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Fractal dimensions and scaling laws in the interstellar medium: A new field theory approach
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We develop a field theoretical approach to the cold interstellar medium~ISM!. We show that a nonrelativ-
istic self-gravitating gas in thermal equilibrium with a variable number of atoms or fragments is exactly

equivalent to a field theory of a single scalar fieldf(xW ) with an exponential self-interaction. We analyze this
field theory perturbatively and nonperturbatively through the renormalization group approach. We show a
scalingbehavior~critical! for a continuous range of the temperature and of the other physical parameters. We
derive in this framework the scaling relationDM (R);RdH for the mass on a region of sizeR, andDv;Rq for
the velocity dispersion whereq5

1
2(dH21). For the density-density correlations we find a power-law behavior

for large distances;urW12rW2u2dH26. The fractal dimensiondH turns out to be related with the critical exponent
n of the correlation length bydH51/n. The renormalization group approach for a single component scalar field
in three dimensions states that the long-distance critical behavior is governed by the~nonperturbative! Ising
fixed point. The corresponding values of the scaling exponents aren50.631. . . , dH51.585. . . , and
q50.293. . . . Mean field theory yields for the scaling exponentsn51/2, dH52, andq51/2. Both the Ising
and the mean field values are compatible with the present ISM observational data: 1.4<dH
<2, 0.3<q<0.6. As typical in critical phenomena, the scaling behavior and critical exponents of the ISM can
be obtained without dealing with the dynamical~time-dependent! behavior.@S0556-2821~96!02422-8#

PACS number~s!: 98.38.2j, 05.70.Jk, 11.10.Hi, 64.60.Ak
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I. INTRODUCTION AND RESULTS

The interstellar medium~ISM! is a gas essentially formed
by atomic~H I! and molecular~H2) hydrogen, distributed in
cold (T; 5–50 K! clouds, in a very inhomogeneous an
fragmented structure. These clouds are confined in the ga
tic plane and, in particular, along the spiral arms. They
distributed in a hierarchy of structures, of observed mas
from 1M( to 106 M( . The morphology and kinematics o
these structures are traced by radio astronomical obse
tions of the HI hyperfine line at the wavelength of 21 cm
and of the rotational lines of the CO molecule~the funda-
mental line being at 2.6 mm in wavelength!, and many other
less abundant molecules. Structures have been measure
rectly in emission from 0.01–100 pc, and there is some e
dence in VLBI ~very long-based interferometry! H I absorp-
tion of structures as low as 1024 pc5 20 AU (331014 cm!.
The mean density of structures is roughly inversely prop
tional to their sizes, and vary between 10 and 15

atoms/cm3 ~significantly above the mean density of the IS
which is about 0.1 atoms/cm3 or 1.6310225 g/cm3). Obser-
vations of the ISM revealed remarkable relations between
mass, the radius, and velocity dispersion of the various
gions, as first noticed by Larson@1#, and since then con-
firmed by many other independent observations~see, for ex-
ample, Ref.@2#!. From a compilation of well-establishe
samples of data for many different types of molecular clou
of maximum linear dimension~size! R, mass fluctuation
DM , and internal velocity dispersionDv in each region:

DM ~R!;RdH, Dv;Rq, ~1.1!
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over a large range of cloud sizes, with 1024–
1022 pc<R<100 pc,

1.4<dH<2, 0.3<q<0.6. ~1.2!

Thesescaling relations indicate a hierarchical structure fo
the molecular clouds which is independent of the scale ov
the above-cited range; above 100 pc in size, corresponding
giant molecular clouds, larger structures will be destroyed b
galactic shear.

These relations appear to beuniversal, the exponents
dH ,q are almost constant over all scales of the Galaxy, an
whatever be the observed molecule or element. These pro
erties of interstellar cold gas are supported first of all from
observations~and for many different tracers of cloud struc-
tures: dark globules using13CO, since the more abundant
isotopic species12CO is highly optically thick, dark cloud
cores using HCN or CS as density tracers, giant molecul
clouds using12CO, HI to trace more diffuse gas, and even
cold dust emission in the far infrared!. Nearby molecular
clouds are observed to be fragmented and self-similar in pr
jection over a range of scales and densities of at least 14,
and perhaps up to 106.

The physical origin as well as the interpretation of th
scaling relations~1.1! are not theoretically understood. The
theoretical derivation of these relations has been the subj
of many proposals and controversial discussions. It is not o
aim here to account for all the proposed models of the IS
and we refer the reader to Refs.@2# for a review.

The physics of the ISM is complex, especially when w
consider the violent perturbations brought by star formatio
Energy is then poured into the ISM either mechanicall
through supernovae explosions, stellar winds, bipolar g
6008 © 1996 The American Physical Society
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flows, etc. or radiatively through star light, heating or ioni
ing the medium, directly or through heated dust. Relat
velocities between the various fragments of the ISM exce
their internal thermal speeds, shock fronts develop, and
highly dissipative; radiative cooling is very efficient, so th
globally the ISM might be considered isothermal on lar
scales. Whatever the diversity of the processes, the uni
sality of the scaling relations suggests a common mechan
underlying the physics. We propose that self-gravity is
main force at the origin of the structures, that can be p
turbed locally by heating sources. Observations are com
ible with virialized structures at all scales. Moreover, it h
been suggested that the molecular cloud ensemble is in
thermal equilibrium with the cosmic background radiation
T;3 K in the outer parts of galaxies, devoid of any star a
heating sources@3#. This colder isothermal medium migh
represent the ideal frame to understand the role of s
gravity in shaping the hierarchical structures. Our aim is
show that the scaling laws obtained are then quite stabl
perturbations.

Till now, no theoretical derivation of the scaling laws@Eq.
~1.1!# has been provided in which the values of the exp
nents areobtainedfrom the theory~and not just taken from
outside or as a starting input or hypothesis!.

The aim of these authors is to develop a theory of the c
ISM. A first step in this goal is to provide a theoretical de
vation of the scaling laws@Eq. ~1.1!#, in which the values of
the exponentsdH ,q are obtainedfrom the theory. For this
purpose, we will implement for the ISM the powerful tool o
field theory and the Wilson’s approach to critical phenome
@4,13#.

We consider a gas of nonrelativistic atoms interacti
with one another through Newtonian gravity and which a
in thermal equilibrium at temperatureT. We work in the
grand canonical ensemble, allowing for a variable numbe
particlesN.

