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Fractal dimensions and scaling laws in the interstellar medium: A new field theory approach
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We develop a field theoretical approach to the cold interstellar medi@iM). We show that a nonrelativ-
istic self-gravitating gas in thermal equilibrium with a variable number of atoms or fragments is exactly
equivalent to a field theory of a single scalar fighix) with an exponential self-interaction. We analyze this
field theory perturbatively and nonperturbatively through the renormalization group approach. We show a
scalingbehavior(critical) for a continuous range of the temperature and of the other physical parameters. We
derive in this framework the scaling relatiarM (R) ~ R% for the mass on a region of sifg andAv ~ R for
the velocity dispersion whemg= %(dH— 1). For the density-density correlations we find a power-law behavior
for large distances-|r;—r,|29%~®. The fractal dimensiody, turns out to be related with the critical exponent
v of the correlation length bgl, = 1/v. The renormalization group approach for a single component scalar field
in three dimensions states that the long-distance critical behavior is governed fhotiperturbative Ising
fixed point. The corresponding values of the scaling exponentsvar.631..., d,=1.585..., and
g=0.293.. .. Mean field theory yields for the scaling exponents 1/2, dy=2, andg=1/2. Both the Ising
and the mean field values are compatible with the present ISM observational datadyl.4
<2, 0.3=g=0.6. As typical in critical phenomena, the scaling behavior and critical exponents of the ISM can
be obtained without dealing with the dynami¢ame-dependentbehavior.[S0556-282(196)02422-§

PACS numbsg(s): 98.38—j, 05.70.Jk, 11.10.Hi, 64.60.Ak

I. INTRODUCTION AND RESULTS over a large range of cloud sizes, with 1o
102 pc<R<100 pc,
The interstellar mediuniSM) is a gas essentially formed
by atomic(H1) and moleculafH,) hydrogen, distributed in l4<dy=<2, 0.3<g<0.6. 1.2)

cold (T~ 5-50 K) clouds, in a very inhomogeneous and h i lati indi hi hical f
fragmented structure. These clouds are confined in the galad'€Sescaling relations indicate a hierarchical structure for

tic plane and, in particular, along the spiral arms. They aré e molecular clouds which is independent of the scale over

distributed in a hierarchy of structures, of observed masse@.e above-cited range; above 100 pc in size, corresponding to

. . giant molecular clouds, larger structures will be destroyed by
from 1Mg to 1 Mg . The morpholpgy and km(_amatlcs of galactic shear.
these structures are traced by radio astronomical observa-

. fthe H h fine i h | h of 21 These relations appear to heiversal the exponents
tions of the yperfine line at the wavelength o cm, dy ,q are almost constant over all scales of the Galaxy, and
and of the rotational lines of the CO moleculke funda-

! ¢ ) whatever be the observed molecule or element. These prop-
mental line being at 2.6 mm in wavelengtand many other eriies of interstellar cold gas are supported first of all from
less abundant molecules. Structures have been measured gsservationgand for many different tracers of cloud struc-
rectly in emission from 0.01-100 pc, and there is some eviyres: dark globules using®CO, since the more abundant
dence in VLBI(very long-based interferomedryd1 absorp-  jsotopic speciesi?CO is highly optically thick, dark cloud
tion of structures as low as 10 pc = 20 AU (3x 10" cm).  cores using HCN or CS as density tracers, giant molecular
The mean density of structures is roughly inversely proporclouds using'*CO, Hi to trace more diffuse gas, and even
tional to their sizes, and vary between 10 and® 10 cold dust emission in the far infraredNearby molecular
atoms/cnt (significantly above the mean density of the ISM clouds are observed to be fragmented and self-similar in pro-
which is about 0.1 atoms/chror 1.6< 10 2° g/cm®). Obser-  jection over a range of scales and densities of at lea’t 10
vations of the ISM revealed remarkable relations between thand perhaps up to £0
mass, the radius, and velocity dispersion of the various re- The physical origin as well as the interpretation of the
gions, as first noticed by Larsdii], and since then con- scaling relationg1.1) are not theoretically understood. The
firmed by many other independent observatitsee, for ex- theoretical derivation of these relations has been the subject
ample, Ref.[2]). From a compilation of well-established of many proposals and controversial discussions. It is not our
samples of data for many different types of molecular cloudsim here to account for all the proposed models of the ISM
of maximum linear dimensior(size R, mass fluctuation and we refer the reader to Ref&] for a review.
AM, and internal velocity dispersiofiv in each region: The physics of the ISM is complex, especially when we
consider the violent perturbations brought by star formation.
Energy is then poured into the ISM either mechanically
AM(R)~R%, Ap~RY, (1.1))  through supernovae explosions, stellar winds, bipolar gas
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flows, etc. or radiatively through star light, heating or ioniz- where angular brackets mean a functional average over
ing the medium, directly or through heated dust. Relativeg(.) with statistical weighe¢()). Density correlators are
velocities between the various fragments of the ISM exceedvritten as

their internal thermal speeds, shock fronts develop, and are

highly dissipative; radiative cooling is very efficient, so that C(r,F)=(p(r)p(r))—{p(r)}p(rz))
globally the ISM might be considered isothermal on large 4

scales. Whatever the diversity of the processes, the univer- Y [( eh(r) ed’(FZ))— ( e¢<F1)> ( e¢(F2>>]
sality of the scaling relations suggests a common mechanism _g ’
underlying the physics. We propose that self-gravity is the (1.6
main force at the origin of the structures, that can be per- '
turbed locally by heating sources. Observations are compaipq ¢ field defined by Eqgs(1.3) and (1.4) has remarkable
ible with virialized structures at all scales. Moreover, it has roperties under scale transformations

been suggested that the molecular cloud ensemble is in isg—

thermal equilibrium with the cosmic background radiation at
T~3 K in the outer parts of galaxies, devoid of any star and

heating source$3]. This colder isothermal medium might where is an arbitrary real number. For an soluti@r@i)
represent the ideal frame to understand the role of sel 5f the stationar oin%/e Lations ' y
gravity in shaping the hierarchical structures. Our aim is to yp q '
show that the scaling laws obtained are then quite stable to
perturbations.

