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We investigate the recently proposed hybrid inflation models with two stages of inflation. We show that
guantum fluctuations at the time corresponding to the phase transition between the two inflationary stages can
trigger the formation of a large number of inflating topological defects. In order to study density perturbations
in these models we further develop a method to calculate density perturbations in a system of two scalar fields.
We show that density perturbations in hybrid inflation models of the new type can be very large on the scale
corresponding to the phase transition. The resulting density inhomogeneities lead to a copious production of
black holes. This could be an argument against hybrid inflation models with two stages of inflation. However,
we find a class of models where this problem can be easily avoided. The number of black holes produced in
these models can be made extremely small, but in general it could be sufficiently large to have important
cosmological and astrophysical implications. In particular, for certain values of parameters these black holes
may constitute the dark matter in the Universe. It is also possible to have hybrid models with two stages of
inflation where the black hole production is not suppressed, but where the typical masses of the black holes are
very small. Such models lead to a completely different thermal history of the Universe, where postinflationary
reheating occurs via black hole evaporatif®0556-282(196)00522-X]

PACS numbd(s): 98.80.Cq

I. INTRODUCTION models investigated now belong to the class of chaotic infla-
tion, which provides the most general framework for the de-
A period of “inflation” or accelerated expansion in the velopment of inflationary cosmology.
early Universe is an attractive idea in modern cosmology. The simplest models of chaotic inflation include theories
Acceleration of the scale factor could drive the Universe to-with potentialsV(¢) such asm?¢2/2 or A ¢*/4. Inflation
wards homogeneity, isotropy, and spatial flatness. Howevewccurs in these theories &>Mp. However, one may also
it is the ability of quantum fluctuations in the fields driving consider chaotic inflation neap=0 in models with poten-
inflation to produce a nearly scale-invariant spectrum oftials which could be used for implementation of the new
quantum fluctuations that provides the most powerful test ofnflation scenario, such as m?$2/2+\ ¢*/4 [6]. For brev-
the inflationary paradigm and may allow us to constrain thdty, one may call inflation in such models “new inflation,”
physics involved. Cosmological observations allow us toto distinguish it from inflation at large, but strictly speak-
measure the amplitude and tilt of the primordial density andijng these models also belong to the general class of chaotic
possibly, gravitational wave spectra on scales that wouldnflation models: the original new inflationary universe sce-
have left the horizon during inflation. nario based on the theory of high temperature phase transi-
The first inflationary models such as the old and the newions have never been successfully implemented in realistic
inflationary universe scenario presumed that inflation begatheories.
in the false vacuum state after the high temperature phase The simplest models of chaotic inflation such as the
transitions in the early Univerdd,2]. Later it was proposed modelm?¢?/2 have many advantages, including natural ini-
that all possible initial conditions should be considered with-tial conditions near the Planck density and the existence of
out necessarily assuming initial thermal equilibrium, and seéhe regime of eternal self-reproduction of the UnivejSg
whether some of these conditions may lead to inflation. ThidNormalizing the mass scale by the fluctuations in the micro-
scenario was called chaotic inflatip8]. For many years the wave background observed by the Cosmic Background Ex-
idea of chaotic initial conditions seemed too radical, since iplorer (COBE) [7] givesm~10' GeV and the energy den-
implied a considerable deviation from the idea of the hot bigsity at the end of inflation i8/(¢$)=(10"GeV)*. At this
bang. It was argued that for a successful realization of inflaenergy gravitational waves contribute about 10% of the mi-
tionary theory one should satisfy so-called “thermal con-crowave background fluctuations. The tilt of the density per-
straints” [4]. However, gradually it was understood that theturbation spectrum in this model is—1=—0.03.
assumption of thermal initial conditions is neither natural nor However, inflation occurs in such models only for
helpful for inflationary theory[5]. As a result, most of the ¢=<Mp. It is quite possible to have inflation @>Mp in
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models with polynomial potentials, but in string theory andminimum may take a lot of time even if its mass is a few
supergravity one often encounters potentials which are eximes greater than the Hubble constant at the end of inflation.
tremely steep ath>Mp. It is not an unsolvable problem, This may be attractive in the context of supersymmetric
see, e.g9.[8], but it would be nice to have a simple model theories but raises new issues about the generation of density
where inflation may occur ap<<Mp as well. It is possible to  perturbations in the two-field model. We will consider these
achieve this, for instance, in versions of “new inflation” issues in this paper and spell out the dangers of ending hy-
with V($)~—m?$?/2+\ ¢*/4. However, in the simplest brid inflation by a slow phase transition.
models of such type one has an unacceptably large negative The main problem associated with this scenario can be
tilt of the spectrum, unless the amplitude of spontaneougxplained in the following way. The effective potential of the
symmetry breaking is much greater thishy, [9]. Thus we  field  used in[18] is symmetric with respect to the change
return to the problem of having successful inflation aty— — . As a result, at the moment of the phase transition
d<Mp. the fieldy can roll with equal probability towards its positive
There has recently been a lot of interest in the hybridand negative values. This leads to the usual domain wall
inflation scenarid10-19. Initial conditions for inflation in problem. To avoid this problem in the original hybrid infla-
this scenario are not determined by thermal effects, and thugon model[10] it was suggested to change the topology of
hybrid inflation also belongs to the general class of chaotighe vacuum manifold and couple the figldto gauge fields.
inflation models. However, hybrid inflation may occur at val- In such a case instead of domain walls one may obtain either
ues of the scalar fields much smaller thdp . The tilt of the  strings or monopoles, dfas in the electroweak thedryo
spectrum in hybrid inflation typically is very small and posi- stable topological defects at all. Monopoles should be
tive, giving rise to so-called “blue spectral16,17. The  avoided, but strings do not lead to any cosmological prob-
contribution of gravitational waves to the microwave back-lems in theories with a relatively small scale of symmetry
ground anisotropies is usually negligible. The reheating tembreaking, as studied in RgfL0]. Alternatively, one may con-
perature in this scenario is typically large enough to ensurgider versions of the hybrid inflation scenario considered in
the possibility of electroweak baryogenesis, but smallRef.[13], where no topological defects are produced.
enough to avoid the problem of primordial gravitinos. In the model proposed in Rf18] topological defects do
It is still a challenge to obtain a natural implementation ofappear. In the simplest realization of this model one gets
this scenario in the context of supergravity and string theorydomain walls, which should be avoided at all costs. If one
but in globally supersymmetric theories this scenario appearnsodifies the model to produce strings instead, one also has a
in a very natural way. A very interesting version of the hy- problem, since strings corresponding to the scale of sponta-
brid inflation scenario recently proposed by Randall, Sol-neous symmetry breakingMp by themselves produce den-
jadic, and Guth was even called “supernaturdlLg]. sity perturbationssp/p~1 on all scales. One could expect
A distinctive feature of hybrid inflation is that it describes that monopoles would not lead to any trouble since the dis-
the evolution of two scalar fieldgy and . In the beginning  tance between them grows exponentially during the second
one of these fieldgfield ¢) moves very slowly, and the stage of inflation. However, because of inflation, which oc-
second field may not move at dthough this second condi- curs in this model during the long stage of rolling of the field
tion is not necessaifi3,19). The energy density supporting ¢ to its minimum, all topological defects in this model ap-
inflation is dominated by the false vacuum energy of the fieldbear to be inflating, as if20]. Independently of the nature of
. At the moment when the slowly moving fielfl reaches these defectédomain walls, strings, monopoles, either topo-
some critical valuep,, it triggers a rapid motion of the field logically stable or ngttheir exponential expansion leads to
¥, inducing a transition to a “waterfall” regime. Then the density perturbationssp/p~1 on the exponentially large
energy density of the fielgh rapidly decreases, and inflation scale corresponding to the moment of the phase transition.
ends. This may result in a copious black hole formation. However,
Care is needed in evaluating the spectrum of density petinflating topological defects in our model are rather specific,
turbations produced by inflation in the presence of more thaibecause they appear in the theory wijith,|>H. For this
one field. Many of the usual simplifying assumptions breakreason the possibility of black hole formation by such defects
down. Perturbations may no longer be purely adiabatic angequires separate investigation. This problem is extremely
hence curvature perturbations depend not only on the fielthteresting since here the issue of inflating topological de-
fluctuations at horizon crossing but also upon their subsefects appears in the context of observational cosmology.
guent evolution up to the end of inflation, or even beyond. In  Independently of this issue, the appearance of inflating
the first versions of hybrid inflation the mass of the figld topological defects clearly demonstrates that the existence of
whose false vacuum energy density drives inflation washe second stage of inflation in the hybrid scenario may lead
much larger than that of the slowly rolling field and so the to large density perturbations. As pointed out in Ré8],
single-field approximation was quite sufficient. Also, infla- the phase transition ab= ¢, leads to the appearance of a
tion ended abruptly when the fielgp reached its critical characteristic spike in the spectrum of density perturbations.
value ¢, and the fieldy began its motion. The existence of such a spike was first found in a similar
This regime is certainly not the most general. Recentlymodel by Kofman and Pogosya@1l]. In the “supernatural”
attention has been drawn to the possibility that both fieldsybrid inflation model it is difficult to calculate the ampli-
¢ and ¢ could have masses close to the supersymmetrytude of the peak of the spectrum; in RgL8] it was done
(SUSY9 breaking scalem=1 TeV, while the symmetry- slightly away from the point of the phase transition, where
breaking scale in theé direction may be as large &, [18].  the amplitude of the density perturbations has already dimin-
In this case the process of rolling of the figldtowards its  ished. In order to perform the calculation, the evolution of
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the fluctuating field in[18] was divided into several parts, hole abundance. It raises a very interesting possibifge

and different approximations were used at every new stemlso[25]) that the black holes produced in the hybrid infla-
However, the results of calculations of the amplitude of dention scenario may serve as the dark matter candidates. In
sity perturbations near the narrow peak can be very sensitivether words, dark matter may indeed be black.

to the choice of the approximation, especially in a situation As we already mentioned, there exist some versions of the
where one may expect density perturbations to be |argg]ybrid inflation scenario where topological defects do not

Therefore we developed a more direct method of calculationgPPear at all. In this paper we will suggest another version of
of density perturbations in this model. such a scenario, which we will call “natural” hybrid infla-

One of the most interesting aspects of the model of Reflion. This scenario is a hybrid of the simplest version of
“natural inflation” [26,27], and the model of Ref.18]. It

