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The scalar potential of the MSSM may have local and global minima characterized by nonzero expectation
values of charged and colored bosons. Even if the true vacuum is not color and charge conserving, the early
Universe is likely to occupy the minimum of the potential in which only the neutral Higgs fields have nonzero
VEV’s. The stability of this false vacuum with respect to quantum tunneling imposes important constraints on
the values of the MSSM parameters. We analyze these constraints using some novel methods for calculating
the false vacuum decay rate. Some regions of the MSSM parameter space are ruled out because the lifetime of
the corresponding physically acceptable false vacuum is small in comparison to the present age of the Uni-
verse. However, there is a significant fraction of the parameter space that is consistent with the hypothesis that
the Universe rests in the false vacuum that is stable on a cosmological time[S€186-282(96)00421-3

PACS numbgs): 12.60.Jv, 11.10.Wx, 11.30.Pb, 14.80.Ly

[. INTRODUCTION the golf course by no means guarantees that the ball will end

up there after being struck, the Universe at present may not

In the standard model color and electric charge are autdse in its lowest possible energy state. Instead, it may rest in
matically conserved because the only fundamental scalax false vacuum whose lifetime is large on a cosmological

field is the Higgs boson, a colorless electroweak doublet. Théme scale. The fundamental reason that makes this possible
Higgs potential has a continuum of degenerate minima, bus that quantum tunneling, a nonperturbative effect respon-
these are all physically equivalent, and without loss of gensible for the first-order phase transitions in field theory, natu-
erality one can always define the unbrokefilbenerator to rally introduces a time scale that is exponentially larger than
be the electric charge. This is not the case in the minimathe typical scale that characterizes the effective potential.
supersymmetric standard mod@ISSM), which employs a Consequently, the relaxation to the lowest energy state from
pair of Higgs doublets as well as a number of other scalasome excited state may take a very long time. In particular,
fields, the supersymmetric partners of quarks and leptongparameters for which the local SML “false vacuum” has a
Although the relative alignment of the two Higgs doublets’ lifetime large in comparison to the age of the Universe may
vacuum expectation valué¥EV'’s) in group space is physi- be acceptable, provided of course that the SML minimum

cal, the minimum of the Higgs potentiét least at the tree was populated first in the evolution of the Universe.

level) preserves electric chargas long as the squark and  The existence of local CCB minima which were popu-
slepton fields have vanishing classical val(s=e, e.g., Ref. lated temporarily during the early stages in the evolution of
[1] and references thergirHowever, the full scalar potential the Universe would also have dramatic implications for cos-
of the MSSM may have additional charge- and/or color-mology and astrophysics. In particular, since baryon and lep-

breaking(CCB) minima due to the vacuum expectation val- ton numbers are spontaneously violated in the CCB vacua,

ues of charged and/or colored scalars. their existence might have important consequences for
The existence of the CCB minima in the MSSM in addi- baryogenesis.
tion to the acceptable standard-model-I{{&ML) minimum Previous attemptf2—8| to elucidate the structure of the

may have important physical consequences. One might eGCB minima in the MSSM met with serious difficulties.
pect that the regions of parameter space for which there is 8ome analyse$2,4,5,§4 attempted to find analytic con-
global CCB minimum could be automatically excluded, straints on CCB minima. However, such conditions are gen-
thereby further restricting theoretical predictions for theerally neither necessary nor sufficiddf] except for overly
MSSM spectrum. However, one must be careful in drawingsimplified toy models which resemble the MSSM in some
such conclusions. Just as the cup being the lowest point oigatures, but cannot be used to draw firm conclusions about
the MSSM. For this reason, recent studjés-8] have em-
ployed extensive numerical analyses. Second, the determina-
“Electronic address: sasha@langacker.hep.upenn.edu. Present idn of whether or not a global minimum is “dangerous,”
dress: Theory Division, CERN, CH-1211 Geneva 23, Switzerland.must rely on a trustworthy calculation of the tunneling rates

TElectronic address: pgl@langacker.hep.upenn.edu at present and in the early Universe. There is no reason why

*Electronic address: segre@dept.physics.upenn.edu the Universe cannot be resting in a false vacuum which has a

This need not be the case in a general model with two Higgsvery long(on the cosmological scaldifetime. We therefore
doublets. disagree with the restrictions imposed by a number of au-
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thors[5,7,8 on the allowed MSSM parameter space, which W=yt t Hy+uHH,, )
did not consider the corresponding tunneling rates. The cal- LR
culation of the transition probability is more or less stra|ght-WheretL andtR denote the top quark superfields, and the

forward in the case of a single scalar but becomes extremeIP_/| . . .
difficult for a potential that depends on several fields. Below,, '1 andH, are the MSSM Higgs bosons. At this point we

we address these difficulties and employ a new techrfige '910r€ the' leptons, lighter quarks, and the electrical]y
to determine the lifetime of the false vacuum in the case of"r9ed Higgs components. The resulting scalar potential,
the MSSM. including the soft supersymmet8USY- breaking terms,

We will see, in fact, that the SML minimum is effectively is, at the tree level,

stable with respect to the transitions to the corresponding
CCB minima for a substantial part of the allowed parameter
space in the MSSM. We will also argue that, due to the
specific nature of the CCB minima, they would not have"Where
been populated during the early stages of the evolution of the

V=V,+V3+V,, 2

Universe, except for some small regions of parameters. On  V,=m2HY +m2HY + 2mZHoH 2+ m—%“tfjt m%"t?R 3)
the other hand, the stability of the color- and charge- - R
conserving vacuum on the time scales of order of the age of o=~ o~
the Universe imposes important constraints on theoretical Va3=—2AHt t —2uHjt t 4
models and can provide guidance for future experimental
searches. _T52 52402 52,402

