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We analyze the minimal supersymmetric left-right model with nonrenormalizable interactions induced by
higher scale physics and study @4-violating properties. We show that(if) solves the stron@ P problem,
and (ii) predicts the neutron electric dipole moment well within experimental liftitas solving the usual
SUSY CP problem. In addition, it automatically conserve® parity. The key points are that the parity
symmetry forces the Yukawa couplings to be Hermitian, while supersymmetry ensures that the scalar potential
has a minimum with real Higgs doublet vacuum expectation values. GluindBand gaugino masses are
automatically real. The observeéZP violation in the kaon system comes, as in the standard model, from the
Kobayashi-Maskawa-type phases. These solutions are valid for any value of the right-handed breaking scale
Mg, as long as the effective theory beldwg has only two Higgs doublets that couple fully to fermidnse.,
the theory belowM g is MSSM-like) The potentially dangerous contributions from the(3}J gaugino one-
loop diagram as well as from some higher dimensional tern® teelow M can be avoided if the left-right
symmetry originates from a unified theory such agBIDand we discuss how this embedding is achieved for
the SQ10) case[S0556-282(96)05421-5

PACS numbsds): 12.60.Jv, 11.30.Er, 14.80.Ly

[. INTRODUCTION symmetric manner. Such models are also completely quark-
lepton symmetric. To see how parity symmetry of the La-

Quantum chromodynamic$QCD) is now widely ac- grangian helps to solve the stro@P problem, let us note
cepted as the theory of strong interactions. The periodithat the physical QCD-induce@ P-violating phase can be
vacuum structure of QCD has, however, the unpleasant imaritten as
plication that strong interactions violat€ P. This CP-
violating interaction, being flavor conserving, only manifests
itself as an electric dipole moment of the neutron and leads
to a value far above the present experimental upper limit _
unless the associatétiP-violating coupling(usually labeled where® is the parameter ifF part of the QCD Lagrangian
as®), which is left arbitrary by strong interaction dynamics, andM, andM, are the up and down quark mass matrices,
is somehow suppressed to the level of 10This problem of  respectively. Invariance under parity s€s-0 becausd=F
fine-tuning of the® parameter in gauge theories is known asis odd under parity. Additionally, constraints of left-right
the strongCP problem[1]. There are many solutions to the symmetry imply that the Yukawa couplings of quarks re-
strongCP problem[1]: The most well known of these is sponsible for the generation of quark masses are Hermitian.
the Peccei-Quinn solution, which requires the completdf furthermore the vacuum expectation valU®4V'’s) of the
gauge theory of electroweak and strong interactions to reHiggs fields responsible are shown to be real, then this would
spect a global chiral 1) symmetry. This symmetry must, automatically lead t® =0 at the tree level. If the one-loop
however, be spontaneously broken in the process of givingontributions also preserve the Hermiticity of the quark mass
mass to theW boson and fermions, leading to a pseudomatrices, then we have a solution to the str@ig problem.
Goldstone boson in the particle spectrum known in the fieldn the nonsupersymmetric left-right models with nontrivial
as the axion. There are two potential problems with this othCP violation, it is well known that in general VEV'’s of the
erwise beautiful proposal: (i) The axion has not been ex- Higgs field are not real. This in the past led to suggestions
perimentally discovered as yet, and the window is closing irthat either new discrete symmetries be invoked together with
on it, and(ii) if nonperturbative gravitational effects induced left-right symmetry or new vectorlike fermions be added to
by black holes and wormholes are important in particle physthe theory[3]. Such theories also do not suffer from the
ics as is believed by sonj&], then the axion solution would Planck-scale-implied fine-tunind§]. It always remained a
require fine-tuning of the gravitationally induced couplingschallenge to solve the stron@P problem using only left-
by some 50 orders of magnitude. This will make the axionright symmetry since often new additional symmetries in-
theory quite contrived. voked are not motivated from any other consideration.

A second class of solutions that does not lead to any near A secondC P-related problem is connected with the mini-
massless boson is to require the theory to be invariant undenal supersymmetric standard mod®ISSM), which is cur-
discrete symmetrie§3,4]. In our opinion, the most physi- rently a subject of intense discussion as the next level of
cally motivated of such theories are the ofigkbased on the physics beyond the standard model and is the so-called
left-right symmetric theories of weak interactiofd. These  (usua) supersymmetri€SUSY) CP problem[7]. Namely, in
theories are based on the gauge group(Z3KSU(2)x  the MSSM the complex phase in the gluino mass is arbitrary
XU(1)g_, with quarks and leptons assigned in a left-rightand the one-loop gluino contribution to the neutron electric

®=0+Arg de( M M,), (1)
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dipole moment is larger by two or three orders of magnitude TABLE I. Field content of the SUSY.-R model.
than the experimental upper bound.