[18] is the existence of a regime in which quantum diffusion ) . e
hares some attractive features of “natural inflation” such as

of the coarse-grained background fields dominates over i - . X
e natural origin of small parameters appearing in the

classical evolution and determines prominent features WithiIIlh On the other hand. unlike the oridinal Linfl
our present cosmological horizon. Previously such phenom'€0"y- On the other hand, unlike the original “natural infla-

ena were confined to scales much beyond our present hortii-on’” our scengrio does not require the radius of the “Mexj—
zon and were usually ignored. In RELS], the machinery of ~ ¢@" hat” potential to be greater than the Planck scale, which

stochastic inflation, see RdR22], was used to estimate the aUS€S pr_Ob'emS when one attempts to implemen_t “natural
flation” in string theory[26]. We will show that in the

behavior of the fields close to the phase transition, wherd! dels of | hvbrid inflati i id th
large quantum fluctuations make the stochastic formalisnflnobiES 0 fr;aturad yorid in augn one can easily avoid the
necessary. In this paper we will use this formalism to findpro_l_hem IO arfgeh ensity pertur ?“I?ns' Ins I i
whether or not most of inflationary trajectories come through,_ . f edp an .g the pgpelr IS ﬁsb %OV¥|S n ec.éD we dWI
the region where large density perturbations are generateflli€fly describe the simplest hybrid inflation mod&0] an
We believe that the method which we developed may be offS re_latlon to th_e.model of Re[;LS]. We W'”. find cIassu;aI
interest in its own right and can be applied to a more genergifutions describing the evolution of the fielgsand / in
class of models with many scalar fields. this model. Mos_t Qf our investigation will be fa_lrly general,
Our final results agree with the conclusion based on th@ut since t_he original hyb”.d inflation modE10] is already
topological defect analysis: density perturbations created ¢!l investigated 12, we will concentrate on the model of
the moment of the phase transition are very large. In particuRef' [18] where an additional stage Of. inflation occurs afte_r
lar, in the model of Ref,18] with the parameters given there the phase transition. In Sec. Il we will evaluate the ampli-

corresponding to the second stage of inflation lasting fo'tude of quantum fluctuati_ons pf each sca}Iar field. In Sec. IV
20-30 Hubble timesH !, one has density perturbations W& analyze the issue of inflating topological defects and the

Splp~1. In such a situation one can expect copious produCgissociate_d density perturbations. In Sec. V we study _density
tion of huge black holes, which should lead to Clisastrousoerturbauons both before and after the phase transition and
cosmological consequencles then discuss the important issue of quantum diffusion at the

However, this is not an unsolvable problem. Forasuitabléjh.ase transition. In Sec. VI we analyze the probability of

choice of parameters the second stage of inflation can b%rlmordial black hole formation due to large density pertur-

completely eliminated, and in this respect the model can b ation_s. We will also disguss the possibility of reheating of
made very similar to the original hybrid inflation model of the universe by evaporation of small k‘)‘lack ho!’es. In Sec. VI
Ref.[10], where the problem of black holes does not appea?’.ve propose and prlef!y describe the “natural hyb”d. infla-
at all. A very interesting possibility appears if the secondo" model. We will discuss our results and summarize our
stage of inflation does exist, but is very short, lasting Onlyconclusmns in Sec. VIIl.
two or three Hubble timell ~1. Then the black holes formed
from the large density perturbations may be small enough to Il. CLASSICAL FIELD DYNAMICS
evaporate qwckly._ W'th the.para.meters of the model of Ref. The simplest realization of chaotic hybrid inflation is pro-
[18] the evaporation time is still very large even for the vided by the potentia10]
smallest black holes. However, if one studies hybrid inflation
with a larger Hubble constant, the black holes produced dur- N
ing inflation can be made very small, so that they evaporate V(g, )= ( M2 — — 2
before nucleosynthesis. Even if the probability of formation 2
of such black holes is suppressed, the fraction of matter in ) i ) ) )
such micro black holes at the moment of their evaporatiorFor comparison, we Wlll_wrlte h_ere the effective potential of
may be quite substantial, since the fraction of energy in ra®"€ of the models considered in REE8]:
diation rapidly decreases in an expanding universe. This may
lead to crucial modifications of the thermal history of the V(e ¢)=M4co§(i
Universe and may rejuvenate the possibility that the baryon ' V2f
asymmetry of the Universe was produced in the process of
black hole evaporatiof23,24. In the regiony<f, where inflation occurs in the modé?),
Finally, one may consider the models where the secon#he potentials(1) and (2) practically coincide, with the re-
stage of inflation lasts for about ten Hubble times. As we willdefinition of parameterst?>—M?2/2\\ and A\?>—27y. (Note
see, in this case the probability of the black hole formationthat the fields denoteg and ¢ in Ref. [18] correspond to
may be sufficiently small, so that the amount of black holesour fields ¢ and ¢. In this respect we have followed the
does not contradict the cosmological bounds on the blackotation of Ref.[12].) In what follows we will study the

2

1 1
+ §m2¢2+ §7¢2¢2- 1

+ %m2¢2+ %x%zwz. @)
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model (1), but we will be most interested in values of the Sitter expansion withd =H,= \/87/3M2/M5. It is useful to

parameters close to those of REIS]. then write the bare masses of the two fie{land ¢ relative
The equations of motion for the homogeneous fields areo the Hubble scale as
then
) . B m2 B M2
b+ 3Hp=— 2+ y02) g, € =iz and p=2\} 7. ®
P+ 3H Y= (2 NM2= y 2=\ y?) y, (4) In the case of a single scalar field evolving during in-
. . _ flation, one usually resorts to the slow-ra#?<V(c), and
subject to the Friedmann constraint quasimasslessy”<H?, approximations to make analytic

progress. This allows one to reduce the equations of motion
for the scalar field to a first-order equation. However in our
case the mass of thg field is less tharH only for a short
interval, ¢.v1—1/8<$p<¢p.\1+1/B. Even then, we wish
Although we can always integrate the equations of motiorto consider values of not much below unity so the quasi-
numerically for arbitrary initial conditions, the classical mo- massless approximation may not be very gooddagither.

tion of the homogeneous field is not necessarily a good rep- Fortunately the fact that the potential energy, and hence
resentation of the coarse-grained field on superhorizothe Hubble rate, are so nearly constéutd this really is a
scales. If the classical motion is sufficiently slow it can be-very good approximation for the parameters of Réf])
come dominated by quantum diffusion caused by wavellows us to integrate the second-order equations in two re-
modes crossing outside the Hubble radius. gimes.

In particular we wish to consider the case whis much
larger thany at early times so thay has a large positive A. Region I: Small ¢
mass=y¢? and rolls rapidly toyy=0. For values of¢ _ o . .
above a critical valueb., =0 is a stable minimum. Thus 2Th2e f|rs£ approximation  regime  will be for
& remains zero whilb slowly rolls (for m<H2) down to YIHG<alvy. ThIS Ieave_s the mass of thg field constant
the critical value¢= ¢, where they field becomes mass- and the equation of motion becomes
less. For smaller valueg;=0 is an unstable local maximum " , _
and quantum diffusion initiates a second-order phase transi- ¢3¢ +ad=0, 0
tion from the false vacuum to the true vacuum state.

In the simplest version of hybrid inflation, where the cou-
plings A and y are of order unity, this is essentially all the
dynamical evolution that matters. The bare mass of ¢the
field, —mﬁ,zz\/x_l\(lz, must be much Iarger_thaLri_2 [12] and H(N)= b exp(—1 . N)+b_exp(—r_N),
the phase transition occurs rapidly and inflation ends. The
perturbation constraints on large scales are then readily de-
rived from the usual single-field results where the rolajof r.=
at early times can be neglected. -

But what if the bare mass of thg field is not very much ) ) )
larger thanH? In particular, what if this field has the type of The asymptotic solution is ¢=¢.exp(-rN) where
potential we might expect for a moduli field with a minimum F=r+>0 which approaches the slow-roll solution
at y~Mp and a negative mass squaredm; of order ¢= exp(-aN3) for a<l. .

(1 TeV)? aboutyy=0? The false vacuum energy density at FOr ¢>¢c, the ¢ field remains trapped in the stable
#=0 is then M4~ szﬁ,:(lO” GeV)* and the Hubble Minimum atyy=0 and we have e_szectlvely single-field |_nfla-
constantH=m,~1 TeV, as discussed in Refi8]. It lies tion and the above solution gives the exact evolution of

outside the range of parameters originally considered for hy¢(N)' i )
brid inflation since it corresponds to an exceedingly flat po-. B€lOW ¢~ ¢ we can no longer take thg field to remain
tential for ¢ with effective coupling constant [Xed aty=0.They field equation of motion is
N~m3/M*~10"%. The rolidown of they field need no 5
longer be fast and we must consider the complicated evolu- W'+ 3y :(,3— Yiz) . 9)
tion of both the fieldsp and ¢ during this stage. Ho

When =0 the potential simply reduces to
V(¢) =M*+m2¢?/2. For the range of parameters and field We see that the field becomes masslesgzt (8/y)H3.
values that we are interested in the constant term alwayRewriting this as an equation f@r as a function of¢ gives
dominates and the Hubble expansion can be taken to be de

8

2 1'2 1'2
H :M V(¢,llf)+§¢ 597 5

where a prime denotes a derivative with respect to
N=Hgy(t—te), the number ofe-folds from the end of
inflation2 This can be readily integrated to give

+ Z—a’. (8

N W

2We also requirey?/H3<B/\ but in practice this is a much
Yf instead ¢ rolls rapidly to =0 it remains there and the prob- weaker condition for the parameters[af].
lem reduces to the usual case where ¢hield rolls directly to the 3Note that we have defined so that it increases with time and so
global minimum atv=0. we haveN<0 for t<t,.
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Zdzzp dy 2,21 2 2 e-folds to the end of inflation. As we shall see, if the initial
¢ W*‘(l—ZQ)(l’@ﬂK $*+a°=v)¢=0, (10 yalue of y is only of orderHo~1 TeV there must be a
further (326) e-folds before inflation ends.
where The growing value ofy increases the effective mass of

3 B 1 19
q=§, K=T¢TC, V=F Z-‘rﬁ

(11

the ¢ field through the interaction term and it also becomes
larger thanH. However, the¢ field is much closer to the
minimum of its potential than the field (¢./Mp~10"12)

and ¢ soon starts to execute damped oscillations about

The exact solution is a linear combination of Bessel func-¢=0, as noted in Ref.18].

tions,

()= —c1Y (k) +Cal (k)] 12

For ¢<¢. the growing mode is given by the small angle

approximation

P(P)=—c19%Y,(kp)~C1Ap~ "7 13

:ClAqs;(V—Q)e(V—Q)"N' (14

where the numerical coefficiedit=(2/x)"T'(v)/ .

B. Regionll: Small ¢

As ¢ decreases, the effective potential for tiefield
becomes dominated by its bafeachyonid mass yBHj.
Thus for <, and still assumings?/H3<B/\, we have

Y3y’ —ByY=0, (15)
which has the general solution
#p(N)= ¢ exps;N)+_exp(s_N),
3 N /9
Si——z_ Z+B (16)

Matching to the asymptotic solution in region |, Eq4),
we see that only the growing modes=s, >0) exists in

region Il. Recalling thalN is measured from the end of in-

flation, it is simply given by

$(N)=geexp(sN), 17

for all trajectories. The total amount of inflation after a given

point is determined solely by the ratif./, as noted in Ref.

