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Testing the equivalence principle by Lamb shift energies
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The Einstein equivalence principle has as one of its implications that the nongravitational laws of physics are
those of special relativity in any local freely falling frame. We consider possible tests of this hypothesis for
systems whose energies are due to radiative corrections, i.e., which arise purely as a consequence of quantu
field theoretic loop effects. Specifically, we evaluate the Lamb shift transition~as given by the energy splitting
between the 2S1/2 and 2P1/2 atomic states! within the context of violations of local position invariance and
local Lorentz invariance, as described by theTHem formalism. We compute the associated redshift and time
dilation parameters, and discuss how~high-precision! measurements of these quantities could provide new
information on the validity of the equivalence principle.@S0556-2821~96!03920-3#

PACS number~s!: 04.80.Cc, 12.20.Fv, 32.10.Fn
l

I. INTRODUCTION

The Einstein equivalence principle~EEP! is foundational
to our understanding of gravity. It states that~i! all test bod-
ies fall with the same acceleration regardless of their co
position@the weak equivalence principle~WEP!# and~ii ! the
outcome of any local nongravitational test experiment is
dependent of the velocity and the spacetime orientation
location of the~freely falling! apparatus@1#. Theories which
obey the EEP, such as general relativity and Brans-Di
Theory, are called metric theories because they endow sp
time with a metricgmn that couples universally to all non
gravitational fields. Nonmetric theories do not have this fe
ture: they break universality by coupling auxiliar
gravitational fields directly to matter. In this context a viol
tion of the EEP means the breakdown of either local posit
invariance~LPI! or local Lorentz invariance~LLI ! ~or both!
so that observers performing local experiments could de
effects due to their position~if LPI is violated! or their ve-
locity ~if LLI is violated! in an external gravitational envi
ronment by using clocks and rods of differing compositio
Limits on LPI and LLI are set by gravitational redshift an
atomic physics experiments, respectively@2–4#, each of
which compares relative frequencies of transitions betw
particular energy levels that are sensitive to any potential
or LLI-violating effects.

The next generation of gravitational experiments will e
tend significantly our current understanding of the empiri
foundations of the EEP. A proposed Eo¨tvös experiment in
space, known as the satellite test of the equivalence princ
~STEP! attempts to test WEP to one part in 1017. The preci-
sion of gravitational redshift experiments could be improv
to one part in 109 by placing a hydrogen-maser clock o
board Solar Probe, a proposed spacecraft~see Ref.@1# and
references therein!.

The dominant form of energy governing the transitio
that these experiments probe is nuclear electrostatic ene
although violations of WEP or EEP due to other forms
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energy~virtually all of which are associated with baryonic
matter! also have been estimated@5#. However, there exist
many other physical systems, dominated by primarily non-
baryonic energies, for which the validity of the EEP is com-
paratively less well understood@6#. Such systems include
photons of differing polarization@7#, antimatter systems@8#,
neutrinos@9#, mesons@10#, massive leptons, hypothesized
dark matter, second and third generation matter, and quan-
tum vaccum energies. Indeed, potential violations of the EEP
due to vacuum energy shifts, which are peculiarly quantum-
mechanical in origin~i.e., do not have a classical or semi-
classical description! provide an interesting empirical regime
for gravitation and quantum mechanics.

In this paper we investigate the effects that EEP-violating
couplings have on Lamb-shift transition energies. Such tran-
sitions arise solely due to the radiative corrections inherent in
quantum electrodynamics. A test of the EEP for this form of
energy therefore provides us with a qualitatively new empiri-
cal window of the foundations of gravitational theory.

The Lamb shift is the shift in energy levels of a hydro-
genic atom due to radiative corrections. Such energy shifts
break the degeneracy between states with the same principa
quantum number and total angular momentum, but differing
orbital and spin angular momenta. The best-known example
is the energy shift between the 2S1/2 and 2P1/2 states in a
hydrogen-like atom, which arises due to interactions of the
electron with the quantum-field-theoretic fluctuations of the
electromagnetic field. For metric theories, the lowest-order
contribution for the Lamb shift is 1052 MHz for hydrogen
atoms. There is a 5 MHz discrepancy with the experimental
value of 1057.845(9) MHz@11# or 1057.851(2) MHz@12#,
that can be improved with the inclusion of higher-order
terms and corrections coming from the structure and recoil of
the nucleus.

Any breakdown of LPI or LLI is determined entirely by
the form of the couplings of the gravitational field to matter
since local, nongravitational test experiments simply respond
to their external gravitational environment. To explore such
effects, it is necesssary to develop a formalism capable of
representing such couplings for as wide a class of gravita-
tional theories as possible. We consider in this paper
Lagrangian-based theories in which the dynamical equations
5954 © 1996 The American Physical Society
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54 5955TESTING THE EQUIVALENCE PRINCIPLE BY LAMB . . .
governing the evolution of the gravitational and matter fiel
can be derived from the action principle

dE d4xL[dE d4x~LG1LNG!50. ~1!

The gravitational partLG of the Lagrangian density contain
only gravitational fields; it determines the dynamics of th
free gravitational field. The nongravitational partLNG con-
tains both gravitational and matter fields and defines the c
plings between them. The dynamics of matter in an exter
gravitational field follow from the action principle

dE d4xLNG50 ~2!

by varying all matter fields in an external gravitational env
ronment.

We work in the context of a wide class of nonmetr
theories of gravity as described by theTHem formalism
@13#. Phenomenological models ofLNG provide a general
framework for exploring the range of possible couplings
the gravitational field to matter and, thus, the range
mechanisms that might conceivably break LPI or LLI. Th
THem formalism is one such model. It deals with the d
namics of charged particles and electromagnetic fields i
static, spherically symmetric gravitational field. In additio
to all metric theories of gravitation, theTHem formalism
encompasses a wide class of nonmetric theories.

A quantum-mechanical extension of the original classic
THem formalism was developed by Will@14# to calculate
the energy shifts~due to, e.g., hyperfine effects! in hydro-
genic atoms at rest in aTHem gravitational field. Since the
ticking rate of a hydrogen-maser clock is governed by t
transition between a pair of these atomic states, this ex
sion can be used to determine the effect of the gravitatio
field on the ticking rate of such clocks. This provides a ba
for a quantitative interpretation of gravitational redshift e
periments, which employ hydrogen-maser clocks, for e
ample, the gravity probe A rocket-redshift experiment@2#.
Such experiments are a direct test of LPI.

This formalism was further extended by Gabriel an
Haugan@15#, who calculated the effects that the motion of a
atomic system through a gravitational field would have
the ticking rate of hydrogen-maser and other atomic cloc
Their extension can be used to compute energies of hyper
and other energy shifts of hydrogen atoms in motion throu
aTHem field. Here the physical effect under consideration
time dilation rather than the gravitational redshift. When L
is broken, the rates of clocks of different types that mo
together through the gravitational field are slowed by diffe
ent time-dilation factors. This nonuniversal behavior is
characteristic symptom of the breakdown of LLI@16#, just as
nonuniversal gravitational redshift is the hallmark of LP
violation @14#.

We are concerned in this paper with extending this ana
sis to the Lamb shift, an energy shift whose origin is due
radiative corrections. We compute the gravitationally mo
fied ~GM! Lamb shift in aTHem field, and then discuss
experiments which could potentially measure such effec
We find both EEP-violating contributions to the Lamb sh
ds
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from the semiclassicalTHem Hamiltonian and its radiative
corrections. The semiclassical contribution violates LLI only
and is isotropic; the radiative corrections violate both LLI
and LPI and are not isotropic. These contributions are func-
tions of nonmetric parameters, which arise in the leptonic
sector of the standard model, and so are not constrained b
previous high-precision experiments, which have set strin-
gent bounds for analogous parameters in the baryonic secto
@4#. Of course, all such contributions vanish for metric theo-
ries.

In order to calculate the~GM! radiative corrections, we
shall modify the Feynman rules of quantum electrodynamics
~QED! within the context of theTHem formalism. Although
we cannot use LPI/LLI symmetries, the gauge invariance of
the theory is still present. We shall be concerned with the
one-photon contribution to the~GM! Lamb-shift up to order
ma(Za)4, with the nucleus treated as a fixed point charge.
We do not include further~higher-order! refinements, since
we are interested in the role of Lamb shift energies in the
investigation of possible LPI/LLI violations and so expect
any such violations to be qualitatively different from higher-
order corrections.

Our paper is organized as follows. In Sec. II theTHem
action is introduced and extended to frames moving with
respect to the preferred frame defined by theTHem gravita-
tional field. This formalism is then used to calculate the elec-
tromagnetic fields produced by a pointlike charge and to for-
mulate ~GM!QED. In Sec. III the~GM! Dirac equation is
used to find the energy levels of hydrogenic atoms, and we
compute the radiative corrections for those states in Sec. IV.
In Sec. V the GM Lamb shift is related to redshift and time
dilation parameters to study possible LPI and LLI violations,
respectively. Final conclusions are presented in Sec. VI. Sev-
eral appendices summarize details of our calculations.

II. „GM … ACTION

The THem formalism was constructed to study electro-
magnetically interacting charged structureless test particles
in an external, static, spherically symmetric~SSS! gravita-
tional field, encompassing a wide class of nonmetric~and all
metric! gravitational theories. Originally employed as a com-
putational framework designed to test Schiff’s conjecture
@1#, it permits one to extract quantitative information about
the implications of EEP violation that can be compared to
experiment. It assumes that the nongravitational laws of
physics can be derived from an action:

SNG52(
a

maE dt~T2Hva
2!1/21(

a
eaE dtva

mAm~xa
n!

1
1

2E d4x~eE22B2/m!, ~3!

wherema , ea , and xa
m(t) are the rest mass, charge, and

world line of particle a, x0[t, va
m[dxa

m/dt,

EW [2¹W A02]AW /]t, BW [¹W 3AW . The parameterse andm are
arbitrary functions of the Newtonian gravitational potential
U5GM/r ~which approaches unity asU→0), as areT and
H, which in general will depend upon the species of particles
within the system~leptons in the present case!.
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A quantum-mechanical extension of the action~3! which
incorporates the Dirac Lagrangian was used by Will@14# to
study the energy levels of hydrogen atoms. In that cas
local approximation to the action is employed. The spa
time scale of atomic systems allows one to ignore the spa
variations ofT, H, e, m, and evaluate them at the center

mass position of the system,XW 50. This work was further
extended by Gabriel and Haugan@15# who showed that after
rescaling coordinates, charges, and electromagnetic po
tials, the field theoretic extension of the action~3! can be
written in the form

S5E d4xc̄~ i ]”1eA”2m!c1
1

2E d4x~E22c2B2!, ~4!

where local natural units are used,A”5gmA
m, and

c25H0 /T0e0m0 with the subindex ‘‘0’’ denoting the func-

tions evaluated atXW 50. The parameterc is the ratio of the
local speed of light to the limiting speed of the species
massive particle under consideration.

The action~3! @or ~4!# has been widely used in the stud
of LPI or LLI-violating effects such as the effect of nonme
ric gravitational fields on the differential ticking rates of dif
ferent types of atomic clocks, a violation of LPI@14#. An
analysis of the electrostatic structure of atoms and nucle
motion through aTHem gravitational field using Eq.~3!
shows that the nonmetric couplings encompassed by
THem formalism can also break LLI@16#. This symmetry is
broken when the local speed of lightc*[(m0e0)

21/2 differs
from the limiting speed of a given species of massive parti
c0[(T0 /H0)

1/2, the latter being normalized to unity in Eq
~4!. Further implications of the breakdown of LLI on variou
aspects of atomic and nuclear structure also have been in
tigated. Shifts in energy levels~including the hyperfine split-
ting! of hydrogenic atoms in motion through aTHem gravi-
tational field have been calculated@15# by transforming the
representation of the action~4! to a local coordinate system
in which the atom is initially at rest and then analyzing th
atom’s structure in that frame. The local coordinate syst
in which theTHem action is represented by Eq.~4!, is called
the preferred frame; moving frames are those systems of
cal coordinates that move relative to the preferred frame.