There have been many proposals in the literature to solve SUR2)L XSUR2)rxU(D)g.,
one or both of these problems. For instance, one recent sug- Fields representation
gestion is to consider a supersymmetric extension of the Q 21+}
Peccei-Quinn symmetr§8], which can solve the strong as Q° (1’2’_%
well as the SUSYCP problems. Another proposal in the s
context of grand unified models assumé$-conserving LC (211
gaugino masses at the grand unified the@BUT) scale L (1.2+1)
thereby solving only the SUS P problem[9]. Other pro- ®12 (2,20
posals employ spontaneous breaking@P symmetry to A 3.1+2)
achieve the same gofl0] or small gaugino masses with an A @1-2
approximate R symmetry [11]. None of the above ap- A° (1,3+2)
proaches, however, address the important issuR-périty A° (13-2
conservation.

Our goal in this paper is to discuss a possible solution to .
both the strongC P and the SUSYC P problem in supersym- The gauge group of the theory is &) XSUR)g
metry. The first point to note is that in supersymmetric theo-<Y(1s—. With quarks and leptons transforming as doublets

ries the® receives an additional contribution from the phaseUnder SU2), . In Table I, we denote the quark, lepton, and

of the gluino mass at the tree levdl2,13: Higgs superfields in the theory along with their transforma-
o ’ tion properties under the gauge group. Note that we have
©=0+Arg de{M,My)—3 Arg mg. (2)  chosen two bidoublet fields to obtain realistic quark masses

and mixings(one bidoublet implies a Kobayashi-Maskawa
So any solution to the stror@P problem in supersymmetric matrix proportional to unity, because supersymmetry forbids
theories must also require that the phase of the gluino masb in the superpotential
must be naturally suppressed. Note that a solution to the The superpotential for this theory is given kye have
SUSY CP problem also requires the suppression of the sameuppressed the generation inglex
phase though to a lesser degree. Clearly, therefore, a solution

to to the strongCP problem automatically provides a solu- W=Y{'QT7,®;7,Q%+ YL 7,®; 7,L°
tion to the weakCP problem. T T e e _
In two recent Letter§14,15, it has been pointed out that Fi(fL AL +f. L ALY + uy Tr(AA)

if supersymmetry is combined with left-right symmetry, the
strongCP problem is automatically solved without the need

for any extra symmetry. Furthermore, in R¢L4], it was where Wyr denotes nonrenormalizable terms arising from

pointed out that this model also provides a solution to then. NR . e rsing

SUSY CP problem of MSSM:; i.e., it does not lead to a large igher scale physics such as grand unified theories or Planck
A gcale effects. At this stage all couplings{), wmij. ma,

electric dipole moment of the neutron. As a bonus, thes f, andf, are complex withg , f, andf, being symmet-
models automatically conserd@ parity. In this paper we ﬁc?crha’uricesc P ijr ¢ 9sy

elaborate on the results of R¢fL4] and present some new . . .
ones which show the left-right scale independence of ou _The part of the supersymmetric action that arises from
result. We also discuss the question of possible embeddin[é"s is given by
of left-right symmetry in grand unified theories. o

This paper is organized as follows. In Sec. Il, we dis- ngj d4xf d2e W+f d4xf d2e W, (4)
CUSS our supersymmetric solution to the str@ig problem;
in Sec. lll, we show how the solution remains regardless of
whether the right-handed scaléy is in the TeV range or
much higher; in Sec. IV, we discuss our solution to the usu
SUSY CP problem; in Sec. V, we show how the theory can
be embedded into the $0D) model; and in Sec. VI, we give gsoﬁ:f d*6>, mi2¢i’f¢i+f d26 62>, AW,
our conclusions. We discuss the question of potential mini- i i
mization in Appendix A, show the reality of Higgs VEV’s in o
Appendix B, list the evolution equations for Yukawa cou- +f d26 62, Ai*WiT+f d26 62>, m, W, W,
plings for a general four-doublet expansion of the MSSM in [ p P
Appendix C, and discuss the doublet-doublet splitting in Ap-

pendix D. +f d26 62>, m{pWﬂ;W{; : (5)
P

+MAcTr(ACF)‘F/.LijTr(TZ(DiTTz(I)J')+WNR, (3)

The terms that break supersymmetry softly to make the
a}heory realistic can be written as

Il. SUPERSYMMETRIC SOLUTION

TO THE STRONG CP PROBLEM In Eg. (5), W, denotes the gauge-covariant chiral super-

field that contains thé& ,,-type terms with the subscript go-
Let us recall the arguments of R¢l4] and see how the ing over the gauge groups of the theory including
supersymmetric left-right model solves the strdDB prob-  SU(3).. W, denotes the various terms in the superpotential,
lem at the scalé. with all superfields replaced by their scalar components and
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FIG. 1. Higgs contribution to one-loop calculation ©f
— *
. . . . . . . m, =my )
with coupling matrices which are not identical to those in Su2), SU2)g
W. Equation(5) gives the most general set of soft breaking -
terms for this model. M Lsus), ™ m}‘B—L,SU(BJC'
In Sec. | we saw that left-right symmetry implies that the :
first term in Eq.(1) is zero. Let us now see how supersym- A=A . ()

metric left-right symmetry also requires the second term in

this equation to vanish naturally. We choose the fOIIOWingf'rs\tNeo\'lr\:Itllt??o(?ee');tfhrgstl\t/ﬁeusle .?]LEn(ﬁ'; m_str;s tlca)iwpaii;nereal
definition of left-right transformations on the fields and the " th'p : del: : It thg LI" t St thu tl r%L
supersymmetric variablé: in this model: as a result, the last term in the equationtfor

above is naturally zero. We now therefore have to investigate
only the quark mass matrices in order to guarantee €hat