The paper is organized as follows. In Sec. Il, we discuss Va= ittt +tH, +V, ©)

general features of the SML vacuum decay in the MSSM.
In Sec. Ill, we consider the electroweak phase transition For the SU(3XSU(2)xU(1) gauge group, th® terms
in the early Universe, in particular the issue of thear®
SU(3)XSU(2)xU(1)-symmetric vacuum stability before

the transition. In Secs. IV and V, we study the zero-
temperature tunneling rates numerically. The method used to
compute the transition probability is described in Appendix

A, while Appendix B contains an approximate description of +g2(H°2— H°2+?)2+igz(?—?)2
tunneling in the limit of a very deep true minimum. 201 2 0 39t R

1 2 , 1 4_\2
_ 2 0°_ y4O0°_ ™32 12
vD——Syz[%(Hl HY L

. (6)

Here the color indices are suppressed. We have absorbed the
Il. ESSENTIAL ASPECTS OF THE MSSM VACUUM Yukawa coupling in Eqs(2)—(6) by the redefinition of the
STABILITY fields ¢— ¢/y and of the scalar potentidd—y2V. Also, all

We begin by considering a simplified version of the the fields are made real by a rephasing, and the complex
MSSM potential. As was emphasized[Bi6], the third gen- phases are absorbed into the_deflmtlo_nsAoandM param-
eration requires the most attention in connection with theters.(There are strong experimental limits on such phases,
issue of color and charge breaking, because the the ccwhich force A and u to be nearly real; see Reff11] for
minima associated with the the large Yukawa coupling ardeviews of these constrainks. .
the most dangerodsWe will see shortly that the tunneling N thet =t_=0 hyperplane, Eq(2) describes the usual
rate into a CCB minimum is roughly proportional to MSSM Higgs potential. The constraint
exp(—cly?), wherey is the corresponding Yukawa coupling

andc is a constant. - - m2+m3) 2
We begin by considering a model defined by the superpo- mimz<(m3)°<| — (7)
tential:

ensures the existendérst inequality and stability(second

5 ) o inequality of the minimum_ with the correct_ patterr_1 of elec-
It was argued ir{8] that a global CCB minimum need not be 6\ yeak "symmetry breaking. The latter inequality results

associated with a large Yukawa coupling because in the limit Offrom requiring that the quadratic term is positive definite

small Yukawa coupling both the cubic and the quartic terms areak)ng the flat directions of the quartic teivi.

small and only their relative values affect the depth of the CCB Much of our discussion will concentrate on the effects of

minimum. This is true, as long as one ignores the quatierms the trilinear termsVs. If A and/or u are large enough, the

which, in fact, become more important in the small Yukawa cou-p,antia| acquires an additional local, or global, minimum at

pling limit. However, significant tunneling rates from the meta- some point outside the =1 =0 hyperplane. In this case,

stable SML vacuum are only possible if the CCB minima are asso- . L R

ciated with a large Yukawa coupling: as was shown in REd], the the electromagnetlc @), color SU3), as W_e” as some other

height of the barrier separating the SML minimum from the CCBSymmemeS[e'g" the global (@) ba,Q’O’J W,Ill be spontane-

minimum is roughly proportional to ¢F,, wherey,, is the small-  0usly broken by the nonzero VEV of andt_. For example,

est Yukawa coupling associated with the fields that acquire nonzerthe potential2) has, for appropriate values Afand ., four

VEV in the CCB minimum. The corresponding tunneling rates aredegenerate CCB minima mapped onto each other by the fol-

greatly suppressed for small lowing reflections:
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4
i —Hy y2S. = — 202 Av+ 20283 [ Ry, (10
S, = Ho——Hs ) £ 4 bsmL
L=t where the appearance of the Yukawa coupling on the left-
hand side of the equation is due to the fact that the fields
H,——H; have been scaled by a factpiin the beginning.

The bounce¢(x) corresponds to the extremum of the
~ A Euclidean action with respect ®, which is reached for the
t——t critical size of the “bubble” R,=3S;/e* where

S,=[+V2V(H)d¢. The corresponding action is

SZ_ H2—>_H2

L L — 217% S
S$=51%=)T -1 ) Slol= 27 & 11

Some comments are in order. First, we observe that, as
The gauge SU(3¥SU(2)XU(1) symmetry is broken by was asserted above, the tunneling rate is very sensitive to the
the nonzer&L, TR, andH, vacuum expectation values down value of the Yukawa coupling. Therefore, the minima asso-
to an SU2) subgroup of the color S@3). ciated with the third generation of squarks are the most in-

Evidently, for some otherwise reasonable values of thderesting. Second, itis well known that the thin-wall approxi-
parameters, the potential may have a global CCB minimummation works well only for very small values @ On the
If this is the case, we would like to estimate the tunnelingother hand, S [¢]<400 in Eg. (11) corresponds to
probability from the SML to the CCB minimum. 6/51/3>[(27772/2),2)/400]1/1%0.9, which is not the thin-