In the present work we generalize this analysis by us
the action~4! to study radiative corrections to bound-sta
energy levels in hydrogenic atoms. We follow the schem
given in Ref.@15#, and analyze the atomic states in movin

frames whose velocity isuW .

Consider an atom that moves with velocityuW relative to
the preferred frame. The moving frame in which this atom
initially at rest is defined by means of a standard Loren
transformation. A convenient representation@15# of the
THem action in this new coordinate system if the nongrav

tational fieldsc, AW , EW , andBW transform via the correspond
ing Lorentz transformations laws for Dirac, vector, and ele

tromagnetic fields is, toO(uW 2),
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S5E d4xc̄~ i ]”1eA”2m!c1E d4xJmA
m

1
1

2E d4x@~E22B2!1j„uW 2E22~uW •EW !2

1~11 uW 2!B22~uW •BW !212uW •~EW 3BW !…#, ~5!

whereJm is the electromagnetic four-current associated with
some external source~taken here to be a pointlike spinless
nucleus!. In our formulation, all nonmetric effects arise from
the inequality betweenc0 andc* in the electromagnetic sec-
tor of the action. The dimensionless parameter
j[12(c* /c0)

2512c2 measures the degree to which LPI/
LLI is broken for a given species of particle. The natural
scale forj in theories that break local Lorentz invariance is
set by the magnitude of the dimensionless Newtonian poten-
tial, which empirically is much smaller than unity in places
we can imagine performing experiments@1#. We are, there-
fore, able to compute effects of the terms in Eq.~5! that
break local Lorentz invariance via a perturbative analysis
about the familiar and well-behavedc→1 or j→0 limit.

The fermion sector of the action~5! implies that the equa-
tion of motion for thec field is simply the Dirac equation
coupled in the usual fashion to the potentialAm . On the
other hand, the pure electromagnetic part of the action is
modified with an extra term proportional to the small
~species-dependent! parameterj. This will affect the electro-
magnetic field equations, and the photon propagator. In both
cases we can calculate effects of the additional terms pertur-
batively.

The field equations coming from the action~5! are @15#

¹W •EW 5r1j@uW •¹W ~uW •EW !2uW •¹W 3BW 2uW 2¹W •EW #,

¹W 3BW 2EẆ 5 jW1j@¹W 3~uW 3EW !1uW 3¹W ~uW •BW !

1~11uW 2!¹W 3BW 1uW 2EẆ 2uW ~uW •EẆ !2uW 3BẆ #,

~6!

wherer and jW are the charge density and current associated
with the fermion field plus and external source~such as a
nucleus.! Perturbatively solving these equations for electro-
magnetic potentials produced by a pointlike nucleus of
chargeZe at rest in the moving frame yields

A05F12
j

2
„uW 21~uW •n̂!2…Gf[f1jf8,

AW 5
j

2
@uW 1n̂~uW •n̂!#f[jAW 8, ~7!

where n̂5xW /uxW u, f5Ze/4puxW u, and¹W •AW 50. Note that Eq.
~7! agrees with the corresponding result from Ref.@15#.

The primed fields in Eq.~7! signal a breakdown of LLI.
Consequently, we expect that this electromagnetic potential
will modify the energy states of hydrogenic atoms prior to
the inclusion of radiative corrections. We shall calculate
these effects for the Lamb shift in the next section. In order
to find the radiative corrections to these energy levels, we
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must reformulate quantum electrodynamics~QED! according
to the action~5!. Since the fermion sector of the action doe
not change, the fermion propagator is unaltered; only
photon propagator needs to be modified.

To find the photon propagator, we go back to the acti
~4! and add a gauge-fixing term of the form

SGF52
1

2E d4x@~12j!~]•A!212j]0A0]•A#, ~8!

after which the resulting electromagnetic part can be writt
as

SEM5E d4xF12Am]n]nA
m1

j

2
~Am]0]

0Am

1A0]
m]mA

02Am]n]nA
m!G , ~9!

where we have integrated by parts and neglected surf
terms.

This action is still given in preferred frame coordinate
We can go the moving frame by performing the Loren
transformations

A0→A085g~A02uW •AW ![gb•A,

]0→]085g~]02uW •¹W ![gb•], ~10!

where g2[1/(12uW 2) and bm[(1,uW ); henceforth,
b2[12uW 2. Transforming Eq.~9! by using Eq.~10! gives

SEM5
1

2E d4xAmKmnA
n, ~11!

where~in momentum space!

Kmn52hmnk
2~12j!2jg2@hmn~b•k!21bmbnk

2#,
~12!

where hmn is the Minkowski tensor with a signature
~1222! andKmn is the inverse of the photon propagato
Gmn . Therefore, after solving

KmdG
dn5dm

n , ~13!

we find, up to first order inj,

Gmn52~11j!
hmn

k2
1j

g2

k2 Fhmn

~b•k!2

k2
1bmbnG .

~14!

The terms proportional toj in Eq. ~14! signal the breakdown
of both LPI and LLI, since those terms are still present ev
if uW 50. The ~GM! QED then differs from standard QED
only in the expression for the photon propagator; the ferm
propagator and Feynman rules are unchanged.

As the Lamb shift is the shift between the 2S1/2 and
2P1/2 states, and since the Dirac equation for a Coulom
potential predicts those states to be degenerate, the differ
between them in metric theories comes only from radiat
corrections. For nonmetric theories, which can be describ
s
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by theTHem formalism, these energy levels will be modi-
fied by the EEP-violating terms introduced in the source@Eq.
~7!#, removing this degeneracy before introducing radiative
corrections. Note that the fermion sector of theTHem action
does not change and, therefore, neither does the Dirac equa-
tion. The preferred frame effects appear only in the expres-
sion for the electromagnetic source produced by the nucleus.
We shall now evaluate this contribution.

III. „GM … DIRAC STATES

The Dirac equation in the presence of an external electro-
magnetic field still reads as in the metric case:

Hun&5~aW •pW 1bm2eA01eaW •AW !un&5Enun&, ~15!

where the various symbols have their usual meaning.
The ~GM! energy levels of hydrogenic atoms are found

by solving Eq.~15! in the presence of the electromagnetic
field ~7! produced by the nucleus, which entirely accounts
for the preferred frame effects. If we replace Eq.~7! in Eq.
~15!, the Hamiltonian can be written as

H5H01jH8, H852ef81eaW •AW 8, ~16!

where H0 corresponds to the standard Hamiltonian~with
Coulomb potential only!, and the primed fields are defined as
in Eq. ~7!. In terms of the known solutions for
H0un&05En

0un&0, we can perturbatively solve Eq.~15! by
writing

En5En
01jEn8un&5un&01jun&8, ~17!

with

En850^nuH8un&0[En8
~E!1En8

~M !, ~18!

un&85(
rÞn

0^r uH8un&0

En
02Er

0 ur &0, ~19!

whereEn8
(E) andEn8

(M ) account for the contributions coming
from the respective electric and magnetic potentials.

We now proceed to calculate the energy levels related to
the Lamb-shift states. To obtain these, we find it convenient
to use the exact solution for the Dirac spinorun&0, expanding
the final answer in powers ofZa toO„(Za)4…. The relation-
ship between this approach and an alternate one in which the
Hamiltonian is first expanded in powers ofZa using a
Foldy-Wouthuysen transformation is discussed in Appendix
A.

The unperturbed Dirac stateun&0 can be expressed as

un&05S Gl j ~r !u l ; jm&
2 iF l j ~r !sW •n̂u l ; jm& D , ~20!

whereu l ; jm& is the spinor harmonic eigenstate ofJ2,L2, and
Jz , with respective quantum numbersj ,l , andm. The func-
tionsF andG can be written in terms of confluent hypergeo-
metric functions that depend in a nontrivial way onZa for a
given l and j @17#.

Inserting the fields from Eqs.~7! and~20! in En8, we write
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En8
~E!5~RGG1RFF!^ jm; l uu21~uW •n̂!2u l ; jm&, ~21!

En8
~M !52 iRGF^ jm; l u~sW •n̂!~sW •uW !1uW •n̂u l ; jm&1 H.c.,

~22!

where ‘‘H.c.’’ means Hermitian conjugate and where

RGG5
1

2E G
Za

r
Gr2dr ~23!

with RFF andRGF defined in an analogous manner.
We now evaluate this energy for the 2S1/2 and 2P1/2

states in this semiclassical approximation, prior to the incl
sion of any radiative corrections. Since the angular opera
in Eq. ~22! has odd parity~as given byn̂), it is straightfor-
ward to show that the magnetic contributionEn8

(M )50, so
En85En8

(E) for any state. Using the corresponding expre
sions for the harmonic spinors and theF, G functions in Eq.
~21! for each Lamb state@17#, we find

E2S1/2
8 5

1

6
u2m~Za!2F11S 7161

19

16D ~Za!2G1•••,

~24!

E2P1/2
8 5

1

6
u2m~Za!2F11S 7161

3

16D ~Za!2G1•••,

~25!

where we have expanded the exact solutions forRGG and
RFF in powers of (Za)2, and kept the first relativistic cor-
rection only. The angular integration and theRGG term are
the same for both states, and so the nonrelativistic limit
still degenerate for them. However, the first relativistic co
rection coming from theRFF factor breaks the degeneracy
yielding

DEL
~D !5E2S1/2

2E2P1/2
5j

u2

6
m~Za!41O„~Za!6….

~26!

We obtain the result that the 2S1/2–2P1/2 degeneracy is
lifted before radiative corrections are introduced. Th
‘‘semiclassical’’ nonmetric contribution to the Lamb shift is
isotropic in the three-velocityuW of the moving frame and
vanishes whenuW 50. Hence, it violates LLI, but not LPI.

In order to proceed to a computation of the relevant r
diative corrections, we need to find the perturbative corre
tions for the energies and spinor states given by Eq.~18! and
Eq. ~19!, respectively. The radiative correctiondEn to the
Dirac energyEn can be formally expressed as

dEn5^nudHun&, ~27!

wheredH accounts for the loop contributions as given by th
gravitationally modified QED. Since EEP violating effect
appear in both the photon propagator and the classical e
tromagnetic field, we expect

dH5dH01jdH8. ~28!
u-
tor

s-

is
r-
,

is

a-
c-

e
s
lec-

In addition, the stateun& may be analogously expanded. Up
to first order inj, we can, therefore, write Eq.~27! in the
form

dEn5
0^nudH0un&01j@0^nudH8un&0

1$0^nudH0un&81 H.c.%#. ~29!

The contributions from theun&8 states are of the same
order of magnitude~in terms of powers ofZa) as thedH8
terms and so cannot be neglected. This may be seen by not-
ing that, apart from theuW dependance,f8;f and so
0^nuH8ur &0;En

02Er
0 Inserting this in Eq.~19! proves the

statement. Note that the effect of theun&8 states was over-
looked in Ref. @15#. If we identify dH→H (h f) , where
H (h f) represents the perturbation to the Dirac Hamiltonian
due to the spin of the nucleus, then by the same arguments as
before, we can show that the term$0^nuH (h f)

0un&81 H.c.%
was omitted in the corresponding expression for the hyper-
fine energy.

