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Cauchy-characteristic extraction in numerical relativity
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We treat the calculation of gravitational radiation using the mixed timelike-null initial value formulation of
general relativity. The determination of an exterior radiative solution is based on boundary values on a timelike
world tubeG and on characteristic data on an outgoing null cone emanating from an initial cross section of
G. We present the details of a three-dimensional computational algorithm which evolves this initial data on a
numerical grid, which is compactified to include future null infinity as finite grid points. A code implementing
this algorithm is calibrated in the quasispherical regime. We consider the application of this procedure to the
extraction of waveforms at infinity from an interior Cauchy evolution, which provides the boundary data on
G. This is a first step towards Cauchy-characteristic matching in which the data flow at the boundaryG is
two-way, with the Cauchy and characteristic computations providing exact boundary values for each other. We
describe strategies for implementing matching and show that for small target error it is much more computa-
tionally efficient than alternative methods.@S0556-2821~96!02822-6#

PACS number~s!: 04.25.Dm, 04.20.Ha, 04.30.Db
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I. INTRODUCTION

We report here on an important step towards the ultim
goal of constructing numerical relativity codes that calcula
accurately in three dimensions~3D! the gravitational radia-
tion at future null infinity. By ‘‘accurately’’ we mean~at
least! second-order convergent to the true analytic solut
of a well-posed initial value problem. Thus our goal is
provide an accurate and unambiguous computational m
from initial data to gravitational waveforms at infinity. O
course, uncertainties will always exist in the appropriate i
tial data for any realistic astrophysical system~e.g., in a bi-
nary neutron star system, the data for the metric compon
would not be uniquely determined by observations!. But
such a computational map enables focusing on the unde
ing physics in a rigorous way.

Most relativity codes are second-order convergent, but
cause of boundary problems the convergence may not b
the true analytic solution of the intended physical proble
In order to explain this point, and to give the idea behind o
method, we first briefly review some aspects of numeri
relativity. The predominant work in numerical relativity i
for the Cauchy ‘‘31 1’’ problem, in which spacetime is
foliated into a sequence of spacelike hypersurfaces. Th
hypersurfaces are necessarily of finite size so, in the u
case where space is infinite, an outer boundary with an a
ficial boundary condition must be introduced. This is the fi
source of error because of artificial effects such as the refl
tion of outgoing waves by the boundary. Next, the gravi
tional radiation is estimated from its form inside the boun
ary by using perturbative methods, which ignore t
nonlinear aspects of general relativity in the region outs
the boundary. For these reasons the numerical estimat
gravitational radiation is not, in general, convergent to t
true analytic value at future null infinity. The radiation pro
540556-2821/96/54~10!/6153~13!/$10.00
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erties of the Robinson-Trautman metric will be used to illus
trate this effect.

An alternative approach in numerical relativity uses the
characteristic formalism, in which spacetime is foliated into
a sequence of null cones emanating from a central geodes
This approach has the advantage that the Einstein equatio
can be compactified@1# so that future null infinity is rigor-
ously represented on a finite grid, and there is no artificia
outer boundary condition. However, it suffers from the dis
advantage that the coordinates are based on light rays, wh
can be focused by a strong field to form caustics which com
plicate a numerical computation@2#. Also, to date, the char-
acteristic initial value problem has only been implemente
numerically for special symmetries@3–8#.

Our ultimate goal is a 3D Cauchy-characteristic matchin
~CCM! code, which uses the positive features of the two
methods while avoiding the problems. More precisely, th
interior of a timelike world tubeG is evolved by a Cauchy
method, and the exterior to future null infinity is evolved
using a characteristic algorithm; boundary conditions atG
are replaced by a two-way flow of information acrossG. In
relativity, under the assumption of axisymmetry without ro-
tation, there has been a feasibility study of CCM@9,10#; see
also @7#. CCM has been successfully implemented for non
linear wave equations and demonstrated to be second-ord
convergent to the true analytic solution~which is not true in
a pure Cauchy formulation with Sommerfeld outer boundar
condition! @11#.

Figure 1 depicts schematically the location of the nul
hypersurface and world tube used in the characteristic matc
ing method. For simplicity, we assume the world tube is
chosen as a spherical surface, and angular directions are s
pressed in the diagram.

While CCM has aesthetic advantages, it is important t
ask whether it is an efficient approach. The question can b
posed as follows. For a given target error«, what is the
6153 © 1996 The American Physical Society
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amount of computation required for CCM compared to th
required for a pure Cauchy calculation? It will be shown th
the ratio tends to 0 as«→0, so that in the limit of high
accuracy the effort is definitely worthwhile@12#.

Our first step towards CCM is Cauchy-characteristic e
traction ~CCE! and we will present a partial implementatio
of CCE in this paper. The idea of CCE is to run a pu
Cauchy evolution with an approximate outer boundary co
dition. A world tube G is defined in the interior of the
Cauchy domain, and the appropriate characteristic data
calculated onG; then characteristic algorithms are used
propagate this gravitational field to future null infinity@13#.
CCE is simpler than CCM to implement numerically, b
cause in CCE the data flow is one-way~Cauchy to charac-
teristic! whereas in CCM the data flow in both direction
Note that the advantage of computational efficiency appl
only to CCM and not to CCE. However, we will show tha
the advantage of second-order convergence to the true
lytic solution does apply, under certain circumstances,
CCE.

The work in this paper is part of the binary black ho
grand challenge, which is concerned with the gravitation
radiation resulting from the in-spiral and coalescence of t
arbitrary black holes. However, the methods described h
are not limited to black hole coalescence and could be
plied to gravitational radiation from any isolated system,
ther with or without matter.

In Sec. II, we present a formalism for 3D characteris
numerical relativity in which the coordinates are based
null cones that emanate from a timelike world tubeG ~recall
that existing codes are in 2D with null cones emanating fro
a timelike geodesic! @8#. The characteristic Einstein equa
tions are written as a sum of two parts: quasispherical~in a
sense defined below! plus nonlinear. The discretization an
compactification of the Einstein equations, with the nonli
ear part ignored, is discussed in Sec. III A computer code
been written and in Sec. IV this code is tested on lineariz
solutions of the Einstein equations, and extraction is tes
on the nonlinear Robinson-Trautman solutions. T
Robinson-Trautman solutions are also used to investigate
error of perturbative methods in estimating the gravitation
radiation at null infinity. Section V uses the formalism d
veloped in Sec. II to estimate the errors associated with
finite boundary in a pure Cauchy computation. This leads
the result concerning computational efficiency of CC

FIG. 1. The matching world tube and characteristic hypers
faces extending to future null infinityI1.
at
at

x-
n
re
n-

are
to

e-

s.
ies
t
ana-
to

le
al
wo
ere
ap-
ei-

tic
on

m
-

d
n-
has
ed
ted
he
the
al
e-
the
to
M

stated above. In the Conclusion we discuss the further step
needed for a full implementation of CCE, and also of CCM,
and investigate under what circumstances CCE can provide
second-order convergence to the true analytic solution at fu-
ture null infinity. We finish with the Appendices on the null
cone version of gauge freedom and linear solutions of the
Einstein equations, and on a stability analysis of our algo-
rithm.