[18]. Even though the effective mass #fhas become large

and negative, inflation will only end whes?=V, which
implies’

2
p

242 P
V= Ams(s+1)° (18
From a given value), the evolution will take
Ny~ Sin| 2P 19
(g)=<In s (19

This time we have a parametric equation for the inflaton
field in terms of the triggering field, for which the general
solution is

()= ¢P[Crd(p¥) +CoY L(p¥)], (20

3 1 1 f9
P="2s P 5 g M=sNz @ (21

Matching to the asymptotic solution in E(L3), we find
that only the], solution is selected. We can see this from the
small py expansion of Eq(20) with ¢c,=0,

d(p)=cip PI, (pih)=c,By P ¥,

where B=(p/2)*T(u+1) and p+u=—(v—q) !
=—r/s. Comparing this with the limiting behavior of Eq.
(13) we find a relation between the coefficients

where

(22)

c;B=(c;A)". (23
Therefore, as long as the solutions pass through the overlap-
ping region, our solutions of region | evolve smoothly into
region Il

[ll. QUANTUM FIELD FLUCTUATIONS

In this section we discuss the evolution of quantum fluc-
tuations of the fields. In the slow-roll approximation, the
amplitude of quantum fluctuations of a massless field at ho-
rizon crossing K=aH) is approximatelyH/27r. However, in
our case the masses of the fields are not necessarily much
smaller than the Hubble scale, and corrections to the slow-
roll result could be large.

Since the potentiaV(¢,¥) =V, to a very good approxi-
mation, we can neglect the gravitational backreaction of the
fields, and the equations of motion for linear perturbations in
¢ and ¢ can be written as

2

. . k
S+ 3HSY+ ;—3H2+ y¢2>5¢
=—2yppSp—3\yP5y, (24
. : k?
Sp+3HEp+ ;+aH2>5¢
=—yyPSp—2ypdpsy. (25

“Note that for3>1 this also ensures that de Sitter remains a goodNote that in region |, whegy= 0, the terms on the right-hand

approximation until very near the end of inflation.

sides are zero and the evolution®f and §¢ decouple. We
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can write these equations, in terms of the canonically quan- e e

tized fieldsu=ady andv=ad¢, as 8
2+pB(1- n2f>) 6
'+ | k* = ————|u=0, (26)
k 7 k Ck ‘
” 2 T« 2
v+ | ko= 7 v=0, (27 A=
0 5 10 15 20
where primes denote derivatives with respect to conformal log(k/kc)
time, »=—1/aH, and we have chosem=-—1 when
¢= b FIG. 1. The amplitude of quantum fluctuations of the symmetry-

Since the mass of th¢ field is constant, we can write an |,

. . eaking fielddy in units of H/27r, as a function of scalk, evalu-
exact expression for the quantum fluctuations,

ated when this scale left the horizon. Hége corresponds to the
scale that left the horizon during the phase transition, when

V| — .. The f d ic values of th
_NT d-nymi2 Y21 ¢= ¢, . The figure corresponds to generic values of the parameters
vl(7) = 2\/EeI DT k) T Hae(—kn),  (28) («=0.3,8=8). The asymptotic value ds—x is C,=8.91. The
logarithm is to base 10.
wherer =r, is defined in Eq(8). This has the correct flat-
space limit as- kn— o, v,—€*7/\2k, while as¢—0, and U )= C(—s) Q1+ 9)TI2 _ =51 (34)
—kn—0, we find k 2k :
C(r) H(1r)mi2 (1 wheres=s, is defined in Eq(16). However, the amplitude
v(n)= Ee (—kp)", (29 of the guantum fluctuations decay exponentially for
k?<V(#%). Thus modes withk?<V ., will be suppressed.
where[28] The amplitude of the growing mode of the field perturbations
at horizon crossing can then be written as
c _Z_FF(S/Z—r) 30 H
(r)= I'32) - (30 St =Cug s (39

This results in a scale-invariant spectrum of the growingyhere the coefficient, is scale-dependent, as shown in Fig.
mode perturbations at horizon crossing with amplitude 1 for the case8=S8.
We can understand qualitatively the behavior of this
5 =C(r)i 31) growing amplitude of quantum fluctuations. For modes
* 27’ k=1 that leave the horizon neaf= ¢, the ¢ field is ef-
fectively massless and the amplitude of quantum fluctuations
Note that the coefficien€(r) gives a constant correction has the usual valuél/27, with coefficient C,=1. When
(independent of scaleo the usual amplitude of curvature ¢=<¢.(1—1/8)Y? corresponding to scalek>1+1/2r 3,
perturbations [obtained in the slow-roll limit where the magnitude of théimaginary mass of they field be-
C(0)=1]. comes larger thai. Then the amplitude of quantum fluc-
On the other hand, the effective massyothanges with  tuations even before horizon crossing, whdla=m,,, is
time and we cannot write down an exact solution. Howeversy,~m, /27, which is already greater than/27. As ¢ de-
we can understand the qualitative behavior by consideringreases and the corresponding scale increases, the effective
the effective Schrdinger equation fou,, see Eq(26), with  mass of they field approaches its bare value while the am-
the time-dependent  potential V(5)=—(2+8)/%*> plitude of quantum fluctuations grows. At very largewe
+ BI7?A 1. This has a maximum valué,., at 7maxgiven  recover the  constant-mass scale-invariant  value,
by C..=C(—5s), see Eq(30). For =8, this asymptotic value
is C,=8.91>1, see Fig. 1. On the other hand, for

(B+2)r[B(1—r)]¥ k?<Vpmax, the mass(squaredl of the ¢ field is large and
max— 1y B+2 ' (32 positive at horizon crossing and the amplitude of these quan-
tum fluctuations is suppressed.
B+ 2 1/2r
Tma= | B 1) (33 IV. INFLATING TOPOLOGICAL DEFECTS

During inflation we must also consider the effect of short
On small scalesk?>V,,,, the fieldu, oscillates with al- wavelength fluctuations that cross outside the horizon and
most constant amplitude untit =<8+ 2/k, when it starts  perturb the coarse-grained background field on superhorizon
to diverge. Ask—o we recover the constant-mass asymp-scales. One can get a pretty good idea of the amplitude of
totic (»—0) solution perturbations on a scale corresponding to the time of the
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phase transition by investigating the inflating topological de-Therefore inflation in the vicinity of topological defects con-
fects produced at that time. For this purpose one shoultinues for a long time, until eventually the gradient energy
study the evolution of the fluctuation®) at the moment of becomes greater than(0).
the phase transition. As a result, after the fiel@38) approaches the minimum
Before the phase transition the fiejdis very heavy and Of the effective potential, on the exponentially large scale
its quantum fluctuations can be neglected. As we have seeh,~H e we will have an extremely inhomogeneous mat-
its fluctuations are generated when the mass ofytHield  ter distribution. Roughly speaking, in half of the volume of
becomes smaller thaH, i.e., close to the phase transition, the Universe on that scale, the field will be near the mini-
The exact duration of this stage is strongly model dependenflUM ©f its effective potential, whereas in the other half the
but with the parameters used in REZ8] the time before the scalar field will be close to the top of the effective potential

phase transition when the fluctuation can grow is only abou ith ¢:Q, and mflathn will be St.'" going on. This shows
H~1. As aresult, one magapproximately visualize the sca- hat we will have density perturbatio@s/p~ 1 on exponen-

] s . tially lar | rr ndin he time of the ph
lar field ¢ at the moment of the phase transition as a smuta y large scales corresponding to the time of the phase

transition.
. . 71 .
soidal wave with wavelengthH and  amplitude This effect is very general. It is related to the inflating

Sy~HI2, topological defects discovered in R¢R0]. The field may
roll in any direction from =0, but stable regions with
H =0 are constantly being created, corresponding to inflating
Oe(X)= Esm HXx. (360 domain walls, strings, or monopoles. However, in R&0]

the curvature of the effective potential was much smaller
thanH?2. In our case the second stage of inflation occurs even
if m2¢>H2, because the initial value of the field
So(x)=H/\27 is much smaller than the amplitude of
pontaneous symmetry breaking, so it takes a lot of time for

This representation is not exact since many differen ) . . o
waves give a contribution t@y(x), but their wavelengths he fleld_z/; to roll down. This specific fe_ature implies that
here will be no eternal self-reproduction and no fractal

are comparable and, for the models we consider, the amplLtructure of tonological defects in our model
tude of 5y in Eq. (36) is indeed of the order oH/+/27. polog '

During inflation the wavelength of these perturbations grows Note that a similar effect may occur even in the models
exponentially.\ ~H~a(t)/a(t.), wherea(t,) is the scale where topological defects are unstable if the decay rate of

factor at the moment of the phase transition, but the amp”ynstable defects is sufficiently smaR9]. A possible ex-
tude of the field6¢ also grows exponentially. This is the ample may be provided by the metastable electroweak cos-

main reason why spontaneous symmetry breaking occurs dngic strings or other “embedded defect§30]. Such defects
spite the fact that formally the fielg, averaged over the re unstable and usually do not cause any cosmological prob-

whole universe, always remains equal to zero. During eac ems. However, they also have=0 in their cores. If they
interval of timeAt, when the effective potential can be rep- flate [29] and decay only after the end of inflation, they

resented a¥/o— m2(t) $2/2 with m2(t)<HZ, the amplitude lead to large density perturbations in the same way as the

i . topologically stable inflating defects.
of the field 5y in Eq. (36) grows as One may expect that large density inhomogeneities

, should lead to a copious black hole formation. The problem
H expm At 37) of black hole formation in a hot universe is not trivial be-
V2 3H cause pressure gradients do not allow black holes to be
formed unless density perturbations on the horizon scale are
whereas fom?(t)>H?2 one has of the order of 1 or even greatg81,32,17,18,33,34But this
is precisely the case for inflating topological defects. The
centers of these defects remain forever at large density near
) (38)  the top of the effective potential, whereas far away from the
cores the energy density gradually drops down to zero in an
expanding universe. This corresponds to the delay of end of
In both cases spontaneous symmetry breaking during inflanflation SN>1, and to density perturbationsp/p>1. If
tion preserves the simple sinusoidal shape of the perturbahese topological defects were isolated objects immersed in
tion, until the field rolls down to its minimum and a more empty Minkowski space, one can show that their thickness is
complicated nonlinear regime begins. But this occurs alreadyhuch smaller than their Schwarzschild rad"_[QO] There-
at the very end of inflation. fore one would come to the conclusion that there is no sup-
Note that inflation near the cores of the topological de-pression for the probability of black hole formation in this
fects continues for a while even after the figldreaches its  scenario. However, it turns out that this is not what happens.
minimum at¢=f~Mp. Indeed, at that time the gradient  To investigate this issue note that the sinusoidal wave
energy density of the field distribution(38) is  (36) is a particular example of a perturbatidy which is
~H?MZexp(-2N,), where the factor exp{2N,) appears be- symmetric with respect tay— — . The specific shape of
cause of the stretching of the wave during inflation. For largehese perturbations indicates that one cannot study them by
N, it is much smaller than the potential energy density of theconsidering Gaussian distributions centered away from
field ¢, given byV(0)=3H2M32/8w. As for the kinetic en- =0. However, one could apply the theory of density per-
ergy density of the fieldy it is always small neary/=0. turbations to those parts of the defects away frpm0. The