IV. „GM … RADIATIVE CORRECTIONS

To lowest order in QED, there are two types of radiative
corrections to the energy levels of an electron bound in an
external electromagnetic potential: the vacuum polarization
(P) and self-energy (S), along with a counterterm (dC)
that subtracts the analogous processes for a free electron.
These contributions are illustrated in Fig. 1.

The energy shift due to these contributions for the state
un& then can be written as

dEn5dES1dEP , ~30!

where

dES5^nuS2dCun&, ~31!

which corresponds to the self-energy contribution in Fig.
1~a! minus the corresponding counterterm, and

dEP5^nuPun&, ~32!

which is the vacuum polarization contribution illustrated in
Fig. 1~b!.

In Fig. 1 the bold line represents the bound electron
propagator. This propagator can be written in operator form
as (p”2V”2m)21, with

FIG. 1. Radiative corrections of ordera: ~a! self-energy and~b!
vacuum polarization.
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Vm~xW ![2eAm~xW ! and pm[~En ,pW !,

where Am is the external electromagnetic potential. Her
En is the total energy of the stateun&, which satisfies the
Dirac equation (p”2V”2m)un&50.

Equation ~30! represents the one-loop correction~one
power ofa) to the atomic energy levels as given byEn . We
are interested in obtaining the ‘‘lowest order’’ Lamb shift
which is thea(Za)4 contribution.@There are still more ap-
proximations that come after expanding the bound propa
tor, which introduce additional nonanalytic terms in the e
pression for the Lamb shift that behave lik
a(Za)4ln(Za).#

The GM radiative corrections are found by evaluating E
~30!, where the external electromagnetic potential and t
photon propagator are respectively given by Eqs.~7! and
~14!. All expressions will be expanded in terms of the LP
LLI violating parameterj, and the velocity of the moving
frameuW up toO(j) andO(uW 2) as implied by Eqs.~7! and
~14!. EEP-violating effects are all contained in the terms pr
portional to these quantities.

A variety of methods are available for evaluating the co
rections in Eq.~30!, each differing primarily in the manner in
which the bound electron propagator is treated. We sh
follow the method of Baranger, Bethe, and Feynman@18#
~hereafter referred to as BBF!, in which the corrections in
Eq. ~31! are separated into a term in which the external p
tential acts only once, and another term in which it acts
least twice. This latter ‘‘many-potential’’ term can be furthe
separated into a nonrelativistic part, and a relativistic pa
which can be calculated by considering the intermedia
states as free. This approach is sufficient for the lowest-or
calculation we consider here. We now proceed to outline t
main steps of this method.

The self-energy term in Eq.~30! can be written as

dES5
a

4p3E d4kiGmn~k!^nugm

1

p”2V”2k”2m
gnun&

2^nudCun&. ~33!

This expression gives a complex result for the level shi
since the denominators in the integral each have a sm
positive imaginary part. The resulting imaginary part o
dES represents the decay rate of the stateun& through photon
emission. The Lamb shift refers to the real part of the shi
and only that part will be retained in the computation of E
~33!.

The difficulty in evaluating Eq.~33! arises entirely from
choosing a convenient expression for the bound propaga
The integrand in Eq.~33! is rearranged in order to obtain one
part, which is of first order in the potential (dE1), and an-
other part (dE2), which contains the potential at least twice
Using the identity@18#,

Ô[~p” b2m!
p” bÔ1Ôp” a
pb
22pa

2 2
p” bÔ1Ôp” a
pb
22pa

2 ~p” a2m!, ~34!

to re-expressgm andgn in Eq. ~33! and, respectively, iden-
tifying pb5p, pa5p2k, andpb5p2k, pa5p yields after
some manipulation
e
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e
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dES5dE11dE2 , ~35!

where

dE15
a

pE d3pd3p8c̄n~pW 8!$I 11I 21I 3%cn~pW !, ~36!

with

I 15
i

4p2E 2pm8 2gmk”

k222p8•k
V”
2pn2k”gn

k222p•k
Gmn~k!d4k,

I 25
i

4p2V” E 2pm2gmk”

k222p•k

2pn2k”gn

k222p•k
Gmn~k!d4k,

I 35
i

4p2E 2pm2gmk”

k222p•k
gnG

mn~k!d4k2dC, ~37!

and where

dE25
a

4p3E c̄n~pW 8!Mm~p8,p82s82k!

3K1
V ~E02k0 ;pW 82sW82kW ,pW 1sW2 kW !

3M n
†~p1s2k,p!cn~pW !Gmn~k!

3d4kd3pd3p8d3sd3s8

[^MK1
VM & ~38!

with

Mm~p8,p2k!5V” ~pW 82pW !
2pm2gmk”

2p•k2k2

2
2pm8 2gmk”

2p8•k2k2
V” ~pW 82pW !,

M n
†~p82k,p!5V” ~pW 82pW !

2pn2k”gn

k222p•k

2
2pn82k”gn

k222p8•k
V” ~pW 82pW !.

The quantityK1
V is defined as2 iK1

V [(p”2V”2m)21, where

in momentum spaceK1
V 5d(E82E)K1

V (E;pW 8,pW ).
In Eqs.~36! and~38! thep’s have time componentEn and

the s’s have time component 0. Note that the above deriva-
tions are independent of the specific form of the photon
propagatorGmn .

Further evaluation entails a lengthy computation, which in
principle is analogous to that of BBF. In practice though, the
calculation is substantially more complicated than in the
metric case due to the additional nonmetric terms present in
the photon propagator and the electromagnetic source related
to a charged point particle. Regularization and renormaliza-
tion procedures have to be modified accordingly as well.
Details involving the subsequent computation of the self-
energy~and vacuum polarization! term are given in Appen-
dix B.
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The final result for the loop corrections related to th
Lamb shift is of the form

DEL
~Q!5dE2S1/2

2dE2P1/2
, ~39!

where each term is obtained from Eq.~B43! ~and its relevant
subsidiary equations! as calculated for the correspondin
atomic state. By adding the ‘‘semiclassical’’ correction com
ing from the Dirac level@labeled by (D) in Sec. III#, the total
Lamb shift reads

DEL5DEL
~D !1DEL

~Q!

5
m

6p
~Za!4aH 22.0841 ln

1

a21j

3F24.5341
3

2
ln
1

a21u2S p

a
23.4861

2

3
ln
1

a2

20.011cos2u D1uiujDê i j G J , ~40!

where we have introduced the dimensionless parame
Dê i j[2DÊi j /„(Za)4m3

… @see~B44!#, and used Eqs.~B47!
and ~B48! in the evaluation of Eq.~39! through Eq.~B43!.

The former result is the energy shift associated with t
particular states in Eq.~39!. However, in Eq.~B43! we have
derived a general expression for the one-loop radiative c
rections related to any atomic state. These are

dEn05
4

3p

~Za!4a

n3
mF19302

j

30
1S 11

3

2
j D

3 lnS m

2E
*
n0D 1O~u2!G ~41!

for l50, and

dEnl5
4

3p

~Za!4a

n3
mF S 11

3

2
j D lnS Z2RydE

*
nl D

1
3

8

Cl j

2l11 S 11
j

2D 1O~u2!G ~42!

for lÞ0, where we have not written explicitly the terms pro
portional to the moving frame velocity. Here

Cl j5H 1/~ l11! for j5 l11/2,

21/l for j5 l21/2,
~43!

andE* is defined by Eq.~B45!. Values for this reference
energy can be obtained from Ref.@19# up to states with
n54.

Note that in addition to the explicit dependence on th
frame velocity in Eq.~40!, there exists a position dependenc
hidden by the rescaling of the original action@Eq. ~5!#, which
was considered locally constant throughout the computati
The full THem parameter dependence in Eq.~40! can be
recovered by replacing

a→a
1

e
AH

T
, m→mAH, DEL→AH

T
DEL ~44!
e

-

ter

e

r-

-

e
e

n.

in the preceding equations.
Note thatj in Eq. ~40! accounts for any EEP violation

coming from a nonuniversal gravitational coupling between
photons and leptons. A further distinction can still be made
between leptons and antileptons. In principle a matter or an
timatter violation of the EEP could be measured in a Lamb-
shift transition, through the appearance of virtual positron-
electron pairs in the vacuum polarization loop contribution
@20#. This will add a nonmetric term to Eq.~40!, of the form
~see Appendix C for more details!:

DEL
~1 !52je1

m

120p
~Za!4a~112uuW u2!, ~45!

whereje1
512ce2

/ce1
accounts for the difference between

the limiting speed of electrons (ce2
5c0) and positrons

(ce1
).

We turn next to the question of relating the Lamb shift to
observable quantities in order to parametrize possible viola
tions of the EEP.

V. TEST FOR LPI/LLI VIOLATIONS

We begin by considering a general idealized composite
body made up of structureless test particles that interact by
some nongravitational force to form a bound system. The
conserved energy function of the bodyE is assumed to have
the quasi-Newtonian form@16#

E5MRc0
22MRU~XW !1

1

2
MRuVW u21•••, ~46!

whereXW andVW are, respectively, the quasi-Newtonian coor-
dinates and velocity of the center of mass of the body,MR is
the rest energy of the body, andU is the external gravita-
tional potential. Potential violations of the EEP arise when
the rest energyMR has the form

MRc0
25M0c0

22EB~XW ,VW !, ~47!

whereM0 is the sum of the rest masses of the structureless
constituent particles andEB is the binding energy of the
body. It is the position and velocity dependence ofEB ,
which signals the breakdown of the EEP. ExpandingEB in
powers ofU and V2 to an order consistent with~46!, we
have

EB~XW ,VW !5EB
01dmP

i jUi j2
1

2
dmI

i j ViVj , ~48!

whereUi j is the external gravitational potential tensor, satis-
fying Uii5U. The quantitiesdmP

i j and dmI
i j are, respec-

tively, called the anomalous passive gravitational and inertia
mass tensors. They depend upon the detailed internal struc
ture of the composite body. In an atomic system they can be
expected to consist of terms proportional to the electrostatic
hyperfine, Lamb shift, and other contributions to the binding
energy of an atomic state.

In a gravitational redshift experiment, one compares the
local energies at emissionEem and at receptionErec of a
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photon transmitted between observers at different points
an external gravitational field. The measured redshift is
fined as

Z5
Eem2Erec

Eem
.

Using Eq.~46! ~with VW 50) to relate the transition energie
at the two different points, this parameter can be expres
as @16#

Z5DU~12J!, J5
dmP

i j

DEB
0

DUi j

DU
. ~49!

ClearlyZ depends~throughdmP
i j ) upon the specific test sys

tem used in the experiment. An absence of LPI violatio
will mean J50, and soZ will be independent of the de-
tailed physics underlying the energy transition.

The LLI violations may be probed empirically throug
time dilation experiments. These experiments comp
atomic energy transitions as measured by the moving fra
DEB and preferred frameDEB

0 , which can be related via@15#

DEB5DEB
0F12~A21!

VW 2

2
G ~50!

with the time dilation coefficientA defined by

A512
dmI

ik

DEB
0

ViVk

V2 . ~51!

HeredmI
ik represents the difference between the anom

lous inertial tensors related to the atomic states involved
the transition. The coefficientA represents the dilation of the
rate of a moving atomic clock, whose frequency is govern
by the transition. Since the anomalous mass tensor is
isotropic,A depends upon the orientation of the atom’s qua
tization axis relative to its velocity through the preferre
frame. Note that if LLI is valid, the anomalous inertial mas
tensor associated with every atomic state vanishes, so
A51.

