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Using weak coupling methods McLerran and Venugopalan expressed the parton distributions in large nuclei
as correlation functions of a two-dimensional Euclidean field theory. The theory has the dimensionful coupling
9°u, whereu?~ A3 is the valence quark color charge squared per unit area. We use a lattice regularization
to investigate these correlation functions both analytically and numerically for the simplified casg2f SU
gauge theory. In weak coupling?uL<5), wherel is the transverse size of the nucleus, the numerical results
agree with theanalyticlattice weak coupling results. FgfuL>5, no solutions exist &D(a®) wherea is the
lattice spacing. This suggests an ill-defined infrared behavior for the two-dimensional theory. A recent proposal
of Jalilian-Marian, Kovner, McLerran, and Weigert for analytic solution of the classical problem is dis-
cussed briefly[S0556-282(96)01221-Q

PACS numbg(s): 12.38.Mh, 12.38.Bx

I. INTRODUCTION (2). It was shown that the classical background field that
satisfies the Yang-Mills equations has a simple structure.
In Ref. [1] McLerran and Venugopalan proposed thatConsequently, the classical parton distributions can be ex-
weak coupling methods can be used to compute skpdls-  pressed as correlation functions of a two-dimensional Euclid-
ton distribution functions in large nuclei. They wrote down aean field theory. This is not too surprising since it is well
partition function for wee partons witk<A~**in the pres-  known that at very high energies the longitudinal and trans-
ence of external sources which are the valence quarferse coordinates decouple. Indeed, it has been proposed re-
charges. The only large component of the valence quark CUgently that the limit ofx—0 and colorN.— is an exactly

rent isJ”, which is modeled by solvable two-dimensional field theof$]. In papers subse-
) guent to Ref[5], the problem of quantum fluctuations about
JE= 5" p(xT,x,)8(x7), (1)  the background field7—9] and that of initial conditions in

heavy ion collisions were addressgiD,11]. For a brief re-

wherep, is the density(per unit arepof valence quark color View of these results, we refer the reader to R&R]. An
charges. Their partition function is obtained by integratingeXcellent introduction to all aspects of the lowproblem is
the QCD partition function, coupled to the above static cur-given in Ref.[13].
rent, over allp,’s with a Gaussian weight. The variance of  In this paper, we will discuss only the classical solutions
this Gaussian distribution of valence quark chargespfthe Yang-Mills equations. As we shall see in Sec. Il, com-
w’~AY fm~2, the average valence quark color chargeputing the correlation functions requires that we solve a sto-
squared per unit area, is the only dimensionful parameter ichastic differential equation for each color charge configura-
the theory. If,u2>AéCD, as(n?)<1 and weak coupling tion. Since the equations are highly nonlinear, no analytic
methods can be used. This model could then be studied assalutions were found. However, it was claimed in Ré]
toy model to understand both the rapid growth of structurethat the parton distributions have the Weidsar-Williams
functions at smalk [2] and the eventual saturation of these behavior in the weak coupling regionagu<k;:
structure functions as dictated by unitar[t§,4]. Note that dN/ddektocllxkf. It was conjectured that the solution of
the model of Ref.[1] is gauge invariant because of the the stochastic differential equations in the strong coupling
Gaussian distribution for the valence quark densities. region of Agcp<asu<w would reveal that the classical
In Ref.[5] the saddle-point solution of the partition func- gluons generate a screening Masg,ceq asu. If there is
tion in the presence of the Gaussian random source was oBuch a screening mass, its existence would strongly suggest
tained by solving the classical Yang-Mills equationsthat a mechanism for the restoration of unitarity at very small
D,F#"=J". Here,D , is the covariant derivativei-“” the  x already exists at the classical level.
non-Abelian field strength tensor, adtis the current in Eq. We will address here the question of a screening mass in
the classical theory quantitatively by solving stochastic dif-
ference equations on a two-dimensional lattice. In Sec. lll,
“On sabbatical leave from the Tata Institute of Fundamental Rewe will describe how we set up the problem and how we use
search, Homi Bhabha Road, Mumbai 400 005, India. Electronidattice perturbation theory to identify the weak coupling and
address: gavai@theory.tifr.res.in strong coupling regimes of the theory. We define “reduced”
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correlation functions of gauge fields which are one-stantwill run as a function of this scal@]. If u?>A%cp, as
dimensional projections of the original two-dimensional will be true forverylarge nuclei,as(u?)<1 and weak cou-
fields. If a screening mass existed in the theory, these repling methods can be used.
duced correlation functions may be expected to have a very If we integrate over the fields first, we obtain an effec-
characteristic exponential falloff at large distances. tive action for the wee partons with nonlocal propagators and
For simplicity, we will consider an S(2) gauge theory in  vertices. Instead, the procedure followed in Ré&f. was to
our numerical work. We use the conjugate gradient methogerform thep integrations last. In that approach, one needs
to solve the difference equations on the lattice. Details of théo calculate the saddle-point solution of the action for each
numerical procedure are also discussed in Sec. lll. In Seq@ configuration to determine the classical background field.
IV, we describe lattice results for the reduced correlationAny physical observable, such as a correlation function, is
functions and compare them to the results expected frorthen obtained by evaluating it for the saddle-point solution
lattice perturbation theory in weak coupling. It is observedand then averaging it over all possieconfigurations. The
that in the weak coupling region, the numerical results reprosaddle-point solution is nothing else but the solution to the
duce to high accuracy the results of lattice perturbatiorflassical Yang-Mills equation,
theory. However, as one approaches the strong co_upling re- D, Frr=gJ", 3)
gion on the lattice, the number of the stochastic difference
equations to which solutions can be found decreases arid the presence of the external soudée= 5" p(x,) 8(x 7). It
eventually, in the strong coupling region, no solutions of thewas shown in Ref[5] that the solutions of these classical
lattice equations exist at the desir@da®*) accuracy. In Sec. equations of motion are
V, we will interpret these results and state our conclusions.

