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Supersymmetric solution toCP problems
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We analyze the minimal supersymmetric left-right model with nonrenormalizable interactions induced by
higher scale physics and study itsCP-violating properties. We show that it~i! solves the strongCP problem,
and ~ii ! predicts the neutron electric dipole moment well within experimental limits~thus solving the usual
SUSY CP problem!. In addition, it automatically conservesR parity. The key points are that the parity
symmetry forces the Yukawa couplings to be Hermitian, while supersymmetry ensures that the scalar potential
has a minimum with real Higgs doublet vacuum expectation values. Gluino andB2L gaugino masses are
automatically real. The observedCP violation in the kaon system comes, as in the standard model, from the
Kobayashi-Maskawa-type phases. These solutions are valid for any value of the right-handed breaking scale
MR , as long as the effective theory belowMR has only two Higgs doublets that couple fully to fermions~i.e.,
the theory belowMR is MSSM-like.! The potentially dangerous contributions from the SU~2!L gaugino one-
loop diagram as well as from some higher dimensional terms toQ̄ belowMR can be avoided if the left-right
symmetry originates from a unified theory such as SO~10! and we discuss how this embedding is achieved for
the SO~10! case.@S0556-2821~96!05421-5#

PACS number~s!: 12.60.Jv, 11.30.Er, 14.80.Ly
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I. INTRODUCTION

Quantum chromodynamics~QCD! is now widely ac-
cepted as the theory of strong interactions. The perio
vacuum structure of QCD has, however, the unpleasant
plication that strong interactions violateCP. This CP-
violating interaction, being flavor conserving, only manifes
itself as an electric dipole moment of the neutron and lea
to a value far above the present experimental upper li
unless the associatedCP-violating coupling~usually labeled
asQ̄!, which is left arbitrary by strong interaction dynamic
is somehow suppressed to the level of 1029. This problem of
fine-tuning of theQ̄ parameter in gauge theories is known
the strongCP problem@1#. There are many solutions to th
strongCP problem@1#: The most well known of these is
the Peccei-Quinn solution, which requires the comple
gauge theory of electroweak and strong interactions to
spect a global chiral U~1! symmetry. This symmetry must
however, be spontaneously broken in the process of giv
mass to theW boson and fermions, leading to a pseud
Goldstone boson in the particle spectrum known in the fie
as the axion. There are two potential problems with this o
erwise beautiful proposal: ~i! The axion has not been ex
perimentally discovered as yet, and the window is closing
on it, and~ii ! if nonperturbative gravitational effects induce
by black holes and wormholes are important in particle ph
ics as is believed by some@2#, then the axion solution would
require fine-tuning of the gravitationally induced coupling
by some 50 orders of magnitude. This will make the axi
theory quite contrived.

A second class of solutions that does not lead to any n
massless boson is to require the theory to be invariant un
discrete symmetries@3,4#. In our opinion, the most physi-
cally motivated of such theories are the ones@3# based on the
left-right symmetric theories of weak interactions@5#. These
theories are based on the gauge group SU~2!L3SU~2!R
3U~1!B2L with quarks and leptons assigned in a left-rig
546-2821/96/54~9!/5835~10!/$10.00
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symmetric manner. Such models are also completely quark
lepton symmetric. To see how parity symmetry of the La-
grangian helps to solve the strongCP problem, let us note
that the physical QCD-inducedCP-violating phase can be
written as

Q̄5Q1Arg det~MuMd!, ~1!

whereQ is the parameter inFF̃ part of the QCD Lagrangian
andMu andMd , are the up and down quark mass matrices,
respectively. Invariance under parity setsQ50 becauseFF̃
is odd under parity. Additionally, constraints of left-right
symmetry imply that the Yukawa couplings of quarks re-
sponsible for the generation of quark masses are Hermitian
If furthermore the vacuum expectation values~VEV’s! of the
Higgs fields responsible are shown to be real, then this would
automatically lead toQ̄50 at the tree level. If the one-loop
contributions also preserve the Hermiticity of the quark mass
matrices, then we have a solution to the strongCP problem.
In the nonsupersymmetric left-right models with nontrivial
CP violation, it is well known that in general VEV’s of the
Higgs field are not real. This in the past led to suggestions
that either new discrete symmetries be invoked together with
left-right symmetry or new vectorlike fermions be added to
the theory@3#. Such theories also do not suffer from the
Planck-scale-implied fine-tunings@6#. It always remained a
challenge to solve the strongCP problem using only left-
right symmetry since often new additional symmetries in-
voked are not motivated from any other consideration.

A secondCP-related problem is connected with the mini-
mal supersymmetric standard model~MSSM!, which is cur-
rently a subject of intense discussion as the next level of
physics beyond the standard model and is the so-called
~usual! supersymmetric~SUSY! CP problem@7#. Namely, in
the MSSM the complex phase in the gluino mass is arbitrary
and the one-loop gluino contribution to the neutron electric
5835 © 1996 The American Physical Society
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dipole moment is larger by two or three orders of magnitu
than the experimental upper bound.

There have been many proposals in the literature to so
one or both of these problems. For instance, one recent
gestion is to consider a supersymmetric extension of
Peccei-Quinn symmetry@8#, which can solve the strong a
well as the SUSYCP problems. Another proposal in th
context of grand unified models assumesCP-conserving
gaugino masses at the grand unified theory~GUT! scale
thereby solving only the SUSYCP problem@9#. Other pro-
posals employ spontaneous breaking ofCP symmetry to
achieve the same goal@10# or small gaugino masses with a
approximateR symmetry @11#. None of the above ap-
proaches, however, address the important issue ofR-parity
conservation.

