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Hara’s theorem in the constituent quark model
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We show that the parity-violating electromagnetic matrix elements describing the hyperon decay in the
nonrelativistic constituent quark model obey Hara’s theorem in first-order perturbation theory, i.e., to
O(GF), whereGF.1025MN

22 is the Fermi weak interaction coupling constant andMN is the nucleon mass.
Particular emphasis is put on questions of gauge invariance and of threshold behavior. We discuss our result
and compare them with the literature.@S0556-2821~96!03821-0#

PACS number~s!: 11.30.Hv, 13.30.2a, 14.20.Jn
e
her-

ons,
g

ier
nd
y

II

s.
ic

o-
the
ve
has
er

av-
e as
I. INTRODUCTION

In a recent review of parity-violating~PV! radiative de-
cays of hyperons@1#, attention was focused on the purporte
breakdown of Hara’s theorem in a nonrelativistic constitue
quark model calculation@2#. Hara’s theorem@3# is the state-
ment that, in the limit of exact SU~3! symmetry, all parity-
violating radiative hyperon decay matrix elements vanis
Although it is not directly applicable to the real world@with
SU~3! breaking#, it provides the necessary starting point o
which to build more realistic approximations and an impo
tant benchmark to be used for testing of all model calcu
tions. The claim of Hara’s theorem violation in the constit
ent quark model was a serious surprise which has left
field with a deeply rooted mistrust of that model@1#, at least
in this application. That being no ordinary model, but rath
the basic conceptual foundation underlying QCD, makes t
discrepancy all the more important.

The purpose of the present paper is to show that Har
theorem is valid in the nonrelativistic constituent qua
model. The fault for the breakdown of Hara’s theorem
Ref. @2# does not lie with the model, but rather with th
gauge-variant calculation: Even though the starting point i
gauge-invariant relativistic quark-quark bremsstrahlung a
plitude, its subsequent nonrelativistic reduction, as p
formed in Ref.@2#, is incorrect; consequently, the calculatio
ends up violating gauge invariance and the correct thresh
~on-shell photon point! behavior.

This is not the first time there has been trouble with ma
taining the gauge invariance and the threshold behavior
parity-violating electromagnetic~EM! current nucleon ma-
trix element of this kind: Exactly, the same type of Loren
structure describes theelasticparity-violating nucleon matrix
element of the EM current~the so-called anapole moment o
the nucleon@4#! and exactly the same kinds of problem
appear when one tries and calculates it in the nonrelativi
constituent quark model. In the latter case these proble
were resolved in Ref.@5#, so we will apply the methods
developed there in order to try and resolve the Hara’s th
rem conundrum in the nonrelativistic constituent qua
model. We will not try to extend the discussion here to t
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realistic case of hyperon radiative decays with SU~3! break-
ing.

II. MODEL-INDEPENDENT RESULTS

There are two independent relativistic parity-violating EM
couplings~currents! describing the radiative transition of on
baryon, say a hyperon, into another, degenerate, but ot
wise distinguishable, baryon, e.g., a nucleon:

^N2~p8!uJm5
~ I! ~0!uN1~p!&5F1~q

2!ū2~p8!

3S gm2
q”

q2
qmDg5u1~p! ~1!

and

^N2~p8!uJm5
~ II !~0!uN1~p!&5F3~q

2!ū2~p8!~ ismnq
n!g5u1~p!.

~2!

We use the Bjorken and Drell@6# conventions, in particular
the metric has the signature~1 - - -!. Each of these currents
is separately gauge invariant. Absence of massless hadr
according to Ref.@1#, or simply gauge invariance accordin
to Refs.@5,7#, forces the first form factorF1(q

2) to vanish as
q25q0

22q2 at the threshold, i.e., asq2→0. It is the failure of
the first type of coupling, Eq.~1!, to achieve the expected
threshold behavior that invalidated Hara’s theorem in earl
applications of the quark model to this reaction. The seco
coupling ~2! is not constrained in this way, and hence ma
contribute for on-shell photons. Yet, in the exact SU~3! limit
its contribution vanishes due to its symmetry properties~see
Sec. 3.1 in@1#!. The second coupling corresponds to type
operators, in the language of Ref.@2#, which do not endanger
Hara’s theorem.

