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The Einstein equivalence principle has as one of its implications that the nongravitational laws of physics are
those of special relativity in any local freely falling frame. We consider possible tests of this hypothesis for
systems whose energies are due to radiative corrections, i.e., which arise purely as a consequence of quantum
field theoretic loop effects. Specifically, we evaluate the Lamb shift trangigisigiven by the energy splitting
between the 3,,, and 2P, atomic stateswithin the context of violations of local position invariance and
local Lorentz invariance, as described by thdeu formalism. We compute the associated redshift and time
dilation parameters, and discuss h@mwigh-precision measurements of these quantities could provide new
information on the validity of the equivalence princip|&0556-282(96)03920-3

PACS numbd(s): 04.80.Cc, 12.20.Fv, 32.10.Fn

[. INTRODUCTION energy (virtually all of which are associated with baryonic
matte) also have been estimat¢H]. However, there exist
The Einstein equivalence princip(EEP is foundational many other physical systems, dominated by primarily non-
to our understanding of gravity. It states tligtall test bod-  baryonic energies, for which the validity of the EEP is com-
ies fall with the same acceleration regardless of their comparatively less well understoob]. Such systems include
position[the weak equivalence princip(8VEP)] and(ii) the  photons of differing polarizatiofi7], antimatter system(s],
outcome of any local nongravitational test experiment is in-neutrinos[9], mesons[10], massive leptons, hypothesized
dependent of the velocity and the spacetime orientation andark matter, second and third generation matter, and quan-
location of the(freely falling) apparatugl]. Theories which tum vaccum energies. Indeed, potential violations of the EEP
obey the EEP, such as general relativity and Brans-Dickelue to vacuum energy shifts, which are peculiarly quantum-
Theory, are called metric theories because they endow spaceechanical in origin(i.e., do not have a classical or semi-
time with a metricg,,, that couples universally to all non- classical descriptiorprovide an interesting empirical regime
gravitational fields. Nonmetric theories do not have this feafor gravitation and quantum mechanics.
ture: they break universality by coupling auxiliary In this paper we investigate the effects that EEP-violating
gravitational fields directly to matter. In this context a viola- couplings have on Lamb-shift transition energies. Such tran-
tion of the EEP means the breakdown of either local positiorsitions arise solely due to the radiative corrections inherent in
invariance(LPI) or local Lorentz invariancélLLl) (or both quantum electrodynamics. A test of the EEP for this form of
so that observers performing local experiments could dete@nergy therefore provides us with a qualitatively new empiri-
effects due to their positiofif LPI is violated) or their ve-  cal window of the foundations of gravitational theory.
locity (if LLI is violated) in an external gravitational envi- The Lamb shift is the shift in energy levels of a hydro-
ronment by using clocks and rods of differing composition.genic atom due to radiative corrections. Such energy shifts
Limits on LPI and LLI are set by gravitational redshift and break the degeneracy between states with the same principal
atomic physics experiments, respectivd®—4], each of quantum number and total angular momentum, but differing
which compares relative frequencies of transitions betweenrbital and spin angular momenta. The best-known example
particular energy levels that are sensitive to any potential LPis the energy shift between theSg, and 2P, states in a
or LLI-violating effects. hydrogen-like atom, which arises due to interactions of the
The next generation of gravitational experiments will ex-electron with the quantum-field-theoretic fluctuations of the
tend significantly our current understanding of the empiricalelectromagnetic field. For metric theories, the lowest-order
foundations of the EEP. A proposedtEos experiment in  contribution for the Lamb shift is 1052 MHz for hydrogen
space, known as the satellite test of the equivalence principlatoms. There is a 5 MHz discrepancy with the experimental
(STEP attempts to test WEP to one part in*10The preci-  value of 1057.845(9) MHZ£11] or 1057.851(2) MHZ12],
sion of gravitational redshift experiments could be improvedthat can be improved with the inclusion of higher-order
to one part in 18 by placing a hydrogen-maser clock on terms and corrections coming from the structure and recoil of
board Solar Probe, a proposed spacedisde Ref[1l] and the nucleus.
references therein Any breakdown of LPI or LLI is determined entirely by
The dominant form of energy governing the transitionsthe form of the couplings of the gravitational field to matter
that these experiments probe is nuclear electrostatic energgince local, nongravitational test experiments simply respond
although violations of WEP or EEP due to other forms ofto their external gravitational environment. To explore such
effects, it is necesssary to develop a formalism capable of
representing such couplings for as wide a class of gravita-
:Electronic address: calvarez@avatar.uwaterloo.ca tional theories as possible. We consider in this paper
Electronic address: mann@avatar.uwaterloo.ca Lagrangian-based theories in which the dynamical equations
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governing the evolution of the gravitational and matter fieldsfrom the semiclassical Hex Hamiltonian and its radiative
can be derived from the action principle corrections. The semiclassical contribution violates LLI only
and is isotropic; the radiative corrections violate both LLI
and LPI and are not isotropic. These contributions are func-
tions of nonmetric parameters, which arise in the leptonic
sector of the standard model, and so are not constrained by
The gravitational parg of the Lagrangian density contains previous high-precision experiments, which have set strin-
only gravitational fields; it determines the dynamics of thegent bounds for analogous parameters in the baryonic sector
free gravitational field. The nongravitational pattg con-  [4]. Of course, all such contributions vanish for metric theo-
tains both gravitational and matter fields and defines the couies.
plings between them. The dynamics of matter in an external In order to calculate th¢GM) radiative corrections, we
gravitational field follow from the action principle shall modify the Feynman rules of quantum electrodynamics
(QED) within the context of thé Heu formalism. Although
we cannot use LPI/LLI symmetries, the gauge invariance of
5f d*xLye=0 (2)  the theory is still present. We shall be concerned with the
one-photon contribution to th@M) Lamb-shift up to order
by varying all matter fields in an external gravitational envi- Me(Za)*, with the nucleus treated as a fixed point charge.
ronment. We do not include furthethigher-ordey refinements, since
We work in the context of a wide class of nonmetric W€ are interested in the role of Lamb shift energies in the

theories of gravity as described by tAeHex formalism investigation of possible LPI/LLI violations and so expect
[13]. Phenomenological models afyg provide a general anYy such V|0I_at|ons to be qualitatively different from higher-
framework for exploring the range of possible couplings oforder corrections.
the gravitational field to matter and, thus, the range of Our paper is organized as follows. In Sec. Il theley
mechanisms that might conceivably break LPI or LLI. The&ction is introduced and extended to frames moving with
THeu formalism is one such model. It deals with the dy- réspect to the preferred frame defined by Théeu gravita-
namics of charged particles and electromagnetic fields in tonal f|eld: Th|s formalism is then u§ed_to calculate the elec-
static, spherically symmetric gravitational field. In addition tromagnetic fields produced by a pointlike charge and to for-
to all metric theories of gravitation, thEHex formalism  Mulate (GM)QED. In Sec. Il the(GM) Dirac equation is
encompasses a wide class of nonmetric theories. used to find the energy Ievel_s of hydrogenic atoms, and we
A quantum-mechanical extension of the original classicafompute the radiative corrections for those states in Sep. V.
THeu formalism was developed by Will14] to calculate Ir] Sgc. V the GM Lamb shift is rglated to redshift gnd time
the energy shiftgdue to, e.g., hyperfine effegtén hydro- dllatlon.paramgters to stud'y possible LPI and LLI violations,
genic atoms at rest in @Heu gravitational field. Since the respectlvely._ Final conclu_smns are presented in Se_c. VI. Sev-
ticking rate of a hydrogen-maser clock is governed by theeral appendices summarize details of our calculations.
transition between a pair of these atomic states, this exten-
sion can be used to determine the effect of the gravitational Il. (GM) ACTION

field on the ticking rate of such clocks. This provides a basis The THex formalism was constructed to study electro-

for a quantitative interpretation of gravitational redshift eX- anetically interacting charaed structureless test particles
periments, which employ hydrogen-maser clocks, for ex- 9 y 9 9 P

. . . in an external, static, spherically symmet(8SS gravita-
ample, the gravity probe A rocket-redshift experim¢at . i - X ;
Such experiments are a direct test of LPI. tional field, encompassing a wide class of nonmegiud all

This formalism was further extended by Gabriel andmetrlc) gravitational theories. Originally employed as a com-

Haugar{15], who calculated the effects that the motion of anputational framework designed to test Schiff's conjecture

. o ' 1], it permits one to extract quantitative information about
atomic system through a gravitational field would have On'Ehe implications of EEP violation that can be compared to

the ticking rate of hydrogen-maser and other atomic cIocks.X riment. It mes that the nonaravitational laws of

Their extension can be used to compute energies of hyperfine periment. 1t assumes that the no .g avitational faws o

and other energy shifts of hydrogen atoms in motion througIP ysics can be derived from an action:

aTHeu field. Here the physical effect under consideration is

time dilation rather than the gravitational redshift. When LLI  Syg=— > maJ dt(T—Hov2)Y2+ >, eaJ dtvA,,(x2)

is broken, the rates of clocks of different types that move a a

together through the gravitational field are slowed by differ- 1

ent time-dilation factors. This nonuniversal behavior is a +—f d*x(eE2—B?/ ), ©)

characteristic symptom of the breakdown of L[l1B], just as 2

nonuniversal gravitational redshift is the hallmark of LPI

violation [14]. where My, €, and xg‘(t_) are the reost mass, charge, and
We are concerned in this paper with extending this analyworld line of ~ particle a, x'=t, wvg=dxg/dt,

sis to the Lamb shift, an energy shift whose origin is due toE=—VAy—JdA/dt, B=VXA. The parameters and n are

radiative corrections. We compute the gravitationally modi-arbitrary functions of the Newtonian gravitational potential

fied (GM) Lamb shift in aTHeu field, and then discuss U=GM/r (which approaches unity d4—0), as arel and

experiments which could potentially measure such effectsH, which in general will depend upon the species of particles

We find both EEP-violating contributions to the Lamb shift within the systenleptons in the present case

) J d*xL=6 f d*X(Lg+ Lns) =0. (1)
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A gquantum-mechanical extension of the act{@hwhich —
incorporates the Dirac Lagrangian was used by \\iff] to S:f d*xy(id+eA- m)¢+f d*xJ, A*
study the energy levels of hydrogen atoms. In that case a
local approximation to the action is employed. The space-
time scale of atomic systems allows one to ignore the spatial
variations ofT, H, €, u, and evaluate them at the center of oo m s om = s
mass position of the systerX=0. This work was further +(1+ u%)B"—(u-B)"+2u-(EXB))], (5
extended by Gabriel and Haugrb] who showed that after \yherej is the electromagnetic four-current associated with
rescaling coordinates, charges, and electromagnetic poteByme external sourcgtaken here to be a pointlike spinless
tials, the field theoretic extension of the acti®) can be  npycleus. In our formulation, all nonmetric effects arise from
written in the form the inequality between, andc, in the electromagnetic sec-
tor of the action. The dimensionless parameter
é=1—(c, /cy)2=1—c? measures the degree to which LPI/
LLI is broken for a given species of particle. The natural
scale for¢ in theories that break local Lorentz invariance is
set by the magnitude of the dimensionless Newtonian poten-
tial, which empirically is much smaller than unity in places
where local natural units are usedA=y,A*, and We can imagine performing experimeiits. We are, there-