Our goal in this paper is to discuss a possible solution
both the strongCP and the SUSYCP problem in supersym-
metry. The first point to note is that in supersymmetric the
ries theQ̄ receives an additional contribution from the pha
of the gluino mass at the tree level@12,13#:

Q̄5Q1Arg det~MuMd!23 Arg mg̃ . ~2!

So any solution to the strongCP problem in supersymmetric
theories must also require that the phase of the gluino m
must be naturally suppressed. Note that a solution to
SUSYCP problem also requires the suppression of the sa
phase though to a lesser degree. Clearly, therefore, a solu
to to the strongCP problem automatically provides a solu
tion to the weakCP problem.

In two recent Letters@14,15#, it has been pointed out tha
if supersymmetry is combined with left-right symmetry, th
strongCP problem is automatically solved without the nee
for any extra symmetry. Furthermore, in Ref.@14#, it was
pointed out that this model also provides a solution to
SUSYCP problem of MSSM; i.e., it does not lead to a larg
electric dipole moment of the neutron. As a bonus, the
models automatically conserveR parity. In this paper we
elaborate on the results of Ref.@14# and present some new
ones which show the left-right scale independence of
result. We also discuss the question of possible embed
of left-right symmetry in grand unified theories.

This paper is organized as follows. In Sec. II, we d
cuss our supersymmetric solution to the strongCP problem;
in Sec. III, we show how the solution remains regardless
whether the right-handed scaleMR is in the TeV range or
much higher; in Sec. IV, we discuss our solution to the us
SUSYCP problem; in Sec. V, we show how the theory ca
be embedded into the SO~10! model; and in Sec. VI, we give
our conclusions. We discuss the question of potential m
mization in Appendix A, show the reality of Higgs VEV’s in
Appendix B, list the evolution equations for Yukawa co
plings for a general four-doublet expansion of the MSSM
Appendix C, and discuss the doublet-doublet splitting in A
pendix D.

II. SUPERSYMMETRIC SOLUTION
TO THE STRONG CP PROBLEM

Let us recall the arguments of Ref.@14# and see how the
supersymmetric left-right model solves the strongCP prob-
lem at the scaleMR .
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The gauge group of the theory is SU~2!L3SU~2!R
3U~1!B2L with quarks and leptons transforming as doublets
under SU~2!L,R . In Table I, we denote the quark, lepton, and
Higgs superfields in the theory along with their transforma-
tion properties under the gauge group. Note that we have
chosen two bidoublet fields to obtain realistic quark masses
and mixings~one bidoublet implies a Kobayashi-Maskawa
matrix proportional to unity, because supersymmetry forbids
F̂ in the superpotential!.

The superpotential for this theory is given by~we have
suppressed the generation index!

W5Yq
~ i !QTt2F it2Q

c1Y l
~ i !LTt2F it2L

c

1 i ~ fLTt2DL1fcL
cTt2D

cLc!1mDTr~DD̄!

1mDcTr~DcD̄c!1m i jTr~t2F i
Tt2F j !1WNR, ~3!

whereWNR denotes nonrenormalizable terms arising from
higher scale physics such as grand unified theories or Planck
scale effects. At this stage all couplingsY q,l

( i ) , mi j , mD ,
mDc, f, andfc are complex withmi j , f, andfc being symmet-
ric matrices.

The part of the supersymmetric action that arises from
this is given by

SW5E d4xE d2u W1E d4xE d2ū W†. ~4!

The terms that break supersymmetry softly to make the
theory realistic can be written as

Lsoft5E d4u(
i
mi
2f i

†f i1E d2u u2(
i
AiWi

1E d2ū ū2(
i
Ai*Wi

†1E d2u u2(
p
mlp

W̃pW̃p

1E d2ū ū2(
p
mlp
* W̃p* W̃p* . ~5!

In Eq. ~5!, W̃p denotes the gauge-covariant chiral super-
field that contains theFmn-type terms with the subscript go-
ing over the gauge groups of the theory including
SU~3!c . Wi denotes the various terms in the superpotential,
with all superfields replaced by their scalar components and

TABLE I. Field content of the SUSYL-Rmodel.

SU~2!L3SU~2!R3U~1!B-L
Fields representation

Q ~2,1,1 1
3!

Qc ~1,2,21
3!

L ~2,1,21!

Lc ~1,2,11!

F1,2 ~2,2,0!
D ~3,1,12!

D̄ ~3,1,22!

Dc ~1,3,12!

D̄c ~1,3,22!
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with coupling matrices which are not identical to those
W. Equation~5! gives the most general set of soft breakin
terms for this model.

In Sec. I we saw that left-right symmetry implies that th
first term in Eq.~1! is zero. Let us now see how supersym
metric left-right symmetry also requires the second term
this equation to vanish naturally. We choose the followi
definition of left-right transformations on the fields and th
supersymmetric variableu :

Q↔Qc* ,

L↔Lc* ,

F i↔F i
† ,

D↔Dc†,

D̄↔D̄c†,

u↔ ū,

W̃SU~2!L
↔W̃SU~2!R

* ,

W̃B2L,SU~3!c
↔W̃B2L,SU~3!c

* . ~6!

Note that this corresponds to the usual definiti
QL↔QR , etc. With this definition ofL-R symmetry, it is
easy to check that

FIG. 1. Higgs contribution to one-loop calculation ofQ̄.