Cx
Q=Q™, vanishes at the tree level. For this purpose, we note that the
Yukawa matrices are Hermitidmnd the mass terms involv-
L, ing Higgs bidoublets in the superpotential are real. If we can
show that the vacuum expectation values of the bidoublets
O~ are real, then the tree level value @fwill be naturally zero.
As in [14],_for Wyr we will use a single operator
Ao ACh (MM)[Tr(A®7,A%)T? in order to be able to have vanishing

sneutrino VEV's, as shown in Appendix A. TiM could be
equal toMp, or M;. The other allowed nonrenormalizable

A A°T operators do not effect our result and could be easily in-
cluded in our discussion.
0<_>0_, In this case we have made a detailed analysis of the Higgs

potential and find that, at the minimum of the potential, the
~ ~ (d,) are always real. This result is not at all trivial because of
Wsuz), = SU2)R large number of VEV's that enter, and one might naively
think that spontaneouS P violation is possible. However, a
recent analysifl6] has shown that a general supersymmetric
model with two pairs of Higgs doublet®f which SUSY
L-R is a special cagecannot brealCP spontaneously. We
Note that this corresponds to the usual definitiongive the application of this calculation to the SUSYR case
QL+ Qg, etc. With this definition ofL-R symmetry, it is  in Appendix B. It is now clear that the quark mass matrices
easy to check that are Hermitian and therefol® =0 naturally at the tree level.
In Ref.[14] it was also shown that no stro@P-violating
phase is generated at the one-loop level. Examples of one-

Wa-1 su3). = Ws- L sus), - 6)

Mq(xo) loop diagrams are shown in Figs. 1 and 2; the Higgs diagram
(a) N (Fig. 1) and some of the gaugino diagraff&g. 2@)] gen-
3/ \.8 erate only Hermitian contributions, while the other gaugino
Q Vi & Va Q° diagrams[Fig. 2(b)] are always real, if the gaugino masses

are assumed to be real, as happens when our model is em-
bedded into a grand unified theofgee later. Thus in the
total contribution at the one-loop level the Yukawa matrices

b
® Q///\\Q INote that the dagger in the last equation forterms indicates
B that squark mass matricésare Hermitian byL-R symmetry, al-
Q Vi Vi @ Q° though they of course do not have to be proportional to Yukawa
e mass matrices below some high scale.

2t is interesting that more general definitions of left-right trans-
FIG. 2. Examples of gaugino contributions to one-loop calcula-formations in the flavor sector are possible. For example, invariance
tion of ®. V_, are left and right gauginos, respectively. The under Q—U,Q% and Q°—U,Q*, whereU; and U, are some
gaugino massn, is in general complex. There is an analogous SU(3) matrices, givesion-Hermitian Yukawa matrices, but which
graph to(b) that involves right-handed gauginos. still have a real determinant.
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are still Hermitian. We concluded that the first nonzero con-4n Figs. 1 and 2. Since the running Yukawa matrices have a
tribution to ®, if any, arises only at the two-loop level and is real determinant, the diagrams that have at vertices only

thus consistent with present limits. Yukawa matrices or bidoublet mass@sghich are real will
not contribute. However, since the right-handed gaugino will
Il. SOLUTION TO THE STRONG CP PROBLEM decouple belowMg, the phase in the diagram involving the
HOLDS BELOW SCALE Mg mass of the left gaugino will not cancel. The easiest way to

