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We investigate the recently proposed hybrid inflation models with two stages of inflation. We show that
quantum fluctuations at the time corresponding to the phase transition between the two inflationary stages can
trigger the formation of a large number of inflating topological defects. In order to study density perturbations
in these models we further develop a method to calculate density perturbations in a system of two scalar fields.
We show that density perturbations in hybrid inflation models of the new type can be very large on the scale
corresponding to the phase transition. The resulting density inhomogeneities lead to a copious production of
black holes. This could be an argument against hybrid inflation models with two stages of inflation. However,
we find a class of models where this problem can be easily avoided. The number of black holes produced in
these models can be made extremely small, but in general it could be sufficiently large to have important
cosmological and astrophysical implications. In particular, for certain values of parameters these black holes
may constitute the dark matter in the Universe. It is also possible to have hybrid models with two stages of
inflation where the black hole production is not suppressed, but where the typical masses of the black holes are
very small. Such models lead to a completely different thermal history of the Universe, where postinflationary
reheating occurs via black hole evaporation.@S0556-2821~96!00522-X#

PACS number~s!: 98.80.Cq
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I. INTRODUCTION

A period of ‘‘inflation’’ or accelerated expansion in the
early Universe is an attractive idea in modern cosmolo
Acceleration of the scale factor could drive the Universe
wards homogeneity, isotropy, and spatial flatness. Howe
it is the ability of quantum fluctuations in the fields drivin
inflation to produce a nearly scale-invariant spectrum
quantum fluctuations that provides the most powerful test
the inflationary paradigm and may allow us to constrain t
physics involved. Cosmological observations allow us
measure the amplitude and tilt of the primordial density an
possibly, gravitational wave spectra on scales that wo
have left the horizon during inflation.

The first inflationary models such as the old and the n
inflationary universe scenario presumed that inflation beg
in the false vacuum state after the high temperature ph
transitions in the early Universe@1,2#. Later it was proposed
that all possible initial conditions should be considered wit
out necessarily assuming initial thermal equilibrium, and s
whether some of these conditions may lead to inflation. T
scenario was called chaotic inflation@3#. For many years the
idea of chaotic initial conditions seemed too radical, since
implied a considerable deviation from the idea of the hot b
bang. It was argued that for a successful realization of in
tionary theory one should satisfy so-called ‘‘thermal co
straints’’ @4#. However, gradually it was understood that th
assumption of thermal initial conditions is neither natural n
helpful for inflationary theory@5#. As a result, most of the
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models investigated now belong to the class of chaotic infla
tion, which provides the most general framework for the de-
velopment of inflationary cosmology.

The simplest models of chaotic inflation include theories
with potentialsV(f) such asm2f2/2 or lf4/4. Inflation
occurs in these theories atf.MP . However, one may also
consider chaotic inflation nearf50 in models with poten-
tials which could be used for implementation of the new
inflation scenario, such as2m2f2/21lf4/4 @6#. For brev-
ity, one may call inflation in such models ‘‘new inflation,’’
to distinguish it from inflation at largef, but strictly speak-
ing these models also belong to the general class of chaot
inflation models: the original new inflationary universe sce-
nario based on the theory of high temperature phase trans
tions have never been successfully implemented in realisti
theories.

The simplest models of chaotic inflation such as the
modelm2f2/2 have many advantages, including natural ini-
tial conditions near the Planck density and the existence o
the regime of eternal self-reproduction of the Universe@5#.
Normalizing the mass scale by the fluctuations in the micro
wave background observed by the Cosmic Background Ex
plorer ~COBE! @7# givesm;1013 GeV and the energy den-
sity at the end of inflation isV(f).(1016GeV)4. At this
energy gravitational waves contribute about 10% of the mi-
crowave background fluctuations. The tilt of the density per-
turbation spectrum in this model isn21.20.03.

However, inflation occurs in such models only for
f&MP . It is quite possible to have inflation atf.MP in
6040 © 1996 The American Physical Society
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54 6041DENSITY PERTURBATIONS AND BLACK HOLE . . .
models with polynomial potentials, but in string theory an
supergravity one often encounters potentials which are
tremely steep atf.MP . It is not an unsolvable problem,
see, e.g.,@8#, but it would be nice to have a simple mode
where inflation may occur atf,MP as well. It is possible to
achieve this, for instance, in versions of ‘‘new inflation’
with V(f);2m2f2/21lf4/4. However, in the simplest
models of such type one has an unacceptably large nega
tilt of the spectrum, unless the amplitude of spontaneo
symmetry breaking is much greater thanMP @9#. Thus we
return to the problem of having successful inflation
f,MP .

There has recently been a lot of interest in the hybr
inflation scenario@10–15#. Initial conditions for inflation in
this scenario are not determined by thermal effects, and th
hybrid inflation also belongs to the general class of chao
inflation models. However, hybrid inflation may occur at va
ues of the scalar fields much smaller thanMP . The tilt of the
spectrum in hybrid inflation typically is very small and posi
tive, giving rise to so-called ‘‘blue spectra’’@16,17#. The
contribution of gravitational waves to the microwave bac
ground anisotropies is usually negligible. The reheating te
perature in this scenario is typically large enough to ensu
the possibility of electroweak baryogenesis, but sma
enough to avoid the problem of primordial gravitinos.

It is still a challenge to obtain a natural implementation o
this scenario in the context of supergravity and string theo
but in globally supersymmetric theories this scenario appe
in a very natural way. A very interesting version of the hy
brid inflation scenario recently proposed by Randall, So
jačić, and Guth was even called ‘‘supernatural’’@18#.

A distinctive feature of hybrid inflation is that it describe
the evolution of two scalar fields,f andc. In the beginning
one of these fields~field f) moves very slowly, and the
second field may not move at all~though this second condi-
tion is not necessary@13,19#!. The energy density supporting
inflation is dominated by the false vacuum energy of the fie
c. At the moment when the slowly moving fieldf reaches
some critical valuefc , it triggers a rapid motion of the field
c, inducing a transition to a ‘‘waterfall’’ regime. Then the
energy density of the fieldc rapidly decreases, and inflation
ends.

Care is needed in evaluating the spectrum of density p
turbations produced by inflation in the presence of more th
one field. Many of the usual simplifying assumptions brea
down. Perturbations may no longer be purely adiabatic a
hence curvature perturbations depend not only on the fi
fluctuations at horizon crossing but also upon their subs
quent evolution up to the end of inflation, or even beyond.
the first versions of hybrid inflation the mass of the fieldc
whose false vacuum energy density drives inflation w
much larger than that of the slowly rolling fieldf and so the
single-field approximation was quite sufficient. Also, infla
tion ended abruptly when the fieldf reached its critical
valuefc , and the fieldc began its motion.

This regime is certainly not the most general. Recen
attention has been drawn to the possibility that both fiel
f and c could have masses close to the supersymmet
~SUSY-! breaking scalem.1 TeV, while the symmetry-
breaking scale in thec direction may be as large asMP @18#.
In this case the process of rolling of the fieldc towards its
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minimum may take a lot of time even if its mass is a few
times greater than the Hubble constant at the end of inflation
This may be attractive in the context of supersymmetric
theories but raises new issues about the generation of dens
perturbations in the two-field model. We will consider these
issues in this paper and spell out the dangers of ending hy
brid inflation by a slow phase transition.

The main problem associated with this scenario can b
explained in the following way. The effective potential of the
field c used in@18# is symmetric with respect to the change
c→2c. As a result, at the moment of the phase transition
the fieldc can roll with equal probability towards its positive
and negative values. This leads to the usual domain wa
problem. To avoid this problem in the original hybrid infla-
tion model@10# it was suggested to change the topology of
the vacuum manifold and couple the fieldc to gauge fields.
In such a case instead of domain walls one may obtain eithe
strings or monopoles, or~as in the electroweak theory! no
stable topological defects at all. Monopoles should be
avoided, but strings do not lead to any cosmological prob
lems in theories with a relatively small scale of symmetry
breaking, as studied in Ref.@10#. Alternatively, one may con-
sider versions of the hybrid inflation scenario considered in
Ref. @13#, where no topological defects are produced.

In the model proposed in Ref.@18# topological defects do
appear. In the simplest realization of this model one get
domain walls, which should be avoided at all costs. If one
modifies the model to produce strings instead, one also has
problem, since strings corresponding to the scale of sponta
neous symmetry breaking;MP by themselves produce den-
sity perturbationsdr/r;1 on all scales. One could expect
that monopoles would not lead to any trouble since the dis
tance between them grows exponentially during the secon
stage of inflation. However, because of inflation, which oc-
curs in this model during the long stage of rolling of the field
c to its minimum, all topological defects in this model ap-
pear to be inflating, as in@20#. Independently of the nature of
these defects~domain walls, strings, monopoles, either topo-
logically stable or not! their exponential expansion leads to
density perturbationsdr/r;1 on the exponentially large
scale corresponding to the moment of the phase transition
This may result in a copious black hole formation. However,
inflating topological defects in our model are rather specific
because they appear in the theory withumcu.H. For this
reason the possibility of black hole formation by such defects
requires separate investigation. This problem is extremel
interesting since here the issue of inflating topological de
fects appears in the context of observational cosmology.

Independently of this issue, the appearance of inflating
topological defects clearly demonstrates that the existence o
the second stage of inflation in the hybrid scenario may lea
to large density perturbations. As pointed out in Ref.@18#,
the phase transition atf5fc leads to the appearance of a
characteristic spike in the spectrum of density perturbations
The existence of such a spike was first found in a similar
model by Kofman and Pogosyan@21#. In the ‘‘supernatural’’
hybrid inflation model it is difficult to calculate the ampli-
tude of the peak of the spectrum; in Ref.@18# it was done
slightly away from the point of the phase transition, where
the amplitude of the density perturbations has already dimin
ished. In order to perform the calculation, the evolution of



6042 54JUAN GARCÍA-BELLIDO, ANDREI LINDE, AND DAVID WANDS
the fluctuating field in@18# was divided into several parts,
and different approximations were used at every new st
However, the results of calculations of the amplitude of de
sity perturbations near the narrow peak can be very sensi
to the choice of the approximation, especially in a situatio
where one may expect density perturbations to be lar
Therefore we developed a more direct method of calculatio
of density perturbations in this model.

One of the most interesting aspects of the model of R
@18# is the existence of a regime in which quantum diffusio
of the coarse-grained background fields dominates over
classical evolution and determines prominent features with
our present cosmological horizon. Previously such pheno
ena were confined to scales much beyond our present h
zon and were usually ignored. In Ref.@18#, the machinery of
stochastic inflation, see Ref.@22#, was used to estimate the
behavior of the fields close to the phase transition, whe
large quantum fluctuations make the stochastic formalis
necessary. In this paper we will use this formalism to fin
whether or not most of inflationary trajectories come throug
the region where large density perturbations are genera
We believe that the method which we developed may be
interest in its own right and can be applied to a more gene
class of models with many scalar fields.

