibrated in the quasispherical regime. We consider the application of this procedure to the
extraction of waveforms at infinity from an interior Cauchy evolution, which provides the boundary data on
I'. This is a first step towards Cauchy-characteristic matching in which the data flow at the bolingary
two-way, with the Cauchy and characteristic computations providing exact boundary values for each other. We
describe strategies for implementing matching and show that for small target error it is much more computa-
tionally efficient than alternative method$0556-282(196)02822-4

PACS numbd(s): 04.25.Dm, 04.20.Ha, 04.30.Db

[. INTRODUCTION erties of the Robinson-Trautman metric will be used to illus-
trate this effect.

We report here on an important step towards the ultimate An alternative approach in numerical relativity uses the
goal of constructing numerical relativity codes that calculatecharacteristic formalism, in which spacetime is foliated into
accurately in three dimensiorf8D) the gravitational radia- a sequence of null cones emanating from a central geodesic.
tion at future null infinity. By “accurately” we mearat  This approach has the advantage that the Einstein equations
leas) second-order convergent to the true analytic solutiorcan be compactifiefil] so that future null infinity is rigor-
of a well-posed initial value problem. Thus our goal is toously represented on a finite grid, and there is no artificial
provide an accurate and unambiguous computational ma@uter boundary condition. However, it suffers from the dis-
from initial data to gravitational waveforms at infinity. Of advantage that the coordinates are based on light rays, which
course, uncertainties will always exist in the appropriate ini-can be focused by a strong field to form caustics which com-
tial data for any realistic astrophysical systéeng., in a bi- Plicate a numerical computatid@]. Also, to date, the char-
nary neutron star system, the data for the metric componen?sae”s“c initial value problem has only been implemented

would not be uniquely determined by observationBut numericallly for speci.al symmetri¢S—8]. . .
such a computational map enables focusing on the underly- Our ultimate goal is a 3D Cauchy-characteristic matching
ing physics in a rigorous way (CCM) code, which uses the positive features of the two

Most relativity codes are second-order convergent, but ber_nethods while avoiding the problems. More precisely, the

cause of boundary oroblems the converaence mav not be nterior of a timelike world tubd” is evolved by a Cauchy
u undary pre converg may ethod, and the exterior to future null infinity is evolved
the true analytic solution of the intended physical problem

‘using a characteristic algorithm; boundary conditiond at

In order to explain this point, and to give the idea behind oury o replaced by a two-way flow of information acrdasin

method, we first briefly review some aspects of numericale|ativity, under the assumption of axisymmetry without ro-
relativity. The predominant work in num_erlcal relaltlvny. IS tation, there has been a feasibility study of CE410]; see

for the Cauchy "3+ 1" problem, in which spacetime iS 4j50[7]. CCM has been successfully implemented for non-
foliated into a sequence of spacelike hypersurfaces. Thesgear wave equations and demonstrated to be second-order
hypersurfaces are necessarily of finite size so, in the usugbnvergent to the true analytic solutionhich is not true in
case where space is infinite, an outer boundary with an artia pure Cauchy formulation with Sommerfeld outer boundary
ficial boundary condition must be introduced. This is the firstcondition) [11].

source of error because of artificial effects such as the reflec- Figure 1 depicts schematically the location of the null
tion of outgoing waves by the boundary. Next, the gravita-hypersurface and world tube used in the characteristic match-
tional radiation is estimated from its form inside the bound-ing method. For simplicity, we assume the world tube is
ary by using perturbative methods, which ignore thechosen as a spherical surface, and angular directions are sup-
nonlinear aspects of general relativity in the region outsidepressed in the diagram.

the boundary. For these reasons the numerical estimate of While CCM has aesthetic advantages, it is important to
gravitational radiation is not, in general, convergent to theask whether it is an efficient approach. The question can be
true analytic value at future null infinity. The radiation prop- posed as follows. For a given target error what is the
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stated above. In the Conclusion we discuss the further steps
needed for a full implementation of CCE, and also of CCM,
and investigate under what circumstances CCE can provide
second-order convergence to the true analytic solution at fu-
ture null infinity. We finish with the Appendices on the null
cone version of gauge freedom and linear solutions of the
Einstein equations, and on a stability analysis of our algo-
rithm.

u=const

II. CHARACTERISTIC EVOLUTION IN 3D

t=const

This is the first step towards a 3D characteristic evolution
algorithm for the fully nonlinear vacuum Einstein equations.
FIG. 1. The matching world tube and characteristic hypersur-Here Wel. treat .thihquaSISphe“tcal Caset; W.here edffe_(l:_ths Wrt"hCh
faces extending to future null infinitg*. are nonlinear in the asymmetry can be ignored. Thus the

Schwarzschild metric is treated exactly in this formalism.

amount of computation required for CCM compared to thatowever, rather than developing an algorithm for the linear-
required for a pure Cauchy calculation? It will be shown thatZ€d equations on a given Schwarzschild background, we

the ratio tends to 0 as—0, so that in the limit of high will approach this problem in a mathematically different
accuracy the effort is definitely worthwhifd2]. way. . . .

Our first step towards CCM is Cauchy-characteristic ex- Ve adopta metric based approach in which each compo-
traction (CCE) and we will present a partial implementation Nent of Einstein’s equation h&s some quasispherical terms
of CCE in this paper. The idea of CCE is to run a purewhlch survive in the case of spherical symmetry &fidl

Cauchy evolution with an approximate outer boundary con®ther tezrms which are quadratic in the asymmetry, i.e., terms
dition. A world tubeT is defined in the interior of the Of O(A%) wherex measures deviation from spherical sym-

Cauchy domain, and the appropriate characteristic data af8etry- We will treat the quasispherical terms to full nonlin-
calculated onl; then characteristic algorithms are used to€" accuracy while discarding the quadratically asymmetric
propagate this gravitational field to future null infinfig3].  (€'MS. For example, ith were a scalar function we would
CCE is simpler than CCM to implement numerically, be- Make the approximation

cause in CCE the data flow is one-wégauchy to charac-

teristic whereas in CCM the data flow in both directions. e?52e?+ d,pd,p~e?de?. @
Note that the advantage of computational efficiency applies

only to CCM and not to CCE. However, we will show that  Although this breakup is not unique, once made it serves
the advantage of second-order convergence to the true angvo useful purposes. First, the resulting field equations are
lytic solution does apply, under certain circumstances, tghysically equivalent to the linearized Einstein equations in
CCE. the quasispherical regiméln the exterior vacuum region,

The work in this paper is part of the binary black hole the spherical background must of course be geometrically
grand challenge, which is concerned with the gravitationachwarzschild but the quasispherical formalism maintains
radiation resulting from the in-spiral and coalescence of twaarbitrary gauge freedom in matching to an interior solujion.
arbitrary black holes. However, the methods described hergecond, the resulting quasispherical evolution algorithm sup-
are not limited to black hole coalescence and could be applies a building block which can be readily expanded into a
plied to gravitational radiation from any isolated system, ei-fully nonlinear algorithm by simply inserting the quadrati-
ther with or without matter. cally asymmetric terms in the full Einstein equations.