circumvent this problem is to assume that the gaugino
We have seen how the supersymmetric left-right modemasses are refl5]. It is then easy to see that in the one-loop
solves the strongCP problem at the scale of the $2Jz  running the left gaugino mass stays real. Indeed, in Sec. V
breakingMg,. If this scale is of the order of the weak scale, we show that the reality of the $B), r gaugino masses
then we_are done, because the mass matrices in the expregmes out naturally in an S00) model with a generalized
sion for® are defined at that scale and no further phase cafft-right symmetry.
be generated. Let us investigate what happeMgfis some Let us next address the effect of the trilinear
higher (intermediatg scale’ Two questions must be an- supersymmetry-breaking term involving squarks and the
swered: Does the determinant of the Yukawa matrices stapiggs boson(i.e., h,myQH,U°¢ and the corresponding term
real belowMg? The one-loop contribution of the $2),  with u replaced byd) on ®. Above theMy, scale, the matri-
gaugino is no longer canceled by the heavy(®R gaugino.  cesh, 4 are Hermitian due to the constraint of left-right sym-
Can we avoid this contribution? As we will show, below the metry (like the Y, 4)- Therefore their contribution t® in-
answer to both questions is yes. volving the gluino at the one-loop level automatically
Above the scalM the Hermiticity property of Yukawa vanishes above the scalg. (Here we used the fact that
couplings stays intact becauseR symmetry is not broken |eft-right symmetry requires that the gluino masses be re-
(see Appendix € However, running of the Yukawa matri- al) As we extrapolate it down to th#, scale using the
ces belowMg will necessarily spoil the Hermiticity of renormalization group equation&7], we have to see if the
Yukawa matrices because of breaking of patity example,  deth,, 4 develop any imaginary part. A look at the one-loop
the right-handed neutrino is excluded in running beldw).  renormalization group equation makes it clear that such an
Thus one mlght naively think that a nontrivié will be imaginary part(denoted byﬁA) could deve|op; let us there-
generated and that one must put constraintdign How-  fore estimate its effect on the gluino mass as well as the
ever, we will now show that for the simplest case, when thequark mass matrices. A rough order of magnitude of the
field content belowMg, is that of the MSSM, namely, two CpP-violating phase in the gluino mass can be estimated as
Higgs doublets, the determinants of the Yukawa matricesollows. Since theh, 4 are Hermitian and proportional to
stay real. the Yukawa couplingsy, 4 at some scale above thdy
Let us denote by; the Yukawa coupling of a Higgs dou- scale, let us go to a basis wherg andh, are diagonalized.
blet H; (i=1,2. In the MSSM the one-loop running of the Then we find that, at the scale of proportionality, if any one
Yukawa couplings is of the forril7] of the off-diagonal elements af , and (henceh,) are set to
zero, the theory becomes completéBP conserving and
E T ®) cannot generate &P-violating phase at any scale below
gt YimYit Mg. It is then clear that the one-loop graph that generates a

phase in the gluino mass can lead to the gluino ph&se
whereT is a matrix in flavor space which is a sum of terms which is at most

of the formyly;, Tr(yly;)1, 931 (see Appendix & From

Eq. (8) one can easily obtain the Jacobi identity for the de-
VubVocVedVauas . Mg

terminant . _=
59 T In MZ, (10)
d
— dety;=dety; Tr T. (9)
dt leading to dg=< 108, which is close to the upper limits on

. ) . the ®. Similar arguments can be given for the one-loop con-
However, TrT is always real, and since the determinanyof  t/ihtion to theQQ° mass matrix to show that their contri-
is real at the scaldl g, it will be real at any scale beloMg.  pution to® is around 108.

We conclude thaalthough the Yukawa matrices will in gen- | ot us say a word about the finite contributions @

eral not be Hermitian anymore at the lower scaldeir de-  These were showfi2] to be small in a supergravity theory

terminants V}"” nevertheless stay real. with universality condition at a high scale, as we assume
The VEV's of the Higgs doublets in the MSSM can al- here. Of course, if the supersymmetry breaking is gauge me-

ways be rotated so that both are real. Thus we conclude th@fated at scales slightly above the weak scale, the squarks

0 4ree=0. ) L = will be highly degenerate and the solution to the str@ig
Let us consider the one-loop contributions @ below problem is automati€18].

M. Typical diagrams that contribute at scali, are shown It is worth pointing out at this stage that in the above

discussion we have assumed that the theory béigwis the
MSSM (except, of course, the fact that the “obnoxious”
3Such scales can be desired in grand unification schemes witR-parity-violating terms are naturally absgnin Appendix
L-R models as intermediate steps, because of the seesaw scenafdswe discuss one way of obtaining the MSSM in the frame-
of neutrino masses. work of our model.
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In the end, let us consider what happens if we consider amiticity of the Yukawa matrices above the scaMig; implies
effective four-Higgs-doublet model beloM . The runnings that that any departure from reality is at most of order
of Yukawa couplings at one loop are listed in Appendix C. 8=V, V.V 4(167)IN(Mg/M;)=10"% We then expect
We note that the running of Yukawa matrices does not havéhat the maximum contribution td] from them to
a form of Eq.(8). There are additional terms on the right-

hand side of the forijr(ijyi) (i#]), thus invalidating the s max_. 3€asMg o8
Jacobi identity for determinants. Indeed, such a term will in (de)™< 72 010 7 ecm, (11)
general produce phases of ordéf,/(167%)~10"°-10 °. In a

this case, we also expect additional suppression coming from _ -
the fact at some very high scale the theory beco@®s \Vere we have assumed tha~10 MeV and Mg=100

conserving if any off-diagonal element ¥, is set to zero. GeV. This is safely within the present experimental upper

Barring enough suppression from this, it may be necessaryt] 't'SLhSL:(SCOgr mc;)?el prQ}[/rl]dEf ;:multar&e?usly a solution to
impose some additional symmetry to suppress the Yukaw € problem without the need for any hew sym-