(Note that the amplitude here /27, whereas the stan-
dard expressiorH/27 holds for the averaged amplitude
(6412 i.e., for the dispersion of the field.

a(t)Hx

SN at+ A

Othe~

a(t)Hx
a(t+At)

H
S~ ——exp(mAt)sin
e n p(mAt)
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main ingredient is the calculation of the time delay for roll- that on the horizon will be extremely small, being suppressed
ing of the field # down to the minimum of its effective by exp(-3m,/H). Therefore the total mass excess on the
potential. For the centers of topological defects this time dehorizon scale is too small to cause the black hole formation.
lay is infinite, which corresponds to density perturbationsThe same behavior of the density distribution is repeated at
Splp>1. Thus, one may expect important black hole forma-smaller scales as well. This suggests that inflating topologi-
tion near the centers of inflating topological defects. How-cal defects in the theories witn,>H do not necessarily
ever, as we will see, the mere fact that topological defectéead to dangerous black hole formation.
correspond to large perturbations does not automatically im- The validity of this argument depends on many assump-
ply that they form black holes, because the distribution oftions. For example, if the Universe is matter dominated then
density near the cores of these defects is extremely norblack holes are formed even if the density perturbations are
Gaussian. Note that topological defects correspond to place®t very large. Therefore topological defects may serve as
where the distribution of the fielg near their centers grows seeds for small black holes which are formed at soon after
linearly, (x)~H?x, see Eq(36). Therefore the density dis- inflation, before the Universe reheats and becomes radiation
tribution near the topological defects looks like a narrowdominated. This may lead to very interesting consequences,
peak. Meanwhile, the distribution of the scalar field pro-to be discussed in Sec. VI. Meanwhile, black holes which are
duced by the usual density perturbationsyat 0 has rela- formed in the models with a prolonged second stage of in-
tively flat regions where the spatial derivative of the field flation are very large, and they are formed very late, when
¢ vanishes. These places have greater size, for the sartige Universe is supposed to be radiation dominated. Our in-
amplitude of density contrast, and thus can be more easilyestigation indicates that large black holes do not come from
converted into black holes. topological defects. However, they may be produced by the
To estimate the density contragp/p in the vicinity  usual density perturbations, which will be studied in the next
of the topological defects we will use the fact that duringsection.
the last stages of inflation the fielblin our model is already We should emphasize that our conclusions concerning
close to the minimum of the effective potential. Thus, letblack hole formation from inflating topological defects
us consider the field38) at the moment when it reaches should be considered only as very preliminary. Indeed, here
the minimum of its effective potential ag=f. This hap- we deal with perturbations of density which are extremely
pens approximately at a time. given by equation large, 5p/p>1, and our simple analysis using methods of
(H/\J27)eMte=f. At this moment the distribution of the perturbation theory may be inapplicable. It is sufficient to
field ¢, as a function of the distance=xe ! from the remember that the interior of topological defects in our
center of the topological defect, can be written in a verymodel continues to inflate for a long time after inflation
crude approximation as ceased to exist in the outer space. Thus we have here a com-
plicated wormhole-type geometry which requires a very
H careful analysis, similar to the numerical investigation per-
Othe~ —=—exXpmyte)Sin(Hr). (39  formed in Ref[35]. It is the first ime when we need to know
V2m a detailed structure of the Universe filled by a gas of infla-
tionary topological defects on the scale smaller than the size
of the observable part of the Universe. We need to return to
investigation of this fascinating question in the future. In the
- meantime we can only say that it would be premature to
Oue(r)~ fHrexpmyb), 40 conclude that the model of Refl18] contradicts observa-

which remains a good approximation undily.(r)~f. The tional data solely on the basis of our investigation of density

time delay until the field at a distancereached is perturbations produced by inflating topological defects.
For this reason in the next section we will concentrate on

Let us rewrite its evolution in terms &f counting time from
te. For smallr,

H the theory of usualnon-topological density perturbations in
ON(r)=Hoat(r)=— m—me- (41)  models with two scalar fields and apply it to our model. The
v results that we have obtained from the investigation of topo-

This means that the density of the topological defect willlogical defects suggest that, in the model under consider-

exceed the average density By/p~ SN(r)~1 only in the  ation, usual density perturbations may also happen to be very

core of the topological defect, at a distance large. In what follows we will show that this is indeed the
case.

m
r~H1exr< — ﬁ) (42)
V. DENSITY PERTURBATIONS

For the usual inflating topological defects considered in Ref.
[20] one hasm,/H<1, and therefore the deviation of den-
sity from the average density becomes large for the whol
region fromr~H ™! to r=0. That is why one may expect

such topological defects to look like huge black holes from

the outside. Meanwhile in the model of R¢18] one has d?=—(1+2A)dt2+ 2B dx dt

m,/H>1. As a result, the part of the volume inside the ’ o

horizon where the energy density deviates considerably from +a(t)[(1-2R) & + 2E ; ]dx'dX, (43

The most general scalar metric perturbations about a spa-
tially flat Friedmann-Robertson-Walker metric with scale
®actora(t), may be written as
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where A, B, R, andE are scalar functions which can be be realized in practice. Because of the quantum fluctuations,
decomposed into Fourier modes with different comovingthe field 4 does not stay exactly at the poiit=0 at the
wave numbersk whose evolution decouples in the linear moment of the phase transition and we must investigate the
approximation. Not all the perturbations represent physicatlispersion of the probability distribution to see what the
degrees of freedom, so to remove gauge artifacts we cdikely amplitude of density perturbations will be.
define gauge-invariant quantitie36,37
. A. Single-field perturbations
P=A+(B-a’E), (44) . . . .
Firstly we consider the simplest regime, before the phase
— : transition, where single-field results apply. At large values of
V=R—-H(B—a%E). 4 VT e .
R-H(B-a'F) (45) ¢> ¢ the ¢ field has a large positive mass and remains
In fact we have® =¥ for all linear perturbations due to fixed atyy=0. The amplitude of/ fluctuations crossing out-
scalar field fluctuations. side the horizon is negligible. Thus we need only consider
Quantum fluctuations of the scalar fields are responsibl@diabatic fluctuations¢, along the trajectory, given by Eq.

density hypersurfacesRs=H dplp, where the density per-

turbation dp is evaluated on a spatially flat hypersurface. In SN= H,ﬁd) = CHH ) (47)
terms of the gauge-invariant potenti®l this can be written ¢ |, 27T ¢y
as[38,39
) ) The power spectrum of curvature perturbations on comoving
H - (D = i i
Ry=®-— H—(¢+H71<D)+ . (46) hypersurfacesRs = 6N, is then given by

2
Cr)” v 2r(N=N,)

2 - _ 7
RS(N)= 472 Br2 e

The curvature perturbation at the end of inflation can be (48)

equated with the change in the tinf@ number ofe-folds)

it takes to end inflation. In the case of adiabatic perturbawhereN, is the number of-folds from the phase transition
tions, e.g., in single-field inflation driven by the field (¢=.) to the end of inflationwhich we have seen could
the amplitude of the curvature perturbation remains fixed otbe of order 20-30 Assuming these perturbations are re-
superhorizon scales, so it can be calculatedRas=6N  sponsible for the observed temperature anisotropies in the
=[H &yl ], at horizon crossing wher&/ can be estimated microwave background, they give a constraint on the param-
asH/2w [40,37). The origin of this curvature perturbation is eters of the model. The smdbf order 1 TeVf Hubble con-
that the jump of the field in the direction opposite to its stant during inflation implies that the contribution of gravi-
motion leads to a time delay in the end of inflation which cantational waves to the microwave background anisotropies

be estimated byt= 8y/4. This equation immediately sug- will be negligible[11,12. The low multipoles pf the angular
gests that in the hybrid inflation model where the second?OWer spectrum measured by COBE] give a value
stage of inflation after the phase transition beging/atd, Rs=3X10"° on the scale of our current horizon, corre-
density perturbations on the length scale corresponding téPonding to

the moment of the phase transition should be extremely

large, since at that tim¢=0. This is the standard situation Nt ine= A6+ EI n Eln( T ) (49)

in all models where inflation occurs near the local maximum cme 3 37110" GeV/

of the effective potential. It does not lead to any troubles if

the corresponding scale is many orders of magnitude greatéior parameterse and B or order one, this requires

than the present size of the observable part of the Universg<=10"8. Note that for these parameters we will have

[22]. But in the model of Ref[18] this scale was supposed to ¢.=10*TeV>H,.

be rather small,.<10 Mpc. One certainly does not wantto  This is one of the few cases in inflationary cosmology

have the observable part of the Universe densely populatedthere we have an almost exact expression for the amplitude

by large black holes. of curvature perturbationgt3]. The only approximation we
However, these considerations are too naive. First of allhave made is to assume that the energy density remains con-

in our case we have two fields moving,and , so even if  stant, p?/2+m?¢2/2<M*, so that we can neglect the back-

the field does not move at all, the whole field configuration reaction on the metric. Using E¢47), we see that this will
evolves in time. Therefore the delay of the end of inflation ispe true as long as

no longer given by the simple one-field expression

N 10T Gev

St= 8yl . Also, in the presence of more than one field, the 8C(r)> M*
perturbations may not be adiabatic and, as a consequence, 3rR§ M_g< . (50)

their amplitude need not be constdntl,39. The effect of

the perturbation must be integrated along the perturbed tras ¢oj10ws that the allowed range of is
jectory to the end of inflation, or until the evolution becomes

adiabatic[42,39.