In Sec. Il, we present a formalism for 3D characteristic
numerical relativity in which the coordinates are based on
null cones that emanate from a timelike world tubérecall
that existing codes are in 2D with null cones emanating from We use coordinates based upon a family of outgoing null
a timelike geodesic[8]. The characteristic Einstein equa- hypersurfaces. We leu label these hypersurfaces
tions are written as a sum of two parts: quasispheficad  (A=2,3) be labels for the null rays, amdbe a surface area
sense defined belgwplus nonlinear. The discretization and distance. In the resulting®= (u,r,x*) coordinates, the met-
compactification of the Einstein equations, with the nonlin-ric takes the Bondi-Sachs forfi4,15
ear part ignored, is discussed in Sec. Il A computer code has v
been_ written and in Se_c. v th|s_ code is tested on I|r_1ear|zed ds?= —| 26~ —r2h,UAUB |du2— 2e%Adu dr
solutions of the Einstein equations, and extraction is tested r
on the nonlinear Robinson-Trautman solutions. The
Robinson-Trautman solutions are also used to investigate the
error of perturbative methods in estimating the gravitational
radiation at null infinity. Section V uses the formalism de- whereh*Phgc= 5é and dethg) =det(ag) =q, With gag @
veloped in Sec. Il to estimate the errors associated with thanit sphere metric. Later, for purposes of including null in-
finite boundary in a pure Cauchy computation. This leads tdinity as a finite grid point, we introduce a compactified ra-
the result concerning computational efficiency of CCMdial coordinate.

A. The null cone formalism

—2r2h,gUBdu dX*+r2h,gdxAdxE, 2
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Note that the traditional 3 1 decomposition of spacetime h,g also specifies the null hypersurface data for the charac-
used in the Cauchy formalism is not applicable here becauderistic initial value problem, this role can thus be transferred
the foliation by hypersurfaces of constanhas a degenerate to J. The spherically symmetric ca$gg=qag iS character-
three-metric and null normal. However, an analogousl?2 ized byJ=0. Terms in Einstein equations that depend upon
decomposition can be made on a timelike world tube of cond to higher than linear order are quadratically asymmetric.

stantr, which has the intrinsic metric We do not explicitly usex as an expansion parameter but
introduce it where convenient to indicate orders of approxi-
3)g2=— 82,8¥du2+ r2has(dx?— UAdu) (dxB— UBdu). mation.
) B. Quasispherical approximation
In this form, we can identifyr?h,g as the metric of the The Einstein equatiorG ,,=0 decompose into hypersur-

surfaces of constant which foliate the world tubee??V/r face equations, evolution equations and conservation laws. In
as the square of the |apse function andl_(A) as the shift ertlng the field equations, we follow the formalism given in

vector. [19,2@. We find
A Schwarzschild geometry is given by the choice 1
BZ_[%(U),.VZezﬁ(I’—Zm)., UAZO, andhAquAB. To de' B,r:_rhAChBDhAB,rhCD,r! (9)
scribe a linear perturbation, we would $8{z=0ag+ \ Yag 16
and would retain only terms iryag Which were of leading B B B
order in the linearization parameter Here we take a differ- (r'e”?PhagUs) r=2r*(r =28 4) ,—r*h®Dchpg
ent approach. We express (10)
1 2e 2PV =R—2D"D,B—2D"BDAB
QABZE(QAQB+QAQB)a (4)

+r 7267 2PDp(r%UA) - }r“e*“ﬁhABUArUEi,
in terms of a complex dyady, (satisfying gq”g,=0, 2 C
a*ga=2, 9*=0"Bqg, with g"Bggc=62). (We depart from (11
other convention$16] to avoid factors ofy/2 which would
be awkward in numerical workThere remains the rotationa
gauge freedom

| where D, is the covariant derivative an® the curvature
scalar of the two-metritiag .
The quasispherical version of E@®) follows immediately
g2—e'’q?, (5 from rewritng it as B,=Ngzg, where Ng
=rhA®nBPh,g hep,/16 is quadratically asymmetric. This
wherey is real. We represent a tensor fiequ,,,An on the defines the quasispherical equation

sphere by complex scalar fields: e.g., B,=0 (12)
Y

Thus in this approximation8=H(u,x*)+0(\?). For a
family of outgoing null cones which emanate from a non-
singular geodesic world line, we could choose coordinate

which exor th variant derivatie ( iated with conditions so thaH =0. Similarly, in Minkowski space, we
ch expresses the covariant derivativg [associate ould setH =0 for null hypersurfaces which emanate from a

dag) Of a tensor field on the sphere in terms of spin-weighte onaccelerating spherical world tube of constant radius. In a

fields, resulting in the derivative operat@rand 4 defined in  gchwarzschild spacetime, due to red shift effeidtsieed not

our conventions by vanish even on a spherically symmetric world tube. Thus

% H represents some physical information as well as asymmet-
ric gauge freedom in the choice of coordinates and choice of
world tube.

8) We wish to apply the same procedure to EG) and

o (11). In doing so, it is useful to introduce th@(\) tensor

If v has spin-weighs then #v and #v have spin-weights field

s+1 ands— 1, respectively. Refer tfl 8] for further details, 1

especially how to discretize the covariant derivatives and C __CD _

curvature scalar of a topologically spherical manifold using Ce=3 N (Vahos + Vahao~ Vohas) 3

the 4 calculus.