Our final results agree with the conclusion based on t
topological defect analysis: density perturbations created
the moment of the phase transition are very large. In partic
lar, in the model of Ref.@18# with the parameters given there
corresponding to the second stage of inflation lasting f
20–30 Hubble timesH21, one has density perturbations
dr/r;1. In such a situation one can expect copious produ
tion of huge black holes, which should lead to disastro
cosmological consequences.

However, this is not an unsolvable problem. For a suitab
choice of parameters the second stage of inflation can
completely eliminated, and in this respect the model can
made very similar to the original hybrid inflation model o
Ref. @10#, where the problem of black holes does not appe
at all. A very interesting possibility appears if the secon
stage of inflation does exist, but is very short, lasting on
two or three Hubble timesH21. Then the black holes formed
from the large density perturbations may be small enough
evaporate quickly. With the parameters of the model of R
@18# the evaporation time is still very large even for th
smallest black holes. However, if one studies hybrid inflatio
with a larger Hubble constant, the black holes produced d
ing inflation can be made very small, so that they evapora
before nucleosynthesis. Even if the probability of formatio
of such black holes is suppressed, the fraction of matter
such micro black holes at the moment of their evaporati
may be quite substantial, since the fraction of energy in r
diation rapidly decreases in an expanding universe. This m
lead to crucial modifications of the thermal history of th
Universe and may rejuvenate the possibility that the bary
asymmetry of the Universe was produced in the process
black hole evaporation@23,24#.

Finally, one may consider the models where the seco
stage of inflation lasts for about ten Hubble times. As we w
see, in this case the probability of the black hole formatio
may be sufficiently small, so that the amount of black hol
does not contradict the cosmological bounds on the bla
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hole abundance. It raises a very interesting possibility~see
also @25#! that the black holes produced in the hybrid infla-
tion scenario may serve as the dark matter candidates. In
other words, dark matter may indeed be black.

As we already mentioned, there exist some versions of the
hybrid inflation scenario where topological defects do not
appear at all. In this paper we will suggest another version of
such a scenario, which we will call ‘‘natural’’ hybrid infla-
tion. This scenario is a hybrid of the simplest version of
‘‘natural inflation’’ @26,27#, and the model of Ref.@18#. It
shares some attractive features of ‘‘natural inflation’’ such as
the natural origin of small parameters appearing in the
theory. On the other hand, unlike the original ‘‘natural infla-
tion,’’ our scenario does not require the radius of the ‘‘Mexi-
can hat’’ potential to be greater than the Planck scale, which
causes problems when one attempts to implement ‘‘natural
inflation’’ in string theory @26#. We will show that in the
models of natural hybrid inflation one can easily avoid the
problem of large density perturbations.

The plan of the paper is as follows. In Sec. II we will
briefly describe the simplest hybrid inflation model@10# and
its relation to the model of Ref.@18#. We will find classical
solutions describing the evolution of the fieldsf andc in
this model. Most of our investigation will be fairly general,
but since the original hybrid inflation model@10# is already
well investigated@12#, we will concentrate on the model of
Ref. @18# where an additional stage of inflation occurs after
the phase transition. In Sec. III we will evaluate the ampli-
tude of quantum fluctuations of each scalar field. In Sec. IV
we analyze the issue of inflating topological defects and the
associated density perturbations. In Sec. V we study density
perturbations both before and after the phase transition and
then discuss the important issue of quantum diffusion at the
phase transition. In Sec. VI we analyze the probability of
primordial black hole formation due to large density pertur-
bations. We will also discuss the possibility of reheating of
the universe by evaporation of small black holes. In Sec. VII
we propose and briefly describe the ‘‘natural’’ hybrid infla-
tion model. We will discuss our results and summarize our
conclusions in Sec. VIII.

II. CLASSICAL FIELD DYNAMICS

The simplest realization of chaotic hybrid inflation is pro-
vided by the potential@10#

V~f,c!5SM22
Al

2
c2D 21 1

2
m2f21

1

2
gf2c2. ~1!

For comparison, we will write here the effective potential of
one of the models considered in Ref.@18#:

V~f,c!5M4cos2S c

A2 f D 1
1

2
m2f21

1

4
l2f2c2. ~2!

In the regionc, f , where inflation occurs in the model~2!,
the potentials~1! and ~2! practically coincide, with the re-
definition of parameters,f 2→M2/2Al and l2→2g. ~Note
that the fields denotedf andc in Ref. @18# correspond to
our fieldsc and f. In this respect we have followed the
notation of Ref.@12#.! In what follows we will study the
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model ~1!, but we will be most interested in values of th
parameters close to those of Ref.@18#.

The equations of motion for the homogeneous fields
then

f̈13Hḟ52~m21gc2!f, ~3!

c̈13Hċ5~2AlM22gf22lc2!c, ~4!

subject to the Friedmann constraint

H25
8p

3MP
2 FV~f,c!1

1

2
ḟ21

1

2
ċ2G . ~5!

Although we can always integrate the equations of mot
numerically for arbitrary initial conditions, the classical m
tion of the homogeneous field is not necessarily a good r
resentation of the coarse-grained field on superhori
scales. If the classical motion is sufficiently slow it can b
come dominated by quantum diffusion caused by wa
modes crossing outside the Hubble radius.

In particular we wish to consider the case whenf is much
larger thanc at early times so thatc has a large positive
mass.gf2 and rolls rapidly toc50.1 For values off
above a critical valuefc , c50 is a stable minimum. Thus
c remains zero whilef slowly rolls ~for m2!H2) down to
the critical value,f5fc , where thec field becomes mass
less. For smaller values,c50 is an unstable local maximum
and quantum diffusion initiates a second-order phase tra
tion from the false vacuum to the true vacuum state.

In the simplest version of hybrid inflation, where the co
plings l andg are of order unity, this is essentially all th
dynamical evolution that matters. The bare mass of thec
field,2mc

252AlM2, must be much larger thanH2 @12# and
the phase transition occurs rapidly and inflation ends. T
perturbation constraints on large scales are then readily
rived from the usual single-field results where the role ofc
at early times can be neglected.

But what if the bare mass of thec field is not very much
larger thanH? In particular, what if this field has the type o
potential we might expect for a moduli field with a minimum
at c;MP and a negative mass squared2mc

2 of order
(1 TeV)2 aboutc50? The false vacuum energy density
c50 is thenM4;m2MP

2.(1011 GeV)4 and the Hubble
constantH.mc;1 TeV, as discussed in Ref.@18#. It lies
outside the range of parameters originally considered for
brid inflation since it corresponds to an exceedingly flat p
tential for c with effective coupling constan
l;mc

4/M4;10230. The rolldown of thec field need no
longer be fast and we must consider the complicated ev
tion of both the fieldsf andc during this stage.

When c50 the potential simply reduces t
V(f)5M41m2f2/2. For the range of parameters and fie
values that we are interested in the constant term alw
dominates and the Hubble expansion can be taken to b

1If insteadf rolls rapidly tof50 it remains there and the prob
lem reduces to the usual case where thec field rolls directly to the
global minimum atV50.
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Sitter expansion withH5H0[A8p/3M2/MP . It is useful to
then write the bare masses of the two fieldsf andc relative
to the Hubble scale as

a[
m2

H0
2 and b[2Al

M2

H0
2 . ~6!

In the case of a single scalar fields evolving during in-
flation, one usually resorts to the slow-roll,ṡ2!V(s), and
quasimassless,V9!H2, approximations to make analytic
progress. This allows one to reduce the equations of motion
for the scalar field to a first-order equation. However in our
case the mass of thec field is less thanH only for a short
interval,fcA121/b,f,fcA111/b. Even then, we wish
to consider values ofa not much below unity so the quasi-
massless approximation may not be very good forf either.

Fortunately the fact that the potential energy, and hence
the Hubble rate, are so nearly constant~and this really is a
very good approximation for the parameters of Ref.@18#!
allows us to integrate the second-order equations in two re-
gimes.

A. Region I: Small c

The first approximation regime will be for
c2/H0

2!a/g.2 This leaves the mass of thef field constant
and the equation of motion becomes

f913f81af50, ~7!

where a prime denotes a derivative with respect to
N5H0(t2te), the number ofe-folds from the end of
inflation.3 This can be readily integrated to give

f~N!5f1exp~2r1N!1f2exp~2r2N!,

r65
3

2
7A9

4
2a. ~8!

The asymptotic solution is f5f1exp(2rN) where
r[r1.0 which approaches the slow-roll solution
f5f1exp(2aN/3) for a!1.

For f.fc , the c field remains trapped in the stable
minimum atc50 and we have effectively single-field infla-
tion and the above solution gives the exact evolution of
f(N).

Belowf'fc we can no longer take thec field to remain
fixed atc50. Thec field equation of motion is

c913c85S b2g
f2

H0
2Dc. ~9!

We see that the field becomes massless atfc
2[(b/g)H0

2 .
Rewriting this as an equation forc as a function off gives

-

2We also requirec2/H0
2!b/l but in practice this is a much

weaker condition for the parameters of@18#.
3Note that we have definedN so that it increases with time and so

we haveN,0 for t,te .
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f2
d2c

df2 1~122q!f
dc

df
1~k2f21q22n2!c50, ~10!

where

q[
3

2r
, k[

Ab

r

1

fc
, n[

1

r
A9

4
1b. ~11!

The exact solution is a linear combination of Bessel fun
tions,

c~f!5fq@2c1Yn~kf!1c2Jn~kf!#. ~12!

For f!fc the growing mode is given by the small ang
approximation

c~f!52c1f
qYn~kf!'c1Af2~n2q! ~13!

5c1Af1
2~n2q!e~n2q!rN, ~14!

where the numerical coefficientA5(2/k)nG(n)/p.

B. Region II: Small f

As f decreases, the effective potential for thec field
becomes dominated by its bare~tachyonic! massAbH0.
Thus forf!fc , and still assumingc2/H0

2!b/l, we have

c913c82bc50 , ~15!

which has the general solution

c~N!5c1exp~s1N!1c2exp~s2N!,

s652
3

2
6A9

4
1b. ~16!

Matching to the asymptotic solution in region I, Eq.~14!,
we see that only the growing mode (s5s1.0) exists in
region II. Recalling thatN is measured from the end of in
flation, it is simply given by

c~N!5ceexp~sN!, ~17!

for all trajectories. The total amount of inflation after a give
point is determined solely by the ratioce /c, as noted in Ref.
@18#. Even though the effective mass ofc has become large
and negative, inflation will only end whenċ2.V, which
implies4

c2.ce
2[

MP
2

4ps~s11!
. ~18!

From a given valuec, the evolution will take

N~c!'
1

s
lnSMP

sc D ~19!

4Note that forb.1 this also ensures that de Sitter remains a go
approximation until very near the end of inflation.
c-

le

-

n

e-folds to the end of inflation. As we shall see, if the initial
value of c is only of orderH0;1 TeV there must be a
further (32/s) e-folds before inflation ends.

The growing value ofc increases the effective mass of
thef field through the interaction term and it also becomes
larger thanH. However, thef field is much closer to the
minimum of its potential than thec field (fc /MP;10212)
and f soon starts to execute damped oscillations abou
f50, as noted in Ref.@18#.