Here we consider the possibility of employing the Lam
shift as the atomic transition governing the appropriate e
periment. To do so we must compute the relevantJ andA
coefficients, respectively.

In order to calculate the correspondingdmp
i j related to the

Lamb shift, we must find the manner in whichDEL varies as
the location of the atom is changed. SettinguW 50 in Eq.~40!
and performing the rescaling given in Eq.~44!, we obtain

DEL5EL
AT
e5 SHT D 5/2H 11aj1bS 11

3

2
j D lnS e2

T

H D J
~52!

with EL5
m

6p
(Za)4a/b, and

a5bS 24.5341
3

2
ln
1

a2D , b51YS 22.0841 ln
1

a2D ,
in
de-

s
sed

-
ns

h
are
me

a-
in

ed
not
n-
d
s
that

b
x-

whereEL represents the metric value~within the given ap-
proximations! for the Lamb shift. Note that there is still a
position dependence in Eq.~52! through the definition of

j[12
H

T

1

me
. ~53!

We recall that the total energy of the system can be ex
pressed in term of

E5mAT1DEL1•••, ~54!

where••• represents other contributions for the binding en-
ergy of the system.

The functionsT, H, e, andm, considered to be functions
of U and evaluated at the instantaneous center of mass loc
tion XW 50 for purposes of the calculation ofDEL , are now
expanded in the form

T~U !5T01T08gW 0•XW 1O~gW 0•XW !2, ~55!

wheregW 05¹W UuXW 50, T05TuXW 50, andT085dT/dUuXW 50. It is
useful to redefine the gravitational potentialU by

U→2
1

2

T08

H0
gW 0•XW , ~56!

whose gradient yields the test-body accelerationgW .
If the above is used to expand Eq.~54!, we get

E5~m1EL!~12U !1ELU@~52a22b!G02aL0#,
~57!

where we have used Eq.~44! and neglected terms propor-
tional to j, since the main position dependence parametriza
tion is given in terms of

G05
2T0
T08

S e08

e0
1

T08

2T0
2

H08

2H0
D ,

L05
2T0
T08

S m08

m0
1

T08

2T0
2

H08

2H0
D . ~58!

If we now identify Eq.~57! with Eqs. ~46! and ~48!, we
can obtain the corresponding Lamb-shift contributions to the
binding energy and anomalous passive mass tensor as

DEB
0~L !52EL , dmP

i j ~L !5DEB
0~L !@~52a22b!G02aL0#.

~59!

This result was first presented in Ref.@21#, where in Eq.~59!
we have corrected the latter for a sign error in the coefficien
multiplying L0 and a missing factorb in theG0 term.

Inserting Eq.~59! in Eq. ~49!, we obtain

JL53.424G021.318L0 ~60!

as the LPI violating parameter associated with the Lamb
shift transition. Note that if LPI is valid, thenG05L050.

In comparing the result~60! to anomalous redshift param-
eters computed for other systems, it is important to note tha
we are working with units that are species dependent. Reca
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that the choice ofc051, and the redefinition of the gravita
tional potential~56! involves theT andH functions associ-
ated with electrons~or more generally, a given species o
lepton!.

Consider, for example, hyperfine transitions~maser
clocks!. In this case the leptonic and baryonic gravitation
parameters appear simultaneously. This atomic splitt
comes from the interaction between the magnetic mome
of the electron and proton~nucleus!. The proton metric ap-
pears only in the latter, and so it does not affect the princi
and fine structure atomic energy levels. It is simple to che
that the hyperfine splitting scales as

DEhf5Ehf
TB

1/2

HB

H0
2

T0

m0

e0
3 , ~61!

where the labelB is added to distinguish baryonic relate
functions from leptonic ones; andEhf depends only on atomic
parameters.

In expanding Eq.~61! according to Eq.~55!, we obtain

DEhf5Ehf~12UB!1EhfUBJhf ~62!

with

Jhf53GB2LB1D, ~63!

whereUB , GB , andLB are the baryonic analogues of Eq
~56! and ~58!, respectively. In Eq.~62! we rescaled the
atomic parameters to absorb theTHem functions and chose
units such thatcB51. The quantityD is given by

D52
TB
TB8

F2SHB8

HB
2
H08

H0
D 2

TB8

TB
1
T08

T0
G ~64!

and would vanish under the assumption that the leptonic
baryonicTHem parameters were the same.

Turning next to experiments which test LLI, we need
obtain the tensordmI

i j appropriate to the Lamb shift. This
tensor is obtained after taking partial derivatives ofDEL with
respect toui anduj ~noteVW [uW ). Substituting the result into
Eq. ~51!, yields

12AL5
j

7.757H p

a
13.07420.011cos2u1

ViVj

VW 2
Dê i j J

~65!

for the Lamb-shift time dilation coefficient, whereu is the
angle between the atom’s quantization axis and its veloc
with respect to the preferred frame.

Note that the coefficientAL depends uponDê i j , the evalu-
ation of which involves the computation of an infinite sum
given by Eq.~B44!. The dominant contribution in Eq.~65!
comes from the Dirac part of the energy~proportional to
1/a), which produces an overall shift only. Nonisotropic e
fects arise solely due to radiative corrections.

In general, an experimental test of LLI involves a sear
for the effects of motion relative to a preferred frame such
the rest frame of the cosmic microwave background. A d
tailed analysis about the interpretation of LLI violating ex
periments is presented in Ref.@15#, which analyzed experi-
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ments concerned with hyperfine transitions, obtaining a
expression for the time dilation parameter corresponding
that kind of transition.1 This parameter is negligible in com-
parison with other sources of energy, such as nuclear ele
trostatic energy in the case of the9Be1 clock experiment@3#.

In summary, we have been able to parametrize EEP vi
lations arising from Lamb-shift transitions associated wit
redshift and time dilation experiments. In these types of EE
violating experiments, one typically looks for variations o
the energy shift due to changes in either the gravitation
potential or the direction of the preferred frame velocity. Th
feasibility of such experiments is hindered by the prese
level of precision of Lamb-shift transitions~one part in
106) in comparison to the magnitudes of such changes. In t
first case, any Earth based experiments will be limited by th
small size of the Earth’s gravitational potential ('1029),
which is well beyond any foreseeable improvement in Lamb
shift precision. Similar problems appear in the second cas
where the known upper bounduuW u,1023 @1# for the pre-
ferred frame velocity, leaves no room for any improvemen
on the EEP-violating parameterj, since anisotropic effects
go asjuuW u2.

However, useful information can still be extracted from
Eq. ~40! if we use the current level of discrepancy betwee
the experimental result@11# and the theoretical~metric! value
@22# to bound the nonmetric contributions for the Lamb shift
This constrainsj,1(1)31025. Similar bounds can be ob-
tained by considering empirical information about othe
atomic states. In this context, the indirect measurement of t
1S Lamb shift @23# gives a limit j,1.4(1)31025, and the
measurement of the 2S1/222P3/2 fine structure interval@24#:
j,0.7(1.4)31025. If we drop the assumption that positrons
and electrons have equivalent couplings to the gravitation
field @20#, we find that there is an additional contribution to
Eq. ~40! due to je1Þje2. This contribution arises entirely
from radiative corrections and is given by Eq.~45!. Making
the same comparisons as above, we find the most string
bound on this quantity to beuje1u,1023.

The previous bounds were obtained by using Eqs.~21!
and~41! or Eq.~42! to calculate the corresponding nonmetric
Dirac and radiative corrections contributions, respectivel
The 1S Lamb shift experiment actually measures the trans
tion: (E4S2E2S)2

1
4(E2S2E1S), and so we use this one to

make the comparison, where experimental and theoretic
values are given in Ref.@23#. In the other experiment we
need to use the nonmetric part ofE2S1/2

2E2P3/2
([Dj):

namely,

Dj5j~Za!2mH 6
u2

60S 32cos2u21D1O„~Za!2u2…

1
a~Za!2

6p
@10.4341O~u2!#J , ~66!

where the first term comes from the Dirac contributions~here
1 and2 label the transition coming from the 2P3/2 state

1Note that the expression given there forAhf is incomplete accord-
ing to discussion presented in Sec. III.
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with uM u53/2 and uM u51/2, respectively! and the second
one from radiative corrections. Note that the leading ani
tropic effects stem from the nonrelativistic contributions, a
so their ratio with the metric value,O„m(Za)4…, is
O„ju2/(Za)2… , instead ofO(ju2) as for theclassicalLamb
shift. Time dilation experiments will look for changes on th
E2S1/2

-E2P3/2
splitting as the Earth rotates, which woul

single out only the preferred frame contributions. Curre
experiments@24# measure a value of 9911.200(12) MHz fo
that transition, which gives a nominal bound~coming from
the experimental error! of 3

2jcos
2u,131024 for the pre-

ferred frame part. This bound should improve once appro
ate experiments are carried out, since these will look
periodic behavior which can be isolated and measured w
high precision.

Note that an empirical value for the Lamb shift is o
tained from Ref.@24# by subtracting the theoretical result o
the fine splitting 2P1/222P3/2. Now by following the previ-
ous formalism, we can parametrize the LPI violation in t
former experimental result through

E2S1/222P3/2
expt 5~Ef1EL!~12U !1U~EfJ f1ELJL!,

~67!

where we have added the corresponding parameters re
to the fine transition@1#: Ef andJ f . Constraining the ratio of
this quantity to a direct measurement of the Lamb shift@11#
to lie within experimental/theoretical error, we obtain th
bounduU(JL2J f)u5uU(0.576G011.318L0)u,1025. This
result is sensitive to the absolute value of the total lo
gravitational potential@6,25#, whose magnitude has been e
timated recently to be as large as 331025 due to the local
supercluster@10#. Hence, measurements of this type can p
vide us with empirical information sensitive to radiative co
rections that constrain the allowed regions of (G0 ,L0) pa-
rameter space. Unfortunately, the present level of precis
in measuring the Lamb shift allows only a rather weak co
straint.

VI. DISCUSSION

We have computed for the first time radiative correctio
to a physical process, namely the energy shift between
hydrogenic energy levels that are semiclassically degene
within the context of theTHem formalism. The correspond
ing ~GM! QED was derived, and the~GM! expressions for
the propagators were obtained. The nonmetric aspects
theory describable by theTHem formalism can be all in-
cluded in the photon propagator, given an appropriate cho
of coordinates, leaving the fermion propagator unchang
The addition of more parameters to the theory~by the
THem functions! entail new renormalizations, where no
only charge and mass need to be redefined, but also
THem parameters.

The approach we took to solve for the semiclassical Di
energies~Sec. III! differs from the one given in Ref.@15#, in
which the Dirac Hamiltonian was expanded using Fold
Wouthuysen transformations yielding the first relativis
correction to the Schro¨dinger Hamiltonian~as introduced for
example, for the Darwin and spin-orbit terms!, and subse-
quently the energies. Instead we began from the fully re
so-
nd
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tivistic expression, where the perturbations come only from
the preferred frame terms of the electromagnetic potentia
Our approach involved evaluating expectation values wit
respect to the relativistic spinors instead of their nonrelativ
istic extensions~or Pauli states!. The effects of relativistic
corrections such as spin-orbit coupling are, therefore, in
cluded exactly in this approach. Once this is done, the fina
result is expanded to keep it within the desired order. Th
semirelativistic approach is not suitable when preferre
frame effects are studied.