For an arbitrary Bondi-Sachs metrit, g can then be rep-
resented by its dyad componeht h,gq”q®/2. This is also
related to the linearized metric dy=\ y2gq”q®/2. Inlinear-  ~ ,
ized theory,J would be a first-order quantity. The full non- diateé variable
linearh,g is uniquely determined by, since the determinant 242 B
condition impliqes )t/hat the r@wbgining dyad component Qa=rre *hasU. (149
K=h,,q2q°/2 satisfies £ K2—JJ. Because the two-metric Then Eq.(10) reduces to the first-order radial equations

v:qu. . .quaAp-M. . .aAnvAl._‘An_ (6)

Under Eq.(5), v—€'**v (with s=2p—n), which defines a
spin-weights field. We also use theth operator{17,16,

do=q"t- - qfeg et q7nqPVguA L a

Do :qu. . .quaAerl. . 'EAHEBVBUAr”An'

which represents the difference between the connection
D, and the unit sphere connectioW,, e.g., Oa
—Vaveg= —CngC. In solving forU”, we use the interme-
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(r?Qa) ,=2r*r 2B ) ,—r*hBDchpg,

A —
U/ =r"2e*h*BQg.

(19

(16)
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where

\%
P=- I’zhﬁB( hAB,U_ EhAB,I’) _ZeBDADAeB

We deal with these equations in terms of the spin-weighted

fields U=U"qg, and Q=Qxq”. To obtain quasispherical
versions of these equations, we rewrite H4$) and(16) as

(r?Q) ,=—r29*q®Vchag, +2r'q(r ?B.a) +Ng,

(17)
U,=r2e?Q+Ny, (18
where
NQ:qA[rthc(CgAhDB,r+CgBhAD,r)
—1%(hB¢—q®)Vchag, ], (19
Ny=r"?e*’qa(h*®—q"")Qg. (20)

The quasispherical versions obtained by settig=0 in
Eq. (17) andNy=0 in Eqg. (18) then take the form

(r2Q) ,=—r2(hJ+6K) +2r%(r28) ., (21

U,=r"%e?*Q, (22

in terms of the spin-weighted differential operatorSince
Q. andU , are asymmetric oO(\), we use the gauge free-
dom to ensure tha andU are O(\).

Since V=r in Minkowski space, we se¥V=r+W in
terms of a quasispherical variablé. Then Eq.(11) becomes

1 1 —
er=§e2ﬁ72—1—eﬁMeB+ Zr’z[r4(¢9u+ HU)]  + Ny,
(23
where
1
Nu=— €V a[(h"®— ") Vgef]— Zrie 2h,gUlUT.
(24)

We setN,,=0 in Eq.(23) to obtain the quasispherical field
equation forw .

+DA[(r2U%) [ 1- %r“e—ZﬁhABuf}u?r . (27)
The quasispherical evolution equation follows fr@gb) by
settingN;=0.

The remaining independent equations are the conservation
conditions. For a worldtube given by=const, these are
given in terms of the Einstein tensor by

§G,V,r=0, (28
where £ is any vector field tangent to the worldtube. This
expresses conservation gfmomentum flowing across the
world tube[13]. These equations simplify when the Bondi
coordinates are adapted to the world tube so that the angular
coordinatesx® are constant along the, streamlines. Then
U =0 on the world tube and an independent set of conserva-
tion equations is givefin the quasispherical approximatjon
in terms of the Ricci tensor by

r_,—2 -1 L oo Lo
R,=r"“W,—2r ,3,u—§f MW+Z(0U+¢9U)J=0,
(29

20°RL=4((r W) —4r~1-28 )

+4(3y—3,)—-r?U ,=0. (30

In the context of an extraction problem it is assumed that the
interior solution satisfies the Einstein equations, and there-
fore that the conservation conditions are automatically satis-
fied on the extraction worldtube.

The above equations define a quasispherical truncation of
the vacuum Einstein equations. Because these quasispherical
equations retain some terms which are nonlinear in the asym-
metry, their solutions are not necessarily linearized solutions
in a Schwarzschild background. However, in the perturbative
limit off Schwarzschild, the linearized solutions to these
truncated equations agree with the linearized solutions to the

Next, by the same procedure, the evolution equations takfill Einstein equations.

the form
2(rd) o —[r V(rd) ;1 ,=—r~X(r20U) +2r tefp?ef
—(r w) J+N;y, (25
where
a"g®
Ny= —2ePCRaV cef—hacChp(r?UP)

1
- (hAC_ qAC)VB(rZUC),rJ‘_ §r4e_2BhAchBDU’$U?

1
— ErzhAB,rDCUC—rZUCDChAB,r

1
+r?h“Phpp (DcUg—DgUc) + EhABP , (26)

Ill. DISCRETIZATION OF THE EQUATIONS

In this section we describe a numerical implementation,
based on second-order accurate finite differences, of the
equations presented in Sec. Il. We introduce a compactified
radial coordinatex=r/(R+r) (with R being the extraction
radiug, labeling null rays by the real and imaginary parts of
a stereographic coordinaté=q+ip on the sphere, i.e.,
xA=(q,p). The radial coordinate is discretized as
Xi=Xpt (i—1)Ax for i=1,... N, and Ax=(1-—xg)/
(Ny—1). Herexy=1/2 defines a world tube of constant sur-
face area coordinate. The poig =1 lies at null infinity.
The stereographic grid points are given by=jA and
px=KA for j,k=—Ng, ... N;andA=1/N,.

The fieldsJ, B8, Q, andW are represented by their values
on this rectangular grid, e.gJ,i“jk=J(un,xi ,d;j,Py). How-
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ever, for stability(see Appendix ¢ the fieldU is repre- where the value 00y is trivially obtained from the knowl-
sented by values at the points, 1,=%;+Ax/2 on aradially edge of U, at the boundary, andxc=(x;+xg)/2,
staggered gri(ﬂaccordinglyUi”].k:U(un Xi+172,0j,Pk)]. For oX=X;—Xg. After a radial march, thg local truncation error
the extraction problem, it is assumed that the values of théompounds to a®(A?) global error inQ atZ*.

fields and the radial derivative &f are known at the bound-
ary. In the following discussion, it is useful to note that as-
ymptotic flatness implies that the field®(x), U(x), In terms of the compactified radial variabte the quasi-
W(X)=r "2W(x), andJ(x) are smooth ak=1, future null  Spherical field equation fdd reduces to

infinity Z+.