FIG. 2. Examples of gaugino contributions to one-loop calcu
tion of Q̄. VL,r are left and right gauginos, respectively. Th
gaugino massmlL

is in general complex. There is an analogo
graph to~b! that involves right-handed gauginos.
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Yq,l
~ i !5Yq,l

~ i !†,

m i j5m i j* ,

mD5mDc* ,

f5fc* ,

mlSU~2!L
5mlSU~2!R

* ,

mlB2LSU~3!c
5mlB2L,SU~3!c

* ,

Ai5Ai
† . ~7!

We will make extensive use of Eqs.~7! in this paper.1 The
first point to note is that the gluino mass is automatically real
in this model: as a result, the last term in the equation forQ̄
above is naturally zero. We now therefore have to investigate
only the quark mass matrices in order to guarantee thatQ̄
vanishes at the tree level. For this purpose, we note that the
Yukawa matrices are Hermitian2 and the mass terms involv-
ing Higgs bidoublets in the superpotential are real. If we can
show that the vacuum expectation values of the bidoublets
are real, then the tree level value ofQ̄ will be naturally zero.

As in @14#, for WNR we will use a single operator
~l/M !@Tr(DctmD̄c)#2, in order to be able to have vanishing
sneutrino VEV’s, as shown in Appendix A. TheM could be
equal toMPl or MU . The other allowed nonrenormalizable
operators do not effect our result and could be easily in-
cluded in our discussion.

In this case we have made a detailed analysis of the Higgs
potential and find that, at the minimum of the potential, the
^Fi& are always real. This result is not at all trivial because of
large number of VEV’s that enter, and one might naively
think that spontaneousCP violation is possible. However, a
recent analysis@16# has shown that a general supersymmetric
model with two pairs of Higgs doublets~of which SUSY
L-R is a special case! cannot breakCP spontaneously. We
give the application of this calculation to the SUSYL-R case
in Appendix B. It is now clear that the quark mass matrices
are Hermitian and thereforeQ̄50 naturally at the tree level.

In Ref. @14# it was also shown that no strongCP-violating
phase is generated at the one-loop level. Examples of one-
loop diagrams are shown in Figs. 1 and 2; the Higgs diagram
~Fig. 1! and some of the gaugino diagrams@Fig. 2~a!# gen-
erate only Hermitian contributions, while the other gaugino
diagrams@Fig. 2~b!# are always real, if the gaugino masses
are assumed to be real, as happens when our model is em
bedded into a grand unified theory~see later!. Thus in the
total contribution at the one-loop level the Yukawa matrices

1Note that the dagger in the last equation forA terms indicates
that squark mass matricesh are Hermitian byL-R symmetry, al-
though they of course do not have to be proportional to Yukawa
mass matrices below some high scale.
2It is interesting that more general definitions of left-right trans-

formations in the flavor sector are possible. For example, invariance
underQ→U1Q

c* and Qc→U2Q* , whereU1 and U2 are some
SU~3! matrices, givesnon-Hermitian Yukawa matrices, but which
still have a real determinant.
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are still Hermitian. We concluded that the first nonzero co
tribution toQ̄, if any, arises only at the two-loop level and i
thus consistent with present limits.

III. SOLUTION TO THE STRONG CP PROBLEM
HOLDS BELOW SCALE MR

We have seen how the supersymmetric left-right mod
solves the strongCP problem at the scale of the SU~2!R
breakingMR . If this scale is of the order of the weak scale
then we are done, because the mass matrices in the exp
sion for Q̄ are defined at that scale and no further phase c
be generated. Let us investigate what happens ifMR is some
higher ~intermediate! scale.3 Two questions must be an-
swered: Does the determinant of the Yukawa matrices s
real belowMR? The one-loop contribution of the SU~2!L
gaugino is no longer canceled by the heavy SU~2!R gaugino.
Can we avoid this contribution? As we will show, below th
answer to both questions is yes.

Above the scaleMR the Hermiticity property of Yukawa
couplings stays intact becauseL-R symmetry is not broken
~see Appendix C!. However, running of the Yukawa matri-
ces belowMR will necessarily spoil the Hermiticity of
Yukawa matrices because of breaking of parity~for example,
the right-handed neutrino is excluded in running belowMR!.
Thus one might naively think that a nontrivialQ̄ will be
generated and that one must put constraints onMR . How-
ever, we will now show that for the simplest case, when t
field content belowMR is that of the MSSM, namely, two
Higgs doublets, the determinants of the Yukawa matric
stay real.

Let us denote byyi the Yukawa coupling of a Higgs dou-
blet Hi ~i51,2!. In the MSSM the one-loop running of the
Yukawa couplings is of the form@17#

d

dt
yi5yiT, ~8!

whereT is a matrix in flavor space which is a sum of term
of the form yj

†yj , Tr(yj
†yj )1, g a

21 ~see Appendix C!. From
Eq. ~8! one can easily obtain the Jacobi identity for the d
terminant

d

dt
det yi5det yi Tr T. ~9!

However, TrT is always real, and since the determinant ofyi
is real at the scaleMR , it will be real at any scale belowMR .
We conclude thatalthough the Yukawa matrices will in gen
eral not be Hermitian anymore at the lower scale, their de-
terminants will nevertheless stay real.

The VEV’s of the Higgs doublets in the MSSM can al
ways be rotated so that both are real. Thus we conclude t
Q̄ tree50.