This time we have a parametric equation for the inflaton
field in terms of the triggering field, for which the general
solution is

f~c!5cp@ c̄1Jm~rc!1 c̄2Ym~rc!#, ~20!

where

p[2
3

2s
, r[

Ab

s

1

fc
, m[

1

s
A9

4
2a. ~21!

Matching to the asymptotic solution in Eq.~13!, we find
that only theJm solution is selected. We can see this from the
small rc expansion of Eq.~20! with c̄250,

f~c!5 c̄1c
pJm~rc!. c̄1Bc p1m, ~22!

where B5(r/2)m/G(m11) and p1m[2(n2q)21

[2r /s. Comparing this with the limiting behavior of Eq.
~13! we find a relation between the coefficients

c̄1B5~c1A!r /s. ~23!

Therefore, as long as the solutions pass through the overlap
ping region, our solutions of region I evolve smoothly into
region II.

III. QUANTUM FIELD FLUCTUATIONS

In this section we discuss the evolution of quantum fluc-
tuations of the fields. In the slow-roll approximation, the
amplitude of quantum fluctuations of a massless field at ho-
rizon crossing (k5aH) is approximatelyH/2p. However, in
our case the masses of the fields are not necessarily muc
smaller than the Hubble scale, and corrections to the slow
roll result could be large.

Since the potentialV(f,c).V0 to a very good approxi-
mation, we can neglect the gravitational backreaction of the
fields, and the equations of motion for linear perturbations in
c andf can be written as

d̈c13H ḋc1S k2a2 2bH21gf2D dc

522gcfdf23lc2dc, ~24!

d̈f13H ḋf1S k2a2 1aH2D df

52gc2df22gcfdc. ~25!

Note that in region I, whenc50, the terms on the right-hand
sides are zero and the evolution ofdc anddf decouple. We

od
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can write these equations, in terms of the canonically qu
tized fieldsu[adc andv[adf, as

uk91S k22 21b~12h2r !

h2 Duk50 , ~26!

vk91S k22 22a

h2 D vk50 , ~27!

where primes denote derivatives with respect to confor
time, h521/aH, and we have chosenh521 when
f5fc .

Since the mass of thef field is constant, we can write a
exact expression for the quantum fluctuations,

vk~h!5
Ap

2Ak
ei ~12r !p/2~2kh!1/2H3/22r

~1! ~2kh!, ~28!

wherer5r1 is defined in Eq.~8!. This has the correct flat
space limit as2kh→`, vk→eikh/A2k, while asf→0, and
2kh→0, we find

vk~h!5
C~r !

A2k
ei ~12r !p/2~2kh!r21, ~29!

where@28#

C~r !522r
G~3/22r !

G~3/2!
. ~30!

This results in a scale-invariant spectrum of the growi
mode perturbations at horizon crossing with amplitude

df*5C~r !
H

2p
. ~31!

Note that the coefficientC(r ) gives a constant correctio
~independent of scale! to the usual amplitude of curvatur
perturbations @obtained in the slow-roll limit where
C(0)51#.

On the other hand, the effective mass ofc changes with
time and we cannot write down an exact solution. Howe
we can understand the qualitative behavior by conside
the effective Schro¨dinger equation foruk , see Eq.~26!, with
the time-dependent potential V(h)52(21b)/h2

1b/h2(12r ). This has a maximum valueVmax at hmax given
by

Vmax5
~b12!r

12r Fb~12r !

b12 G1/r , ~32!

hmax5F b12

b~12r !G
1/2r

. ~33!

On small scales,k2@Vmax, the field uk oscillates with al-
most constant amplitude until2h&Ab12/k, when it starts
to diverge. Ask→` we recover the constant-mass asym
totic (h→0) solution
an-

al

g-

e

ver
ing

p-

uk~h!5
C~2s!

A2k
ei ~11s!p/2~2kh!2s21, ~34!

wheres5s1 is defined in Eq.~16!. However, the amplitude
of the quantum fluctuations decay exponentially for
k2,V(h). Thus modes withk2,Vmax will be suppressed.
The amplitude of the growing mode of the field perturbations
at horizon crossing can then be written as

dc*5Ck

H

2p
, ~35!

where the coefficientCk is scale-dependent, as shown in Fig.
1 for the caseb58.

We can understand qualitatively the behavior of this
growing amplitude of quantum fluctuations. For modes
k.1 that leave the horizon nearf.fc , the c field is ef-
fectively massless and the amplitude of quantum fluctuations
has the usual valueH/2p, with coefficientCk.1. When
f&fc(121/b)1/2, corresponding to scalesk.111/2rb,
the magnitude of the~imaginary! mass of thec field be-
comes larger thanH. Then the amplitude of quantum fluc-
tuations even before horizon crossing, whenk/a.mc , is
dc;mc/2p, which is already greater thanH/2p. As f de-
creases and the corresponding scale increases, the effecti
mass of thec field approaches its bare value while the am-
plitude of quantum fluctuations grows. At very largek we
recover the constant-mass scale-invariant value
C`5C(2s), see Eq.~30!. For b58, this asymptotic value
is C`58.91@1, see Fig. 1. On the other hand, for
k2,Vmax, the mass~squared! of the c field is large and
positive at horizon crossing and the amplitude of these quan
tum fluctuations is suppressed.

IV. INFLATING TOPOLOGICAL DEFECTS

During inflation we must also consider the effect of short
wavelength fluctuations that cross outside the horizon and
perturb the coarse-grained background field on superhorizo
scales. One can get a pretty good idea of the amplitude o
perturbations on a scale corresponding to the time of the

FIG. 1. The amplitude of quantum fluctuations of the symmetry-
breaking fielddc in units ofH/2p, as a function of scalek, evalu-
ated when this scale left the horizon. Herekc corresponds to the
scale that left the horizon during the phase transition, when
f5fc . The figure corresponds to generic values of the parameter
(a50.3,b58). The asymptotic value ask→` is C`58.91. The
logarithm is to base 10.
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phase transition by investigating the inflating topological d
fects produced at that time. For this purpose one sho
study the evolution of the fluctuationsdc at the moment of
the phase transition.

Before the phase transition the fieldc is very heavy and
its quantum fluctuations can be neglected. As we have se
its fluctuations are generated when the mass of thec field
becomes smaller thanH, i.e., close to the phase transition
The exact duration of this stage is strongly model depend
but with the parameters used in Ref.@18# the time before the
phase transition when the fluctuation can grow is only ab
H21. As a result, one may~approximately! visualize the sca-
lar field c at the moment of the phase transition as a sin
soidal wave with wavelengthH21 and amplitude
dc;H/A2p,

dcc~x!5
H

A2p
sin Hx. ~36!

~Note that the amplitude here isH/A2p, whereas the stan-
dard expressionH/2p holds for the averaged amplitud
^df2&1/2, i.e., for the dispersion of the field.!

This representation is not exact since many differe
waves give a contribution todc(x), but their wavelengths
are comparable and, for the models we consider, the am
tude of dc in Eq. ~36! is indeed of the order ofH/A2p.
During inflation the wavelength of these perturbations gro
exponentially,l;H21a(t)/a(tc), wherea(tc) is the scale
factor at the moment of the phase transition, but the am
tude of the fielddf also grows exponentially. This is the
main reason why spontaneous symmetry breaking occurs
spite the fact that formally the fieldc, averaged over the
whole universe, always remains equal to zero. During ea
interval of timeDt, when the effective potential can be rep
resented asV02m2(t)c2/2 with m2(t)!H2, the amplitude
of the fielddc in Eq. ~36! grows as

dcc;
H

A2p
exp

m2Dt

3H
sinS a~ t !Hx

a~ t1Dt ! D , ~37!

whereas form2(t)@H2 one has

dcc;
H

A2p
exp~mDt !sinS a~ t !Hx

a~ t1Dt ! D . ~38!

In both cases spontaneous symmetry breaking during in
tion preserves the simple sinusoidal shape of the pertur
tion, until the field rolls down to its minimum and a mor
complicated nonlinear regime begins. But this occurs alrea
at the very end of inflation.

Note that inflation near the cores of the topological d
fects continues for a while even after the fieldc reaches its
minimum atc5 f;MP . Indeed, at that time the gradien
energy density of the field distribution ~38! is
;H2MP

2exp(22Nc), where the factor exp(22Nc) appears be-
cause of the stretching of the wave during inflation. For lar
Nc it is much smaller than the potential energy density of t
field c, given byV(0)53H2MP

2 /8p. As for the kinetic en-
ergy density of the fieldc it is always small nearc50.
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Therefore inflation in the vicinity of topological defects con-
tinues for a long time, until eventually the gradient energy
becomes greater thanV(0).

As a result, after the field~38! approaches the minimum
of the effective potential, on the exponentially large scale
l;H21eNc we will have an extremely inhomogeneous mat-
ter distribution. Roughly speaking, in half of the volume of
the Universe on that scale, the field will be near the mini-
mum of its effective potential, whereas in the other half the
scalar field will be close to the top of the effective potential
with c50, and inflation will be still going on. This shows
that we will have density perturbationsdr/r;1 on exponen-
tially large scales corresponding to the time of the phas
transition.

This effect is very general. It is related to the inflating
topological defects discovered in Ref.@20#. The field may
roll in any direction fromc50, but stable regions with
c50 are constantly being created, corresponding to inflatin
domain walls, strings, or monopoles. However, in Ref.@20#
the curvature of the effective potential was much smalle
thanH2. In our case the second stage of inflation occurs eve
if mc

2.H2, because the initial value of the field
dcc(x)5H/A2p is much smaller than the amplitude of
spontaneous symmetry breaking, so it takes a lot of time fo
the field c to roll down. This specific feature implies that
there will be no eternal self-reproduction and no fracta
structure of topological defects in our model.

Note that a similar effect may occur even in the models
where topological defects are unstable if the decay rate o
unstable defects is sufficiently small@29#. A possible ex-
ample may be provided by the metastable electroweak co
mic strings or other ‘‘embedded defects’’@30#. Such defects
are unstable and usually do not cause any cosmological pro
lems. However, they also havec50 in their cores. If they
inflate @29# and decay only after the end of inflation, they
lead to large density perturbations in the same way as th
topologically stable inflating defects.