Then, we show that this system is exactly equivalent t
field theory of a single scalar fieldf(xW ) with exponential
interaction. We express the grand canonical partition fu
tion Z as

Z5E E Dfe2S[f~ .!] , ~1.3!

where

S@f~ .!#[
1

Teff
E d3xF12 ~¹f!22m2ef~xW !G ,

Teff54p
Gm2

T
, m25A2

p
zGm7/2AT, ~1.4!

m stands for the mass of the atoms andz for the fugacity. We
show that in thef-field language, the particle density ex
presses as

^r~rW !&52
1

Teff
^¹2f~rW !&5

m2

Teff
^ef~rW !&, ~1.5!
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where angular brackets mean a functional average ov
f(.) with statistical weighteS[f(.)] . Density correlators are
written as

C~rW1 ,rW2![^r~rW1!r~rW2!&2^r~rW1!&^r~rW2!&

5
m4

Teff
2 @^ef~rW1!ef~rW2!&2^ef~rW1!&^ef~rW2!&#.

~1.6!

The f field defined by Eqs.~1.3! and ~1.4! has remarkable
properties under scale transformations

xW→xWl[lxW ,

wherel is an arbitrary real number. For any solutionf(xW )
of the stationary point equations,

¹2f~xW !1m2ef~xW !50, ~1.7!

there is a family of dilated solutions of the same Eq.~1.7!,
given by

fl~xW ![f~lxW !1 lnl2.

In addition,S@fl(.)#5l22DS@f(.)#.
We study the field theory~1.3! and ~1.4! both perturba-

tively and nonperturbatively.
The computation of the thermal fluctuations through the

evaluation of the functional integral equation~1.3! is quite
nontrivial. We use the scaling property as a guiding prin
ciple. In order to build a perturbation theory in the dimen-
sionless couplingg[AmTeff we look for stationary points of
Eq. ~1.4!. We compute the density correlator equation~1.6!
to leading order ing. For large distances it behaves as

C~rW1 ,rW2! ;
urW12rW2u→`

m4

32p2 urW12rW2u2

1O~ urW12rW2u23!. ~1.8!

We analyze further this theory with the renormalization
group approach. Such nonperturbative approach is the mo
powerful framework to derive scaling behaviors in field
theory @4,6,7#.

We show that the mass contained in a region of volum
V5R3 scales as

^M ~R!&5mER

^ef~xW !&d3x

.mVa1m
K

12a
R 1/n1•••,

and the mass fluctuation,@DM (R)#25^M2&2^M &2, scales
as

DM ~R!;RdH.

Here,n is the correlation length critical exponent for thef
theory ~1.3! anda andK are constants. Moreover,
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^r~rW !&5ma1m
K

4pn~12a!
r ~1/n!23

for r of order ;R. ~1.9!

The scaling exponentn can be identified with the inverse
Haussdorf~fractal! dimensiondH of the system

dH5
1

n
.

In this way,DM;RdH according to the usual definition o
fractal dimensions@8#.

From the renormalization group analysis, the densi
density correlators~1.6! result to be

C~rW1 ,rW2!;urW12rW2u~2/n!26. ~1.10!

Computing the average gravitational potential energy and
ing the virial theorem yields, for the velocity dispersion,

Dv;R1/2@~1/n!21#.

This gives a new scaling relation between the expone
dH andq:

q5
1

2 S 1n 21D5
1

2
~dH21!.

The perturbative calculation~1.8! yields the mean field
value forn @9#. That is,

n5
1

2
, dH52, and q5

1

2
. ~1.11!

We find scaling behavior in thef theory for acontinuum
set of values ofm2 and Teff . The renormalization group
transformation amounts to replace the parametersm2 and
Teff in bH andS@f(.)# by the effective ones at the scaleL in
question.

The renormalization group approach applied to asingle
component scalar field in three space dimensions indica
that the long-distance critical behavior is governed by t
~nonperturbative! Ising fixed point @4,6,7#. Very probably,
there are no further fixed points@10#. The scaling exponents
associated to the Ising fixed point are

n50.631. . . , dH51.585. . . , andq50.293. . . .
~1.12!

Both the mean field~1.11! and the Ising~1.12! numerical
values are compatible with the present observational val
~1.1! and ~1.2!.

The theory presented here also predicts a power-law
havior for the two-point ISM density correlation functio
@see Eq.~1.10!, 2dH26522.830 . . . , for the Ising fixed
point and 2dH26522 for the mean field exponents#, that
should be compared with observations. Previous attempt
derive correlation functions from observations were not e
tirely conclusive, because of lack of dynamical range@11#,
but much more extended maps of the ISM could be availa
soon to test our theory. In addition, we predict an indepe
dent exponent for the gravitational potential correlatio
f
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(;r212h, where h Ising50.037 . . . andhmean field50 @6#!,
which could be checked through gravitational lens observa
tions in front of quasars.

The mass parameterm @see Eq.~1.4!# in the f theory
turns to coincide at the tree level with the inverse of the
Jeans length

m5A12

p

1

dJ
.

We find that in the scaling domain the Jeans distancedJ
grows aŝ dJ&;R. This shows that the Jeans distancescales
with the sizeof the system and, therefore, the instability is
present for all sizesR. HaddJ been of order larger thanR,
the Jeans instability would be absent.

The gravitational gas in thermal equilibrium explains
quantitatively the observed scaling laws in the ISM. This fac
does not exclude turbulent phenomena in the ISM. Fluid
flows ~including turbulent regimes! are probably relevant in
the dynamics~time-dependent processes! of the ISM. As
usual in critical phenomena@4,6#, the equilibrium scaling
laws can be understood for the ISM without delving into the
dynamics. A further step in the study of the ISM will be to
include the dynamical~time-dependent! description within
the field theory approach presented in this paper.

If the ISM is considered as a flow, the Reynolds numbe
ReISM on scalesL;100 pc has a very high value of the order
of 106. This led to the suggestion that the ISM~and the
Universe in general! could bemodeledas a turbulent flow
@12#. ~Larson @1# first observed that the exponent in the
power-law relation for the velocity dispersion is not greatly
different from the Kolmogorov value 1/3 for subsonic turbu-
lence.!