C2=H/Toeouo With the subindex “0” denoting the func- fore, able to compute effgcts of .the terms in I_i;’ﬁ) that .
i luated aX=0. Th tec is the ratio of th break local Lorentz invariance via a perturbative analysis
lons evaluated ak=0. The parametet Is the ratio or the - 5, ¢ the familiar and well-behaved-1 or ¢—0 limit.

local §peed (,)f light to the Iimiting speed of the species of The fermion sector of the actid) implies that the equa-

massive particle under consideration. _ tion of motion for they field is simply the Dirac equation
The action(3) [or (4)] has been widely used in the study ¢,pjeq in the usual fashion to the potenti}. On the

of LPI or LLI-violating effects such as the effect of nonmet- other hand, the pure electromagnetic part of the action is

ric gravitational fields on the differential ticking rates of dif- yodified with an extra term proportional to the small

ferent types of atomic clocks, a violation of LP14]. An  (species-dependemtaramete. This will affect the electro-

analysis of the electrostatic structure of atoms and nuclei ifhagnetic field equations, and the photon propagator. In both

motion through aTHew gravitational field using Eq(3)  cases we can calculate effects of the additional terms pertur-
shows that the nonmetric couplings encompassed by thigatively.

+ %f d*X[(E2—B?)+ £(U”E?— (u-E)?

S= f d*xy(ib+eA—m)y+ % f d*x(E>—c?B?), (4)

THeu formalism can also break LUIL6]. This symmetry is The field equations coming from the acti@®) are[15]
broken when the local speed of light = (uqeo) ~ 2 differs . R,
from the limiting speed of a given species of massive particle V-E=p+£u-V(u-E)—u-VXB-U?V-E],

co=(To/Hg)*? the latter being normalized to unity in Eq. _

(4). Further implications of the breakdown of LLI on various ~VXB—E=j+¢{VX(UXE)+uxV(u-B)

aspects of atomic and nuclear structure also have been inves- ) . :
tigated. Shifts in energy levelincluding the hyperfine split- +(1+Uu3)VXB+Uu’E—u(u-E)—uxB],
ting) of hydrogenic atoms in motion throughTdHeu gravi- 6)
tational field have been calculatétl5] by transforming the

representation of the actiq@) to a local coordinate system \ynere p and J* are the charge density and current associated
in which the atom is initially at rest and then analyzing theith the fermion field plus and external sourtgich as a
atom’s structure in that frame. The local coordinate systenhycleus) Perturbatively solving these equations for electro-

in which theTHeu action is represented by E@), is called  magnetic potentials produced by a pointlike nucleus of
the preferred frame; moving frames are those systems of lechargeZe at rest in the moving frame yields

cal coordinates that move relative to the preferred frame.

In the present work we generalize this analysis by using
the action(4) to study radiative corrections to bound-state
energy levels in hydrogenic atoms. We follow the scheme
given in Ref.[15], and analyze the atomic states in moving

frames whose velocity i

Consider an atom that moves with velociiyrelative to U - N
the preferred frame. The moving frame in which this atom iswheren=x/|x|, ¢=Zel4|x|, andV-A=0. Note that Eq.
initially at rest is defined by means of a standard LorentZ?) 29rees with the corresponding result from Res].

transformation. A convenient representatiph5| of the The primed fields in Eq(7) S'gf‘a' a breakdown_of LLL. .
L . i . Consequently, we expect that this electromagnetic potential
THew action in this new coordinate system if the nongravi- . . . .
. i I - ) will modify the energy states of hydrogenic atoms prior to
tational fieldsy, A, E, andB transform via the correspond- the inclusion of radiative corrections. We shall calculate
ing Lorentz transformations laws for Dirac, vector, and electhese effects for the Lamb shift in the next section. In order

tromagnetic fields is, t@(ﬁz), to find the radiative corrections to these energy levels, we

Ao 1= 5@+ (0-R)) | d=0+ 07,

A= §[6+ﬁ(ﬁ.ﬁ)]¢zg/3', (7)
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must reformulate quantum electrodynami@ED) according by the THeu formalism, these energy levels will be modi-
to the action(5). Since the fermion sector of the action doesfied by the EEP-violating terms introduced in the soJi€s.

not change, the fermion propagator is unaltered; only th€7)], removing this degeneracy before introducing radiative

photon propagator needs to be modified. corrections. Note that the fermion sector of thidew action
To find the photon propagator, we go back to the actiordoes not change and, therefore, neither does the Dirac equa-
(4) and add a gauge-fixing term of the form tion. The preferred frame effects appear only in the expres-

L sion for the electromagnetic source produced by the nucleus.
Ser= — Ef d“x[(l—g)(&-A)2+2§(90A0(9.A], ) We shall now evaluate this contribution.
. . . . lll. (GM) DIRAC STATES
after which the resulting electromagnetic part can be written
as The Dirac equation in the presence of an external electro-
magnetic field still reads as in the metric case:
SEM: f d4X

+Agdd, A=A 3" 9 ,AM) |,

1 v " g (WY
S AW DA+ = (A, d00°A

H|n)=(a-p+Bm—eA’+ea-A)n)=E,n), (15

) where the various symbols have their usual meaning.
The (GM) energy levels of hydrogenic atoms are found
by solving Eq.(15) in the presence of the electromagnetic
where we have integrated by parts and neglected surfaggld (7) produced by the nucleus, which entirely accounts

terms. for the preferred frame effects. If we replace Eg). in Eq.
This action is still given in preferred frame coordinates. (15), the Hamiltonian can be written as

We can go the moving frame by performing the Lorentz

transformations H=Hqy+¢&H', H' =—e¢'+ea-A’, (16)
Ao—A)=y(Ag—u-A)=yB-A, where H, corresponds to the standard Hamiltoniémith
L Coulomb potential only and the primed fields are defined as
do— o= y(dg—u-V)=yB- 4, (100 in Eg. (7). In terms of the known solutions for

A A Ho/n)°=E®%n)°, we can perturbatively solve Eq15) by
where y?=1/(1-u? and pB*=(1u); henceforth, writing
B%=1-u?. Transforming Eq(9) by using Eq.(10) gives

Eq=Ep+£EqIn)=[n)%+¢n)’, (17
1
Sem=5 f d*XAHLC,, A, 1) with
where(in momentum spade En=%n[H'|n)°=E,® +E, ™), (18)
Kuv== k(1= &)= Y11, (B-K)*+ BBK], ,_ s Ar[H'|n)®
. . g " (12 In) :rE EO EO r)°, (19

where 7,, is the Minkowski tensor with a signature
(+——-) andC,, is the inverse of the photon propagator
G, - Therefore, after solving

whereE/(® andE;M) account for the contributions coming
from the respective electric and magnetic potentials.
We now proceed to calculate the energy levels related to

K G%=¢s" (13) the Lamb-shift states. To obtain these, we find it convenient
;L5 o . . . 0 .

to use the exact solution for the Dirac spirinf°, expanding
we find, up to first order irg, the final answer in powers &« to O((Za)*). The relation-

ship between this approach and an alternate one in which the
Nuv ¥ (B-k)? Hamiltonian is first expanded in powers @« using a

Cu==(1+8 1z + £z 2| Ty T BBy Foldy-Wouthuysen transformation is discussed in Appendix
14 A

The unperturbed Dirac stata) can be expressed as
The terms proportional té in Eq. (14) signal the breakdown

of both LPI and LLI, since those terms are still present even In)°= Gyj(r)|l;jm) (20
if u=0. The (GM) QED then differs from standard QED )= —iFj(ryo-n|l;jmy)’

only in the expression for the photon propagator; the fermion )
propagator and Feynman rules are unchanged. wherell;jm) is the spinor harmonic eigenstate35fL 2, and

As the Lamb shift is the shift between theSg, and  J., With respective quantum numberd, andm. The func-
2P,,, states, and since the Dirac equation for a CoulombionsF andG can be written in terms of confluent hypergeo-
potential predicts those states to be degenerate, the differengggtric functions that depend in a nontrivial way &a for a
between them in metric theories comes only from radiativegiven! andj [17].
corrections. For nonmetric theories, which can be described Inserting the fields from Eq$7) and(20) in E;,, we write
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E;®=(Rg+Rep)(jm;l[u+(u-n)?[l;jm), (21)

En™=—iRgg(jm;l|(o-A)(a-u)+u-All;jm)+ Hec.,
(22)

where “H.c.” means Hermitian conjugate and where

1( Za_, (a) (b)
RGG:EJ GTGr dr (23)

with Reg andRg defined in an analogous manner. FIG. 1. Radiative corrections of ordes (a) self-energy andb)
We now evaluate this energy for theSg, and 2P,,  vacuum polarization.

states in this semiclassical approximation, prior to the inclu-

sion of any radiative corrections. Since the angular operatoln addition, the stat¢n) may be analogously expanded. Up

in Eq. (22) has odd parityas given byn), it is straightfor-  to first order in&, we can, therefore, write Eq27) in the

ward to show that the magnetic contributi@i™ =0, so  form

Er’1=Er’1(E) for any state. Using the corresponding expres-

_0 0 0 0 ' 0
sions for the harmonic spinors and theG functions in Eq. S0Eq="(n|8H"[n)"+ {[*(n[oH"|n)
(21) for each Lamb statgl7], we find +{%n|8HOInY’ + H.c}]. (29)
1 [ 19 - The contributions from thén)’ states are of the same
P2 2 R T— 2 A
E251/2 Gu m(Za) _1+ 16+ 16)(Za) _+ ’ order of magnituddin terms of powers oZ«) as thedsH’
(24  terms and so cannot be neglected. This may be seen by not-
) ing that, apart from theu dependanceg¢’~¢ and so
1 3 O(n|H'|r)°~E%—E? Inserting this in Eq.(19 h
P T2 2 o P n—E; g this in Eq.(19) proves the
Eap,,= gUM(Za) _1+ 16 16>(Za) L statement. Note that the effect of the)’ states was over-

