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Phase transitions and vacuum tunneling into charge- and color-breaking minima in the MSSM
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The scalar potential of the MSSM may have local and global minima characterized by nonzero expectation
values of charged and colored bosons. Even if the true vacuum is not color and charge conserving, the early
Universe is likely to occupy the minimum of the potential in which only the neutral Higgs fields have nonzero
VEV’s. The stability of this false vacuum with respect to quantum tunneling imposes important constraints on
the values of the MSSM parameters. We analyze these constraints using some novel methods for calculating
the false vacuum decay rate. Some regions of the MSSM parameter space are ruled out because the lifetime of
the corresponding physically acceptable false vacuum is small in comparison to the present age of the Uni-
verse. However, there is a significant fraction of the parameter space that is consistent with the hypothesis that
the Universe rests in the false vacuum that is stable on a cosmological time scale.@S0556-2821~96!00421-3#

PACS number~s!: 12.60.Jv, 11.10.Wx, 11.30.Pb, 14.80.Ly
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I. INTRODUCTION

In the standard model color and electric charge are au
matically conserved because the only fundamental sca
field is the Higgs boson, a colorless electroweak doublet. T
Higgs potential has a continuum of degenerate minima, b
these are all physically equivalent, and without loss of ge
erality one can always define the unbroken U~1! generator to
be the electric charge. This is not the case in the minim
supersymmetric standard model~MSSM!, which employs a
pair of Higgs doublets as well as a number of other sca
fields, the supersymmetric partners of quarks and lepto
Although the relative alignment of the two Higgs doublets
vacuum expectation values~VEV’s! in group space is physi-
cal, the minimum of the Higgs potential~at least at the tree
level! preserves electric charge1 as long as the squark and
slepton fields have vanishing classical values~see, e.g., Ref.
@1# and references therein!. However, the full scalar potential
of the MSSM may have additional charge- and/or colo
breaking~CCB! minima due to the vacuum expectation va
ues of charged and/or colored scalars.

The existence of the CCB minima in the MSSM in add
tion to the acceptable standard-model-like~SML! minimum
may have important physical consequences. One might
pect that the regions of parameter space for which there i
global CCB minimum could be automatically excluded
thereby further restricting theoretical predictions for th
MSSM spectrum. However, one must be careful in drawin
such conclusions. Just as the cup being the lowest point

*Electronic address: sasha@langacker.hep.upenn.edu. Presen
dress: Theory Division, CERN, CH-1211 Geneva 23, Switzerlan
†Electronic address: pgl@langacker.hep.upenn.edu
‡Electronic address: segre@dept.physics.upenn.edu
1This need not be the case in a general model with two Hig

doublets.
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the golf course by no means guarantees that the ball will end
up there after being struck, the Universe at present may not
be in its lowest possible energy state. Instead, it may rest in
a false vacuum whose lifetime is large on a cosmological
time scale. The fundamental reason that makes this possible
is that quantum tunneling, a nonperturbative effect respon-
sible for the first-order phase transitions in field theory, natu-
rally introduces a time scale that is exponentially larger than
the typical scale that characterizes the effective potential.
Consequently, the relaxation to the lowest energy state from
some excited state may take a very long time. In particular,
parameters for which the local SML ‘‘false vacuum’’ has a
lifetime large in comparison to the age of the Universe may
be acceptable, provided of course that the SML minimum
was populated first in the evolution of the Universe.

The existence of local CCB minima which were popu-
lated temporarily during the early stages in the evolution of
the Universe would also have dramatic implications for cos-
mology and astrophysics. In particular, since baryon and lep-
ton numbers are spontaneously violated in the CCB vacua,
their existence might have important consequences for
baryogenesis.

Previous attempts@2–8# to elucidate the structure of the
CCB minima in the MSSM met with serious difficulties.
Some analyses@2,4,5,8# attempted to find analytic con-
straints on CCB minima. However, such conditions are gen-
erally neither necessary nor sufficient@4# except for overly
simplified toy models which resemble the MSSM in some
features, but cannot be used to draw firm conclusions about
the MSSM. For this reason, recent studies@6–8# have em-
ployed extensive numerical analyses. Second, the determina
tion of whether or not a global minimum is ‘‘dangerous,’’
must rely on a trustworthy calculation of the tunneling rates
at present and in the early Universe. There is no reason why
the Universe cannot be resting in a false vacuum which has a
very long~on the cosmological scale! lifetime. We therefore
disagree with the restrictions imposed by a number of au-
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thors @5,7,8# on the allowed MSSM parameter space, whi
did not consider the corresponding tunneling rates. The c
culation of the transition probability is more or less straigh
forward in the case of a single scalar but becomes extrem
difficult for a potential that depends on several fields. Belo
we address these difficulties and employ a new technique@9#
to determine the lifetime of the false vacuum in the case
the MSSM.

We will see, in fact, that the SML minimum is effectively
stable with respect to the transitions to the correspond
CCB minima for a substantial part of the allowed parame
space in the MSSM. We will also argue that, due to t
specific nature of the CCB minima, they would not ha
been populated during the early stages of the evolution of
Universe, except for some small regions of parameters.
the other hand, the stability of the color- and charg
conserving vacuum on the time scales of order of the age
the Universe imposes important constraints on theoret
models and can provide guidance for future experimen
searches.

The paper is organized as follows. In Sec. II, we discu
general features of the SML vacuum decay in the MSS
In Sec. III, we consider the electroweak phase transit
in the early Universe, in particular the issue of th
SU(3)3SU(2)3U(1)-symmetric vacuum stability before
the transition. In Secs. IV and V, we study the zer
temperature tunneling rates numerically. The method use
compute the transition probability is described in Append
A, while Appendix B contains an approximate description
tunneling in the limit of a very deep true minimum.