Finally, because we no longer have a unique trajectory in 8 M4< 3 N 8 M (51)
' ' . , . ) . 22 ESI<5 \/ o522
field space, we must consider which trajectories are likely to 3Rs Mé 2 97RsM
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which for M<10' GeV essentially leaves as a free pa- mains constant on super-horizon scaliesterms of the field
rameter in the range<@a<9/4. At the upper limitr~3/2,  fluctuations at horizon crossing.

the correction coefficien€(r) becomes large, giving a sig- The perturbation in the number effolds from any point
nificant amplification of the curvature perturbatioRs com- (¢, ,¥,) in region | to the end of inflation can be computed
pared to the usual slow-roll approximation. by evaluating the number af-folds from a given point up

Because the comoving scale at horizon crossing is justntil a surface of constant= i, in region Il, since the time
proportional to the scale factere™, the scale dependence of from i, to the end of inflation is fixed, see E(7). Due to
the power spectrum in Eq48) readily gives the tilt of the the overlap between the regions, this surface will also lie in

spectrum as region | for y,<¢.= B/ yHy. The number ofe-folds to
Ym IS given by
1 dinRs 2 (52) 1
n—1=-———-=2r,
dink Ny, bm) =Nmm— — In %) (53
m

which becomes @/3 in the slow-roll limit. Note that in prin-
ciple for this model one could have any value of the tilt in
the range K n<4. A precise measurement of which may
be possible with the next generation of satellite experiments bm=(C1A) Sy 1S (54)
[44], would give a tight constraint oa. Present limits give

n=1.2+0.3[7]. Sincen could be greater than one, there are Using the solution fory(¢) in region I, given by Eq(13),
also limits coming from production of black holes at small we can eliminates; to give

scalesn<1.4[17]. Together they givexr<0.6, which con-

strains the size of the correction coefficient in E4g) to lie N(b, b, )~ Eln
in the range 0.&C<1. xR g

where ¢, is a function of the trajectory parametrized by
1

e

[/

only in terms of the fields at horizon crossing. This is one of
the few cases in which such an integration can be done com-
In this subsection we describe the interesting regime irpletely up to the end of inflation, see also R&9].
which the system goes through the phase transition and Note that in general a trajectory beginning at a perturbed
quantum fluctuations of both fields become important. Hergyoint (¢+ 8¢, ¢+ d4) may end up at a completely different
the curvature perturbation on a comoving hypersurface at thgoint in field space compared with the nonperturbed trajec-
end of inflation cannot be given simply in terms of that attory. This can make the comparison of the lengths of the
horizon crossing since it does not remain constant on supetrajectories very complicated and could lead to entropy as
horizon scales. In order to compute the amplitude of theyell as curvature perturbations at the end of inflation. How-
curvature perturbation at the end of inflation, one usuallyever, in our case all trajectories merge at the end of inflation,
integrated the coupled differential equations for the twoand this complication does not arise. The fact that by the end
fields’ fluctuations and evaluated their amplitude at the endf inflation we are left with a single fieldand thus all per-
of inflation from that at horizon crossing. Only recently, turbations have become adiabatallows us to equate the
Sasaki and Stewaj#2] developed a formal method for com- amplitude of curvature perturbations on a comoving hyper-
puting the metric perturbations at a given hypersurface fronsurface at the end of inflation with perturbations on comov-
the change in the number effolds to that hypersurface as a ing hypersurfaces at late times and, in particular, at the sur-
local function in field space, in the slow-roll approximation. face of last scattering, see Rg89].
This method was shown in R€f39] to be equivalent to the We can now evaluate the perturbation in the number of
usual method of integrating the quantum field fluctuationse-folds as
Unless one finds solutions for all trajectories in field space,

the problem remains analytically intractable. In R&0] we kY,_1(kdy) O,
N=—————"-56¢, + sp,
*

found particular cases, with separable potentials for the in- s Y, (ko)
teracting fields, in which the field trajectories were integrable

and we could write explicit expressions for the amplitude ofNote thatY,(z)~z~" for small z, and thus the first term
curvature perturbations at the end of inflation. In principle,vanishes if the pointd, ,,) lies in region II, which gives
for a general model all we need is a computer to evaluate theN= 5y, /s, , as required by Eq17).

change in the number @ffolds to the end of inflation due to For ¢,=¢. we have dN/d¢,=1/p.<IN/dy, , for
quantum fluctuations of the fields, for all points in field , <¢.. Since the quantum fluctuationkp, and sy, at
space. This gives us the possibility to investigate densityhis time are both of orddf/27, the amplitude of curvature
perturbations even for very complicated theories where it igerturbations is given by

not possible to express the final result in a compact analytical

form. In the case of hybrid inflation we are fortunate to have CyH

a complete analytical solution for the classical evolution in Rs=ON= 2mwsy,
regions | and Il which takes us fromh= ¢ to the end of

inflation. This will allow us to compute in a compact way the where C, =1, see Eg.(35. On the other hand, for
amplitude of curvature perturbations at the end of inflationg, < ¢., the coefficientC,>1, see Fig. 1, which is then
(where the system becomes adiabatic and the amplitude reesponsible for large curvature perturbations.

b Y (k)
Lt s

1
+ —In
S

B. Two-field perturbations

(56)

(57)
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sociate their pathlengths with a single smooth surface. Ther-

]\l\ /‘/’N:’%’_ mal diffusion is responsible for this loss of information in the
og\l\ /‘ﬁ_ trajectories of photons beyond last scattering. In our case it is
’ R\ N quantum diffusion of the scalar field that determines the loss
d/dc 06\/ ~ - ﬁ—_ of information. Note that in the above-mentioned sense the

0,4\*\ \\ ,’ /4 region near the critical pointp)= ¢, becomes opaque to

o2kl . ’ N1 T N 2 wavelengths equal to the wavelengths of perturbations

’ \ ‘| 'm' " / formed at¢= ¢, but it remains transparent to perturbations

0.75 05 -025 0 025 0.5 0.75 1 with much greater and much smaller wavelengths.
/H As argued above, our calculation of density perturbations

relies only on being able to associate a given scale at late
times, determined by the numberefolds N, with a unique
region within which it is not possible to define equal-time hyper- smooth surf_ace in field space. Our results for the amplitude
surfaces, and density perturbations are of order 1. We also show® Perturbations neap= ¢ in Egs.(56) and(57) show that
few equal-number-oé-folds contours in field spacey(H,¢/¢,),  (here is indeed a region nedr= ¢, y=0 for which 6N
for generic values of the parameters<0.3,8=8). The dashed becomes very large. In Fig. 2 the region under &he=1
sections enter théN=1 region where due to quantum fluctuations CUrve is the dangerous region. The question now is whether
we cannot associate a definite numberesfolds to the end of the parameters of the model are such that this affects a sig-
inflation. nificant number of trajectories in field space. To determine
this we should evaluate the probability distribution for the
It is clear from Eq.(57) that for small values ofy, the  scalar fields and calculate how much of the initial wave
amplitude of curvature perturbations can become arbitrarilypacket suffers large perturbations in the numbee-6élds,
large. In Fig. 2 we show a few equhll-surfaces in field i.e., SN=1. A heuristic constraint could be that the size of
space ({/Hq, 4/ ¢.), around and belowp= ¢, together the scattering region should be much smaller than the size of
with the line SN=1. the wave packetvery much like scattering of light of wave-
The amplitude of density perturbations on a comovinglength\ by a target with a diametex<<\). ThesesN~1
hypersurface when the curvature perturbati@Big reenter — perturbations correspond to large curvature perturbations on

FIG. 2. The thick dash-dotted line corresponds to &ié=1

the horizon is given by11] asymptotic comoving hypersurfaces, which later become
black holes. If a significant part of the packet enters the
op 2+2w region whereSN>1, then at late times we cannot recon-
—=raRs, (58 struct the amplitude of the initial perturbation, corresponding
p 5+3w

to large scales¢> ¢.). What happens is that, due to quan-
where p=wp is the equation of state of the Universe attum diffusion, different scales will mix and their amplitudes

reentry. We therefore expect large density perturbations oWill be undetermined for an asymptotic observer at late

scales associated with the phase transition. times. o . o
According to[45], in single-field slow-roll inflation the

regime of SN=1 can be identified with quantum diffusion

dominating over classical motiodi¢= ¢/H, i.e., with the

So far we have discussed the classical evolution of th‘\?vell-known self-reproduction regim@46,45. However, in
homogeneous field and the effect of perturbations about thg, ) tiald inflation this may no longer t;e the case. F70r ex-

classical trajectories on a given scale for valuegbcdbove ample, fluctuations in one of the fields may not affect the
¢ and below¢. However at some stage the role of quan-(ime taken to end inflation. Even in our region II, where only

tum diffusion of the coarse-grained fieldon superhorizon , geterminesN, it is the asymptotic time delay that deter-
scales dominates over its classical motion. Purely CIaSSICE}T']ines SN. not the instantaneous erturbatipﬁwlip] at
trajectories in region | beginning witip=0 above ¢. are horizon cr’ossin P *
focused along/=0, due to the large effective mass pfat Let us now c?élculate the probability distribution for the
large ¢, and continue to evolve close =0 long after the field o | ion | the fiel p_ _r%/N_NC) lowlv roll
point ¢, when it becomes an unstable ridge. In practice we'eld & inregion |, as the fie %= e SIOWly Tofls

: PR ' : down its potential. This can be done using the stochastic
require quantum diffusion of thg field to move the field off ) ) . N o
thg ridgg and begin its roll dov?n to the global minimum. approach to inflatiofj22,18. Assuming an initialy distribu-

If diffusion washes out any trace of the classical motion!'o" for ¢ at ¢> ¢, and an average quantum diffusion per

as we crossp= ¢, it does not make sense to calculate theHUbble volume per I—'|ub.ble. time~H/27° the time-
curvature perturbations in terms of the classical trajectoriesc.iependent probability distribution has the form
This would destroy our notion of associating points in field

space with a given number effolds from the end of infla- P(4,t)=
tion. Quantum diffusion close teé. could distort equal time 270
hypersurfaces so much that we lose information about the

origin of trajectories. This problem is analogous to that of

trying to trace the path of photons beyond thesmological ®Note that our earlier analysis shows that this is an overestimate
last scattering surface. Beyond this surface, photons scattém ¢=¢.. However it should give a safe upper bound on the
many times and an observer at late times can no longer aslispersion of the wave packet.