II. CHARACTERISTIC EVOLUTION IN 3D

This is the first step towards a 3D characteristic evolution
algorithm for the fully nonlinear vacuum Einstein equations.
Here we treat the quasispherical case, where effects which
are nonlinear in the asymmetry can be ignored. Thus the
Schwarzschild metric is treated exactly in this formalism.
However, rather than developing an algorithm for the linear-
ized equations on a given Schwarzschild background, we
will approach this problem in a mathematically different
way.

We adopt a metric based approach in which each compo-
nent of Einstein’s equation has~i! some quasispherical terms
which survive in the case of spherical symmetry and~ii !
other terms which are quadratic in the asymmetry, i.e., terms
of O(l2) wherel measures deviation from spherical sym-
metry. We will treat the quasispherical terms to full nonlin-
ear accuracy while discarding the quadratically asymmetric
terms. For example, iff were a scalar function we would
make the approximation

ef]u
2ef1]uf]uf'ef]u

2ef. ~1!

Although this breakup is not unique, once made it serves
two useful purposes. First, the resulting field equations are
physically equivalent to the linearized Einstein equations in
the quasispherical regime.~In the exterior vacuum region,
the spherical background must of course be geometrically
Schwarzschild but the quasispherical formalism maintains
arbitrary gauge freedom in matching to an interior solution.!
Second, the resulting quasispherical evolution algorithm sup-
plies a building block which can be readily expanded into a
fully nonlinear algorithm by simply inserting the quadrati-
cally asymmetric terms in the full Einstein equations.

A. The null cone formalism

We use coordinates based upon a family of outgoing null
hypersurfaces. We letu label these hypersurfaces,xA

(A52,3) be labels for the null rays, andr be a surface area
distance. In the resultingxa5(u,r ,xA) coordinates, the met-
ric takes the Bondi-Sachs form@14,15#

ds252S e2b
V

r
2r 2hABU

AUBDdu222e2bdu dr

22r 2hABU
Bdu dxA1r 2hABdx

AdxB, ~2!

wherehABhBC5dC
A and det(hAB)5det(qAB)5q, with qAB a

unit sphere metric. Later, for purposes of including null in-
finity as a finite grid point, we introduce a compactified ra-
dial coordinate.

ur-
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Note that the traditional 311 decomposition of spacetime
used in the Cauchy formalism is not applicable here beca
the foliation by hypersurfaces of constantu has a degenerate
three-metric and null normal. However, an analogous 211
decomposition can be made on a timelike world tube of co
stantr , which has the intrinsic metric

~3!ds252e2b
V

r
du21r 2hAB~dx

A2UAdu!~dxB2UBdu!.

~3!

In this form, we can identifyr 2hAB as the metric of the
surfaces of constantu which foliate the world tube,e2bV/r
as the square of the lapse function and (2UA) as the shift
vector.

A Schwarzschild geometry is given by the choic
b5b(u), V5e2b(r22m), UA50, andhAB5qAB . To de-
scribe a linear perturbation, we would sethAB5qAB1lgAB
and would retain only terms ingAB which were of leading
order in the linearization parameterl. Here we take a differ-
ent approach. We express

qAB5
1

2
~qAq̄B1q̄AqB!, ~4!

in terms of a complex dyadqA ~satisfying qAqA50,
qAq̄A52, qA5qABqB , with q

ABqBC5dC
A). ~We depart from

other conventions@16# to avoid factors ofA2 which would
be awkward in numerical work.! There remains the rotational
gauge freedom

q̂a→eıcqa, ~5!

wherec is real. We represent a tensor fieldvA1•••An on the
sphere by complex scalar fields: e.g.,

v5qA1•••qApq̄Ap11
•••q̄AnvA1•••An. ~6!

Under Eq.~5!, v→eıscv ~with s52p2n), which defines a
spin-weights field. We also use theeth operator@17,16#,
which expresses the covariant derivative¹A ~associated with
qAB) of a tensor field on the sphere in terms of spin-weight
fields, resulting in the derivative operators]” and ]”̄ defined in
our conventions by

]”v5qA1•••qApq̄Ap11
•••q̄AnqB¹BvA1•••An, ~7!

]”̄ v5qA1•••qApq̄Ap11
•••q̄Anq̄B¹BvA1•••An. ~8!

If v has spin-weights then ]”v and ]”̄ v have spin-weights
s11 ands21, respectively. Refer to@18# for further details,
especially how to discretize the covariant derivatives a
curvature scalar of a topologically spherical manifold usin
the ]” calculus.

For an arbitrary Bondi-Sachs metric,hAB can then be rep-
resented by its dyad componentJ5hABq

AqB/2. This is also
related to the linearized metric byJ5lgABq

AqB/2. In linear-
ized theory,J would be a first-order quantity. The full non-
linearhAB is uniquely determined byJ, since the determinant
condition implies that the remaining dyad compone
K5habq

aq̄b/2 satisfies 15K22JJ̄. Because the two-metric
use

n-
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hAB also specifies the null hypersurface data for the charac-
teristic initial value problem, this role can thus be transferred
to J. The spherically symmetric casehAB5qAB is character-
ized byJ50. Terms in Einstein equations that depend upon
J to higher than linear order are quadratically asymmetric.
We do not explicitly usel as an expansion parameter but
introduce it where convenient to indicate orders of approxi-
mation.

B. Quasispherical approximation

The Einstein equationsGmn50 decompose into hypersur-
face equations, evolution equations and conservation laws. In
writing the field equations, we follow the formalism given in
@19,20#. We find

b ,r5
1

16
rhAChBDhAB,rhCD,r , ~9!

~r 4e22bhABU ,r
B ! ,r52r 4~r22b ,A! ,r2r 2hBCDChAB,r ,

~10!

2e22bV,r5R22DADAb22DAbDAb

1r22e22bDA~r 4UA! ,r2
1

2
r 4e24bhABU ,r

AU ,r
B ,

~11!

whereDA is the covariant derivative andR the curvature
scalar of the two-metrichAB .

The quasispherical version of Eq.~9! follows immediately
from rewriting it as b ,r5Nb , where Nb
5rhAChBDhAB,rhCD,r /16 is quadratically asymmetric. This
defines the quasispherical equation

b ,r50. ~12!