II. ESSENTIAL ASPECTS OF THE MSSM VACUUM
STABILITY

We begin by considering a simplified version of th
MSSM potential. As was emphasized in@3,6#, the third gen-
eration requires the most attention in connection with t
issue of color and charge breaking, because the the C
minima associated with the the large Yukawa coupling a
the most dangerous.2 We will see shortly that the tunneling
rate into a CCB minimum is roughly proportional t
exp(2c/y2), wherey is the corresponding Yukawa couplin
andc is a constant.

We begin by considering a model defined by the super
tential:

2It was argued in@8# that a global CCB minimum need not b
associated with a large Yukawa coupling because in the limit
small Yukawa coupling both the cubic and the quartic terms
small and only their relative values affect the depth of the CC
minimum. This is true, as long as one ignores the quarticD terms
which, in fact, become more important in the small Yukawa co
pling limit. However, significant tunneling rates from the met
stable SML vacuum are only possible if the CCB minima are as
ciated with a large Yukawa coupling: as was shown in Ref.@10#, the
height of the barrier separating the SML minimum from the CC
minimum is roughly proportional to 1/ymin

2 whereymin is the small-
est Yukawa coupling associated with the fields that acquire nonz
VEV in the CCB minimum. The corresponding tunneling rates a
greatly suppressed for smally.
ch
al-
t-
ely
w,

of

ing
ter
he
ve
the
On
e-
of

ical
tal

ss
M.
ion
e

o-
d to
ix
of

e

he
CB
re

o
g

po-

W5yt
L
t
R
H21mH1H2 , ~1!

where t
L
and t

R
denote the top quark superfields, and th

H1 andH2 are the MSSM Higgs bosons. At this point we
ignore the leptons, lighter quarks, and the electricall
charged Higgs components. The resulting scalar potenti
including the soft supersymmetry~SUSY-! breaking terms,
is, at the tree level,

V5V21V31V4 , ~2!

where

V25m1
2H1

021m2
2H2

0212m3
2H1

0H2
01m

t̃
L

2
t̃
L

21m
t̃
R

2
t̃
R

2 , ~3!

V3522AH2
0t̃

L
t̃
R
22mH1

0t̃
L
t̃
R
, ~4!

V45 t̃
L

2t̃
R

21 t̃
L

2H2
021 t̃

R

2H2
021V

D
. ~5!

For the SU(3)3SU(2)3U(1) gauge group, theD terms
are

V
D
5

1

8y2 Fg12SH1
022H2

022
1

3
t̃
L

21
4

3
t̃
R

2D 2
1g2

2~H1
022H2

021 t̃
L

2!21
4

3
g3
2~ t̃

L

22 t̃
R

2!2G . ~6!

Here the color indices are suppressed. We have absorbed
Yukawa coupling in Eqs.~2!–~6! by the redefinition of the
fieldsf→f/y and of the scalar potentialV→y2V. Also, all
the fields are made real by a rephasing, and the compl
phases are absorbed into the definitions ofA andm param-
eters.~There are strong experimental limits on such phase
which forceA and m to be nearly real; see Ref.@11# for
reviews of these constraints.!

In the t̃
L
5 t̃

R
50 hyperplane, Eq.~2! describes the usual

MSSM Higgs potential. The constraint

m1
2m2

2,~m3
2!2,Sm1

21m2
2

2 D 2 ~7!

ensures the existence~first inequality! and stability~second
inequality! of the minimum with the correct pattern of elec-
troweak symmetry breaking. The latter inequality result
from requiring that the quadratic term is positive definite
along the flat directions of the quartic termV4.

Much of our discussion will concentrate on the effects o
the trilinear termsV3. If A and/orm are large enough, the
potential acquires an additional local, or global, minimum a
some point outside thet̃

L
5 t̃

R
50 hyperplane. In this case,

the electromagnetic U~1!, color SU~3!, as well as some other
symmetries@e.g., the global U~1! baryon# will be spontane-
ously broken by the nonzero VEV oft̃

L
and t̃

R
. For example,

the potential~2! has, for appropriate values ofA andm, four
degenerate CCB minima mapped onto each other by the f
lowing reflections:
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S15H H1→2H1

H2→2H2

t̃
L
→2 t̃

L

J ,

S25H H1→2H1

H2→2H2

t̃
R
→2 t̃

R

J ,

S35S1S25H t̃ L→2 t̃
L

t̃
R
→2 t̃

R
J ~8!

The gauge SU(3)3SU(2)3U(1) symmetry is broken by
the nonzerot̃

L
, t̃

R
, andH2 vacuum expectation values down

to an SU~2! subgroup of the color SU~3!.
Evidently, for some otherwise reasonable values of t

parameters, the potential may have a global CCB minimu
If this is the case, we would like to estimate the tunnelin
probability from the SML to the CCB minimum.

The semiclassical calculation of the false vacuum dec
width was done in Refs.@12–14# for the case of a single
scalar field,f(x). For a recent review of tunneling we refe
the reader to Ref.@15#. The corresponding path integral is
dominated by the field configurationf̄(x) called the
‘‘bounce’’ and can be evaluated using the saddle po
method@13,14#. The bounce, being the stationary point o
the Euclidean action, is the nontrivial solution of the corre
sponding Euler-Lagrange equation obeying certain bound
conditions.

The transition probability per unit volume in the semiclas
sical limit @14# is

G/V5Ae2S[ f̄]/\, ~9!

whereS@f̄# is the Euclidean action of the bounce, a classic
solution to the variational equationdS50.

For the Universe to have decayed to the global minimu
the transition has to take place within a four-volume of siz
roughly, t0

4, where t0;1010 yr is the age of the Universe.
Taking the preexponential factor in Eq.~9! to be of order
(100 GeV)4, one obtains (G/V)t0

4;1 for S
E
@f̄#/\;400.

Therefore, a false vacuum whose decay rate is characteri
by S

E
@f̄#/\.400 can safely be considered stable.