Qualitatively new information on the validity of the EEP
will be obtained by setting new empirical bounds on the
parametersj, AL , andJL , which are associated with purely
leptonicmatter. Relatively little is known about empirical
limits on EEP violation in this sector@6#. Previous experi-
ments have set the limits@4# ujBu[u12cB

2 u, 63 10221,
wherecB is the ratio of the limiting speed of baryonic matter
to the speed of light. In our case we obtain an analogou
bound onj for electrons from the difference between curren
experimental and theoretical values, givinguju,1025. Al-
though much weaker than the bounds onjB , it is comparable
to that noted in a different context by Greeneet al. @26#.
They considered a similar formalism (THem with uW 50) for
analyzing the measurement of the photon wavelength em
ted in a transition where a massDm is converted into elec-
tromagnetic radiation, thereby providing an empirical rela
tionship between the limiting speed of massive particle
~electrons! and light.

The breakdown of LPI for the Lamb shift in the context of
a nonmetric theory of gravity describable by theTHem for-
malism is embodied in the anomalous gravitational redshi
parameter~60!. Recall thatJ depends on the nature of the
atomic transition through the evaluation of the anomalou
passive tensor. This tensor will have differing expression
for differing types of atomic transitions@1#. An atomic clock
based on the Lamb shift transition will, in a nonmetric
theory, exhibit a ticking rate that is dependent upon the lo
cation of the spacetime frame of reference and that differ
from frequencies of clocks of differing composition. For ex-
ample, the gravity probe A experiment@2# employed
hydrogen-maser clocks, and was able to constrain the corr
sponding LPI violating parameter related to hyperfine trans
tions:

uJHf u5u3GB2LB1Du,23 1024. ~68!

This experiment involves interactions between nuclei an
electrons and so does not~at least to the leading order to
which we work! probe the leptonic sector in the manner tha
Lamb-shift experiments would. In general, Eq.~49! will de-
scribe the gravitational redshift of a photon emitted due to
given transition in a hydrogenic atom; for a hyperfine tran
sition the redshift parameter is Eq.~68!, whereas it is Eq.
~60! for the Lamb shift transition.

An analogous experiment to test for LPI violations base
on Lamb-shift transition energies poses a formidable exper
mental challenge because of the intrinsic uncertainties of e
cited states of hydrogenic atoms. Setting empirical bound
onJL by precisely comparing two identical Lamb-shift tran-
sitions at different points in a gravitational potential would
appear unfeasible since the anticipated redshift in the bac
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ground potential of the earth ('1029) is much smaller than
any foreseeable improvement in the precision of Lamb-sh
transition measurements@22#. One would at least need to
perform the experiment in a stronger gravitational field~such
as on a satellite in close solar orbit! with 1–2 orders-of-
magnitude improvement in precision. A ‘‘clock
comparison’’ type of experiment between a ‘‘Lamb-shi
clock’’ and some other atomic frequency standard@1# is, in
principle, sensitive to the absolute value of the total loc
gravitational potential@6,25#, as noted earlier. With this in-
terpretation, comparitive transition measurements of the t
discussed in the previous section can more effectively c
strain the allowed regions of (G0 ,L0) parameter space than
can measurements which depend upon changes in the g
tational potential. Of course, exploiting anticipated improv
ments in precision of measurements of atomic vacuum
ergy shifts@22# will yield better bounds onje2 andje1 via
Eq. ~40!.

Violations of LLI single out a preferred frame of refer
ence. In fact, the search for a preferred direction motiva
the most precise tests of LLI performed so far@3,4#. We have
extended the analysis of the effects of motion relative to
preferred frame to account for the radiative correction for t
atomic energies associated with the Lamb shift, as embod
in the expression~65!. This nonuniversality reflects the
breakdown of spatial isotropy for quantum-mechanic
vacuum energies. The coefficientAL depends uponDê i j , the
evaluation of which involves the numerical computation
the sum in Eq.~B44!. Unfortunately, the intrinsic linewidths
of the relevant states render direct measurement of such
fects unfeasible. More precise empirical information on t
value ofj can be obtained by precisely measuring change
the E2S1/2

-E2P3/2
splitting as functions of terrestrial or sola

motions. However, these effects are insensitive to radiat
corrections, depending instead upon the semiclass
nonmetric effects discussed in Sec. III.

Finally, we note that our formalism could be applied fo
muonic atoms. For a muon-proton bound system, we w
obtain an expression similar to that of Eq.~B43!, but where
all parameters refer to muons. For an antimuon elect
bound system~a muonic atom! a similar analysis would ap-
ply. However, in both cases the mass and spin of the mu
could not be neglected.

We expect that the intrinsically quantum-mechanic
character of the radiative corrections will motivate the dev
opment of new LPI-LLI or experiments based on the Lam
shift transition. In so doing we will extend our understandin
of the validity of the equivalence principle into the regime
quantum-field theory.
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APPENDIX A: SEMIRELATIVISTIC CALCULATION
OF HYDROGENIC ENERGY LEVELS

Consider a hydrogenic atom immersed in an exter
gravitational field, moving with velocityuW relative to the
ift

-
ft

al

ype
on-

ravi-
e-
en-

-
ted

a
he
ied

al

of

ef-
he
s in
r
ive
ical

r
ill

ron

on

al
el-
b-
g
of

es
ate-
,

nal

preferred frame. In Sec. III we follow a fully relativistic ap-
proach to solve for the atomic energy levels. That is, we
perturbatively solve the Dirac equation in the presence of the
electromagnetic field of the nucleus, where the unperturbed
states correspond to the Dirac solution in the presence of a
Coulomb potential only~the metric case!.

We consider here the use of the Foldy-Wouthuysen trans-
formation in solving Eq.~15!. In this approach, we write

H5Hc1Hmag1Hmv1HSO1HD ~A1!

with

Hc5m1
pW 2

2m
2eA0 ,

Hmag5
e

2m
~pW •AW 1AW •pW !1

e

2m
sW •BW ,

Hmv52
pW 4

8m3 , ~A2!

HSO5
ie

8m2sW •¹W 3EW 1
e

4m2sW •EW 3pW ,

HD5
e

8m2¹W •EW ,

whereAm is given by Eq.~7!.
As shown in Sec. III, we can takeHmag→0, since the

magnetic field does not contribute to the atomic energy lev-
els. We can then group the terms in the Hamiltonian as

H5Hc1Hf ,

Hf5Hmv1HSO1HD , ~A3!

where we have defined the fine contribution to the Hamil-
tonian (Hf), in order to account for the first relativistic cor-
rectionO„(Za)4… to the atomic energy levels.

We start writing a formal solution forHun&5Enun&, in
terms of its nonrelativistic limit:

Hcun&c5En
cun&c , ~A4!

as

un&5un&c1un& f , En5En
c1c^nuHf un&c , ~A5!

where the index ‘‘f ’’ accounts for the first relativistic correc-
tion to the states and energies.

Since A05f1jf8, and soHc5Hc
01jHc8 we do not

know the exact solution for Eq.~A4!, but only the perturba-
tive expansion:

un&c5un&c
01jun&c8 , En

c5En
c~0!1c

0^nuHc8un&c
0,

~A6!

where

Hc
0un&c

05Sm1
pW 2

2m
2ef D un&c

05En
c~0!un&c

0 . ~A7!
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If we use Eq.~A6! along withHf5Hf
01jHf8 in Eq. ~A5!, we

can write finally up toO(j),

En5En
01jEn85c

0^nu~Hc
01Hf

0!un&c
01j$c

0^nu~Hc81Hf8!un&c
0

1@c
0^nuHf

0un&c81 H.c.#%1O„~Za!6…. ~A8!

We see then that under this semirelativistic approach,
must address the problem of finding the statesun&c8 whose
contribution to Eq.~A8! is between the brace brackets. Th
is equivalent to include the first relativistic correction com
ing after solving

H0un&05~Hc
01Hf

01••• !un&0 ~A9!

as

un&05un&c
01un& f

01•••, ~A10!

since we can show

$c
0^nuHf

0un&c81 H.c.%5$ f
0^nuHc8un&c

01 H.c.%. ~A11!

This relation allows us to rewrite part of Eq.~A8! as

En85~c
0^nu1 f

0^nu1••• !~Hc81Hf81••• !~ un&c
01un& f

01••• !

50^nuH8un&0. ~A12!

It is clear then that if we start with the exact solution fo
the Dirac equation in the presence of a Coulomb potent
we can avoid working with the statesun&c8 Note that since we
are interested only in the first relativistic correction, the r
sult ~A12! must be expanded toO„(Za)4….

Unfortunately for hyperfine or Lamb-shift energies, th
effect of the primed states cannot be removed, since t
both come from perturbations to the~known! relativistic so-
lution of the Dirac equation in the presence of a Coulom
potential only.

A semirelativistic expression for the Hamiltonian of a hy
drogenic system was worked out in Ref.@15#, where the
effects of nuclear spin~hyperfine effect! also were included
within the context of LLI violations. The result presente
there for the atomic energy levels is incomplete thoug
since the contribution of the prime states was overlooked
discussed at the end of Sec. III.

APPENDIX B: LOOP CALCULATIONS

Given the form of the photon propagator~14!, it is con-
venient to divide the calculation into two parts:

dES5dES
~A!1dES

~B!, ~B1!

wheredES
(A) groups the contributions of the terms propo

tional tohmn in Gmn , whereasdES
(B) contains those propor-

tional to g251/(12uW 2) andj. We are interested in solving
for the shift in energy levels up to first order inj, so it is
enough to consider a Coulomb potential as the source
part B, while for part A the full source as defined in Eq.~7!
needs to be included.

We mention again that we are interested in calculating
GM Lamb shift to lowest nontrivial order ina, i.e., up to
we

is
-

r
ial,

e-

e
hey

b

-

d
h,
, as

r-

for

the

O„a(Za)4…. To this order, we can use the nonrelativistic
expressions for both the large and small component of the
electron spinorc. So for example, if we make the substitu-
tion

c~pW !5~Zam!23/2w~ tW !, ~B2!

wherew( tW) is a dimensionless spinor, whose first two com-
ponents are of order unity, and the last two are of order
Za, we can assign orders to the various terms according to

pi;Zam, E02m;~Za!2m,

eA0d
3p8;eAid

3p8;~Za!2m, ~B3!

c̄g icnd
3p;Zam.

These approximations will be used in the sequel to simplify
the expressions we obtain.

1. Type A contributions to the self-energy

Here we will consider

Gmn
~A!52

hmn

k2
~11j! ~B4!

andV”52eAmgm, with Am given by Eq.~7!. This part of the
calculation is almost identical to that of BBF@18#; the only
difference is that now we have to consider a source that
contains a magnetic part in addition to the electric one.

We begin by computingdE1. Relating the counterterm
dC to the renormalization of the electron mass and regular-
izing the photon propagator via

1

k2
→2E

m2

L2 dL

~k22L !2
, ~B5!

we find thatI 2 and I 3 in Eq. ~36! become

I 25~11j!V” H 12 ln~p2/m2!2 ln~L2/p2!J ,
I 35~11j!

3

4 HV” F ln~L2/p2!1
1

2G1mln~m2/p2!J .
~B6!

On the other hand, we obtain, forI 1,

I 15~11j!H 2
3

8
V”2

1

2
p8•pV” E

0

1dx

px
2 ln~px

2/m2!

