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Hara’s theorem in the constituent quark model
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We show that the parity-violating electromagnetic matrix elements describing the hyperon decay in the
nonrelativistic constituent quark model obey Hara’'s theorem in first-order perturbation theory, i.e., to
O(Gp), whererzlo‘SMg2 is the Fermi weak interaction coupling constant &ng is the nucleon mass.
Particular emphasis is put on questions of gauge invariance and of threshold behavior. We discuss our results
and compare them with the literatuf&0556-282(196)03821-(

PACS numbdps): 11.30.Hv, 13.30-a, 14.20.Jn

[. INTRODUCTION realistic case of hyperon radiative decays with($Ubreak-
ing.
In a recent review of parity-violatingPV) radiative de-

cays of hyperon§l], attention was focused on the purported Il. MODEL-INDEPENDENT RESULTS
breakdown of Hara’'s theorem in a nonrelativistic constituent
quark model calculatiof?]. Hara's theoreni3] is the state-
ment that, in the limit of exact S3) symmetry, all parity-
violating radiative hyperon decay matrix elements vanish
Although it is not directly applicable to the real wollldith
SU§3) breakjnd, it provid_es. the necessary starting pqint on (Nz(p’)IJ%(O)INl(p»:Fl(qz)u—z(p’)
which to build more realistic approximations and an impor-
tant benchmark to be used for testing of all model calcula-
tions. The claim of Hara’s theorem violation in the constitu-
ent quark model was a serious surprise which has left the
field with a deeply rooted mistrust of that mod@l, at least and
in this application. That being no ordinary model, but rather N B s ,
the basic conceptual foundation underlying QCD, makes thigN2(P")[J,,5(0)IN1(p)) =F5(q)uz(p’)(i7,,9") ysUs(p).
discrepancy all the more important. 2

The purpose of the present paper is to show that Hara'gye yse the Bjorken and DrellB] conventions, in particular
theorem is valid in the nonrelativistic constituent quarkihe metric has the signatufe- - - -). Each of these currents
model. The fault for the breakdown of Hara’s theorem injs separately gauge invariant. Absence of massless hadrons,
Ref. [2] does not lie with the model, but rather with the according to Ref[1], or simply gauge invariance according
gauge-variant calculation: Even though the starting point is § Refs.[5,7], forces the first form factof ;(q?) to vanish as
gauge-invariant relativistic quark-quark bremsstrahlung amqZqu_qZ at the threshold, i.e., a8— 0. It is the failure of
plitude, its subsequent nonrelativistic reduction, as perthe first type of coupling, Eq(l), to achieve the expected
formed in Ref[2], is incorrect; consequently, the calculation threshold behavior that invalidated Hara’s theorem in earlier
ends up violating gauge invariance and the correct thresholdpplications of the quark model to this reaction. The second
(on-shell photon pointbehavior. coupling (2) is not constrained in this way, and hence may

This is not the first time there has been trouble with main-contribute for on-shell photons. Yet, in the exact(SUimit
taining the gauge invariance and the threshold behavior dts contribution vanishes due to its symmetry proper(see
parity-violating electromagnetiCEM) current nucleon ma- Sec. 3.1 in1]). The second coupling corresponds to type |l
trix element of this kind: Exactly, the same type of Lorentz operators, in the language of REZ], which do not endanger
structure describes thedasticparity-violating nucleon matrix Hara's theorem.
element of the EM currer{the so-called anapole moment of ~ We will henceforth focus exclusively on type | operators.
the nucleon[4]) and exactly the same kinds of problems This type of coupling is not new, however: in the elastic
appear when one tries and calculates it in the nonrelativistiscattering limit it corresponds to the parity-violating EM
constituent quark model. In the latter case these problemslastic matrix element, also known as the “anapole” mo-
were resolved in Ref[5], so we will apply the methods ment. It never attracted the interest of the main-stream of the
developed there in order to try and resolve the Hara’s thectheoretical community, yet a few facts pertaining to it have
rem conundrum in the nonrelativistic constituent quarkbeen learned over the years. In particular, the anapole has
model. We will not try to extend the discussion here to thebeen calculated in the constituent quark model to first order

in perturbation theory in Ref.5], where the troubles with
achieving, rather than enforcing, the correct threshold behav-
*Electronic address: dmitra@godot.colorado.edu ior have also been met and resolved. This paper is to serve as