(25  looked in Ref.[15]. If we identify 6H—H @, where
Hnr represents the perturbation to the Dirac Hamiltonian
where we have expanded the exact solutionsRgg and  due to the spin of the nucleus, then by the same arguments as
Rer in powers of Za)?, and kept the first relativistic cor- before, we can show that the ter{ﬂ(n|H(hf)°|n)’+ H.c}
rection only. The angular integration and tRgg term are  was omitted in the corresponding expression for the hyper-
the same for both states, and so the nonrelativistic limit ifine energy.
still degenerate for them. However, the first relativistic cor-
rgcltéc_)n coming from theRgg factor breaks the degeneracy, IV. (GM) RADIATIVE CORRECTIONS
yielding
To lowest order in QED, there are two types of radiative
©) u A 6 corrections to the energy levels of an electron bound in an
AE" =By ,~Eop ;= 5 M(Za) "+ 0((Za)?). external electromagnetic potential: the vacuum polarization
(26) (IT) and self-energy X)), along with a countertermdC)
that subtracts the analogous processes for a free electron.
We obtain the result that theS2,—2P,/, degeneracy is These contributions are illustrated in Fig. 1.
lifted before radiative corrections are introduced. This The energy shift due to these contributions for the state
“semiclassical” nonmetric contribution to the Lamb shift is [n) then can be written as

isotropic in the three-velocitﬁ of the moving frame and

2

, Z . OE,= 6Eg+ SEp, (30)
vanishes whemi=0. Hence, it violates LLI, but not LPI.
In order to proceed to a computation of the relevant raynere
diative corrections, we need to find the perturbative correc-
tions for the energies and spinor states given by(E§.and SEg=(n|>— &C|n), (31)
Eqg. (19), respectively. The radiative correctiafE,, to the
Dirac energyE, can be formally expressed as which corresponds to the self-energy contribution in Fig.
1(a) minus the corresponding counterterm, and
SE,=(n|sH|n), (27

SEp=(n[II|n), (32
wheredH accounts for the loop contributions as given by the
gravitationally modified QED. Since EEP violating effects which is the vacuum polarization contribution illustrated in
appear in both the photon propagator and the classical ele&ig. 1(b).
tromagnetic field, we expect In Fig. 1 the bold line represents the bound electron
propagator. This propagator can be written in operator form
SH=6HO+¢6H". (28) as P—Y—m) L, with
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VA(X)=—eA*(X) and p“=(E,,p), 0Eg= OE,+ JE,, (35

where A* is the external electromagnetic potential. Herewhere

E, is the total energy of the state), which satisfies the

Dirac equation p—Y—m)|n)=0. :ﬁj 3n 3 (R >
Equation (30) representg the one-loop correctidone OB =1 d*pdp (P )11 12+ Is}n(p),  (36)

power of @) to the atomic energy levels as givenBy. We ]

are interested in obtaining the “lowest order” Lamb shift, With

which is thea(Za)* contribution.[There are still more ap-

proximations that come after expanding the bound propaga- | :'_f ZD;L_ 7K 2p”_ky”G“V(k)d4k
tor, which introduce additional nonanalytic terms in the ex- 1"4m?) K*—2p' -k k’-2p-k :
pression for the Lamb shift that behave like
a(Za)*In(Za).] i 2p,—v.k2p,—Ky, o,
The GM radiative corrections are found by evaluating Eq. '2:E2Wf k?>—2p-k k?—2p- kG (kyd’k,
(30), where the external electromagnetic potential and the
photon propagator are respectively given by Es.and i 2p,— v,k
(14). All expressions will be expanded in terms of the LPI/ By G (k)d*k—6C, (37

ls=7—=| 77—+
LLI violating parameteré, and the velocity of the moving 4m®) k=2p-k

frameu up to O(&) and O(U?) as implied by Egs(7) and  and where
(14). EEP-violating effects are all contained in the terms pro-

portional to these quantities. a [(— .

A variety of methods are available for evaluating the cor- 5E2:4T_r3f In(P )M 4 (p’,p" =" —k)
rections in Eq(30), each differing primarily in the manner in
which the bound electron propagator is treated. We shall XK\J{(EO—kO;ﬁ'—§’—IZ,5+§— K)
follow the method of Baranger, Bethe, and Feynnia]
(hereafter referred to as BBFin which the corrections in XMT(p+s—K,p) ¢(P)G*"(K)

Eq. (31) are separated into a term in which the external po- , ,
teqntial acts onls once, and another term in which it actsp at X d*%d*pd’p’d*s’s
least twice. This latter “many-potential” term can be further =(MKYM) (39)
separated into a nonrelativistic part, and a relativistic part
which can be calculated by considering the intermediateyith
states as free. This approach is sufficient for the lowest-order
calculation we consider here. We now proceed to outline the . - 2p vk
main steps of this method. MM(D',p—k)IW(p'—p)m
The self-energy term in Eq30) can be written as

2p,—v.k oL
~ o2 V(P —p),
(¢4 1 2
SoE =—f d*kiG**(k){n|]y,———— y,|n 2p’-k—k
S 477,3 ( )< |7up_w_k_m7’| >
. L 2p,— Ky
- o5C . 33 trar — ’_ Py R
This expression gives a complex result for the level shift, 20’ — K
since the denominators in the integral each have a small _ TRy W(ﬁ’—ﬁ).
positive imaginary part. The resulting imaginary part of k*—2p’ -k

SEg represents the decay rate of the stabethrough photon v ] v B

emission. The Lamb shift refers to the real part of the shift,The quantityK? is defined as-iK}=(p—¥—m)~*, where

and only that part will be retained in the computation of Eq.in momentum spack" = §(E' —E)KY (E;p’,p).

(33). In Egs.(36) and(38) the p’s have time componeri, and
The difficulty in evaluating Eq(33) arises entirely from the s’s have time component 0. Note that the above deriva-

choosing a convenient expression for the bound propagatotions are independent of the specific form of the photon

The integrand in Eq(33) is rearranged in order to obtain one propagatorG,, .

part, which is of first order in the potentiabE,), and an- Further evaluation entails a lengthy computation, which in
other part 6E;), which contains the potential at least twice. principle is analogous to that of BBF. In practice though, the
Using the identity{ 18], calculation is substantially more complicated than in the

~ - A metric case due to the additional nonmetric terms present in
PpO+Op, B PO+ Opa B 34 the photon propagator and the electromagnetic source related
po—p2 p>—p2 (ba=m), (34 to a charged point particle. Regularization and renormaliza-
tion procedures have to be modified accordingly as well.
to re-expressy,, andy, in Eq. (33) and, respectively, iden- Details involving the subsequent computation of the self-
tifying p,=p, pa=p—k, andp,=p—k, pa=p Yyields after energy(and vacuum polarizatiorterm are given in Appen-
some manipulation dix B.

O=(p,—m)
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The final result for the loop corrections related to thein the preceding equations.

Lamb shift is of the form Note that¢ in Eg. (40) accounts for any EEP violation
@ coming from a nonuniversal gravitational coupling between
AE|¥'=6Ezs ,— 6Ezp (39 photons and leptons. A further distinction can still be made

between leptons and antileptons. In principle a matter or an-
where each term is obtained from E843) (and its relevant  timatter violation of the EEP could be measured in a Lamb-
subsidiary equationsas calculated for the corresponding shift transition, through the appearance of virtual positron-
atomic state. By adding the “semiclassical” correction com-glectron pairs in the vacuum polarization loop contribution
ing from the Dirac leve[labeled by D) in Sec. Ill], the total  [20]. This will add a nonmetric term to E@40), of the form
Lamb shift reads (see Appendix C for more detalls
AE =AE{®+AE(® m

()= _
AEC= e 150,

L (Za)*a(1+2|ul?), (45)

m
= 6—(Za)4a| —2.084+In—+ ¢
& @ whered, =1-c, /ce,_accounts for the difference between

the limiting speed of electronsc{ =c,) and positrons

3.1 iw 2 1
x|~ 4534+ SIn—+u?| ——3.486+ zIn—

a 3 (Ce,)-
We turn next to the question of relating the Lamb shift to
—0.011c0%6 +uiujAE” ] (40) observable quantities in order to parametrize possible viola-
tions of the EEP.
wh_ere wg__have introduced the dimensionless parameter
A%IJEZAE”/((ZQ)‘]'mS) [see(B44)], and used quB47) V. TEST FOR LPI/LLI VIOLATIONS
and (B48) in the evaluation of Eq(39) through Eq.(B43). We begin by considering a general idealized composite

The former result is the energy shift associated with theyogy made up of structureless test particles that interact by
particular states in Eq39). However, in Eq(B43) we have  some nongravitational force to form a bound system. The

derived a general expression for the one-loop radiative cofzgnserved energy function of the boHyis assumed to have

rections related to any atomic state. These are the quasi-Newtonian forrfil6]
4 (Za)'a [19 ¢ . le3 1
737 nd M30 30 2¢ E=Mgc5—MgU(X)+ SMglV|*+ -, (46)
XIn SEN0 +0(u?) (41)  whereX andV are, respectively, the quasi-Newtonian coor-
* dinates and velocity of the center of mass of the bddy,is
for 1=0, and the rest energy of the body, atdl is the external gravita-
tional potential. Potential violations of the EEP arise when
4 (Za)*a 3 Z°Ryd the rest energMy has the form
SEp=5——=7—m| 1+ S &|In| ——
37 n 2 E; ) ) -
MRCO:MOCO_EB(XVV)! (47)
3 Gy § 2
tgo71| T3] HOWY) (42 \whereM, is the sum of the rest masses of the structureless

constituent particles an&g is the binding energy of the
for 1+ 0, where we have not written explicitly the terms pro- body. It is the position and velocity dependence K,

portional to the moving frame velocity. Here which signals the breakdown of the EEP. Expandigin
powers ofU and V? to an order consistent witté6), we
1/(1+1) for j=1+1/2, have
= . (43
=1 for j=1-1/2,

SR N i 1 i

andE, is defined by Eq(B45). Values for this reference Eg(X,V)=Eg+ompUl — §5m'JV Vi (48)
energy can be obtained from Rdfl9] up to states with B
n=4. whereU" is the external gravitational potential tensor, satis-

Note that in addition to the explicit dependence on thefying U''=U. The quantitiessm{} and smil are, respec-
frame velocity in Eq(40), there exists a position dependencetively, called the anomalous passive gravitational and inertial
hidden by the rescaling of the original actifi#q. (5)], which  mass tensors. They depend upon the detailed internal struc-
was considered locally constant throughout the computationure of the composite body. In an atomic system they can be
The full THeu parameter dependence in E40) can be expected to consist of terms proportional to the electrostatic,

recovered by replacing hyperfine, Lamb shift, and other contributions to the binding
. o energy of an atomic state.
L /A " In a gravitational redshift experiment, one compares the
a_)ae\[T’ mem\/ﬁ, AB — \/;AEL (44) local energies at emissioB,,, and at receptiorE . of a
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photon transmitted between observers at different points invhere £, represents the metric valuwithin the given ap-
an external gravitational field. The measured redshift is deproximation$ for the Lamb shift. Note that there is still a

fined as position dependence in E¢2) through the definition of
Eem_ Erec H 1
— =]1-=—. 53
2= B =l-T e (53

We recall that the total energy of the system can be ex-

Using Eq.(46) (with V=0) to relate the transition energlese%ressed in term of

at the two different points, this parameter can be express

as[16] E=myT+AE +---, (54
smj AUY where- - - re ibuti indi
_ = = -+ represents other contributions for the binding en-
Z=AU(1-2), = AES AU - 49 ergy of the system.