Thus in this approximation,b5H(u,xA)1O(l2). For a
family of outgoing null cones which emanate from a non-
singular geodesic world line, we could choose coordinate
conditions so thatH50. Similarly, in Minkowski space, we
could setH50 for null hypersurfaces which emanate from a
nonaccelerating spherical world tube of constant radius. In a
Schwarzschild spacetime, due to red shift effects,H need not
vanish even on a spherically symmetric world tube. Thus
H represents some physical information as well as asymmet-
ric gauge freedom in the choice of coordinates and choice of
world tube.

We wish to apply the same procedure to Eqs.~10! and
~11!. In doing so, it is useful to introduce theO(l) tensor
field

CAB
C 5

1

2
hCD~¹AhDB1¹BhAD2¹DhAB! ~13!

which represents the difference between the connection
DA and the unit sphere connection¹A , e.g., (DA

2¹A)vB52CAB
C vC . In solving forU

A, we use the interme-
diate variable

QA5r 2e22 bhABU ,r
B . ~14!

Then Eq.~10! reduces to the first-order radial equations
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~r 2QA! ,r52r 4~r22b ,A! ,r2r 2hBCDChAB,r , ~15!

U ,r
A5r22e2bhABQB . ~16!

We deal with these equations in terms of the spin-weigh
fields U5UAqA and Q5QAq

A. To obtain quasispherica
versions of these equations, we rewrite Eqs.~15! and~16! as

~r 2Q! ,r52r 2qAqBC¹ChAB,r12r 4qA~r22b ,A! ,r1NQ ,
~17!

U ,r5r22e2bQ1NU , ~18!

where

NQ5qA@r 2hBC~CCA
D hDB,r1CCB

D hAD,r !

2r 2~hBC2qBC!¹ChAB,r #, ~19!

NU5r22e2bqA~hAB2qAB!QB . ~20!

The quasispherical versions obtained by settingNQ50 in
Eq. ~17! andNU50 in Eq. ~18! then take the form

~r 2Q! ,r52r 2~ ]”̄ J1]”K ! ,r12r 4]” ~r22b! ,r , ~21!

U ,r5r22e2bQ, ~22!

in terms of the spin-weighted differential operator]” . Since
Q,r andU ,r are asymmetric ofO(l), we use the gauge free
dom to ensure thatQ andU areO(l).

Since V5r in Minkowski space, we setV5r1W in
terms of a quasispherical variableW. Then Eq.~11! becomes

W,r5
1

2
e2bR212eb]” ]”̄ eb1

1

4
r22@r 4~]” Ū1 ]”̄ U !# ,r1NW ,

~23!

where

NW52eb¹A@~hAB2qAB!¹Be
b#2

1

4
r 4e22bhABU ,r

AU ,r
B .

~24!

We setNW50 in Eq. ~23! to obtain the quasispherical fiel
equation forW,r .

Next, by the same procedure, the evolution equations t
the form

2~rJ ! ,ur2@r21V~rJ ! ,r # ,r52r21~r 2]”U ! ,r12r21eb]” 2eb

2~r21W! ,rJ1NJ , ~25!

where

NJ5
qAqB

r S 22ebCAB
C ¹Ce

b2hACCDB
C ~r 2UD! ,r

2~hAC2qAC!¹B~r 2UC! ,r1
1

2
r 4e22bhAChBDU ,r

CU ,r
D

2
1

2
r 2hAB,rDCU

C2r 2UCDChAB,r

1r 2hCDhAD,r~DCUB2DBUC!1
1

2
hABPD , ~26!
ted
l

-

d

ake

where

P52r 2h,r
ABS hAB,u2 V

2r
hAB,r D22ebDADAe

b

1DA@~r 2UA! ,r #2
1

2
r 4e22bhABU ,r

AU ,r
B . ~27!

The quasispherical evolution equation follows from~25! by
settingNJ50.

The remaining independent equations are the conservation
conditions. For a worldtube given byr5const, these are
given in terms of the Einstein tensor by

jmGm
n ¹nr50, ~28!

wherejm is any vector field tangent to the worldtube. This
expresses conservation ofj momentum flowing across the
world tube @13#. These equations simplify when the Bondi
coordinates are adapted to the world tube so that the angula
coordinatesxA are constant along the]u streamlines. Then
U50 on the world tube and an independent set of conserva-
tion equations is given~in the quasispherical approximation!
in terms of the Ricci tensor by

Ru
r 5r22W,u22r21b ,u2

1

2
r23]” ]”̄W1

1

4
~]” Ū1 ]”̄ U ! ,r50,

~29!

2qARA
r 5]” „~r21W! ,r24r21b22b ,u…

1 ]”̄ ~J,u2J,r !2r 2U ,ru50. ~30!

In the context of an extraction problem it is assumed that the
interior solution satisfies the Einstein equations, and there-
fore that the conservation conditions are automatically satis-
fied on the extraction worldtube.

The above equations define a quasispherical truncation of
the vacuum Einstein equations. Because these quasispherica
equations retain some terms which are nonlinear in the asym-
metry, their solutions are not necessarily linearized solutions
in a Schwarzschild background. However, in the perturbative
limit off Schwarzschild, the linearized solutions to these
truncated equations agree with the linearized solutions to the
full Einstein equations.

III. DISCRETIZATION OF THE EQUATIONS

In this section we describe a numerical implementation,
based on second-order accurate finite differences, of the
equations presented in Sec. II. We introduce a compactified
radial coordinatex5r /(R1r ) ~with R being the extraction
radius!, labeling null rays by the real and imaginary parts of
a stereographic coordinatej5q1 ip on the sphere, i.e.,
xA5(q,p). The radial coordinate is discretized as
xi5x01( i21)Dx for i51, . . . ,Nx and Dx5(12x0)/
(Nx21). Herex051/2 defines a world tube of constant sur-
face area coordinate. The pointxNx51 lies at null infinity.

The stereographic grid points are given byqj5 jD and
pk5kD for j ,k52Nj , . . . ,Nj andD51/Nj .

The fieldsJ, b, Q, andW are represented by their values
on this rectangular grid, e.g.,Ji jk

n 5J(un ,xi ,qj ,pk). How-
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ever, for stability~see Appendix C!, the fieldU is repre-
sented by values at the pointsxi11/25xi1Dx/2 on a radially
staggered grid@accordinglyUi jk

n 5U(un ,xi11/2,qj ,pk)]. For
the extraction problem, it is assumed that the values of
fields and the radial derivative ofU are known at the bound
ary. In the following discussion, it is useful to note that a
ymptotic flatness implies that the fieldsb(x), U(x),
W̃(x)5r22W(x), andJ(x) are smooth atx51, future null
infinity I1.