There are two independent relativistic parity-violating EM
couplings(currents describing the radiative transition of one
baryon, say a hyperon, into another, degenerate, but other-
wise distinguishable, baryon, e.g., a nucleon:
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an application of the lessons learned on the anapole to theeinction, andY;y, is a spherical harmonitin order to as-
weak radiative hyperon decay. We will work in the nonrela-certain the threshold properties of this multipole, we note
tivistic limit, since that is the approximation in which the that j;(|g|R)~%|q|R in the long-wavelength limit. Hence,
violation of Hara's theorem was reported. The nonrelativisticine first and second terms on the right-hand side of (.
limit also corresponds to the long wavelength limit in this 5.6 i agreement and in conflict, respectively, with E4).
case. In the nonrelativistic limit, or in the Brefrick-wall) |, order to show that the offending term vanishes just use the

frame, the matrix element equatidb) turns into EM current conservation
W =Fi(a®)[o— (o d)q], (3 V. do=—i(V[H.pll W) =i(E—E)psi, (8
whereFy(—g?) is a function of —g?=q”=—Q? with the  where p;;=(W|p|¥;) is the associated charge density and
expected long-wavelength limit: E, ; are theexactenergy eigenvalues. Since we are working
in the Breit frame, and despite our initial and final states not
) Gk , ., being identical(this is hyperordecaywe are talking about
Fi(—q ):eﬁq H(a%), (4 they are degeneratE,=E;, as a consequence of the as-

sumedexactSU(3) symmetry. This means that the offending
2 L . term is exactly zero, as announced earlier.
yvhereH(q ) IS a new parity-violating EM fo_rm factor which Thus, we have proven that the odd-parity, time-reversal-
IS regtﬂlgr Sf2|q|te) at the threshold, i.e. H(0)<=, ., saning, transverse electric dipole vanishesjs —q?
Gg=10""My" is the Fermi weak interaction coupling con- i, the |ong-wavelength limit and thence that Hara’s theorem
stant, andVly is the nucleon mass. We need to prove @dl.  hg|ds. The above-shown proof is exact and model indepen-
in the constituent quark model. - dent; hence, it ought to hold in the constituent quark model,
While one could certainly start from a specific quark s The three crucial assumptions &)eEM current conser-
model and the definition of the parity-violating EM current vation, and(ii) the use ofexactnucleon wave functions, and
matrix e!ement, and then procged to evaluate the form facto(qii) the SU3) symmetry isexact If this theorem fails in
F1(9), it tuns out that there is a general proof of the ex-some explicit calculation, it has to be because one or more of
pected result, which is also a substantial simplification ovegnese three assumptions is violated. In the rest of this paper
any explicit calculation. This argument, first published by e will explore one scenario in which that possibility may

Serot[7], relies only on the multipole decomposition of the 4ctyally occur: the perturbative treatment of the weak inter-
EM current matrix element and on the EM current conservagction. That is, as we shall show below, exactly as the situ-

tion. The transverse nature of type | EM current operators igtion in Ref.[2].
clearly visible in Eq.(3). Any transverse EM current matrix

element can be decomposed
IIl. THE CONSTITUENT QUARK MODEL

In Ref.[2] the gauge-invariant set of four Feynman dia-
grams(Fig. 1) describing the so-called quark-quark brems-
- strahlung in the Fermi interaction limit of the Salam-

B e e ~ma Weinberg model are used as the underlying theoretical
__le 2m(23+ DI MY TR ) model. 'Ighese diagrams describing a relati)\//is%c transition
. (decay amplitude were then reduced to a two-badyark?
H (W TS W) (5)  nonrelativistic PV EM interaction Hamiltoniafand a corre-
sponding PV EM current which apparently violates Hara’s
into transverse electric and magnetic current multipolesheorem. This last conclusion is unwarranted due to an in-
<\Iff|:|\'§;\|llfi>1<\llf|"|\"';n)\aq\lfi> with well-defined rotation-, complete analysis: Having made the nonrelativistic reduction
parity_, and time-reversal propertigs]. The latter properties of one set of operators, we must be careful, for the sake of

are used to eliminate, in this case, all but one multipole: th&onsistency, to include all nonrelativistic contributions to the
transverse electric dipole given order inp/m expansion in the model calculation. In

particular, the aforementioned, two-body PV EM current
corresponds to the so-call@graphs, with negative energy

f dR Jii-&,expiq-R)

[ R 3 iexptia RI=— 1 Bm(w (T8I, ©

1Equation (7) may seem nonrelativistic due to the presence of

where ) X
three-momentum transfer and a three-dimensional scalar product,
1 but, in the Breit frame, where the four-momentum transfer retains

e . i L iant.