A*=0,

II. PARTON DISTRIBUTIONS AS CORRELATION A~ =0,

FUNCTIONS OF A 2D FIELD THEORY ) )
Al=0(x")al(xy). (4)

In the model of McLerran and Venugopalan, the partition _
function which describes the ground-state properties of we&he transverse componenis, wherej=1,2, further satisfy
partons withx<A~ Y3 and transverse momentg<A'® fm  the equationsF;,=0 andV-a=gp, where the latter equa-

“1is[1] tion follows from the Gauss’ law. Since the field$ are thus
gauge transforms of vacuum configurations with a gauge
7= | TdAdA. TTduduid condition determined by thg configuration, one can write
f[ A Jldyrdydp] (,l’j(Xt):(i/g)U(Xt)VJ‘UT(Xt), where U is a unitary SU3)

matrix for QCD and an SW{) matrix for a theory withN

Xex;{ iS+igf d*xA, (X)8(x7)p(X) colors. Substituting for; in the gauge condition results in
the stochastic differential equation

1 I _
- WJ dzxth(O,xt)) . ) V-UVU'=—ig?p(x,). 5

Using the solutions of the equation above, which are the
In the above,p is the valence quark color charge density. saddle-point configuration of the partition function in Eq.
Also, the parametep.>~AY® fm 2 is the average valence (2), one can show that thelassical correlation functions
quark color charge squared per unit area. Sipleis the may be expressefin matrix representationas correlation
only scale in the partition function above, the coupling con-functions of a two-dimensional Euclidean field theory:

- -1 ' ot 1
<af’ﬂ(xt)afﬁ(0)>p=?f [dp][u(xt)vuT(Xt)]Z'B[U(O)VUT(O)]g'BeXF<_2_sz dzxtpa(xt)Pa(xt)>/ I, (6

where the Gaussian random measure, In order to ensure that the valence quark color charge is
confined to the transverse radius of the nucleus, we require
that

1
= f [dP]eXF{ - Z_quf dzxtpa(xt)Pa(Xt) ) (7)

: . o . : f d?xp?(x) =0. €)
is all that is left from the original partition function. Note

that the charges are highly localized in the transverse plane:

This constraint was not stated in RE5)]. In the momentum
(P(x0))=0; (p?(x)p°(yr)),=u?8%5? (x,—yy). space this condition decrees thaft(k,=0)=0. Thus, the
(80 k=0 mode is excluded explicitly.
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To compute the correlation function in E@), we need to  for weak coupling ¢°uL<5 as we will show by using
solve Eq.(5) to determineU=U(p) for eachp configura- lattice perturbation theory. However, since the lilnit: « is
tion. We were unable to find an analytic solution to this synonymous with strong coupling, the Weizkar-Williams
highly nonlinear equation for all values of the coupling. In result of Ref[5] for continuous transverse momenta will not
the following and subsequent sections we will discuss thée recovered.
analytic weak coupling solution and the numerical solutions
of this equation on a two-dimensional lattice. _ IIl. THE 2D THEORY ON THE LATTICE

For completeness, let us recall that the relation between
distribution functions and the correlation functions above is As discussed in the previous section, to compute correla-
straightforward and is discussed explicitly in RET]: tion functions of the two-dimensional field theory, we need

to solve stochastic differential equatifag. (5)] for an arbi-
1 A N Y trarily large coupling. We intend to do this numerically by
;J d?x " T (a(x) @] # (0))], introducing a spatial lattice. The lattice spaciagerves as
(100  an ultraviolet regulator. Indeed, without such a regularization
the functional integrals in Eq6) are not well defined since
where the trace is over both Lorentz and color indices. the correlations of the fields are proportional to & func-

It was argued in Ref{.5] that the distribution function has tion. Introducing the lattice, one sees from K@) that each

the general form p?(x) is u/a times a Gaussian random number of unit vari-
ance. Approximating the circular transverse side of the
1 dN _(Nﬁ—l) 11 2 a2 nucleus of diametelr by a square of length, one sees it to
TRZ dxPk, 72 X a_SH( tdasu?), (1D poaNxN grid of lattice points withL = Na. The continuum
limit consists of takingp—0 andN—oc such that_ is held
whereH (k¥ a4u?) is a nontrivial function obtained by ex- constant. The farther removal of the infrared regulator can be
plicitly solving Eq. (5). The effective coupling constant of achieved by takind. —, which was the limit in which the
this theory was believed to hesu/k, and that in the “weak weak coupling considerations of Ref4,5] led to their com-
coupling” limit agu<k,, H(kf/aéﬁ)_)ag’u?l/kf, recover- putational scheme of the low-parton distributions.
ing the WeizSaker-Williams result scaled by?. It was also Using the unitarity condition on thel matrices, the sto-
cc;njectuzred that the functiord would have the form chastic differential equatiofEq. (5)] can be rewritten as
asu®l(kf+M?), where M=cagu is a screening mass .
WfswliLch ista constant times the dimensionful scalegu. (UV2UT=V2U-UT)=—2ig?p. (12

Interestingly, the problem formulated above is analogous ) o ) o
to the problem of the critical behavior of Ising-like models On the lattice, finite differences replace the derivatives:
coupled to a random magnetic field. As discussed by Parisi

1 dN 1
7R? dxdPk, (2m)°

t T t
and Sourlag15], the partition function in that case has a yt=3 UT(xit+a)) +U (% —ay) —2U (%) +0(a?)

structure identical to Eq.2), albeit they only discussed the j=1.2 a® ’
case of a scalar theory. It was argued in Ré&b] that the (13

singular behavior of the theory near the critical point was

best described by correlation functions analogous to those ifihe labelsj=1,2 refer to the orthonormal directions on the
Eg. (6). The remarkable result of Parisi and Sourlas was thalattice anda; denotes a displacement by a single site, i.e., by
their scalar version of Eq6) could be written as correlation distancea, in the jth direction. The resultant stochastic dif-
functions of a theory which is identical to the original theory ferential equation fornito O(a*) accuracy of Eq. (5) is
without the random magnetic fieltsit in D —2 dimensions,

whereD is the dimensionality of the original theory. This

t t
dimensional reduction is a consequence of a hidden super- U(Xt)jgtz[u (x¢ta)+U'(x—ay]|—H.c.
symmetry of the expression analogous to ). The gauge '
theory analogue of this symmetry is nothing other than the +2ig?unap(x,)=0. (14

well-known BRST symmetry. Unfortunately, Parisi-Sourlas

dimensional reduction will not apply to E¢6) because the In the equation above, H.c. denotes Hermitian conjugate and