1
1

4
V” E

0

1

dxln~L2/px
2!1

1

2E0
1dx

px
2 @~12x!p21xp82

12p•p8V”1p” 8V” p”22V•p8~12x!p”

22V•pxp” 81V•pxp” x#J , ~B7!

wherepx5xp81(12x)p.
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We can simplify this expression by letting the momentu
operatorsp” 8 and p” , respectively, act on the spinorsc̄(pW 8)
and c(pW ), using the Dirac equation and Eq.~B3! to keep
terms up to the desired order.

Adding togetherI 1, I 2, and I 3, we obtain a result correc
to ordera(Za)4:

dE1
~A!5

a

p
~11j!E c̄~pW 8!HV” q2m2 F13 lnSmm D2

1

8G
1

i

4m
qnsmnVmJ c~pW !d3p8d3p

2
a

p
~11j!^nu

23V0
215VW 2

4m
un&, ~B8!

with q5p82p, andsmn5( i /2)@gm,gn#. Note that the term
proportional toq2 in Eq. ~B8! needs to be evaluated with
only the large component ofc andV”.V0 (g0;1).

We point out that the initial ultraviolet divergence in Eq
~B6! is canceled after the addition of theI ’s in ~B8!. The
remaining infrared divergence will be canceled by a simi
term which comes from the many-potential part of the lev
shift. A similar cancellation occurs in the nongauge invaria
term present in Eq.~B8!. These cancellations are nontrivia
and provide useful cross checks to our calculation.

Consider next the evaluation ofdE2. Since the operator
Mm satisfies the transversality condition

k•M5k•M†50, ~B9!

we can writeM05kW•MW /k0.
Using

V” k”gm52V•kgm22Vmk”1kgmV” , ~B10!

in the first term of Eq.~39! the operatorMm
† can be decom-

posed into

Mm
†5Mm

†I1Mm
†II ~B11!
m

t

.

lar
el
nt
l,

with

Mm
†I5F 2pm

k222p•k
2

2pm8

k222p8•k

1k”gmS 1

k222p8•k
2

1

k222p•kD GV” , ~B12!

Mm
†II52~Vmk”2V•kgm!/~k222p•k!, ~B13!

each of which still satisfies

M†I
•k5M†II

•k50. ~B14!

In terms of these operators, we now have

dE25^M IK1
VM I&1^M IIK1

VM II&1^M IK1
VM II&

1^M IIK1
VM I&, ~B15!

where each term represents a contribution to Eq.~38! involv-
ing the products of onlyM I or M II or cross terms operators.
The simplification of these terms is quite analogous to tha
shown in BBF@18#. The decomposition of the M operator in,
Eq. ~B11! allows one to use simpler expressions for the
bound propagatorK1

V . In Appendix B5 it is shown that only
in the part^M IK1

VM I& will it be necessary to use the bound
electron propagator; in all other contributions, it is sufficien
to replaceK1

V by the propagator for free electrons,K1
0 .

Moreover, the main contribution tôM IK1
VM I& arises from

intermediate states of the electron with nonrelativistic energ
so that bothK1

V andM I can be replaced by their simpler
nonrelativistic approximations. It is also shown that the cros
term in Eq.~B15! gives a contribution of ordera(Za)5 and
is, therefore, not relevant in our calculation. According to the
above considerations, we can then approximate Eq.~B15! by

dE2.^MNR
I KNR

V MNR
I &1^M IIK1

0 M II&[^M I&1^M II&.
~B16!

We start evaluating the first term of Eq.~B16!. The non-
relativistic prescription forK1

V is given by
KNR
V ~x8,x!5H (

r
w r~xW8!w r* ~xW !exp@2 iEr~ t82t !# for ~ t82t !.0,

0 for ~ t82t !,0,

~B17!
or, in momentum space,

KNR
V ~En2k0 ;pW 8,pW !52 i(

r
w r~pW 8!w r* ~pW !~Er2En1k0!

21,

~B18!

wherew r represents the large component of the Dirac spin
In the same nonrelativistic approach,Mm

I reduces to

Mm
I~NR!.~pm8 2pm!

V0~pW 82pW !

mk0
[Rm , ~B19!
or.

where we have approximatedV”.V0, because although the
magnetic and electric potential have the same order of mag-
nitude ~as powers ofZa), thegW matrix mixes large compo-
nents of the intermediate states with small ones and, there-
fore, introduces corrections one order higher inZa.

Therefore, after replacing Eqs.~B18! and ~B19! in Eq.
~38!, we obtain

^M I&5
a

4p3i E d4kGmn~k!3(
r

^nuRmur &^r uRnun&
k02En2Er

,

~B20!
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where we have neglected the contribution of the photon m
mentum k to the momentum of the intermediate electro
states. This is equivalent to leaving out the factor exp(ikW•xW) in
the spatial integration. This can be done becau
k;En2Er;m(Za)2, which is small compared with the
electron momentump;mZa for nonrelativistic states.

Inserting Eq.~B4! into Eq.~B20!, and using Eq.~B14!, to
relate the temporal component ofR with its spatial compo-
nents, which satisfy

^nuRW ur &5
21

mk0
~En2Er !^nupW ur &, ~B21!

we find, after integration

^M I&5
2a

3pm2 ~11j!(
r

u^nupW ur &u2~Er2En!

3F lnS m

2uEn2Er u
D1

5

6G , ~B22!

where all the states and energies represent the nonrelativ
limit of the Dirac solution.

Eq. ~B22! can be simplified by using

(
r

u^nupW ur &u2~Er2En!5
1

2
^nu¹2V0un&, ~B23!

which finally gives

^M I&5
a

3pm2 ~11j!H F lnS m

2E*
D1

5

6G^nu¹2V0un&1ĈJ
~B24!

with

Ĉ[Ĉii , Ĉi j52(
r

^r upi un&^nupj ur &~Er2En!lnU E*
En2Er

U,
~B25!

whereE* is a reference energy to be defined, andĈi j has
been introduced for later convenience. To obtain this resu
we have neglected the imaginary part of^M I& retaining only
the leading terms of̂M I& in the limit m→0.

In computing^M II&, we can takeK1
V to be the free elec-

tron propagator, which is

K1
V ~En2k0 ;pW 82sW82kW ,pW 1sW2kW !5

id3~sW82pW 81pW 1sW !

r”2k”2m
,

~B26!

where

rm5~m,sW* !, sW*5pW 82sW85pW 1sW ~B27!

upon which^M II& becomes

^M II&5
a

pE d3p8d3pd3s* c̄~pW 8!Va~pW 82sW* !

3Nb
a~p* ,s* !Vb~sW*2pW !cn~pW !, ~B28!
o-
n

se

istic

lt,

with

Nb
a~p* ,s* !

52
4

i E ~hamk”2kagm!~r”2k”1m!~hb
nk”2kbgn!

~k222p* •k!2~k222r •k2sW
*
2 !

3Gmn~k!d4k. ~B29!

In the nonrelativistic domain*d3pVa'(Za)2m and so
the constant value ofNa

b ~independent of the momentum and
energy of the intermediate states! will already yield an over-
all contribution to Eq.~B28! of the desired ordera(Za)4.
Note thatNa

b can be expanded in powers of the momentum

pW 8, pW , or sW* , which are of ordermZa, and, therefore, any
contribution beyond the constant,Za-independent term will
be of higher order. The same argument can be used to ne-
glect the binding energy of the intermediate states. We can,
therefore, evaluate Eq.~B29! by approximatingp;p* and
p8;p* in the denominator ofM I† andM I, respectively, so
that p*'(m,0) ands*'0.

EvaluatingN as in reference@18# we find that Eq.~B28!
becomes

^M II&5
a

p
~11j!^nu

23V0
215VW 2

4m
un&. ~B30!

Note that this term will exactly cancel the nongauge invari-
ant term present in Eq.~B8!.

Finally we add Eq.~B24! to Eq. ~B30! to obtaindE2
(A) ,

and then add it to Eq.~B8! to give the final result for the
type-A contribution to the self-energy:

dES
~A!5

a

3pm2 ~11j!H Ĉ1F lnS m

2E*
D1

11

24G^nu¹2V0un&

1
3

4
mE c̄~pW 8!ismnV

mqncn~pW !d3p8d3pJ .
~B31!

Apart from the constant (11j) factor, there is no formal
difference between the result~B31! for this contribution to
the level shift and the standard one@18#. However, there are
implicit differences, which appear in the expression forVm

and the solution for the Dirac statesun& ~in the nonrelativistic
approach here! in the presence of that source.

2. Type B contributions to the self-energy

To solve the type-B contributions, we have to consider the
photon propagator

Gmn
~B!5j

g2

k2 Fbmbn1hmn

~b•k!2

k2 G ~B32!

and a sourceAm.hm0f.
The evaluation ofdES

(B) is achieved by the same proce-
dure as for part A, where now we use Eq.~B22! in Eqs.~36!
and ~38! to solve for dE1

(B) and dE2
(B) , respectively. This

computation is somewhat more laborious than that in part A,
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due to the bmbn tensorial dependence and the fact
(b•k)2/k2 present in this part of the~GM! photon propaga-
tor.

To evaluateI 1, I 2, and I 3, we need to modify the BBF
technique by using Eq.~B5! along with

1

k4
→22E

m2

L2 dL

~k22L !3
. ~B33!

to regulate Eq.~B32!. The expressions for theI ’s are some-
what more complicated than those fordES

(A) ~as expected!;
but their manipulation and further algebra follow from BB
@18#. The relevant details are in Appendix B 6; the result f
the one potential part is

dE1
~B!5

a

3pm2g2jE c̄~pW 8!HV” q2F1748b22
5

4
1S b2

2
21D

3 lnS m

mD G1V” ~b•q!2F561 lnS m

mD G
1S b•p

2
V”2b•VmD is i j uiqj2mb•qismnVmbn

1mS b2

8
2
1

2D ismnVmqnJ c~pW !d3p8d3p

2
a

p
g2jS 11

7

8
b2D K nU V0

2

3m
UnL ~B34!

which is good up to ordera(Za)4, and we have retained
only the leading terms asm→0.

The evaluation ofdE2
(B) is quite analogous to that fo

dE2
(A) . The starting point is Eq.~B16!, where ^M I& and

^M II& are still defined by Eqs.~B20! and~B28!, respectively.
We give calculational details in Appendix B 7, and quo
here only the final result:

dE2
~B!5

a

3pm2g2jH F 512uW 22 1

12
1S 121

u2

2 D lnS m

2E*
D G

3^nu¹2V0un&1F561 lnS m

2E*
D G^nu~uW •¹W !2V0un&

1uiuj Ĉ
i j1S 121

u2

2 D ĈJ 1
a

p
g2jS 11

7

8
b2D

3K nU V0
2

3m
UnL . ~B35!

We now add Eq.~B34! to ~B35! to obtain
or

F
or

r

te

dES
~B!5

a

3pm2 jH F2
11

12
uW 22

47

48
1S 1

2
1u2D lnS m

2E*
D G

3^nu¹2V0un&1 lnS m

2E*
D ^nu~uW •¹W !2V0un&1uiuj Ĉ

i j

1S 1
2

1u2D Ĉ1E c̄~pW 8!F S b•p

2
V”2b•VmD is i j uiqj

1muW •qismnVmbn2mS uW 2
2

1
3

8
D ismnVmqnG

3c~pW !d3p8d3pJ , ~B36!

where we approximatedg2.11uW 2 in order to keep terms
only up to orderuW 2. As a cross check on the above result we
note that, before expandingg2, the limitbmbn→hmn , yields
dES

(B)→22jg2dES
0 . This is as expected since according to

Eq. ~B32!, Gmn
(B)→22jg2Gmn

0 , whereGmn
0 is the standard

~metric! propagator.
We close this section with a comment on the renormal-

ization procedure. FordES
(A) , the countertermdC was re-

lated to mass renormalization. However in this part of the
calculation, we also must account for the renormalization of
the THem parameters, which show up as functions of the
limiting speed for massive particles,c0

2[T0 /H0, and the
photon velocity,c

*
2 [1/m0e0. Charge renormalization is not

necessary here because the Ward Identity forces a cancella-
tion between the divergences coming from the one potential
part and many potential part of the self-energy. Details of
this process are shown in Appendix B 6.