We will henceforth focus exclusively on type I operator
This type of coupling is not new, however: in the elast
scattering limit it corresponds to the parity-violating EM
elastic matrix element, also known as the ‘‘anapole’’ m
ment. It never attracted the interest of the main-stream of
theoretical community, yet a few facts pertaining to it ha
been learned over the years. In particular, the anapole
been calculated in the constituent quark model to first ord
in perturbation theory in Ref.@5#, where the troubles with
achieving, rather than enforcing, the correct threshold beh
ior have also been met and resolved. This paper is to serv
5899 © 1996 The American Physical Society
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an application of the lessons learned on the anapole to
weak radiative hyperon decay. We will work in the nonrel
tivistic limit, since that is the approximation in which th
violation of Hara’s theorem was reported. The nonrelativis
limit also corresponds to the long wavelength limit in th
case. In the nonrelativistic limit, or in the Breit~brick-wall!
frame, the matrix element equation~1! turns into

J5
~ I!5F1~q

2!@s2~s•q̂!q̂#, ~3!

whereF1(2q2) is a function of2q25q252Q2 with the
expected long-wavelength limit:

F1~2q2!5e
GF

A2
q2H~q2!, ~4!

whereH(q2) is a new parity-violating EM form factor which
is regular ~finite! at the threshold, i.e.,H(0),`,
GF.1025MN

22 is the Fermi weak interaction coupling con
stant, andMN is the nucleon mass. We need to prove Eq.~4!
in the constituent quark model.

While one could certainly start from a specific qua
model and the definition of the parity-violating EM curren
matrix element, and then proceed to evaluate the form fac
F1(q

2), it turns out that there is a general proof of the e
pected result, which is also a substantial simplification ov
any explicit calculation. This argument, first published b
Serot@7#, relies only on the multipole decomposition of th
EM current matrix element and on the EM current conserv
tion. The transverse nature of type I EM current operators
clearly visible in Eq.~3!. Any transverse EM current matrix
element can be decomposed

E dR Jf i• «̂lexp~ iq•R!

52 (
J51

`

A2p~2J11!i J@l^C f uT̂Jl
maguC i&

1^C f uT̂Jl
el uC i&# ~5!

into transverse electric and magnetic current multipo
^C f uT̂Jl

el uC i&,^C f uT̂Jl
maguC i& with well-defined rotation-,

parity-, and time-reversal properties@8#. The latter properties
are used to eliminate, in this case, all but one multipole:
transverse electric dipole

E dR Jf i• «̂lexp~ iq•R!52 iA6p^C f uT̂1l
el uC i&, ~6!

where

^C f uT̂1l
el uC i&5

1

i uquA2
E dR $2q2~Jf i•R!1~¹•Jf i !

3@11~R•“ !#% j 1~ uquR!Y1M~R̂!, ~7!

and Jf i5^C f uJuC i& is the exact conserved, elastic parity-
violating EM current matrix element,j 1 is a spherical Besse
the
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function, andY1M is a spherical harmonic.1 In order to as-
certain the threshold properties of this multipole, we not

that j 1(uquR); 1
3 uquR in the long-wavelength limit. Hence,

the first and second terms on the right-hand side of Eq.~7!
are in agreement and in conflict, respectively, with Eq.~4!.
In order to show that the offending term vanishes just use t
EM current conservation

“•Jf i52 i ^C f u@H,r#uC i&5 i ~Ei2Ef !r f i , ~8!

wherer f i5^C f uruC i& is the associated charge density an
Ei , f are theexactenergy eigenvalues. Since we are working
in the Breit frame, and despite our initial and final states no
being identical~this is hyperondecaywe are talking about!,
they are degenerateEi5Ef , as a consequence of the as
sumedexactSU~3! symmetry. This means that the offending
term is exactly zero, as announced earlier.

Thus, we have proven that the odd-parity, time-reversa
conserving, transverse electric dipole vanishes asq252q2

in the long-wavelength limit and thence that Hara’s theore
holds. The above-shown proof is exact and model indepe
dent; hence, it ought to hold in the constituent quark mode
too. The three crucial assumptions are~i! EM current conser-
vation, and~ii ! the use ofexactnucleon wave functions, and
~iii ! the SU~3! symmetry isexact. If this theorem fails in
some explicit calculation, it has to be because one or more
these three assumptions is violated. In the rest of this pap
we will explore one scenario in which that possibility may
actually occur: the perturbative treatment of the weak inte
action. That is, as we shall show below, exactly as the sit
ation in Ref.@2#.