C. Quantum diffusion

1

e 1112/2(72(t), (59)
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the contour plots of the dispersion of the distribution in units
of the size of thesN=1 region, (4?)Y2=nH/27s, for
n=1,...,7 inparameter spacex(B). The figure shows that

in order for the distribution to have spreéohe e-fold after

the phase transitionseveral times the size of théN=1
region one need@>1. The large separation of the lines
indicates how difficult it is for the distribution to spread,
unlessB>1. If they were closely packed it would mean that,
for not very largeg, the distribution would be much wider
than this dangerous region and it would be possible for most
trajectories to avoid this region. As it stands, for the values
of the parameters in Ref18], most of the trajectories will go
through this region.

o In summary, we have shown that fax< 0.6 (the range of
parameters allowed by observations of the spectral tilt on
large and small scalgsve find large perturbationgiN~1,

FIG. 3. Contc_n_Jr lines for t_he dispersion of tigedistribution at along most trajectories at the phase transition, ungssq.
the phase transitiofdashed ling and onee-fold after the phase  This corresponds to large curvature perturbations on these
transition (continuous ling compared with the size of theN=1 " g51a5 and thus to large density perturbations after inflation

H 2\1/2__ : — H
region,{y*)""=nH/2ms (with n=1,. . .,8from the bottom upin  hich a5 we shall see, leads inevitably to the formation of
parameter spacex(). In the region below the curves, the prob- black holes

ability distribution for the ¢ field cannot avoid the dangerous
6N=1 region and large-amplitude perturbations will be expected at

S NRAR N S

scales associated with the phase transition. VI. BLACK HOLE PRODUCTION
where the dispersion?(t) satisfies the evolution equation A. Probability of black hole formation
We have seen that quantum fluctuations of the fields can

do’(t) H® 2BH ¢?
dt 4227 3

— a2t (60) be responsible for large curvature perturbations on a comov-
¢>§ ' ing hypersurface at the end of inflation. These perturbations,
on scales that left the horizon 20—8¢folds before the end

Under a change of variablesx=exg—2r(N—Ng)] and  of inflation, as in the model we study, reenter the horizon

S(x)=o?(t)/H?, this equation becomes during the radiation era and could in principle collapse to
form primordial black holes. The theory of production of
d_S: _ 1 _ B(1—x) S(x) (61) primordial black holes from initial inhomogeneities was first
dx 8m2rx 3rx ' discussed in Ref.31], see alsd32]. There is an expression
. . for the probability that a region of mass, with initial den-
which has an exact solution sity contrastS(m)= dp/p|,, becomes a primordial black
X\ a hole,
S0=gozr | ax) T(@2%), 62 P(m)~ 8(m)e” £"29, (64)

wherea= B/3r= g/« is a constant anfi(a,z) is the incom- — o ] o

plete y function. The solutiorS(N) characterizes the disper- WhereB“~w [31]. In the derivation of this equation it was
sion of the classical trajectories due to quantum fluctuations@Ssumed that the Universe was a barotropic flyier (vp)
Since the region wheréN=1 has a widthy=H/27s, see during grav_lta'uonal collapse, and that the initial density con-
Eq. (57), at ¢=¢., most classical trajectories will pass trast §(m) is much smaller than one. There seems to be
through this region. It is still possible that just oeefold ~ disagreement over the value of the param@tend the way
after the phase transition the distribution will have spread s¢o calculate it in a radiation dominated universe, see Ref.
much that only a small fraction of all the trajectories still [18]. Novikov et al. [33,34 give a simpler prescription
goes through this region. We thus consider the dispersion dfased on numerical calculations. They claim that even for
the y-distribution onee-fold after the phase transition, when density perturbations less than one at horizon crossing, a
x=exp(—2r). Note that theSN=1 region is broader there, black hole will form as Iong as the perturbation in the metric
sinceC,_>1 from Fig. 1, but the distributiot62) is also ~ 69ap=2P Sap is of order 0.75-0.90, whered is the gauge-

wider. If the spread of the probability distribution is still invariant Newtonian potential33,34. The analysis of a
within the SN=1 region at this stage, i.e., probability distribution for density perturbations with a
peaked spectrum is beyond the scope of this paper, but we

H? [expe 2] - 2 expect a probability distribution like that of E¢64) with
(¥?)= ——| lNa,ae )<, (63
87r| ae 2 ' 47r2s?’ B?<1, somewhat larger than that of RE31]. Furthermore,

Carr points out in Ref[31] that, for a scale invariant spec-
it will be difficult to avoid large perturbations on this scale. trum with density contrasé~1 at horizon crossing, the
Note that this condition is totally independent of the couplingprobability of black hole formation i$~1/2 on all scales,

v. We have plotted this condition in Fig. 3, where we showand half of the mass of the Universe is always in the form of
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primordial black holes. From the above discussion it is cleabecause they are formed at the stage when the energy may
that for the large density contrasts produced during the phasill be dominated by the oscillations of the inflaton field
transition, §=(4/9)6N~0.5 at horizon crossing, see Eq. with the equation of statp=0. This changes a little our
(57), there is no suppression of the probability of black holeestimate for the time of formation of the black hole,
formation on scales associated with the phase transition.
Note that in order to calculate the precise probability of th= HalesNC (67)
black hole formatior(64), we have to solve the ambiguity in
the value of the parametes. This would require a much and for the black hole mass,
more detailed investigation, see, e[@5]. However, for our 5
purposes it is enough to realize that in a Gaussian distribu- M oawm %ech 69)
tion where the typical fluctuations of the density contrast are B H, '
about 0.5, the fluctuationd~1 are just one standard devia-
tion away fromé~0.5. Therefore for every 10 horizon-sized The smallest black holes, corresponding Np~1 (and
regions with density contrasi=0.5 we typically find one Hy~10® GeV, as in[18]), would have a mass of about
region with 6~1, which can be expected to collapse and10' g. Perturbations’~ 1 giving rise to black holes in the
form a black hole. mass interval 1¥—10%" g are clearly ruled out by the
We should note that the previous discussion of the probbounds of Ref[17]. Thus, we should avoid at all costs the
ability of the black hole formation is based on investigationdangerous regio@N==1, since otherwise we will have too
of conventional inflationary density perturbations. In ourmany large black holes.
case, in addition to such perturbations, we have a dense gas A very interesting possibility arises when one considers
of inflating topological defects. One might expect each ofsuch a peak in the spectrum, for not very massive black
them to become a black hole, which would make the numbeholes. From the bounds of Refl7] we see that density
of black holes much greater even than the one suggested lgpntrasts of orders~332%/20 are just enough to give
the estimates based on HG4). (Here we are talking about () —1 in the mass range 18-10% g. Taking32=1 from
the monopolelike inflating topological defects, since domalrI33’34] and using Eq(69), we find that a parametes=3
walls and strings with symmetry breakirig-Mp lead 10 @ could indeed give the desired density contrast. This corre-
cosmological disaster even if they do not inflate and formgponds to a bare mass for the triggering figtg,~4 TeV,
black holes. However, we believe that this issue requires ayhich is very natural. Furthermore, the associated mass scale
more detailed analysis, see Sec. IV, and therefore in thigan pe computed fronN,=32/3~11 asMgy=2x10% g

paper we impose on the model of REE8] only those con- =10 18M,. Using the average density of our galaxy,
straints whblch_ follow from our investigation of the usual den-pg~ 1025 g/en®, we find that these small black holes may
Sity perturbations. opulate the halo of our galaxy and be separated from each

Let us now evaluate the typical size and mass of the blacliher an average of #0cm or about six times the size of the
holes produced by these perturbations. Suppose that after tQg5, system. They could very well constitute the missing

phase _trans_ition the universe inflatet times. Then at the mass in our galaxy, and still pass undetected by the micro-
end of inflation the physical scale that left the horizon d“ri”glensing survey$47]

oy . _l . .
the phase transition isly eNCa_ whereH,, as before, is the  Note that changing slightly the parameters of the model
Hubble constant during inflation. Suppose that soon after inpne changes simultaneously the scale and the height of the
flation the equation of state becarpe=p/3, as for the ul-  peak in the black hole spectrum. This means that numerical
trarelativistic gas. Then the scale factor of the Universe afteglues of the black hole masses and the distances between
inflation grows asytH,. The scaleH; 'eMe\tH, becomes  them can be made substantially different by modification of

comparable to the particle horizont at the hybrid inflation model. These numbers are very sensitive
1N to the details of the theory of black hole formation, which
th=Hg e™c (65) still requires a more complete analysis. It is important, how-

] ) _ever, that in the context of the hybrid inflation scenario the
when the energy density becomes smaller than the inflation;ossipility that black holes may contribute to the dark matter
ary energy density-HZM32 by a factore *Me. At that time  of the Universe becomes quite realistic.
perturbations with density contradt-1 form black holes of The idea that dark matter may consist of black holes pro-
sizeH, *e?Nec and mass duced after inflation was explored earlier by Ivanov, Nasel-
sky, and Noviko\ 25]. They performed a detailed investiga-
tion of the probability of formation of large black holes in
such models, and in this respect their work can be extremely
useful. Their model required the existence of a plateau in the
For N.~ 30 one would have black holes with mas40*’ g,  effective potential, which would lead to a high peak in the
comparable to the masses of the black holes in the centers spectrum of density perturbations. However, it is very diffi-
galaxies. This is a very interesting mass scale, but copiousult to obtain a realistic model of a single scalar field where
production of such black holes would lead to catastrophi@ne has almost exactly flat spectruip/p~5x10"° on all
cosmological consequences. scales from 1% to 10°° cm, and a sharp peak with

By changing the parameters of our model one can makép/p~1 on a slightly smaller scale. Meanwhile, as we have
the duration of the second stage of inflation rather short. Fogshown, in the hybrid inflation scenario this possibility
small black holes witiN.~ 1 in Eq.(65) should be modified emerges in a very natural way.

2

M
M gy= H—;’ech. (66)
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Finally we note that if the density contrast at horizon The time it takes a black hole to evaporate is given by
crossing is sufficient to form black holes one would also
expect gravitational radiation to be produced during non- _ 1 Mgy
spherical collapgewhose energy density would be compa- ™ g*Mp| Mp
rable with that of the black holes at formation. The typical
frequency of these wave$, ~H, at formation, would be Here g* ~10? is the effective number of particle species at
redshifted tof ,~ 10~ '(M o /Mgy) *? Hz today. However the the time of the black hole evaporation. For black holes with
energy density of the gravitational waves also redshifts awagmall N formed at the matter dominated stage we have
relative to that of the black holes so that for massive black 3
holes (that do not evaporate the present day - 1 (MP 3NC> (72)
Qow~10 A Mgy/M)Y2Qg,. On the other hand, there '
could be many more regions where there is significant gen- ) ) o
eration of gravitational waves even though the density con- Suppose that the fraction of matter in the black holes ini-
trast is not quite large enough to produce black holes. Thigally was only very small, and the Universe was radiation
m|ght enhance the fraction of energy density in gravitationaﬂominated from the time of black hole formation to the time
waves. For primordia| b|ack ho'es of order _1%/|® the they eVaporate. Then the fraction Of mass in b|aC|( h0|es
gravitational wave spectrum has a maximum at a frequencgrows during this time as(t)~\t due of the more rapid
(fo~10"* Hz) which might be detected by a laser interfer- decrease of the energy density of relativistic particles outside
ometer in space like LISA48] if the fraction of energy black holes. At the instant before the black holes finally
density in gravitational waves wet@g,,=10"1°. We will ~ evaporate, the fraction of energy in black holes has grown by
leave a detailed study of this interesting issue for future2 factor of
work. Furthermore, gravitational waves associated with
black holes with masseldl g~ 10'° g have a much higher \f Mp  an,
frequency at the maximunfy~100 Hz, which make them EN \/g_*HOe ’
reasonably good candidates for detection at the Laser Inter-
ferometric Gravitational Wave Observatorf.IGO) and  Therefore even if only a small fraction of energy was in the

3

(71)

(73

VIRGO [49], for a similar energy density. black holes initially, because the probability of their forma-
tion was suppressed by the exponential factor in(E4),, we
B. Reheating from black hole evaporation only requireP(8)> (/t,) "2 for the black holes to come to