It must be noticed that the turbulence hypothesis for the
ISM is based on the comparison of the ISM with the results
known for incompressible flows. However, the physical con-
ditions in the ISM are very different from those of incom-
pressible flows in the laboratory.~And the study of ISM
turbulence needs more complete and enlarged investigatio
than those performed until now based in the concepts of flow
turbulence in the laboratory.! In addition to the fact that the
ISM exhibits large density fluctuations on all scales, and the
observed fluctuations are highly supersonic~thus the ISM
cannot be viewed as an ‘‘incompressible’’ and ‘‘subsonic’’
flow!, and in addition to other differences, an essential fea
ture to point out is that the long-range, self-gravity interac-
tion present in the ISM is completely absent in the studies o
flow turbulence. In any case, in a satisfactory theory of the
ISM, it should be possible to extract the behaviors of the
ISM ~be turbulent or whatever! from the theory as a result,
instead to be introduced as a starting input or hypothesis.

This paper is organized as follows. In Sec. II we develop
the field theory approach to the gravitational gas. A short
distance cutoff is naturally present here and prevents zero
distance gravitational collapse singularities~which would be
unphysical in the present case!. Here, the cutoff theory is
physically meaningful. The gravitational gas is also treated
in a D-dimensional space.

In Sec. III we study the scaling behavior and thermal
fluctuations both in perturbation theory and nonperturba
tively ~renormalization group approach!. g2[mTeff acts as
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the dimensionless coupling constant for the nonlinear flu
tuations of the fieldf. We show that these fluctuations ar
massless and that the theory scales~behaves critically! for a
continuous range of valuesm2Teff . Thus, changingm

2 and
Teff keeps the theory atcriticality. The renormalization group
analysis made in Sec. III confirms such results. We also tr
~Sec. III E! the two-dimensional case making contact wit
random surfaces and their fractal dimensions.

Discussion and remarks are presented in Sec. IV. Exter
gravity forces to the gas, like stars, are shownnot to affect
the scaling behavior of the gas. That is, the scaling expone
q,dH are solely governed by fixed points and hence, they a
stable under gravitational perturbations. In addition, we ge
eralize thef theory to a gas formed by several types o
atoms with different masses and fugacities. Again, the sc
ing exponents are shown to be identical to the gravitation
gas formed of identical atoms.

The differences between the critical behavior of the grav
tational gas and those in spin models~and other statistical
models in the same universality class! are also pointed out in
Sec. IV.

II. FIELD THEORY APPROACH
TO THE GRAVITATIONAL GAS

Let us consider a gas of nonrelativistic atoms with ma
m interacting only through Newtonian gravity and which ar
in thermal equilibrium at temperatureT[b21. We shall
work in the grand canonical ensemble, allowing for a var
able number of particlesN.

The grand partition function of the system can be writte
as

Z5 (
N50

`
zN

N! E . . . E )
l51

N
d3pld

3ql
~2p!3

e2bHN, ~2.1!

where

HN5(
l51

N pl
2

2m
2Gm2 (

1< l, j<N

1

uqW l2qW j u
, ~2.2!

G is Newton’s constant, andz is the fugacity.
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The integrals over the momentapl ,(1< l<N) can be per-
formed explicitly in Eq.~2.1! using

E d3p

~2p!3
expS 2

bp2

2m D5S m

2pb D 3/2.
We thus find,

Z5 (
N50

`
1

N! FzS m

2pb D 3/2GNE . . . E )
l51

N

d3ql

3expS bGm2 (
1< l, j<N

1

uqW l2qW j u
D . ~2.3!

We proceed now to recast this many-body problem into a
field-theoretical form@13–16#.

Let us define the density

r~rW !5(
j51

N

d~rW2qW j !, ~2.4!

such that we can rewrite the potential energy in Eq.~2.3! as

1

2
bGm2 (

1< lÞ j<N

1

uqW l2qW j u

5
1

2
bGm2E

uxW2yW u.a

d3xd3y

uxW2yW u
r~xW !r~yW !. ~2.5!

The cutoff a in the right-hand side~RHS! is introduced in
order to avoid self-interacting divergent terms. However,
such divergent terms would contribute toZ by an infinite
multiplicative factor that can be factored out.

By using

¹2
1

uxW2yW u
524pd~xW2yW !

and partial integration, we can now represent the exponent o
the potential energy equation~2.5! as a functional integral
@14#
expS 1
2 bGm2E d3xd3y

uxW2yW u
r~xW !r~yW !5E E DjexpS 2 1

2 E d3x~¹j!212mApGbE d3xj~xW !r~xW ! D . ~2.6!

Inserting this expression into Eq.~2.3! and using Eq.~2.4! yields

Z5 (
N50

`
1

N! FzS m

2pb D 3/2GNE E DjexpF2
1

2E d3x~¹j!2G E . . . E )
l51

N

d3qlexpF2mApGb(
l51

N

j~qW l !G
5E E DjexpF2

1

2E d3x~¹j!2G (
N50

`
1

N! FzS m

2pb D 3/2GNF E d3qexp@2mApGbj~qW !#GN
5E E DjexpH 2E d3xF12 ~¹j!22zS m

2pb D 3/2e2mApGbj~xW !G J . ~2.7!
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It is convenient to introduce the dimensionless field

f~xW ![2mApGbj~xW !. ~2.8!

Then,

Z5E E DfexpH 2
1

Teff
E d3xF12 ~¹f!22m2ef~xW !G J ,

~2.9!

where

m25A2

p
zGm7/2AT, Teff54p

Gm2

T
. ~2.10!

The partition function for the gas of particles in gravitationa
interaction has been transformed into the partition functi
for a single scalar fieldf(xW ) with local action

S@f~ .!#[
1

Teff
E d3xF12 ~¹f!22m2ef~xW !G . ~2.11!

The f field exhibits an exponential self-interaction
2m2ef(xW ).

Notice that the effective temperatureTeff for the f-field
partition function turns out to beinverselyproportional to
T whereas the characteristic lengthm21 behaves as
;T21/4. This is a duality-type mapping between the tw
models.