III. THE CONSTITUENT QUARK MODEL

In Ref. @2# the gauge-invariant set of four Feynman dia
grams~Fig. 1! describing the so-called quark-quark brems
strahlung in the Fermi interaction limit of the Salam-
Weinberg model are used as the underlying theoretic
model. These diagrams describing a relativistic transitio
~decay! amplitude were then reduced to a two-body~quark!2

nonrelativistic PV EM interaction Hamiltonian~and a corre-
sponding PV EM current!, which apparently violates Hara’s
theorem. This last conclusion is unwarranted due to an i
complete analysis: Having made the nonrelativistic reductio
of one set of operators, we must be careful, for the sake
consistency, to include all nonrelativistic contributions to th
given order inp/m expansion in the model calculation. In
particular, the aforementioned, two-body PV EM curren
corresponds to the so-calledZ graphs, with negative energy

1Equation ~7! may seem nonrelativistic due to the presence o
three-momentum transfer and a three-dimensional scalar produ
but, in the Breit frame, where the four-momentum transfer retain
only its three-vector part, it is Lorentz covariant.
2In our nomenclature an operator describing say bremsstrahlu

from a pair of quarks, which involves two~quark! creation and two
destruction operators, is called a two-body, or two-quark operato
The same operator, in Kamal and Riazuddin’s language@2# is called
a four-quark operator. Analogous relation holds between the on
and two-quark operators in the two conventions.
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intermediate states, in the time-ordered perturbation theo
There is another set of time-ordered graphs, however, to
same order in perturbation theory, which corresponds
terms with positive energy intermediate states. These la
terms are due to the ordinary one-body EM current and
PV admixtures in the hyperon and nucleon wave functi
induced by the action of the PV quark-quark potential. Th
were completely neglected in Ref.@2#. We will show that in
a completely consistent analysis the one-body current con
butions exactly cancel the offending two-body current term
due to gauge invariance. Hence, we review the salient f
tures of EM current conservation in the constituent qua
model @9,10#.

A. Conservation of the nuclear electromagnetic current

In configuration space the conservation of the electrom
netic current is reflected in the validity of the continuit
equation

“R•J~R![“•J52
]r~R!

]t
. ~9!

In quantum mechanics, this can be written as an equa
relating the divergence of the three current and the comm
tator of the Hamiltonian and the charge density:

“•J52 i @H,r~R!#, ~10!

where the total Hamiltonian

H5H0
PC1VPV

is the sum of the parity-conserving~PC! HamiltonianHPC

@which equals the kineticT5( i51
3 pi

2/2mi plus the PC poten-
tial V22b

PC 5( i, j
3 V22b

PC ( i j ) energy# and the parity-violating
potentialV22b

PV 5( i, j
3 V22b

PV ( i j ) of the interacting system, and
r(R) is the charge density. In the following we will drop th
‘‘label’’ R in all EM currents and densities, except whe
necessary to avoid confusion. The one-body electromagn

FIG. 1. Two of four Feynman diagrams describing the parit
breaking contribution to the EM axial-vector currents. The so
line denotes the quarks, the wavy line is the photon, and wiggly l
is the charged intermediate vector bosonW6. The shaded blob to-
gether with the three solid lines and one double solid line leading
it denotes the nucleon wave function. The remaining two grap
have their photon lines attached to the ‘‘other’’ quark line.
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current is the usual sum of nonrelativistic convection and
magnetization currents, which in configuration space reads

J12b~ i !5J12b
c ~ i !1J12b

m ~ i !

5
e~ i !

2mq
@$pi ,d„R2r ~ i !…%2“R

3s~ i !d„R2r ~ i !…# ~11!

and, in momentum space,

J12b~ i !5
e~ i !

2mq
@~pi1pi8!1 is~ i !3q#, ~12!

whereq5pi82pi . The charge densityr(R) is equivalent to
the one-body charge density

r12b~R!5(
i51

3

e~ i !d„R2r ~ i !…,

wheree( i )5 1
2 @ 1

31t3( i )#. Then, the divergence of the one-
body electromagnetic current equals2 i times the commuta-
tor of the kinetic energy and the one-body charge density
~we set\51):

“•J12b52 i @T,r12b~R!#. ~13!

Thus, the simplest test of electromagnetic current density
conservation is whether or not the two-body potential com-
mutes with the one-body charge density. If not, then one
needs a two-body electromagnetic current density3 J22b to
compensate for the induced temporal change of charge den
sity:

“•J22b52 i @V22b ,r~R!#. ~14!