(W TS | W) =- f drR {_qz(in R)+(V-J5)) orzlly its three-vector part, it is Lorentz covgr_lant
ilq \/E In our nomenclature an operator describing say bremsstrahlung

- from a pair of quarks, which involves tw@uark creation and two
X[1+(R- V)]}j1(|Q|R)Y1M(R), (7) destruction operators, is called a two-body, or two-quark operator.
The same operator, in Kamal and Riazuddin’s languagés called
and J;;=(W¢|J|¥;) is the exact conserved, elastic parity- a four-quark operator. Analogous relation holds between the one-
violating EM current matrix element; is a spherical Bessel and two-quark operators in the two conventions.



54 COMMENTS 5901

current is the usual sum of nonrelativistic convection and
magnetization currents, which in configuration space reads

X Q“.“ ." 2 ..
I 19489 o X o . . m .
R RS J1-p(1) =37 (1) + 37 p(i)

~e(i) .
= z_mq[{pi JO(R—=r(i))}—Vg
Xo(i)S(R—r(i))] 1y
and, in momentum space,

Jlb(i)=g(—r:]:[(pﬁp{)ﬂtf(i)xm, (12

S teess
oosatstelsiatetetetatete’s

FIG. 1. Two of four Feynman diagrams describing the parity-whereq=p; —p;. The charge density(R) is equivalent to

breaking contribution to the EM axial-vector currents. The solidthe one-body charge density
line denotes the quarks, the wavy line is the photon, and wiggly line
is the charged intermediate vector bodafi. The shaded blob to- 3
gether with the three solid lines and one double solid line leading to p1-p(R)= 2 e(i)o(R—r(i)),
it denotes the nucleon wave function. The remaining two graphs i=1
have their photon lines attached to the “other” quark line.

wheree(i) =3[ 3+ 75(i)]. Then, the divergence of the one-
intermediate states, in the time-ordered perturbation theoryhody electromagnetic current equals times the commuta-
There is another set of time-ordered graphs, however, to thr of the kinetic energy and the one-body charge density
same order in perturbation theory, which corresponds tgwe seth=1):
terms with positive energy intermediate states. These latter
terms are due to the ordinary one-body EM current and the V-3 p=—i[T,p1_p(R)]. (13
PV admixtures in the hyperon and nucleon wave function
induced by the action of the PV quark-quark potential. TheyThus, the simplest test of electromagnetic current density
were completely neglected in R¢R2]. We will show that in  conservation is whether or not the two-body potential com-
a completely consistent analysis the one-body current contrinutes with the one-body charge density. If not, then one
butions exactly cancel the offending two-body current termspeeds a two-body electromagnetic current dedslty ,, to
due to gauge invariance. Hence, we review the salient feacompensate for the induced temporal change of charge den-
tures of EM current conservation in the constituent quarksity:
model[9,10].

V-3 p=—=i[Va-p,p(R)]. (14
A. Conservation of the nuclear electromagnetic current o .
The complete potential is, of course, the sum of the parity-

In configuration space the conservation of the electromageonserving and the parity-violating ones. Similarly, the two-

equation vector (parity-conserving and an axial (parity-violating
p(R) vector termst_b_zJ;EbJrJzP\_’b:Ef’<jJ2_b(ij). Each one
Vi J(R)=V.J=— o (99  of these must satisfy its own EM current conservation equa-

tion; one does not normally assume PC forces that exchange
In quantum mechanics, this can be written as an equatiot e electric chardebetween two quarks, so we may set all

relating the divergence of the three current and the commu—C tvv_o-body currents_eqpl{/al to zero. The PV stra_ngeness-
tator of the Hamiltonian and the charge density: changing weak potential;_,, between two quarks is also