The presence of many scalar fields in the potential intr
duces a number of complications which will be address
below.3 However, our immediate goal is to obtain a crud
estimate of the false vacuum decay rate. We therefore m
a further simplification and reduce the tunneling problem
that of a one-component case.

Suppose the energy difference between the two minim
DV5e4 is small in comparison to the height of the barrie
Then the thin-wall approximation is appropriate and the E
clidean action of the bounce of sizeR is given by

3See also Refs.@9,16,17#.
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DV12p2R3E

fSML

fCCBA2V~H !df, ~10!

where the appearance of the Yukawa coupling on the left
hand side of the equation is due to the fact that the field
have been scaled by a factory in the beginning.

The bouncef̄(x) corresponds to the extremum of the
Euclidean action with respect toR, which is reached for the
critical size of the ‘‘bubble’’ Rc53S1 /e

4, where
S15*A2V(H)df. The corresponding action is

S
E
@f̄#'

27p2

2y2
S1
4

e12
. ~11!

Some comments are in order. First, we observe that, a
was asserted above, the tunneling rate is very sensitive to th
value of the Yukawa coupling. Therefore, the minima asso
ciated with the third generation of squarks are the most in
teresting. Second, it is well known that the thin-wall approxi-
mation works well only for very small values ofe. On the
other hand, S

E
@f̄#,400 in Eq. ~11! corresponds to

e/S1
1/3.@(27p2/2y2)/400#1/12'0.9, which is not the thin-

wall regime. This means that whenever the thin-wall limit is
a good approximation, the transition we are interested in wil
not take place on the relevant time scale. The ‘‘dangerous’
CCB minima lie, as a rule, outside the domain of validity of
the thin-wall approximation.

In Appendix B, we find an approximate representation of
the bounce in the opposite limit, which we call a ‘‘thick-wall
approximation.’’ Unfortunately, the phenomenologically ac-
ceptable values of the trilinear term can be approximated b
neither thin-wall nor thick-wall limiting expressions. For this
reason, one must resort to a numerical analysis to determin
the fate of the false SML vacuum in the presence of the
lower lying CCB vacua.

We will focus on the CCB minima associated with the
scale of order the electroweak and the SUSY breaking scale
in contrast to other studies@18,19# that discussed the possi-
bility of a potential CCB minimum characterized by a
Planckian, or a GUT-scale scale VEV.

It was argued in Ref.@18# that, if the MSSM is to be
incorporated in some grand unified theory~GUT! character-
ized by the scaleM

G
, some new constraints should be im-

posed on the MSSM parameters to eliminate the possibility
of a global CCB minimum developing at some scaleQ,
1 TeV!Q,M

G
. We note that symmetry restoration at a

large energy scale is not required for the self-consistency o
a spontaneously broken gauge theory. The latter is characte
ized by a symmetric action and an asymmetric vacuum. Cos
mological data may, at least in principle, provide a test of
whether the symmetric ground state existed in the early Uni
verse. However, the finite-temperature field theory describ
ing an expanding universe has a different effective potentia
from that of theT50 case. Most of the flat directions of the
tree-level potential are lifted by terms of order SUSY break-
ing scale.4 Therefore, the CCB minima of the kind dealt with
in Ref. @18# may not be present in the early Universe. Fur-

4In addition to finite-temperature and tree-level breaking of super
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thermore, as was pointed out in Ref.@19#, the existence of a
global CCB minimum at such a large value of the VEV
irrelevant for the low-energy physics because the color- a
charge-conserving vacuum is effectively stable with resp
to tunneling into the CCB minimum of that kind.

This is an example of a phenomenon which is similar
the usual~perturbative! decoupling. Tunneling into a ‘‘very
deep’’ vacuum occurs at a rate which is independent of
depth of such a minimum and is determined only by t
magnitude of the field and the steepness of the potentia
some well-defined point, the ‘‘escape point,’’fe ~cf. the
discussion in our Appendix B!. The shape of the effective
potential at the scaleQ@fe has no effect on the transition
probability, and therefore the low-energy physics is indepe
dent of the physics atQ@fe . This is analogous to decou
pling in perturbation theory, even though the perturbati
decoupling theorems may not apply to nonperturbative
fects such as tunneling.

In practice, this decoupling allows us to treat the ultrade
minima on the same footing as the CCB minima of the tre
level potential. Also, since all the relevant dimensionf
quantities, includingfe , are of order 100 GeV to 1 TeV, the
radiative corrections to the effective potential have a ve
small effect on the tunneling rates. Therefore, it is well ju
tified to use a tree-level potential for evaluating the stabil
of the SML vacuum and determining the allowed regions
parameters in the MSSM. In a future study, we plan to fu
ther refine our present results by taking into account the
diative corrections to the effective potential.

Closely related is the issue of the directions in the sca
sector of the MSSM along which the tree-level potential a
pears to be unbounded from below~UFB!. These directions
are chosen to zero the quartic terms in the tree-level pot
tial. Usually, the one-loop radiative corrections rectify th
situation by introducing positive definite quartic terms of th
typeSTrM4ln(M2/Q2). If this is the case, the full effective
potential turns out to have only a very deep CCB minimu
and is not unbounded from below. The latter may be se
rated from any other vacuum by a high enough barrier
make the presence of such a CCB minimum irrelevant.
determine whether a certain region of the parameter sp
must be excluded, one must again examine the correspo
ing tunneling rates. However, since in any case the tunne
rate is determined by the shape of the potential at the VE
of order a few TeV, one can treat the UFB directions as
they were leading to a very deep minimum. We stress t
this is true, regardless of whether the given direction is
UFB direction of the exact effective potential, or only of it
finite-order~tree-level, one-loop, etc.! approximation. Thus,
the tunneling rates for the UFB direction may be calculat
by the same technique as for the ordinary CCB minima co
sidered in this work. However, different fields may be in
volved, and a detailed investigation of the allowed parame
regions is beyond the scope of this paper.