The complete potential is, of course, the sum of the parity-
conserving and the parity-violating ones. Similarly, the two-
body electromagnetic current density is a sum of a polar
vector ~parity-conserving! and an axial ~parity-violating!
vector termsJ22b5J22b

PC 1J22b
PV 5( i, j

3 J22b( i j ). Each one
of these must satisfy its own EM current conservation equa-
tion; one does not normally assume PC forces that exchang
the electric charge4 between two quarks, so we may set all
PC two-body currents equal to zero. The PV strangeness
changing weak potentialV22b

PV between two quarks is also
~electric! charge changing, so we know that there willhave
to be some PV two-body currentsJ22b

PV to account for that

“•J22b
PV 52 i @V22b

PV ,r~R!#. ~15!

It is manifest that one can only recover Eq. (10) by adding
Eqs. (13) and (15),i.e., if the latter two are valid.It is an
immediate corollary that no calculation which employs only

3There is a vast literature on such two-body currents in nuclear
physics where they are called meson-exchange currents@11#.
4This is manifestly a model-dependent assumption, yet even if it

were not true our proof would hold, only slightly more complicated.
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the one-body, or only the two-body current for that matter
can be gauge invariant, i.e., neither satisfies Eq.~10!.

Since Ref.@2# did not include the one-body EM current
contribution, the above argument explains their breaking o
EM current conservation and, consequently, of Hara’s theo
rem. A number of authors did include the one-body EM cur
rent contributions, within the quark model version of the
~modern! ‘‘pole model’’ @12–14#,5 but some of them omitted
the PV two-body EM current. Yet, even calculations with the
complete EM currentoperatormay still have trouble main-
taining the conservation of the EM currentmatrix element,
which is the necessary condition of Hara’s theorem.

The resolution of this puzzle lies in the fact that the
baryon wave functions have entered our considerations b
way of the second line in Eq.~8!. Even if the EM current
operatorsatisfies Eq.~10!, it need not be enough to ensure
the conservation of the EM currentmatrix element, and with
it the validity of Hara’s theorem, since the second line in Eq
~8! is only satisfied when the initial and final wave functions
are theexacteigenstates of the total HamiltonianH. The task
of exactly solving the full three-body Schro¨dinger equation
seems excessive for the purpose at hand, since the PV int
actions are weak and hence tractable in first order perturb
tion theory: that is the approach adopted in Ref.@12#. In the
following we will show that a necessary condition for the
conservation of an EM current matrix element in perturba
tion theory is the retention ofall excited ~‘‘intermediate’’!
states in the admixtures to the initial and final wave func
tions. Since most practical perturbative calculations kee
only the lowest-lying ones, they are usuallynotgauge invari-
ant, one exception being Ref.@12#.

B. First-order perturbation theory

The PV weak interaction between quarks implies the ex
istence of a small,O(GF), abnormal-parity, strangeness-
violating admixture in the baryon~hyperon or nucleon! wave
function. To determine this admixture, we shall use the firs
order, time-independent~Rayleigh-Schro¨dinger! perturbation
approximation to the quark dynamics described by th
HamiltonianH5H0

PC1VPV. The ground state of the nucleon
or hyperonuC0& is given by

uC0&5uF0&1 (
nÞ0

uFn&
^FnuVPVuF0&

E02En
1O~GF

2 ! ~16a!

5uF0&1 (
nÞ0

«n0uFn&1O~GF
2 !, ~16b!

whereuFn& are theexacteigenstates of the PC Hamiltonian
H0
PC: H0

PCuFn&5EnuFn&, and

«na5
^FnuVPVuFa&

Ea2En
5O~GF! ~17!

5For example, Gavelaet al. @12# explicitly included the contribu-
tions of the low-lying negative parity baryon multiplet~ 70,12).
That turns out to be sufficient for maintaining Hara’s theorem du
to the simplicity of harmonic oscillator wave functions employed
there.
,
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are the admixture coefficients to the baryona. The
abnormal-parity admixtures in the initial and final wave
functions generate a parity-violating electromagnetic curre
hyperon-nucleon matrix element equation~1!. Since the PV
potential is ofO(GF), Eq. ~15! demands that the PV two-
body electromagnetic current also be ofO(GF). Hence, to
O(GF), the EM current matrix element reads

Jf i5^F f uJ22b
PV uF i&1 (

nÞ i , f
$^F f uJPCuFn&«ni

1«n f* ^FnuJPCuF i&%. ~18!

C. Conservation of the electromagnetic current in first-order
perturbation theory

Equation~8! ought to hold order by order in perturbation
theory, or equivalently, in the expansion in the weak cou
pling constantGF . We shall now repeat the crucial argumen
which has already been presented in Ref.@5#, in order to
explicitly demonstrate the significance of keeping all inter
mediate states in the calculation. To evaluate the divergen
start from Eq.~18!:

“•Jf i5“•^F f uJ22b
PV uF i&1 (

nÞ i , f
$“•^F f uJPCuFn&«ni

1«n f* “•^FnuJPCuF i&%

52 i ^F f u@VPV,r#uF f&1 (
nÞ i , f

$^F f u@H0
PC,r#uFn&«ni

1«n f* ^Fnu@H0
PC,r#uF i&%.