It must be noticed that the term2m2ef(xW ) makes the
f-field energy density unbounded from below. Actually, th
initial Hamiltonian~2.1! is also unbounded from below. This
unboundedness physically originates in the attractive char
ter of the gravitational force. Including a short-distance cu
off ~see Sec. II A, below! eliminates the zero-distance singu
larity and hence the possibility of zero-distance collap
which is unphysical in the present context. We, therefor
expect meaningful physical results in the cutoff theor
Moreover, assuming zero-boundary conditions forf(rW) at
r→` shows that the derivatives off must also be large if
ef is large. Hence, the term12(¹f)2 may stabilize the en-
ergy.
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The action~2.11! defines a nonrenormalizable field theory
for any number of dimensionsD.2 @see Eq.~2.33! below#.
This is a further reason to keep the short-distance cutoff no
zero.

Let us compute now the statistical average value of th
densityr(rW) which in the grand canonical ensemble is given
by

^r~rW !&5Z21(
N50

`
1

N! FzS m

2pb D 3/2GNE . . . E )
l51

N

d3qlr~rW !

3expS 12bGm2 (
1< lÞ j<N

1

uqW l2qW j u
D . ~2.12!

As usual in the functional integral calculations, it is con-
venient to introduce sources in the partition function~2.9! in
order to compute average values of fields

Z@J~ .!#[E E DfexpH 2
1

Teff
E d3xF12 ~¹f!22m2ef~xW !G

1E d3xJ~xW !f~xW !J . ~2.13!

The average value off(rW) then writes as

^f~rW !&5
d lnZ
dJ~rW !

. ~2.14!

In order to computêr(rW)& it is useful to introduce

V@J~ .!#[
1

2
bGm2E

uxW2yW u.a

d3xd3y

uxW2yW u
@r~xW !1J~xW !#

3@r~yW !1J~yW !#. ~2.15!

Then, we have

r~rW !eV[0]52
1

Teff
¹
2
xW S d

dJ~rW !
eV[J~ .!] D U

J50

.

By following the same steps as in Eqs.~2.6! and~2.7!, we
find
^r~rW !&52
1

Teff
¹ rW
2 S d

dJ~rW ! (N50

`
1

N! FzS m

2pb D 3/2GNZ@0#21E E DjexpH 2E d3xF12~¹j!222mApGbj~xW !J~xW !G J
3E . . . E )

l51

N

d3qlexpF2mApGb (
l51

N

j~qW l !G D U
J50

52
1

Teff
¹ rW
2S d

dJ~rW !
lnZ@J~ .!# D U

J50

. ~2.16!

Performing the derivatives in the last formula yields

^r~rW !&52
1

Teff
E E Df¹2f~rW !expH 2

1

Teff
E d3xF12 ~¹f!22m2ef~xW !G JZ@0#21. ~2.17!



54 6013FRACTAL DIMENSIONS AND SCALING LAWS IN THE . . .
One can analogously prove thatr(rW) inserted in any correla-
tor becomes2(1/Teff)¹

2f(rW) in the f-field language.
Therefore, we can express the particle density operator a

r~rW !52
1

Teff
¹2f~rW !. ~2.18!

Let us now derive the field-theoretical equations of m
tion. Since the functional integral of a total functional deriv
tive identically vanishes, we can write

E E DfF2
dS

df~rW !
1J~rW !expH 2S@f~ .!#

1E d3xJ~xW !f~xW !J 50.

We get, from Eq.~2.11!,

dS

df~rW !
52

1

Teff
@¹2f~rW !1m2ef~rW !#.

Thus, settingJ(rW)[0,

^¹2f~rW !&1m2^ef~rW !&50. ~2.19!

Now, combining Eqs.~2.18! and ~2.19!, yields

^r~rW !&5
m2

Teff
^ef~rW !&. ~2.20!

By using Eq.~2.18!, the gravitational potential at the poin
rW,

U~rW !52GmE d3x

uxW2rWu
r~xW !,

can be expressed as

U~rW !52
T

m
f~rW !. ~2.21!

We can analogously express the correlation functions

C~rW1 ,rW2![^r~rW1!r~rW2!&2^r~rW1!&^r~rW2!&

5S 1

Teff
D 2¹ rW1

2
¹ rW2

2 S d

dJ~rW1!

d

dJ~rW2!
lnZ@J~ .!# D U

J50

.

~2.22!

This can be also written as

C~rW1 ,rW2!5
m4

T
eff

2@^ef~rW1!ef~rW2!&2^ef~rW1!&^ef~rW2!&#.

~2.23!

A. Short distances cutoff

A simple short-distance regularization of the Newtonia
force for the two-body potential is
s

o-
a-

t

as

n

va~rW !52
Gm2

r
@12u~a2r !#,

u(x) being the step function. The cutoffa can be chosen of
the order of atomic distances but its actual value is unessen-
tial.

The N-particle-regularized Hamiltonian then takes the
form

HN5(
l51

N pl
2

2m
1
1

2 (
1< l , j<N

va~qW l2qW j !. ~2.24!

Notice that now we can include in the sum terms withl5 j
sinceva(0)50.

The steps from Eqs.~2.2!–~2.9! can be just repeated by
using now the regularizedva(rW). Notice that we must use
now the inverse operator ofva(rW) instead of that of
1/r ,@2(1/4p)¹2#, previously used.

We now find

Za5E E DfexpH 2
1

Teff
E d3xF12fKaf2m2ef~xW !G J ,

~2.25!

i.e.,

Sa@f~ .!#5
1

Teff
E d3xF12fKaf2m2ef~xW !G , ~2.26!

whereKa is the inverse operator ofva ,

Kaf~rW !5E Ka~rW2rW8!f~rW8!d3r 8,

E Ka~rW2rW9!
1

4p

12u~a2urW92rW8u!

urW92rW8u
d3r 95d~rW2rW8!.

Ka(rW) admits the Fourier representation

Ka~rW !5PVE d3p

~2p!3
p2eip

W .rW

cospa
.

where PV denotes principal value. Actually,Ka(rW)50 for
rÞ0.Ka(rW) has the following asymptotic expansion in pow-
ers of the cutoffa2:

Ka~rW !52¹2d~rW !1
a2

2
¹4d~rW !1O~a4!, ~2.27!

and then

Sa@f~ .!#5S@f~ .!#1
a2

2 E d3x~¹2f!21O~a4!. ~2.28!

As we see, the high orders ina2 are irrelevant operators
which do not affect the scaling behavior, as is well known
from renormalization group arguments. Fora→0, the action
~2.11! is recovered.
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B. D-dimensional generalization

This approach generalizes immediately
D-dimensional space where the Hamiltonian~2.2! then takes
the form

HN5(
l51

N pl
2

2m
2Gm2 (

1< l, j<N

1

uqW l2qW j uD22
for DÞ2,

~2.29!

and

HN5(
l51

N pl
2

2m
2Gm2 (

1< l, j<N
ln

1

uqW l2qW j u
at D52 .