One may expect that large density inhomogeneitie
should lead to a copious black hole formation. The problem
of black hole formation in a hot universe is not trivial be-
cause pressure gradients do not allow black holes to b
formed unless density perturbations on the horizon scale a
of the order of 1 or even greater@31,32,17,18,33,34#. But this
is precisely the case for inflating topological defects. The
centers of these defects remain forever at large density ne
the top of the effective potential, whereas far away from the
cores the energy density gradually drops down to zero in a
expanding universe. This corresponds to the delay of end o
inflation dN@1, and to density perturbationsdr/r.1. If
these topological defects were isolated objects immersed
empty Minkowski space, one can show that their thickness i
much smaller than their Schwarzschild radius@20#. There-
fore one would come to the conclusion that there is no sup
pression for the probability of black hole formation in this
scenario. However, it turns out that this is not what happens

To investigate this issue note that the sinusoidal wav
~36! is a particular example of a perturbationdc which is
symmetric with respect toc↔2c. The specific shape of
these perturbations indicates that one cannot study them b
considering Gaussian distributions centered away from
c50. However, one could apply the theory of density per-
turbations to those parts of the defects away fromc50. The



d

.
t
i-

-
n
e
s
r
n
s,
e
-

-

e
t

g

e

m-

e
o

-
r-
ry

a-
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main ingredient is the calculation of the time delay for rol
ing of the field c down to the minimum of its effective
potential. For the centers of topological defects this time d
lay is infinite, which corresponds to density perturbation
dr/r@1. Thus, one may expect important black hole form
tion near the centers of inflating topological defects. How
ever, as we will see, the mere fact that topological defe
correspond to large perturbations does not automatically i
ply that they form black holes, because the distribution
density near the cores of these defects is extremely n
Gaussian. Note that topological defects correspond to pla
where the distribution of the fieldc near their centers grows
linearly,c(x);H2x, see Eq.~36!. Therefore the density dis-
tribution near the topological defects looks like a narro
peak. Meanwhile, the distribution of the scalar field pro
duced by the usual density perturbations atcÞ0 has rela-
tively flat regions where the spatial derivative of the fiel
c vanishes. These places have greater size, for the sa
amplitude of density contrast, and thus can be more eas
converted into black holes.

To estimate the density contrastdr/r in the vicinity
of the topological defects we will use the fact that durin
the last stages of inflation the fieldf in our model is already
close to the minimum of the effective potential. Thus, le
us consider the field~38! at the moment when it reaches
the minimum of its effective potential atc5f. This hap-
pens approximately at a timete given by equation
(H/A2p)emcte5 f . At this moment the distribution of the
field c, as a function of the distancer5xe2Ht from the
center of the topological defect, can be written in a ve
crude approximation as

dcc;
H

A2p
exp~mcte!sin~Hr !. ~39!

Let us rewrite its evolution in terms off , counting time from
te . For smallr ,

dcc~r !; fHrexp~mct !, ~40!

which remains a good approximation untildcc(r ); f . The
time delay until the field at a distancer reachesf is

dN~r !5Hdt~r !52
H

mc
lnHr . ~41!

This means that the density of the topological defect w
exceed the average density bydr/r;dN(r );1 only in the
core of the topological defect, at a distance

r;H21expS 2
mc

H D . ~42!

For the usual inflating topological defects considered in R
@20# one hasmc /H!1, and therefore the deviation of den
sity from the average density becomes large for the who
region from r;H21 to r50. That is why one may expect
such topological defects to look like huge black holes fro
the outside. Meanwhile in the model of Ref.@18# one has
mc /H.1. As a result, the part of the volume inside th
horizon where the energy density deviates considerably fr
l-
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that on the horizon will be extremely small, being suppresse
by exp(23mc /H). Therefore the total mass excess on the
horizon scale is too small to cause the black hole formation
The same behavior of the density distribution is repeated a
smaller scales as well. This suggests that inflating topolog
cal defects in the theories withmc.H do not necessarily
lead to dangerous black hole formation.

The validity of this argument depends on many assump
tions. For example, if the Universe is matter dominated the
black holes are formed even if the density perturbations ar
not very large. Therefore topological defects may serve a
seeds for small black holes which are formed at soon afte
inflation, before the Universe reheats and becomes radiatio
dominated. This may lead to very interesting consequence
to be discussed in Sec. VI. Meanwhile, black holes which ar
formed in the models with a prolonged second stage of in
flation are very large, and they are formed very late, when
the Universe is supposed to be radiation dominated. Our in
vestigation indicates that large black holes do not come from
topological defects. However, they may be produced by th
usual density perturbations, which will be studied in the nex
section.

We should emphasize that our conclusions concernin
black hole formation from inflating topological defects
should be considered only as very preliminary. Indeed, her
we deal with perturbations of density which are extremely
large, dr/r@1, and our simple analysis using methods of
perturbation theory may be inapplicable. It is sufficient to
remember that the interior of topological defects in our
model continues to inflate for a long time after inflation
ceased to exist in the outer space. Thus we have here a co
plicated wormhole-type geometry which requires a very
careful analysis, similar to the numerical investigation per-
formed in Ref.@35#. It is the first time when we need to know
a detailed structure of the Universe filled by a gas of infla-
tionary topological defects on the scale smaller than the siz
of the observable part of the Universe. We need to return t
investigation of this fascinating question in the future. In the
meantime we can only say that it would be premature to
conclude that the model of Ref.@18# contradicts observa-
tional data solely on the basis of our investigation of density
perturbations produced by inflating topological defects.

For this reason in the next section we will concentrate on
the theory of usual~non-topological! density perturbations in
models with two scalar fields and apply it to our model. The
results that we have obtained from the investigation of topo
logical defects suggest that, in the model under conside
ation, usual density perturbations may also happen to be ve
large. In what follows we will show that this is indeed the
case.

V. DENSITY PERTURBATIONS

The most general scalar metric perturbations about a sp
tially flat Friedmann-Robertson-Walker metric with scale
factora(t), may be written as

ds252~112A!dt212B,idx
idt

1a2~ t !@~122R!d i j12E,i j #dx
idxj , ~43!
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whereA, B, R, and E are scalar functions which can b
decomposed into Fourier modes with different comovi
wave numbersk whose evolution decouples in the linea
approximation. Not all the perturbations represent physi
degrees of freedom, so to remove gauge artifacts we
define gauge-invariant quantities@36,37#

F[A1~B2a2Ė!
.
, ~44!

C[R2H~B2a2Ė!. ~45!

In fact we haveF5C for all linear perturbations due to
scalar field fluctuations.

Quantum fluctuations of the scalar fields are responsi
for curvature perturbations on comoving~or equal energy
density! hypersurfaces,RS5Hdr/ ṙ, where the density per-
turbationdr is evaluated on a spatially flat hypersurface.
terms of the gauge-invariant potentialF this can be written
as @38,39#

RS5F2
H2

Ḣ
~F1H21Ḟ!1

¹2F

3Ḣ
. ~46!

The curvature perturbation at the end of inflation can
equated with the change in the time~or number ofe-folds!
it takes to end inflation. In the case of adiabatic perturb
tions, e.g., in single-field inflation driven by the fieldc,
the amplitude of the curvature perturbation remains fixed
superhorizon scales, so it can be calculated asRS5dN
5@Hdc/ċ#* at horizon crossing wheredc can be estimated
asH/2p @40,37#. The origin of this curvature perturbation i
that the jump of the field in the direction opposite to i
motion leads to a time delay in the end of inflation which c
be estimated bydt5dc/ċ. This equation immediately sug
gests that in the hybrid inflation model where the seco
stage of inflation after the phase transition begins atc50,
density perturbations on the length scale corresponding
the moment of the phase transition should be extrem
large, since at that timeċ50. This is the standard situation
in all models where inflation occurs near the local maximu
of the effective potential. It does not lead to any troubles
the corresponding scale is many orders of magnitude gre
than the present size of the observable part of the Unive
@22#. But in the model of Ref.@18# this scale was supposed t
be rather small,l c,10 Mpc. One certainly does not want t
have the observable part of the Universe densely popula
by large black holes.

However, these considerations are too naive. First of
in our case we have two fields moving,f andc, so even if
the fieldc does not move at all, the whole field configuratio
evolves in time. Therefore the delay of the end of inflation
no longer given by the simple one-field expressio
dt5dc/ċ. Also, in the presence of more than one field, t
perturbations may not be adiabatic and, as a conseque
their amplitude need not be constant@41,39#. The effect of
the perturbation must be integrated along the perturbed
jectory to the end of inflation, or until the evolution becom
adiabatic@42,39#.

Finally, because we no longer have a unique trajectory
field space, we must consider which trajectories are likely
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be realized in practice. Because of the quantum fluctuations
the field c does not stay exactly at the pointc50 at the
moment of the phase transition and we must investigate th
dispersion of the probability distribution to see what the
likely amplitude of density perturbations will be.

A. Single-field perturbations

Firstly we consider the simplest regime, before the phas
transition, where single-field results apply. At large values of
f@fc the c field has a large positive mass and remains
fixed atc50. The amplitude ofc fluctuations crossing out-
side the horizon is negligible. Thus we need only conside
adiabatic fluctuationsdf* along the trajectory, given by Eq.
~31!, which perturb the time it takes to end inflation:

dN5FHdf

ḟ
G
*

5
C~r !H

2prf*
. ~47!

The power spectrum of curvature perturbations on comoving
hypersurfaces,RS5dN, is then given by

RS
2 ~N!5

C~r !2

4p2

g

br 2
e2r ~N2Nc!, ~48!

whereNc is the number ofe-folds from the phase transition
(f5fc) to the end of inflation~which we have seen could
be of order 20–30!. Assuming these perturbations are re-
sponsible for the observed temperature anisotropies in th
microwave background, they give a constraint on the param
eters of the model. The small~of order 1 TeV! Hubble con-
stant during inflation implies that the contribution of gravi-
tational waves to the microwave background anisotropie
will be negligible@11,12#. The low multipoles of the angular
power spectrum measured by COBE@7# give a value
RS

2.331029 on the scale of our current horizon, corre-
sponding to

NCMB.461
2

3
lnS M

1011 GeVD1
1

3
lnS Trh

107 GeVD . ~49!

For parametersa and b or order one, this requires
g&1028. Note that for these parameters we will have
fc>104TeV@H0.

This is one of the few cases in inflationary cosmology
where we have an almost exact expression for the amplitud
of curvature perturbations@43#. The only approximation we
have made is to assume that the energy density remains co
stant,ḟ2/21m2f2/2!M4, so that we can neglect the back-
reaction on the metric. Using Eq.~47!, we see that this will
be true as long as

8C~r !2

3rRS
2

M4

MP
4 !1 . ~50!

It follows that the allowed range ofr is

8

3RS
2

M4

MP
4!r!

3

2
2A 8

9pRS
2

M2

MP
2 , ~51!
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which for M!1016 GeV essentially leavesa as a free pa-
rameter in the range 0,a,9/4. At the upper limit,r;3/2,
the correction coefficientC(r ) becomes large, giving a sig-
nificant amplification of the curvature perturbationsRS com-
pared to the usual slow-roll approximation.

Because the comoving scale at horizon crossing is j
proportional to the scale factor}eN, the scale dependence o
the power spectrum in Eq.~48! readily gives the tilt of the
spectrum as

n21[
dlnRS

2

dlnk
52r , ~52!

which becomes 2a/3 in the slow-roll limit. Note that in prin-
ciple for this model one could have any value of the tilt i
the range 1,n,4. A precise measurement ofn, which may
be possible with the next generation of satellite experime
@44#, would give a tight constraint ona. Present limits give
n51.260.3 @7#. Sincen could be greater than one, there ar
also limits coming from production of black holes at sma
scales,n,1.4 @17#. Together they givea<0.6, which con-
strains the size of the correction coefficient in Eq.~48! to lie
in the range 0.9<C,1.