B. Hypersurface equation for U

e?fQ
. u,= . (34
A. Hypersurface equation for Q X" Ry

In terms of the compactified radial variabte the quasi-

spherical field equation foD reduces to We again rewrite all derivatives in centered, second-order

form. Because of the staggered placement pthe resulting
discretization is

2Q+X(1-X)Q x=—x(1—x)(hI+ bK) (—44B. (31) s
e iQ.
We write all derivatives in centered, second-order accurate U=Uj_+ R—xizlAX' (35
form and replace the valueQ;_; by its average
(Qi+Qi-2)/2. The resulting algorithm determine®; in  The value ofU at the first point is evaluated from the expan-
terms of values of] and 8 at the pointsx;, X;_;, and  sjon

Xj—o:
Ui=U|r+ U |r(Xi+ 12— Xr) + O(A?) (36)
Qi+Q X _1(1—x; )Qi_Qi—Z at the boundary. This leads to an algorithm for determining
Pximz AL 1 2Ax U at the pointx;. 1, in terms of values ofQ at the points
33 K —K Xgr lying on the same angular ray. After completing a radial
i—Ji-2 i~ Ki—2 i 2
=—x —x: ) _ . march, local truncation error compounds to@fA <) global
XX | A5 oAk 40Bi-s error inU atZ*,
(32)

C. Hypersurface equation for W
(Here and in what follows, we make explicit only the dis-  The quasispherical field equation fa¥, Eq. (23), reex-
cretlzatpn on 'the r§d|al dII’eCtIOD'ﬂ, and we suppress the pressed in terms of and\7V=W/r2, is
angular indiceg,k.) Since Eq.(32) is a three-point formula,
it cannot be applied at the second point, however, a suitable

formula for x, is given by R2W o ZRLWZEeZﬁR_l_eﬁﬁTeB
’ 1-x

2
i 1 _
Qi+QR+xC(1—xc)% +ZRXZ(¢9U+¢9U)'X
— —K X —
=—Xc(1—X¢) ZJ'(SXRH‘ '5X Rl—20(8:+ Br), +Rm(¢9u+w). (37)

(33 Following the same procedure as in E§2) we obtain

Wi—W,_, _
inz—l/z(l_xi—l/z)TﬂLRXi—llz(Wi+Wi—1)

1 1 1 — —
=§(1—xi_1,2)(§ezﬂi7€i+ Eezﬁi1Ri_1—2—eﬂiﬂ¢9eﬁi—eﬁi1Meﬁil)

Ui_Ui72 —Ui_Ui72

1 — _
+ZRX1'21/2(1_Xi1/2)<¢9 SAX +4 AX +RX -1 U; 1+ dU;_4). (38
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We obtain a startup version of the above with the substitutions between nearest neighbor grid points on the same out-
tions x;_1,—Xc, AX— &X, noting that at the boundafy,,  going characteristic. Then, by approximating the integrand
is given. The above algorithm has a local e@(A®)in each by its value at the centeE of the parallelogram, we have
zone. In carrying out the radial march, this leadspA?) 1
error at any given physical point in the uncompactified mani- _

fold. However, numerical analysis indicates @{A2InA) ()= (r)pF(1)s=(rd)p+ 7 AUTQ=Tp+Ts—rR)He.
error atZ+. (44

D. Evolution equation for J As a result, the discretized version of E41) is given by

In discretizing the evolution equation, we follow an ap-  (rd)PM t=F(r)M L, (r )M, (r)M . )N, DHM )
proach that has proven successful in the axisymmetric case

o . . 1
[8] and recast it in terms of the two-dimensional wave op- + S AU(To—Tp+rs—rRIHc, (45)
erator 2
@ _2p \Y where F is a linear function of ther@)’'s and angular in-
O*y=e 2¢ 1 b 39 dexes have been suppressed. Consequently, it is possible to
;

move through the interior of the grid computingdj! n+1 py
an explicit radial march using the fact that the valuebbn
the world tube is known.
The above scheme is sufficient for second-order accurate
(40 evolution in the interior of the radial domain. However, for
startup purposes, special care must be taken to handle the

wherel ,=u , is the normal to the outgoing null cones and Sécond radial point. In determiningl)['; the strategy44)
n,isa ‘null Vector normal inwards to the spheres of constants easily modified so that just two radial points are needed on
"'Because the domain of dependencedef contains the then-+1 level; the parallelogram is placed so tifaandQ
domam of dependence induced in ther) submanifold by lie precisely on (+1,1j,j) and (W+1,2i,j), respectively.
the full spacetime metri€2), this approach does not lead to Note that the calculation d¥c poses no problems, since the
convergence problems. values ofW, U, andU , are known on the world tube and the
The quasispherical evolution equati¢25) then reduces Vvalue of W, on the world tube can be calculated by E23).
to In order to apply this scheme globally we must also take
into account technical problems concerning the order of ac-
e?’0@(rd)="H, (41)  curacy for points nea . For this purpose, it is convenient
to renormalize Eq(45) by introducing the intermediate vari-
where able ®=xJ. This new variable has the desired feature of
H=—rY(r20U) +2r 1ePiPeh—(r-W) 3. (42) ZEEZtik;ihgt\e/&rmaetg . With this substitution the evolution

corresponding to the line element

\Y
d02=2I(Mny)dx"dx”:e25du(?du+ 2dr |,

Because all two-dimensional wave operators are conformally

flat, with conformal weight-2, we can apply to Eq41) a ®o=—XoAUHc+ 1 (@P 1XPAUHC)
flat-space identity relating the values o at the corners 4
P, Q, R, andS of a null parallelogramA with sides formed 1-xq 1
by incoming and outgoing radial characteristics. In terms of +— 1% <Ds+ xSAuHC>
rJ, this relation leads to an integral form of the evolution
equation: 1— 1-xq 1
- O+ — xRAuHC) (46)
1—xg

1
rd rd)p+(rd rd)rt = f du drH. (43
(M= (r)et (r)s= (1) “3 where all the terms have finite asymptotic value.