3. Vacuum polarization

We now need to obtain the vacuum polarization contribu-
tion. To the desired approximation, the electrons forming the
loop in Fig. 1~b! can be considered free. This is because
Furry’s theorem implies that the next-order correction to this
is a diagram, which contains a loop with four vertices, which
is expected to be of ordera(Za)6. In that case the result is
known to be

dEP5E c̄~pW 8!iPmn~q!iGns~q!gsVm~qW !c~pW !d3p8d3p.

~B37!

The evaluation ofPmn is identical to the standard~metric!
case since it only involves the product of fermion propaga-
tors, which are unchanged by theTHem action. The differ-
ences appear in the renormalization process, where both the
charge and theTHem parameters must be renormalized, the
details of which are shown in Appendix B 6. The result is

Pmn~q!.2
a

15p

q2

m2 ~q2hmn2qmqn!. ~B38!

If we substitute Eqs.~14! and~B38! in Eq. ~B37!, we obtain
after some manipulation



54 5969TESTING THE EQUIVALENCE PRINCIPLE BY LAMB . . .
dEP5
a

3pm2 H ^nu¹2V0un&S 2
1

5
1j

u2

5 D
2

j

5
^nu~uW •¹W !2V0!un&J . ~B39!

We next proceed to add together the self-energy a
vacuum polarization contributions to the level shift.

4. The total GM radiative correction

Up to this point we have been able to solve the level sh
in terms of

dEn5dES
~A!1dES

~B!1dEP , ~B40!

where each term has been defined in Eqs.~B31!, ~B36!, and
~B39!.

We note that indES there are terms proportional togW ,
which mix large (w) and small component (x) of c. Within
the accuracy required, we can relate them
x52 i (sW •¹W /2m)w, and so write everything in terms of th
large component only.

Replacing the expression for the external source~7! in Eq.
~B40!, we obtain after some algebra

dEn5
a

3pm2 H F11jS 321u2D GĈ1juiuj Ĉ
i j1^nuÊun&J ,

~B41!

whereĈ and Ĉi j are defined by Eq.~B25!, and

Ê54pZad~xW !H 19301 lnS m

2E*
D1jF2

1

30
2
58

45
u2

1S 321
2

3
u2D lnS m

2E*
D G J 13

Za

r 3 H 141jF182
u2

2

2~uW •n̂!2G J sW •LW 2j
Za

r 3
@3~uW •n̂!22u2#

3F141512lnS m

2E*
D G1

j

2

Za

r 2 F72uW •n̂sW •~uW 3pW !

2sW •~uW 3n̂!uW •pW G . ~B42!

We have omitted operators with odd parity~such as
uW 3n̂•sW ) in Eq. ~B42!, since their expectation values vanis
for states of definite parity.

There is still an implicit dependence onj and uW in Eq.
~B41!, which comes from the Dirac states~as seen at the end
of Sec. III!. Note that up to this order all atomic states an
energies referred in Eqs.~B41! and ~B25! are considered
within a nonrelativistic approach.

In terms of the formal solution for the Dirac equatio
~17!, we can single out the completej dependence in Eq.
~B41!, and write
nd

ift

by
e

h

d

n

dEn5
a

3pm2 H F11jS 321u2D GĈ01juiuj Ê
i j10^nuÊun&0J

~B43!

with

uiuj Ê
i j5uiuj Ĉ

i j1Ĉ81~0^nuÊj50un&81 H.c.!,
~B44!

whereĈ8 groups all the terms in Eq.~B25! depending on the
perturbative states (un&8) or energies (En8) as introduced in
Eq. ~17!. These perturbative states are needed not only for
the un& state related to the level shift, but for all the interme-
diate states introduced by Eq.~B25! as well. Equation~B43!
is valid up toO(j)O(u2)O„a(Za)4….

We can define the reference energyE* as in the metric
case by@27#

ln~E
*
n0!5

(
r

u^r upW un&u2~Er2En!lnuEr2Enu

(
r

u^r upW un&u2~Er2En!

for l50,

~B45!

2
m3

n3
~Za!4lnS Z2RydE

*
nl D 5(

r
u^r upW un&u2~Er2En!

3 lnU 1

Er2En
U for lÞ0,

where the subscript 0 has been omitted in the energies and
states. This definition reduces

Ĉ05H 0 for l50,

4
m3

n3
~Za!4lnS Z2RydE

*
nl D for l5” 0,

~B46!

which provides an elegant way to write the ‘‘Bethe-sum.’’
The presence of preferred frame effects will induce more
‘‘Bethe-sum’’-like terms inĈi j which, along with the con-
tribution from the perturbative states~both ones counted by
dÊi j ) will have to be evaluated numerically for any particu-
lar state.

For the Lamb-shift states we can use@27#

E
*
2S516.640 Ryd, E

*
2P50.9704 Ryd ~B47!

and simplify the last term in Eq.~B43! as



i

a

c

t

a
c

s

-

-

-

so

f
are
e

e
y
e

5970 54C. ALVAREZ AND R. B. MANN
0^Ê&2S1/2
0 5

~Za!4

2
m3H 19301 lnS m

2E
*
2SD

2jF131
58

45
u22S 321

2

3
u2D lnS m

2E
*
2SD G J 0,

~B48!

^Ê&2P1/2
0 5

~Za!4

2
m3S 2

3

24
2

j

12H 342u2F10730 2
1

6A10

1cos2uS 1121
1

6A10D G J D ,
whereu represents the angle between the atom’s quant
tion axis and the frame velocityuW .

5. Many potential part approximations

In this appendix we justify the approximations

^M IK1
VM I&.^MNR

I KNR
V MNR

I &, ~B49!

^M IIK1
VM II&.^M IIK1

0 M II&, ~B50!

^M IK1
VM II&.O„~Za!5a…, ~B51!

following arguments similar to those presented by BBF@18#.
We first note that, as powers ofZa, the orders of magni-

tude of the different terms involved in the expressions in E
~B49! are equivalent to those for the metric case. For e
ample, if we look at the source, we see thateAm;ef, where
Am is given by Eq.~7! andf is the ordinary Coulomb po-
tential, and so the relative order between the nonmetric
metric case is the same. Furthermore, as discussed at the
of Sec. III, the statesun& and un&0 also have the same orde
of magnitude, as do the quantitiesEn andEn

0 . Discrepancies
that could be expected from the photon propagator, parti
larly from the part proportional tobmbn ~in contrast to the
hmn dependence for the standard case!, are not important as
long as the transversality condition is satisfied for theM
operators, since this condition relates the differing comp
nents with the appropriate orders of magnitude. Finally, u
like the photon propagator, the bound propagator retains
same form as in the standard case, with differences aris
only from the expression for the external source. As a co
sequence its further simplification is analogous to the me
~BBF! case.

Let us look at the many potential parts. From Eq.~38! we
get

^MK1
VM &5E c̄n~pW 8!Mm~p8,p82s82k!

3K1
V ~En2k0 ;pW 82sW82kW ,pW 1sW2 kW !

3M n
†~p1s2k,p!cn~pW !Gmn~k! ~B52!

for the generic structure of the terms on the left-hand sides
Eqs. ~B49!–~B51!, where the constant factors and integr
tions overpi and si have been omitted. The nonrelativisti
za-

q.
x-

nd
end
r

u-

o-
n-
the
ing
n-
ric

of
-

and relativistic regions are defined according to
ukW u;(Za)2m!m and ukW u.m, respectively. In considering
the relevant orders of magnitude in each of the expression
~B49!–~B51! that follow from Eq. ~B52!, we note that, to
lowest order inZa, the relevant contribution fromGmn

comes whenk0;ukW u, and that we can employ the nonrelativ-
istic expressions for thecn , making use of the approxima-
tions given by Eq.~B3!.

Turning now to the relation~B49!, we can prove it by
showing that the contribution of relativistic states forM I is
of a higher order of magnitude than forM II . We can see from
Eqs. ~B12! and ~B13! thatM I differs fromM II by a factor
~leaving aside the temporal component! (pW 82pW )/k0, which
in the relativistic region (k0;m) is of orderZa. Therefore
the contribution ofM I in that domain will be of at least one
order higher than that ofM II . Since the latter is already of the
desired order@assuming the validity of Eq.~B50!# we can
neglect the contribution of the relativistic states forM I, and
consider it, along with the bound propagator, in its nonrela
tivistic limit.

To prove the relation~B50!, we evaluate the error due to
the neglect of the electromagnetic potential in the intermedi
ate states. We imagine that one extra potential (V” ) acts be-
tweenM II† andM II . This introduces an extra factor of order

E d3r 8
V” ~r 82r !

r”82k”2m
;E d3r 8

V” ~r 82r !

2k0m
k”;~Za!2,

~B53!

which is negligible within the accuracy required. We then
have shown that, in the evaluation ofM II , the intermediate
states may indeed be regarded as free.

The relation ~B51! follows from arguments similar to
those used to justify Eq.~B49!. Since in the relativistic re-
gionM I is one order higher thanM II , the cross term in that
region also will be one order higher than^M II&, and so is
negligible. On the other hand in the nonrelativistic region,
M I will be dominant~note the factork0 in its denominator!
overM II . That is

UM II

M I U;U k0

pW 82pW
U;Za ~B54!

and so the product of these terms will be negligible in com
parison with^M I&. Hence the cross terms yield results that
are at least one order higher than the desired order, and
they do not need to be included.

6. Renormalization

Just as in the standard~metric! case, we need to renormal-
ize the various parameters of the theory in order to get rid o
the divergences. In the standard case, those parameters
the mass and charge, although the latter only needs to b
renormalized for the vacuum polarization contribution. The
self-energy part has no need for such a renormalization, sinc
the divergences coming from the one potential and man
potential parts cancel each other. In the nonmetric case, w
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also have to include the renormalization of theTHem pa-
rameters, which show up as functions ofc0

2[T0 /H0 and
c
*
2 [1/m0e0.
In part A of the calculation, renormalization is identical to

the standard case. The countertermdC is just related to mass
renormalization. In part B, we need to consider addition
counterterms, sincedC also should account for the renormal-
ization of theTHem parameters.

In units wherec0[1 (c*5c), EEP-violating corrections
only appear in the electromagnetic sector of the action~as
terms proportional toj). However, we could choose more
generallyc051, for which the particle sector of the Lagrang
ian density is of the form

LD5c̄~p”2V”2m!c1j0c̄~p02A0!g
0c ~B55!

with j0[12c0
21; or in the moving frame@after using~10!#

is

LD8 5c̄~p”2V”2m!c1j0g
2c̄~b•p2b•V!b” c ~B56!

up to a constant.
From Eq.~B56! we see that quantum corrections of the

form

dLD5c̄~dj0
~1!b•p2dj0

~2!b•V!b” c ~B57!

can still be expected. Note that gauge invariance will gua
anteedj0

(1)5dj0
(2)5dj0. Hence, in order to renormalize the

mass and theTHem parameters, we have to include counte
terms of the form

dC5dm1dj0b” ~b•p2b•V!, ~B58!

where dm and dj0 are chosen such thatdES gives zero
contribution as the source is turned off. This condition force
I 350 when acting on free spinors.