~2.30!

The steps from Eqs.~2.1!–~2.9! can be trivially general-
ized with the help of the relation

¹2
1

uxW2yW uD22
52CDd~xW2yW ! ~2.31!

in D dimensions and

¹2ln
1

uxW2yW u
52C2d~xW2yW !

at D52.
Here,

CD[~D22!
2pD/2

GSD2 D for DÞ2 and C2[2p.

~2.32!

We finally obtain, as a generalization of Eq.~2.9!,

Z5E E DfexpH 2
1

Teff
E dDxF12 ~¹f!22m2ef~xW !G J ,

~2.33!

where

m25
CD

~2p!D/2
zGm21D/2TD/221, Teff5CD

Gm2

T
.

~2.34!

We have then transformed the partition function for th
D-dimensional gas of particles in gravitational interactio
into the partition function for a scalar fieldf with exponen-
tial interaction. The effective temperatureTeff for the
f-field partition function isinverselyproportional toT for
anyspace dimension. The characteristic lengthm21 behaves
as;T2(D22)/4.

III. SCALING BEHAVIOR

We derive here the scaling behavior of thef field follow-
ing the general renormalization group arguments in t
theory of critical phenomena@4,6#.
o

e
n

he

A. Classical scale invariance

Let us investigate how the action~2.11! transforms under
scale transformations

xW→xWl[lxW , ~3.1!

wherel is an arbitrary real number.
In D dimensions the action takes the form

S@f~ .!#[
1

Teff
E dDxF12 ~¹f!22m2ef~xW !G . ~3.2!

We define the scale-transformed fieldfl(xW ) as

fl~xW ![f~lxW !1 lnl2. ~3.3!

Hence,

@¹fl~xW !#25l2@¹xl
f~xWl!#2, efl~xW !5l2ef~xWl!.

We find, upon changing the integration variable in Eq.~3.2!
from xW to xWl ,

S@fl~ .!#5l22DS@f~ .!#. ~3.4!

We thus see that the action~3.2! scalesunder dilatations
in spite of the fact that it contains the dimensionful param
eter m2. This remarkable scaling property is, of course,
consequence of the scale behavior of the gravitational int
action ~2.29!.

In particular, inD52 the action~3.2! is scale invariant. In
such a special case, it is, moreover, conformal invariant.

The ~Noether! current associated to the scale transform
tions ~3.1! is

Ji~xW !5xjTi j ~xW !12¹ if~xW !, ~3.5!

whereTi j (xW ) is the stress tensor

Ti j ~xW !5¹ if~xW !¹ jf~xW !2d i j L

andL[ 1
2(¹f)22m2ef(xW ) stands for the action density. Tha

is,

Ji~xW !5~xW .¹f12!¹ if~xW !2xi@
1
2 ~¹f!22m2ef~xW !#.

By using the classical equation of motion~3.6!, we then find

¹ iJi~xW !5~22D !L.

This nonzero divergence is due to the variation of the acti
under dilatations@Eq. ~3.4!#.

If f(xW ) is a stationary point of the action~3.2!:

¹2f~xW !1m2ef~xW !50, ~3.6!

thenfl(xW ) @defined by Eq.~3.3!# is also a stationary point:

¹2fl~xW !1m2efl~xW !50.

A rotationally invariant stationary point is given by
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fc~r !5 ln
2~D22!

m2r 2
. ~3.7!

This singular solution isinvariant under the scale transfor-
mations~3.3!. That is,

fl
c~r !5fc~r !.

Equation~3.7! is dilatation and rotation invariant. It provides
themost symmetricstationary point of the action. Notice that
there are no constant stationary solutions besides the singu
solutionf052`.

The introduction of the short-distance cutoffa, Eq.~2.24!,
spoils the scale behavior~3.4!. For the cutoff theory from
Eqs.~2.26! and ~3.1!–~3.3!, we have instead

Sa@fl~ .!#5l22DSla@f~ .!#.

For r;a, Eq. ~3.7! does not hold anymore for the spheri-
cally symmetric solutionfc(r ). For small r and a, using
Eqs.~2.26!–~2.28! we have

fc~r ! ;
r→0

2
m2r 2

2D
1O~r 2,r 2a2!. ~3.8!

That is,fc(r ) is regular atr50 in the presence of the cutoff
a.

B. Thermal fluctuations

In this section we compute the partition function equa
tions ~2.9! and ~2.13! by saddle-point methods.

Equation~3.6! admits only one constant stationary solu
tion

f052`. ~3.9!

In order to make such solution finite we now introduce
regularization termem2f(xW ) with e!1 in the actionS @Eq.
~2.11!#. This corresponds to an action density

L5 1
2 ~¹f!21u~f!, ~3.10!

where

u~f!52m2ef~xW !1em2f~xW !.

This extra term can be obtained by adding a small consta
term 2em2/Teff to r(xW ) in Eqs. ~2.4! – ~2.6!. This is a
simple way to makef0 finite.

We get in this way a constant stationary point a
f05 lne where u8(f0)50. However, scale invariance is
broken sinceu9(f0)52em2Þ0. We can add a second
regularization term to12dm2f(xW )2 to L, ~with d!1) in order
to enforceu9(f0)50. This quadratic term amounts to a
long-range shielding of the gravitational force. We finally se

u~f!52m2@ef~xW !2ef~xW !2 1
2 df~xW !2#,

where the two regularization parameterse andd are related
by
lar

-

-

a

nt

t

t

e~d!5d@12 lnd#,

and the stationary point has the value

f05 lnd.

Expanding aroundf0,

f~xW !5f01gx~xW !,

whereg[AmD22Teff andx(xW ) is the fluctuation field, yields

1

g2
L5

1

2
~¹x!22

m2d

g2 Fegx212gx2
1

2
g2x2G .

~3.11!

We see perturbatively ing thatx(xW ) is amasslessfield.
Concerning the boundary conditions, we must consider

the system inside a large sphere of radiusR(1024–
1022 pc<R<100 pc). That is, all integrals are computed
over such large sphere.