. . ; tries.
couplings of the second pair of Higgs doubfdis6]. me N
In conclusion, if the effective theory beloM has the Let us note that in this paper we do not address the usual

MSSM-like field content, and if the left gaugino mass is reaI,SUSY flavor proble_ms W“T"(K mixings, etc., that require a
no observablé® will be generated for all values ®fl  from certain degree of fine tuning in the structure of squark and

some intermediate scale-10'2 GeV) all the way down to 1 quark matrices, since this is beyond the scope of our paper.
Tev Left-right symmetry implies that the Yukawa matrices are

Hermitian, but the flavor properties such as hierarchy and

alignment must come from the underlying flavor theory, and
IV. SOLUTION TO THE SUSY CP PROBLEM we refer the reader to the existing solutid@8] which may

be employed here as well. We note, however, that the stron-

Let us now turn to the c_iiscussion Of. the SUEWP pro_b- . gest requirements come actually from && problems that
lem. The main issue here is the potentially large contribution .o <oved here.

to the electric dipole moment of the neutron at the one-loop
level. An analysis of the various aspects of the problem has
been reviewed in Ref19]. In the standard parametrization V. SO(10) EMBEDDING AND REALITY
of the MSSM interactions at the electroweak scale, the large OF WEAK GAUGINO MASSES
contributions todj comes from two sources: the phases of
the (Amg) and (uv,mg/v4) terms. Another way to state this lef
is to note that the first term originate from the same trilinearh
scalar SUSY-breaking terntg, 4 discussed in the previous
section, whereas the second term arises fronktherm con- . . .
tribution extrapolated down to the electroweak scale. Wel he reality of the gaugino masses follows from the combi-
work in a basis where the diagonal block matrices in thg'@tion of two things: The requirement of left-right symmetry
squark §—19°) mass matrices are diagonalized. We will thenimplies, as shown earlier, thet, =my_; on the other hand,
be interested in the 11 entry of the gluino one-loop contribu-SO(10) unification implies that the two gauginos, being part
tion to electric dipole moment operator for both the up andof the same45 dimensional representation, have equal mass.
down sectors. The main task for us in this section is to show that there
The first point to note is that in our model, above M@  exists a definition of left-right symmetry which preserves the
scale, the Hermiticity oh, 4 andY, 4 together with the re- hermiticity of the Yukawa couplings.
ality of the gluino mass implies that there is no one-loop To prove the Hermiticity of the Yukawa couplings, we
contribution tod . Garisto[19] has argued that if the above will exhibit only the simplest model and not attempt to ad-
parameters are real at any high energy scale, their contribuless the issues such as doublet triplet splitting, etc. Let us
tion to d? remains small at the electroweak scale. For ex-consider the Higgs fields belonging 16 (denoted byH), 45
ample, in our case as shown above, the phase of the gluindenotedA), and 126 (denoted byA) (plus A) representa-
mass at the scald, is of order 108, As far as then, 4 and  tions. The superpotential involving all these fields can be
Y .4 terms are concerned, we have not succeeded in showingritten as
that once extrapolated down to thMe, scale, the 11 term of
the gluino-iqduced dipole moment matrix remains real. wg ;= Yzbw;Brini+Y2b¢;BFiFjkab(HiAjk)ami/M
However, using the already stated argument above, the Her-

In this section, we address the question of embedding the
t-right model into an SQ.0) theory so that we not only
ave a grand unified version of our theory, but also we guar-
antee the reality of the gaugino masses., my .= m{L R).

+Y oW iBT ypH A IM

“Note, however, that in the second paper of R&6] a general +f iﬂ;BFiFijnrmlﬂbAijklm
four-Higgs-doublet model with arbitrary Yukawa couplings was ab
considered, and the additional symmetry was needed to suppress 1
too largeC P violation in KK mixing; strongC P violation was too +terms involving A in order —. (12
large in that model. In our case Yukawa couplings have the con- M
straint that they come from Hermitian matrices at kg scale and
the additional global symmetry is enough to solve the strégy It is well known thatY®, Y', andf are symmetric matrices,
problem. whereasy” is an antisymmetric combination since we have
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projected out thd20dim. representation from thED and45  makes this embedding quite attractive. The left-right symme-
product in theh” term. Let us now define that under parity try is then incorporated into an $) grand unified theory

transformation where the scale of right-handed symmetry breaking may be

quite high. We show how the conclusion about the vanishing

1/;—>D¢B*11,0*, H;——DyH} Dgl, of the strongCP parameter remains unchanged in this case.
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~ Now, using the fact thaBT=’—B andB~'TB=—T/, it In this appendix we will show that if in the minimal
|sAth.en. easy to show thaty, h,y,, andf,;, are real, whereas gysy L-R model one includes nonrenormalizable Planck-
h3p is imaginary. Together with the symmetricity properties, scale-induced terms, the ground state of the theory can be
this implies that all these matrices are Hermitian. Q°®™ conserving even fof7°)=0. For this purpose, let us

Now, if the SQ10) symmetry is broken down 10 pyiefly recall the argument of Ref22]. The part of the po-
SU2) XSU2)gxU(1)g_ XSUB). by the 45 VEV as tential containingL®, A°, and A° fields only has the form
(A)=ir,diag,v,v,0,0), then the effective low energy (see Appendix B of22))
theory has two bidoublets and also general Hermitian
Yukawa coupling of quarks. This leads to the embedding of V=Vy+Vp. (A1)
our solution to the stron@ P problem in an SQLO) model.