Till now, no theoretical derivation of the scaling lajp&g. . . . .
(1.1)] has been provided in which the values of the expo—this(r;1 |bs a family of dilated solutions of the same E4.7),
nents areobtainedfrom the theory(and not just taken from 9 y
outside or as a starting input or hypothesis

The aim of these authors is to develop a theory of the cold
ISM. A first step in this goal is to provide a theoretical deri- . _\2-D
vation of the scaling IawEEq.. (1.1)], in which the values gf In Sggltsl?unc,ii[tﬁg(ﬁ)gld );heori([l(éé).);ﬁd (1.4) both perturba-
the exponentsl,, ,q are obtainedfrom the theory. For this tively and nonperturbatively.

purpose, we will imple_ment for the ISM the _p_owerful tool of The computation of the thermal fluctuations through the
field theory and the Wilson's approach to critical phenomen%valuation of the functional integral equati¢h.3) is quite

(4,13 s . - .
. L : . nontrivial. We use the scaling property as a guiding prin-
.We consider a gas of nonrelgtlwstm ‘?‘“’ms mte_ractlngciple_ In order to build a perturbation theory in the dimen-
with one another through Newtonian gravity and which are_.

in thermal equilibrium at temperatur€. We work in the S'Onéisj) Csvueplégﬂzuvtgrﬁgvég(;ﬁk ?grf;?;;%?egyu%'{g%)m

grand canonical ensemble, allowing for a variable number o q.(1.%. np ity ; q )

particlesN. o leading order irg. For large distances it behaves as
Then, we show that this system is exactly equivalent to a 4

field theory of a single scalar fielh(x) with exponential C(ry,fo) . ~ %

interaction. We express the grand canonical partition func- Ir1=rol—=32 7% [F1— 1y

tion Z as

K%, =A%,
V2(X)+ u2e?™ =0, 17

A (X)=p(AX) +IN\2.

+0(|r;—ry 73). (1.9

Z:f f Depe- S0 (1.3 We analyze further this theory with the renormalization
' ' group approach. Such nonperturbative approach is the more
powerful framework to derive scaling behaviors in field
where theory[4,6,7.
We show that the mass contained in a region of volume
V=R3 scales as

1 -
5 (V)2— et

1
S[¢(.>]ET—f d*x R
eff
(M(R))=mj (e?™)d3x

Gm? 2 2 12 K
Te=4m——, wu’= ;sz7 JT, (1.4) :mVaerl_aRl/um,

m stands for the mass of the atoms arfdr the fugacity. We and the mass fluctuatiofAM(R)]?=(M?)—(M)?, scales
show that in theg-field language, the particle density ex- as

presses as
AM(R)~R%.
2
(p(N)y=— i<V2¢(f)>:“_<e¢<F)> (1.5 Here,vis the correlation length critical exponent for tie
Tesr Tesr theory(1.3) anda andK are constants. Moreover,
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~r~1- L= R
<P(F)>=ma+m r(Ur)-3 (~r 7, where Mising 0.037... and 7meanfieic0 [6]),

47v(l—a) which could be checked through gravitational lens observa-
tions in front of quasars.
for r of order ~R. 1.9 The mass parameter [see Eq.(1.4)] in the ¢ theory

_ S . _ turns to coincide at the tree level with the inverse of the
The scaling exponent can be identified with the inverse Jeans length
Haussdorf{fractal) dimensiond,, of the system

. \/Tzl
dH:— K 7TdJ‘

14
We find that in the scaling domain the Jeans distatige
grows as{d;)~R. This shows that the Jeans distarscales
with the sizeof the system and, therefore, the instability is
‘present for all sizeR. Hadd; been of order larger thaR,
the Jeans instability would be absent.

The gravitational gas in thermal equilibrium explains
quantitatively the observed scaling laws in the ISM. This fact

Computing the average gravitational potential energy and ugl0es not exclude turbulent phenomena in the ISM. Fluid
ing the virial theorem yields, for the velocity dispersion, flows (including turbulent regimgsare probably relevant in
the dynamics(time-dependent procesgesf the ISM. As

Ap~RYA@) 1] usual in critical phenomeng4,6], the equilibrium scaling
o . . laws can be understood for the ISM without delving into the
This gives a new scaling relation between the exponentgynamics. A further step in the study of the ISM will be to

In this way, AM~R% according to the usual definition of
fractal dimension$8].

From the renormalization group analysis, the density
density correlator$l.6) result to be

C(ry,To)~|ry—r,y| @78, (1.10

dy andq: include the dynamicaltime-dependentdescription within
the field theory approach presented in this paper.
q= E(E_ 1= E(d ~1) If the ISM is considered as a flow, the Reynolds number
2\v 2" ' Regy on scales. ~ 100 pc has a very high value of the order

) ) ) i of 10°. This led to the suggestion that the 1S{dnd the
The perturbative calculatiofl.8) yields the mean field jniverse in generalcould bemodeledas a turbulent flow
value forv [9]. That is, [12]. (Larson [1] first observed that the exponent in the
1 1 power-law relation for the velocity dispersion is not greatly
= dy=2, andqg= > (1.12 Idiffer?nt from the Kolmogorov value 1/3 for subsonic turbu-
ence
It must be noticed that the turbulence hypothesis for the
ISM is based on the comparison of the ISM with the results
known for incompressible flows. However, the physical con-
ditions in the ISM are very different from those of incom-
pressible flows in the laboratoryAnd the study of ISM
turbulence needs more complete and enlarged investigation
than those performed until now based in the concepts of flow
Srbulence in the laboratonyln addition to the fact that the
SSM exhibits large density fluctuations on all scales, and the
observed fluctuations are highly supersofticus the ISM
cannot be viewed as an “incompressible” and “subsonic”
flow), and in addition to other differences, an essential fea-
»=0.63L.., d,=1.585.., andq=0.293.... ture to point out is that the long-range, self-gravity interac-
(1.1  tion presentin the ISM is completely absent in the studies of
flow turbulence. In any case, in a satisfactory theory of the
Both the mean field1.11) and the Ising1.12 numerical ISM, it should be possible to extract the behaviors of the
values are compatible with the present observational value§sM (be turbulent or whatevgifrom the theory as a result,
(1.2 and(1.2. instead to be introduced as a starting input or hypothesis.
The theory presented here also predicts a power-law be- This paper is organized as follows. In Sec. Il we develop
havior for the two-point ISM density correlation function the field theory approach to the gravitational gas. A short-
[see Eq.(1.10, 2d,—6=—2.83..., for thelsing fixed distance cutoff is naturally present here and prevents zero-
point and 2l,—6=—2 for the mean field exponerighat distance gravitational collapse singulariti@hich would be
should be compared with observations. Previous attempts tanphysical in the present casédere, the cutoff theory is
derive correlation functions from observations were not enphysically meaningful. The gravitational gas is also treated
tirely conclusive, because of lack of dynamical randé], in a D-dimensional space.
but much more extended maps of the ISM could be available In Sec. Ill we study the scaling behavior and thermal
soon to test our theory. In addition, we predict an indepenfluctuations both in perturbation theory and nonperturba-
dent exponent for the gravitational potential correlationstively (renormalization group approachy?= u Tk acts as

We find scaling behavior in the theory for acontinuum
set of values of u? and T. The renormalization group
transformation amounts to replace the paramejetsand
Tein BH andS ¢(.)] by the effective ones at the scadlaén
guestion.