B The functionsT, H, €, and «, considered to be functions

Clearly Z dependgthroughsmg) upon the specific test sys- of U and evaluated at the instantaneous center of mass loca-
tem used in the experiment. An absence of LPI ViOlatiOI’lS:ion )Z:O for purposes of the calculation NEL’ are now
will mean =0, and soZ will be independent of the de- expanded in the form
tailed physics underlying the energy transition.

The LLI violations may be probed empirically through T(U):TO+T(’)§O'X+O(§O')Z)21 (55)
time dilation experiments. These experiments compare
atomic energy transitions as measured by the moving fram@here§0=ﬁulg:0, To=T|s—0, andTy=dT/dU|3_,. It is
AEg and preferred framAE3 , which can be related vid5]  yseful to redefine the gravitational potentialby

o V2 1T
AEg=AEg 1—(A—1)7 (50 U—>—§H—Ogo«X, (56)
with the time dilation coefficienf defined by whose gradient yields the test-body accelerafjon
If the above is used to expand E&4), we get
Smi< Vivk
Azl—Egvf. (51 E=(m+&)(1-U)+&EU[(5—a—2b)'y—aAg],

(57)

Here 5m',k represents the difference between the anomawhere we have used E@44) and neglected terms propor-
lous inertial tensors related to the atomic states involved inional to £, since the main position dependence parametriza-
the transition. The coefficielk represents the dilation of the tion is given in terms of
rate of a moving atomic clock, whose frequency is governed
by the transition. Since the anomalous mass tensor is not 2To[€e Ty  Hp
isotropic,A depends upon the orientation of the atom’s quan- FO:T_(’, '
tization axis relative to its velocity through the preferred

€p 2T0 2H0

frame. Note that if LLI is valid, the anomalous inertial mass oT-(w!: T, H/

. - . . o Mo 0 0
tensor associated with every atomic state vanishes, so that 0=—,(—+—— —) (58
A= 1 . TO Mo ZTO 2H0

Here we consider the possibility of employing the Lamb

shift as the atomic transition governing the appropriate ex- If we now identify Eq.(57) with Egs. (46) and (48), we
: 9 9 pprop can obtain the corresponding Lamb-shift contributions to the
periment. To do so we must compute the relevanand A

o . binding energy and anomalous passive mass tensor as
coefficients, respectively.

In order to calculate the correspondiag related to the AEYY=—¢g , smiV=AEYY[(5—a—2b)[y—aA,l.

Lamb shift, we must find the manner in whiddE, varies as (59)
the location of the atom is changed. Setting 0 in Eq. (40) _ ) ) _
we have corrected the latter for a sign error in the coefficient
JT [H\52 3 T multiplying Ao and a missing factob in the I’y term.
AEL=6L?(?> 1+aé+b| 1+ 55 In( Ezﬁ)] Inserting Eq.(59) in Eq. (49), we obtain
2-=3.424°,—-1.318\, (60)
with & = E(Za)“a/b and as the LPI violating parameter associated with the Lamb-
L 6w ' shift transition. Note that if LPI is valid, thehy=A,=0.

In comparing the resul60) to anomalous redshift param-

3 1 1 itis i
45341 §|ngz>a b= 1/( _ 2084+ |n;z) ' eters computed for other systems, it is important to note that

a=b we are working with units that are species dependent. Recall
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that the choice ofy=1, and the redefinition of the gravita- ments concerned with hyperfine transitions, obtaining an
tional potential(56) involves theT andH functions associ- expression for the time dilation parameter corresponding to
ated with electrongor more generally, a given species of that kind of transitiort. This parameter is negligible in com-
lepton). parison with other sources of energy, such as nuclear elec-
Consider, for example, hyperfine transitiorisnaser trostatic energy in the case of tiBe" clock experimen3].

clocks. In this case the leptonic and baryonic gravitational In summary, we have been able to parametrize EEP vio-
parameters appear simultaneously. This atomic splittingations arising from Lamb-shift transitions associated with
comes from the interaction between the magnetic momentsedshift and time dilation experiments. In these types of EEP
of the electron and protofnucleus. The proton metric ap- violating experiments, one typically looks for variations of
pears only in the latter, and so it does not affect the principathe energy shift due to changes in either the gravitational
and fine structure atomic energy levels. It is simple to checlpotential or the direction of the preferred frame velocity. The

that the hyperfine splitting scales as feasibility of such experiments is hindered by the present
level of precision of Lamb-shift transitiongone part in

Tg!?2 H% Mo 10°) in comparison to the magnitudes of such changes. In the

AEn= 5th_B To E_o’ (61  firgt case, any Earth based experiments will be limited by the

small size of the Earth’s gravitational potentiat{0~°),
where the labeB is added to distinguish baryonic related which is well beyond any foreseeable improvement in Lamb-
functions from leptonic ones; arft}; depends only on atomic shift precision. Similar problems appear in the second case,
parameters. where the known upper boundi| <103 [1] for the pre-

In expanding Eq(61) according to Eq(55), we obtain ferred frame velocity, leaves no room for any improvement
on the EEP-violating parameter since anisotropic effects
go asé|u|?.

However, useful information can still be extracted from
Eq. (40) if we use the current level of discrepancy between

Ehf—3Tg— Ag+A, (63) the experimental resuli1] and the theoreticdmetric) value
[22] to bound the nonmetric contributions for the Lamb shift.
whereUg, T's, andAg are the baryonic analogues of Egs. This constrainst<1(1)x 10 °. Similar bounds can be ob-
(56) and (58), respectively. In Eq.62) we rescaled the tained by considering empirical information about other
atomic parameters to absorb thiéleu functions and chose atomic states. In this context, the indirect measurement of the
units such thatg=1. The quantityA is given by 1S Lamb shift[23] gives a limit£<1.4(1)x 10"°, and the
measurement of theR,,— 2P, fine structure intervd24]:

Hg Hgl Tg To £<0.7(1.4)< 10" °. If we drop the assumption that positrons
Z(H_B_H_O> - T_B+ T_o (64) and electrons have equivalent couplings to the gravitational

field [20], we find that there is an additional contribution to

and would vanish under the assumption that the leptonic anBd- (40) due to£e+# .- This contribution arises entirely
baryonicTHeu parameters were the same. from radiative corrections and is given by E¢5). Making

Turning next to experiments which test LLI, we need to the same comparisons as above, wﬁe3 find the most stringent
obtain the tensosmil appropriate to the Lamb shift. This bound on this quantity to bge+|<10"".

tensor is obtained after taking partial derivatives\@, with The previous bounds were obtained by using H@%)
respect tau; andu; (noteV=u). Substituting the result into and(41) or Eq.(42) to calculate the corresponding nonmetric
Eq p(5l) yitlalds J e 9 Dirac and radiative corrections contributions, respectively.

The 1S Lamb shift experiment actually measures the transi-
tion: (E4s—E,s) — 3(Exs—Ejs), and so we use this one to

AEp=En(1-Ug) + EUgE™ (62

with

T
A=2-2
TB

1_AL=i T 3074 0.011CO§9+ViVJ’Agij make the comparison, where experimental and theoretical
1.757| a V2 values are given in Ref23]. In the other experiment we
(65  need to use the nonmetric part 8hs,,—E2p,, (=4¢):
for the Lamb-shift time dilation coefficient, whem is the namely,
angle between the atom’s quantization axis and its velocity 2/3
with respect to the preferred frame. B A =§(Za)2m{ iu—(—coszﬁ—l +0((Za)2u?)
Note that the coefficierA, depends upoA €', the evalu- ¢ 60\ 2
ation of which involves the computation of an infinite sum as 2
given by Eq.(B44). The dominant contribution in Eq65) *(Za) [10.434+ O(uz)]], (66)
comes from the Dirac part of the enerdyroportional to 6
1/a), which produces an overall shift only. Nonisotropic ef-
fects arise solely due to radiative corrections. where the first term comes from the Dirac contributigmsre

In general, an experimental test of LLI involves a search+ and — label the transition coming from theP3,, state
for the effects of motion relative to a preferred frame such as
the rest frame of the cosmic microwave background. A de-
tailed analysis about the interpretation of LLI violating ex- Note that the expression given there #5¥ is incomplete accord-
periments is presented in R¢iL5], which analyzed experi- ing to discussion presented in Sec. Ill.
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with |[M|=3/2 and|M|=1/2, respectively and the second tivistic expression, where the perturbations come only from
one from radiative corrections. Note that the leading anisothe preferred frame terms of the electromagnetic potential.
tropic effects stem from the nonrelativistic contributions, andOur approach involved evaluating expectation values with
so their ratio with the metric valueQ(m(Za)%), is respect to the relativistic spinors instead of their nonrelativ-
O(¢u?/(Za)?) , instead of0(£u?) as for theclassicalLamb  istic extensiongor Pauli states The effects of relativistic

shift. Time dilation experiments will look for changes on the corrections such as spin-orbit coupling are, therefore, in-
Ezs, ,Eop,, splitting as the Earth rotates, which would cluded exactly in this approach. Once this is done, the final

single out only the preferred frame contributions. Current€Sult is expanded to keep it within the desired order. The
experiment$24] measure a value of 9911.200(12) MHz for semirelativistic approgch is not suitable when preferred
that transition, which gives a nominal boutcbming from  frame effects are studied. .
the experimental errprof 3£c020<1x10* for the pre- _Qualltatlv_ely new |nfor_mat|on on the_ yalld|ty of the EEP
ferred frame part. This bound should improve once appropriWill be obtained by setting new empirical bounds on the
ate experiments are carried out, since these will look folP@rameterg, A, and=, which are associated with purely
periodic behavior which can be isolated and measured witlePtonic matter. Relatively little is known about empirical
high precision. limits on EEP violation in this sectdi6]. Previous experi-
Note that an empirical value for the Lamb shift is ob- Ments have set the limitg4] |£g|=|1—c3|< 6x 1077,
tained from Ref[24] by subtracting the theoretical result of Wherecg is the ratio of the limiting speed of baryonic matter
the fine splitting 2,,— 2P3,,. Now by following the previ- t0 the speed of light. In our case we obtain an analogous
ous formalism, we can parametrize the LPI violation in thebound on¢ for electrons from the difference between current

former experimenta| result through experimental and theoretical values, gIVI"ﬁ< 10°°. Al-
though much weaker than the boundséan it is comparable
E%E:fzp?},z:(é’ﬁ&)(l—U)+U(5f5f+5LEL)1 to that noted in a different context by Greeaneal. [26].