B. Two-field perturbations

In this subsection we describe the interesting regime
which the system goes through the phase transition a
quantum fluctuations of both fields become important. He
the curvature perturbation on a comoving hypersurface at
end of inflation cannot be given simply in terms of that a
horizon crossing since it does not remain constant on sup
horizon scales. In order to compute the amplitude of t
curvature perturbation at the end of inflation, one usua
integrated the coupled differential equations for the tw
fields’ fluctuations and evaluated their amplitude at the e
of inflation from that at horizon crossing. Only recently
Sasaki and Stewart@42# developed a formal method for com
puting the metric perturbations at a given hypersurface fro
the change in the number ofe-folds to that hypersurface as a
local function in field space, in the slow-roll approximation
This method was shown in Ref.@39# to be equivalent to the
usual method of integrating the quantum field fluctuation
Unless one finds solutions for all trajectories in field spac
the problem remains analytically intractable. In Ref.@39# we
found particular cases, with separable potentials for the
teracting fields, in which the field trajectories were integrab
and we could write explicit expressions for the amplitude
curvature perturbations at the end of inflation. In principl
for a general model all we need is a computer to evaluate
change in the number ofe-folds to the end of inflation due to
quantum fluctuations of the fields, for all points in field
space. This gives us the possibility to investigate dens
perturbations even for very complicated theories where it
not possible to express the final result in a compact analyti
form. In the case of hybrid inflation we are fortunate to hav
a complete analytical solution for the classical evolution
regions I and II which takes us fromf5fc to the end of
inflation. This will allow us to compute in a compact way th
amplitude of curvature perturbations at the end of inflatio
~where the system becomes adiabatic and the amplitude
ust
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mains constant on super-horizon scales! in terms of the field
fluctuations at horizon crossing.

The perturbation in the number ofe-folds from any point
(f* ,c* ) in region I to the end of inflation can be computed
by evaluating the number ofe-folds from a given point up
until a surface of constantc5cm in region II, since the time
from cm to the end of inflation is fixed, see Eq.~17!. Due to
the overlap between the regions, this surface will also lie in
region I for cm!fc5Ab/gH0. The number ofe-folds to
cm is given by

N~f* ,fm!5Nm2
1

r
lnS f*

fm
D , ~53!

wherefm is a function of the trajectory parametrized by
c1,

fm.~c1A!r /scm
2r /s . ~54!

Using the solution forc(f) in region I, given by Eq.~13!,
we can eliminatec1 to give

N~f* ,c* !.
1

s
lnF ce

c*
G1

1

s
lnFf* nYn~kf* !

A G , ~55!

only in terms of the fields at horizon crossing. This is one of
the few cases in which such an integration can be done com
pletely up to the end of inflation, see also Ref.@39#.

Note that in general a trajectory beginning at a perturbed
point (f1df,c1dc) may end up at a completely different
point in field space compared with the nonperturbed trajec
tory. This can make the comparison of the lengths of the
trajectories very complicated and could lead to entropy a
well as curvature perturbations at the end of inflation. How-
ever, in our case all trajectories merge at the end of inflation
and this complication does not arise. The fact that by the en
of inflation we are left with a single field~and thus all per-
turbations have become adiabatic! allows us to equate the
amplitude of curvature perturbations on a comoving hyper
surface at the end of inflation with perturbations on comov-
ing hypersurfaces at late times and, in particular, at the sur
face of last scattering, see Ref.@39#.

We can now evaluate the perturbation in the number o
e-folds as

dN.
k

s

Yn21~kf* !

Yn~kf* !
df*1

dc*
sc*

. ~56!

Note thatYn(z);z2n for small z, and thus the first term
vanishes if the point (f* ,c* ) lies in region II, which gives
dN5dc* /sc* , as required by Eq.~17!.

For f*.fc we have ]N/]f*.1/fc!]N/]c* , for
c*!fc . Since the quantum fluctuationsdf* and dc* at
this time are both of orderH/2p, the amplitude of curvature
perturbations is given by

RS5dN.
CkH

2psc*
, ~57!

where Ck.1, see Eq. ~35!. On the other hand, for
f*!fc , the coefficientCk@1, see Fig. 1, which is then
responsible for large curvature perturbations.
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It is clear from Eq.~57! that for small values ofc, the
amplitude of curvature perturbations can become arbitra
large. In Fig. 2 we show a few equal-N surfaces in field
space (c/H0 ,f/fc), around and belowf5fc , together
with the linedN51.

The amplitude of density perturbations on a comovi
hypersurface when the curvature perturbations~57! reenter
the horizon is given by@11#

dr

r
5
212w

513w
RS , ~58!

where p5wr is the equation of state of the Universe
reentry. We therefore expect large density perturbations
scales associated with the phase transition.

C. Quantum diffusion

So far we have discussed the classical evolution of
homogeneous field and the effect of perturbations about
classical trajectories on a given scale for values off above
fc and belowfc . However at some stage the role of qua
tum diffusion of the coarse-grained fieldc on superhorizon
scales dominates over its classical motion. Purely class
trajectories in region I beginning withc.0 abovefc are
focused alongc50, due to the large effective mass ofc at
largef, and continue to evolve close toc50 long after the
point fc when it becomes an unstable ridge. In practice
require quantum diffusion of thec field to move the field off
the ridge and begin its roll down to the global minimum.

If diffusion washes out any trace of the classical motio
as we crossf5fc , it does not make sense to calculate t
curvature perturbations in terms of the classical trajector
This would destroy our notion of associating points in fie
space with a given number ofe-folds from the end of infla-
tion. Quantum diffusion close tofc could distort equal time
hypersurfaces so much that we lose information about
origin of trajectories. This problem is analogous to that
trying to trace the path of photons beyond the~cosmological!
last scattering surface. Beyond this surface, photons sca
many times and an observer at late times can no longer

FIG. 2. The thick dash-dotted line corresponds to thedN51
region within which it is not possible to define equal-time hype
surfaces, and density perturbations are of order 1. We also sho
few equal-number-of-e-folds contours in field space (c/H,f/fc),
for generic values of the parameters (a50.3,b58). The dashed
sections enter thedN51 region where due to quantum fluctuation
we cannot associate a definite number ofe-folds to the end of
inflation.
rily

ng

at
on

the
the

n-

ical

we

n
he
ies.
ld

the
of

tter
as-

sociate their pathlengths with a single smooth surface. Ther-
mal diffusion is responsible for this loss of information in the
trajectories of photons beyond last scattering. In our case it is
quantum diffusion of the scalar field that determines the loss
of information. Note that in the above-mentioned sense the
region near the critical pointf5fc becomes opaque to
wavelengths equal to the wavelengths of perturbations
formed atf5fc , but it remains transparent to perturbations
with much greater and much smaller wavelengths.

As argued above, our calculation of density perturbations
relies only on being able to associate a given scale at late
times, determined by the number ofe-foldsN, with a unique
smooth surface in field space. Our results for the amplitude
of perturbations nearf5fc in Eqs.~56! and~57! show that
there is indeed a region nearf5fc , c50 for which dN
becomes very large. In Fig. 2 the region under thedN51
curve is the dangerous region. The question now is whether
the parameters of the model are such that this affects a sig-
nificant number of trajectories in field space. To determine
this we should evaluate the probability distribution for the
scalar fields and calculate how much of the initial wave
packet suffers large perturbations in the number ofe-folds,
i.e., dN>1. A heuristic constraint could be that the size of
the scattering region should be much smaller than the size of
the wave packet~very much like scattering of light of wave-
length l by a target with a diametera,l). ThesedN;1
perturbations correspond to large curvature perturbations on
asymptotic comoving hypersurfaces, which later become
black holes. If a significant part of the packet enters the
region wheredN.1, then at late times we cannot recon-
struct the amplitude of the initial perturbation, corresponding
to large scales (f.fc). What happens is that, due to quan-
tum diffusion, different scales will mix and their amplitudes
will be undetermined for an asymptotic observer at late
times.

According to @45#, in single-field slow-roll inflation the
regime ofdN>1 can be identified with quantum diffusion
dominating over classical motion,df>ḟ/H, i.e., with the
well-known self-reproduction regime@46,45#. However, in
two-field inflation this may no longer be the case. For ex-
ample, fluctuations in one of the fields may not affect the
time taken to end inflation. Even in our region II, where only
c determinesN, it is the asymptotic time delay that deter-
mines dN, not the instantaneous perturbation@dc/ċ#* at
horizon crossing.

Let us now calculate the probability distribution for the
field c in region I, as the fieldf5fce

2r (N2Nc) slowly rolls
down its potential. This can be done using the stochastic
approach to inflation@22,18#. Assuming an initiald distribu-
tion for c at f@fc , and an average quantum diffusion per
Hubble volume per Hubble time'H/2p,5 the time-
dependent probability distribution has the form

P~c,t !5
1

A2ps
e2c2/2s2~ t !, ~59!

5Note that our earlier analysis shows that this is an overestimate
for f>fc . However it should give a safe upper bound on the
dispersion of the wave packet.

r-
w a

s



54 6051DENSITY PERTURBATIONS AND BLACK HOLE . . .
where the dispersions2(t) satisfies the evolution equation

ds2~ t !

dt
5

H3

4p2 1
2bH

3 S 12
f2

fc
2Ds2~ t !. ~60!

Under a change of variables,x[exp@22r(N2Nc)# and
S(x)[s2(t)/H2, this equation becomes

dS

dx
52

1

8p2rx
2

b~12x!

3rx
S~x!, ~61!

which has an exact solution

S~x!5
1

8p2r S e
x

axD
a

G~a,ax!, ~62!

wherea[b/3r.b/a is a constant andG(a,z) is the incom-
pleteg function. The solutionS(N) characterizes the disper
sion of the classical trajectories due to quantum fluctuatio
Since the region wheredN.1 has a widthc.H/2ps, see
Eq. ~57!, at f5fc , most classical trajectories will pas
through this region. It is still possible that just onee-fold
after the phase transition the distribution will have spread
much that only a small fraction of all the trajectories st
goes through this region. We thus consider the dispersio
thec-distribution onee-fold after the phase transition, whe
x5exp(22r). Note that thedN>1 region is broader there
sinceCk5e.1 from Fig. 1, but the distribution~62! is also
wider. If the spread of the probability distribution is sti
within the dN>1 region at this stage, i.e.,

^c2&5
H2

8p2r Fexp~e22r !

ae22r GaG~a,ae22r !,
H2

4p2s2
, ~63!

it will be difficult to avoid large perturbations on this scal
Note that this condition is totally independent of the coupli
g. We have plotted this condition in Fig. 3, where we sho

FIG. 3. Contour lines for the dispersion of thec distribution at
the phase transition~dashed line! and onee-fold after the phase
transition~continuous line!, compared with the size of thedN51
region,^c2&1/25nH/2ps ~with n51, . . . ,8 from the bottom up! in
parameter space (a,b). In the region below the curves, the prob
ability distribution for thec field cannot avoid the dangerou
dN51 region and large-amplitude perturbations will be expected
scales associated with the phase transition.
-
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the contour plots of the dispersion of the distribution in units
of the size of thedN51 region, ^c2&1/25nH/2ps, for
n51, . . . ,7 inparameter space (a,b). The figure shows that
in order for the distribution to have spread~onee-fold after
the phase transition! several times the size of thedN51
region one needsb@1. The large separation of the lines
indicates how difficult it is for the distribution to spread,
unlessb@1. If they were closely packed it would mean that,
for not very largeb, the distribution would be much wider
than this dangerous region and it would be possible for most
trajectories to avoid this region. As it stands, for the values
of the parameters in Ref.@18#, most of the trajectories will go
through this region.