The renormalization group approach applied tgirgle
component scalar field in three space dimensions indicat
that the long-distance critical behavior is governed by th
(nonperturbative Ising fixed point[4,6,7]. Very probably,
there are no further fixed poinf40]. The scaling exponents
associated to the Ising fixed point are
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the dimensionless coupling constant for the nonlinear fluc- The integrals over the momenga, (1=<I<N) can be per-
tuations of the fieldp. We show that these fluctuations are formed explicitly in Eq.(2.2) using

massless and that the theory scdleshaves criticallyfor a

continuous range of valugs®T,. Thus, changing:? and d®p - B_pz (. m 32

T« keeps the theory ariticality. The renormalization group 2m)3 2m/) \2wB) -

analysis made in Sec. Il confirms such results. We also treat

(Sec. Il B the two-dimensional case making contact with We thus find,
random surfaces and their fractal dimensions. " 321N N

Discussion and remarks are presented in Sec. IV. External =3 1 j f T o
gravity forces to the gas, like stars, are shomot to affect T )iy a
the scaling behavior of the gas. That is, the scaling exponents
g,dy are solely governed by fixed points and hence, they are 1
stable under gravitational perturbations. In addition, we gen- ><exp< BGM? 2, —) 2.3
eralize the¢ theory to a gas formed by several types of 1=l=i= |q| q,l
atoms with different masses and fugacities. Again, the scal- We proceed now to recast this many-body problem into a
ing exponents are shown to be identical to the grawtanona{le'd theoretical forn{13—16.
gas formed of identical atoms.

The differences between the critical behavior of the gravi-
tational gas and those in spin modésd other statistical
models in the same universality classe also pointed out in p(N)=2, 8(r—qj), (2.4)
Sec. IV. =1

1
mZ

Let us define the density

such that we can rewrite the potential energy in &3 as
Il. FIELD THEORY APPROACH

TO THE GRAVITATIONAL GAS 1 1
. L . = BGN? —
Let us consider a gas of nonrelativistic atoms with mass 2 1=#j=N |q,—qj]
m interacting only through Newtonian gravity and which are 3 3
in thermal equilibrium at temperatur€=g"1. We shall :EB f xdy Rpy). (2.5
work in the grand canonical ensemble, allowing for a vari- 2 X~ y|>a| — ”| Te_q PP '

able number of particlehl.
The grand partition function of the system can be writtenThe cutoffa in the right-hand sidéRHS) is introduced in
as order to avoid self-interacting divergent terms. However,
such divergent terms would contribute # by an infinite
d3p,d® iplicati
P E NIJ JH pdq e P (2.1 multiplicative factor that can be factored out.

(2 )3 By using
where 2 - -
Véo—==—-47b(x—Yy)
N p? 1 Ix—yl
HN:; 2m Z N | — | ' 2.2 and partial integration, we can now represent the exponent of
the potential energy equatiai2.5 as a functional integral
G is Newton’s constant, and is the fugacity. [14]

d3 d3 R R N -
exp(g/aemzj Ifx—ir p(X)p(y)Zf JDgexp(— %f d3x(V§)2+2m\/7rG,6’J d3X§(x)p(x)). (2.6)

Inserting this expression into EQR.3) and using Eq(2.4) yields
m 3/21N 1
_— __ 3 2
2(277/3‘) } fngexp{ Zf d*x(V¢)
1 s 1 m 3/2
'Dé"eXﬁ{ — Ef dSX(Vf)Z} NZO m{ Z( m)

312
3y %(Vg)z—z( m ) em«mg(i)

f ff[l d%,exp{Zm@ﬁl 5(60}

N

N
{ f d3qexq2m¢weﬂ§(&>]}

2mB

]. 2.7
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It is convenient to introduce the dimensionless field The action(2.11) defines a nonrenormalizable field theory
R . for any number of dimensior®>2 [see Eq(2.33 below].
d(X)=2m\7GBE(X). (2.8 This is a further reason to keep the short-distance cutoff non-
zero.
Then, Let us compute now the statistical average value of the
1 1 ) densityp(F) which in the grand canonical ensemble is given
z:f fDqﬁex ——f d3x| = (V)2 — u2e?™ |}, by
Tt 2
(2.9 1 m \ 32N N
=223 ldloms) || | I
where (p(N)y=2712, N![ (Zwﬁ) } 11 d®aip(r)
2 Gm? 1 1
2_ (|2 12 - x exp = BGN? : 2.1
" \[WzGr‘rY T, Te=4m—. (210 p(zﬂ ;g NEwEY (2.12

The partition function for the gas of particles in gravitational ~ As usual in the functional integral calculations, it is con-
interaction has been transformed into the partition functiorvenient to introduce sources in the partition functi@r®) in

for a single scalar fields(x) with local action order to compute average values of fields
L[ e 2 (v )2 wed Z[J(-)]EJ fwexp[—if 5 5 (7 62~ et
S#0I=1 | x5 (Tar-pen| 213 Tl 92
The ¢ field exhibits an exponential self-interaction +f d3xJ(>Z)¢(>Z)]. (2.13

— 1 2a9(X)

umee .