III. CCB MINIMA IN THE EARLY UNIVERSE

If the effective potential has more than one minimum
then the determination of the physical vacuum requires c

symmetry, there are SUSY breaking terms associated with
metastability of the false vacuum@20#.
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sideration of the evolution of the Universe. For the MSSM,
the analysis is complicated by the presence of flat direction
~see, e.g., Ref.@21#!, lifted only by terms of order the SUSY
breaking parameters, along which the scalar field may ac
quire a large VEV and fall out of thermal equilibrium in the
early Universe. We leave this question to future study and
assume that the electroweak phase transition proceeds in t
usual manner, from an SU(3)3SU(2)3U(1)-symmetric to
a broken phase.

This assumption is well justified for the types of CCB
minima we consider. It is well known that in inflationary
models the large fluctuations of the scalar fields may popu
late some color- and charge-breaking minima. This is true o
both local and global minima. If the vacuum expectation
value of the scalar field in that minimum is large in compari-
son to the reheating temperature, the Universe may ‘‘freeze’
in that minimum. However, the CCB minima we consider,
unlike those of Refs.@18,19#, have VEV’s of the order of the
electroweak scale and usually disappear at temperatures
order 1 TeV, except for the models with nontrivial~and
atypical! symmetry restoration pattern like that of Ref.@6#.
Since most inflationary models predict much higher reheat
ing temperatures, one can assume that atT;1 TeV the
SU(3)3SU(2)3U(1) is unbroken.

The main effect of the temperature-dependent correction
to the effective potential is contributions of orderT2 to the
quadratic terms. The trilinear terms also receive some cor
rections, linear inT.

The depth of the CCB minima depend on the relative
values of the squark mass terms (m0) on one hand, andA or
m on the other. At finite temperature, positive mass-square
terms proportional toT2 appear in the effective potential and
lead, at some critical temperature,Tc;100 GeV, to the dis-
appearance of the SML minimum. SinceA, m, andm0 are
allowed to be large in comparison toTc , it is possible that as
the Universe cooled the negative energy CCB minima
formed at someTCCB.Tc , before the Universe was cold
enough to undergo the electroweak phase transition to th
SML minimum. This would allow for the possibility of a
transition from an SU(3)3SU(2)3U(1)-symmetric to the
color- and charge-breaking phase. One then must consid
whether the transition to the CCB minimum actually oc-
curred, and, if so, what happened subsequently.

Then, a priori there are three possibilities:~i! the Uni-
verse may stay in the symmetric minimum until the tempera
ture reachesTc and the usual electroweak transition takes
place; ~ii ! the Universe may go to the CCB minimum and
freeze there; and~iii ! the transition from the symmetric to the
SML minimum may occur in two stages: first the transition
from the unbroken to the CCB phase takes place and onl
then the Universe may tunnel to the SML vacuum. Clearly,
the second possibility is excluded empirically.

Possibility ~iii ! is intriguing. The idea of a multistage
phase transition, in the course of which the gauge group
might change a number of times finally arriving at the stan-
dard model group, is not new. An evolution of this kind
could have important implications for magnetic monopoles
@22#, charge asymmetry of the Universe, and magnetic field
generation @23#, baryogenesis@24#, etc. The sufficient
~though not necessary! conditions for the first part of this
scenario, the transition from the symmetric to the CCB

the
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phase, will be derived below. However, we have not found
model in which a second-order phase transition from t
CCB minimum to the SML minimum would subsequent
take place. It appears to be a generic feature that even w
the CCB minima can be populated via a second-order ph
transition, they are separated from the SML minimum by
thick barrier. If the Universe is stuck in the false CC
vacuum~which, in this scenario, must have a higher vacuu
energy than the SML phase!, this would trigger a new stage
of inflation which could only be ended by a first-order pha
transition characterized by a relatively low tunneling rate.
was shown in Ref.@25# that this sort of transition proceed
via bubble nucleation at a rate which is too slow to catch
with the expanding volume. The bubbles of the true vacu
would neither collide, nor percolate, preventing the Univer
from reheating. Therefore, the two-stage electroweak ph
transition could not have taken place in the early Univers

Let us consider the possibility that a CCB minimum exis
at some temperatureT.Tc . At that temperature, the mas
matrix of the third generation squarks~ignoring the rest of
the squarks and sleptons! in the SU(2)3U(1)-symmetric
phase (H15H250) is of the form

S m
t̃
L

2
1c

L
T2 0

0 m
t̃
R

2
1c

R
T2D . ~12!

Suppose that it has at least one negative eigenva
which makes the SU(2)3U(1)-symmetric vacuum unstable
SinceT.Tc , the SML minimum does not yet exist. Th
decay of the unstable vacuum will result in the creation
the CCB condensate by a second-order phase transition
the same time, we assume that all the necessary condit
have been applied to constrain the masses squared of squ
to be positive~and large enough! in the SML minimum at
zero temperature, where the mass matrix is

S m
t̃
L

2
1mt

2
AH21mH1

AH21mH1
m

t̃
R

2
1mt

2 D , ~13!

where themt is the top quark mass.
We would like to see whether there is a region of para

eter space in which the matrix~13! has only positive eigen-
values, while the matrix~12! has a negative eigenvalue. It i
easy to see that this is only possible if eitherc

L
Tc
2,mt

2 or

c
R
Tc
2,mt

2 . The shaded region shown in Fig. 1 correspon
to the additional domain of parameters which can be ru
out by requiring stability of the SU(2)3U(1) symmetric
minimum above the electroweak transition temperature. T
domain comprises two regions in whichm

t̃
L

2
andm

t̃
R

2
differ

in sign ~Fig. 1!. The hyperbola (m
t̃
L

2
1mt

2)(m
t̃
R

2
1mt

2)5

(AH21mH1)
2, where the values ofH1 andH2 are computed

at the SML minimum, outlines the domain of positive dete
minant of the matrix in Eq.~13!. If one requires that the
squark masses be greater than 45 GeV, in accordance
the current experimental limits, it would further reduce th
area of the corresponding~shaded! regions in Fig. 1.
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The coefficientsc
L
and cR are of order 1; their exact

values depend on the spectrum of the MSSM and have been
computed, e.g., in Ref.@26#. For new constraints to arise
from the requirement of symmetric vacuum stability at
T>Tc , the inequalityTc;100 GeV,mt /Ac