Another implication of the SQ0) embedding of our Wwhere
model is that it imposes restrictions on the terms in the su- ) T —5 2
perpotential involving the\ and A° fields. For instance, for Vo=Tr[if'L°L T 7+ ui A% %+ wiTr(ACACT)
the renormalizable term in E¢R) involving these fields, we — — ~
get u, to be real. It will also imply that nonrenormalizable + 5 TH(AAT) + pSTH(ACAS) + g LoT7,ACLS
terms of the formA°A®¢; ¢; will have real couplings. This (A2)
will have important bearing on their contribution @, as
shown in Appendix A. and

We do not discuss here the unification of gauge couplings )
itn theories with SW2), XSU(2)g as intermiediate symme- VD:g_E |ECTTmEc+Tr(2AcTTmAc+ZETTmE”Z
ries, but note that examples of successful scenarios exist 8 “m
which could implement our mechanism. It has, for instance, g2
been argued in Ref21] that a stringy embedding of our 2 (TetTe_ ctAC_ ACTACY|2
model in S@10) can be achieved if1;>10° GeV or so. Our * 8 LTILE—2THATAS - ATAT) ", (A3)
discussions will then apply to these models. B

Note that if (v °)=0, then the vacuum state for which
V1. CONCLUSION A°=(1\2)vr; and A°=(1/\y2)v'7, is lower than the
vacuum state

We have shown that if the minimal supersymmetric ex-
tension of the standard modéV1SSM) is embedded in the . [0 0
supersymmetric left-right model at higher energies, both the A*=v 1 0
strong and wealCP problems of the MSSM are automati-
cally cured. Adding this to the already known result thatand
R-parity conservation is restored as an exact symmetry in the
SUSYLR model, thereby providing a naturally stable neu- - 0 1
tralino that can act as the cold dark matter of the universe, “Vlo ol

However, the former is electric charge violating. The only

SThis is similar to theL-R definition (6). This comes because, for Way to have the global minimum conserve electric charge is
example, strictly speakin@® is not a doublet under S@)g, but  to have(¥)#0. On the other hand, if we have nonrenor-
ratherQ’°=,Q°. So theL-R definition (6) in terms of the gauge Malizable terms included in the theory, the situation changes:
multiplets would beQ— r,Q’®*. The operatorr, plays a similar  For instance, let us include nonrenormalizable gauge-
role as the operatdd above in the SQL0) case. invariant terms of the fornginclusion of other nonrenormal-
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izable gauge-invariant terms simply enlarges the parametehe right-handed scale is in the TeV range. The constraint on

space where our conclusion holds f, of course, becomes weaker for larger valueg@f We
\ wish to note that a possible nonrenormalizable term of the
WNR=M[Tr(A°TmA°)]2. (A4) form N\ Tr(A°7,A) Tr(®; 7,,®;) (1/Mp)) can induced a com-

plex effective mass for the bidoublets, but its magnitude is
given by sz/M p if \; and u, are complex. Its presence,

This will changeV to the form therefore, will affect the solution to the stroZf problem

V=Vo+Vya+Vp, (A5)  outlined in the paper for values ok above the intermediate
scale~10°- 10 GeV, depending on the value af,. It is
whereV, andVp are given before anWl\ is given by interesting to note that if the model is embedded in the

SO(10) theory, as already noted, bath and i, are real and
there are no new contributions @from these new terms. In
this case, our solution is useful farg in the range of

_ 10"-10 GeV.

X[Tr(A®T7,A%) ]+ A®— A+ etc. (A6) Furthermore, it is also important to point out that since
Planck scale effects are not expected to respect any global
symmetries, the coupling parameters of the higher dimen-
"Cional terms in Eq(A3) involving A and A¢ will be differ-

ent. This difference will help in the realization of the parity-
violating minimum as the global minimum of the theory.

A — A\ —
ViR [ THACTnA%) 4+ =2 TR A7, A)]

For the charge-violating minimum above, this term vanishes
but the charge-conserving minimum receives a nonzero co
tribution. Note that the sign aof is arbitrary, and therefore,
by appropriately choosing s@n, we can make the electric-
charge conserving vacuum lower than @& violating one.