Finally, for the vacuum polarization contribution the
charge has to be renormalized along with theTHem param-
eters. Charge renormalization is identical to the standa
case. For theTHem parameters, the procedure is equivalen
to the self-energy part, where now, given the form of th
electromagnetic action@see Eq.~11!#, we expect quantum
fluctuations of the form

dLEM5djAm$@k22~b•k!2#hmn2bmbnk
2%An ~B59!

to occur. Hence, a counter term of that form is needed
renormalize the THem parameters, or equivalently
j[12H0 /T0m0e0.

7. Calculational details of type B contributions

We present here further details underlying the comput
tion leading to Eqs.~B34! and ~B35!, which are referred as
the type-B contributions to the self-energy. In this part th
photon propagator to be considered is given by Eq.~B32!,
where the first and second terms have, respectively, a ten
dependence likebmbn andhmn , and need to be regularized
according to Eqs.~B5! and ~B33!. We show the relevant
details involving the first term of the propagator only, sinc
the remainder can be computed in a similar way.
al

-

r-

r

s

rd
t
e
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a-

e

sor

e

We begin then with the one potential part by simplifying
I 1. After replacing Eq.~B32! in Eq. ~B37!, we get

I 152
i

4p2g2jE 2p8•b2b” k”

k222p8•k
V”
2p•b2k”b”

k222p•k

3
d4k

~k22L !2
dL1•••, ~B60!

where from now on the ellipsis stands for the contributions
coming from the second term of Eq.~B32!.

If we use

1

abc2
56E

0

1

dxE
0

1 z~12z!dz

$@ax1b~12x!#~12z!1cz%
,

~B61!

we can rewrite Eq.~B60! as

I 1524p•bp8•bV” J012p•bb” gmV” Jm

12p8•bV” gmb” Jm2b” gmVgnb” Jmn1•••,

where

J$0;m;mn%52
3i

2p2g2jE
0

1

dxE
0

1

z~12z!

3dz
dLd4k

$@k2px~12z!#22DL%
4 $1;km ;kmkn%

~B62!

with

px5xp81~12x!p, DL5px
2~12z!21Lz. ~B63!

After evaluating Eq.~B62!, we can express

I 15g2jE dx

px
2 HV” F12b•pb•p8S lnpx2m2 22D

1
b2

8
px
2S 322 ln

L2

px
2 D G2x

p” 8

2
~b•pV” b”1b•p8b” V” !

2~b•pV” b”1b•p8b” V!~12x!
p”

2
1p” x

3Fb•V~b•p1b•p8!2
b2

4
px•VG

1b” F12 px•bpx•V2
1

4
V•bpx

2S 322 ln
L2

px
2 D

2~12x!b•pV•p2xp8•bV•p8G J 1••• . ~B64!

The evaluation of the remainingI ’s is analogous, and so

I 25V” g2jFb2

4 S lnL2

p2
21D1

~b•p!2

p2 S 11
1

2
ln

m2

p2 D G1•••,

~B65!
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I 352
1

4
b•pb” g2jS lnL2

p2
1
5

2D2
1

8
p”b2g2jS lnL2

p2
2
1

2D
1•••1dC. ~B66!

From Appendix B 7, we know dC5dm
1dj0b” (b•p2b•V), where in this case

dm5
b2

8
g2jS lnL2

m2 2
1

2D1•••, ~B67!

dj05
1

4
g2jS lnL2

m2 1
5

2D1•••.

Since hereVm5hm0V0, we can rewrite after some ma
nipulation

I 11I 21I 35g2j~K11K21K3!1•••, ~B68!

where

K15V” E dx

px
2 H F lnS m

E0
D 11GF ~b•p!2

p2
2b•pb•p8G

1
1

2
b•pb•p8lnS px2E0

2D J ,
K25Smb2

2
1b•pb” D F2

1

4
lnSm2

p2 D d~p2p8!

2
V”

2m
2
1

4
b•Vb” lnS p2m2D G ,

K352
1

2E dx

px
2 H xb•p8p” 8b” V1~12x!b•pV” b” p”

1V•pS b2

2
p” x1b•pxb” D22b•V~b•p1b•p8!p” x

1xb•pp” 8V” b”1~12x!b•p8b” V” p”2px
2

3Fb2

2
V”22b•Vb”1V” b”

b•p

m G J .
We want a result good toa(Za)4, and so we can simplify

the above expressions by using the assigned order given
Eq. ~B3!, from which we can relate

q[p82p;Zam,

p822p2;~b•p!22p2;px
22m2;~Za!2m2, ~B69!

and then reduceK1 to

K1.
V”

2m2 H F ~b•q!22
q2

3 G lnS m

mD
2
5

6
q2S 121b2D1~b•q!2J , ~B70!

where antisymmetric terms underp8↔p vanish.
To simplify K2 we follow BBF and use
-

by

~p”2m!2b”5V” ~p”2m!b”52b•pV”22mV” b”2V” b” V”

.2~V•p2mV” !b”2q”b” V”2V2, ~B71!

where we have assumed the operator is acting on Dirac
spinors of momentump and omitted the integration coming
from

c̄~p!~p”2m!5d~q0!E c̄~p8!V” ~q!d3p8. ~B72!

Note thatV” b” V”.V2, since the square of the potential~after
factoring out the spinors and integration variables! is already
of the desired order (Za)4 @see Eq. ~B3!# and so
b”.g0.1.

The final result is

K2.2
V2

4m S b2

2
15D1~V•p2mV” !

b”

2m
2

b•p

4m2q”b” V” .

~B73!

Following a similar approach we reduce

K3.2
b”

2m
~V•p2mV” !1

V2

m
1b•V

b•q

m
2

b•q

4m2b” V•p

2
b•q

2m
b” V”2

b•V

2m
q”b”1

b2

8m
q”V”2

q2

12m2 S b2

2
21DV” .

~B74!

We can make further simplifications by using

E c̄~p8!B~p8,p!c~p!d3p8d3p50, ~B75!

provided g0B†(p8,p)g052B(p,p8), where B represents
any operator as a function ofp8 and p, as for example,
b•qV” . Note that we are interested only in the real part of the
level shift.

Putting everything together, we obtain after some manipu-
lation

dE1
~B!5

a

pm2g2jE c̄~pW 8!HV” ~b•q!2F581
1

2
lnS m

mD G
2V” q2Fb2

16
1
1

8
1
1

6
lnS m

mD G2S b•p

4
V”1b•V

m

2 D
3 is i j uiqj2

m

2
b•qismnVmbn1mS b2

8
2
1

2D
3 ismnVmqnJ c~pW !d3p8d3p

2
a

p
g2jS 11

b2

2 D ^nu
V0
2

4m
un&1••• . ~B76!

Note again that this represents the calculation involving
only the first term of Eq.~B32!.

Now to evaluate the many potential part contribution we
need to solve Eq.~B16!, with ^M I& and^M II& given by Eqs.
~B20! and ~B28!, respectively.

So, after substituting Eq.~B32! in Eq. ~B20!
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^M I&5
a

4p3i
g2j(

r
E ub•Mu2

k22m2

d4k

k02En2Er
1•••

~B77!

with

Mm[^nuRmur &.

Using the transversality condition, we relate

M05
kW•MW
k0

5
ukW u
k0

uMW ucosu,

which reduces the integral on the angles ofkW to

E dVub•Mu254pS kW2

3k0
2 uMW u21uuW •MW u2D . ~B78!

We evaluate the remainingk0 and ukW u integrations in Eq.
~B77!, by using Eqs.~B21! and ~B23! along with the analo-
gous relations

uW •MW 5
21

mk0
~Er2En!^nuuW •pW ur &,

(
r

u^nuuW •pW ur &u2~Er2En!5
1

2
^nuuW •¹W V0un&,

to finally obtain

^M I&5
a

pm
g2jH 16 Ĉ1

1

2
uiuj Ĉ

i j1F291
1

6
lnS m

2E*
D G

3^nu¹2V0un&1F121
1

2
lnS m

2E*
D G^nu~uW •¹W !2V0un&J

1•••, ~B79!

where we have kept only the leading terms asm→0 and
neglected the imaginary part.

The computation of̂ M II& is straightforward. Here we
need to replace Eq.~B32! in Eq. ~B28!, and use
Va5ha0V

0. Further simplifications follow from BBF and
the assigned order of magnitude given before. The final
sult is

^M II&5
a

p
g2jS b2

2
11D ^nu

V0
2

4m
un&1••• . ~B80!

Adding together Eqs.~B76!, ~B79!, and~B80! will give us
then the final expression for the self-energy contribution
this part of the calculation. Note that the above results can
verified by taking the limitbmbn→hmn , which reduces

Gmn
~B!→2g2jGmn

0 1•••,
re-

for
be

and, therefore, the former expressions should reduce up to
constant, to the metric case.

APPENDIX C: VIRTUAL NONMETRIC ANOMALY

In the THem formalism, gravity interacts with matter
through theT andH functions, which are assumed locally
constant within atomic scales.A priori they do not need to be
the same for different types of matter~like baryons and lep-
tons!, or, furthermore, for matter and antimatter. In this con-
text for example, a nonmetric anomaly related to electron/
positron differences will modify the Lagrangian density re-
lated to fermions by

LD5c̄~p”2V”2m!c1j1c̄1~p02A0!g
0c1, ~C1!

where j1[12c2 /c1 and c75(T7 /H7)
1/2, with 2 and

1 labeling electrons and positrons, respectively. After using
Eq. ~10!, we can refer Eq.~C1! to the moving frame as

LD8 5c̄~p”2V”2m!c1j1g2c̄1~b•p2b•V!b” c1.
~C2!

The imposed broken symmetry between particle and anti-
particle changes the fermion propagator~in the positron case!
to @up toO(j1)#:

SF
15~p”2m!211j1~p”2m!21g2b” b•p~p”2m!21,

~C3!

where the first term represents the unchanged electron propa
gatorSF

2 .
The positron-electron pairs produced in the electric field

of the atomic nucleus, are seen in the Lamb-shift transition
via the vacuum polarization contribution given by Eq.~B37!,
where, in this case,

iPmn~q!5
~ ie!2

~2p!4
~21!E d4p TrgmiSF

2~p1q!gniSF
1~p!.

~C4!

After using Eq.~C3! along with standard techniques@27#,
we obtain that the nonmetric part of Eq.~C4! is, up to
O(q2),

iPmn~q!152
a

2p
g2hmn

q2

m2 F 130q2b22
1

5
~b•q!2G1•••,

~C5!

where the ellipsis accounts for the gauge-dependent terms
which give no contribution to Eq.~B37!. Equation~C5! also
comes after proper regularization and renormalization pro-
cesses, which follow from previous sections.

In this EEP violating context, the radiative corrections
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related to atomic energy levels are modified by@up to
O(a(Za)4O(u2)#

dEL
15dEP

152j1

a

10pm2 H 16 ^nu¹2V0un&

1^nu~uW •¹W !2V0un&J , ~C6!
where we have replaced Eq.~C5! in Eq. ~B37! and simplified
afterwards. By taking the Lamb atomic states, we finall
obtain

DEL
152j1

m

120p
~Za!4a~112u2!. ~C7!
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