A. Hypersurface equation for Q

In terms of the compactified radial variablex, the quasi-
spherical field equation forQ reduces to

2Q1x~12x!Q,x52x~12x!~ ]”̄ J1]”K ! ,x24]”b. ~31!

We write all derivatives in centered, second-order accur
form and replace the valueQi21 by its average
(Qi1Qi22)/2. The resulting algorithm determinesQi in
terms of values ofJ and b at the pointsxi , xi21, and
xi22:

Qi1Qi221xi21~12xi21!
Qi2Qi22

2Dx

52xi21~12xi21!S ]”̄
Ji2Ji22

2Dx
1]”

Ki2Ki22

2Dx D24]”b i21 .

~32!

~Here and in what follows, we make explicit only the di
cretization on the radial directionx, and we suppress the
angular indicesj ,k.! Since Eq.~32! is a three-point formula,
it cannot be applied at the second point, however, a suita
formula for x2 is given by

Qi1QR1xC~12xC!
Qi2QR

dx

52xC~12xC!S ]”̄
Ji2JR

dx
1]”

Ki2KR

dx D22]” ~b i1bR!,

~33!
the
-
s-

ate

s-

ble

where the value ofQR is trivially obtained from the knowl-
edge of U ,r at the boundary, andxC5(xi1xR)/2,
dx5xi2xR . After a radial march, the local truncation error
compounds to anO(D2) global error inQ at I1.

B. Hypersurface equation forU

In terms of the compactified radial variablex, the quasi-
spherical field equation forU reduces to

U ,x5
e2bQ

Rx2
. ~34!

We again rewrite all derivatives in centered, second-orde
form. Because of the staggered placement ofU, the resulting
discretization is

Ui5Ui211
e2b iQi

Rxi
2 Dx. ~35!

The value ofU at the first point is evaluated from the expan-
sion

Ui5UuR1U,xuR~xi11/22xR!1O~D2! ~36!

at the boundary. This leads to an algorithm for determining
U at the pointxi11/2 in terms of values ofQ at the points
xR lying on the same angular ray. After completing a radial
march, local truncation error compounds to anO(D2) global
error inU at I`.

C. Hypersurface equation forW

The quasispherical field equation forW, Eq. ~23!, reex-
pressed in terms ofx andW̃5W/r 2, is

Rx2W̃,x12R
x

12x
W̃5

1

2
e2bR212eb]” ]”̄ eb

1
1

4
Rx2~]” Ū1]”U ! ,x

1R
x

12x
~]” Ū1]”U !. ~37!

Following the same procedure as in Eq.~32! we obtain
Rxi21/2
2 ~12xi21/2!

W̃i2W̃i21

Dx
1Rxi21/2~W̃i1W̃i21!

5
1

2
~12xi21/2!S 12 e2b iRi1

1

2
e2b i21Ri21222eb i]” ]”̄ eb i2eb i21]” ]”̄ eb i21D

1
1

4
Rxi21/2

2 ~12xi21/2!S ]”
Ū i2Ū i22

2Dx
1 ]”̄

Ui2Ui22

2Dx D 1Rxi21/2~]” Ū i211 ]”̄ Ui21!. ~38!
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We obtain a startup version of the above with the substi
tions xi21/2→xC , Dx→dx, noting that at the boundaryU,x
is given. The above algorithm has a local errorO(D3)in each
zone. In carrying out the radial march, this leads toO(D2)
error at any given physical point in the uncompactified ma
fold. However, numerical analysis indicates anO(D2lnD)
error atI1.

D. Evolution equation for J

In discretizing the evolution equation, we follow an ap
proach that has proven successful in the axisymmetric c
@8# and recast it in terms of the two-dimensional wave o
erator

h ~2!c5e22bF2c ,ru2S Vr c ,r D
,r

G ~39!

corresponding to the line element

ds252l ~mnn)dx
mdxn5e2bduSVr du12dr D , ~40!

wherelm5u,m is the normal to the outgoing null cones an
nm is a null vector normal inwards to the spheres of const
r . Because the domain of dependence ofds2 contains the
domain of dependence induced in the (u,r ) submanifold by
the full spacetime metric~2!, this approach does not lead t
convergence problems.

The quasispherical evolution equation~25! then reduces
to

e2bh ~2!~rJ !5H, ~41!

where

H52r21~r 2]”U ! ,r12r21eb]” 2eb2~r21W! ,rJ. ~42!

Because all two-dimensional wave operators are conform
flat, with conformal weight22, we can apply to Eq.~41! a
flat-space identity relating the values ofrJ at the corners
P, Q, R, andS of a null parallelogramA with sides formed
by incoming and outgoing radial characteristics. In terms
rJ, this relation leads to an integral form of the evolutio
equation:

~rJ !Q5~rJ !P1~rJ !S2~rJ !R1
1

2EAdu drH. ~43!

The corners of the null parallelogram cannot be chosen
lie exactly on the grid because the velocity of light in term
of the x coordinate is not constant. Numerical analysis a
experimentation has shown@21# that a stable algorithm re-
sults by placing this parallelogram so that the sides form
by incoming rays intersect adjacentu hypersurfaces at equa
but oppositex displacement from the neighboring gri
points. The elementary computational cell consists of the
tice points (n,i ,k,l ) and (n,i61,k,l ) on the ‘‘old’’ hyper-
surface and the points (n11,i ,k,l ), (n11,i21,k,l ), and
(n11,i22,k,l ).

The values ofrJ at the vertices of the parallelogram ar
approximated to second-order accuracy by linear interpo
tu-

i-
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p-
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n

to
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tions between nearest neighbor grid points on the same out-
going characteristic. Then, by approximating the integrand
by its value at the centerC of the parallelogram, we have

~rJ !Q5~rJ !P1~rJ !S2~rJ !R1
1

2
Du~r Q2r P1r S2r R!HC .

~44!

As a result, the discretized version of Eq.~41! is given by

~rJ ! i
n115F„~rJ ! i21

n11 ,~rJ ! i22
n11 ,~rJ ! i11

n ,~rJ ! i
n ,~rJ ! i21

n
…

1
1

2
Du~r Q2r P1r S2r R!HC , ~45!

whereF is a linear function of the (rJ)’s and angular in-
dexes have been suppressed. Consequently, it is possible to
move through the interior of the grid computing (rJ) i

n11 by
an explicit radial march using the fact that the value ofrJ on
the world tube is known.