The semiclassical calculation of the false vacuum decayyall regime. This means that whenever the thin-wall limit is
width was done in Refs12-14 for the case of a single a good approximation, the transition we are interested in will
scalar field,¢(x). For a recent review of tunneling we refer not take place on the relevant time scale. The “dangerous”
the reader to Refl15]. The corresponding path integral is CCB minima lie, as a rule, outside the domain of validity of
dominated by the field configurationp(x) called the the thin-wall approximation.
“bounce” and can be evaluated using the saddle point In Appendix B, we find an approximate representation of
method[13,14. The bounce, being the stationary point of the bounce in the opposite limit, which we call a “thick-wall
the Euclidean action, is the nontrivial solution of the corre-approximation.” Unfortunately, the phenomenologically ac-
sponding Euler-Lagrange equation obeying certain boundargeptable values of the trilinear term can be approximated by

conditions. neither thin-wall nor thick-wall limiting expressions. For this
The transition probability per unit volume in the semiclas-reason, one must resort to a numerical analysis to determine
sical limit [14] is the fate of the false SML vacuum in the presence of the
lower lying CCB vacua.
F/V=Ae‘5@’ﬁ, (9) We will focus on the CCB minima associated with the

scale of order the electroweak and the SUSY breaking scales,
— ) _ . in contrast to other studid4.8,19 that discussed the possi-
whereS[ #] is the Euclidean action of the bounce, a classicalyjjiyy of a potential CCB minimum characterized by a
solution to the variational equatiofS=0. Planckian, or a GUT-scale scale VEV.
For the Universe to have decayed to the global minimum, i \vas argued in Ref[18] that, if the MSSM is to be
the transition has to take place within a four-volume of sizejncorporated in some grand unified thedGUT) character-
roughly, tg, wheret,~10" yr is the age of the Universe. ized by the scaléVl _, some new constraints should be im-
Taking the preexponential facto4r in EP) to be of order 504 on the MSSM parameters to eliminate the possibility
(100 GeVy, one obtains X/V)tg~1 for S[#1/A~400.  of 5 global CCB minimum developing at some sce
Therefore, a false vacuum whose decay rate is characterized TeV<Q<M _. We note that symmetry restoration at a

by S_[4]/4>400 can safely be considered stable. large energy scale is not required for the self-consistency of
The presence of many scalar fields in the potential introa spontaneously broken gauge theory. The latter is character-
duces a number of complications which will be addressedzed by a symmetric action and an asymmetric vacuum. Cos-
below? However, our immediate goal is to obtain a crudemological data may, at least in principle, provide a test of
estimate of the false vacuum decay rate. We therefore makehether the symmetric ground state existed in the early Uni-
a further simplification and reduce the tunneling problem toverse. However, the finite-temperature field theory describ-
that of a one-component case. ing an expanding universe has a different effective potential
Suppose the energy difference between the two minimé&om that of theT=0 case. Most of the flat directions of the
AV=¢€* is small in comparison to the height of the barrier. tree-level potential are lifted by terms of order SUSY break-
Then the thin-wall approximation is appropriate and the Euing scale’ Therefore, the CCB minima of the kind dealt with
clidean action of the bounce of sigeis given by in Ref.[18] may not be present in the early Universe. Fur-

3See also Refd9,16,17. “4In addition to finite-temperature and tree-level breaking of super-
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thermore, as was pointed out in REE9], the existence of a sideration of the evolution of the Universe. For the MSSM,
global CCB minimum at such a large value of the VEV is the analysis is complicated by the presence of flat directions
irrelevant for the low-energy physics because the color- angsee, e.g., Ref21]), lifted only by terms of order the SUSY
charge-conserving vacuum is effectively stable with respechreaking parameters, along which the scalar field may ac-
to tunneling into the CCB minimum of thatkind. — ~  q,jire 3 Jarge VEV and fall out of thermal equilibrium in the
theTS;Su;sl(Senrti);ggipvlg gécigglfﬁgomﬁ?\%gl}’;gﬁﬂtf;"T/'é?; toearly Universe. We leave this question t(_)'future study and

’ gassume that the electroweak phase transition proceeds in the

deep” vacuum occurs at a rate which is independent of th .
depth of such a minimum and is determined only by theusual manner, from an SU()SU(2)x U(1)-symmetric to

magnitude of the field and the steepness of the potential & broken phase.. . -

some well-defined point, the “escape pointg, (cf. the _This assumption is well justified for the types of CCB
discussion in our Appendix B The shape of the effective Minima we consider. It is well known that_ln inflationary
potential at the scal@> ¢, has no effect on the transition Models the large fluctuations of the scalar fields may popu-
probability, and therefore the low-energy physics is indepenlaté some color- and charge-breaking minima. This is true of
dent of the physics a®> ¢,. This is analogous to decou- both local and global minima. If the vacuum expectation
pling in perturbation theory, even though the perturbativevalue of the scalar field in that minimum is large in compari-
decoupling theorems may not apply to nonperturbative efson to the reheating temperature, the Universe may “freeze”
fects such as tunneling. in that minimum. However, the CCB minima we consider,

In practice, this decoupling allows us to treat the ultradeepnlike those of Refd.18,19, have VEV's of the order of the
minima on the same footing as the CCB minima of the treeelectroweak scale and usually disappear at temperatures of
level potential. Also, since all the relevant dimensionfulorder 1 TeV, except for the models with nontriviédnd
quantities, includingp, , are of order 100 GeV to 1 TeV, the atypica) symmetry restoration pattern like that of RES.
radiative corrections to the effective potential have a verySince most inflationary models predict much higher reheat-
small effect on the tunneling rates. Therefore, it is well jus-ing temperatures, one can assume thaffatl TeV the
tified to use a tree-level potential for evaluating the s_tabilitysu(g)x SU(2)x U(1) is unbroken.
of the SML vacuum and determining the allowed regions of  The main effect of the temperature-dependent corrections
parameters in the MSSM. In a future study, we plan to fur, {he effective potential is contributions of ordef to the
ther refine our present results by taking into account the raguadratic terms. The trilinear terms also receive some cor-
diative corrections to the effective potential. rections, linear irT.