Let us consider the one-loop contributions toQ̄ below
MR . Typical diagrams that contribute at scaleMR are shown

3Such scales can be desired in grand unification schemes w
L-R models as intermediate steps, because of the seesaw scen
of neutrino masses.
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in Figs. 1 and 2. Since the running Yukawa matrices have a
real determinant, the diagrams that have at vertices only
Yukawa matrices or bidoublet masses~which are real! will
not contribute. However, since the right-handed gaugino will
decouple belowMR , the phase in the diagram involving the
mass of the left gaugino will not cancel. The easiest way to
circumvent this problem is to assume that the gaugino
masses are real@15#. It is then easy to see that in the one-loop
running the left gaugino mass stays real. Indeed, in Sec. V
we show that the reality of the SU~2!L,R gaugino masses
comes out naturally in an SO~10! model with a generalized
left-right symmetry.

Let us next address the effect of the trilinear
supersymmetry-breaking term involving squarks and the
Higgs boson~i.e., hum0Q̃Huũ

c and the corresponding term
with u replaced byd! on Q̄. Above theMR scale, the matri-
ceshu,d are Hermitian due to the constraint of left-right sym-
metry ~like the Yu,d!. Therefore their contribution toQ̄ in-
volving the gluino at the one-loop level automatically
vanishes above the scaleMR . ~Here we used the fact that
left-right symmetry requires that the gluino masses be re-
al.! As we extrapolate it down to theMZ scale using the
renormalization group equations@17#, we have to see if the
dethu,d develop any imaginary part. A look at the one-loop
renormalization group equation makes it clear that such an
imaginary part~denoted bydA! could develop; let us there-
fore estimate its effect on the gluino mass as well as the
quark mass matrices. A rough order of magnitude of the
CP-violating phase in the gluino mass can be estimated as
follows. Since thehu,d are Hermitian and proportional to
the Yukawa couplingsYu,d at some scale above theMR
scale, let us go to a basis whereYd andhd are diagonalized.
Then we find that, at the scale of proportionality, if any one
of the off-diagonal elements ofYu and ~hencehu! are set to
zero, the theory becomes completelyCP conserving and
cannot generate aCP-violating phase at any scale below
MR . It is then clear that the one-loop graph that generates a
phase in the gluino mass can lead to the gluino phased g̃ ,
which is at most

d g̃.
VubVbcVcdVduas

64p3 ln
MR

MZ
, ~10!

leading tod g̃<1028, which is close to the upper limits on
the Q̄. Similar arguments can be given for the one-loop con-
tribution to theQ̃Q̃c mass matrix to show that their contri-
bution toQ̄ is around 1028.

Let us say a word about the finite contributions toQ̄.
These were shown@12# to be small in a supergravity theory
with universality condition at a high scale, as we assume
here. Of course, if the supersymmetry breaking is gauge me
diated at scales slightly above the weak scale, the squark
will be highly degenerate and the solution to the strongCP
problem is automatic@18#.

It is worth pointing out at this stage that in the above
discussion we have assumed that the theory belowMR is the
MSSM ~except, of course, the fact that the ‘‘obnoxious’’
R-parity-violating terms are naturally absent!. In Appendix
D, we discuss one way of obtaining the MSSM in the frame-
work of our model.
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In the end, let us consider what happens if we conside
effective four-Higgs-doublet model belowMR . The runnings
of Yukawa couplings at one loop are listed in Appendix
We note that the running of Yukawa matrices does not h
a form of Eq.~8!. There are additional terms on the righ
hand side of the formyjTr(yj

†yi) ( iÞ j ), thus invalidating the
Jacobi identity for determinants. Indeed, such a term will
general produce phases of orderV cb

2 /~16p2!'1025–1026. In
this case, we also expect additional suppression coming f
the fact at some very high scale the theory becomesCP
conserving if any off-diagonal element ofYu is set to zero.
Barring enough suppression from this, it may be necessar
impose some additional symmetry to suppress the Yuka
couplings of the second pair of Higgs doublets4 @16#.

In conclusion, if the effective theory belowMR has the
MSSM-like field content, and if the left gaugino mass is re
no observableQ̄ will be generated for all values ofMR from
some intermediate scale~'1012 GeV! all the way down to 1
TeV.

IV. SOLUTION TO THE SUSY CP PROBLEM

Let us now turn to the discussion of the SUSYCP prob-
lem. The main issue here is the potentially large contribut
to the electric dipole moment of the neutron at the one-lo
level. An analysis of the various aspects of the problem
been reviewed in Ref.@19#. In the standard parametrizatio
of the MSSM interactions at the electroweak scale, the la
contributions tod e

n comes from two sources: the phases
the (Amg̃) and (mvumg̃ /vd) terms. Another way to state thi
is to note that the first term originate from the same triline
scalar SUSY-breaking termshu,d discussed in the previou
section, whereas the second term arises from theF-term con-
tribution extrapolated down to the electroweak scale. W
work in a basis where the diagonal block matrices in t
squark (q̃2q̃c) mass matrices are diagonalized. We will the
be interested in the 11 entry of the gluino one-loop contrib
tion to electric dipole moment operator for both the up a
down sectors.