Notice that the effective temperatuiig for the ¢-field  The average value ap(r) then writes as
partition function turns out to béverselyproportional to

T whereas the characteristic length~! behaves as oinz
~T Y4 This is a duality-type mapping between the two ((r )>_ Iy (2.14
models. i

It must be noticed that the term w2e?™ makes the In order to computép(F)) it is useful to introduce
¢-field energy density unbounded from below. Actually, the 1 RN
initial Hamiltonian(2.1) is also unbounded from below. This VI()]= —,Bszf arxaty [p(x)+J(x)]
unboundedness physically originates in the attractive charac- |x—y|>a |x y|

ter of the gravitational force. Including a short-distance cut- . .

off (see Sec. Il A, beloyveliminates the zero-distance singu- X[p(y)+I(y)]. (2.19
larity and hence the possibility of zero-distance collapsel_hen we have

which is unphysical in the present context. We, therefore,

expect meaningful physical results in the cutoff theory. . 1 _,. &

. .. >, (r)ev[o] =——V'Xx eV[J( )] .
Moreover, assuming zero-boundary conditions f(r) at p Tt 83(1)
r—oo shows that the derivatives @ must also be large if =0
e? is large. Hence, the terf(V ¢)? may stabilize the en- By following the same steps as in Eq2.6) and(2.7), we
ergy. find

)

(2.1

1 - -
E(Vg)Z—ZmeG,Bg(x)J(x)

. 1 m 3/21N B
(p(r)>——T— ?(NUM oNl{ (m) } Z[0] 1f fpgexp{—deX

f fle[ qlexr{ZmJ—Z §(q|)D

I
O——T—eﬁv-r T(F) InZ[J(.)]

J=0

Performing the derivatives in the last formula yields

<P(F>>=—Tieﬁf ngﬁV%(ﬂex;{—Tieﬁf&x

1 -
5 (V)2 el

]Z[O]l. (2.17
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One can analogously prove trya(tf) inserted in any correla- > Gn?
tor becomes— (1/Tq)V2h(r) in the ¢-field language. va(r)=———[1-6@-n],
Therefore, we can express the particle density operator as
0(x) being the step function. The cutcdf can be chosen of
- 1 _, - the order of atomic distances but its actual value is unessen-
p(1)==7_VZ4(). (218 g
¢ The N-particle-regularized Hamiltonian then takes the
Let us now derive the field-theoretical equations of mo-form
tion. Since the functional integral of a total functional deriva-
tive identically vanishes, we can write

EE

N

pf 1
=> am 2y pey v ). (224

—— =t J(r) exp{ S ()]

5¢( ) Notice that now we can include in the sum terms withj
sincev,(0)=0.
+f d3xJ(>?)¢>(>?)} =0. The steps from Eq92.2—(2.9 can be just repeated by
using now the regularizeda(F). Notice that we must use
We get, from Eq(2.11), now the inverse operator of,(r) instead of that of
/v [ — (1/47)V?], previously used.
S 1 - - We now find
—==— —{V2p(r)+ pn?e?"].
ST TV A+t 1 1
- - — = | @3[= — 42et
Thus, settingd(r)=0, Za fchﬁexp[ Teﬁfd X 5 ¢Kap—u’e ]
" (2.29
(VZh(r)+uXe?")=0. 219
ie.,
Now, combining Eqs(2.18 and(2.19, yields
1 1 -
. ME Sa[(b(-)]:-l—_j d®x §¢>Ka¢>—M28"“X’ . (2.29
{p(n))=7—(e""). (2:20 ef
ff
° whereK, is the inverse operator af,,
By using Eq.(2.18), the gravitational potential at the point
L Kad())= [ KaF=Fa(F et
U =—em| 2%
rN=-G6m| ——= p(x),
x—r| " ) 1-0a—["—i"])
Ka(r— ”) » der"=a8(r—r").
can be expressed as |r -r |
. T . Ka(F) admits the Fourier representation
U(r)=——&(r). (2.21
d3p p e|pr
We can analogously express the correlation functions as Ka()=PV (2m)® copa’
C(r1.r2)=(p(r1)p(r2))—{p(r1)){p(r2)) where PV denotes principal value. Actuallg,(r)=0 for

r+0. Ka(F) has the following asymptotic expansion in pow-

1 2 2 «2
=[—| viv? . —InZ[J(. f the cutoffa?:
(Teﬁ) " fZ(fSJ(rl) 5J<r2>nz[ ()]) 1o oo o e e
2
(2.22 Ka(r)=— Vzé(r)+ V45(r)+0(a) (2.27
This can be also written as dth
and then
C(F1.Fp)= “_42[<e¢<F1>e</><r'z>> _ <e¢<F1>><e¢’(F2>)]. a2
Tet SIo()]1-So0)1+ 5 [ PP o@. (228
(2.23 2

As we see, the high orders ia® are irrelevant operators
which do not affect the scaling behavior, as is well known
A simple short-distance regularization of the Newtonianfrom renormalization group arguments. For 0, the action

force for the two-body potential is (2.1) is recovered.

A. Short distances cutoff
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B. D-dimensional generalization

This approach generalizes immediately
D-dimensional space where the Hamiltoni@r2) then takes
the form

N 2
P
Hy= —— for D#2
o © ; NG 2
(2.29
and
N
1
zp—— 2 IN—— atD=2.
=12m 1=I<j=N gy —qjl
(2.30

The steps from Eq92.1)—(2.9) can be trivially general-
ized with the help of the relation

1 - -
VZWZ—CD5(X—)/) (2.3])

in D dimensions and

V2n——==—C,8(x—Y)
Ix—y
atD=2.

Here,

D/2
CDE(D—Z)—D

for D#2 andC,=2.
|3

(2.32

We finally obtain, as a generalization of EG.9),

qu&exp[ - —f dPx
(2.33)

where

3 (V)2 e

Co - Gn?
1u‘2:(2ﬂ_)D2 ZGn?+D/2TD/2 l, Tef‘f: CD T
(2.39

We have then transformed the partition function for the
D-dimensional gas of particles in gravitational interaction

into the partition function for a scalar field with exponen-
tial interaction. The effective temperatur€y; for the

¢-field partition function isinverselyproportional toT for

any space dimension. The characteristic lengtht behaves
as~T (0-2)4

Ill. SCALING BEHAVIOR

We derive here the scaling behavior of wdield follow-
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A. Classical scale invariance

Let us investigate how the actid8.11) transforms under
scale transformations

X— Xy =\X, (3.1
where\ is an arbitrary real number.
In D dimensions the action takes the form
1 1 -
o)1= x5 (To2-petd| 32
Tetf 2
We define the scale-transformed fie;bgi(i) as
A\ (X)=p(AX) +In\2. (3.3

Hence,

[V (x)]?= )\Z[VXXd)()_())\)]Z, eh () =\ 206\

We find, upon changing the integration variable in E2}2)
from X to X, ,

SLon()I=N2"P ()],

We thus see that the actidB.2) scalesunder dilatations
in spite of the fact that it contains the dimensionful param-
eter u2. This remarkable scaling property is, of course, a
consequence of the scale behavior of the gravitational inter-
action(2.29.