analogue of their scalar field is the compact fieldas op- we have scalegh— up/a. This has the advantage that the

posed to the gauge field. Gaussian random measure defined in &yis now indepen-
Therefore, in order to test our conjecture about the existdent both of the lattice spacirg and the dimensionful pa-

ence of a screening mass in the strong coupling domain, weameteru. It is redefined to be

address the question numerically by formulating the problem

on a lattice. This also enables us to define the weak coupling 1

limit more precisely. As we will discuss in the following f [dpa]exp( —52 PP(X) p?(Xy) | - (15

section, the above statements about weak coupling are modi- X‘

fied somewhat by the precise formulation of the problem o . - . .

the lattice. The effective coupling of the theory is indeedﬁhgnraflf)cga;/l?/(vﬂ;tmrﬁ?r ?éﬂ?ﬁjﬁ::‘st'/(;?stigi_fmIowmg equations

asulk; but only for discrete multiples ok;=27/L. Here, '

L is the transverse size of the nucleus. Correspondingly, one ) 2

obtains a discrete version of the Weizkar-Williams result (p(x))=03 (P (x)P"(y0),= 5ab5§(t ?y[' (16)
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The zero net color charge constraint naturally becomes a sum 1
on the lattice angh?(k;=0)=0 is true on the lattice as well. ¢(x,)= NZ
The only coupling this lattice theory has is the dimensionless ny o z{cos(
g’ua and the scale for the theory is provided by the nuclear =t
transverse siz&. Physical quantities can, therefore, be ob-
tained as a function a§?ua or equivalently,g2ul. In this leading order of weak coupling,a;(x)

In computing correlation functions on the lattice, we will =gu[ ¢(x;+a;) — #(x;—a;)], and the one-dimensional pro-
find it most convenient to study correlations of one-jections of thea fields, are easily computed to be
dimensional projections of the two-dimensional gauge fields.

exp2@in-xJ/L)  _{(2=n
2mn;a P
L

) . (23

These “reduced” gauge fields are defined as a(x,)=0,
2y, @j(X1,X2)
a}(xz)le_ (17) sin 2mn,a 5 2mn,a
(o7 e L L 2min,5X,
ab(X,) = —Z ex
This one-dimensional projection sets the momentyms 0. 2720 N 27n,a L )
If there exists a mass gayl in the theory, then cog —/— |1

r r (24)
(a,(X2) @), (Y2))=Aexp —M|x;—yol), (18)

for sufficiently large|x,—y,| (to avoid influence of excited Here, prime denotes the exclusion of thg=0 because of
y 1argeixo—yz the total vanishing charge condition. To obtain the “re-

states, if any. An expon.ential falloff of the correlations of duced” correlators, we take the product of thé fields and
tbrilgzgursegi%ﬁﬁu?:%?i f'ﬁ?;ii gs;li?{ tLhee:ﬁfeoor:a); be an Unantke tr]fz average over thefields. Using the relatlgn between
' p andp, and Eq.(16), one can easily show that satisfies
o similar equations as well except that its two-point correlation
A. Weak coupling limit function has an extra factor of?:
Since the above-mentioned functibhand, therefore, the

correlation functions we wish to obtain, have earlier been (PA(k)p(1))5=N252P52, . (25)
obtained in weak coupling limit of the two-dimensiorfaD) e
theory, it will be instructive to first calculate them in the
weak coupling limit on the lattice. For small enoughu.a,
Eq. (14) clearly admits a solution fdd (x;) which is close to
the identity matrix for allx; modulo aglobal gauge rotation. ; C
Writing the matricesJ in terms of the generators* of the (@1(X)a1(x"))=0,
SU(N) gauge group asU(x,)=exdig’ua-¢(x)], with

Using the relation above and after some simple algebra, we
obtain

d(x) == (x) - 7, one sees that weak coupling implies . [2mn,a
thatg?ua- ¢<1. One can, therefore, expand the fieldas gzMz<N—1)/2 sir? L
L2 1,2 N2 42 (az(x)az(x'))= 2N? 21 27n,a 2
U=1+ig2ua-¢— 5 (gua)>¢*+---. (19 {COS( " _1}
Keeping terms of only lowest order, E€L4) becomes Y—
X co — Q| (26
2, [B0ta) +¢0x—a) ~26(x)]=p(x). (20
’ In the continuum limit ofa—0 andN— o,
These equations can be solved by Fourier transforming the
fields ¢ and the sourceg: Let E(27-rn2(x—x’)>
N gZMZ * L
1 s - ~[ 2N r.r _
b(x) =22 exp(277in~xt/L)¢(T), (D) (az)a0=707 2 n - (@)
n