(67)  They considered a similar formalisnt Heu with u=0) for
analyzing the measurement of the photon wavelength emit-
where we have added the corresponding parameters relatégtl in a transition where a madsn is converted into elec-
to the fine transitionl]: & and=f. Constraining the ratio of tromagnetic radiation, thereby providing an empirical rela-
this quantity to a direct measurement of the Lamb dHifff  tionship between the limiting speed of massive particles
to lie within experimental/theoretical error, we obtain the (electrong and light.
bound|U(E-—E")|=|U(0.578 (+1.318\,)| <10 °. This The breakdown of LPI for the Lamb shift in the context of
result is sensitive to the absolute value of the total locak nonmetric theory of gravity describable by thieleu for-
gravitational potential6,25], whose magnitude has been es-malism is embodied in the anomalous gravitational redshift
timated recently to be as large ax 30 ° due to the local parameter60). Recall thatZ depends on the nature of the
superclustef10]. Hence, measurements of this type can pro-atomic transition through the evaluation of the anomalous
vide us with empirical information sensitive to radiative cor- passive tensor. This tensor will have differing expressions
rections that constrain the allowed regions bf,(Ay) pa- for differing types of atomic transitior{d]. An atomic clock
rameter space. Unfortunately, the present level of precisiohased on the Lamb shift transition will, in a nonmetric
in measuring the Lamb shift allows only a rather weak con-theory, exhibit a ticking rate that is dependent upon the lo-
straint. cation of the spacetime frame of reference and that differs
from frequencies of clocks of differing composition. For ex-
VI. DISCUSSION ample, the gravity probe A experimeri2] employed
hydrogen-maser clocks, and was able to constrain the corre-

We have computed for the first time radiative correctionssponding LPI violating parameter related to hyperfine transi-
to a physical process, namely the energy shift between twtions:
hydrogenic energy levels that are semiclassically degenerate,
within the context of thef Heu formalism. The correspond- |EH|=]3rg—Ag+A|<2 X 1074 (68)
ing (GM) QED was derived, and th@GM) expressions for
the propagators were obtained. The nonmetric aspects of Bhis experiment involves interactions between nuclei and
theory describable by th&Heu formalism can be all in- electrons and so does n(t least to the leading order to
cluded in the photon propagator, given an appropriate choicerhich we work probe the leptonic sector in the manner that
of coordinates, leaving the fermion propagator unchanged-amb-shift experiments would. In general, E49) will de-

The addition of more parameters to the thedby the  scribe the gravitational redshift of a photon emitted due to a
THew functiony entail new renormalizations, where not given transition in a hydrogenic atom; for a hyperfine tran-
only charge and mass need to be redefined, but also tteition the redshift parameter is E¢8), whereas it is Eq.
THeu parameters. (60) for the Lamb shift transition.

The approach we took to solve for the semiclassical Dirac An analogous experiment to test for LPI violations based
energieqSec. Il)) differs from the one given in Refl5], in  on Lamb-shift transition energies poses a formidable experi-
which the Dirac Hamiltonian was expanded using Foldy-mental challenge because of the intrinsic uncertainties of ex-
Wouthuysen transformations vyielding the first relativistic cited states of hydrogenic atoms. Setting empirical bounds
correction to the Schdinger Hamiltonian(as introduced for on = by precisely comparing two identical Lamb-shift tran-
example, for the Darwin and spin-orbit termsnd subse- sitions at different points in a gravitational potential would
guently the energies. Instead we began from the fully relaappear unfeasible since the anticipated redshift in the back-
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ground potential of the earth(10"°) is much smaller than preferred frame. In Sec. Il we follow a fully relativistic ap-
any foreseeable improvement in the precision of Lamb-shifproach to solve for the atomic energy levels. That is, we
transition measuremen{22]. One would at least need to perturbatively solve the Dirac equation in the presence of the
perform the experiment in a stronger gravitational figldch ~ electromagnetic field of the nucleus, where the unperturbed
as on a satellite in close solar opbivith 1-2 orders-of-  states correspond to the Dirac solution in the presence of a
magnitude improvement in precision. A ‘“clock- Coulomb potential onlythe metric case
comparison” type of experiment between a “Lamb-shift We consider here the use of the Foldy-Wouthuysen trans-
clock” and some other atomic frequency standgtdlis, in  formation in solving Eq(15). In this approach, we write
principle, sensitive to the absolute value of the total local
gravitational potentia[6,25], as noted earlier. With this in- H=Hc+Hmagt Hm+HsotHp (A1)
terpretation, comparitive transition measurements of the type ith
discussed in the previous section can more effectively con?”!
strain the allowed regions of’g,A) parameter space than 22
can measurements which depend upon changes in the gravi- H.=m+ p__er,
tational potential. Of course, exploiting anticipated improve- 2m
ments in precision of measurements of atomic vacuum en-
ergy shifts[22] will yield better bounds orf,- and &.+ via H :i(ﬁ_ A+A-p)+ e -
Eq. (40). Mg 2m

Violations of LLI single out a preferred frame of refer- R
ence. In fact, the search for a preferred direction motivated p
the most precise tests of LLI performed soffaf4]. We have Him =~ g3 (A2)
extended the analysis of the effects of motion relative to a
preferred frame to account for the radiative correction for the ie . .
atomic energies associated with the Lamb shift, as embodied Hsozwo- VXE+ —o0-EXp,
in the expression(65). This nonuniversality reflects the
breakdown of spatial isotropy for quantum-mechanical
vacuum energies. The coefficiefit depends uponhe'’, the Hp=-=V-E
evaluation of which involves the numerical computation of 8m
the sum in Eq(B44). Unfortunately, the intrinsic linewidths S
of the relevagt states render dire){:t measurement of such e\?{hereAM 's given by Eq.(7).

fects unfeasible. More precise empirical information on the As shown in Sec. ll, we can takBlmag—0, since the
' ep np : -magnetic field does not contribute to the atomic energy lev-
value of¢ can be obtained by precisely measuring changes s “\We can then group the terms in the Hamiltonian as

the Ezs ,E2p,, splitting as functions of terrestrial or solar

motions. However, these effects are insensitive to radiative H=H_.+H;,
corrections, depending instead upon the semiclassical
nonmetric effects discussed in Sec. Il Hi=H.,+Hso+Hp, (A3)

Finally, we note that our formalism could be applied for
muonic atoms. For a muon-proton bound System’ we WimNhere we have defined the fine contribution to the Hamil-
obtain an expression similar to that of H&43), but where  tonian Hy), in order to account for the first relativistic cor-
all parameters refer to muons. For an antimuon electrofiectionO((Z«)*) to the atomic energy levels.
bound systenfa muonic atoma similar analysis would ap- ~ We start writing a formal solution foH|n)=Eg[n), in
ply. However, in both cases the mass and spin of the muoterms of its nonrelativistic limit:
could not be neglected. c

We expect that the intrinsically quantum-mechanical He[me=Eqln)e, (A4)
character of the radiative corrections will motivate the devel-
opment of new LPI-LLI or experiments based on the Lamb-2°

shift transition. In so doing we will extend our understanding _ _ ¢

- . AN ; ny=|n).+|n);, E,=E;+(n|H¢n)¢, A5
of the validity of the equivalence principle into the regime of In)=Imet Ims n=Ento(nHiln)e (AS)
quantum-field theory. where the index f” accounts for the first relativistic correc-

tion to the states and energies.
Since Ag= ¢+ £¢’, and soH,=HJ+¢H. we do not
This work was supported in part by the Natural Scienceknow the exact solution for EdA4), but only the perturba-
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and to M. Haugan and R. Moore for helpful discussions. IMe=[ne’+éne,  En'=E,""+c(n[Hc[n)c,
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APPENDIX A: SEMIRELATIVISTIC CALCULATION

OF HYDROGENIC ENERGY LEVELS where

2

p
m+ 5~ e¢>) INY2=Ee9InY2. (A7)

Consider a hydrogenic atom immersed in an external

0],\0_
gravitational field, moving with velocity relative to the Helme
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If we use Eq(A6) along withH;=H?Y+ £H in Eq. (A5), we O(a(Za)*). To this order, we can use the nonrelativistic
can write finally up toO(¢), expressions for both the large and small component of the

0 Lo 0. Li0n 0 0 , . 0 electron spinory. So for example, if we make the substitu-
En:En+§En:c<n|(Hc+Hf)|n>c+§{c<n|(Hc+Hf)|n>c tion
0 0 ’ 6
+[c<n|Hf|n>c+ H'C-]}+O((Za’) ) (As) l//(ﬁ):(Zam)_:a/?\N(f), (BZ)
We see then that under this semirelativistic approach, we .
must address the problem of finding the stgteg whose wherew(t) is a dimensionless spinor, whose first two com-
contribution to Eq.(A8) is between the brace brackets. This Ponents are of order unity, and the last two are of order
is equivalent to include the first relativistic correction com-Z«, We can assign orders to the various terms according to

ing after solving pi~Zam, Eyo—m~(Za)?m,

HOln)\O0= H(C)+H0+... 0 A9
|n> ( f )|n> ( ) erd3pr~eA1_d3 ’N(Za)zm, (83)
as

%i Yd3p~Zam.

These approximations will be used in the sequel to simplify
the expressions we obtain.

In)O=nye+[n)?+- -, (A10)
since we can show

0 0 ’ 0 ’ 0
n|H:|n).+ H.c}={{(n|H/|n);+ H.c}. (All
fe | f| )e 1= l C| Je o ) 1. Type A contributions to the self-energy

This relation allows us to rewrite part of EGA8) as Here we will consider

En=(n[+3n[+ - )(HAH{+ ) (n)e+[n)?+-- ) Muv

Gy)=— "z (1+8) (B4)
=9%(n|H’|n)°. (A12) ek

It is clear then that if we start with the exact solution for and¥Y'=—eA,y*, with A, given by Eq.(7). This part of the
the Dirac equation in the presence of a Coulomb potentialcalculation is almost identical to that of BHES]; the only
we can avoid working with the statés) Note that since we difference is that now we have to consider a source that
C

are interested only in the first relativistic correction, the re-CONtains a magnetic part in addition to the electric one.
sult (A12) must be expanded 1©((Za)*). We begin by computingSE;. Relating the counterterm

Unfortunately for hyperfine or Lamb-shift energies, the 6C to the renormalization of the electron mass and regular-

effect of the primed states cannot be removed, since thelfi"d the photon propagator via
both come from perturbations to tlikknown) relativistic so- 1 2 dL
lution of the Dirac equation in the presence of a Coulomb B JA - (B5)
potential only. k? u2 (K°—L)%
A semirelativistic expression for the Hamiltonian of a hy- . i
drogenic system was worked out in RéL5], where the We find thatl, andl; in Eq. (36) become
effects of nuclear spithyperfine effedtalso were included
within the context of LLI violations. The result presented lL=(1+&)Y
. . 2
there for the atomic energy levels is incomplete though,
since the contribution of the prime states was overlooked, as
discussed at the end of Sec. Ill.