In particular, inD =2 the action(3.2) is scale invariant. In
such a special case, it is, moreover, conformal invariant.

The (Noethej current associated to the scale transforma-
tions (3.1) is

(3.9

J(X)=xT;j(X) +2V; (), (3.5

whereT;;(x) is the stress tensor
T () =Vi$(X)V;$(X)— &L

andL=Y(V ¢)2— u2e?™® stands for the action density. That

is,
30 =(X.V$+2)V$(X)~ X[} (V )~ 2],
By using the classical equation of moti¢@®.6), we then find
ViJi(x)=(2-D)L.

This nonzero divergence is due to the variation of the action
under dilatation$Eq. (3.4)].

If #(x) is a stationary point of the actia(3.2):
V24(X)+ u2e?™ =0, (3.6
then ¢, (x) [defined by Eq(3.3)] is also a stationary point:

V2, (X) + u2eh =0,

ing the general renormalization group arguments in the

theory of critical phenomenf,6].

A rotationally invariant stationary point is given by
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2(D-2) €(8)=6[1-1Ind],
PN =In——27—. 3.7
K and the stationary point has the value
This singular solution isnvariant under the scale transfor- bo=Ino
mations(3.3). That is, 0 '

Expanding aroundb,
$5(1) = (1), ’ )

= —+ ,
Equation(3.7) is dilatation and rotation invariant. It provides P = Pot 9x(X)

the most symmetristationary point of the action. Notice that whereg= VP 2T oq and)((i) is the fluctuation field, yields
there are no constant stationary solutions besides the singular € ’

solution ¢pg= —». 1 1 , M6 : 1.,
The introduction of the short-distance cutaffEq. (2.24), ;L: 5 (V)= rak *=1-gx =597
spoils the scale behavidB.4). For the cutoff theory from (3.11)

Egs.(2.26 and(3.1)—(3.3), we have instead
2D We see perturbatively ig thatX(i) is amasslesdield.

S Ar()]1=A"""Sa[ b()]. Concerning the boundary conditions, we must consider
the system inside a large sphere of radiR§10 *—
102 pc<R=100pc). That is, all integrals are computed
over such large sphere.

Using Eq.(2.18 the particle density now takes the form

Forr~a, Eq.(3.7) does not hold anymore for the spheri-
cally symmetric solutiong®(r). For smallr and a, using
Egs.(2.26—(2.28 we have

2,2

nor - 1 - g -
°(r) ~ — ——+0(r%,r2%a?). 3.8 - 2 —_ 22

(1)~ 5 ( ) 3.8 p(r) Teﬁv (1) Teﬁv x(r)
That is, ¢°(r) is regular at =0 in the presence of the cutoff _ ”Zé[eg)((;)— 1-gx(N)]
a. Tt X .

It is convenient to renormalize the particle density by its

B. Thermal fluctuations .
stationary values=e%o,

In this section we compute the partition function equa- 5
tions (2.9) and(2.13 by saddle-point methods. -1 .o ax(P) -

Equation(3.6) admits only one constant stationary solu- P(1)rer= Ep(r)—?[e *=1l-gx(n]. G129
tion

We see that in the—0 limit the interaction in Eq(3.11)
o= —°. (3.9  vanishes. No infrared divergences appear in the Feynman
o ) graph calculations, since we work on a very large but finite
In order to make such solution finite we now introduce ayg|yme of sizeR. Hence, in thes—0 limit, the whole per-

regularization termex24(x) with e<1 in the actionS[Eq.  turbation series around, reduces to the zeroth order term.

(2.11)]. This corresponds to an action density The constant saddle poinp, fails to catch up to the
whole field theory content. In fact, more information arises
L= 3(V¢)>+u(e), (3.10  perturbing around the stationary poigf(r) given by Eq.
(3.7 [17].
where Using Egs(2.23), (2.32), (3.11), and(3.12 we obtain, for
. R the density correlator in thé—0 limit,
u(¢p)=—u’e?™+eue(x). - )
- g
This extra term can be obtained by adding a small constant Clryrz)= g* leXF{CD(Mfl—FzDD_Z
term —eu?/Te to p(X) in Egs. (2.4 — (2.6). This is a )
simple way to makep finite. —1- 99 _ D_Z]_
We get in this way a constant stationary point at Colulfi—ral)

¢o=Ine where u’(¢y)=0. However, scale invariance is

broken sinceu”(¢o)=—eu’?#0. We can add a second For large distances, we find

regularization term tgou2¢(x)2 to L, (with 5<1) in order o i
to enforceu”(¢g)=0. This quadratic term amounts to a C(rq,rp) . ~ F 7 120-2)
long-range shielding of the gravitational force. We finally set Iri=ral—=2 C3|F1— 1Y)

+0O(|r; -1, 3P72).  (3.13

That is, theg-field theoryscales Namely, the theory be-
where the two regularization parameterand § are related haves critically for acontinuum setof values of x and
by Tett-

U($)= — u2[e?— eh(X) — £ p(X)?],
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Notice that the density correlat®@(r,,r,) behaves for J j F{ f D 4
: - : Z(A)= D —S*+A | dPxe?™|,
large distances as the correlator xffr)2. This stems from (A) pex xe

the fact thatX(re)2 is the most relevant operator in the series
expansion of the densit{8.12):

(3.18

where S* stands for the actiori2.11) at the critical point
A=0.
p(Frer= 2 1P x(N2+0(x3). (3.14 We define the renormalized mass density as