The first point to note is that in our model, above theMR
scale, the Hermiticity ofhu,d andYu,d together with the re-
ality of the gluino mass implies that there is no one-lo
contribution tod e

n. Garisto@19# has argued that if the abov
parameters are real at any high energy scale, their contr
tion to d e

n remains small at the electroweak scale. For e
ample, in our case as shown above, the phase of the gl
mass at the scaleMZ is of order 10

28. As far as thehu,d and
Yu,d terms are concerned, we have not succeeded in show
that once extrapolated down to theMZ scale, the 11 term of
the gluino-induced dipole moment matrix remains re
However, using the already stated argument above, the H

4Note, however, that in the second paper of Ref.@16# a general
four-Higgs-doublet model with arbitrary Yukawa couplings w
considered, and the additional symmetry was needed to supp
too largeCP violation inKK̄ mixing; strongCP violation was too
large in that model. In our case Yukawa couplings have the c
straint that they come from Hermitian matrices at theMR scale and
the additional global symmetry is enough to solve the strongCP
problem.
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miticity of the Yukawa matrices above the scaleMR implies
that that any departure from reality is at most of order
d[VubVbcVcd/~16p

2!ln(MR/MZ).1026. We then expect
that the maximum contribution tod e

n from them to

~de
n!max<

8easmd

27pM q̄
2 d<10228 e cm, ~11!

where we have assumed thatmd.10 MeV andMq̄.100
GeV. This is safely within the present experimental upper
limit. Thus our model provides simultaneously a solution to
the SUSYCP problem without the need for any new sym-
metries.

Let us note that in this paper we do not address the usua
SUSY flavor problems withKK̄ mixings, etc., that require a
certain degree of fine tuning in the structure of squark and
quark matrices, since this is beyond the scope of our paper
Left-right symmetry implies that the Yukawa matrices are
Hermitian, but the flavor properties such as hierarchy and
alignment must come from the underlying flavor theory, and
we refer the reader to the existing solutions@20# which may
be employed here as well. We note, however, that the stron
gest requirements come actually from theCP problems that
are solved here.

V. SO„10… EMBEDDING AND REALITY
OF WEAK GAUGINO MASSES

In this section, we address the question of embedding the
left-right model into an SO~10! theory so that we not only
have a grand unified version of our theory, but also we guar-
antee the reality of the gaugino masses~i.e.,mlL,R

5mlL,R
* !.

The reality of the gaugino masses follows from the combi-
nation of two things: The requirement of left-right symmetry
implies, as shown earlier, thatmlL

5mlR
* ; on the other hand,

SO~10! unification implies that the two gauginos, being part
of the same45 dimensional representation, have equal mass
The main task for us in this section is to show that there
exists a definition of left-right symmetry which preserves the
hermiticity of the Yukawa couplings.

To prove the Hermiticity of the Yukawa couplings, we
will exhibit only the simplest model and not attempt to ad-
dress the issues such as doublet triplet splitting, etc. Let u
consider the Higgs fields belonging to10 ~denoted byH!, 45
~denotedA!, and 126 ~denoted byD! ~plus D̄! representa-
tions. The superpotential involving all these fields can be
written as

WGUT5Yab
s ca

TBG icHi1Yab
A ca

TBG iG jGkcb~HiAjk!anti/M

1Yab8 ca
TBG icbH jAi j /M

1E
ab

ca
TBG iG jGkG lGmcbD i jklm

1terms involvingD in order
1

M
. ~12!

It is well known thatYs, Y8, and f are symmetric matrices,
whereasYA is an antisymmetric combination since we have

as
ress

on-
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projected out the120dim. representation from the10 and45
product in thehA term. Let us now define that under parit
transformation

c→DcB
21c* , Hi→2DHHi*DH

21,

Ai j→2DAAi j*DA
21, D→2DDD*DD

21. ~13!

HereB is the charge conjugation matrix for SO~10!: D is the
operator that implements the left-right transformation insi
the SO~10! multipletsc. H, etc.5 For instance, operating on
the 10 dimensional representation (Hi), it changes
H7→2H7 and leaves all other components unchange
Similarly, in 45, it changes the sign of all elements that car
the index 7, etc.@Note that the choice of the seventh comp
nent is basis dependent and we are working in a basis wh
I 3L51

4~S902S78! and I 3R51
4~S901S78!, where Si j are the

generators of SO~10!.#
Now, using the fact thatBT52B andB21G iB52G i

T, it
is then easy to show thath ab

s , hab8 , and f ab are real, whereas
h ab
A is imaginary. Together with the symmetricity propertie

this implies that all these matrices are Hermitian.
Now, if the SO~10! symmetry is broken down to

SU~2!L3SU~2!R3U~1!B2L3SU~3!c by the 45 VEV as
^A&5 i t2diag(v,v,v,0,0), then the effective low energy
theory has two bidoublets and also general Hermiti
Yukawa coupling of quarks. This leads to the embedding
our solution to the strongCP problem in an SO~10! model.

Another implication of the SO~10! embedding of our
model is that it imposes restrictions on the terms in the
perpotential involving theD andDc fields. For instance, for
the renormalizable term in Eq.~3! involving these fields, we
getmD to be real. It will also imply that nonrenormalizabl
terms of the formDcD̄cf if j will have real couplings. This
will have important bearing on their contribution toQ̄, as
shown in Appendix A.

We do not discuss here the unification of gauge couplin
in theories with SU~2!L3SU~2!R as intermiediate symme-
tries, but note that examples of successful scenarios e
which could implement our mechanism. It has, for instan
been argued in Ref.@21# that a stringy embedding of ou
model in SO~10! can be achieved ifMR.108 GeV or so. Our
discussions will then apply to these models.