The above scheme is sufficient for second-order accurate
evolution in the interior of the radial domain. However, for
startup purposes, special care must be taken to handle the
second radial point. In determining (rJ) i52

n11 the strategy~44!
is easily modified so that just two radial points are needed on
the n11 level; the parallelogram is placed so thatP andQ
lie precisely on (n11,1,i , j ) and (n11,2,i , j ), respectively.
Note that the calculation ofHC poses no problems, since the
values ofW, U, andU ,r are known on the world tube and the
value ofW,r on the world tube can be calculated by Eq.~23!.

In order to apply this scheme globally we must also take
into account technical problems concerning the order of ac-
curacy for points nearI1. For this purpose, it is convenient
to renormalize Eq.~45! by introducing the intermediate vari-
able F5xJ. This new variable has the desired feature of
finite behavior atI1. With this substitution the evolution
equation becomes

FQ5
1

4
xQDuHC1

12xQ
12xP

S FP2
1

4
xPDuHCD

1
12xQ
12xS

S FS1
1

4
xSDuHCD

2
12xQ
12xR

S FR1
1

4
xRDuHCD , ~46!

where all the terms have finite asymptotic value.

IV. TESTS

Some of the fundamental issues underlying stability of the
evolution algorithm are discussed in Appendix C. We have
carried out numerical experiments which confirm that the
code is stable, subject to the CFL condition, in the perturba-
tion regime where caustics and horizons do not form. The
first set of tests consist of evolving short wavelength initial
null data, with all world tube data set to zero. In this case, the
world tube effectively acts as a mirror to ingoing gravita-
tional waves. The tests were run until all waves were re-
flected and radiated away toI1. In particular, data with
uJu'1026 were run fromu50 to u540, corresponding to
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approximately 104 time steps, at which time it was checke
that the amplitude was decaying.

In the second set of tests, we included short wavelen
data with amplitude 1024 for the boundary values ofb, J,
U, Q, andW on the world tube~with compact support in
time! as well for the initial data forJ ~with compact support
on the initial null hypersurface!. Again the code was run for
approximately 4500 time steps~from u50 to u525), at
which time all fields were decaying exponentially. This te
reveals a favorably robust stability of the world tube initi
value problem, since in this case the world tube conserva
conditions which guarantee that the exterior evolution be
vacuum Einstein solution were not imposed upon the wo
tube data.

We now present code tests for the accuracy of numer
solutions and their waveforms at infinity. The tests are ba
upon linearized solutions on a Minkowski background a
linearized Robinson-Trautman solutions. These solutio
provide testbeds for code calibration as well as consist
world tube boundary values for an external vacuum soluti
In addition, we use numerical solutions of the nonline
Robinson-Trautman equation to study the waveform err
introduced by the quasispherical approximation.

A. Linearized solutions

Appendices A and B describe how to generate thre
dimensional linearized solutions on a Minkowski bac
ground in null cone coordinates and their gauge freedom.
calibrate the accuracy of the code, we choose a solution
Eqs.~B6! and~B7! which represents an outgoing wave wit
angular momentuml56 of the form

F5~]z!
6
1

u2r
, ~47!

where]z is thez-translation operator. The resulting solutio
is well behaved above the singular light coneu50.

Convergence was checked in the linearized regime
choosing initial data of very small amplitude (uJu'1029).
We used the linearized solution~47! to give data atu51,
with the inner boundary atR51, and we compared the nu
merically evolved solution atu51.5. The computation was
performed on grids of sizeNx equal 128, 192, 256, and
320, while keepingNx54Nz . Convergence to second orde
was verified in theL1, L2, andL` norms.

B. Robinson-Trautman solutions

The Robinson-Trautman spacetimes@22# contain a dis-
torted black hole emitting purely outgoing radiation. Th
metric can be put in the Bondi form

ds252SK2
2

rWDdu222Wdudr22rW,Adu dxA

1r 2qABdx
AdxB, ~48!

whereK5W 2@12L2(lnW)#, L2 is the angular momentum
operator andW(u,xA) satisfies the nonlinear equation

12]u~ lnW!5W 2L2K. ~49!
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The Schwarzschild solution~for a unit mass black hole! is
obtained whenW51. More generally, smooth initial data
W(u0 ,x

A) evolve smoothly to form a Schwarzschild hori-
zon. The linearized solutions to the Robinson-Trautman
equation~49! are obtained by settingW511f and drop-
ping nonlinear terms inf:

12]uf5L2~22L2!f. ~50!

For a spherical harmonic perturbationf5A(u)Yl m
this leads to the exponential decay A

5A(0)e2ul (l 11)(l 21l 22)/12.
These linearized solutions provide analytic world tube

data for our evolution code, along with the initial null data
J50. We have used this as a check of code accuracy in the
perturbative regime off Schwarzschild. With this data, the
code should evolveJ to be globally zero to second order in
grid size. Of particular importance for the extraction of
waveforms, this should hold for the value ofJ at I1. We
have carried out such a test with a small extraction radius
(R53m) and a linearized solution of the form

W511lRe@~e22uY221e210uY33!# ~51!

with l51025. The error norm

uuEJuu25E
0

u1
duE dVJ2 ~52!

was determined by integration over a sphere atI` with solid
angle elementdV, and with an integration time ofu152.
The convergence rate to the true value was found to be
O(D1.92).

We have also obtained second-order accurate numerica
solutions to the nonlinear Robinson-Trautman equation~50!.
See Ref.@18# for numerical details. This allows us to check
the discrepancy between exact waveforms and waveforms
obtained by regarding the whole spacetime in the quasi-
spherical perturbative approximation. We have based this
comparison on initial data in modes

Wuu50511lRe@Ylm#. ~53!

In order to supply some physical perspective, the nonlinear-
ity of the initial data is best measured in terms of
e5@(M2MS)/M #1/2, whereM is the initial mass of the sys-
tem andMS is the mass of the corresponding Schwarzschild
background.~Here,MS51.) We also calculate the percent-
age of the initial mass which is radiated away during the
entire course of our simulations. The Bondi news function
determines the mass loss and it is also an appropriate physi
cal quantity to invariantly describe radiative waveforms. In
the coordinates adopted here, the news function is given by
@23#

N~uB ,x
A!5

1

2
W21]” 2W, ~54!

where the Bondi timeuB measured by observers atI` is
related tou by duB /du5W.

For various initial modes, we have calculated the news
function for the numerical solution of the nonlinearR-T
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equation (Ne
n) and compared it with the news function of th

linearized solution (Ne
p). As expected, for small values ofe

they agree up to second order ine. Figure 2 graphs the time
dependence ofDe5Ne

n2Ne
p ~for a representative angle! for a

system initially in al52,m52 mode, which is the dominan
gravitational radiation mode for a spiraling binary syste
The figure illustrates thatDe scales withe2. However, for
largere, corresponding to a total radiative mass loss grea
than 2.5%, this is no longer the case and a noticeable
crepancy arises. For instance, as illustrated in Fig. 3,
difference between quadratically rescalingDe and its actual
value is about 40% for a mass loss of 4%.