%In(pzluz) - In(Azlpz)} :

l3=(1+ g)g[v In(A2%/p?)+ % + mln(mzlpz)] :

APPENDIX B: LOOP CALCULATIONS (B6)

Given the form of the photon propagat@rd), it is con-  On the other hand, we obtain, for,
venient to divide the calculation into two parts:

A) B 3, 1 x5,
SEg=6EL) + SEY, (B1) li=(1+&{ —=V—=p'-p¥ | —5In(p2/u?)
8 2 0 Px
where SEYY groups the contributions of the terms propor- 1 (1 1 r1dx
tional to 7., in G, whereassE®) contains those propor- + wao dxin(A2/p3) + zfo F[(l—X)FJZJFXP'2
tional to y2=1/(1—u?) and¢. We are interested in solving X
for the shift in energy levels up to first order § so it is +2p-p'V+p'Vp—2V-p'(1—X)p
enough to consider a Coulomb potential as the source for
part B, whlle.for part A the full source as defined in Ed) —2V.pxp +V-pBt (B7)
needs to be included.

We mention again that we are interested in calculating the
GM Lamb shift to lowest nontrivial order i, i.e., up to  wherep,=xp’+(1—x)p.
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We can simplify this expression by letting the momentumwith
operatorsp’ and p, respectively, act on the spino;ﬁ{ﬁ’)

and ¢(p), using the Dirac equation and E(B3) to keep MTi=
terms up to the desired order.

2p, 2P,
k°—2p-k k?—2p’-k

Adding togethet 4, |,, andl 3, we obtain a result correct 1 1
4. _
to ordera(Za)™: +Ky, K—2p K k2—2p-k)}w’ (B12)
n_ ¢ -, 9’1 [(m| 1 ol 2
SE} =;(1+§) P(p') sz §In 28 M, =2(V,k=V-ky,)/(k*=2p-k), (B13)
i each of which still satisfies
+mqyo-lwv#} ¢(p)d3p,d3p Mﬂ'kZMT“-kIO_ (814)
a —3V2+5V? In terms of these operators, we now have
- =1+ &){(n|————|n), B8
77_( g)( | am | > ( ) 6E2:<MIK¥MI>+<M”K¥M”>+<MIKXM”>
with q=p’ —p, anda*”=(i/2)[ y*,y"]. Note that the term +(M"KY MY, (B15)
proportional tog? in Eq. (B8) needs to be evaluated with o .
only the large component af and Y=V, (y,~1). where each term represents a contribution to(8§). involv-

We point out that the initial ultraviolet divergence in Eq. iNg the products of oniy' or M" Or Cross terms operators.
(B6) is canceled after the addition of thés in (B8). The The 5|mpl|f|cat|on of these terms_lg quite analogous to .that
remaining infrared divergence will be canceled by a similarShown in BBF18]. The decomposition of the M operator in,
term which comes from the many-potential part of the levelEd: (B11) allows one to use simpler expressions for the
shift. A similar cancellation occurs in the nongauge invariant?ound propagatdK; . In Appendix B5 it is shown that only
term present in Eq(B8). These cancellations are nontrivial, in the part{M'KYM') will it be necessary to use the bound

and provide useful cross checks to our calculation. electron propagator; in all other contributions, it is sufficient
Consider next the evaluation &E,. Since the operator 10 replaceK? by the propagator for free eIectronKﬂ.
M, satisfies the transversality condition Moreover, the main contribution toM'KYM') arises from
" intermediate states of the electron with nonrelativistic energy
k-M=k-M'=0, (B9 5o that bothkY and M' can be replaced by their simpler

nonrelativistic approximations. It is also shown that the cross

we can writeMo=Kk-M/ko. term in Eq.(B15) gives a contribution of ordes(Z)® and

Using is, therefore, not relevant in our calculation. According to the
YKy, =2V -ky,— 2V k+ky, ¥V (B10) above considerations, we can then approximate EtS) by
M n M p
— | \% | 0 Iy — | 1]
in the first term of Eq(39) the operatoM, can be decom- OE;=(MpgKNrMyr) T (MTKE MT)=(M') +(M %B16)
posed into
. f i We start evaluating the first term of E@16). The non-
M,=M,/+M, (B11) relativistic prescription foK\j is given by
> e (X)X (X)exd —iE,(t'—t)] for (t'—t)>0,
Ky =4 7 " r (B17)
0 for (t'—t)<0,
|
or, in momentum space, where we have approximate#=V,, because although the

magnetic and electric potential have the same order of mag-
KYa(En—Koip':P)=—1> @/(p')e* (P)(E,—En+ko) L, nitude (as powers oZa), the y matrix mixes large compo-
r nents of the intermediate states with small ones and, there-
(B18)  fore, introduces corrections one order higheZia.

] i Therefore, after replacing EqéB18) and (B19) in Eq.
whereo, represents the large component of the Dirac spinor(3g) we obtain

In the same nonrelativistic approad’M,'M reduces to

RIr)(rIR,In)
-, - M')= a-fd“kG”“(k)XE i :
MU= (B, PR, (@19 T T e
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where we have neglected the contribution of the photon mowith
mentumk to the momentum of the intermediate electron

states. This is equivalent to leaving out the factor 'é&pi] in Ns(Ps 1S)

the spatial integration. This can be done because

k~E,—E,~m(Za)? which is small compared with the 3 (7" k=K y*)(f =k+m)(nk—kgy")

electron _momenturp~mZa for nonrelativ.istic states. N _f k2—2p, -k)2(k2—2r - k—s*)
Inserting Eq.(B4) into Eq. (B20), and using Eq(B14), to

relate the temporal component Bfwith its spatial compo- XGMV(k)d“k. (B29)

nents, which satisfy

In the nonrelativistic domairfd®pV,~(Za)?m and so
the constant value dfi? (independent of the momentum and
mk, energy of the intermediate statesill already yield an over-

all contribution to Eq.(B28) of the desired order(Za)*.
we find, after integration Note thatN? can be expanded in powers of the momentum

2w p’, p, ors, , which are of ordemZa, and, therefore, any
(M"y= 5(1+&) >, |(n|p|r)|3(E,—E,) contribution beyond the constara-independent term will
37m r be of higher order. The same argument can be used to ne-
glect the binding energy of the intermediate states. We can,
B22 therefore, evaluate EqB29) by approximatingp~p, and
(B22)
p'~p, in the denominator oM'" andM', respectively, so
Iaatp*~(m 0) ands, ~0.
EvaluatingN as in referenc¢l18] we find that Eq.(B28)

(n|RIr)= —— (E —E)(nlplr), (B21)

M

X|In| g=——| +
2|En_Er|

where all the states and energies represent the nonrelativist
limit of the Dirac solution.

Eq. (B22) can be simplified by using becomes
. 1 @ —3V2+5V?2
2 (nlpInP(E—Eqp) = 5(nlV?Veln),  (B23) (M")=—(1+&)(n|—5——In). (B30
T ™ m
which finally gives Note that this term will exactly cancel the nongauge invari-

ant term present in E4B8).

5 - Finally we add Eq(B24) to Eq. (B30) to obtain SE{Y
N _— e 2 2
(M >_ 2(1+§) (ZE 6 (n[v V0|n>+C] and then add it to EqB8) to give the final result for the
(B24)  type-A contribution to the self-energy:
i SEL = C+]I Y nvay
S _3’7Tm2 +|In ZE* +ﬂ <n| 0|n>
C=C', Ci=23 (r|piIn)(nlp;{r)(E;~Ein|=—¢ |, 3 . o
n r e I\i v ’
(B25) +4mf ¥(p)io,, V¥ Q" dn(p)d p'd p]-

whereE, is a reference energy to be defined, a8l has (B31)

been introduced for later convenience. To obtain this result,
we have neglected the imaginary part(') retaining only
the leading terms ofM') in the limit u—0.

In computing{M"), we can takek" to be the free elec-
tron propagator, which is

Apart from the constant (1 ¢) factor, there is no formal
difference between the resuyB31) for this contribution to
the level shift and the standard offe8]. However, there are
implicit differences, which appear in the expression ¥6f
and the solution for the Dirac statg® (in the nonrelativistic
approach hepein the presence of that source.

e . . i8%s'—p'+p+s
KY(En—ko;p'—S'—k,pt+s—k)= S ),
f—k—m 2. Type B contributions to the self-energy
B26 I .
(B26) To solve the type-B contributions, we have to consider the
where photon propagator
rt=(m,s,), s,=p —s =p+s (B27) ®_ 7 (B-1)*?
TR « =P P G,LLV ng B}LBV+ 77;1,1/ k2 (832)

upon which(M") becomes
and a sourcé\ ,= 7,0¢.

The evaluat|on of5E(B) is achieved by the same proce-
dure as for part A, Where now we use EB22) in Egs.(36)
L and (38) to solve for SE{®) and 6E{?), respectively. This
XNG(Py ,S4)VA(S, —P) ¢hn(P), (B28  computation is somewhat more laborious than that in part A,

24 — - - -
<M”>=;J d°p’ d*pd’s, (p") V(' =S,)
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due to the 8,8, tensorial dependence and the factor

(B-k)?/k? present in this part of th6GM) photon propaga-
tor.

To evaluatel 4, |,, andl;, we need to modify the BBF
technique by using EqB5) along with

1 A2 dL

to regulate Eq(B32). The expressions for thies are some-
what more complicated than those féE(SA) (as expected
but their manipulation and further algebra follow from BBF

e 11., 47
S "3am2é|| 1M 2t

X(n|V3V|n)+In

<n|(J'V-))2VO|n>+Uinéij

2E,
1 . - . -
+ §+U2 C+f gb(p’)[(%W—,BVm iO'”Uqu'
. u?
+mu-qioc*"V,B,—m 7+§ io""V,q,
><¢(|5)d3p’d3p}. (B36)

[18]. The relevant details are in Appendix B 6; the result for

the one potential part is

— 17 5
®__% > = 2|2l 2 2
oE; Y~ ff H(p )(Vq {48’8 2t

=]

s 5
X —+
In 6 In

=+ vipar?

+ gv—,&Vm)ia”uiqj—m,8~qiaf”VM,8V
w2 Ligony q, [ #(p)d®p’dp
8 2 wv
2
Y Tl nl Yo
Wyg 1+8B)<n 3m|" (B34)

which is good up to order(Za)*, and we have retained
only the leading terms ag —0.