A very interesting application of the above results comesdomlnate the energy density of the Universe before they

i ) - X - evaporate.
when we consu_jer a two-stage inflation W'th. a suff|<_:|ently To give a particular example, let us consider hybrid infla-
short period of inflation after the phase transition. With thetion with Ho~ 104 GeV (which is much greater than in the
parameters of the modgl8] even the smallest black holes

are very heavy and evaporate too late. However, by choosin@Odel of Ref[18]). Let us take, e.9s~3, i.e., larger than
a model of hybrid inflation with a sufficiently large Hubble € usual parameters of the models of RaB] but much

constant and short second stage of inflation one can havesérlnaller than those of Reff10]. Then we have the total num-

; : ; . . ber of e-folds at the second stage of inflatieNe~40. The
very interesting regime when the black holes will dominate ensity contrast in this case &-1/7. The fraction of matter
the energy density of the Universe soon after the end og y '

inflation and later evaporate before nucleosynthesis, rehe s _tge black hple_s, according to Ecj§4), W'.” be apout
ing the Universe. 0 °. In fact, this is a rather conservative estimate, since our

Let us first assume that small black holes were formed id’nvestigation of topological defects suggests that this number
a radiation dominated universe, soon after the usual stage ay be much greater. The black holes will be produced at

- —34 ;
reheating after inflation. To evaluate the probability of black e moment t,~6x10 s. They will have mass

— : . — 16
hole formation we need to know the density contrast at thévI BF 6t;1< 104,{&’ and W;:I e;/aporlate aithz X 1OB S, muchf th
horizon crossing during the radiation dominated stage, se arlier than the: epoch ot nucleosyninesis. because of ihe

arge growth of the scale factor and redshift of energy of
Bgs.(57) and(58), relativistic particles, at the time of the black hole evaporation
4 2CH, 4 practically all matter in the Universe will be in black holes.
o= §5N: Wzg' (69  This means that practically all particles which exist in the
universe at>10"1%s are created at the moment of the black
hole evaporation.

Note that in the above example, although the probability
of black hole formation is very small, they still give the
dominant contribution to the energy density at late times

Us because the energy of relativistic particles decreases much
) (7o)  faster than that of black holes. However, this black hole
dominance may begin much earlier if they are formed before
conventional reheating is complete and the equation of state
is p=0. This condition can be easily satisfied in the case of
5We thank John Barrow for drawing our attention to this interest-very small black holes. Then there will be no exponential
ing issue. suppression of the probability of the black hole production

The number ofe-folds in the second stage of inflation is
given by N:=(1/5)In(¢/p). With initial condition
Yy~Hy/2m we have

2Mp
sHo

eNC~(
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(64), and the fraction of energy in the black holes could bevery efficient reheating of the universe. This is a win-win
large from the very beginning. situation, where black holes can reheat the Universe even if
The process of black hole evaporation could be resporthe standard reheating mechanism is inoperative.
sible for the baryon asymmetry in the Universe, even though The energy density released in gravitational waves during
it is not very easy to get large baryon asymmetry by thisthe collapse of these small black holes is redshifted away
mechanisni24]. Typically it is assumed that reheating and together with any other type of radiation, as the black holes
thermalization of the Universe occurs due to the inflaton fieldeventually dominate the expansion of the Universe. How-
decay and the subsequent particle interactions, or througéver, when the black holes evaporate, they emit a spectrum
bubble collisions like in first-order inflation. The natural as- of gravitational waves that redshifts unperturbed since they
sumption was that the gravitational interaction at the stage afio not thermalize with the other particles. Some estimates
reheating could be neglected. Here we have another, vefp3] of black hole evaporation suggest that 2—-10 % of the
unusual mechanism of reheating. Even in the absence a¢iawking radiation is in the form of gravitational waves. If
bubble wall collisions or a large coupling of the inflaton to all the radiation we observe today comes from primordial
matter, a considerable fraction of matter after inflation couldblack hole evaporation, then the present fraction of energy
be in the form of small black holes. Unlike in the extendeddensity in gravitational waves is of ord&g,,~ 10"’ while
inflation scenarid50], in our case all such black holes are the frequency at the maximum is
formed in the same mass range given by E§6) and(68).
If the probability of black hole formation is not strongly
suppressed, then very soon they dominate the energy density
of the Universe[24]. Eventually the evaporation of these
black holes could reheat the Universe. This opens up an infhjs frequency is far beyond detectability by laser interfer-
teresting possibility of connecting the origin of matter in the gmeters like LIGO, VIRGO, LISA, etc., see Refd8,49.
Universe with black hole physics. However, there are recent proposals for gravitational wave
Let us estimate the reheating temperature of the Universgetectors with certain crystals that are sensitive to frequen-
in this scenario. Black hole masses in the process of theiéies of order 1@ Hz [54] The possib|e detection of such a
evaporation decrease ddgy[1—t/7]"° (Here we have spectrum of gravitational waves is a subject for further in-
taken into account that the age of the Univetgeat the  yestigation and would be a novel signature of this reheating
moment of the black hole formation is much smaller thanmechanism.
their evaporation time.) The main part of the energy release
by the evaporating black holes occurs at the end of the time
interval . Therefore one may simply use the standard
temperature-time relation for the hot universe to get the fol- As we have seen, modél), as well as the version pro-
lowing estimate of the reheating temperatdfre after the  posed in[18], lead to a copious formation of huge black

1/2
foax 1015 Hz| MeH
0 10° g

(79

VII. “NATURAL” HYBRID INFLATION

black hole evaporation: holes if one requires thgunlike in the original version of
hybrid inflation there is an additional inflationary stage after
, Mp 45  \/45g*H3 _oN the phase transition. This problem occurs because typical
° (74) classical trajectories in this model go very closete 0.

~ = e
" AT Ng*wm 4 M
m/m P One can avoid this problem by a modification of the shape of

For a particular example which we studied { 104 Gev,  the effective potential13]. Also, as we have shown above,
s~3, g*~10%) we getT,~2x10° GeV. This estimate is l:_)lack hole prqductlon can be even useful if the second infla-
extremely sensitive to the choice of the parameters. One cdipnary stage is very short and the black holes are very small.
easily get reheating temperature as high a8 G&V or even But there eX|st$ anothgr problem, which we will consider
greater, or as small as 1 eV. The only real constraint on thi§oW together with the first one. . .
temperature is that one should be able to produce the baryon The main reason why many authors are trying to imple-
asymmetry of the Universe during or after black hole evapoMment hybrid inflation in supersymmetric theories is to protect
ration, and before nucleosynthesis. This picture differs conthe flatness of the effective potential in tiedirection. One
siderably from the standard theory of reheating due to thénay try to relate the small mass of the figjdto the grav-
decay of the inflaton field, see, e.§51,57. itino massmg,,~1 TeV, which appears because of super-
Perhaps one can appreciate a potential importance of thBymmetry breaking. If one argues that the parambtérin
regime if one remembers that the standard reheating due f&d- (2) is of the order of the intermediate scale of supersym-
the inflaton decay often is very inefficient because of themetry breakingmz,Mp, then there appears to be no unex-
small coupling of the inflaton to matt51,5]. In such cases Plained small parameters in the model. Still the appearance
the Universe for a long time remains matter dominatedof the termM®*~ (mz,M p)?cog(y/\2f) in Eg. (2) remains
(p=0). In some other cases reheating is extremely efficiensomewhat unclear to us. If one expardéco(y/\2f) in
in the very beginning, but later becomes inefficient, so thapowers ofy for M~ 10 GeV andf~10'® GeV as in Ref.
the Universe eventually may become matter dominated agaii8], one would find an extremely small coupling constant
[52]. But then formation of black holes is no longer sup- M*f4~10"3Cin front of the termy*. It was pointed out in
pressed by radiation pressure. In this case matter easily cdli8] that such couplings may appear in a natural way if one
lapses into small black holes, which later evaporate and rantroduces certain superpotentials which lead to nonrenor-
heat the Universe. Thus, the absence of the usual reheatimgalizable interactions. However, to study nonrenormalizable
triggers black hole formation, which eventually leads to aterms in an internally consistent way it would be necessary



54 DENSITY PERTURBATIONS AND BLACK HOLE ... 6055

to consider models based on supergravity, which was outsidiérst and of the second anomalous terms may be different,
the scope of our investigation, as well as of the investigatiorand a priori one should not expect () symmetry to be
performed in[18]. broken by these two terms in the same way. In what follows
Fortunately, both smallness of the parameitt and the  we will assume tha# is small. The resulting effective po-
shape of the potential can be explained if one interpgets tential including the mass term of the fie{tl can be repre-
as a pseudo Goldstone field similar to the axion field.sented in the following form:
One may cci/rzsider a model of a complex scalar field ’ \2 ’ )
P (x)=[f(x)/vV2]expé(x), which after spontaneous symme- o264 2.9 0. m-
try breaking can be represented &\(2)exdiy(x)/f]. If the V(g ) =2\t CO§E+ 21¢ sz(T_ 0) e
original effective potential was a function &* ¥, the field (77)
¢ will be massless. However, nonperturbatitestanton or ) . )
wormbholg effects may give this field a small magee Ref. Let us now analyze the shape of this potential and its
[55] for a recent discussion of this issu@his effect can be "elation to the more usual hybrid inflation potentia). Con-
described by adding operators breaking initidllusymme-  Sider first the cas@=0. At large ¢ the dominant term in-
try of the effective potential. Consider the family of opera- VolVing ¢ in Eq.(77) is the second one, which implies that at
torsg, (W = W*)"f4~". Since these operators appear becaustdrge ¢ the field z,b will se_ttle in one of the minima at
of nonperturbative effects, the coupling constagsnay be ~ #/f=nm, wheren is some integer. For odd values wfthe

exponentially small. One may take, for example, the simplesgn€rgy density due to the self-interaction cosine-squared
operator g;(¥+¥*)f3, and add to it a constant term [€rm also vanishes and we are left with conventional chaotic

inflation with V=m?¢?/2. However for even values of, the
self-interaction term is nonzero and is trapped in a false
vacuum, like the model in Eq1l). Near=0 the potential in
Eq. (77) is given by

V29, normalizing the vacuum energy to zero. This gives
the effective potential of the fields, which is completely
analogous to the standard axion potential,