Closely related is the issue of the directions in the scalar Tp¢ depth of the CCB minima depend on the relative
sector of the MSSM along which the tree-level potential apy,5jyes of the squark mass termeg) on one hand, and or
pears to be unbounded from beldWFB). These directions "o the other. At finite temperature, positive mass-squared
are chosen to zero the quartic terms in the.tree—leve_l poter{érms proportional td2 appear in the effective potential and
tial. Usually, the one-loop radiative corrections rectify thelead at some critical temperatufe,~ 100 GeV, to the dis-
situation by introducing positive definite quartic terms of theappéarance of the SML minimum. Singe u émd m, are
type STrM*In(M?/Q?). If this is the case, the full effective 1604 to be large in comparisonTQ, it is po'ssible that as
potential turns out to have only a very deep CCB minimum,[he Universe cooled the negative, energy CCB minima

and is not unbounded from below. The latter may be S€P3G5rmed at someTl ccg>T., before the Universe was cold
rated from any other vacuum by a h'_gh enou_gh barrier toenough to undergo the electroweak phase transition to the
make the presence of such a CCB minimum irrelevant. T

. : ) SML minimum. This would allow for the possibility of a
determine whether a certain region of thg parameter spagGe. -<iton from an SU(3¥ SU(2)x U(1)-symmetric to the
must be excluded, one must again examine the corresponfly, “anq charge-breaking phase. One then must consider

ing tunneling rates. However, since in any case the tunne"n%hether the transition to the CCB minimum actually oc-
rate is determined by the shape of the potential at the VEV'%urreol and, if so, what happened subsequently

of order a few TeV, one can treat the UFB directions as if Then, a priori there are three possibilities) the Uni-

they were leading to a very deep minimum. We stress thfi'}erse may stay in the symmetric minimum until the tempera-

tLTII:SBISd'tru?" regfatrﬁless Oft vvfrf]et?_er thet g|¥e;'1 dlrecl'uonf '.? Qure reaches ¢ and the usual electroweak transition takes
Iréction of the exact etfective potential, or only of its place; (i) the Universe may go to the CCB minimum and

let?-ordel'r(tree-tlevil, (?[Ee'lggg' ;t)ca?proxmattl)on. 'I;huls,t reeze there; andii ) the transition from the symmetric to the
€ tnneling rates for the irection may be calculatedoyy - minimum may occur in two stages: first the transition

b_y the same f[echnlque as for the prdmary .CCB minima CoNg, ) the unbroken to the CCB phase takes place and only
sidered in this wo_rk. Howeyer, .dn‘ferent fields may be in- then the Universe may tunnel to the SML vacuum. Clearly,
volyed, and a detailed investigation of the allowed parametel, . <acond possibility is excluded empirically.
regions is beyond the scope of this paper. Possibility (iii ) is intriguing. The idea of a multistage
phase transition, in the course of which the gauge group
might change a number of times finally arriving at the stan-
If the effective potential has more than one minimum,dard model group, is not new. An evolution of this kind
then the determination of the physical vacuum requires coneould have important implications for magnetic monopoles
[22], charge asymmetry of the Universe, and magnetic field
generation [23], baryogenesis[24], etc. The sufficient
symmetry, there are SUSY breaking terms associated with théthough not necessarconditions for the first part of this
metastability of the false vacuuf0]. scenario, the transition from the symmetric to the CCB

Ill. CCB MINIMA IN THE EARLY UNIVERSE
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phase, will be derived below. However, we have not found a A m?

model in which a second-order phase transition from the 'Y "

CCB minimum to the SML minimum would subsequently ! ///%

take place. It appears to be a generic feature that even when 5 %

the CCB minima can be populated via a second-order phase : ‘%%

transition, they are separated from the SML minimum by a %

thick barrier. If the Universe is stuck in the false CCB ! s m?
vacuum(which, in this scenario, must have a higher vacuum : N - “
energy than the SML phagehis would trigger a new stage oT? .

of inflation which could only be ended by a first-order phase t

transition characterized by a relatively low tunneling rate. It

was shown in Ref[25] that this sort of transition proceeds ¢ 2 W%

via bubble nucleation at a rate which is too slow to catch up 5t
with the expanding volume. The bubbles of the true vacuum M

would neither collide, nor percolate, preventing the Universe

from reheating. Therefore, the two-stage electroweak phase FIG. 1. Region of parameters which can be ruled out by requir-

transition could not have taken place in the early Universe.ing stability of the SU(2)XU(1)-symmetric minimum above the
Let us consider the possibility that a CCB minimum existselectroweak transition temperature.

at some temperatur€>T_.. At that temperature, the mass

matrix of the third generation squarkgnoring the rest of The coefficientsc and cg are of order 1; their exact
the squarks and sleptons the SU(2)<U(1)-symmetric  values depend on the spectrum of the MSSM and have been
phase H;=H,=0) is of the form computed, e.g., in Ref.26]. For new constraints to arise
) from the requirement of symmetric vacuum stability at
m7L+CLT2 0 T=T,, the inequalityT,~100 Ge\<m/ /jc _ must be
0 m +c T2 12 satisfied.
ty R We note that the high-temperature expandi@n] is not

expected to be accurate for~T.. Therefore, the accuracy

Suppose that it has at least one negative eigenvalugg which one can determine the boundaries of the shaded
which makes the SU(2j U(1)-symmetric vacuum unstable. regions in Fig. 1 is limited by one’s inability to determine the
Since T>T., the SML minimum does not yet exist. The effective potential accurately far~ T, due to the limitations
decay of the unstable vacuum will result in the creation ofgf the theoretical frameworp?]_ It is clear, however, that
the CCB condensate by a second-order phase transition. fie size of the shaded regions in Fig. 1 is rather small, so
the same time, we assume that all the necessary conditiofgeir exclusion cannot cause an appreciable reduction in the
have been applied to constrain the masses squared of squafiSSM parameter space. For the generic values of param-
to be positive(and large enoughin the SML minimum at  eters outside the shaded regions, the second-order phase tran-

zero temperature, where the mass matrix is sition into the CCB minimum does not take place.
) ) We have demonstrated that the symmetric vacuum of the
my My AH,+ uH, MSSM is generally stable with respect to second-order phase
- ) ' (13)  transitions to a CCB minimum dt>T.. However, the ques-
AH,+puH, My +m? tion of a first-order transition at finite temperature remains
R

open. The probability of tunneling in the high-temperature

where them, is the top quark mass. limit is suppressed by the factg2s]