The evaluation of5E(ZB) is quite analogous to that for
SEYY . The starting point is Eq(B16), where (M') and
(M"Y are still defined by EqgB20) and(B28), respectively.

where we approximateg?=1+u? in order to keep terms

only up to orderi?. As a cross check on the above result we
note that, before expandingf, the limit BuBv— M, Yields
SEP . —2£925E. This is as expected since according to
Eq. B32), G{)——2£?GY,, whereG), is the standard
(metric) propagator.

We close this section with a comment on the renormal-
ization procedure. FOPEYY, the countertermSC was re-
lated to mass renormalization. However in this part of the
calculation, we also must account for the renormalization of
the THeu parameters, which show up as functions of the
limiting speed for massive particles(Z)ETolHo, and the
photon velocity,cizll,uoeo. Charge renormalization is not
necessary here because the Ward Identity forces a cancella-
tion between the divergences coming from the one potential
part and many potential part of the self-energy. Details of
this process are shown in Appendix B 6.

3. Vacuum polarization

We now need to obtain the vacuum polarization contribu-
tion. To the desired approximation, the electrons forming the
loop in Fig. Xb) can be considered free. This is because
Furry’s theorem implies that the next-order correction to this
is a diagram, which contains a loop with four vertices, which

We give calculational details in Appendix B 7, and quoteis expected to be of order(Za)®. In that case the result is

here only the final result:

1+u2
2 2

5. 1

B__ % 2|22
oF2 3wm775[ P

'”( ot ) }

- }<n|<ﬁ-v”>2vo|n>

2
X{(n|V=Vgy|n)+ 3E,

5+I
gt

u2

~ 1
+UinCIJ + §+ 7

J-

We now add Eq(B34) to (B35) to obtain

1y L
—YE|1+gh
Ve
3m

n> : (B39

known to be

SEp= j PBDITTH(Q)IG,,(q) ¥°V,.(6) (P)dp’ dp.
(B37)

The evaluation offlI#” is identical to the standar(netric)

case since it only involves the product of fermion propaga-
tors, which are unchanged by thdeu action. The differ-
ences appear in the renormalization process, where both the
charge and th@ Heu parameters must be renormalized, the
details of which are shown in Appendix B 6. The result is

2
H(Q)=~ ro- (@ ~ara’). (B39
157 m?

If we substitute Eqs(14) and(B38) in Eq. (B37), we obtain
after some manipulation
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3 . .
1+¢ E+u2 CO+ £uju ET +9%n|E[n)°

(B43)

o ’ 1 u? o
SEp=n——at (NV2Vg)| — = +é5 SEn=n—s
3mm 5 5 3m™m

- §<n|<ﬁ~ﬁ>2vo>|n>]- (B39)
with
We next proceed to add together the self-energy and
vacuum polarization contributions to the level shift.
uiujéij=uiujé”+6’+(°(n|l§§=o|n>’+ H.c),
4. The total GM radiative correction (B44)
Up to this point we have been able to solve the level shift

in terms of whereC’ groups all the terms in E¢B25) depending on the

perturbative states|if)’) or energies E;) as introduced in
SE,=6EL) + 6EL + 6Ep, (B40)  Eq. (17). These perturbative states are needed not only for

the|n) state related to the level shift, but for all the interme-

where each term has been defined in E§&1), (B36), and  diate states introduced by E@25) as well. Equatior{B43)

(B39). is valid up toO(£)O(u?)O(a(Za)).

We note that indEg there are terms proportional 9, We can define the reference eneffgy as in the metric

which mix large () and small componenty) of . Within ~ €as€ bY27]

the accuracy required, we can relate them by

x=—i(a-V/2m) e, and so write everything in terms of the

large component only.

T B
Replacing the expression for the external solmen Eq. o Z [CrlpIn)I*(E; — Eq)In[E, —E,|
(B40), we obtain after some algebra In(Ey") = - for 1=0
2 [(rlplm)|*(E, ~Ex)
o 3 - AL ~ (B45)
5E“:377_m2 1+§ §+U2 C+§UinC”+<n|E|ﬂ>},
(B41) m3 72
e @l 25 =3 6 e €
whereC andC" are defined by EqB25), and *
19 . e XIn E_E for 1#0,
-~ - _>° 2 r n
E= 4772015(X) +In 2E*>+§ 30 45u
3 2 m Zal 1l 1 u? where the subscript 0 has been omitted in the energies and
+lz+zu 2/In| 5= 2E, EEr-A R iy states. This definition reduces
- . - Za -
—(u-n)?|{o-L— 3(u-n)2—u?
(d-f) ]o £~ [3(U )~ ] o forl—o.
14 m\] ¢Za Co=¢ m* _ <Z2Ryd) (B46)
2702 4—(Za)®In for 1+0,
15+2In(2E* +5 72 2u Ro- (UXP) .3 (Za) e

—a-(Uxn)u-pl. (B42)

which provides an elegant way to write the “Bethe-sum.”
The presence of preferred frame effects will induce more
We have omitted operators with odd pariguch as “Bethe-sum”-like terms inC" which, along with the con-
Ux - o) in Eq. (B42), since their expectation values vanish tribution from the perturbative statéboth ones counted by
for states of definite parity. E”) will have to be evaluated numerically for any particu-

o ot PRUTI - lar state.
There is still an implicit dependence @ghandu in Eq. .
(B41), which comes from the Dirac statéas seen atthe end [0 the Lamb-shift states we can U]
of Sec. Il). Note that up to this order all atomic states and
energies referred in Eq$B41) and (B25) are considered
within a nonrelativistic approach. E25=16.640 Ryd, E2"=0.9704Ryd (B47)
In terms of the formal solution for the Dirac equation
(17), we can single out the completedependence in Eq.
(B41), and write and simplify the last term in EqB43) as
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0/200 (Za)* 4 19 m and relativistic regions are defined according to
<E>251/2: > M [@Hn(ﬁﬁ) |k|~(Za)?m<m and |k|>m, respectively. In considering
* the relevant orders of magnitude in each of the expressions
1 58 ) 3 2 ) m 0 (B49)—(B51) that follow from Eq.(B52), we note that, to
gt Utz gutIn 23 || lowest order inZa, the relevant contribution fronG*”

comes wherky~|k|, and that we can employ the nonrelativ-

(B48) istic expressions for thé,,, making use of the approxima-
7o) 3 3 107 L tions giyen by Eq(B3). _ _
<E>o :( a) m3 ___E S = = Turning now to the relatior(B49), we can prove it by
P2 24 12| 4 30 6410 showing that the contribution of relativistic states fdf is
of a higher order of magnitude than fst'!. We can see from
Ry 1 . 1 Egs. (B12) and (B13) that M' differs from M" by a factor
costl 12 6410 ' (leaving aside the temporal componefw’ — p)/ko, which

in the relativistic region K,~m) is of orderZ«. Therefore
where 6 represents the angle between the atom’s quantizahe contribution ofM' in that domain will be of at least one
tion axis and the frame velocity. order higher than that d#". Since the latter is already of the
desired ordefassuming the validity of Eq(B50)] we can
neglect the contribution of the relativistic states fat, and
consider it, along with the bound propagator, in its nonrela-
In this appendix we justify the approximations tivistic limit.

To prove the relatiorfB50), we evaluate the error due to

5. Many potential part approximations

leV I\ | \% |
(MKEMD)=(M\eKNrMg) (B49) the neglect of the electromagnetic potential in the intermedi-
MoV Al aall O aall ate states. We imagine that one extra poten¥gl écts be-
(MIKEMT)=(MTKLMT), (BSO  tweenM'"" andM"". This introduces an extra factor of order
(M'KYM"Y=0((Za)%a), (B51)

f d%lMNJdSr/MKN(Za){

following arguments similar to those presented by BBE]. f'—k—m 2kgm

We first note that, as powers @i, the orders of magni- (B53)
tude of the different terms involved in the expressions in Eq.
(B49) are equivalent to those for the metric case. For ex
ample, if we look at the source, we see tb&, ~ed, where

f‘ﬂ tl_slglveg by tEqI(Y)I a;_nd ¢ '3 thﬁ ?rdlnar)t/hCoqumbtpo- atates may indeed be regarded as free.
ential, and so the relative order between e NONMEtNC and rq gjation (B51) follows from arguments similar to

rr}eénc Cﬁf'eﬂ']s thf’ fame. Fgrth%rmlorehas d![icussed at t(;]e e['l)l%se used to justify EqQB49). Since in the relativistic re-
of Sec. lll, the statefn) and|n)” also have the same order gion M' is one order higher thak', the cross term in that

of magnitude, as do the quantities andEg. Discrepancies_ region also will be one order higher thgm"), and so is
that could be expected from the photon propagator, partiCUsegligible. On the other hand in the nonrelativistic region,

larly from the part proportional t@*B” (in contrast to the  \1I"yjj| he dominant(note the factok, in its denominator
7., dependence for the standard gasge not important as overM" That is

long as the transversality condition is satisfied for e

operators, since this condition relates the differing compo-

nents with the appropriate orders of magnitude. Finally, un- m!
like the photon propagator, the bound propagator retains the ™M
same form as in the standard case, with differences arising

only from the expression for the external source. As a con- ) o
sequence its further simplification is analogous to the metri@nd so the product of these terms will be negligible in com-

‘which is negligible within the accuracy required. We then
have shown that, in the evaluation Bf', the intermediate

Ko
p—p

(BBF) case. parison with(M'). Hence the cross terms yield results that
Let us look at the many potential parts. From E2p) we  are at least one order higher than the desired order, and so
get they do not need to be included.
(M K\i M > — f lﬂn(ﬁ’)Mﬂ(p' p' —s —K) 6. Renormalization
Just as in the standafthetric) case, we need to renormal-
XKY(E,—kg:p'—S' —K,p+5— K) ize the various parameters of the theory in order to get rid of

the divergences. In the standard case, those parameters are
XM T (p+s—k,p) n(p)G**(K) (B52) the mass and charge, although the latter only needs to be
renormalized for the vacuum polarization contribution. The
for the generic structure of the terms on the left-hand sides ofelf-energy part has no need for such a renormalization, since
Egs. (B49-(B51), where the constant factors and integra-the divergences coming from the one potential and many
tions overp; ands; have been omitted. The nonrelativistic potential parts cancel each other. In the nhonmetric case, we
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also have to include the renormalization of theleu pa- We begin then with the one potential part by simplifying
rameters, which show up as functions (cﬁETolHo and |,. After replacing Eq(B32) in Eq. (B37), we get

2 _
C* = 1/,&060.