Hence, this indicates that not only the first-order pertu
bation treatment but also the second-order treatmen
grossly inaccurate in this regime. Serious discrepancies a
betweenNe

n andNe
p for ranges in which the mass loss is no

extreme. In fact,Ne
n reveals an oscillatory behavior qualita

tively quite different from the pure decaying mode of th
perturbative solution, which has serious implications for t
tidal acceleration which the radiation would produce in
distant gravitational wave antenna. As measured by the
diative component of the Weyl tensorC4, the tidal accelera-
tion is given by the Bondi-time derivative of the news fun
tion. In contrast to the monotonic decay of the perturbat
solution, the actual behavior ofC4 exhibits damped oscilla-
tions. For aY22 initial mode, Fig. 4 shows the drastic differ
ence between the numerically obtainedC4

n and the corre-
spondingC4

p calculated with the perturbative solution.
Similar nonlinear oscillations arise from other choices

initial data. Some partial explanation of this behavior mig
be possible using second-order perturbation theory for

FIG. 2. De for e150.14 ande250.22 ~corresponding to a total
mass loss of 0.6 and 1.2%, respectively! for initial data in aY22

mode. In this regimeDe scales ase
2, thus indicating that first-order

perturbation is valid in this regime.
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Robinson-Trautman equation@24# but the full behavior
would require perturbation expansions far beyond practical-
ity.

V. COMPUTATIONAL EFFICIENCY OF CCM

This section is concerned with the computational effi-
ciency of a numerical calculation of gravitational radiation
from an isolated system, such as binary black hole. By
‘‘computational efficiency’’ we mean the amount of compu-
tationA ~i.e., the number of floating point operations! for a
given target error«. We will show that the computational
efficiency of the CCM algorithm is never significantly worse
than that of a pure Cauchy algorithm; and that for high ac-
curacy the CCM algorithm is always much more efficient.

In CCM a ‘‘3 1 1’’ interior Cauchy evolution is matched
to an exterior characteristic evolution at a world tube
r M5const. A key feature is that the characteristic evolution
can be rigorously compactified, so that the whole spacetime
to future null infinity may be represented on a finite grid.
From a numerical point of view this means that the only
error made in a calculation of the gravitational radiation at
infinity is due to the finite discretizationD; for second-order
algorithms this isO(D2). The value of the matching radius
r M is important and it will turn out that, for efficiency, it
should be as small as possible. However, caustics may form
if r M is too small. The smallest value ofr M that avoids
caustics is determined by the physics of the problem, and is
not affected by either the discretizationD or the numerical
method.

FIG. 3. De for e150.14 ande250.4 ~corresponding to a total
mass loss of 0.6 and 4.6%, respectively! for initial data in aY22

mode. The difference between quadratically rescalingDe and its
actual value is about 40%, indicating that second-order perturbation
is inaccurate in this regime.
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On the other hand, the standard approach is to make
estimate of the gravitational radiation solely from the da
calculated in a pure Cauchy evolution. The simplest meth
would be to use the raw data, but that approach is too cr
because it mixes gauge effects with the physics. Thus a s
stantial amount of work has gone into perturbative metho
that factor out the gauge effects using multipole expansio
and estimate the gravitational field at infinity from its beha
ior within the domain of the Cauchy computation@25–27#.
We will call this method waveform extraction~WE!. While
WE is a substantial improvement on the crude approach
ignores the nonlinear terms in the Einstein equations. T
resulting error will be estimated below.

Both CCE and WE areextractionmethods. That is, they
use Cauchy data on a world tubeG to estimate gravitational
waveforms at infinity, and they have no back effect on t
Cauchy evolution. In both methods there is an error~which is
difficult to estimate! due to the artificial Cauchy outer bound
ary condition. The difference between CCE and WE is in t
treatment of the nonlinear terms betweenG and future null
infinity and in the truncation of the perturbative multipol
expansion at some low order. WE ignores the nonline
terms, and this is an inherent limitation of a perturbati
method. Even if it is possible to extend WE beyond line
order, there would necessarily be a cutoff at some finite
der. The quasispherical implementation of CCE incorpora
all multipole contributions but also ignores the nonline
terms. However, it is in principle straightforward to incorpo
rate these terms into the code. A full implementation of CC
would do so, and the nonlinear terms would be treated w
out error.

FIG. 4. C4
n andC4

p for a point lying 10° above the equator an
initial data in aY22 mode. The total mass loss is 4%. The ins
shows the marked oscillatory behavior at early times.
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A. Error estimate in WE

We assume that a pure Cauchy evolution proceeds in a
spatial domain of radiusr B , and the extraction is computed
on a world tubeG of radiusR, with R,r B .

The evolution equation~25! may be written

~rJ ! ,ur5quasispherical part1
1

2
NJ ~55!

with the nonlinear termNJ given by Eq. ~26!. @Actually,
NJ also implicitly contains contributions from (*NQdr)/r

2

and *NUdr, and from the quasispherical approximation of
terms in Eq.~25!, but these effects are all of the same order
asNJ.# The order of magnitude of various terms can be ex-
pressed in terms of a functionc(u,xA) ~whose time deriva-
tive is the news function!; note thatc is not a small quantity.
The expressions are

J5OS cr D , hAB2qAB5OS cr D , hAB,r5OS cr 2D ,
b5OS c2r 2D , Q5OS cr D , U5OS cr 2D ,

CAB
C 5OS cr D , W5OS c2r 2D . ~56!

These estimates are obtained by the radial integration of th
field equations in Sec. II B, assuming that the background
geometry is Minkowskian and that the Bondi gauge condi-
tions are satisfied. Should this not be the case then constan
of order unity would be added toQ, U, andW, and the effect
of this would be to amend Eq.~25! by adding terms to the
quasispherical part so that it represents wave propagation o
a ~fixed! nonflat background. However, the order of magni-
tude of terms in the nonlinear part would not be affected.
Thus there is no loss of generality, and a significant gain in
simplicity and transparency, in performing the error analysis
on a Minkowskian background.

It is straightforward to confirm that the nonlinear correc-
tion to Eq.~25! involves terms of orderO(c2/r 3) or smaller.
WE estimates the waveform at future null infinity from data
at r5R. This could be made exact~modulo the error intro-
duced by truncating the multipole expansion! if the nonlinear
part of Eq. ~25! were zero. Thus the error introduced by
ignoringNJ is

«~c,u![~c,u!exact2~c,u!WE5E
R

`

OS c2r 3Ddr5OS c2R2D .
~57!