Using Eq.~2.18! the particle density now takes the form

r~rW !52
1

Teff
¹2f~rW !52

g

Teff
¹2x~rW !

5
m2d

Teff
@egx~rW !212gx~rW !#.

It is convenient to renormalize the particle density by its
stationary valued5ef0,

r~rW !ren[
1

d
r~rW !5

mD

g2
@egx~rW !212gx~rW !#. ~3.12!

We see that in thed→0 limit the interaction in Eq.~3.11!
vanishes. No infrared divergences appear in the Feynma
graph calculations, since we work on a very large but finite
volume of sizeR. Hence, in thed→0 limit, the whole per-
turbation series aroundf0 reduces to the zeroth order term.

The constant saddle pointf0 fails to catch up to the
whole field theory content. In fact, more information arises
perturbing around the stationary pointfc(r ) given by Eq.
~3.7! @17#.

Using Eqs.~2.23!, ~2.31!, ~3.11!, and~3.12! we obtain, for
the density correlator in thed→0 limit,

C~rW1 ,rW2!5
m2D

g4 H expF g2

CD~murW12rW2u!D22G
212

g2

CD~murW12rW2u!D22 J .
For large distances, we find

C~rW1 ,rW2! ;
urW12rW2u→`

m4

2CD
2 urW12rW2u2~D22!

1O~ urW12rW2u23~D22!!. ~3.13!

That is, thef-field theoryscales. Namely, the theory be-
haves critically for acontinuum setof values of m and
Teff .
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Notice that the density correlatorC(rW1 ,rW2) behaves for
large distances as the correlator ofx(rW)2. This stems from
the fact thatx(rW)2 is the most relevant operator in the serie
expansion of the density~3.12!:

r~rW !ren5
1
2 mDx~rW !21O~x3!. ~3.14!

As remarked above, the constant stationary po
f05 lnd→2` only produces the zeroth order of perturb
tion theory. More information arises perturbing around t
stationary pointfc(r ) given by Eq.~3.7! @17#.

C. Renormalization group finite size scaling analysis

As is well known @4,6,7#, physical quantities forinfinite
volume systems diverge at the critical point asL to a nega-
tive power.L measures the distance to the critical point.~In
condensed matter and spin systems,L is proportional to the
temperature minus the critical temperature@6,7#.! One has,
for the correlation lengthj,

j~L!;L2n,

and, for the specific heat~per unit volume! C,

C;L2a. ~3.15!

Correlation functions scale at criticality. For example, th
scalar fieldf ~which in spin systems describes the magne
zation! scales as

^f~rW !f~0!&;r212h.

The critical exponentsn,a, and h are pure numbers tha
depend only on the universality class@4,6,7#.

For a finite-volume system, all physical quantities ar
finite at the critical point. Indeed, for a system whose si
R is large, the physical magnitudes take large values at
critical point. Thus, for largeR, one can use the infinite-
volume theory to treat finite-size systems at criticality.
particular, the correlation length provides the relevant phy
cal lengthj;R. This implies that

L;R21/n. ~3.16!

We can apply these concepts to thef theory since, as we
have seen in the previous section, it exhibits scaling in
finite volume;R3. Namely, the two point correlation func
tion exhibits a powerlike behavior in perturbation theory
shown by Eq.~3.13!. This happens for acontinuum setof
values ofTeff andm2. Therefore, changingm2/Teff keeps the
theory in the scaling region. At the pointm2/Teff50, the
partition functionZ is singular. From Eq.~2.10!, we shall
thus identify

L[
m2

Teff
5zSmT

2p D 3/2. ~3.17!

Notice that the critical pointL50 corresponds to zero
fugacity.

Thus, the partition function in the scaling regime can
written as
s

int
a-
he

e
ti-

t

e
ze
the

In
si-

a
-
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be

Z~L!5E E DfexpF2S*1LE dDxef~xW !G , ~3.18!

whereS* stands for the action~2.11! at the critical point
L50.

We define the renormalized mass density as

mr~xW !ren[mef~xW ! ~3.19!

and we identify it with the energy density in the renormal-
ization group.@Also called the ‘‘thermal perturbation opera-
tor.’’ #. This identification follows from the fact that they are
the most relevant positive definite operators. Moreover, such
identification is supported by the perturbative result~3.14!.

In the scaling regime we have@6# for the logarithm of the
partition function

1

V
lnZ~L!5

K

~22a!~12a!
L22a1F~L!, ~3.20!

whereF(L) is an analytic function ofL around the origin

F~L!5F01aL1 1
2 bL21•••.

V5RD stands for the volume andF0 , K, a, andb are con-
stants.

Calculating the logarithmic derivative ofZ(L) with re-
spect toL from Eqs. ~3.18! and ~3.20! and equating the
results, yields

1

V

]

]L
lnZ~L!5a1

K

12a
L12a1•••5

1

VE dDx^ef~xW !&,

~3.21!

where we used the scaling relationa522nD @6,7#.
We can apply here finite-size scaling arguments and re-

placeL by ;R2(1/n) @Eq. ~3.16!#,

]

]L
lnZ~L!5Va1

K

12a
R1/n1•••.

Recalling Eq.~3.19!, we can express the mass contained
in a region of sizeR as

M ~R!5mER

ef~xW !dDx. ~3.22!

Using Eq.~3.21! we find

^M ~R!&5mVa1m
K

12a
R1/n1•••

and

^r~rW !&5ma1m
K

n~12a!VD
r ~1/n!2D

for r of order ;R, ~3.23!

whereVD is the surface of the unit sphere inD dimensions.
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The energy density correlation function is known in ge
eral in the scaling region~see Refs.@6#, @7#!. We can, there-
fore, write for the density-density correlators~2.22! in D
space dimensions

C~rW1 ,rW2!;urW12rW2u~2/n!22D, ~3.24!

where bothrW1 and rW2 are inside the finite volume;RD.
The perturbative calculation~3.13! matches with this re-

sult for n5 1
2. That is, the mean field value for the expone

n.
Let us now compute the second derivative of lnZ(L) with

respect toL in two ways. We find, from Eq.~3.20!,

]2

]L2lnZ~L!5V@L2aK1b1•••#.