As remarked above, the constant stationary point MP(X) ren=me?™) (3.19
¢o=In6— —o only produces the zeroth order of perturba- ) o o
tion theory. More information arises perturbing around theand we identify it with the energy density in the renormal-

stationary point(r) given by Eq.(3.7) [17]. ization group[Also called the “thermal perturbation opera-
tor.” ]. This identification follows from the fact that they are

the most relevant positive definite operators. Moreover, such
identification is supported by the perturbative re<8lfi4).
As is well known[4,6,7], physical quantities fomfinite In the scaling regime we hayé] for the logarithm of the
volume systems diverge at the critical point/ago a nega-  partition function
tive power.A measures the distance to the critical poiin.
condensed matter and spin systerhss proportional to the 1 b
temperature minus the critical temperat(iés7].) One has, yinZ(A)= m/\ “+F(A),  (3.20
for the correlation lengtfg,

C. Renormalization group finite size scaling analysis

whereF(A) is an analytic function of\ around the origin

E(A)~ATY,
and, for the specific hedper unit volume C, F(A)=FotaA+ ;bA%+. ...
C~A"% (3.15 V=RP stands for the volume arfel,, K, a, andb are con-

stants.
Correlation functions scale at criticality. For example, the Calculating the logarithmic derivative af(A) with re-
scalar field¢ (which in spin systems describes the magneti-spect toA from Egs. (3.18 and (3.20 and equating the
zatior) scales as results, yields

1) (0))~r 17, 1 K 1 .
<¢(r)¢( )> r v%lnz([\):a—i_m/\lia—i_:v"‘ de<e¢(X)>,

The critical exponents,«, and » are pure numbers that (3.21)
depend only on the universality clag6,7]. '
For a finite-volume system, all physical quantities are yhere we used the scaling relatien=2— vD [6,7].

finite at the critical point. Indeed, for a system whose size e can apply here finite-size scaling arguments and re-
R is large, the physical magnitudes take large values at thBIaceA by ~R~ " [Eq. (3.16)],

critical point. Thus, for largeR, one can use the infinite-

volume theory to treat finite-size systems at criticality. In 9
particular, the correlation length provides the relevant physi- —InZ(A)=Va+ RW+....
NN JA 1-«
cal lengthé~R. This implies that
A~R- 1 (3.16 Recalling Eq.(3.19, we can express the mass contained

in a region of sizeR as

We can apply these concepts to thetheory since, as we R

have seen in the previous section, it exhibits scaling in a M(R)=mf ey (3.22
finite volume~R3. Namely, the two point correlation func-

tion exhibits a powerlike behavior in perturbation theory as
shown by Eq.(3.13. This happens for @ontinuum sebf
values ofT and u2. Therefore, changing.?/ T keeps the

Using Eq.(3.21) we find

theory in the scaling region. At the point?/Tgz=0, the (M(R))=mVa+mLRl’”+ e
partition function Z is singular. From Eq(2.10, we shall 1-a
thus identify
and
A=t (mT>3/2 (3.17) K
=—=7|7— . -
Tett 2m (p(r)>=ma+my(1_—a)QDr(l’”>*D

Notice that the critical pointA =0 corresponds to zero

fugacity. for r of order ~R, (3.23
Thus, the partition function in the scaling regime can be

written as where()p, is the surface of the unit sphere ih dimensions.
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The energy density correlation function is known in gen- 1/1 1
eral in the scaling regiofsee Refs[6], [7]). We can, there- gq= 5(;—1) = E(dH_ 1).
fore, write for the density-density correlato¢g.22 in D

space dimensions The calculation of the critical amplitudé¢that is, the co-

efficients in front of the powers dR in Egs.(3.24), (3.26),

> |F [ |(2lv)-2D
C(ryra)~[ry—ry : G249 and (3.27)] is beyond the scope of the present paddf.

where bothr; andr, are inside the finite volume-RP. _ o
The perturbative calculatio(8.13 matches with this re- D. Values of the scaling exponents and the fractal dimensions

sult for v=3. That is, the mean field value for the exponent The scaling exponents « considered in Sec. Il C can be

v. o _ computed through the renormalization group approach. The
Let us now compute the second derivative af(ih) with  case of asinglecomponent scalar field has been extensively
respect toA in two ways. We find, from Eq(3.20), studied in the literaturg6,7,10. Very probably, there is a
72 unique, infrared-stable, fixed point in three-space dimen-
_ -a sions: the Ising model-fixed point. Such nonperturbative
— = +b+---]. . o . L
aAzan(A) VIA Kb ] fixed point is reached in the long-scale regime independently

of the initial shape of the interactiam( ¢) [Eq. (3.10] [10].
We get, from Eq/(3.18), The numerical values of the scaling exponents associated

5 to the Ising model-fixed point are

- R d3
_ Dy, D __pD A-2
W'”Z(A)_J d™xdyCOY)~R™ || Sap=za;~ A »=063l..., dy=156..., 5=00%F..., and
~RPA (3.29 a=0.107. ... (3.29
where we used Eqs3.16 and(3.24) and the scaling relation  |n the ¢-field model there are two dimensionful param-

a=2-vD [6,7]. We conclude that the scaling behaviors, eters:u and To;. The dimensionless combination
Eq. (3.20 for the partition function, Eq(3.15 for the spe-

cific heat, and Eq(3.24 for the two point correlator are G32m1s/4
consistent. In addition, Eq$3.22 and (3.25 vyield for the 92= uTer=(87)%4z I (3.29

mass fluctuations squared

acts as the coupling constant for the nonlinear fluctuations of

[AM(R)]ZE<M2)—(M>2~f d®xdPy C(x,y) ~ R, the field ¢.
Let us consider a gas formed by neutral hydrogen at ther-
Hence, mal equilibrium with the cosmic microwave background. We
setT=2.73 K and estimate the fugacityusing the ideal gas
AM(R)~R%, (3.2  value
The scaling exponent can be identified with the inverse 2.7\ 32
Haussdorf(fractal) dimensiondy of the system :(ﬁ p-
1 3
dy=-—. Here, we usep= 8, atoms/cm * for the ISM density and
v 5o= 10 Equation(2.10 yields
In this way, AM ~R% according to the usual definition of 1 1
fracta_l dimension$8]. . Z—27-AU~30 AU and
Using Eq.(3.24 we can compute the average potential o’ NER

energy in three space dimensions as

R Py 9%=uTe=4.9X10 %85,~5%x10"%  (3.30
C(X y) R(Z/V) 1

x-y|>a |X y| This extremely low value fog? suggests that the pertur-

bative calculationSec. Il B] may apply here yielding the

mean field values for the exponents: i.e.,

(= 1pG jl

From here and Eq3.26) we get as virial estimate for the
atomic kinetic energy

v=1/2, dy=2, »=0, anda=0. (3.3)
M _
<UZ> R(l/v) 1
<AM R)) That is, the effective coupling constant grows with the scale
according to the renormalization group floitowards the
Ising-fixed poini. Now, if the extremely low value of the
Ap~RY211w)-1] (3.27 initial coupling [Eq. (3.30] applies, the perturbative result
(mean field will hold for many scalegthe effectiveg grows
That is, we predicfsee Eq(1.1)] a new scaling relation roughly as the lengih