L ,R
must be

satisfied.
We note that the high-temperature expansion@27# is not

expected to be accurate forT;Tc . Therefore, the accuracy
to which one can determine the boundaries of the shaded
regions in Fig. 1 is limited by one’s inability to determine the
effective potential accurately forT;Tc due to the limitations
of the theoretical framework@27#. It is clear, however, that
the size of the shaded regions in Fig. 1 is rather small, so
their exclusion cannot cause an appreciable reduction in the
MSSM parameter space. For the generic values of param-
eters outside the shaded regions, the second-order phase tra
sition into the CCB minimum does not take place.

We have demonstrated that the symmetric vacuum of the
MSSM is generally stable with respect to second-order phase
transitions to a CCB minimum atT.Tc . However, the ques-
tion of a first-order transition at finite temperature remains
open. The probability of tunneling in the high-temperature
limit is suppressed by the factor@28#

G/V}e2S3
@f̃#/\T, ~14!

where S3@f̃# is the three-dimensional action of thed53
bounce. The time allowed for the transition is roughly
t
T
5mPl /T

2, the age of the Universe when the temperature

equalsT, which means thatS3@f̃#/\T must be less than
about 45 for the transition to take place.

Thus, it appears most likely that ifTc is not too small~of
order 100 GeV, as is generally believed!, then the second-
order transition to the CCB minimum of the type discussed
above is not likely, and the Universe is driven towards the
color and charge conserving SML minimum of the scalar
potential. While, admittedly, this is not a rigorous theorem,
the color- and charge-conserving minimum appears to be
favored by the thermal evolution of the Universe. We leave
the detailed investigation of this issue for future work.

FIG. 1. Region of parameters which can be ruled out by requir-
ing stability of the SU(2)3U(1)-symmetric minimum above the
electroweak transition temperature.
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Our next question is what happens after the Univers
cools down in the SML minimum of the potential: will the
false vacuum be effectively stable atT'0 even in the pres-
ence of some deeper CCB minima, or not.

IV. NUMERICAL ANALYSIS OF TUNNELING RATES
AT ZERO TEMPERATURE

To make a definitive determination of whether the SML
vacuum is stable with respect to decay into a lower CC
minimum, one has to compute the tunneling probability nu
merically. Analytic computation is usually feasible only in
the thin-wall limit.

In the semiclassical limit, the zero-temperature tunnelin
probability @12–14,16,17# per unit volume is

G/V5C
G
F E uf̄~x!u2d4xGN/2SS@f̄#

2p\
D 2e2S[ f̄]/\

3Udet8@2]m
21U9~f̄ !#

det@2]m
21U9~0!#

U21/2

@11O~\!#, ~15!

whereS@f̄# is the Euclidean action of the bounce, a solutio
to the variational equationdS50, det8 stands for the deter-
minant with all the zero eigenvalues omitted,N is the num-
ber of Goldstone zero modes and theC

G
is the group-

theoretical coefficient@16,17#.
Suppose the scalar potentialU(f1 , . . . ,fn) has a local

minimum atf i5f i
f , i51,2, . . . ,n, as well as at least one

additional ~local or global! minimum at
f i5f i

t , i51,2, . . . ,n; U(f t),U(f f). Then the bounce
f̄(x)5„f̄1(x), . . . ,f̄n(x)… is a nontrivial O~4!-symmetric
@29# solutionf̄(r ),r5Ax2, of the system of Euler-Lagrange
equations:

Df̄ i~r !5
]

]f̄ i

U~f̄1 , . . . ,f̄n! ~16!

with the boundary conditions

~d/dr !f̄ i~r !ur5050,

f̄ i~`!5f f .
~17!

In the case of a potential that depends on a single sca
field, one can solve Eq.~16! with the boundary condition
~17! numerically. The straightforward technique is to assum
some value for the unknown quantityf̄(0)5fe, the so-
called ‘‘escape point.’’ Then one can integrate Eq.~16! nu-
merically and vary the escape point until the proper lim
f̄ i(`)5f f is reached. Here one uses the fact that if for som
valuefe5f2

e the correspondingf̄ i(`).f̄ f , and for some
other valuefe5f1

e f̄ i(`),f̄ f , then the true escape point
must lie somewhere betweenf2

e andf1
e This strategy fails

when one has to deal with a potential that depends on seve
scalar fields. The peculiarity of one-dimensional topology n
longer allows one to find the true escape point as the co
e
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promise between the ‘‘undershoot’’ and the ‘‘overshoot.’’5 It
is a generic property of the bounce that it is a saddle point o
the Euclidean action@13#, and not a minimum, and thus
small changes in the initial conditions result in large change
in the form of the solution. Therefore, it is impossible to find
the bounce numerically in the case of a multicomponent field
using the procedure just mentioned.

This difficulty was realized by the authors of@3#, who
proposed an iterative procedure to look for the bounce as
special point of the discretized action on a lattice. Since the
solution in question is not a minimum, but a saddle point,
they tried to minimize the action with respect to random
variations, while maximizing the same action with respect to
scaling r→lr . We find that the iterative procedure of this
kind is ill defined and cannot have a meaningful limit. First,
it is impossible to separate the variations corresponding t
scaling from those orthogonal to scaling in a practical nu-
merical simulation. Second, although it is true that the
bounce maximizes the action with respect to scaling, it is
easy to see that the generator of such a variation cannot b
the eigenvector of the second variation operator correspond
ing to the negative eigenvalue.