In fact, one can argue that, since we expedt—uv’'?
~f2(Mgysy) /1672 in typical Polonyi-type models, the
charge-conserving minimum occurs fof<<4m(4hu,/ Here we show that the VEV’s of the bidoublet Higgs
M) /Mgusy. For A=1, ua~v~Mgusy=1 TeV andM fields in the supersymmetric left-right model are real. The
=Mp,, we getf <102 if v~Mgygy. We have assumed that scalar potential is given by

APPENDIX B: REALITY OF BIDOUBLET VEV's

V:VF+VSOﬂ+VD+VNR(AC,E), (Bl)

where
vng |Y8,lrrzcl>an$|2+2 |Y£;2,errz<I>nz|2+2 TF|YS)TQQCT+Y|®TLLCT+2Mijq’j|2+Zp Y o 7@ 7oL E

+2if o AL |2+ Z YD L 7o ® o+ 205 LS mpA| 24 THifTLL 7y gy A2+ TriFTLOL 7+ f AY)2

+ | walPTr(AAT+ ACACT), (B2)
Vior=MA(QTQ+QTQ%) + mA(L L+ LY + m3 &+ m3Tr(ATA +ATA) + mETr(ATA+ ATAC)

[ A Y QT @ 7,Q0+ A Y (L @ 7oL+ AL (FLT 7, AL +F* LTrpA L) + Ay [ a TH(AA) + i TH(ACA®) ]

+Apui Tr( @ 7,®)) +H.c], (B3)

2 o 2 _
vD=g§§ ILT 7L+ Tr(2AT 7 A+ 2AT 7 A+ B 7 ) |24+ %% LS 7L S+ Tr(2A%T 7, AC+ 2A°T 7 AC+ D 7] T2

12 -
+ %|L”L°—LTL+2Tr(ATA—A°TA°—ATA+ A°TA%)|2, (B4)

andVy; is defined in Appendix A.
We assume the following fields get the VEV's:

0 0 — 0
<A°>=( MG 18 0), <A°>=(0 ) (85)

and
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Uy U3ei % 0

D)= s D)= s ], B6

(P1)=|, 0,6 %2 (®2)=| 0.el% (B6)

where we have rotated away the nonphysical phases.
The VEV of the scalar potential is

(V)=]2m1001+ 21120 3€' %32+ | 2110 2€' 2+ 2 1110 1€ 24| 2+ |2 10 10 1 + 2 g 0 26 23|24 | 2010 2692+ 2 o0 4€' 42+ | e p |2

X(A02+ 502)+miA02+ miéoz"‘ m(zbl(vi-l—vg)-i-méz(vg-l-vi)+AA|,LLA|A050005{BA+AI’Q(MA)]+A¢,u112vleCOS52

+ A 122[ 010 4C0894+ v 203C08 Sz 1 83) |+ Ag 1222030 4COS J3+ 8,4) +(Vp) + VNr((A),(A%)),

(B7)

where(Vp) is the VEV of theD term:

Ly=Dy1QH;+Dy3QH3+Uy,QH,+Uy,QH,+ Uy,QH,4

2 2 +EySLH,+EySLH (CY
(VD>=%[U§_u§—v§—v§]z+ %[2(A°2+5°2)+v§+u§ S
1
L gt V2= Te2 YAl Tr(Byiys+ Y1 YD) + 3yiya+y3ya+yiys
—v5—vg] +?[2(A + 69972 (B8)
+Yayal+ Y[ Tr(3ydy1+y5'y5) +2yly, ]
Note that the phases of the bidoubléis i=2,3,4, come in
the terms —yi(5095+305+ $93)}
coss, =234, d 1
PO, G0Y2= a2 V2L Tr(3Yby2) +yiya+3ylya +ylys +yiva)
v,03C0g 8+ 83),
+Ya[ Tr(3yhy2) +2y5 vl —ya(1293+ 305+ ¥9d)},
U0 4C0S 63— 84), q 1
— 3= {ya[ Tr(3ylys+YS yS) +yly; +yly,+ 3y}
040 4COS B3+ 8s). (B9) ths 16772{)’3[ (3Y3Y3t+VY3 Ya) TY1y1tYaoy2+3Yays

Also, powers of the bidoublet VEV’s which are higher than 2
come only in theD term and there in one only combination
g(v)=v3+v3—v5—v3. This is exactly the situation in gen-
eral four-Higgs-doublet supersymmetric models with real d
mass parameters. In Rdfl6] it was shown, by using a
simple geometrical interpretation for the minimum equations
for the three phases, that the minimum in such a modeRs
conserving. Thus we conclude that in the SUSSR model

the VEV's of the doublets are real. This conclusion holds for
generaIAq,i_, which can be different for different;j.

The phase of the VEV of the tripleB, is in general
nonzero(e.g., induced by the phase of the couplpg), but
it does not couple to the VEV'’s of the doublets. Thus it is
irrelevant since it does not enter the calculation@oht the
tree level or one loop. However, as noted in Appendix A,
when the theory is embedded into the (3@ group, the
triplet VEV’s become real.