The corners of the null parallelogram cannot be chosen to
lie exactly on the grid because the velocity of light in terms
of the x coordinate is not constant. Numerical analysis and Some of the fundamental issues underlying stability of the
experimentation has show®1] that a stable algorithm re- evolution algorithm are discussed in Appendix C. We have
sults by placing this parallelogram so that the sides formedarried out numerical experiments which confirm that the
by incoming rays intersect adjacamhypersurfaces at equal code is stable, subject to the CFL condition, in the perturba-
but oppositex displacement from the neighboring grid tion regime where caustics and horizons do not form. The
points. The elementary computational cell consists of the latfirst set of tests consist of evolving short wavelength initial
tice points 6,i,k,1) and (n,i=1k,l) on the “old” hyper-  null data, with all world tube data set to zero. In this case, the
surface and the pointsné-1,i,k,1), (n+1i—1k,l), and world tube effectively acts as a mirror to ingoing gravita-
(n+1ji—-2k,I). tional waves. The tests were run until all waves were re-

The values offJ at the vertices of the parallelogram are flected and radiated away t6". In particular, data with
approximated to second-order accuracy by linear interpolahd|~10"¢ were run fromu=0 to u=40, corresponding to

IV. TESTS
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approximately 1t time steps, at which time it was checked  The Schwarzschild solutioffor a unit mass black holés
that the amplitude was decaying. obtained whenW=1. More generally, smooth initial data
In the second set of tests, we included short wavelengtih/(u,,x”) evolve smoothly to form a Schwarzschild hori-
data with amplitude 10* for the boundary values o8, J, zon. The linearized solutions to the Robinson-Trautman
U, Q, andW on the world tube(with compact support in equation(49) are obtained by settingy=1+ ¢ and drop-
time) as well for the initial data fod (with compact support ping nonlinear terms irb:
on the initial null hypersurfage Again the code was run for
approximately 4500 time stepdrom u=0 to u=25), at 129,¢=L%(2—L?)¢. (50
which time all fields were decaying exponentially. This test
reveals a favorably robust stability of the world tube initial qu
value problem, since in this case the world tube conservatiowIS
conditions which guarantee that the exterior evolution be & A(0)e™
vacuum Einstein solution were not imposed upon the world These linearized solutions provide analytic world tube
tube data. data for our evolution code, along with the initial null data
We now present code tests for the accuracy of numerical =0. We have used this as a check of code accuracy in the
solutions and their waveforms at infinity. The tests are baseferturbative regime off Schwarzschild. With this data, the
upon linearized solutions on a Minkowski background andcode should evolvd to be globally zero to second order in
linearized Robinson-Trautman solutions. These solutiongrid size. Of particular importance for the extraction of
provide testbeds for code calibration as well as consisterwaveforms, this should hold for the value dfat Z". We
world tube boundary values for an external vacuum solutionhave carried out such a test with a small extraction radius
In addition, we use numerical solutions of the nonlinear(R=3m) and a linearized solution of the form
Robinson-Trautman equation to study the waveform errors . —ou o
introduced by the quasispherical approximation. W=1+ARd (e “Yyte Vs3] (51

with A=1075. The error norm

a spherical harmonic perturbatiorp=A(u)Y

leads to the exponential decay A
u/(/+ 1)(/2+/—2)/12_

A. Linearized solutions

. Appgndices_ A a}nd B despribe how to generate three- ||5J||2=fU1duf d0J2 (52)
dimensional linearized solutions on a Minkowski back- 0

ground in null cone coordinates and their gauge freedom. To

calibrate the accuracy of the code, we choose a solution ofas determined by integration over a spheré awith solid
Egs.(B6) and(B7) which represents an outgoing wave with angle elementl(), and with an integration time afi,=2.

angular momenturh=6 of the form The convergence rate to the true value was found to be
0(A1%)),
D (5.6 1 4 We have also obtained second-order accurate numerical
=(d2) ulr’ (47 solutions to the nonlinear Robinson-Trautman equatian.

See Ref[18] for numerical details. This allows us to check
whered, is thez-translation operator. The resulting solution the discrepancy between exact waveforms and waveforms
is well behaved above the singular light cane 0. obtained by regarding the whole spacetime in the quasi-

Convergence was checked in the linearized regime bypherical perturbative approximation. We have based this
choosing initial data of very small amplitudéJ{~107°).  comparison on initial data in modes
We used the linearized solutig@7) to give data atu=1,
with the inner boundary a@&R=1, and we compared the nu-
merically evolved solution ati=1.5. The computation was
performed on grids of sizé&\, equal 128, 192, 256, and
320, while keepind\,=4N,. Convergence to second order
was verified in thd.4, L,, andL,, norms.

Wu=0=1+ AR Y p]. (53

In order to supply some physical perspective, the nonlinear-
ity of the initial data is best measured in terms of
e=[(M—Mg)/M]*2 whereM is the initial mass of the sys-
tem andMg is the mass of the corresponding Schwarzschild
background(Here,M¢=1.) We also calculate the percent-
B. Robinson-Trautman solutions age of the initial mass which is radiated away during the

The Robinson-Trautman spacetimi&?] contain a dis- €ntire course of our simulations. The Bondi news function
torted black hole emitting purely outgoing radiation. The determines the mass loss and it is also an appropriate physi-

metric can be put in the Bondi form cal quantity to invariantly describe radiative waveforms. In
the coordinates adopted here, the news function is given by
2 23
d32=—(IC— m)duz—ZWdudr—ZrW,Adu dxt (23]
1
+ rZQABd XAd XB, (48) N(UB ,XA) = EW_ 1:92)/\/, (54)

whereK=W?1-L%(InW)], L? is the angular momentum where the Bondi timaiz measured by observers @t is
operator and\(u,x”) satisfies the nonlinear equation related tou by dug/du=W.
For various initial modes, we have calculated the news
126, (InW) =W?2L2%K. (49)  function for the numerical solution of the nonlineR:T
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FIG. 2. A_ for €;=0.14 ande,= 0.22 (corresponding to a total FIG. 3. A, for €,=0.14 ande,= 0.4 (corresponding to a total

mass loss of 0.6 and 1.2%, respectiyeigr initial data in aYy, mass loss of 0.6 and 4.6%, respectiyeflgr initial data in aY,,

mode. In this regime\ scales ag?, thus indicating that first-order mode. The difference between quadratically rescalingand its

perturbation is valid in this regime. actual value is about 40%, indicating that second-order perturbation
) o . is inaccurate in this regime.