Instead, we use a new method proposed in@9# to find the
solution of Eqs.~16! and~17!. The idea is to turn the saddle
point of a Euclidean action into a true minimum by adding to
it some auxiliary terms which vanish forf5f̄(x). The re-
sulting ‘‘improved action’’ will have a minimum at the point
corresponding to the desired solution, which can now be
found by minimizing the discretized version of improved
action on the lattice. Details of the application of this method
are given in Appendix A.

V. THE MSSM VACUUM STABILITY
AT ZERO TEMPERATURE

For the reasons explained above, we consider the MSSM
potential with the third generation only. We also neglect all
of the trilinear couplings except those proportional to the
largest Yukawa couplings,yt andyb . This justifies dropping
the squarks of the first two generations. Also, although we
allow the values of tanb from;1 to;60, the most stringent
constraints come from the small tanb region, where the top
Yukawa coupling is larger. As was pointed out in Ref.@8#,
the noteworthy CCB minima can only develop in the direc-
tions along which one and only one of the trilinear terms is
nonzero. Thus, it is the size of the largest Yukawa coupling
that affects the lifetime of the false vacuum the most. We
therefore consider the following subset of the MSSM scalars
F5$H1

0 ,H2
0 ,H1

2 ,H2
1 ,Q̃

L
, t̃
R
,b̃

R
%, whereQ̃

L
5$ t̃

L
,b̃

L
%.

The superpotential

W5ytQL
H2tR1ybQL

H1bR2mH1H2 ~18!

5Even in the case of a single scalar field, the shooting method ma
turn out to be ineffective for a potential with sufficiently degenerate
minima. This is because one may be required to specify the tria
value for the escape point with an exceedingly high precision to
compute the action of the bounce to a given accuracy.
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corresponds to the following scalar potential~with the soft
SUSY breaking terms included! at the tree level:

V5V2,H1V21V31V4 , ~19!

whereV2,H comprises the terms quadratic in the Higgs field

V251m
t̃
L

2
t̃
L

21m
t̃
R

2
t̃
R

21m
b̃
L

2
b̃
L

21m
b̃
R

2
b̃
R

2 , ~20!

V352ytAt~H2
0t̃

L
2H2

1b̃
L
! t̃

R
2ybAb~H1

2 t̃
L
2H1

0b̃
L
!b̃

R

2ytm~H1
0!* t̃

L
t̃
R
2ybm~H2

1!* t̃
L
b̃
R

2ytm~H1
2!* b̃

L
t̃
R
2ybm~H2

0!* b̃
L
b̃
R
1H.c., ~21!

andV4 is comprised of theD terms, as well as the terms o
the formyt,b

2 f1
2f2

2 , wheref1PF.
We now come to the issue of radiative corrections. It h

been argued~see, e.g.,@7#! that if the CCB minimum occurs
at a scale which is within 1 or 2 orders of magnitude fro
the electroweak scale, then the~logarithmic! radiative correc-
tions are too small to cause a noticeable distortion in t
shape of the effective potential, and therefore can be ignor
While this conclusion is correct, we would like to emphasiz
that, as was discussed in Sec. II, it is not so much the po
tion of the CCB minimum, as the size of the bounce and t
value of the escape point that determine the scale to wh
the bounce will ‘‘probe’’ the effective potential. The shap
of the effective potential beyond that scale has no effect
the tunneling rate. In our numerical calculations, a typic
size of the bounce for realistic values of of the MSSM p
rameters is of order (120.1 TeV)21 ~except for deliber-
ately fine-tuned cases of highly degenerate minima in whi
the bounce blows up to the size of its thin-wall limit
R;1/e, and the tunneling becomes highly improbable!. This
justifiespost factumthe neglect of the one-loop contribution
in the effective potential. As long as one never encounte
very small~in length units! bounces, one can be certain tha
only the shape of the potential around the electroweak sc
is relevant for tunneling.

We search the MSSM parameter space by generating r
domly the values of the parameters that enter in the sca
potential ~19!. Then the minima are found numerically an
the tunneling probability is computed using the method
Appendix A.

The results of the numerical analyses are plotted in Fig.
where the action of the bounceS is shown as a function of
the relative depth of the CCB minimum with respect to th
SML minimum, while the other MSSM parameters are va
ied randomly. For each point plotted, the global minimum
the potential is not color and charge conserving. Neverth
less, one observes thatS takes values on both sides of th
critical value,S5400. Therefore, for some values of param
eters, namely those for whichS.400, the false SML
vacuum is stable on a time scale large compared to the ag
the Universe. Such color- and charge-breaking minima a
‘‘safe,’’ and the corresponding parameters are allowed.
contrast, those points that correspond toS,400 are ruled out
by the mere existence of the world as we know it. Anoth
lesson one learns from Fig. 2 is that the tunneling rate is n
s,
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very sensitive to the depth of the CCB minimum, except in
the limit of nearly degenerate minima, the so-called ‘‘thin-
wall’’ limit. This is to be expected, as was discussed in Sec.
II.

The domain of stability of the false SML vacuum with
respect to tunneling is delineated by stars in Fig. 3. The
lighter top squark in the presence of the large trilinear cou-
plings forces the barrier, which keeps the system in the meta-
stable vacuum, to be thinner and lower. That results in a
higher likelihood of tunneling. The points labeled by boxes
fall into the domain that is excluded by the existence of our
~color- and charge-conserving! Universe. On the other hand,
if both left-handed and right-handed stops are heavy, and if
the trilinear terms are small, then the false vacuum is stable
and the presence of a global CCB minimum is irrelevant. We

FIG. 2. The action of the bounce,S, does not depend sensitively
on the depth of the CCB minimum,DV, except in the ‘‘thin-wall’’
limit ~smallDV).