2¢2
1

2

Note that in this potentials/f is an angular variable from One concludes that aboyt=0 the bare mass squared of the
0 to 2#. This potential coincides with the effective potential field ¢ is mf,,= —)\ffz, but that the effective mass squared
of the field  in Eg. (20 up to an obvious change becomes positive fop> .=\ f/\,. Near¢. at y=0 the
242g,f*—M?*, f—f2. (Our definition off corresponds to energy density is given by NZf2(f2+m?/4\3). The first

a canonical normalization of the fiel@ kinetic terms) In  term dominates, as in the usual hybrid inflation, for
this context both the shape of the potential for the figldnd  m<\,f, and we have exactly the same as the model we have
the smallness of the teri “cos(y/\/2f) are explained in a analyzed in the preceding sections where
natural way. Potentials of this type have been used in “natu-

ral inflation” models[26,27. The problem with “natural H= \/54)\1f2
inflation” is that for the “natural” value of symmetry break- 3 Mp '’

ing f<Mp inflation is too short and the spectrum indexs

significantly less than 1. There is no such problem in ourand the dimensionless parameters introduced in Sec. Il are
model; the main purpose of the introduction of the figlds ~ given by a=(3/16m)m?M3/\2f4, B=(3/16m)M3/f2, and

to support inflationbefore the phase transition rather than y=)\§. The curvature perturbations produceddat ¢ are

(79

after it. then given by Eq(48). For smalla we have[10]
Thus it makes a lot of sense to explore cosine potentials
such as Eq(76) in the context of hybrid inflation. But with NoNEES 6
the interpretation of the fiel¢y as a pseudo Goldstone par- M3m? =~2x10 (80)

ticle, one cannot couple it to the fielfl in the way proposed
in Eq. (2). Now ¢ is the angular part of the fielr, and one  in order to agree with the COBE normalizatipr.
cannot write any superpotentials for the fields and ¢ There are two regimes one may consider in this theory.
which would result in the simple interaction termsy?¢?. First of all, one may assume that the coupling constants are
However, since we already reinterpreted the cosine termot extraordinarily small. Then, as was shown in RéD],
in Eq. (2) as appearing from the anomalous termthe conditionsn<H and 8p/p~ 10 ° imply that there was
g1(¥+W¥*)f3 we can go further and introduce an anoma-no second stage of inflation in this model, i.e., everything is
lous interaction termg,(Ve '’—W¥*e'?)2f242. Note that going on as in the first version of the hybrid inflation sce-
we have introduced here for generality the phase shife-  nario [10]. One may consider, for example, the following
tween the two anomalous terms. Indeed, the origin of th@parametersf ~10'® GeV (GUT scal@, m= 10" GeV (inter-
mediate SUSY-breaking scajeand A;~X,~10"3. In this
case all conditions mentioned above will be satisfied. The
"Note that in[12] a model of hybrid inflation was studied based parametersy~10 2 and 8~ 10° so there will be no second
on a supersymmetric Peccei-Quinn model. In that case it was thetage of inflation and no anomalous black hole production.
self-interaction energy of the radial degree of freedbfr) that For 6=0 there will be domain wall production. However,
gave the constant potential energy in the false vacuum. the domain walls formed in this scenario are unstable be-
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cause they are always bounded by strings Witk 0. More- VIII. CONCLUSIONS
over, it is sufficient to consider models with a very small

nonzero value of, so that all the evolution will go in one ) . . X
and its main principles are by now well understood. It is

direction, and there will be no domain walls or other 1OPO4;6refore surprising to see that slight modifications in simple
logical defects. One can easily understand this if one takes P g g P

into account that at larges the minimum of the effective and natural models may lead to important and sometimes
A o - - absolutely unexpected consequences. For almost 15 years we

potential with respect:[(l)sthe f'e"”’.' is aty= 07 #0. Thu; It IS knew that inflation exponentially dilutes the density of topo-
enough to haveg>10" > to avoid black hole formation in logical defects, but only two years ago did we learn that
our model. : . topological defects may inflate themselj@§). It was also

A.S one might expect, the same model for a dlfferentthought that old inflation did not work, and chaotic inflation
choice of paramgters can rgproduce all the results' of thSlways predicted that the Universe is flat. A year ago, how-
model proposed ip18], |nclud|_n_g the se_cond stgge of infla- ever, it was found that the simplest hybrid model where one
“2” a]itgzg th? phase transition. This requires 1o takeyyaq an old inflation potential for one of the fields and cha-
A1~107, which is an extremely small number. However, . infiation potential for another onéeven if these two
in our case the existence of this small parameter is not SUle|4s do not interact with each otheeads to the Universe
prising, because it could appear due to nonperturbative efgnsisting of infinitely many separate universes with all pos-
fects. Typically the value of this pargmeter is suppresged P¥ible values ofQ<1 [56]. Now we encountered one more
factors such as exp@m/g?) whereg is the gauge coupling - syrprising fact. For many years it seemed clear that inflation
constant. In some models this suppression may not be velyrased all preexisting inhomogeneities and did not leave
significant, but in general this suppression can easily givenuch room for the production of primordial black holes,
numbers much smaller than 1% [55]. In particular, in the  which had been the subject of active investigation in the end
usual axion theory witti~10'* GeV the corresponding con- of the 70s. Now we see that in a very simple inflationary
stant is of the order of 10", From this perspective it is model one can easily obtain a large amount of black holes.
more surprising that in this model the coupling constefis ~ They are formed only in a specific mass range, determined
not required to be equally small. This disparity can be easilyhy the duration of inflation after the phase transition. Typi-
alleviated if one does not insist that the masses of both fieldsally they are huge, but depending on the parameters of the
as well as the Hubble constant at the end of inflation shouléhodel they can be very small as well.
be of the order ofmgy,. Note that black holes are not necessarily a curse but could

For =0 in this model, just like in the model of R€fL8], also be a blessing. In the simplest model studied here the
one obtains inflating topological defects, very large densityprobability of black hole formation is not suppressed at all,
perturbations on the scale corresponding to the moment aind their number appears to be large. We propose some
the phase transition, and catastrophic black hole productiomodifications of this model where black hole formation is
However, it is no longer a generic property of the model.strongly suppressed. It is possible for certain values of the
Remember that the dangerous area of the phase space is frarameters of the model to have the right amount of rela-
cated very close tap=¢. and 4=0. For example, large tively large black holesM ~10'°— 10 g, that have not yet
density perturbations are generated onlyjatH~10"%,  evaporated and may be responsible for the dark matter in the
for H~10° GeV andf~10'® GeV. It is enough to have halos of galaxies. In a particular model considered in Sec. VI
6>10"1° to avoid black hole formation in our model. Thus we have shown that the halo of our galaxy may consist of
for generic values of inflationary trajectories never come black holes of mass-10?! g. However, numerical values of
close toy=0, and the problem disappears. For nonintegethe masses and abundances of the black holes are strongly
values of 6/7 hybrid inflation can occur along= 6+n model dependent. Depending on the parameters of the model
for any integer value oh, with the false vacuum energy there could be just enough black holes to gi¥g=1 in the
density equal to R2f*co$(#2) for even n or Universe. If they are supermassive, one could speculate
2)\§f4sin2(9/2) for odd values. about their relation to the black holes in the centers of gal-

We do not want to pretend that the “natural” hybrid in- axies.
flation model is necessarily very natural. In order to study Suppressing the number of large black holes down to a
this question one would have to investigate the appearance gesirable level requires a certain degree of fine tuning. But it
the anomalous terms in a more detailed way, and to analyz& relatively easy to make the black holes very small and
the possible effects of adding a more standard term likdarmless by making the second stage of inflation short and
\If*\]}¢2_ Our main purpose was to show that the Cosineby ending inflation at IargH. F0rH~103 GeV the smallest
terms with small coefficients can be incorporated into theblack hole masses M3/H are still very large, about 1bg,
hybrid inflation models, and that it is possible to avoid theand they evaporate very late, @t 10° s . But if, e.g., one
problem of large density perturbations and black hole protakes the models withi~10'* GeV, one can obtain black
duction in these models. However, as we have argued in thieoles with a mass-6x10* g, evaporating at~10"1° s.
previous section, primordial black holes produced after inflaSuch black holes would dominate the Universe after their
tion under certain conditions may lead to very interestingformation until evaporation. Evaporation of black holes may
cosmological consequences. On the other hand, there islead to baryon asymmetry production. During the last 15
simpler way to get rid of the black holes; one may simplyyears this mechanism of baryogenesis was largely ignored
return to the original hybrid inflation scenario without the since it seemed impossible to produce many small black
second inflationary stage. holes after inflationsee however Ref24]). We may now

Inflationary theory was first proposed about 15 years ago,
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return to the investigation of this interesting possibility. In- flationary trajectory is unstable ai<¢., ¢=0; all trajec-
dependently of the issue of baryogenesis, one should emphtories bifurcate due to quantum fluctuations. Therefore the
size that the possibility of the black hole dominance at thecalculation of the probability distribution was necessary to
intermediate post inflationary stage may change completelghow that atypical amplitude of density perturbations pro-
the mechanism of reheating after inflation, which would pro-duced near the point of the phase transition is very large.
ceed via black hole evaporation. Furthermore, there is the As an important by-product of our investigation we have
possibility of gravitational wave production during black found a new type of inflating topological defect. They appear
hole evaporation. For a range of black hole masses it is posa the models where the curvature of the effective potential is
sible that the associated stochastic spectrum of gravitationgbmewhat greater thard?, but nevertheless the time neces-
waves will be observed in future detectors. sary for symmetry breaking to occur is much greater than
In the course of our work we have further developed aH ~*. These defects do not inflate eternally and do not form a
method of investigation of density perturbations which canfractal structure found if20]. Still inflation in the cores of
be applied even for complicated systems of several couplethese defects continues for a while even after it ends outside
scalar field442,39. This method is rather simple and pow- of them. As a result, they lead to large density perturbations
erful. It gives analytical results in those cases in which theof a specific type. Until now inflating topological defects
motion in field space is integrable, like in hybrid inflation could be considered as an interesting but somewhat esoteric
and in theories with coupled inflaton and dilaton fields, but itfeature of certain inflationary models. Typically the distance
can be used in a more general context as well. The metholom us to these defects was many orders of magnitude
consists of three main parts. First of all, for any point in thegreater than the size of the observable part of the Universe.
(¢,¥) space one findeither analytically or numericalhjan  They were important for understanding of the global struc-
inflationary trajectory going from this point, and calculatesture of the Universe, but not of our local neighborhood.
the number ok-folds N( ¢, ¢) for this trajectory. This prob- However, in hybrid inflation models with two stages of in-
lem is easy to solve numerically even for very complicatedflation these defects are abundantly produced at the moment
potentials. Then one perturbs the position of the initial pointof the phase transition, and populate the part of the Universe
(¢,4) by adding to it inflationary jumps, which typically are which is accessible to our observations. We believe that the
of the orderH/27, but may be greater or smaller, see Sec.new type of inflating topological defects deserves separate
[ll. This gives us the perturbation of the numberesfolds  investigation. It would be very interesting to understand
SN, which is directly related to the density perturbations:whether they lead to black hole formation and to explore
Splp=(4/9)6N(¢,y) at reentry during the radiation domi- other possible observational consequences of these exotic
nated era. Note that the resulting density perturbations for abjects. It is amazing that very simple models of two scalar
given N (i.e., for a given wavelengihwill depend on the fields can exhibit such a rich and interesting behavior.
place (#,#) our trajectory came from. Thus the remaining
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