equation \) and compared it with the news function of the

linearized solution KIf). As expected, for small values ef  Ropinson-Trautman equatiof24] but the full behavior

they agree up to second orderdnFigure 2 graphs the time \yoy|d require perturbation expansions far beyond practical-
dependence ok .= N"— NP (for a representative angléor a ity.

system initially in d =2, m=2 mode, which is the dominant
gravitational radiation mode for a spiraling binary system.
The figure illustrates thah, scales withe?>. However, for V. COMPUTATIONAL EFFICIENCY OF CCM

larger e, corresponding to a total radiative mass loss greater Thjs section is concerned with the computational effi-
than 2.5%, this is no longer the case and a noticeable digjency of a numerical calculation of gravitational radiation
crepancy arises. For instance, as illustrated in Fig. 3, thgom ‘an isolated system, such as binary black hole. By
difference between quadratically rescalitg and its actual  «computational efficiency” we mean the amount of compu-
value is about 40% for a mass loss of 4%. tation A (i.e., the number of floating point operatiorfer a
Hence, this indicates that not only the first-order Pertur-given target errore. We will show that the computational
bation treatment but also the second-order treatment igficiency of the CCM algorithm is never significantly worse
grossly inaccurate in this regime. Serious discrepancies ari§gian that of a pure Cauchy algorithm; and that for high ac-
betweerN¢ andN¢ for ranges in which the mass loss is not cyracy the CCM algorithm is always much more efficient.
extreme. In factN? reveals an oscillatory behavior qualita- |n CCM a “3 + 1” interior Cauchy evolution is matched
tively quite different from the pure decaying mode of theto an exterior characteristic evolution at a world tube
perturbative solution, which has serious implications for ther,, = const. A key feature is that the characteristic evolution
tidal acceleration which the radiation would produce in acan be rigorously compactified, so that the whole spacetime
distant gravitational wave antenna. As measured by the rao future null infinity may be represented on a finite grid.
diative component of the Weyl tenstt,, the tidal accelera- From a numerical point of view this means that the only
tion is given by the Bondi-time derivative of the news func- error made in a calculation of the gravitational radiation at
tion. In contrast to the monotonic decay of the perturbativenfinity is due to the finite discretizatiod; for second-order
solution, the actual behavior df , exhibits damped oscilla- algorithms this iSO(A?). The value of the matching radius
tions. For aYy;, initial mode, Fig. 4 shows the drastic differ- r,, is important and it will turn out that, for efficiency, it
ence between the numerically obtaingd, and the corre- should be as small as possible. However, caustics may form
sponding¥}; calculated with the perturbative solution. if ry is too small. The smallest value of, that avoids
Similar nonlinear oscillations arise from other choices ofcaustics is determined by the physics of the problem, and is
initial data. Some partial explanation of this behavior mightnot affected by either the discretizatiah or the numerical
be possible using second-order perturbation theory for thenethod.
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A. Error estimate in WE

1.0 T T T
We assume that a pure Cauchy evolution proceeds in a
spatial domain of radiusg, and the extraction is computed
on a world tubd” of radiusR, with R<rg.
The evolution equatioi25) may be written

a5

1
(rJd) ur=quasispherical part ENJ (55

with the nonlinear termN; given by Eq.(26). [Actually,

N, also implicitly contains contributions fromf(\ler)/r2
and [Nydr, and from the quasispherical approximation of
terms in Eq.(25), but these effects are all of the same order
asN;.] The order of magnitude of various terms can be ex-
pressed in terms of a functiar{u,x?) (whose time deriva-
tive is the news function note thatc is not a small quantity.
The expressions are

c c c
J=0 ak hag—0ag=0 Ak hABYr:O 2

pofg] o-ofy veol)

'O I L L ]
0.00 0.10 0.20 0.30 0.40 0.50
u

FIG. 4. W'} andW} for a point lying 10° above the equator and cC.—o ¢ W=0 c?
initial data in aY,, mode. The total mass loss is 4%. The inset ABT M ] M2
shows the marked oscillatory behavior at early times.

(56)

On the other hand, the standard approach is to make abhese estimates are obtained by the radial integration of the
estimate of the gravitational radiation solely from the datafield equations in Sec. Il B, assuming that the background
calculated in a pure Cauchy evolution. The simplest metho@eometry is Minkowskian and that the Bondi gauge condi-
would be to use the raw data, but that approach is too crudéons are satisfied. Should this not be the case then constants
because it mixes gauge effects with the physics. Thus a sulef order unity would be added @, U, andW, and the effect
stantial amount of work has gone into perturbative method®f this would be to amend Ed25) by adding terms to the
that factor out the gauge effects using multipole expansionguasispherical part so that it represents wave propagation on
and estimate the gravitational field at infinity from its behav-a (fixed) nonflat background. However, the order of magni-
ior within the domain of the Cauchy computatip5—-27.  tude of terms in the nonlinear part would not be affected.
We will call this method waveform extractiofWE). While ~ Thus there is no loss of generality, and a significant gain in
WE is a substantial improvement on the crude approach, gimplicity and transparency, in performing the error analysis
ignores the nonlinear terms in the Einstein equations. Then a Minkowskian background.
resulting error will be estimated below. It is straightforward to confirm that the nonlinear correc-

Both CCE and WE arextractionmethods. That is, they tion to Eq.(25) involves terms of orde®(c?/r%) or smaller.
use Cauchy data on a world tubeto estimate gravitational WE estimates the waveform at future null infinity from data
waveforms at infinity, and they have no back effect on theatr=R. This could be made exaémnodulo the error intro-
Cauchy evolution. In both methods there is an efvdich is  duced by truncating the multipole expansidirthe nonlinear
difficult to estimate due to the artificial Cauchy outer bound- part of Eq. (25 were zero. Thus the error introduced by
ary condition. The difference between CCE and WE is in thegnoring N; is
treatment of the nonlinear terms betweérand future null
infinity and in the truncation of the perturbative multipole % (g2 c2
expansion at some low order. WE ignores the nonlinear S(C,U)E(C,u)exact_(C,U)WE:f O(—s)dr=0<—2).
terms, and this is an inherent limitation of a perturbative RS R
method. Even if it is possible to extend WE beyond linear (57
order, there would necessarily be a cutoff at some finite or-
der. The quasispherical implementation of CCE incorporate#n the case of the collision of two black holes, with total
all multipole contributions but also ignores the nonlinearmassM and withc=0O(M), the error isO(M?/R?) and it is
terms. However, it is in principle straightforward to incorpo- tempting to say that if extraction is performed Rt 10M
rate these terms into the code. A full implementation of CCEthen the expected error of the WE method is about 1%. This
would do so, and the nonlinear terms would be treated withwould be quite wrong because there is no reason for the
out error. constant factor iD(M?/R?) to be approximately 1.