VI. CONCLUSION

We have shown that if the minimal supersymmetric e
tension of the standard model~MSSM! is embedded in the
supersymmetric left-right model at higher energies, both
strong and weakCP problems of the MSSM are automati
cally cured. Adding this to the already known result th
R-parity conservation is restored as an exact symmetry in
SUSYLR model, thereby providing a naturally stable ne
tralino that can act as the cold dark matter of the univer

5This is similar to theL-R definition ~6!. This comes because, fo
example, strictly speakingQc is not a doublet under SU~2!R , but
ratherQ8c[t2Q

c. So theL-R definition ~6! in terms of the gauge
multiplets would beQ2t2Q8c* . The operatort2 plays a similar
role as the operatorD above in the SO~10! case.
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makes this embedding quite attractive. The left-right symme
try is then incorporated into an SO~10! grand unified theory
where the scale of right-handed symmetry breaking may b
quite high. We show how the conclusion about the vanishing
of the strongCP parameter remains unchanged in this case

ACKNOWLEDGMENTS

A.R. thanks Markus Luty, Jogesh Pati, and Riccardo Rat
tazzi for useful discussions. R.N.M. would like to thank Alex
Pomarol for several important comments and discussions
This work was supported by the NSF Grant No. PHY
9421385. The work of R.N.M. is also partially supported by
the University of Maryland. R.N.M. would like to acknowl-
edge the hospitality of the CERN Theory Division during the
last part of the work.

APPENDIX A: AVOIDING SNEUTRINO VEV’s

In this appendix we will show that if in the minimal
SUSY L-R model one includes nonrenormalizable Planck-
scale-induced terms, the ground state of the theory can b
Qem conserving even for̂ ñc&50. For this purpose, let us
briefly recall the argument of Ref.@22#. The part of the po-
tential containingLc, Dc, and D̄c fields only has the form
~see Appendix B or@22#!

V5V01VD . ~A1!

where

V05Tru i f†LcLcTt21mD* D̄cu21m1
2Tr~DcDc†!

1m2
22Tr~D̄cD̄c†!1m3

2Tr~DcD̄c!1m4L̃
cTt2D

cLc

~A2!

and

VD5
g2

8 (
m

uL̃c†tmL̃c1Tr~2Dc†tmDc12D̄c†tmD̄c!u2

1
g82

8
uL̃c†L̃c22Tr~Dc†Dc2D̄c†D̄c!u2. ~A3!

Note that if ^ñ c&50, then the vacuum state for which
Dc5(1/A2)vt1 and D̄c5(1/A2)v8t1 is lower than the
vacuum state

Dc5vS 0 0

1 0D
and

D̄c5v8S 0 1

0 0D .
However, the former is electric charge violating. The only
way to have the global minimum conserve electric charge is
to have^ñ c&Þ0. On the other hand, if we have nonrenor-
malizable terms included in the theory, the situation changes
For instance, let us include nonrenormalizable gauge
invariant terms of the form~inclusion of other nonrenormal-

r
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izable gauge-invariant terms simply enlarges the param
space where our conclusion holds!

WNR5
l

M
@Tr~DctmD̄c!#2. ~A4!

This will changeV to the form

V5V01VNR1VD , ~A5!

whereV0 andVD are given before andVNR is given by

VNR5
lm

M
@Tr~DctmD̄c!#21

4lmD

M
@Tr~DctmD̄c!#

3@Tr~Dc†tmDc!#1Dc↔D̄c1etc. ~A6!

For the charge-violating minimum above, this term vanish
but the charge-conserving minimum receives a nonzero c
tribution. Note that the sign ofl is arbitrary, and therefore,
by appropriately choosing sgn~l!, we can make the electric
charge conserving vacuum lower than theQem-violating one.
In fact, one can argue that, since we expectv22v82

' f 2(MSUSY)
2/16p2 in typical Polonyi-type models, the

charge-conserving minimum occurs forf,4p(4lmD /
M )1/4v/MSUSY. For l'1, mD'v'MSUSY'1 TeV andM
5MPl , we getf<1023 if v'MSUSY. We have assumed tha
eter

es,
on-

-

t

the right-handed scale is in the TeV range. The constraint on
f , of course, becomes weaker for larger values ofmD . We
wish to note that a possible nonrenormalizable term of the
form l1Tr(D

ctmD̄c)Tr(F itmF j )(1/MPl) can induced a com-
plex effective mass for the bidoublets, but its magnitude is
given by vR

2/MPl if l1 and mD are complex. Its presence,
therefore, will affect the solution to the strongCP problem
outlined in the paper for values ofvR above the intermediate
scale'106–107 GeV, depending on the value ofl1 . It is
interesting to note that if the model is embedded in the
SO~10! theory, as already noted, bothl1 andmD are real and
there are no new contributions toŪ from these new terms. In
this case, our solution is useful forvR in the range of
1011–1012 GeV.

Furthermore, it is also important to point out that since
Planck scale effects are not expected to respect any global
symmetries, the coupling parameters of the higher dimen-
sional terms in Eq.~A3! involving D andDc will be differ-
ent. This difference will help in the realization of the parity-
violating minimum as the global minimum of the theory.

APPENDIX B: REALITY OF BIDOUBLET VEV’s

Here we show that the VEV’s of the bidoublet Higgs
fields in the supersymmetric left-right model are real. The
scalar potential is given by
V5VF1Vsoft1VD1VNR~Dc,D̄c!, ~B1!

where

VF5(
p

uYqpr
~ i ! t2F it2Qr

cu21(
r

uYqpr
~ i ! Qpt2F it2u21(

i
TruYq

~ i !TQQcT1Y l
~ i !TLLcT12m i jF j u21(

p
uY lpr

~ i ! t2F it2Lr
c

12i f prt2DLr u21(
r

uY lpr
~ i ! Lpt2F it212i f pr* Lp

ct2D
cu21Tru i fTLLTt21mDD̄u21Tru i f†LcLcTt21mD* D̄cu2

1umDu2Tr~DD†1DcDc†!, ~B2!