In summary, we have shown that fora,0.6 ~the range of
parameters allowed by observations of the spectral tilt on
large and small scales! we find large perturbations,dN;1,
along most trajectories at the phase transition, unlessb@1.
This corresponds to large curvature perturbations on these
scales and thus to large density perturbations after inflation
which, as we shall see, leads inevitably to the formation of
black holes.

VI. BLACK HOLE PRODUCTION

A. Probability of black hole formation

We have seen that quantum fluctuations of the fields can
be responsible for large curvature perturbations on a comov-
ing hypersurface at the end of inflation. These perturbations,
on scales that left the horizon 20–30e-folds before the end
of inflation, as in the model we study, reenter the horizon
during the radiation era and could in principle collapse to
form primordial black holes. The theory of production of
primordial black holes from initial inhomogeneities was first
discussed in Ref.@31#, see also@32#. There is an expression
for the probability that a region of massm, with initial den-
sity contrastd(m)[dr/rum , becomes a primordial black
hole,

P~m!;d~m!e2 b̄4/2d2, ~64!

whereb̄2;w @31#. In the derivation of this equation it was
assumed that the Universe was a barotropic fluid (p5wr)
during gravitational collapse, and that the initial density con-
trast d(m) is much smaller than one. There seems to be
disagreement over the value of the parameterb̄ and the way
to calculate it in a radiation dominated universe, see Ref.
@18#. Novikov et al.. @33,34# give a simpler prescription
based on numerical calculations. They claim that even for
density perturbations less than one at horizon crossing, a
black hole will form as long as the perturbation in the metric
dgab52Fdab is of order 0.7520.90, whereF is the gauge-
invariant Newtonian potential@33,34#. The analysis of a
probability distribution for density perturbations with a
peaked spectrum is beyond the scope of this paper, but we
expect a probability distribution like that of Eq.~64! with
b̄2&1, somewhat larger than that of Ref.@31#. Furthermore,
Carr points out in Ref.@31# that, for a scale invariant spec-
trum with density contrastd;1 at horizon crossing, the
probability of black hole formation isP;1/2 on all scales,
and half of the mass of the Universe is always in the form of
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primordial black holes. From the above discussion it is cle
that for the large density contrasts produced during the ph
transition, d5(4/9)dN;0.5 at horizon crossing, see Eq
~57!, there is no suppression of the probability of black ho
formation on scales associated with the phase transition.

Note that in order to calculate the precise probability
black hole formation~64!, we have to solve the ambiguity in
the value of the parameterb̄. This would require a much
more detailed investigation, see, e.g.,@25#. However, for our
purposes it is enough to realize that in a Gaussian distri
tion where the typical fluctuations of the density contrast a
about 0.5, the fluctuationsd;1 are just one standard devia
tion away fromd;0.5. Therefore for every 10 horizon-size
regions with density contrastd50.5 we typically find one
region with d;1, which can be expected to collapse an
form a black hole.

We should note that the previous discussion of the pro
ability of the black hole formation is based on investigatio
of conventional inflationary density perturbations. In o
case, in addition to such perturbations, we have a dense
of inflating topological defects. One might expect each
them to become a black hole, which would make the num
of black holes much greater even than the one suggeste
the estimates based on Eq.~64!. ~Here we are talking about
the monopolelike inflating topological defects, since doma
walls and strings with symmetry breakingf;MP lead to a
cosmological disaster even if they do not inflate and fo
black holes.! However, we believe that this issue requires
more detailed analysis, see Sec. IV, and therefore in
paper we impose on the model of Ref.@18# only those con-
straints which follow from our investigation of the usual de
sity perturbations.

Let us now evaluate the typical size and mass of the bla
holes produced by these perturbations. Suppose that afte
phase transition the universe inflatedeNc times. Then at the
end of inflation the physical scale that left the horizon duri
the phase transition isH0

21eNc, whereH0, as before, is the
Hubble constant during inflation. Suppose that soon after
flation the equation of state becamep5r/3, as for the ul-
trarelativistic gas. Then the scale factor of the Universe a
inflation grows asAtH0. The scaleH0

21eNcAtH0 becomes
comparable to the particle horizon;t at

th5H0
21e2Nc ~65!

when the energy density becomes smaller than the inflati
ary energy density;H0

2MP
2 by a factore24Nc. At that time

perturbations with density contrastd;1 form black holes of
sizeH0

21e2Nc and mass

MBH.
MP

2

H0
e2Nc. ~66!

ForNc;30 one would have black holes with mass;1037 g,
comparable to the masses of the black holes in the center
galaxies. This is a very interesting mass scale, but copi
production of such black holes would lead to catastrop
cosmological consequences.

By changing the parameters of our model one can ma
the duration of the second stage of inflation rather short.
small black holes withNc;1 in Eq.~65! should be modified
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because they are formed at the stage when the energy may
still be dominated by the oscillations of the inflaton field
with the equation of statep50. This changes a little our
estimate for the time of formation of the black hole,

th5H0
21e3Nc ~67!

and for the black hole mass,

MBH.
MP

2

H0
e3Nc. ~68!

The smallest black holes, corresponding toNc;1 ~and
H0;103 GeV, as in @18#!, would have a mass of about
1011 g. Perturbationsd;1 giving rise to black holes in the
mass interval 101121037 g are clearly ruled out by the
bounds of Ref.@17#. Thus, we should avoid at all costs the
dangerous regiondN.1, since otherwise we will have too
many large black holes.

A very interesting possibility arises when one considers
such a peak in the spectrum, for not very massive black
holes. From the bounds of Ref.@17# we see that density
contrasts of orderd;3b̄2/20 are just enough to give
V051 in the mass range 101521030 g. Taking b̄2.1 from
@33,34# and using Eq.~69!, we find that a parameters53
could indeed give the desired density contrast. This corre-
sponds to a bare mass for the triggering field,mc.4 TeV,
which is very natural. Furthermore, the associated mass scale
can be computed fromNc532/3;11 asMBH5231020 g
510213M( . Using the average density of our galaxy,
rg;10225 g/cm3, we find that these small black holes may
populate the halo of our galaxy and be separated from each
other an average of 1015 cm or about six times the size of the
solar system. They could very well constitute the missing
mass in our galaxy, and still pass undetected by the micro-
lensing surveys@47#.

Note that changing slightly the parameters of the model
one changes simultaneously the scale and the height of the
peak in the black hole spectrum. This means that numerical
values of the black hole masses and the distances between
them can be made substantially different by modification of
the hybrid inflation model. These numbers are very sensitive
to the details of the theory of black hole formation, which
still requires a more complete analysis. It is important, how-
ever, that in the context of the hybrid inflation scenario the
possibility that black holes may contribute to the dark matter
of the Universe becomes quite realistic.

The idea that dark matter may consist of black holes pro-
duced after inflation was explored earlier by Ivanov, Nasel-
sky, and Novikov@25#. They performed a detailed investiga-
tion of the probability of formation of large black holes in
such models, and in this respect their work can be extremely
useful. Their model required the existence of a plateau in the
effective potential, which would lead to a high peak in the
spectrum of density perturbations. However, it is very diffi-
cult to obtain a realistic model of a single scalar field where
one has almost exactly flat spectrumdr/r;531025 on all
scales from 1028 to 1020 cm, and a sharp peak with
dr/r;1 on a slightly smaller scale. Meanwhile, as we have
shown, in the hybrid inflation scenario this possibility
emerges in a very natural way.
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Finally we note that if the density contrast at horizo
crossing is sufficient to form black holes one would al
expect gravitational radiation to be produced during no
spherical collapse6 whose energy density would be compa
rable with that of the black holes at formation. The typic
frequency of these waves,f *;H* at formation, would be
redshifted tof 0;1027(M( /MBH)

1/2 Hz today. However the
energy density of the gravitational waves also redshifts aw
relative to that of the black holes so that for massive bla
holes ~that do not evaporate! the present day
VGW;10212(MBH /M()

1/2VBH . On the other hand, there
could be many more regions where there is significant g
eration of gravitational waves even though the density co
trast is not quite large enough to produce black holes. T
might enhance the fraction of energy density in gravitation
waves. For primordial black holes of order 1026M( the
gravitational wave spectrum has a maximum at a freque
( f 0;1024 Hz! which might be detected by a laser interfe
ometer in space like LISA@48# if the fraction of energy
density in gravitational waves wereVGW*10210. We will
leave a detailed study of this interesting issue for futu
work. Furthermore, gravitational waves associated w
black holes with massesMBH;1015 g have a much higher
frequency at the maximum,f 0;100 Hz, which make them
reasonably good candidates for detection at the Laser In
ferometric Gravitational Wave Observatory~LIGO! and
VIRGO @49#, for a similar energy density.

B. Reheating from black hole evaporation

A very interesting application of the above results com
when we consider a two-stage inflation with a sufficient
short period of inflation after the phase transition. With t
parameters of the model@18# even the smallest black hole
are very heavy and evaporate too late. However, by choos
a model of hybrid inflation with a sufficiently large Hubbl
constant and short second stage of inflation one can ha
very interesting regime when the black holes will domina
the energy density of the Universe soon after the end
inflation and later evaporate before nucleosynthesis, reh
ing the Universe.

Let us first assume that small black holes were formed
a radiation dominated universe, soon after the usual stag
reheating after inflation. To evaluate the probability of bla
hole formation we need to know the density contrast at
horizon crossing during the radiation dominated stage,
Eqs.~57! and ~58!,

d5
4

9
dN.

2CkH0

9psc
.

4

9s
. ~69!

The number ofe-folds in the second stage of inflation i
given by Nc5(1/s)ln(ce/c). With initial condition
c;H0/2p we have

eNc;S 2MP

sH0
D 1/s. ~70!

6We thank John Barrow for drawing our attention to this intere
ing issue.
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The time it takes a black hole to evaporate is given by

t.
1

g*MP
SMBH

MP
D 3. ~71!

Hereg*;102 is the effective number of particle species at
the time of the black hole evaporation. For black holes with
smallNc formed at the matter dominated stage we have

t;
1

g*MP
SMP

H0
e3NcD 3. ~72!