We would like to see whether there is a region of param- -
eter space in which the matri23) has only positive eigen- [/VoeSd VAT (14)
values, while the matrix12) has a negative eigenvalue. It is

. . . . . 2 2
< ~ . . :
easg/ 0 gee that this is only_ possible |f eﬂﬁn@ﬂ'c MO \rhere Si[¢] is the three-dimensional action of tle=3
c.,Tc<mg. The shaded region shown in Fig. 1 corresponds,ounce. The time allowed for the transition is roughly

to the additional domain of parameters which can be ruled_=m;,/T?, the age of the Universe when the temperature

out by requiring stability of the SU(2JU(1) symmetric equalsT, which means tha&[g]/hT must be less than
minimum above the electroweak transition temperature. Thi%bout 45’ for the transition to take place

. . . . .42 2 .
domain comprises two regions in whichi; andmy; differ Thus, it appears most likely that T, is not too smallof
order 100 GeV, as is generally belieyethen the second-
. R order transition to the CCB minimum of the type discussed
(AH,+ wH;)?, where the values dfi, andH, are computed above is not likely, and the Universe is driven towards the
at the SML minimum, outlines the domain of positive deter-color and charge conserving SML minimum of the scalar
minant of the matrix in Eq(13). If one requires that the potential. While, admittedly, this is not a rigorous theorem,
squark masses be greater than 45 GeV, in accordance withe color- and charge-conserving minimum appears to be
the current experimental limits, it would further reduce thefavored by the thermal evolution of the Universe. We leave
area of the correspondinghaded regions in Fig. 1. the detailed investigation of this issue for future work.

L R
in sign (Fig. 1). The hyperbola r(n% +mt2)(m% +md) =
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Our next question is what happens after the Univers@romise between the “undershoot” and the “overshodit’
cools down in the SML minimum of the potential: will the is a generic property of the bounce that it is a saddle point of
false vacuum be effectively stable Bt=0 even in the pres- the Euclidean actiof13], and not a minimum, and thus
ence of some deeper CCB minima, or not. small changes in the initial conditions result in large changes
in the form of the solution. Therefore, it is impossible to find
the bounce numerically in the case of a multicomponent field
using the procedure just mentioned.

This difficulty was realized by the authors @8], who

To make a definitive determination of whether the SML proposed an iterative procedure to look for the bounce as a
vacuum is stable with respect to decay into a lower CCBspecial point of the discretized action on a lattice. Since the
minimum, one has to compute the tunneling probability nu-solution in question is not a minimum, but a saddle point,
merically. Analytic computation is usually feasible only in they tried to minimize the action with respect to random

IV. NUMERICAL ANALYSIS OF TUNNELING RATES
AT ZERO TEMPERATURE

the thin-wall limit. variations, while maximizing the same action with respect to
In the semiclassical limit, the zero-temperature tunnelingscalingr —Ar. We find that the iterative procedure of this
probability[12—14,16,17 per unit volume is kind is ill defined and cannot have a meaningful limit. First,
it is impossible to separate the variations corresponding to

_ N/2 qa 2 _ scaling from those orthogonal to scaling in a practical nu-
F/Vch[f | p(x)]2d*x (ﬂ) g Slel/n merical simulation. Second, although it is true that the
bounce maximizes the action with respect to scaling, it is
det[ — &2 +U/r(%] -1/2 easy to see that the generator of such a variation cannot be
— [1+0O(A)], (15  the eigenvector of the second variation operator correspond-
def —d,+U"(0)] ing to the negative eigenvalue.

o Instead, we use a new method proposef®into find the
where9[ ¢] is the Euclidean action of the bounce, a solutionsolution of Eqs(16) and(17). The idea is to turn the saddle
to the variational equationS=0, det stands for the deter- point of a Euclidean action into a true minimum by adding to
minant with all the zero eigenvalues omittédl,is the num- it some auxiliary terms which vanish faf= ¢(x). The re-
ber of Goldstone zero modes and tke is the group- sulting “improved action” will have a minimum at the point

theoretical coefficienf16,17]. corresponding to the desired solution, which can now be
Suppose the scalar potentid(é, . . . ,¢,) has a local found by minimizing the discretized version of improved
minimum at¢;=¢', i=1,2,...n, as well as at least one action on the lattice. Details of the application of this method

additonal  (local or  globa)]  minimum  at @are given in Appendix A.
di=¢!, i=12,...n; U(¢Y)<U(¢"). Then the bounce