In the case of the collision of two black holes, with total
massM and withc5O(M ), the error isO(M2/R2) and it is
tempting to say that if extraction is performed atR510M
then the expected error of the WE method is about 1%. This
would be quite wrong because there is no reason for the
constant factor inO(M2/R2) to be approximately 1.
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B. Computational efficiency

A numerical calculation of the emission of gravitation
radiation using a CCM algorithm is expected to be secon
order convergent, so that after a fixed time interval the er

«5O~D2!.k1D
2, ~58!

whereD is the discretization length andk1 is a constant. On
the other hand, the same calculation using WE must all
for the error found in Eq.~57!, and therefore after the sam
fixed time interval there will be an error of

«5O~D2,R22!.maxS k2D2,
k3
R2D , ~59!

wherek2 andk3 are constants.
We now estimate the amount of computation required

a given desired accuracy. We make one important assu
tion: The computation involved in matching, and in wav
form extraction, is an order of magnitude smaller than t
computation involved in evolution, and is ignored. This
justified by the 2D nature of the extraction and matchi
processes as opposed to the 3D nature of evolution.

For the sake of transparency we make some additio
simplifying assumptions~otherwise some extra constants o
order unity would appear in the formulas below but th
qualitative conclusions would be unaffected!.

~1! The amount of computation per grid point per tim
step,a, is the same for the Cauchy and characteristic alg
rithms.

~2! The constantsk1 ,k2 in the equations above are ap
proximately equal and will be written ask.

~3! In CCM, the numbers of Cauchy and characteris
grid points are the same; thus the total number of grid poi
per time step is

8pr M
3

3D3 . ~60!

~4! In WE, the outer boundaryr B is atA3 2R; thus the total
number of grid points per time step is

8pR3

3D3 . ~61!

It follows that the total amount of computationA required
for the two methods is

ACCM5
8pr M

3 a

3D4 , AWE5
8pR3a

3D4 . ~62!

Thus the method which requires the least amount of com
tation is determined by whetherr M.R or r M,R. @Because
of assumptions~1!–~4! this criterion is not exact but only
approximate.#

As stated earlier, the value ofr M is determined by the
physics, specifically by the condition that the nonlineariti
outside r M must be sufficiently weak so as not to induc
caustics. The value ofR is determined by the accuracy con
dition ~59!, and also by the condition that the nonlinearitie
outsideR must be sufficiently weak for the existence of
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perturbative expansion. Thus we never expectR to be sig-
nificantly smaller thanr M , and therefore the computational
efficiency of a CCM algorithm is never expected to be sig-
nificantly worse than that of a WE algorithm.

If high accuracy is required, the need for computationa
efficiency always favors CCM. More precisely, for a given
desired error«, Eqs.~58! and~59! and assumption~2! imply

D5A«/k, R5Ak3 /«. ~63!

Thus

ACCM5
8pr M

3 ak2

3«2
, AWE5

8pak2k3
3/2

3«7/2
, ~64!

so that

ACCM

AWE
5
r M
3 «3/2

k3
3/2 →0 as «→0. ~65!

This is the crucial result: the computational intensity of CCM
relative to that of WE goes to zero as the desired error« goes
to zero.

VI. CONCLUSION

The computer code described in this paper is a partia
implementation of CCE. That is, given data on anr5const
world tubeG, the code calculates the gravitational radiation
at future null infinity in the quasispherical approximation. A
full implementation of CCE is currently being developed
which addresses the following issues: The ignored nonlinea
terms in the Einstein equations must be calculated, dis
cretized and incorporated into the code; algorithms need t
be developed to translate numerical Cauchy data nearG into
characteristic data onG; in generalG will be described in
terms of Cauchy coordinates, and will not be exactly
r5const; the characteristic algorithm needs amendment t
allow for this.

Once a fully nonlinear CCE code has been achieved i
will be possible, under certain circumstances, to obtain
second-order convergence to the true analytic solution at fu
ture null infinity. For example, ifG has radiusR and the
radius of the Cauchy domain isr B (.R), then causality
implies that the gravitational field atG will not be contami-
nated by boundary errors until timetC'(r B2R) after the
start of the simulation. There is no analytic error in the char-
acteristic computation, so there will be no analytic error in
the gravitational radiation at future null infinity for the initial
time periodtC ; under some circumstances this may be the
time period that is physically interesting.

In CCE the data flow is one-way, from Cauchy to char-
acteristic, and therefore a numerical boundary instability is
not expected, and is not found in the numerical tests de
scribed earlier. However, our ultimate goal is to develop
CCM, in which the data flow at the boundary is two-way. In
this case feedback leading to a numerical boundary instabi
ity is obviously a danger. For this reason the first step in ou
work has been the construction of stable CCM algorithms fo
model problems@11#. General relativity is a nonlinear hyper-
bolic system and so the model problem used was the scal
wave equation, as both a linear problem and with a nonlinea



54 6163CAUCHY-CHARACTERISTIC EXTRACTION IN . . .
potential ~such asf4). Two different types of stable algo
rithm were presented. In one case the scalar field w
matched explicitly at the boundary, and in the other case
matching was indirect with continuity at the boundary bein
imposed on a differential operator analogous to the opera
used in the Sommerfeld condition.

The successful development of severalstableCCM algo-
rithms for these model problems encourages us to beli
that CCM in numerical relativity is a feasible goal.
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APPENDIX A: GAUGE FREEDOM

Given a metric in a Bondi null coordinate system, th
gauge freedom is

dgab5gac]cj
b1gcb]cj

a2jc]cg
ab ~A1!

subject to the conditions dg0050, dg0A50, and
gABdg

AB50. These latter conditions imply the functiona
dependencies

j05k~u,xB!, ~A2!

jA5 f A~u,xB!2E drg01g
AB]Bk, ~A3!

and

j15~r /2!~g01g
1A]Ak2DBjB!. ~A4!

For a spherically symmetric background metric we drop qu
dratically asymmetric terms to obtain

j5]”f2e2br21]”k ~A5!

and

j152
r

4
~ ]”̄ j1]” j̄ !

5
1

4
@2r ]” ]”̄ ~f1f̄ !12e2b]” ]”̄ k#, ~A6!

whereqAjA5j andqAf
A5]”f, in terms of a complex scala

field f(u,xA).
This gives rise to the following gauge freedom in th

metric quantities:

dJ52]” 2f1
e2b

r
]” 2k, ~A7!
-
as
the
g
tor

eve

d

F
s
r-
-
m-
he
f

e

l

a-

r

e

de2b52~e2bk! ,u2e2bj ,r
1

52~e2bk! ,u1
1

4
e2b]” ]”̄ ~f1f̄ !, ~A8!

dU5j ,u2
V

r
j ,r2

e2b

r 2
]”j1, ~A9!

and

dV52~2r j11kV! ,u1Vj ,r
1 2r j1SVr D

,r

. ~A10!