Vsoft5mq
2~Q̃†Q̃1Q̃c†Q̃c!1ml

2~ L̃†L̃1L̃c†L̃c!1mF i

2 F i
†F i1mD

2Tr~D†D1Dc†Dc!1mD̄
2Tr~D̄†D̄1D̄c†D̄c!

1@Aq,iYq
~ i !Q̃Tt2F it2Q̃

c1Al ,iY l
~ i !L̃Tt2F it2L̃

c1ALi ~ fL̃
Tt2DL1f* L̃cTt2D

cLc!1AD@mDTr~DD̄!1mD* Tr~DcD̄c!#

1AFm i jTr~t2F i
Tt2F j !1H.c.#, ~B3!

VD5
g2

8 (
m

uL̃†tmL̃1Tr~2D†tmD12D̄†tmD̄1F†tmF!u21
g2

8 (
m

uL̃c†tmL̃c1Tr~2Dc†tmDc12D̄c†tmDc1Ftm
TF†!] 2

1
g82

8
uL̃c†L̃c2L̃†L̃12Tr~D†D2Dc†Dc2D̄†D̄1D̄c†D̄c!u2, ~B4!

andVNr is defined in Appendix A.
We assume the following fields get the VEV’s:

^Dc&5S 0 0

D0e2 ibD 0D , ^D̄c&5S 0 d0

0 0 D , ~B5!

and
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^F1&5S v1 0

0 v2e
id2D , ^F2&5S v3eid3 0

0 v4e
id4D , ~B6!

where we have rotated away the nonphysical phases.
The VEV of the scalar potential is

^V&5u2m11v112î12v3e
id3u21u2m11v2e

id212m12v4e
id4u21u2m21v112m22v3e

id3u21u2m21v2e
id212m22v4e

id4u21umDu2

3~D021d02!1mD
2D021m

D̄

2
d021mF1

2 ~v1
21v2

2!1mF2

2 ~v3
21v4

2!1ADumDuD0d0cos@BD1Arg~mD!#1AFm112v1v2cosd2

1AFm122@v1v4cosd41v2v3cos~d21d3!#1AFm222v3v4cos~d31d4!1^VD&1VNR~^Dc&,^D̄c&!, ~B7!
n
-

A

where^VD& is the VEV of theD term:

^VD&5
g2

8
@v1

2_v3
22v2

22v4
2#21

g2

8
@2~D021d02!1v1

21v3
2

2v2
22v4

2#21
g82

8
@2~D021d02!#2. ~B8!

Note that the phases of the bidoubletsd i , i52,3,4, come in
the terms

v1v icosd i , i52,3,4,

v2v3cos~d21d3!,

v2v4cos~d22d4!,

v3v4cos~d31d4!. ~B9!

Also, powers of the bidoublet VEV’s which are higher than
come only in theD term and there in one only combinatio
g~v!5v1

21v3
22v2

22v4
2. This is exactly the situation in gen

eral four-Higgs-doublet supersymmetric models with re
mass parameters. In Ref.@16# it was shown, by using a
simple geometrical interpretation for the minimum equatio
for the three phases, that the minimum in such a model isCP
conserving. Thus we conclude that in the SUSYL-R model
the VEV’s of the doublets are real. This conclusion holds f
generalAF i j

, which can be different for differenti ,j .

The phase of the VEV of the tripletbD is in general
nonzero~e.g., induced by the phase of the couplingmD), but
it does not couple to the VEV’s of the doublets. Thus it
irrelevant since it does not enter the calculation ofQ̄ at the
tree level or one loop. However, as noted in Appendix
when the theory is embedded into the SO~10! group, the
triplet VEV’s become real.

APPENDIX C:
ONE-LOOP RUNNING OF YUKAWA COUPLINGS

1. Four-Higgs-doublet SUSY model

Here we list the one-loop running of Yukawa coupling
for a generalfour-Higgs-doublet supersymmetric model. Th
Yukawa matrices of Higgs-doublets that couple to dow
quarks are denoted byy1 andy3 and, similarlyy2 andy4 for
the up-type quarks:
2

al

ns

or

is

,

s
e
n

LY5Dy1QH11Dy3QH31Uy2QH21Uy2QH21Uy4QH4

1Ey1
eLH11Ey3

eLH3 ~C1!

d

dt
y15

1

16p2 $y1@Tr~3y1
†y11y1

e†y1
e!13y1

†y11y2
†y21y3

†y3

1y4
†y4#1y3@Tr~3y3

†y11y3
e†y1

e!12y3
†y1#

2y1~
7
15g1

213g2
21 16

3 g3
2!%,

d

dt
y25

1

16p2 $y2@Tr~3y2
†y2!1y1

†y113y2
†y21y3

†y31y4
†y4#

1y4@Tr~3y4
†y2!12y4

1y2#2y2~
13
15g1

213g2
21 16

3 g3
2!%,

d

dt
y35

1

16p2 $y3@Tr~3y3
†y31y3

e1y3
e!1y1

†y11y2
†y213y3

†y3

1y4
†y4#1y1@Tr~3y1

1y31y1
e†y3

e!12y1
1y3#2y3~

7
15g1

2

13g2
21 16

3 g3
2!%,

d

dt
y45

1

16p2 $y4@Tr~3y4
†y4!1y1

†y11y2
†y21y3

†y313y4
†y4#

1y2@Tr~3y2
†y4!12y2

†y4#2y1~
13
15g1

213g2
21 16

3 g3
2!%,

d

dt
y1
e5

1

16p2 $y1
e@Tr~3y1

†y11y1
e†y1

e!13y1
e1y1

e1y3
e†y3

e#

1y3
e@Tr~3y3

†y11y3
e†y1

e!12y3
e†y1

e#2y1
e~ 9

5g1
213g2

2!%,

d

dt
y3
e5

1

16p2 $y3
e@Tr~3y3

†y31y3
e†y3

e!1y1
e†y1

e13y3
e†y3

e#

1y1
e@Tr~3y1

†y31y1
e†y3

e!12y1
e†y3

e#2y3
e~ 9

5g1
213g2

2!%.