FIG. 3. The domains of stability~stars! and instability~boxes! of
the false SML vacuum with respect to tunneling into the global
CCB minimum. Light top squark and large trilinear couplings gen-
erally correspond to a lower and thinner barrier and, thus, higher
probability of tunneling.
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note that a number of models favor the left lower corner
the plot in Fig. 3, where only a few ‘‘dangerous’’ CCB
minima occur.

It would be useful to derive some empirical algebraic co
straints to distinguish between the allowed and excluded
mains of parameter space based on the numerical results
instance, it has been argued@8# that the inequality

At
213m2,3~mt̃

L

2
1m

t̃
R

2
! ~22!

is a reasonably good condition for excluding a global CC
minimum. This inequality would force one to be above th
dotted line in Fig. 4. This is in good agreement with o
numerical results. However, if one takes into account t
tunneling rates, the constraint~22! is relaxed significantly.
The empirical inequality which should replace Eq.~22!,

At
213m2,7.5~mt̃

L

2
1m

t̃
R

2
!, ~23!

is depicted by a thick dashed line in Fig. 4. The simp
condition ~23!, should be applied with caution becaus
strictly speaking, it is neither necessary nor sufficient. It is
approximate empirical inequality that may be useful for
crude determination of whether the CCB minima are ‘‘da
gerous.’’

For the phenomenologically attractive values ofumu,2
TeV, uAu,4 TeV, it is generally true that ‘‘the larger the
trilinear coupling, the more dangerous is the correspond
CCB minimum.’’ However, it is instructive to examine wha
happens to the tunneling probability in the limit of very larg
m andAt ~and large enough squark mass terms to ensure
existence of the SML minimum!. In that limit, as the CCB
minimum moves away from the SML minimum, the barrie
separating the two becomes thicker, and the false vacu
should become more stable. This is, in fact, what happe
The set of points in Fig. 5 includes those points~located in
the lower left corner! shown in Figs. 2–4. In addition, Fig. 5
displays the points corresponding to some very large val
of At andm. As expected, the tunneling probability dimin
ishes for very large values ofAt andm, andmt̃

L
andmt̃

R
.

To summarize, if the global CCB minimum is nearly de
generate with the local SML minimum~thin-wall limit!, then
the tunneling probability is extremely small. As the trilinea
couplings increase, the false vacuum decay rate increa
because the escape point of the bounce moves out of the
vicinity of the global minimum into the region in which the
gradient of the potential is significant. However, a furth
increase in the size of the trilinear couplings, as well as
consequent increase in the squark mass terms, makes
barrier thicker and pushes the escape point away from
SML minimum. This eventually causes a decrease in
tunneling rate. In accordance with one’s intuition, the low
energy physics is unaffected by the physics at the very hi
energy scales.
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VI. CONCLUSION

The color- and charge-conserving minimum may not be
the global minimum of the MSSM potential. It is possible
that the Universe rests in a false vacuum whose lifetime is
large in comparison to the present age of the Universe. Un
der fairly general conditions, the SML vacuum may be fa-
vored by the thermal evolution of the Universe, even if it
does not represent the global minimum.

The existence of the CCB minima of the scalar potential
results in some important constraints on models with low-
energy sypersymmetry. However, the commonly imposed
~see, e.g., Refs.@30,31#! requirement that the SML minimum
be global is too strong and may overconstrain the theory. In
fact, for a large portion of the parameter space the presenc
of the global CCB minimum is irrelevant because the time
required for the Universe to relax to its lowest energy state
may exceed its present age. The basic reason for this is tha
the quantum tunneling is a nonperturbative phenomenon tha
is naturally associated with the energy scale that is exponen
tially smaller~suppressed by a factor exp$2S%) than the typi-
cal scale in the theory.

We have computed numerically the SML false vacuum
decay rates for a variety of values of the MSSM parameters
Our results indicate clearly that the MSSM vacuum stability
with respect to tunneling into a CCB minimum imposes im-
portant constraints on models with low-energy supersymme
try. Similar considerations apply to UFB directions, although

FIG. 4. Each point represents the set of the MSSM parameter
for which the global minimum of the potential is color and charge
breaking. The stars correspond to the SML false vacua whose life
time is large compared to the age of the Universe. The boxes indi
cate those points in the parameter space for which the false SML
vacuum should have decayed via quantum tunneling. The dotted
line represents the empirical criterion for the absence of the globa
CCB minima:At

213m2,3M2, whereM25m
t̃
L

2
1m

t̃
R

2
Taking into

account the tunneling rates relaxes this constraint to, roughly
At
213m2,7.5M2, shown as the dashed line. The scale is logarith-

mic.
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we have not carried out a detailed study of the allowed p
rameter space.
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APPENDIX A

The numerical algorithm for computing the tunnelin
probability comprises several steps. First, the positions of
minima, f t and f f of the potentialU(f) are determined
numerically for a given set of values of the MSSM param
eters. If there is no minimum below the SML vacuum, a ne
set of parameters is chosen. We define the Euclidean ac
on theL-point lattice:

S@f#5T@f#1V@f#, ~A1!

T@f#52p2D4 (
m51

L21

~dm112dm!dm
3 S (

i51

n
~f i

~m11!2f i
~m!!2

2~dm112dm!2D2D ,
~A2!

V@f#52p2D4 (
m51

L21

~dm112dm!dm
3U~f1

~m! , . . . ,fn
~m!!,

~A3!

FIG. 5. Tunneling probability for unphysically large values o
At andm. As the CCB minimum moves farther away, it becom
‘‘less dangerous.’’ As before, the stars mark the points w
S.400, while the boxes depict those withS,400.
a-

.
-
R.
T.
ed
2-
ion

g
the

-
w
tion

where dm is the position of them’s site of the lattice in
dimensionless units, andD is the length parameter that de-
termines the overall scale and is chosen so as to optimize th
computation.