¢(x)=(¢.1(xL. .,dn(X)) is a nontrivial G4)-symmetric V. THE MSSM VACUUM STABILITY
[29] solution ¢(r),r = Jx?, of the system of Euler-Lagrange AT ZERO TEMPERATURE
equations:
For the reasons explained above, we consider the MSSM
o P . o potential with the third generation only. We also neglect all
Agi(r)=—U(¢q,....,dn) (16) of the trilinear couplings except those proportional to the
[ largest Yukawa couplingy; andyy, . This justifies dropping
the squarks of the first two generations. Also, although we

with the boundary conditions allow the values of tgl from ~1 to ~ 60, the most stringent
o constraints come from the small f@megion, where the top
(d/dr)¢;i(r)|,=0=0, Yukawa coupling is larger. As was pointed out in R,

the noteworthy CCB minima can only develop in the direc-
— ¢ (17 tions along which one and only one of the trilinear terms is
bi(»)=¢". nonzero. Thus, it is the size of the largest Yukawa coupling
that affects the lifetime of the false vacuum the most. We
In the case of a potential that depends on a single scalaherefore consider the following subset of the MSSM scalars:
field, one can solve Eq16) with the boundary condition <D={H°,H8,HI,H2*,5 1.b}, whereQ ={t ,b }.
(17) numerically. The straightforward technique is to assume LROR Lottt
some value for the unknown quantity(0)= ¢°¢, the so-
called “escape point.” Then one can integrate E6) nu-
merlca_lly fa-nd vary the escape point until the prgper limit W:thLH2tR+beLHle_“H1H2 (18
¢i(*)=¢" is reached. Here one uses the fact that if for some
value ¢®= ¢° the ccjﬂespongngsi(oo)>¢f, and for some

other valueg®= ¢ ¢;(»)<¢', then the true escape point Sgven in the case of a single scalar field, the shooting method may
must lie somewhere betweesf and ¢S This strategy fails  turn out to be ineffective for a potential with sufficiently degenerate

when one has to deal with a potential that depends on severalinima. This is because one may be required to specify the trial
scalar fields. The peculiarity of one-dimensional topology novalue for the escape point with an exceedingly high precision to
longer allows one to find the true escape point as the comeompute the action of the bounce to a given accuracy.

The superpotential
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corresponds to the following scalar potentfalith the soft S
SUSY breaking terms includgdt the tree level: 2
1500| 4.
V:VZ,H+V2+V3+V4' (19) .i.'
whereV,, comprises the terms quadratic in the Higgs fields, ,'.
1000 | .-
2 2 2 77 2 7 P
Vo= +m T4+ ms T2+ me b2 +ms b2, (20) ¥
L R L R ot
Va=—yA(Ht —H; b JT —YpAp(H T —Hib )b_ 500 |1 :'f)'f'.f.:._ i G I
—y(H)*TT —ypu(H3)*T b_ e -
—yu(H)*B T —you(HY*b b +Hec, (21 .
PR LR 2 TR 0 05 10 15 20 Tev
andV, is comprised of th® terms, as well as the terms of relative depth of the CCB minimum

the formy?,¢%¢5, where g, e . _ N

We now come to the issue of radiative corrections. It has F!G- 2. The action of the bouncg, does not depend sensitively
been arguedsee, e.g.[7]) that if the CCB minimum occurs on _the depth of the CCB minimumV, except in the “thin-wall”
at a scale which is within 1 or 2 orders of magnitude from!mit (smallAV).

the electroweak scale, then tiegarithmig radiative correc- very sensitive to the depth of the CCB minimum, except in

tions are too small to cause a noticeable distortion in thgne’|imit of nearly degenerate minima, the so-called “thin-
sha_pe Of the effect_lve _potent|al, and therefo_re can be |gno_reqva||n limit. This is to be expected, as was discussed in Sec.
While this conclusion is correct, we would like to emphasize|

that, as was discussed in Sec. Il it is not so much the posi- The domain of stability of the false SML vacuum with
tion of the CCB minimum, as the size of the bounce and thgespect to tunneling is delineated by stars in Fig. 3. The
value of the escape point that determine the scale to whicfigpter top squark in the presence of the large trilinear cou-
the bounce will “probe” the effective potential. The shape plings forces the barrier, which keeps the system in the meta-
of the effective potential beyond that scale has no effect olkiaple vacuum, to be thinner and lower. That results in a
the tunneling rate. In our numerical calculations, a typicalpigher likelihood of tunneling. The points labeled by boxes
size of the bounce for realistic va_lties of of the MSSM pa-fy|| into the domain that is excluded by the existence of our
rameters is of order (30.1 TeV) " (except for deliber- (color- and charge-conservingniverse. On the other hand,
ately fine-tuned cases of highly degenerate minima in whicky yoth |eft-handed and right-handed stops are heavy, and if
the bounce blows up to the size of its thin-wall limit, the trilinear terms are small, then the false vacuum is stable

R~1/e, and the tunneling becomes highly improbablehis  anq the presence of a global CCB minimum is irrelevant. We
justifies post factunthe neglect of the one-loop contribution

in the effective potential. As long as one never encounters

very small(in length unit$ bounces, one can be certain that 700
only the shape of the potential around the electroweak scale
is relevant for tunneling.

We search the MSSM parameter space by generating ran-
domly the values of the parameters that enter in the scalar
potential (19). Then the minima are found numerically and
the tunneling probability is computed using the method of
Appendix A.