Now, use the definition of the admixture coefficients«n , Eq.
~17!, with a5 i , f ; the fact that the unperturbed states ar
eigenfunctions ofH0

PC, implies that

^F f u@H0
PC,r#uFn&5~Ef2En!^F f uruFn&,

^Fnu@H0
PC,r#uF i&5~En2Ei !^FnuruF i&

which, in turn, leads to

“•Jf i5“•^F f uJ22b
PV uF i&2 i(

nÞ f
~Ei2En!

3^F f uruFn&
^FnuVPVuF i&

Ef2En
2 i(

nÞ i

^F f uVPVuFn&
Ei2En

3~En2Ef !^FnuruF i&

52 i ^F f u@VPV,r#uF i&2 i(
nÞ f

^F f uruFn&^FnuVPVuF i&

1 i(
nÞ i

^F f uVPVuFn&^FnuruF i&1 i ~Ei2Ef !

3^F f uruF i&1 i ~Ei2Ef ! (
nÞ f i

$^F f uruFn&«ni

1«n f* ^FnuruF i&%. ~19!

The terms explicitly excluded from the sums in the first line
of Eq. ~19! are identically zero, due to the good parity of

e
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unperturbedstatesuFn&. Hence, the sums can be extende
over all intermediate states, which form a complete s
(nuFn&^Fnu51. The second line of Eq.~19! can be further
simplified using Eq.~16b! for the initial and final states,
leading to

“•Jf i52 i ^F f u@VPV,r#uF i&2 i ^F f urVPV2VPVruF i&

1 i ~Ei2Ef !^C f uruC i&1O~GF
2 !

5 i ~Ei2Ef !^C f uruC i&1O~GF
2 ! ~20!

which, together with the degeneracy of nucleons and hyp
ons,Ei5Ef , in the SU~3! limit, leads to the final result

“•Jf i50. ~21!

Note that Eq.~8! differs from Eq.~20! only in that it involves
theexacteigenenergies Ei , f which are also degenerate in th
exact SU~3! limit,6 rather than the perturbative onesEi , f ,
i.e., toO(GF), the two equations coincide, as they shoul
This completes the proof that type I operators donot contrib-
ute to the parity-violating radiative hyperon decay t
O(GF) in the exact SU~3! limit, in accord with Hara’s theo-
rem, provided that the sum overall intermediate states is
complete.

IV. SUMMARY AND CONCLUSIONS

To summarize, we have shown how the correct thresho
behavior, in the exact SU~3! limit of the constituent quark
model, of the radiative PV hyperon decay amplitude is

6Strictly speaking, this is a self-contradictory statement, since t
weak interactions break the flavor SU~3! by construction. Hence,
Hara’s assertion is a self-consistent theorem only to lowest orde
perturbation theory, i.e., as proved above.
d
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r-
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agreement with Hara’s theorem as long as the EM current
matrix element is exactly conserved. This means not only
that the EM current operator satisfies the continuity equation,
but also that the exact wave functions are used. We provided
several examples of tacit and explicit approximations that
can lead to the violation of EM current conservation and
hence to the breakdown of Hara’s theorem. For example,
Hara’s theorem is violated in explicit perturbative calcula-
tions when the EM current operator is not conserved, and/or
if the parity-violating admixtures in the wave functions are
not properly included. So, the basic moral of this work is the
understanding that one can neither omit the PV two-body
current, nor abbreviate the expansion in excited states with
impunity when dealing with parity-violating electromagnetic
current matrix elements within perturbation theory.

Now, that the fundamental mathematical difficulty has
been resolved, we can turn to the task of relaxing the as-
sumption of good SU~3! symmetry and evaluating the finite
contributions to the radiative hyperon decay matrix elements
in this simple quark model. Should those results be found
insufficiently close to the experiment, one may consider
other physical mechanisms, such as the meson ‘‘cloud,’’
which might also contribute. It is essential not to lose sight
of the fact that we have not tested any such model-dependent
mechanism for Hara’s theorem. Proving Hara’s theorem in
the exact SU~3! limit ought to be the first order of business
when contemplating such additional mechanisms, so as to
avoid false paradoxes.
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