The next step is to define the improved action@9#, for
which the bounce is the minimum. We do that by adding to
the action some auxiliary terms which~i! vanish asf(x)
approaches the bounce, and~ii ! make the bouncef̄(r ) a
minimum of the improved action@9#:

S̃@f#[S@f#1luT@f#12V@f#u1/2, ~A4!

wherel is some arbitrary~dimensionless! Lagrange multi-
plier.

The effect of adding the auxiliary terms is shown qualita-
tively in Fig. 6, where two projections of the saddle point of
S@f# are depicted symbolically.

The bouncef̄(x) is always a minimum of the improved
action S̃@f#. However, unlessl is chosen to be large
enough, the differenceS̃@f#2S@f# may appear to be too
small in the vicinity of the bounce. In this case, it is possible
that the small perturbations will take one over the barrier
~Fig. 6! towards the trivial solution of zero action
f(x)[f f . Thus, it is crucial to takel large enough for the
numerical simulation to succeed.

Initially, one may choose

f i
~m!5H f i

0 , m,L/2,

f i
f , m>L/2,

~A5!

wheref0 is a zero ofV(f). Alternatively, one may start
from a different profile for the bounce, e.g., the thick-wall
ansatz described below in the Appendix B.

Then we find the optimized value for the overall scale
D by maximizing the action with respect toD. After that, we
allow random variations of the values of the scalar field at
each lattice site to minimize the improved action~A4!. The
iterations stop when further variations do not lead to a reduc-
tion in the improved action. As an independent criterion of

f
es
ith

FIG. 6. The improved actionS̃@f# ~dashed curve! has a mini-
mum that coincides with the saddle point of the actual Euclidean
actionS@f# ~solid curve!, as shown in two projections. The origin
on the right corresponds to the trivial solutionf(x)[f f for which
S̃@f#5S@f#50. The size of the ‘‘gap’’ between the two curves is
a function ofl.
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the quality of the fit, we require thatT@f#/(22V@f#)
5160.01 ~see, e.g., Ref.@9# and references therein for
discussion of this identity!.

As was explained in Secs. II and V, tunneling into
‘‘UFB direction’’ is equivalent to a transition into a very
deep CCB minimum. The details of the effective potential
scales much larger thanfe do not affect the decay probabil
ity. In particular, it is irrelevant whether the alleged ‘‘UFB
direction’’ is heading towards a very deep minimum, or m
nus infinity. This allows one to introduce an effective cuto
to stop the runaway fields from going to infinity. In practic
we did not allow the value off to run beyond 10 TeV.
Therefore, the ‘‘UFB directions’’ were treated as if they lea
to a CCB minimum with a 10 TeV VEV. In each particula
case this procedure is justifiedpost factumby ensuring that
the value of the escape point is small compared to a 10 T
cutoff.

APPENDIX B

In the limit of nearly degenerate minima separated by
high barrier, the so-called thin-wall limit, the bounce can
approximated by a smoothed out step function@13#. This
approximation proved very useful in estimating the tunneli
rates and was used in our analysis of the toy model in Sec
In practice, however, one rarely encounters a situation
which the thin-wall approximation is in good agreement w
the numerical results~c.f. Ref. @3#!. The tunneling rates are
usually very small in the thin-wall limit, and therefore i
many physically interesting models the first-order phase tr
sition takes place when the energy difference between
true and the false vacuum is not small in comparison to
height of the barrier. Then it is necessary to go beyond
thin-wall approximation, which is usually done by means
a numerical calculation.

If, however, the energy differenceDV between the two
vacua is larger than the height of the barrier, one can fin
simple approximation to the bounce in what we call
‘‘thick-wall’’ limit. As DV increases, the so-called ‘‘escap
point,’’ the value of the field in the center of the bounc
fe[f̄(0), moves away from the minimum of the potentia
Then Eq.~16! can be linearized in the vicinity of the escap
point because]U(f)/]f is a constant independent off for
f'f(0). Therefore, in the vicinity of the center of the O~4!-
symmetric bouncef̄(r ),

f̄9~r !1
3

r
f̄8~r !52a,

f̄8~0!50,
~B1!

where the constanta5u(]U/]f)(fe)u. This is a linear equa-
tion whose only solution satisfying the boundary condition
of the form

f̄~r !52
a

8
r 21fe . ~B2!

Outside the small neighborhood of the origin, the appro
mation~B1! is not valid andf̄(r ) falls off exponentially, just
a

a
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as in the thin-wall limit@13#. The equation for the bounce
f̄(r ) for large r ~and, therefore, smallf) becomes

f̄9~r !5]U~f!/]f'm2f̄2,

f̄~`!50,
~B3!

where m is the mass term for the potential
U(f)5(m2/2)f21••• . The solution of Eq.~B3! is

f̄~r !5Ce2mr, ~B4!

whereC is an arbitrary constant. We now sew the approxi-
mate solution for the bounce from the two asymptotics,~30!
and ~32!, at some pointr5R. The values ofC andR are
determined by requiring continuity and differentiability of
the solution atr5R. The resulting ansatz is

f̄~r !5H fe2~a/8!r 2, r,R,

aR

4m
e2m~r2R!, r>R,

~B5!

where

R5
1

m
@A118m2fe /a21#, ~B6!

and the value offe is an unknown parameter which can be
found either from requiring that

05
d

dfe
S5

d

dfe
~T1V!, ~B7!

or, equivalently, from solving the equation

T522V, ~B8!

where

T52p2E
0

`

r 3dr
1

2 S df̄~r !

dr D 2

and

V52p2E
0

`

r 3drU„f̄~r !… ~B9!

are functions offe .
The representation of the bounce in the thick-wall limit

described above is approximate and is not very useful in
application to the MSSM. However, it exhibits the essential
features of tunneling in this limiting case. We also found it
convenient to use this approximate solution as an initial pro-
file for the bounce in the numerical procedure described in
Appendix A.
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