6162 BISHOP, GtMEZ, LEHNER, AND WINICOUR 54

B. Computational efficiency perturbative expansion. Thus we never exdedb be sig-

A numerical calculation of the emission of gravitational Nificantly smaller thary, and therefore the computational
radiation using a CCM algorithm is expected to be second€fficiency of a CCM algorithm is never expected to be sig-

order convergent, so that after a fixed time interval the erropificantly worse than that of a WE algorithm. ,
If high accuracy is required, the need for computational

e=0(A?)=k;A2, (58 efficiency always favors CCM. More precisely, for a given
desired errog, Egs.(58) and(59) and assumptio2) imply
whereA is the discretization length arld is a constant. On

the other hand, the same calculation using WE must allow A=+elk, R=yksle. (63
for the error found in Eq(57), and therefore after the same
fixed time interval there will be an error of us
ks 8arryak? 8mrak’k3?
s=O(A2,R‘2)2ma>< szz,Q), (59) Acem=—73,2 + Awe= 37 (64)
so that

wherek, andks are constants.

We now estimate the amount of computation required for A r3 o302
a given desired accuracy. We make one important assump- M M0 ase—0. (65)
tion: The computation involved in matching, and in wave- Awe k3

form extraction, is an order of magnitude smaller than theThis is the crucial result: the computational intensity of CCM

computation involved in evolution, and is ignored. This isr lative to that of WE to zer the desired
justified by the 2D nature of the extraction and matching clative 1o that 0 goes 1o zero as e desired eigoes

processes as opposed to the 3D nature of evolution. to zero.
For the sake of transparency we make some additional
simplifying assumptiongotherwise some extra constants of VI. CONCLUSION
orde_r u_nity Would_appear in the formulas below but the Tphe computer code described in this paper is a partial
qualitative conclusions would be unaffected . implementation of CCE. That is, given data onraaconst
(1) The amount of computation per grid point per time g tubeT, the code calculates the gravitational radiation
step,a, is the same for the Cauchy and characteristic algoy; fyture null infinity in the quasispherical approximation. A
rithms. . _ full implementation of CCE is currently being developed
(2) The constantk, ,k in the equations above are ap- hich addresses the following issues: The ignored nonlinear
proximately equal and will be written ds ~_terms in the Einstein equations must be calculated, dis-
(3) In CCM, the numbers of Cauchy and characteristiCeretized and incorporated into the code: algorithms need to
grid pomts are the same; thus the total number of grid pointg,q developed to translate numerical Cauchy data Reato
per time step Is characteristic data oh'; in generall’ will be described in
terms of Cauchy coordinates, and will not be exactly
r =const; the characteristic algorithm needs amendment to
3 (60) .
3A allow for this.
Once a fully nonlinear CCE code has been achieved it
(4) In WE, the outer boundarny is at3/2R; thus the total  will be possible, under certain circumstances, to obtain
number of grid points per time step is second-order convergence to the true analytic solution at fu-
3 ture null infinity. For example, ifl" has radiusR and the
87R (61) radius of the Cauchy domain is; (>R), then causality
3A3 implies that the gravitational field &t will not be contami-
nated by boundary errors until timte~(rg—R) after the
It follows that the total amount of computatioh required  start of the simulation. There is no analytic error in the char-

3
8mry

for the two methods is acteristic computation, so there will be no analytic error in
3 3 the gravitational radiation at future null infinity for the initial
A _8mrya A _87R’a 62 time periodtc; under some circumstances this may be the
coM="3xa 0 Awe=zxra (62)

time period that is physically interesting.

In CCE the data flow is one-way, from Cauchy to char-
Thus the method which requires the least amount of compuacteristic, and therefore a numerical boundary instability is
tation is determined by whethef,>R or ry<R. [Because not expected, and is not found in the numerical tests de-
of assumptiong1)—(4) this criterion is not exact but only scribed earlier. However, our ultimate goal is to develop
approximate). CCM, in which the data flow at the boundary is two-way. In

As stated earlier, the value of, is determined by the this case feedback leading to a numerical boundary instabil-
physics, specifically by the condition that the nonlinearitiesity is obviously a danger. For this reason the first step in our
outsider), must be sufficiently weak so as not to induce work has been the construction of stable CCM algorithms for
caustics. The value @R is determined by the accuracy con- model problem$11]. General relativity is a nonlinear hyper-
dition (59), and also by the condition that the nonlinearitiesbolic system and so the model problem used was the scalar
outsideR must be sufficiently weak for the existence of a wave equation, as both a linear problem and with a nonlinear
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potential (such as¢?). Two different types of stable algo- 5e?B= — (e?B) u—ezﬁ§1r
rithm were presented. In one case the scalar field was ' '
matched explicitly at the boundary, and in the other case the B 28 1 28T
matching was indirect with continuity at the boundary being == (e%k) ut Ze 00(p+ ), (A8)
imposed on a differential operator analogous to the operator
used in the Sommerfeld condition. \Yj ek L

The successful development of sevestable CCM algo- V=&, & 208, (A9)
rithms for these model problems encourages us to believe
that CCM in numerical relativity is a feasible goal. and