Suppose that the fraction of matter in the black holes ini-
tially was only very small, and the Universe was radiation
dominated from the time of black hole formation to the time
they evaporate. Then the fraction of mass in black holes
grows during this time asa(t);At due of the more rapid
decrease of the energy density of relativistic particles outside
black holes. At the instant before the black holes finally
evaporate, the fraction of energy in black holes has grown by
a factor of

At

th
;

MP

Ag*H0

e3Nc. ~73!

Therefore even if only a small fraction of energy was in the
black holes initially, because the probability of their forma-
tion was suppressed by the exponential factor in Eq.~64!, we
only requireP(d).(t/th)

21/2 for the black holes to come to
dominate the energy density of the Universe before they
evaporate.

To give a particular example, let us consider hybrid infla-
tion with H0;1014 GeV ~which is much greater than in the
model of Ref.@18#!. Let us take, e.g.,s;3, i.e., larger than
the usual parameters of the models of Ref.@18# but much
smaller than those of Ref.@10#. Then we have the total num-
ber of e-folds at the second stage of inflationeNc'40. The
density contrast in this case isd;1/7. The fraction of matter
in the black holes, according to Eq.~64!, will be about
1025. In fact, this is a rather conservative estimate, since our
investigation of topological defects suggests that this number
may be much greater. The black holes will be produced at
the moment th;6310234 s. They will have mass
MBH;63104 g, and will evaporate att;2310216 s, much
earlier than the epoch of nucleosynthesis. Because of the
large growth of the scale factor and redshift of energy of
relativistic particles, at the time of the black hole evaporation
practically all matter in the Universe will be in black holes.
This means that practically all particles which exist in the
universe att.10216 s are created at the moment of the black
hole evaporation.

Note that in the above example, although the probability
of black hole formation is very small, they still give the
dominant contribution to the energy density at late times
because the energy of relativistic particles decreases much
faster than that of black holes. However, this black hole
dominance may begin much earlier if they are formed before
conventional reheating is complete and the equation of state
is p.0. This condition can be easily satisfied in the case of
very small black holes. Then there will be no exponential
suppression of the probability of the black hole production

st-
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~64!, and the fraction of energy in the black holes could
large from the very beginning.

The process of black hole evaporation could be resp
sible for the baryon asymmetry in the Universe, even thou
it is not very easy to get large baryon asymmetry by t
mechanism@24#. Typically it is assumed that reheating an
thermalization of the Universe occurs due to the inflaton fi
decay and the subsequent particle interactions, or thro
bubble collisions like in first-order inflation. The natural a
sumption was that the gravitational interaction at the stage
reheating could be neglected. Here we have another, v
unusual mechanism of reheating. Even in the absence
bubble wall collisions or a large coupling of the inflaton
matter, a considerable fraction of matter after inflation co
be in the form of small black holes. Unlike in the extend
inflation scenario@50#, in our case all such black holes a
formed in the same mass range given by Eqs.~66! and~68!.
If the probability of black hole formation is not strongl
suppressed, then very soon they dominate the energy de
of the Universe@24#. Eventually the evaporation of thes
black holes could reheat the Universe. This opens up an
teresting possibility of connecting the origin of matter in th
Universe with black hole physics.

Let us estimate the reheating temperature of the Unive
in this scenario. Black hole masses in the process of th
evaporation decrease asMBH@12t/t#1/3. ~Here we have
taken into account that the age of the Universeth at the
moment of the black hole formation is much smaller th
their evaporation timet.! The main part of the energy releas
by the evaporating black holes occurs at the end of the t
interval t. Therefore one may simply use the standa
temperature-time relation for the hot universe to get the f
lowing estimate of the reheating temperatureTr after the
black hole evaporation:

Tr
2;

MP

4pt
A 45

g*p
5

A45g*H3

4pApMP

e29Nc. ~74!

For a particular example which we studied (H;1014 GeV,
s;3, g*;102) we getTr;23109 GeV. This estimate is
extremely sensitive to the choice of the parameters. One
easily get reheating temperature as high as 1010 GeV or even
greater, or as small as 1 eV. The only real constraint on
temperature is that one should be able to produce the ba
asymmetry of the Universe during or after black hole evap
ration, and before nucleosynthesis. This picture differs c
siderably from the standard theory of reheating due to
decay of the inflaton field, see, e.g.,@51,52#.

Perhaps one can appreciate a potential importance of
regime if one remembers that the standard reheating du
the inflaton decay often is very inefficient because of t
small coupling of the inflaton to matter@51,5#. In such cases
the Universe for a long time remains matter dominat
(p50). In some other cases reheating is extremely effici
in the very beginning, but later becomes inefficient, so t
the Universe eventually may become matter dominated ag
@52#. But then formation of black holes is no longer su
pressed by radiation pressure. In this case matter easily
lapses into small black holes, which later evaporate and
heat the Universe. Thus, the absence of the usual rehea
triggers black hole formation, which eventually leads to
be
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very efficient reheating of the universe. This is a win-win
situation, where black holes can reheat the Universe even if
the standard reheating mechanism is inoperative.

The energy density released in gravitational waves during
the collapse of these small black holes is redshifted away
together with any other type of radiation, as the black holes
eventually dominate the expansion of the Universe. How-
ever, when the black holes evaporate, they emit a spectrum
of gravitational waves that redshifts unperturbed since they
do not thermalize with the other particles. Some estimates
@53# of black hole evaporation suggest that 2–10 % of the
Hawking radiation is in the form of gravitational waves. If
all the radiation we observe today comes from primordial
black hole evaporation, then the present fraction of energy
density in gravitational waves is of orderVGW;1027 while
the frequency at the maximum is

f 0;431015 HzS MBH

105 gD
1/2

. ~75!

This frequency is far beyond detectability by laser interfer-
ometers like LIGO, VIRGO, LISA, etc., see Refs.@48,49#.
However, there are recent proposals for gravitational wave
detectors with certain crystals that are sensitive to frequen-
cies of order 1015 Hz @54#. The possible detection of such a
spectrum of gravitational waves is a subject for further in-
vestigation and would be a novel signature of this reheating
mechanism.

VII. ‘‘NATURAL’’ HYBRID INFLATION

As we have seen, model~1!, as well as the version pro-
posed in@18#, lead to a copious formation of huge black
holes if one requires that~unlike in the original version of
hybrid inflation! there is an additional inflationary stage after
the phase transition. This problem occurs because typical
classical trajectories in this model go very close toc50.
One can avoid this problem by a modification of the shape of
the effective potential@13#. Also, as we have shown above,
black hole production can be even useful if the second infla-
tionary stage is very short and the black holes are very small.
But there exists another problem, which we will consider
now together with the first one.

The main reason why many authors are trying to imple-
ment hybrid inflation in supersymmetric theories is to protect
the flatness of the effective potential in thef direction. One
may try to relate the small mass of the fieldf to the grav-
itino massm3/2;1 TeV, which appears because of super-
symmetry breaking. If one argues that the parameterM2 in
Eq. ~2! is of the order of the intermediate scale of supersym-
metry breakingm3/2MP , then there appears to be no unex-
plained small parameters in the model. Still the appearance
of the termM4;(m3/2MP)

2cos2(c/A2 f ) in Eq. ~2! remains
somewhat unclear to us. If one expandsM4cos2(c/A2 f ) in
powers ofc for M;1011 GeV andf;1018 GeV as in Ref.
@18#, one would find an extremely small coupling constant
M4/ f 4;10230 in front of the termc4. It was pointed out in
@18# that such couplings may appear in a natural way if one
introduces certain superpotentials which lead to nonrenor-
malizable interactions. However, to study nonrenormalizable
terms in an internally consistent way it would be necessary
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to consider models based on supergravity, which was out
the scope of our investigation, as well as of the investigat
performed in@18#.

Fortunately, both smallness of the parameterM4 and the
shape of the potential can be explained if one interpretc
as a pseudo Goldstone field similar to the axion fie
One may consider a model of a complex scalar fie
C(x)[@ f (x)/A2#expiu(x), which after spontaneous symme
try breaking can be represented as (f /A2)exp@ic(x)/f#. If the
original effective potential was a function ofC*C, the field
c will be massless. However, nonperturbative~instanton or
wormhole! effects may give this field a small mass~see Ref.
@55# for a recent discussion of this issue!. This effect can be
described by adding operators breaking initial U~1! symme-
try of the effective potential. Consider the family of oper
torsgn(C6C* )nf 42n. Since these operators appear beca
of nonperturbative effects, the coupling constantsgn may be
exponentially small. One may take, for example, the simp
operator g1(C6C* ) f 3, and add to it a constant term
A2g1f 4 normalizing the vacuum energy to zero. This giv
the effective potential of the fieldc, which is completely
analogous to the standard axion potential,7

V~c!52A2g1f 4cos2S c

2 f D . ~76!

Note that in this potentialc/ f is an angular variable from
0 to 2p. This potential coincides with the effective potenti
of the field c in Eq. ~2! up to an obvious change
2A2g1f 4→M4, f→ fA2. ~Our definition off corresponds to
a canonical normalization of the fieldf kinetic terms.! In
this context both the shape of the potential for the fieldc and
the smallness of the termM4cos2(c/A2 f ) are explained in a
natural way. Potentials of this type have been used in ‘‘na
ral inflation’’ models @26,27#. The problem with ‘‘natural
inflation’’ is that for the ‘‘natural’’ value of symmetry break
ing f&MP inflation is too short and the spectrum indexn is
significantly less than 1. There is no such problem in o
model; the main purpose of the introduction of the fieldc is
to support inflationbefore the phase transition rather tha
after it.

Thus it makes a lot of sense to explore cosine potent
such as Eq.~76! in the context of hybrid inflation. But with
the interpretation of the fieldc as a pseudo Goldstone pa
ticle, one cannot couple it to the fieldf in the way proposed
in Eq. ~2!. Now c is the angular part of the fieldC, and one
cannot write any superpotentials for the fieldsC and f
which would result in the simple interaction terms;c2f2.
However, since we already reinterpreted the cosine te
in Eq. ~2! as appearing from the anomalous ter
g1(C1C* ) f 3, we can go further and introduce an anom
lous interaction termg2(Ce2 iu2C* eiu)2f 2f2. Note that
we have introduced here for generality the phase shiftu be-
tween the two anomalous terms. Indeed, the origin of

7Note that in@12# a model of hybrid inflation was studied base
on a supersymmetric Peccei-Quinn model. In that case it was
self-interaction energy of the radial degree of freedomf (x) that
gave the constant potential energy in the false vacuum.
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first and of the second anomalous terms may be different
and a priori one should not expect U~1! symmetry to be
broken by these two terms in the same way. In what follows
we will assume thatu is small. The resulting effective po-
tential including the mass term of the fieldf can be repre-
sented in the following form:

V~f,c!52l1
2f 4cos2

c

2 f
1

l2
2

2
f 2f2sin2S c

f
2u D1

m2

2
f2.

~77!