~C2!

The equations for a two-Higgs-doublet model~i.e., the
MSSM! are easily obtained by setting, for example, Yukawa
matricesy3, y4, andy3

e to zero in the equations above. They
indeed have the form of Eq.~8!.

We see that Eq.~C2! part from the form of Eq.~8! be-
cause of Higgs doublet wave function renormalization terms
~for example the termy3Tr(3y3

†y1) in the equation fory1!.



e

to
u-

:

re
e

54 5843SUPERSYMMETRIC SOLUTION TOCP PROBLEMS
One can still write an equation in form Eq.~9! with new
terms inT which are not real in general. For example, t
phase will appear iny1

21y3Tr(3y3
†y1), and it will depend on

the structure of the Yukawa matrices how large the phas

2. SUSYL -R model

It is easy to generalize the above one-loop runnings
the case of Yukawa couplings in the SUSYL-R model with
two bidoublet:6

LY5QcY1QF11QcY2QF21LcY1
eLF11LcY2

eLF2 .
~C3!

We simply takey15y25Y1 ~and similarly for other Yukawa
couplins!, add the right-handed neutrino, and compute
contribution from gauge couplings. Alternatively, we u
general formulas@17#. In any case we obtain

d

dt
Y15

1

16p2 $Y1@Tr~3Y1
†Y11Y1

e†Y1
e!14Y1

†Y12Y2#

1Y2@Tr~3Y2
†Y11Y2

e†Y1
e!12Y2

†Y1#

2Y1~
1
6gB2L

2 13gL
313gR

21 16
3 g3

2!%,

d

dt
Y25

1

16p2 $Y2@Tr~3Y2
†Y21Y2

e†Y2
e!12Y1

†Y114Y2
†Y2#

1Y1@Tr~3Y1
†Y21Y1

e†Y2
e!12Y1

†Y2#

2Y2~
1
6gB2L

2 13gL
213gR

21 16
3 g3

2!%,

d

dt
Y1
e5

1

16p2 $Y1
e@Tr~3Y1

†Y11Y1
eY1

e!14Y1
e†Y1

e12Y2
e†Y2

e#

1Y2
e@Tr~3Y2

1Y11Y2
e†Y1

e!12Y2
e†Y1

e#

2Y1
e~ 3

2gB2L
2 13gL

213gR
2 !%,

d

dt
Y2
e5

1

16p2 $Y2
e@Tr~3Y2

1Y21Y2
e†Y2

e!12Y1
e†Y1

e

14Y2
e1Y2

e#1Y1
e@Tr~3Y1

1Y21Y1
e†Y2

e!12Y
1
e†Y2

e

#

2Y2
e~ 3

2gB2L
2 13gL

213gR
2 !%. ~C4!

It is easy to see that the Hermiticity of Yukawa couplin

6We skipped triplet couplings for simplicity.
he

is.

for

the
se

gs

is preserved throughout the running in the
SU~2!L3SU~2!R3U~1!B2L phase ~i.e., about mR!, as
expected.7 This is in contrast to case given in Appendix C 1
above where belowMR running of matrices necessarily
spoils Hermiticity ~both in the MSSM and the four-Higgs-
doublet model!, because then theL-R symmetry is broken.

APPENDIX D: DOUBLET-DOUBLET SPLITTING

In this appendix, we show how a left-right symmetric
theory with two bidoublets above the scaleMR reduces to
the MSSM with only one pair ofHu ,Hd). We will call this
phenomenon doublet-doublet splitting. The simplest way
achieve this is by a fine-tuning of the parameters of the s
perpotential~3! involving thef1 andf2 fields, i.e.,m i j . To
make this explicit, consider the part of the superpotential

Wf5(
i j

1
2m i jTrfa

Tt2fbt2 , ~D1!

where the symbolsa,b go over 1,2. This leads to the follow-
ing superpotential in terms of the standard model doublets

Wf5m11Hu1Hd11m22Hu2Hd21m12~Hu1Hd21Hu2Hd1!.
~D2!

Now it is clear that, if the parametersmab are so chosen that
we havem11m222m12

2 50 and that eachm i j are of order
vR , then below the scalevR the model has only two standard
model doublets as in the MSSM. The surviving doublets a
then linear combinations of the original four doublets in th
theory. If, however, one wanted ‘‘pure’’ doublets surviving
below thevR scale~such as, say,Hu1 andHd2!, then one can
use a superpotential of the type:

Wf8 5
l12

MPl
Trf1

Tt2t if2TrD
ct iD̄

c1m12Trf1
Tt2f2t2 .

~D3!

In this case fine-tuning of the parametersl12vR
2/MPl1m12

50 leaves the pure low energy doubletsHu2 andHd1 .

7For example, note that in the equation forY1, we have a sum of
termsY1Y2

†Y21Y2Y2
†Y1 , which is Hermitian ifY1 amd Y2 are

Hermitian.
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