Y
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APPENDIX A: GAUGE FREEDOM

4 - 2(90_ 12
Given a metric in a Bondi null coordinate system, the (r"Z),=—2r(2-La, (B1)

gauge freedom is

and
5gab: gacacgb"_ngacga_ gcacgab (AL) 1 1
E:=2(r ——|r2 ——rZZ) =0, B2
subject to the conditions 6g°°=0, 6g°*=0, and (w7 ( “rr2 ; (62
0as89”E=0. These latter conditions imply the functional o
dependencies whereL?=— 44 is the angular momentum operator.
o B Now set
&= x(u,x%), (A2)
r2a,=(r20) (B3)
§A:fA(U,XB)_J drgog”®og«, (A3)  and
and r’z,=2(L?-2)®. (B4)
£'=(r/2)(go19™ Iar—Dpé®). (A4) ~ Then
For a spherically symmetric background metric we drop qua- E=r00®+2(P+a) ,— E(rZCD) 17 (B5)
dratically asymmetric terms to obtain v e
E=bp—e®Pr Yhk (A5)  where[d is the wave operator
1
and rO®=2(r®) 4~ (1®) ;r + L2, (B6)
r N
1o _
&= 4(‘9§+‘9§) It follows that
1 - — 0p 1
=2l-r0d(p+d)+2e Bho ], (A6) E',=r—2(r3Dd>)'r. (B7)
whereqa&”= ¢ andqafA=4¢, in terms of a complex scalar Suppose now tha® is a complex solution of the wave
field ¢(u,x?). equationCJ®=0. Then Eq.(Bl) is satisfied as a result of
This gives rise to the following gauge freedom in the Egs. (B3) and (B4) and Eq.(B7) implies E ;,=0. If ® is
metric quantities: smooth andO(r?) at the origin, this implieE=0, so that

the linearized equations are satisfied globally. The condition
that®=0(r?) eliminates fields with only monopole and di-
pole dependence so that it does not restrict the generality of

Y e_2B2
83== ¢+ 1k, (A7)
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the spin-weight 2 functio obtained. Any global, asymp- at levelN, and so that the lin@R is centered about, and

totically flat linearized solution may be generated this way. QS is centered about, . ;. Then, using linear interpolation
Alternatively, given a wave solutio® with possible sin- and centered derivatives and integrals, the null parallelogram

gularities inside some world tube, say R, we may gener- algorithm for the frozen version of the linearized equations

ate an exterior solution, corresponding to radiation produceteads to the FDE’s

by sources within the world tube, by requiriizr=0 or

R 2
(E) (Tyi3= 20 410t Um0 = (3ot T2 1p0)
=0. (B8)
R

1 1
(D+a) y= 7 (12D) + 52

1
—(G|+1_G|)_§(G|+1+G|) (CH

=0 &y

This is a constraint on the integration constants obtained in

integrating Eqs(B3) and (B4) which may be satisfied by ,
taking Z|g=0 and (all at the same time leveband

Au

R T IR

ay

1 2
R™ r_Z(r q))x_q),u
R
. : : o X(—GN 26N -GN -GN, ,+2GN -GN
This determines an exterior solution in a gauge such that (=G : =1 ie2 +17Gr)
U[g=0. Au
— N+1 N+1 N N
=- ﬁﬁz(ﬂfuz—ﬂfuﬁfw 32— 1 172),
APPENDIX C: LINEAR STABILITY ANALYSIS 6

Insight into the stability of the full evolution algorithm \yhere s, represents a centered first derivative. Again setting
may be obtained at the linearized level. Here we sketch thg¢ — oG " and introducing the discretized Fourier modes

von Neumann stability analysis of the algorithm for the lin- g — gwNAugikiArgil131481 6113588, \we  have 5,=L and

earized Bondi equations, generalizing a previous treatment__ _ 7 _ i Lisi

given for the axisymmetric case. The analysis is based U?Agsl)] L:;md VézﬁérfCS)Lanél(/CZ%ESrlggaﬁ?)t/éASz) Isind;Asy/

nate ¢ that appear in the equations, so that it is only valid 5

locally for grid sizes satisfyinghr<r and |A¢|<1. How- tA (1— cosa) + Cosx

the stability of the actual global behavior of the code. C7)
SettingG=rJ andI'=r?U and freezing the explicit fac-

freezing the explicit functions af and stereographic coordi-
R  |a 1 a
. S — =L|i-—sin 5| — zC08 =
ever, as is usually the case, the results are quite indicative o Ar Ar 2/ 2 2

tors ofr and ¢ atr=R and =0, the linearization of the and
Bondi equationg21), (22), and(25) takes the form C_AD
ewAu: _eia( ) ’ (CS)
Rl ,,—2I'=—(RG,~G) (C1) C-AD
and wherea=KAr, C=ie'“?sin(@/2)+ (Au/4Ar)(1— cosx) and
D=(iLAu/4R)sin(e/2). The stability condition that
1 Re(w)=<0 then reduces to RE(AD—AD)]=0. It is easy
2G,,—G.=——=I" 7. Cc2 to check that this is automatically satisfied.
ur [ R N ( )

As a result, local stability analysis places no constraints
on the algorithm. It may seem surprising that no analogue of
a Courant-Friedrichs-Levy(CFL) condition arises in this
analysis. This can be understood in the following vein. The
local structure of the code is implicit, since it involves three
points at the upper time level. The stability of an implicit

A=—i(1-ikR)(I;—il)/[2(2+k*R?)] (C3)  algorithm does not necessarily require a CFL condition.

However, the algorithm is globally explicit in the way that
evolution proceeds by an outward radial march from the ori-
gin. It is this feature that necessitates a CFL condition in
2w:ik—(lf+I%)(l—ikR)/[(4R)(2+ k’R?)], (C4) order to make the numerical and physical domains of depen-
dence consistent. In practice the code is unstable unless the
representing damped quasinormal modes. domain of dependence determined by the characteristics is

Consider now the FDE obtained by putti@gon the grid  contained in the numerical domain of dependence. It is im-
pointsr; andI' on the staggered points. ,/,, While using  portant to note that iflJ (or I') are not discretized on a
the same stereographic grdd and time griduy . Let P, Q,  staggered grid then the above analysis shows the resulting
R, andS be the corner points of the null parallelogram algo-algorithm to be unconditionally unstable regardless of any
rithm, placed so thaP andQ are atleveN+1,RandSare  CFL condition.

Writing {=s;+is,, introducing the Fourier modes
G=e"YeKe!l151e/2% (with real k, |;, andl,) and setting
I'=AG, these equations imply

and
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