(electrig charge changing, so we know that there vailve

V.J=—i[H,p(R)], (10  to be some PV two-body curreni§”, to account for that
where the total Hamiltonian V-3 =—i[V5Y, . p(R)]. (15)
H=H§+ VPV It is manifest that one can only recover Eq. (10) by adding

. . . o Egs. (13) and (15)i.e., if the latter two are valid.It is an

is the sum of the parity-conservin@C) HamiltonianH™  immediate corollary that no calculation which employs only
[which equals the kineti =23, p?/2m; plus the PC poten-

tial vg’Eb:z?<jv§Eb(ij) energy and the parity-violating

potentiaIVSYb=Eig<jV§\_/b(ij) of the interacting system, and  *There is a vast literature on such two-body currents in nuclear
p(R) is the charge density. In the following we will drop the physics where they are called meson-exchange curf&fis

“label” R in all EM currents and densities, except when “This is manifestly a model-dependent assumption, yet even if it

necessary to avoid confusion. The one-body electromagnetigere not true our proof would hold, only slightly more complicated.
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the one-body, or only the two-body current for that matter,are the admixture coefficients to the baryan The
can be gauge invariant, i.e., neither satisfies (&6). abnormal-parity admixtures in the initial and final wave

Since Ref[2] did not include the one-body EM current functions generate a parity-violating electromagnetic current
contribution, the above argument explains their breaking ohyperon-nucleon matrix element equatidn. Since the PV
EM current conservation and, consequently, of Hara’s thegpotential is ofO(Gg), Eg. (15) demands that the PV two-
rem. A number of authors did include the one-body EM cur-Pody electromagnetic current also be @(Gg). Hence, to
rent contributions, within the quark model version of the O(Gg), the EM current matrix element reads
(modern “pole model” [12—14,° but some of them omitted
the PV two-body EM current. Yet, even calculations with the
complete EM currenbperatormay still have trouble main-
taining the conservation of the EM curremiatrix element
which is the necessary condition of Hara’'s theorem.

The resolution of this puzzle lies in the fact that the
baryon wave functions have entered our considerations by
way of the second line in Eq8). Even if the EM current
operator satisfies Eq(10), it need not be enough to ensure  Equation(8) ought to hold order by order in perturbation
the conservation of the EM currentatrix elementand with  theory, or equivalently, in the expansion in the weak cou-
it the validity of Hara’s theorem, since the second line in Eq.pling constanGg . We shall now repeat the crucial argument
(8) is only satisfied when the initial and final wave functions which has already been presented in Hé&f, in order to
are theexacteigenstates of the total Hamiltoni&h The task ~ explicitly demonstrate the significance of keeping all inter-
of exactly solving the full three-body Schimger equation mediate states in the calculation. To evaluate the divergence
seems excessive for the purpose at hand, since the PV integtart from Eq.(18):
actions are weak and hence tractable in first order perturba-
tion theory: that is the approach adopted in R&2]. In the V-in=V-<‘I’f|J§Yb|‘Pi>+ 2 (VD IP9D e
following we will show that a necessary condition for the n#i,f
conservation of an EM current matrix element in perturba- N P
tion theory is the retention ddll excited (“intermediate”) +eniV (I D)}
states in the admixtures to the initial and final wave func-

\]fi:<(bf|‘]2P\—/b|q)i>+n;f {(D¢|IPGD ) eni
+en(Py|IP9D)} (18

C. Conservation of the electromagnetic current in first-order
perturbation theory

tions. Since most practical perturbative calculations keep :—i<d>f|[VF’V,p]|<I>f>+n;f {(DI[HE,pl| P Yen;

only the lowest-lying ones, they are usualigt gauge invari-
ant, one exception being R¢fl2].