In part A of the calculation, renormalization is identical to = '_272 f 2F2’ BBk Zg- B—kB
the standard case. The countertef@is just related to mass 4ar k°=2p’-k * k“=2p-k
renormalization. In part B, we need to consider additional dk
counterterms, sincéC also should account for the renormal- X ——dL+- - B60
. . 2 ’ ( )
ization of theTHeu parameters. ( )

In units wherecy=1 (c, =c), EEP-violating corrections
only appear in the electromagnetic sector of the actam
terms proportional tct). However, we could choose more

where from now on the ellipsis stands for the contributions
coming from the second term of E(B32).

generallyco= 1, for which the particle sector of the Lagrang- ' W€ Use
ian density is of the form _GJ | f 2(1-2)dz
Lo=¢(p—Y—m) i+ E(Po—Ag) Y’y (B55) ab " Jo o [lax+b(1-x)](1-2)+cZ’
(B61)
with £&,=1—cy%; or in the moving framdafter using(10)]
is we can rewrite Eq(B60) as
= p(p—V—m) g+ &0V B-p—B-V) By (B56) li=—4p-Bp"- ¥ Io*2p- BEYVI,

L BY YR B — ByPV yY
up to a constant. +2p"- VY B~ BYVY Bt - -,

From Eq.(B56) we see that quantum corrections of the

where
form
_ 3i 1 1
SLo= OB D ST BVIBY  BSD Vo= porve| dx| a1-2)
can still be expected. Note that gauge invariance will guar- dLd%k
anteeselH = 6¢{2)= 5&,. Hence, in order to renormalize the Xz — i1k, kK,
mass and th@ Heu parameters, we have to include counter {[ P1=2) AL
terms of the form (B62)
SC=8m+8&B(B-p—B-V), (B58)  with
where Sm and 6¢, are chosen such thafEg gives zero py=xp’+(1—x)p, AL=p§(1—2)2+ Lz. (B63
contribution as the source is turned off. This condition forces
|3=0 when acting on free spinors. After evaluating Eq(B62), we can express
Finally, for the vacuum polarization contribution the 5
charge has to be renormalized along with THéeu param- [ =2 d_X E ' &_2
eters. Charge renormalization is identical to the standard %~ 7 ¢ B-pB-P n,uz

case. For thdHeu parameters, the procedure is equivalent

to the self-energy part, where now, given the form of the B ,[3 A? p’ )
electromagnetic actiofisee Eq.(11)], we expect quantum + g Px E_Inaf —x?(,BopY/BﬁLﬂp BY)
fluctuations of the form
, p
SLen=OEAM[K = (B-K)2]7,.,~ B, B KHA" (B59) ~(B-PYEH AP AVI(LmX) 5 E by

2

X BWKB-p+B-W)—€}pr

to occur. Hence, a counter term of that form is needed to
renormalize the THeu parameters, or equivalently
gzl_HolTo,bLofo.

1 3 A

7. Calculational details of type B contributions +B pX Bpx-V = ZV'Bpi(E_Inp_i)

We present here further details underlying the computa-
tion leading to Eqs(B34) and (B35), which are referred as —(1-x)B-pV-p—xp'-BV-p’
the type-B contributions to the self-energy. In this part the
photon propagator to be considered is given by Bg2),
where the first and second terms have, respectively, a tensor The evaluation of the remaininigs is analogous, and so
dependence likg, 3, and ,,, and need to be regularized )
according to Eqs(B5) and (B33). We show the relevant B ( " (B p) (1+ 1| p
details involving the first term of the propagator only, since p? 2 p?
the remainder can be computed in a similar way.

]+.--. (B64)

=Yy~ | I -1

+.n,
p
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A2 5 A2 1
=——,3 Pﬁ72§(|n—z+ ——IZ5[5’2 25('”7 2)

+..-+4C. (B66)
From Appendix B7, we know &C=ém
+ 85&0B(B-p— B-V), where in this case
BZ 2
om= §72§<Inaz— 5 + (B67)

2

1, [ A% 5
Ség=7 VE| N5+ 5| +---

Since herevV#= »*%V,, we can rewrite after some ma-

nipulation
1+ 3= y2E(Ki+ Kyt Kg)+ - - -, (B68)
where
[ dx (B-p?
P
+5 B pB-p In( O)]
BZ 1 m2 ,
K2:<m7+ﬁ'Dﬁ) —Z|n(p7)5(l3—p)
p2
‘ﬁ‘zﬁ'vﬁ'”(mﬂ-
dx
Ks=-3 o2 (XB p'p'BV+(1—x)B-pYBP

+V'p( Pyt B- pxﬁ) 2B-V(B-p+B-p")Pyx
+XB-pp'YB+(1-x)B-p' BYD—p;

B B-p

We want a result good ta(Za)*, and so we can simplify

the above expressions by using the assigned order given by

Eqg. (B3), from which we can relate

q=p’'—p~Zam,
p'2—p?~(B-p)°—p?>~pi—m?~(Za)’m?, (B69)

ol

+(B‘Q)2],

and then reduc&, to

2

4

Ki=

y
H(ﬁ )%~

—2m?

1
— ng 54’,82 (B?O)

where antisymmetric terms undpf«< p vanish.
To simplify K, we follow BBF and use
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(B—m)2B=Y(p—m)B=2p3-p¥/—2mVB—YV BY
=2(V-p—m¥)B—4BY - V?, (B71)

where we have assumed the operator is acting on Dirac
spinors of momentunp and omitted the integration coming
from

Hp)b—m) = oo | WP WD (87

Note thatV Y =V?, since the square of the potentialter
factoring out the spinors and integration variablissalready
of the desired order Za)* [see Eg. (B3)] and so
B=7vo=1.

The final result is

V2 (B B Bp
Kzz—m 74—5 +(V-p—m ﬁ—mﬂﬁw
(B73
Following a similar approach we reduce
B vPa_ B q
Kg=—5-(V-p- mX/)+—+/3 a2V
B-q q* (B
——mBW— (If]ﬂ-i- (Zflw— (?—1 Y.
(B74)
We can make further simplifications by using
fﬁp')B(p’,p>¢(p>d3p’d3p:0, (B75)

provided y°B'(p’,p)y°=—B(p,p’), where B represents
any operator as a function g’ and p, as for example,
B-qY. Note that we are interested only in the real part of the
level shift.

Putting everything together, we obtain after some manipu-

lation
—_ 1
5E&B>:Wimzyzfj tﬂ(p’)[W(ﬁ'q)z =+ Eln(%”
B © B-p m
—Wq 1—6+8+€| ( ”—(TW‘FﬁVE)
. m B> 1
><|o”uiqj—§,B~q|a“”VM,8V+m(§—E)
XioHV 0,1 p(p)d3p’dp
a ,82
- & 1+— <n|—|n>+ (B76)

Note again that this represents the calculation involving
only the first term of Eq(B32).

Now to evaluate the many potential part contribution we
need to solve EqB16), with (M'y and(M") given by Egs.
(B20) and (B28), respectively.

So, after substituting EqB32) in Eq. (B20)
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|,3 /\/1|2 d*k and, therefore, the former expressions should reduce up to a
(M)= 71— 2737 52 w2 kg—E,—E T constant, to the metric case.
n

(B77)

with APPENDIX C: VIRTUAL NONMETRIC ANOMALY

In the THeu formalism, gravity interacts with matter
MME<n|RM|r>' through theT andH functions, which are assumed locally
constant within atomic scaleA.priori they do not need to be
the same for different types of matt@ike baryons and lep-
- o > tons, or, furthermore, for matter and antimatter. In this con-
KM K - :
o=——— = —| M|cos, text for ex_ample, a nonmetric anomaly rela_ted to elgctron/
Ko Ko positron differences will modify the Lagrangian density re-
lated to fermions by

Using the transversality condition, we relate

which reduces the integral on the anglesﬂdb

K2 .. Lo=y(p—Y—m) g+ & " (po—A0)Y¥", (CD
f dQ|ﬂ-M|2:4w(W|M|2+|u-M|2 . (B78)
0 where ¢, =1—c_/c, and c:=(T+/H:)Y? with — and
We evaluate the remainirky, and|K| integrations in Eq. + labeling electrons and positrons, respectively. After using
(B77), by using Eqs(B21) and (B23) along with the analo- Eqg. (10), we can refer Eq(C1) to the moving frame as

gous relations

. :M—v—mwafﬁﬂp—ﬁ~vw+.( )
v C2
U- M= e (B En)nld-pr),
The imposed broken symmetry between particle and anti-
particle changes the fermion propagdiarthe positron cage

- - 1 . .
S Knli BIr) 2(E,— Eq) = 5¢nli- Fon), olup o))
to finally obtain

SE=(b—m) M+ £ (p—m) "y BB p(p—m) T,
(C3

C+1 Cli+
S Uiy

2 1 M
+—=In
9 6 |\ 2E,

=

(M')= —7 ’¢ where the first term represents the unchanged electron propa-
gatorS; .

2 The positron-electron pairs produced in the electric field
(nl( (u-v) V0|n>] of the atomic nucleus, are seen in the Lamb-shift transition

via the vacuum polarization contribution given by EB37),

1
><<n|V2V0|n>+ —In

+o (B79  where, in this case,
where we have kept only the leading termsas-0 and (ie)
neglected the imaginary part. _ ie)? J 4 "
The computation of M") is straightforward. Here we Ha)= (2w 4( 1) | d% TryiSe (p+a)7"iSe (p).
need to replace Eq.(B32) in Eg. (B28), and use (C9

V,=740V°. Further simplifications follow from BBF and
the aSS|gned order of magn|tude g|Ven before. The final re- After us|ng Eq (C3) a|0ng with standard techn|qu&7]

sult is we obtain that the nonmetric part of E¢C4) is, up to
0(a?),
(M= = —y S(B—ZH (nl7m Vi Clnyteeo. (880 q2 1
IH’”(q)*——Z—y 7| 300" ——(ﬁ q)z}
Adding together EqgB76), (B79), and(B80) will give us (C5)

then the final expression for the self-energy contribution for
this part of the calculation. Note that the above results can b@here the ellipsis accounts for the gauge-dependent terms,
verified by taking the limitg,8,— 7, , which reduces which give no contribution to EqB37). Equation(C5) also
comes after proper regularization and renormalization pro-
® 5.0 cesses, which follow from previous sections.
G——7¢G,,*t In this EEP violating context, the radiative corrections



5974 C. ALVAREZ AND R. B. MANN 54

related to atomic energy levels are modified fyp to  where we have replaced E@5) in Eq.(B37) and simplified
O(a(Za)*0(u?)] afterwards. By taking the Lamb atomic states, we finally
obtain

+ + @ 1 2
OB =06Bp=—¢&s 7521 g(NV*Valn)

m
AE=—¢, —=—(Za)*a(1+2u?). (C7)

+<n|(J-§)2V0|n>], (C6) 1207
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