The results of the numerical analyses are plotted in Fig. 2,
where the action of the boun&is shown as a function of
the relative depth of the CCB minimum with respect to the
SML minimum, while the other MSSM parameters are var-
ied randomly. For each point plotted, the global minimum of

600

500

400

300

200

lightest squark mass (GeV)

the potential is not color and charge conserving. Neverthe- 100

less, one observes th&ttakes values on both sides of the

critical value,S=400. Therefore, for some values of param- 1000 2000 3000 4000 5000
eters, namely those for whicls>400, the false SML A+u (GeV)

vacuum is stable on a time scale large compared to the age of

the Universe. Such color- and charge-breaking minima are g|G, 3. The domains of stabilitstars and instability(boxes of
“safe,” and the corresponding parameters are allowed. Ifhe false SML vacuum with respect to tunneling into the global
contrast, those points that correspon&t400 are ruled out  CCB minimum. Light top squark and large trilinear couplings gen-
by the mere existence of the world as we know it. Anothererally correspond to a lower and thinner barrier and, thus, higher
lesson one learns from Fig. 2 is that the tunneling rate is noprobability of tunneling.
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note that a number of models favor the left lower corner of

the plot in Fig. 3, where only a few “dangerous” CCB
minima occur.
It would be useful to derive some empirical algebraic con- 107
straints to distinguish between the allowed and excluded do-
mains of parameter space based on the numerical results. For
instance, it has been argufg] that the inequality o~
3
Q
N
A+ 3u2< 3(m§L+ m%R) (22) 3
1
6
is a reasonably good condition for excluding a global CCB 10
minimum. This inequality would force one to be above the
dotted line in Fig. 4. This is in good agreement with our
numerical results. However, if one takes into account the
tunneling rates, the constraif®2) is relaxed significantly. 6 7
The empirical inequality which should replace Eg2), 10 . , 10
A+3u (GeV )
At2+3,u2<7-5(m% +m% ), (23) FIG. 4. Each point represents the set of the MSSM parameters
L R for which the global minimum of the potential is color and charge

breaking. The stars correspond to the SML false vacua whose life-
time is large compared to the age of the Universe. The boxes indi-
cate those points in the parameter space for which the false SML
vacuum should have decayed via quantum tunneling. The dotted
Hine represents the empirical criterion for the absence of the global
CCB minima:A?+ 3u2<3M?, whereM2=m~2t~ +m—f~ Taking into

is depicted by a thick dashed line in Fig. 4. The simple
condition (23), should be applied with caution because
strictly speaking, it is neither necessary nor sufficient. Itis a
approximate empirical inequality that may be useful for a ) .
crude determination of whether the CCB minima are “dan-account the tunneling rates relaxes this constraint to, roughly,
gerous.” A%+32<7.5M?, shown as the dashed line. The scale is logarith-
For the phenomenologically attractive values|pf<2  mic.
TeV, |A|<4 TeV, it is generally true that “the larger the
trilinear coupling, the more dangerous is the corresponding VI. CONCLUSION
CCB minimum.” However, it is instructive to examine what
happens to the tunneling probability in the limit of very large
w andA; (and large enough squark mass terms to ensure t
existence of the SML minimuim In that limit, as the CCB
minimum moves away from the SML minimum, the barrier
separating the two becomes thicker, and the false vacuu
should become more stable. This is, in fact, what happen

The set of paints in Fig. 5 !nclgdes those p0|(1.t}.1:ated. In The existence of the CCB minima of the scalar potential
the lower left cornérshown in Figs. 2—4. In addition, Fig. 5 g 1ts in some important constraints on models with low-
displays the points corresponding to some very_Iarge_ Valueénergy sypersymmetry. However, the commonly imposed
pf A; and u. As expected, the tunneling probability dimin- (see, e.g., Ref$30,31)) requirement that the SML minimum
ishes for very large values @% and u, andmy andmy . g giopal is too strong and may overconstrain the theory. In
To summarize, if the global CCB minimum is nearly de- fact, for a large portion of the parameter space the presence
generate with the local SML minimuithin-wall limit), then  of the global CCB minimum is irrelevant because the time
the tunneling probability is extremely small. As the trilinear required for the Universe to relax to its lowest energy state
couplings increase, the false vacuum decay rate increasesay exceed its present age. The basic reason for this is that
because the escape point of the bounce moves out of the fidite quantum tunneling is a nonperturbative phenomenon that
vicinity of the global minimum into the region in which the is naturally associated with the energy scale that is exponen-
gradient of the potential is significant. However, a furthertially smaller(suppressed by a factor €xpS}) than the typi-
increase in the size of the trilinear couplings, as well as thecal scale in the theory.
consequent increase in the squark mass terms, makes theWe have computed numerically the SML false vacuum
barrier thicker and pushes the escape point away from thdecay rates for a variety of values of the MSSM parameters.
SML minimum. This eventually causes a decrease in théur results indicate clearly that the MSSM vacuum stability
tunneling rate. In accordance with one’s intuition, the low-with respect to tunneling into a CCB minimum imposes im-
energy physics is unaffected by the physics at the very highportant constraints on models with low-energy supersymme-
energy scales. try. Similar considerations apply to UFB directions, although

The color- and charge-conserving minimum may not be
the global minimum of the MSSM potential. It is possible
NRat the Universe rests in a false vacuum whose lifetime is
large in comparison to the present age of the Universe. Un-
der fairly general conditions, the SML vacuum may be fa-
Yored by the thermal evolution of the Universe, even if it
Yoes not represent the global minimum.
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L ‘ FIG. 6. The improved actiod ¢] (dashed curvehas a mini-
a ” T mum that coincides with the saddle point of the actual Euclidean
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5 2000 7000 5000 3000 on the right corresponds to the trivial solutigifx)= ¢ for which
S p]=9 ¢]=0. The size of the “gap” between the two curves is
At (GeV) a function of\.

FIG. 5. Tunneling probability for unphysically large values of Where d, is the position of them’s site of the lattice in
A, and . As the CCB minimum moves farther away, it becomes dimensionless units, andl is the length parameter that de-
“less dangerous.” As before, the stars mark the points withtermines the overall scale and is chosen so as to optimize the
S>400, while the boxes depict those wif< 400. computation.