We get, from Eq.~3.18!,

]2

]L2lnZ~L!5E dDxdDyC~xW ,yW !;RDER d3x

x2D22dH
;L22

;RDL2a, ~3.25!

where we used Eqs.~3.16! and~3.24! and the scaling relation
a522nD @6,7#. We conclude that the scaling behavior
Eq. ~3.20! for the partition function, Eq.~3.15! for the spe-
cific heat, and Eq.~3.24! for the two point correlator are
consistent. In addition, Eqs.~3.22! and ~3.25! yield for the
mass fluctuations squared

@DM ~R!#2[^M2&2^M &2;E dDxdDyC~xW ,yW !;R2dH.

Hence,

DM ~R!;RdH. ~3.26!

The scaling exponentn can be identified with the inverse
Haussdorf~fractal! dimensiondH of the system

dH5
1

n
.

In this way,DM;RdH according to the usual definition o
fractal dimensions@8#.

Using Eq. ~3.24! we can compute the average potent
energy in three space dimensions as

^V&5 1
2 bGm2E

uxW2yW u.a

R d3xd3y

uxW2yW u
C~xW ,yW !;R~2/n!21.

From here and Eq.~3.26! we get as virial estimate for the
atomic kinetic energy

^v2&5
^V&

^DM ~R!&
;R~1/n!21.

This corresponds to a velocity dispersion

Dv;R1/2 [~1/n!21]. ~3.27!

That is, we predict@see Eq.~1.1!# a new scaling relation
n-

nt

s,

f

al

q5
1

2 S 1n 21D5
1

2
~dH21!.

The calculation of the critical amplitudes@that is, the co-
efficients in front of the powers ofR in Eqs. ~3.24!, ~3.26!,
and ~3.27!# is beyond the scope of the present paper@17#.

D. Values of the scaling exponents and the fractal dimensions

The scaling exponentsn,a considered in Sec. III C can be
computed through the renormalization group approach. The
case of asingle-component scalar field has been extensively
studied in the literature@6,7,10#. Very probably, there is a
unique, infrared-stable, fixed point in three-space dimen-
sions: the Ising model-fixed point. Such nonperturbative
fixed point is reached in the long-scale regime independently
of the initial shape of the interactionu(f) @Eq. ~3.10!# @10#.

The numerical values of the scaling exponents associated
to the Ising model-fixed point are

n50.631 . . . , dH51.585 . . . , h50.037 . . . , and

a50.107 . . . . ~3.28!

In the f-field model there are two dimensionful param-
eters:m andTeff . The dimensionless combination

g25mTeff5~8p!3/4Az
G3/2m15/4

T3/4
~3.29!

acts as the coupling constant for the nonlinear fluctuations of
the fieldf.

Let us consider a gas formed by neutral hydrogen at ther-
mal equilibrium with the cosmic microwave background. We
setT52.73 K and estimate the fugacityz using the ideal gas
value

z5S 2p

mTD
3/2

r.

Here, we user5d0 atoms/cm23 for the ISM density and
d0.1010. Equation~2.10! yields

1

m
52.7

1

Ad0
AU;30 AU and

g25mTeff54.9310258Ad0;5310253. ~3.30!

This extremely low value forg2 suggests that the pertur-
bative calculation@Sec. III B# may apply here yielding the
mean field values for the exponents: i.e.,

n51/2, dH52, h50, and a50. ~3.31!

That is, the effective coupling constant grows with the scale
according to the renormalization group flow~towards the
Ising-fixed point!. Now, if the extremely low value of the
initial coupling @Eq. ~3.30!# applies, the perturbative result
~mean field! will hold for many scales~the effectiveg grows
roughly as the length!.
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m21 indicates the order of the smallest distance where t
scaling regime applies. A safe lower bound supported
observations is around 20 AU;331014 cm, in agreement
with our estimate.

Our theoretical predictions forDM (R) and Dv @Eqs.
~3.26! and ~3.27!# both for the Ising equation~3.28! and for
the mean field value equation~3.31!, are in agreement with
the astronomical observations@Eq. ~1.1!#. The present obser-
vational bounds on the data are larger than the differen
between the mean field and Ising values of the expone
dH andq.

Further theoretical work in thef theory will determine
whether the scaling behavior is given by the mean field or
the Ising-fixed point@17#.

E. The two-dimensional gas
and random surface fractal dimensions

In the two-dimensional case (D52) the partition function
~2.33! describes the Liouville model that arises in strin
theory@18# and in the theory of random surfaces~also called
two-dimensional quantum gravity!. For strings in
c-dimensional Euclidean space the partition function tak
the form @18#

Zc5E E DfexpH 2
262c

24p E d2xF12 ~¹f!21m2ef~xW !G J .
~3.32!

This coincides with Eq.~2.33! atD52 provided we flip the
sign ofm2 and identify the parameters~2.34! as

T5Gm2
262c

12
, m25zGm3. ~3.33!

Reference@19# states thatdH54 for c<1, dH53 for
c52, anddH52 for c>4. In our context this means

dH52 for T<
25

12
Gm2, dH53 for T52Gm2,

and dH54 for T>
11

6
Gm2.

For c→`, g2→0 and we can use the perturbative resu
~3.13! yielding n5 1

2, dH52 in agreement with the above
discussion forc>4.

F. Stationary points and the Jeans length

The stationary points of thef-field partition function
~2.9! are given by the nonlinear partial differential equatio

¹2f52m2ef~xW !.

In terms of the gravitational potentialU(xW ) @see Eq.~2.21!#,
this takes the form

¹2U~rW !54pGzmSmT

2p D 3/2e2~m/T!U~rW !. ~3.34!
he
by

ce
nts

by

g

es

lt

n

This corresponds to the Poisson equation for a thermal m
ter distribution satisfying an ideal gas in hydrostatic equilib
rium, as can be seen as follows@20#. The hydrostatic equi-
librium condition

¹P~rW !52mr~rW !¹U~rW !,

whereP(rW) stands for the pressure, combined with the equ
tion of state for the ideal gas

P5Tr,

yields for the particle density

r~rW !5r0e
2~m/T!U~rW !,

wherer0 is a constant. Inserting this relation into the Poisso
equation

¹2U~rW !54pGmr~rW !

yields Eq.~3.34! with

r05zSmT

2p D 3/2. ~3.35!