This corresponds to a velocity dispersion
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w~ ! indicates the order of the smallest distance where thd his corresponds to the Poisson equation for a thermal mat-
scaling regime applies. A safe lower bound supported byer distribution satisfying an ideal gas in hydrostat!c equ!llb—
observations is around 20 AW 3x 10 cm, in agreement rium, as can be seen as follo20]. The hydrostatic equi-

with our estimate. librium condition
Our theoretical predictions foAM(R) and Av [Egs. . . R
(3.26 and (3.27)] both for the Ising equatiofB.28 and for VP(r)=—mp(r)VU(r),

the mean field value equatiaB.31), are in agreement with

the astronomical observatiofq. (1.1)]. The present obser- WhereP(r) stands for the pressure, combined with the equa-

vational bounds on the data are larger than the differenction of state for the ideal gas

between the mean field and Ising values of the exponents

dy andq. P=Tp,
Further theoretical work in the theory will determine

whether the scaling behavior is given by the mean field or b

the Ising-fixed poin{17]. p(F)=p0e‘(m’T)U(F),

Q/ields for the particle density

wherep, is a constant. Inserting this relation into the Poisson
E. The two-dimensional gas equation
and random surface fractal dimensions

—— .
In the two-dimensional cas®(= 2) the partition function VaU(r)=4mGmp(r)

(2.33 describes the Liouville model that arises in string
theory[18] and in the theory of random surfacedso called

two-dimensional quantum gravjty For strings in mT
c-dimensional Euclidean space the partition function takes p0:z<—
the form[18] 2m

:f fD¢exp{——_

yields Eq.(3.34) with

32

(3.39

For larger, Eq.(3.34 gives a density decaying as >

2 %(w)zmzem”

T
(3.32 ) _1[“0(;”
o . . P mGm? Wl
This coincides with Eq(2.33 at D=2 provided we flip the
sign of u? and identify the parameter8.34 as T (200G
U(F) ~ —|n[Mr2}+o(%). (3.36
,26—C —em LT Ir
T= Gm T' ,U,ZZZGIT?. (333)

Notice that this density, which describes a single stationary

Reference[19] states thatd,,=4 for c<1, d,=3 for  solution, decays for large faster than the density3.23

c=2, andd,=2 for c=4. In our context this means governed by thermal fluctuations.
Spherically symmetric solutions of E¢3.34 have been

25 5 studied in detail[21]. The small fluctuations around such
dy=2 for T<5G m?, dy=3 for T=2Gn?, isothermal spherical solutions as well as the stability prob-
lem were studied if16].

11 The Jeans distance is, in this context,
and dy=4 for T= EGmZ.

3T 1 J3(2m)34
Forc—x, g?—0 and we can use the perturbative result d,= m\JGmp, zGmiATV4 (337
(3.13 yielding =3, dy=2 in agreement with the above
discussion forc=4. This distance precisely coincides with ! [see Eq.(2.10]

up to an inessential numerical coefficienfl2/7). Hence,
u, the only dimensionful parameter in thietheory, can be
F. Stationary points and the Jeans length interpreted as the inverse of the Jeans distance.

The stationary points of thep-field partition function We want to notice that in the critical regime; grows as

(2.9) are given by the nonlinear partial differential equation d,~R9H?2, (3.39

V2= —u’e?™. since po=A~R™% vanishes as can be seen from Egs.
. (3.16, (3.17), and (3.37). In this tree-level estimate we
In terms of the gravitational potentitl(x) [see Eq(2.21)],  should use for consistency the mean field vabljg=2,
this takes the form which yieldsd;~
T3 Thifs ﬁhows that thhe Jeans ddistance ils of tgehorder of the
201 mi — (MU sizeof the system. The Jeans distarsmalesand the insta-
v U(r)—47-ern‘( ) g (DU, (3.39 bility is, therefore, present for all sizés.
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Had d; been of order larger thaR, the Jeans instability m,,1<a<n. Repeating the steps from Eqg&.1)—(2.11),
would be absent. yields again a field theory with a single scalar field but the
The fact that the Jeans instability is prespnéciselyat  action now takes the form
d;~R is probably essential to the scaling regime and to the
self-similar (fractal) structure of the gravitational gas.

. ; : . 1 " m
The dimensionless coupling constagft can be written S[(ﬁ(_)]z_f d3x| = (V)2— 2 MZGXp(_a¢(;)) ,
from Egs.(3.17) and(3.29 as Terr 2 a1l m
4.1
mG\?3
92=<2m \/7) VA. where
- i 2
Hence, the tree-level coupling scales as M;ZF \[;ZaG mg/zmz\/i
g>~R™ L

andm is just a reference mass.
Direct perturbative calculations explicitly exhibit such scal- Correlation functions, mass densities, and other observ-
ing behavior[17]. ables will obviously depend on the number of species, their
We can expresg? in terms ofd, and p, as masses, and fugacities but it is easy to see that the fixed
points and scaling exponents are exactly $heneas for the
(12m)3¥2 72,2 ¢-field theow[Eqs._(2.9) and (2.10)_]. _ _
== ) We want to notice that there is an important difference
pod Po between the behavior of the gravitational gas and the spin
models(and all other statistical models in the same univer-
This shows thag? is, at the tree level, the inverse of the Sality class. For the gravitational gas we find scaling behav-
number of particles inside a Jeans volume. ior for a full range of temperatures and couplings. For spin
Equation(3.389 applies to the tree-level Jeans length ormodels scaling only appears at the critical value of the tem-
tree level u~t. We can, furthermore, estimate the JeansPerature. At the critical temperature the correlation lergth
length using the renormalization group behavior of theis infinite and the theory is massless. For temperatures near

2

physical quantities derived in Sec. Ill C. Setting the critical one, i.e., in the critical domaid, is finite (al-
though very large compared with the lattice spatiagd the
(Av) corétlalation .functi?nsh decrlease ax "¢ for large distancesb
dy)= ——, r. Fluctuations of the relevant operators support perturba-
{da VGM{Ap) tions which can be interpreted as massive excitations. Such
(massive behavior does not appear for the gravitational gas.
we find, from Eqgs(3.23 and(3.27), The ISM correlators scale exhibiting power-law behavior.
This feature is connected with the scale-invariant character
(dy)~R. of the Newtonian force and its infinite range.