The next step is to define the improved acti®j, for
we have not carried out a detailed study of the allowed pawhich the bounce is the minimum. We do that by adding to
rameter space. the action some auxiliary terms whid) vanish as¢(x)
approaches the bounce, afid) make the bouncep(r) a

minimum of the improved actiofg]:
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numerical simulation to succeed.

Initially, one may choose

S p]1=S[p]+\|T[p]+2V[ $]|¥2, (A4)

where\ is some arbitrarydimensionlessLagrange multi-

APPENDIX A

The numerical algorithm for computing the tunneling
probability comprises several steps. First, the positions of th
minima, ¢' and ¢’ of the potentialU(¢) are determined
numerically for a given set of values of the MSSM param-
eters. If there is no minimum below the SML vacuum, a new
set of parameters is chosen. We define the Euclidean action
on theL -point lattice:

#°, m<L/2,
=1 (AS)
S ¢1=Tl o]+ V], (A1) $i, m=L72,
L-1 N (ML g2 where ¢°. is a zero QfV(qS). Alternatively, one may start
TIb1=2m72A% e —dd? ' ! , from a different profile for the bounce, e.g., the thick-wall
[4] an=1 (A2~ Am) Uy 21 2(dm1—dm) *A° ansatz described below in the Appendix B.
(A2) Then we find the optimized value for the overall scale
A by maximizing the action with respect to. After that, we
L1 allow random variations of the values of the scalar field at
V[ 1= 2m2A% d . —d)d3U(e™, .. oMy, each lattice site to minimize the improved actig). The
[¢1=2m mE=1 (G2~ dm)dnU (¢ ) iterations stop when further variations do not lead to a reduc-
(A3)  tion in the improved action. As an independent criterion of
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the quality of the fit, we require thal[&]/(—2V[®]) as in the thin-wall limit[13]. The equation for the bounce
=1+0.01 (see, e.g., Refl9] and references therein for a o(r) for larger (and, therefore, smalp) becomes
discussion of this identijy

As was explained in Secs. Il and V, tunneling into a — —
“UFB direction” is equivalent to a transition into a very ¢"(r)=0U(p) dp~m*¢?, ©3)
deep CCB minimum. The details of the effective potential at &OC)=O
scales much larger thap® do not affect the decay probabil- ’
|ty In particular, it is irrelevant whether the a.”eged “UFB where m is the mass term for the potential
direction” is heading towards a very deep minimum, or mi- ( ¢) = (m2/2)$%+ - -- . The solution of Eq(B3) is
nus infinity. This allows one to introduce an effective cutoff
to stop the runaway fields from going to infinity. In practice, — e
we did not allow the value ofp to run beyond 10 TeV. ¢(r)=Ce ™, (B4)
Therefore, the “UFB directions” were treated as if they lead
to a CCB minimum with a 10 TeV VEV. In each particular .
case this procedure is justifigubst factumby ensuring that Mate solution for the bounce from the two asymptoties)

the value of the escape point is small compared to a 10 Te\?nd (32.)' at some p(_)i.nr =R. The. values ch anq R are
cutoff. determined by requiring continuity and differentiability of

the solution ar =R. The resulting ansatz is

whereC is an arbitrary constant. We now sew the approxi-

APPENDIX B
. » po—(alB)r?, r<R,
In the limit of nearly degenerate minima separated by a

high barrier, the so-called thin-wall limit, the bounce can be d(r)=9 ar (B5)

approximated by a smoothed out step funct[d3]. This 4—e‘m“‘R>, r=R,

approximation proved very useful in estimating the tunneling m

rates and was used in our analysis of the toy model in Sec. I‘Nhere

In practice, however, one rarely encounters a situation in

which the thin-wall approximation is in good agreement with

the numerical resultéc.f. Ref.[3]). The tunneling rates are S

usually very small in the thin-wall limit, and therefore in R:E[ 1+8m°ge/a-1], (B6)

many physically interesting models the first-order phase tran-

sition takes place when the energy difference between thand the value ofp, is an unknown parameter which can be

true and the false vacuum is not small in comparison to théound either from requiring that

height of the barrier. Then it is necessary to go beyond the

thin-wall approximation, which is usually done by means of d

a numerical calculation. 0=—S=—(T+V), (B7)
If, however, the energy differenc&V between the two dge = doe

vacua is larger than the height of the barrier, one can find a . . .

simple approximation to the bounce in what we call a©' €duivalently, from solving the equation

“thick-wall” limit. As AV increases, the so-called “escape

point,” the value of the field in the center of the bounce T=-2V, (B8)

d=#(0), moves away from the minimum of the potential.

Then Eq.(16) can be linearized in the vicinity of the escape Where

point becaus@U (¢)/d¢ is a constant independent ¢f for

¢w¢(0):Theref0@inthe vicinity of the center of thg9)- (74 1 dar) 2
symmetric bounceb(r), T=2m Jo r drz ar
S 3
¢+ -¢'(r)=-a, and
_ (B1) oo _
¢'(0)=0, v=2w2f0 r3drU(e(r)) (B9)

where the constarmt=|(dU/d¢$)(¢pe)|. This is a linear equa-

tion whose only solution satisfying the boundary condition isare functions ofg, .

of the form The representation of the bounce in the thick-wall limit

described above is approximate and is not very useful in

application to the MSSM. However, it exhibits the essential

features of tunneling in this limiting case. We also found it

convenient to use this approximate solution as an initial pro-
Outside the small neighborhood of the origin, the approxi-ile for the bounce in the numerical procedure described in

mation(B1) is not valid andg(r) falls off exponentially, just  Appendix A.

— a
¢(r)=—gr+ de. (B2)
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