For larger , Eq. ~3.34! gives a density decaying asr22 :

r~rW ! ;
r→`

T

2pGm
1
r 2

F11OS 1Ar D G ,

U~rW ! ;
r→`

T

m
lnF2pGr0

T
r 2G1OS 1Ar D . ~3.36!

Notice that this density, which describes a single stationa
solution, decays for larger faster than the density~3.23!
governed by thermal fluctuations.

Spherically symmetric solutions of Eq.~3.34! have been
studied in detail@21#. The small fluctuations around such
isothermal spherical solutions as well as the stability prob
lem were studied in@16#.

The Jeans distance is, in this context,

dJ[A3T

m

1

AGmr0
5

A3~2p!3/4

AzGm7/4T1/4
. ~3.37!

This distance precisely coincides withm21 @see Eq.~2.10!#
up to an inessential numerical coefficient (A12/p). Hence,
m, the only dimensionful parameter in thef theory, can be
interpreted as the inverse of the Jeans distance.

We want to notice that in the critical regime,dJ grows as

dJ;RdH/2, ~3.38!

since r05L;R2dH vanishes as can be seen from Eqs
~3.16!, ~3.17!, and ~3.37!. In this tree-level estimate we
should use for consistency the mean field valuedH52,
which yieldsdJ;R.

This shows that the Jeans distance is of the order of t
sizeof the system. The Jeans distancescalesand the insta-
bility is, therefore, present for all sizesR.
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Had dJ been of order larger thanR, the Jeans instability
would be absent.

The fact that the Jeans instability is presentpreciselyat
dJ;R is probably essential to the scaling regime and to t
self-similar ~fractal! structure of the gravitational gas.

The dimensionless coupling constantg2 can be written
from Eqs.~3.17! and ~3.29! as

g25S 2mApG

T D 3AL.

Hence, the tree-level coupling scales as

g2;R21.

Direct perturbative calculations explicitly exhibit such sca
ing behavior@17#.

We can expressg2 in terms ofdJ andr0 as

g25
~12p!3/2

r0dJ
3 5

p2m3

r0
.

This shows thatg2 is, at the tree level, the inverse of th
number of particles inside a Jeans volume.

Equation~3.38! applies to the tree-level Jeans length
tree level m21. We can, furthermore, estimate the Jea
length using the renormalization group behavior of t
physical quantities derived in Sec. III C. Setting

^dJ&5
^Dv&

AGm^Dr&
,

we find, from Eqs.~3.23! and ~3.27!,

^dJ&;R.

Namely, we find again that the Jeans length grows as the
R.

IV. DISCUSSION

In previous sections we ignored gravitational forces ext
nal to the gas, like stars, etc. Adding a fixed external m
densityrext(rW) amounts to introducing an external source

J~rW !52Teffrext~rW !,

in Eq. ~2.13!. Such term will obviously affect correlation
functions, the mass density, etc. except when we look at
scaling behavior which is governed by the critical point. Th
is, the values we find for the scaling exponentsdH andq are
stableunder external perturbations.

We considered all atoms with the same mass in the gra
tational gas. It is easy to generalize the transformation i
thef field presented in Sec. II for a mixture of several kind
of atoms. Let us considern species of atoms with masse
he

l-

e

or
ns
he

size

er-
ass

the
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vi-
nto
s
s

ma ,1<a<n. Repeating the steps from Eqs.~2.1!–~2.11!,
yields again a field theory with a single scalar field but the
action now takes the form

S@f~ .!#[
1

Teff
E d3xF12 ~¹f!22 (

a51

n

ma
2expSma

m
f~xW !D G ,

~4.1!

where

ma
25A2

p
zaGma

3/2m2AT,

andm is just a reference mass.
Correlation functions, mass densities, and other observ-

ables will obviously depend on the number of species, their
masses, and fugacities but it is easy to see that the fixed
points and scaling exponents are exactly thesameas for the
f-field theory@Eqs.~2.9! and ~2.10!#.

We want to notice that there is an important difference
between the behavior of the gravitational gas and the spin
models~and all other statistical models in the same univer-
sality class!. For the gravitational gas we find scaling behav-
ior for a full range of temperatures and couplings. For spin
models scaling only appears at the critical value of the tem-
perature. At the critical temperature the correlation lengthj
is infinite and the theory is massless. For temperatures near
the critical one, i.e., in the critical domain,j is finite ~al-
though very large compared with the lattice spacing! and the
correlation functions decrease as;e2r /j for large distances
r . Fluctuations of the relevant operators support perturba-
tions which can be interpreted as massive excitations. Such
~massive! behavior does not appear for the gravitational gas.
The ISM correlators scale exhibiting power-law behavior.
This feature is connected with the scale-invariant character
of the Newtonian force and its infinite range.

The hypothesis of strict thermal equilibrium does not ap-
ply to the ISM as a whole where temperatures range from
5–50 K and even 1000 K. However, since the scaling behav-
ior is independent of the temperature, it applies toeachre-
gion of the ISM in thermal equilibrium. Therefore, our
theory applies provided thermal equilibrium holds in regions
or clouds.

We have developed here the theory of a gravitationally
interacting ensemble of bodies at a fixed temperature. In a
real situation such as the ISM, gravitational perturbations
from external masses, as well as other perturbations, are
present. We have shown that the scaling solution is stable
with respect to the gravitational perturbations. It is well
known that solutions based on a fixed point are generally
quite robust.

Our theory especially applies to the interstellar medium
far from star-forming regions, which can be locally far from
thermal equilibrium, and where ionized gas at 104 K to-
gether with coronal gas at 106 K can coexist with the cold
interstellar medium. In the outer parts of galaxies, devoid of
any star formation, the ideal isothermal conditions are met
@3#. Inside the Galaxy, large regions satisfy also the near
isothermal criterion, and these are precisely the regions



6020 54H. J. DE VEGA, N. SÁNCHEZ, AND F. COMBES
where scaling laws are the best verified. Globally over t
Galaxy, the fraction of the gas in the hot ionized phase re
resents a negligible mass, a few percents, although occu
ing a significant volume. Hence, this hot ionized gas is
perturbation which may not change the fixed-point behav
of the thermal self-gravitating gas.

In Ref. @22# a connection between a gravitational gas
galaxies in an expanding Universe and the Ising model
conjectured. However, the unproven identification made
he
p-
py-
a
ior

of
is
in

Ref. @22# of the mass density contrast with the Ising spin
leads to scaling exponents different from ours.
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