The hypothesis of strict thermal equilibrium does not ap-
i i _ply to the ISM as a whole where temperatures range from
Namely, we find again that the Jeans length grows as the siz& 5o K and even 1000 K. However, since the scaling behav-
R. ior is independent of the temperature, it applieeszhre-
gion of the ISM in thermal equilibrium. Therefore, our
IV. DISCUSSION theory applies provided thermal equilibrium holds in regions
or clouds.

In previous sections we ignored gravitational forces exter- \We have developed here the theory of a gravitationally
nal to the gas, like stars, etc. Adding a fixed external masgteracting ensemble of bodies at a fixed temperature. In a
density pe,(r) @amounts to introducing an external source real situation such as the ISM, gravitational perturbations

from external masses, as well as other perturbations, are
- - present. We have shown that the scaling solution is stable
I =~ Teftexd1), with respect to the gravitational perturbations. It is well
known that solutions based on a fixed point are generally
in Eg. (2.13. Such term will obviously affect correlation quite robust.
functions, the mass density, etc. except when we look at the Our theory especially applies to the interstellar medium
scaling behavior which is governed by the critical point. Thatfar from star-forming regions, which can be locally far from
is, the values we find for the scaling exponemitsandq are  thermal equilibrium, and where ionized gas at*1R to-
stableunder external perturbations. gether with coronal gas at £K can coexist with the cold

We considered all atoms with the same mass in the gravinterstellar medium. In the outer parts of galaxies, devoid of
tational gas. It is easy to generalize the transformation intany star formation, the ideal isothermal conditions are met
the ¢ field presented in Sec. Il for a mixture of several kinds[3]. Inside the Galaxy, large regions satisfy also the near
of atoms. Let us considen species of atoms with masses isothermal criterion, and these are precisely the regions
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where scaling laws are the best verified. Globally over theRef. [22] of the mass density contrast with the Ising spin

Galaxy, the fraction of the gas in the hot ionized phase repleads to scaling exponents different from ours.

resents a negligible mass, a few percents, although occupy-

ing a significant volume. Hence, this hot ionized gas is a ACKNOWLEDGMENTS

perturbation which may not change the fixed-point behavior H. J. de V. and N. S. thank D. Boyanovsky and M.

of the thermal self-gravitating gas. D’Attanasio for discussions. Laboratoire de PhysiquécdFhe
In Ref.[22] a connection between a gravitational gas ofique et Hautes Energies is Laboratoire Ass@tiecCNRS UA

galaxies in an expanding Universe and the Ising model i280. Observatoire de Paris is Laboratoire Ass@tiecCNRS

conjectured. However, the unproven identification made inJA 336.

[1] R. B. Larson, Mon. Not. R. Astron. Sot94, 809 (1981). [12] C. F. von Weizseker, Astrophys. J114, 165(1951).
[2] J. M. Scalo, ininterstellar Processesdited by D. J. Hollen- [13] S. Edward and A. Lenard, J. Math. PhyN.Y.) 3, 778(1962;
bach and H. A. ThronsofReidel, Dordrecht, 1987 p. 349. S. Albeverio and R. Hegh-Krohn, Commun. Math. Phy30,

[3] D. Pfenniger, F. Combes, and L. Martinet, Astron. Astrophys. 171(1973.
285 79 (1994); D. Pfenniger and F. Combegyid. 285 94 [14] R. L. Stratonovich, Doklady, 146 (1958; J. Hubbard, Phys.

(19949. Rev. Lett.3, 77 (1959; J. Zittartz, Z. Phys180, 219(1964.
[4] K. G. Wilson, Rev. Mod. Phys47, 773 (1979; 55, 583 [15] S. Samuel, Phys. Rev. 8, 1916(1978.
(1983. [16] G. Horwitz and J. Katz, Astrophys. 222 941 (1978; 223
[5] L. P. Kadanoff,From Order to ChaogWorld Scientific, Sin- 311(1978; J. Katz, G. Horwitz, and A. Dekelbid. 223 299
gapore, 1998 (1978.
[6] C. Domb and M. S. Gree®hase transitions and Critical Phe- [17] H. J. de Vega, N. Swhez, B. Semelin, and F. Combég
nomena(Academic, New York, 1976 Vol. 6. preparation

[7] 3. J. Binney, N. J. Dowrick, A. J. Fisher, and M. E. J. Newman,[18] A. M. Polyakov, Phys. Lett103B, 207 (198J).
The Theory of Critical Phenomen®xford Science Publica- [19] J. Ambjan and Y. Watabiki, Nucl. Phy€$8445, 129(1995; J.

tion). Ambjoérn, J. Jurkiewicz, and Y. Watabikipid. B454, 313
[8] See, for example, H. Stanley, Kractals and Disordered Sys- (1995; Y. Watabiki, Report No. hep-th/960518Eunpub-
tems edited by A. Bunde and S. Havli$pringer-Verlag, Ber- lished.
lin, 1991). [20] See, for example, W. C. Sasla®ravitational Physics of Stel-
[9] L. D. Landau and E. M. LifchitzPhysique Statistiqueteme lar and Galactic System@&ambridge University Press, Cam-
ed. (Mir-Ellipses, 1996. bridge, England, 1987
[10] A. Hasenfratz and P. Hasenfratz, Nucl. Phy270, 687 [21] S. Chandrasekharan Introduction to the Study of Stellar
(1986; T. R. Morris, Phys. Lett. B329, 241 (1994); 334, 355 Structure(Chicago University Press, Chicago, IL, 1939
(1994. [22] J. Peez Mercader, T. Goldman, D. Hochberg, and R.
[11] S. C. Kleiner and R. L. Dickman, Astrophys. 286, 255 Laflamme, Report Nos. astro-ph/9506127 and LAEFF-96/06

(1984; 295, 466 (1985; 312 837(1987. (unpublished