APPENDIX B: LINEAR SOLUTIONS

We present a 3D generalization of a scheme@8# for gen-
erating linearized solutions off a Minkowski background in
terms of spin-weight 0 quantitiesa andZ, related toJ and
U by J52]” 2a andU5]”Z. We may in this approximation
choose a gauge in whichb50 or otherwise use the gauge
freedom to setb5H(u,xA). In either case,W is given by the
radial integration of the linearization of Eq.~23! and the
remaining linearized equations reduce to

~r 4Z,r ! ,r522r 2~22L2!a ,r ~B1!

and

E:52~ra! ,ur2
1

r S r 2a ,r2
1

2
r 2ZD

,r

50, ~B2!

whereL252]” ]”̄ is the angular momentum operator.
Now set

r 2a ,r5~r 2F! ,r ~B3!

and

r 2Z,r52~L222!F. ~B4!

Then

E5rhF12~F1a! ,u2
2

r 2
~r 2F! ,r1Z, ~B5!

whereh is the wave operator

rhF52~rF! ,ur2~rF! ,rr1
1

r
L2F. ~B6!

It follows that

E,r5
1

r 2
~r 3hF! ,r . ~B7!

Suppose now thatF is a complex solution of the wave
equationhF50. Then Eq.~B1! is satisfied as a result of
Eqs. ~B3! and ~B4! and Eq.~B7! implies E,r50. If F is
smooth andO(r 2) at the origin, this impliesE50, so that
the linearized equations are satisfied globally. The condition
thatF5O(r 2) eliminates fields with only monopole and di-
pole dependence so that it does not restrict the generality of
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the spin-weight 2 functionJ obtained. Any global, asymp-
totically flat linearized solution may be generated this wa

Alternatively, given a wave solutionF with possible sin-
gularities inside some world tube, sayr5R, we may gener-
ate an exterior solution, corresponding to radiation produc
by sources within the world tube, by requiringEuR50 or

S ~F1a! ,u2
1

r 2
~r 2F! ,r1

1

2
ZD U

R

50. ~B8!

This is a constraint on the integration constants obtained
integrating Eqs.~B3! and ~B4! which may be satisfied by
takingZuR50 and

a ,uUR5S 1r 2 ~r 2F! ,r2F ,uD U
R

. ~B9!

This determines an exterior solution in a gauge such t
UuR50.

APPENDIX C: LINEAR STABILITY ANALYSIS

Insight into the stability of the full evolution algorithm
may be obtained at the linearized level. Here we sketch
von Neumann stability analysis of the algorithm for the lin
earized Bondi equations, generalizing a previous treatm
given for the axisymmetric case. The analysis is based
freezing the explicit functions ofr and stereographic coordi
natez that appear in the equations, so that it is only va
locally for grid sizes satisfyingDr!r and uDzu!1. How-
ever, as is usually the case, the results are quite indicativ
the stability of the actual global behavior of the code.

SettingG5rJ andG5r 2U and freezing the explicit fac-
tors of r and z at r5R and z50, the linearization of the
Bondi equations~21!, ~22!, and~25! takes the form

R2G ,rr22G52~RG,r2G! ,z ~C1!

and

2G,ur2G,rr52
1

R
G ,r z̄ . ~C2!

Writing z5s11 is2, introducing the Fourier modes
G5ewueikreil 1s1eil 2s2 ~with real k, l 1 , and l 2) and setting
G5AG, these equations imply

A52 i ~12 ikR!~ l 12 i l 2!/@2~21k2R2!# ~C3!

and

2w5 ik2~ l 1
21 l 2

2!~12 ikR!/@~4R!~21k2R2!#, ~C4!

representing damped quasinormal modes.
Consider now the FDE obtained by puttingG on the grid

points r I andG on the staggered pointsr I11/2, while using
the same stereographic gridzJ and time griduN . Let P, Q,
R, andS be the corner points of the null parallelogram alg
rithm, placed so thatP andQ are at levelN11,R andS are
y.

ed

in

hat

the
-
ent
up
-
lid

e of

o-

at levelN, and so that the linePR is centered aboutr I and
QS is centered aboutr I11. Then, using linear interpolation
and centered derivatives and integrals, the null parallelogram
algorithm for the frozen version of the linearized equations
leads to the FDE’s

S RDr D
2

~G I13/222G I11/21G I21/2!2~G I13/21G I21/2!

52dzF RDr ~GI112GI !2
1

2
~GI111GI !G ~C5!

~all at the same time level! and

GI11
N112GI

N112GI11
N 1GI

N1
Du

4Dr

3~2GI11
N1112GI

N112GI21
N112GI12

N 12GI11
N 2GI

N!

52
Du

4R
d z̄ ~G I1 1/2

N11 2G I2 1/2
N11 1G I1 3/2

N 2G I1 1/2
N !,

~C6!

wheredz represents a centered first derivative. Again setting
G5AG and introducing the discretized Fourier modes
G5ewNDueikIDreil 1J1Ds1eil 2J2Ds2, we have dz5L and
d z̄ 52L̄, where L5(1/2)@sin(l2Ds2)/(Ds2)1isin(l1Ds1)/
(Ds1)], and Eqs.~C5! and ~C6! reduce to

AF S RDr D
2

~12cosa!1cosa G5LF i RDrsinS a

2 D2
1

2
cosS a

2 D G
~C7!

and

ewDu52eiaS C̄2AD

C2ADD , ~C8!

wherea5kDr , C5 ieia/2sin(a/2)1(Du/4Dr )(12cosa) and
D5( i L̄Du/4R)sin(a/2). The stability condition that
Re(w)<0 then reduces to Re@C(AD2ĀD̄)#>0. It is easy
to check that this is automatically satisfied.

As a result, local stability analysis places no constraints
on the algorithm. It may seem surprising that no analogue of
a Courant-Friedrichs-Levy~CFL! condition arises in this
analysis. This can be understood in the following vein. The
local structure of the code is implicit, since it involves three
points at the upper time level. The stability of an implicit
algorithm does not necessarily require a CFL condition.
However, the algorithm is globally explicit in the way that
evolution proceeds by an outward radial march from the ori-
gin. It is this feature that necessitates a CFL condition in
order to make the numerical and physical domains of depen-
dence consistent. In practice the code is unstable unless the
domain of dependence determined by the characteristics is
contained in the numerical domain of dependence. It is im-
portant to note that ifU ~or G) are not discretized on a
staggered grid then the above analysis shows the resulting
algorithm to be unconditionally unstable regardless of any
CFL condition.
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