Let us now analyze the shape of this potential and its
relation to the more usual hybrid inflation potential~1!. Con-
sider first the caseu50. At largef the dominant term in-
volving c in Eq. ~77! is the second one, which implies that at
large f the field c will settle in one of the minima at
c/ f5np, wheren is some integer. For odd values ofn the
energy density due to the self-interaction cosine-squared
term also vanishes and we are left with conventional chaotic
inflation withV5m2f2/2. However for even values ofn, the
self-interaction term is nonzero andc is trapped in a false
vacuum, like the model in Eq.~1!. Nearc50 the potential in
Eq. ~77! is given by

V~f,c!52l1
2f 42

l1
2f 2

2
c21

l2
2

2
f2c21

m2

2
f2. ~78!

One concludes that aboutc50 the bare mass squared of the
field c is mc

252l1
2f 2, but that the effective mass squared

becomes positive forf.fc5l1f /l2. Nearfc at c50 the
energy density is given by 2l1

2f 2( f 21m2/4l2
2). The first

term dominates, as in the usual hybrid inflation, for
m!l2f , and we have exactly the same as the model we hav
analyzed in the preceding sections where

H5Ap

3

4l1f
2

MP
, ~79!

and the dimensionless parameters introduced in Sec. II ar
given by a5(3/16p)m2MP

2 /l1
2f 4, b5(3/16p)MP

2 / f 2, and
g5l2

2 . The curvature perturbations produced atf.fc are
then given by Eq.~48!. For smalla we have@10#

l2l1
2f 5

MP
3m2 .231026 ~80!

in order to agree with the COBE normalization@7#.
There are two regimes one may consider in this theory.

First of all, one may assume that the coupling constants ar
not extraordinarily small. Then, as was shown in Ref.@10#,
the conditionsm!H anddr/r;1025 imply that there was
no second stage of inflation in this model, i.e., everything is
going on as in the first version of the hybrid inflation sce-
nario @10#. One may consider, for example, the following
parameters:f;1016 GeV ~GUT scale!, m51010 GeV ~inter-
mediate SUSY-breaking scale!, and l1;l2;1023. In this
case all conditions mentioned above will be satisfied. The
parametersa;1022 andb;105 so there will be no second
stage of inflation and no anomalous black hole production.
For u50 there will be domain wall production. However,
the domain walls formed in this scenario are unstable be-
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cause they are always bounded by strings withC50. More-
over, it is sufficient to consider models with a very sma
nonzero value ofu, so that all the evolution will go in one
direction, and there will be no domain walls or other top
logical defects. One can easily understand this if one ta
into account that at largef the minimum of the effective
potential with respect to the fieldc is atc5u fÞ0. Thus it is
enough to haveu.10215 to avoid black hole formation in
our model.

As one might expect, the same model for a differe
choice of parameters can reproduce all the results of
model proposed in@18#, including the second stage of infla
tion after the phase transition. This requires to ta
l1
2;10230, which is an extremely small number. Howeve

in our case the existence of this small parameter is not s
prising, because it could appear due to nonperturbative
fects. Typically the value of this parameter is suppressed
factors such as exp(28p2/g2) whereg is the gauge coupling
constant. In some models this suppression may not be v
significant, but in general this suppression can easily g
numbers much smaller than 10230 @55#. In particular, in the
usual axion theory withf;1012 GeV the corresponding con
stant is of the order of 102130. From this perspective it is
more surprising that in this model the coupling constantl2

2 is
not required to be equally small. This disparity can be eas
alleviated if one does not insist that the masses of both fie
as well as the Hubble constant at the end of inflation sho
be of the order ofm3/2.

Foru50 in this model, just like in the model of Ref.@18#,
one obtains inflating topological defects, very large dens
perturbations on the scale corresponding to the momen
the phase transition, and catastrophic black hole product
However, it is no longer a generic property of the mod
Remember that the dangerous area of the phase space
cated very close tof5fc and c50. For example, large
density perturbations are generated only atc,H;10215f ,
for H;103 GeV and f;1018 GeV. It is enough to have
u.10215 to avoid black hole formation in our model. Thu
for generic values ofu inflationary trajectories never come
close toc50, and the problem disappears. For noninteg
values ofu/p hybrid inflation can occur alongc5u1np
for any integer value ofn, with the false vacuum energy
density equal to 2l1

2f 4cos2(u/2) for even n or
2l1

2f 4sin2(u/2) for odd values.
We do not want to pretend that the ‘‘natural’’ hybrid in

flation model is necessarily very natural. In order to stu
this question one would have to investigate the appearanc
the anomalous terms in a more detailed way, and to ana
the possible effects of adding a more standard term l
C*Cf2. Our main purpose was to show that the cosi
terms with small coefficients can be incorporated into t
hybrid inflation models, and that it is possible to avoid th
problem of large density perturbations and black hole p
duction in these models. However, as we have argued in
previous section, primordial black holes produced after infl
tion under certain conditions may lead to very interesti
cosmological consequences. On the other hand, there
simpler way to get rid of the black holes; one may simp
return to the original hybrid inflation scenario without th
second inflationary stage.
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VIII. CONCLUSIONS

Inflationary theory was first proposed about 15 years ago
and its main principles are by now well understood. It is
therefore surprising to see that slight modifications in simple
and natural models may lead to important and sometime
absolutely unexpected consequences. For almost 15 years
knew that inflation exponentially dilutes the density of topo-
logical defects, but only two years ago did we learn tha
topological defects may inflate themselves@20#. It was also
thought that old inflation did not work, and chaotic inflation
always predicted that the Universe is flat. A year ago, how
ever, it was found that the simplest hybrid model where one
takes an old inflation potential for one of the fields and cha
otic inflation potential for another one~even if these two
fields do not interact with each other! leads to the Universe
consisting of infinitely many separate universes with all pos
sible values ofV<1 @56#. Now we encountered one more
surprising fact. For many years it seemed clear that inflatio
erased all preexisting inhomogeneities and did not leav
much room for the production of primordial black holes,
which had been the subject of active investigation in the en
of the 70s. Now we see that in a very simple inflationary
model one can easily obtain a large amount of black holes
They are formed only in a specific mass range, determine
by the duration of inflation after the phase transition. Typi-
cally they are huge, but depending on the parameters of th
model they can be very small as well.

Note that black holes are not necessarily a curse but cou
also be a blessing. In the simplest model studied here th
probability of black hole formation is not suppressed at all,
and their number appears to be large. We propose som
modifications of this model where black hole formation is
strongly suppressed. It is possible for certain values of th
parameters of the model to have the right amount of rela
tively large black holes,M;101521030 g, that have not yet
evaporated and may be responsible for the dark matter in th
halos of galaxies. In a particular model considered in Sec. V
we have shown that the halo of our galaxy may consist o
black holes of mass;1021 g. However, numerical values of
the masses and abundances of the black holes are stron
model dependent. Depending on the parameters of the mod
there could be just enough black holes to giveV051 in the
Universe. If they are supermassive, one could specula
about their relation to the black holes in the centers of gal
axies.

Suppressing the number of large black holes down to
desirable level requires a certain degree of fine tuning. But
is relatively easy to make the black holes very small and
harmless by making the second stage of inflation short an
by ending inflation at largeH. ForH;103 GeV the smallest
black hole masses;MP

2 /H are still very large, about 1011 g,
and they evaporate very late, att;103 s . But if, e.g., one
takes the models withH;1014 GeV, one can obtain black
holes with a mass;63104 g, evaporating att;10216 s.
Such black holes would dominate the Universe after thei
formation until evaporation. Evaporation of black holes may
lead to baryon asymmetry production. During the last 15
years this mechanism of baryogenesis was largely ignore
since it seemed impossible to produce many small blac
holes after inflation~see however Ref.@24#!. We may now
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return to the investigation of this interesting possibility. In
dependently of the issue of baryogenesis, one should em
size that the possibility of the black hole dominance at t
intermediate post inflationary stage may change comple
the mechanism of reheating after inflation, which would pr
ceed via black hole evaporation. Furthermore, there is
possibility of gravitational wave production during blac
hole evaporation. For a range of black hole masses it is p
sible that the associated stochastic spectrum of gravitatio
waves will be observed in future detectors.

In the course of our work we have further developed
method of investigation of density perturbations which c
be applied even for complicated systems of several coup
scalar fields@42,39#. This method is rather simple and pow
erful. It gives analytical results in those cases in which t
motion in field space is integrable, like in hybrid inflatio
and in theories with coupled inflaton and dilaton fields, bu
can be used in a more general context as well. The met
consists of three main parts. First of all, for any point in th
(f,c) space one finds~either analytically or numerically! an
inflationary trajectory going from this point, and calculate
the number ofe-foldsN(f,c) for this trajectory. This prob-
lem is easy to solve numerically even for very complicat
potentials. Then one perturbs the position of the initial po
(f,c) by adding to it inflationary jumps, which typically are
of the orderH/2p, but may be greater or smaller, see Se
III. This gives us the perturbation of the number ofe-folds
dN, which is directly related to the density perturbation
dr/r5(4/9)dN(f,c) at reentry during the radiation domi
nated era. Note that the resulting density perturbations fo
given N ~i.e., for a given wavelength! will depend on the
place (f,c) our trajectory came from. Thus the remainin
step is to evaluate the probability that for a given number
e-foldsN from the end of inflation the field was at any pa
ticular point (f,c). This problem can be solved by using th
stochastic approach to inflation@22#. This approach tells us
what is the probability to find density perturbations of
given amplitude with a given wavelength.8 Usually at the last
stages of inflation we have a single inflationary trajecto
independent of initial conditions. In our case, however,

8Note that a similar problem of evaluation of probability appea
also in the theory of a single inflaton field if one takes into accou
the possibility of nonperturbative effects due to large jumps alo
the inflationary trajectory@57#. However, in the theory of severa
scalar fields this issue becomes of more immediate importance
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flationary trajectory is unstable atf,fc , c50; all trajec-
tories bifurcate due to quantum fluctuations. Therefore th
calculation of the probability distribution was necessary to
show that atypical amplitude of density perturbations pro-
duced near the point of the phase transition is very large.

As an important by-product of our investigation we have
found a new type of inflating topological defect. They appea
in the models where the curvature of the effective potential i
somewhat greater thanH2, but nevertheless the time neces-
sary for symmetry breaking to occur is much greater tha
H21. These defects do not inflate eternally and do not form
fractal structure found in@20#. Still inflation in the cores of
these defects continues for a while even after it ends outsid
of them. As a result, they lead to large density perturbation
of a specific type. Until now inflating topological defects
could be considered as an interesting but somewhat esote
feature of certain inflationary models. Typically the distance
from us to these defects was many orders of magnitud
greater than the size of the observable part of the Univers
They were important for understanding of the global struc
ture of the Universe, but not of our local neighborhood
However, in hybrid inflation models with two stages of in-
flation these defects are abundantly produced at the mome
of the phase transition, and populate the part of the Univers
which is accessible to our observations. We believe that th
new type of inflating topological defects deserves separa
investigation. It would be very interesting to understand
whether they lead to black hole formation and to explore
other possible observational consequences of these exo
objects. It is amazing that very simple models of two scala
fields can exhibit such a rich and interesting behavior.
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