JE— e:
dtyl

JE— e:
dtyS

APPENDIX C:
ONE-LOOP RUNNING OF YUKAWA COUPLINGS

mﬂ:

+YIYal+ Vi Tr(3y; ya+Y5Ty9) +2y1 yal — Va(££02

+305+ %09},

1 {ya[ Tr(3yhys) +yiyi +yly,+ylys+3ylya]

1672 Ya Ya¥Ya) TY1Y1TYoY2TY3Y3T SYaYa
T T _ 13 .2 2, 16,2

+Yo[ Tr(3y5Ya) +2y5y4]—y1(1591+ 395+ 303)},

e

yi+ysysl

To.2 WAl Tr(Byly:+yi'yD) +3y;"

+yS[Tr(3yly:+ 5Ty +2y5Tys1 - vi( 202+ 3g2)},

et, e

1
T2 YAl Tr(3ydys+Y5'y5) +yi'yi+3y5'ys]

+yS[Tr(3ylys+YETye) +2y5Tys] - va( 202+ 3g2)}.
(C2

) The equations for a two-Higgs-doublet modek., the
1. Four-Higgs-doublet SUSY model MSSM) are easily obtained by setting, for example, Yukawa
Here we list the one-loop running of Yukawa couplings matricesys, y,, andys to zero in the equations above. They
for a generafour-Higgs-doublet supersymmetric model. The indeed have the form of E@8).
Yukawa matrices of Higgs-doublets that couple to down We see that Eq(C2) part from the form of Eq(8) be-
quarks are denoted by andy; and, similarlyy, andy, for ~ cause of Higgs doublet wave function renormalization terms
the up-type quarks: (for example the ternygTr(3y§y1) in the equation fory,).
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One can still write an equation in form E¢9) with new

terms inT which are not real in general. For example, theSU(2), XSU(2)gXU(1)g_

phase will appear iryl’ly3Tr(3y§yl), and it will depend on
the structure of the Yukawa matrices how large the phase igibove where belowMy running of matrices necessarily

2. SUSYL-R model

5843

is preserved throughout the running in the
phase (i.e., about mg), as

expected. This is in contrast to case given in Appendix C 1

spoils Hermiticity (both in the MSSM and the four-Higgs-
doublet model because then the-R symmetry is broken.

It is easy to generalize the above one-loop runnings for
the case of Yukawa couplings in the SU&YR model with
two bidoublet’

LY: QCY]_QCD]_"' QCY2Q¢2+ LCYiLq)lJF LCYSL(I)Z .
(€3

APPENDIX D: DOUBLET-DOUBLET SPLITTING

In this appendix, we show how a left-right symmetric
theory with two bidoublets above the scdls; reduces to
the MSSM with only one pair oH,, ,Hy). We will call this
phenomenon doublet-doublet splitting. The simplest way to

We simply takey; =y,= Y, (and similarly for other Yukawa achieve this is by a fine-tuning of the parameters of the su-
coupling, add the right-handed neutrino, and compute thgyerpotential3) involving the ¢, and ¢, fields, i.e.,u;j . To

contribution from gauge couplings. Alternatively, we usemake this explicit, consider the part of the superpotential
general formula$l7]. In any case we obtain

d

1
gt V1= 1a2 (Yal Tr3YIY1+ Y'Y +4Y]Y,2Y,]
+Y[TrBY Y+ YY) +2vly,]

—Y1(395 | +300+ 305+ ¥9d)},

1
gt Y= 1a2 (Y2l Tr3YLY o+ YEIYE) +2Y 1Y, +4Y]Y,]

+Y[TrBYIY,+YETYE) +2vlY,]

—Ya(395 | +307+ 305+ %93}

dt

d 1
Yi=Te2 YATrBY LY+ VIV +4v TV +2Y5 Y5

+YTrBY; Y, +YEYS)+2vETye)

—VY$(395_L+397+303)}

d 1
Gt o= ez (YALTr(3Y; Yo+ Y5TYg) +2YETYS

+4YSTYSIHYS[Tr(3Y, Yo+ Y‘jTY‘;) + ZYTYZ]

—Y$5(395_ | +397+30R)}- (Ca

It is easy to see that the Hermiticity of Yukawa couplings

5we skipped triplet couplings for simplicity.

W¢:2 %MijTW;Tz@ﬁsz, (D1)

ij

where the symbola,b go over 1,2. This leads to the follow-
ing superpotential in terms of the standard model doublets:

W= p1HyiHar + oH ioH o+ o Hy Hao + HyoH d(l%-z)

Now it is clear that, if the parameteys,;, are so chosen that
we have wiitoo— ,u§2=0 and that eachu;; are of order
vRr, then below the scaleg the model has only two standard
model doublets as in the MSSM. The surviving doublets are
then linear combinations of the original four doublets in the
theory. If, however, one wanted “pure” doublets surviving
below thevk scale(such as, say ,; andH,), then one can
use a superpotential of the type:

, Mo g C- AC T
W¢:M_mTr¢1TzTi¢2TrA TiA S 12 Tr 272
(D3)

In this case fine-tuning of the paramete@vé/Mpﬁr 12
=0 leaves the pure low energy doublétg, andHy; .

"For example, note that in the equation oy, we have a sum of
termsY,Y3Y,+Y,YJY,, which is Hermitian ifY; amd Y? are
Hermitian.
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