B. First-order perturbation theory

The PV weak interaction between quarks implies the ex
istence of a smallO(Gg), abnormal-parity, strangeness-

violating admixture in the baryothyperon or nucleorwave

function. To determine this admixture, we shall use the first-

order, time-independeiiRayleigh-Schrdinge perturbation

+8:f<¢)n|[HgC!p]|®i>}'

Now, use the definition of the admixture coefficieats Eq.
(17), with a=i,f; the fact that the unperturbed states are
eigenfunctions oH

b¢, implies that
(PI[HEEp1|P o) = (Eg—En) (Pl p|Pp),

(@[[HEC,p]| @)= (En—E){(Py|p| @)

approximation to the quark dynamics described by the

HamiltonianH =HP+ VPV, The ground state of the nucleon Which, in turn, leads to

or hyperon| W) is given by

V'in=V'<®f|JEYb|‘Di>_ir§f (Ei—En)

(| VPV D)
[Wo)=|Do)+ > |®p)—F—z— +O(GP) (163
n#0 0 =n (Do VD)) o (P VPV D)
X<q)f|p|(bn> Ef_En _Igi Ei_En
=|dy)+ ® )+ 0(G2), 160
[®0)+ 2, onolPn) +O(GE) (160 X (En—E)(®,]p| ;)

where|® ) are theexacteigenstates of the PC Hamiltonian — D TVPY ol D) —i .l ol MWD I\VPY P
H(F)’C: ngq)n>:En|q)n>y and < f|[ !p]| I> r;f < f|p| n>< n| | I>
(D VP,

; PV (E —
€na= E._E. 'Hg;i (O VYD) (D] p|Pi) +i (B~ Ef)

=0(Gg) 17

X( D] p| @) +i(Ei—Ep) X {(Delp|@p)en;
SFor example, Gavelat al. [12] explicitly included the contribu- n#fi
tions of the low-lying negative parity baryon multiplét70,17).

That turns out to be sufficient for maintaining Hara’s theorem due
to the simplicity of harmonic oscillator wave functions employed The terms explicitly excluded from the sums in the first line
there. of Eq. (19 are identically zero, due to the good parity of

+end(Pnlp|Pi)}. (19



54 COMMENTS 5903
unperturbedstates|®,). Hence, the sums can be extendedagreement with Hara's theorem as long as the EM current
over all intermediate states, which form a complete setmatrix element is exactly conserved. This means not only
Sn®){(P,|=1. The second line of Eq19) can be further that the EM current operator satisfies the continuity equation,
simplified using Eq.(16b) for the initial and final states, but also that the exact wave functions are used. We provided
leading to several examples of tacit and explicit approximations that
L PV N PV_ PV (o can lead to the violation of EM current conservation and
V3= U@LV ]| i) —i{ Pl V7= V| i) hence to the breakdown of Hara’s theorem. For example,

+i(Ei—Eq)(¥{|p|¥;)+O(G2) Hara’s theorem is violated in explicit perturbative calcula-
_ 5 tions when the EM current operator is not conserved, and/or
=i(Ei—E)(Vi|p|¥;)+O(Gp) (20)  if the parity-violating admixtures in the wave functions are

not properly included. So, the basic moral of this work is the

which, together with the degeneracy of nucleons and hyper- : - : )
ons.E.—E,, in the SU3) limit, leads to the final result understanding that one can neither omit the PV two-body

current, nor abbreviate the expansion in excited states with

V-J;=0. (21)  impunity when dealing with parity-violating electromagnetic
current matrix elements within perturbation theory.
Note that Eq(8) differs from Eq.(20) only in that it involves Now, that the fundamental mathematical difficulty has
the exacteigenenergies;k which are also degenerate in the been resolved, we can turn to the task of relaxing the as-
exact SUW3) limit,® rather than the perturbative onés ¢, sumption of good S(B) symmetry and evaluating the finite

i.e., to O(Gg), the two equations coincide, as they should.contributions to the radiative hyperon decay matrix elements
This completes the proof that type | operatorsnddcontrib-  in this simple quark model. Should those results be found
ute to the parity-violating radiative hyperon decay toinsufficiently close to the experiment, one may consider
O(Gg) in the exact SI®B) limit, in accord with Hara’s theo- other physical mechanisms, such as the meson *“cloud,”
rem, provided that the sum ovedl intermediate states is which might also contribute. It is essential not to lose sight
complete. of the fact that we have not tested any such model-dependent
mechanism for Hara’'s theorem. Proving Hara's theorem in
IV. SUMMARY AND CONCLUSIONS the exact SI(B) limit ought to be the first order of business

] when contemplating such additional mechanisms, so as to
To summarize, we have shown how the correct thresholgyoid false paradoxes.

behavior, in the exact S3) limit of the constituent quark
model, of the radiative PV hyperon decay amplitude is in
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