By constructing similar “reduced” correlators for the calcu-

lations of Ref[1], one can easily see that our results are very

similar to theirs, except that our expression above still has a

finite L. Consequently, only discrete momenta are allowed in
2R our sum and the lowest-allowed momentum /2. A na-

) ’5(—) ive L—o yields identical results to those of R¢fl] but it

with n=(ny,ny) and—(N—1)/2<n;<(N—-1)/2 (assuming
N to be odd. Defining similarly the Fourier transform of
p(x), we obtain the following solution of Eq20):

L (22) turns out that this limit is not allowed.

2mn;a In order to see why it is so, it is necessary to go back to
22j-1 CO§ — the weak coupling conditiog?ua- ¢<1. Using the solution

for ¢(x;) obtained above, one can translate this condition

Substituting back in the equation fgr(x,), we have into

~[2mn
L
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, 1 exp2min-x/L)  _[2mn we chpose to work with_ the gauge group @V No quali.ta-
g ulL WZ > P\ <1. tive differences are anticipated with regard to the existence
n Z-lz{cos( mhja) } of the mass gap as a result of this simplification. Writing an
= L SU(2) matrix U asa,l +i75a,, we can write the first term of

(28)  Eq.(14) as
Further taking the continuum limit, one obtains

U(Xt),El2 [UT(xt+aj)+UT(xI—aj)]}:bd +irb,.
=1
(33

n

) 1 exp2min-xJ/L) _ [ 2mn

9“"[47&2 vz Pl

(290  Here,l is the unit 2< 2 matrix andr*, k=1,2,3 are the Pauli
matrices. The coefficients, satisfy the unitarity condition,

One can now see that the—« limit will violate the above Eﬁzoaﬁzl, but the coefficients, do not. Equatior{14) can

condition even if one ignores the possibly logarithmically now be re-expressed hﬁ(xt,Xtiaj)+92Ma'Pk(Xt)=0- In

divergent factor in the CUrly brackets in that limit. The Weakorder to solve these Coup|ed nonlinear equationS, we mini-

coupling condition thus constrairtsto stay finite and small. mijze the functiorF, defined by

The expression in the curly brackets can be evaluated nu-

merically and typically the largest values are0.2 if one

keepsL finite. The weak coupling condition for a finite size F:; [Ek [b(x X a))+g%ua- p(x)1?

L is then(approximately '

9°ul<5. (30 +

2
2k aZ(x) — 1) } . (34)

The correlation functiofa}a) becomes nonzero in the

next-to-leading order of the expansion when Minimizing F is equivalent to solving Eq14) for each lat-

tice point and color charge (& equation while simulta-
aﬂngMqSJrig3[¢Vﬂ¢—(V#¢)¢]. (31)  neously imposing the unitarity conditidd, Ut=1, at each
point on the lattice. The latter is done by the second set of
For the sake of brevity we have used here the continuunterms inF. Note thatF is a sum of squares of real numbers
notation to denote the finite differences. Using this expreswith zero as its possible absolute and desired minimum. A
sion, the reduced correlator can be computed straightfoack of solution will be signaled by large values 6§, for
wardly. The final expression is fairly tediod@mvolving the the absolute minimum.

Gaussian average of fogr fields). The key result of this We use a multidimensional conjugate gradient method,
computation is that, in the continuum limat—0, described in the subroutireRPRMN and its associated sub-
programs in Ref[14], to minimize F to an accuracy better
(ahal)ocg®u®(g?ul)? (32 thanO(a% as dictated by accuracy of the original lattice

. ) ) ) equations. The zero net charge condition compels us to use
i.e., the correlation function grows agiul)?. In the next  periodic boundary conditions in accordance with the Gauss’

section, we will compare the results of our lattice computaay, We investigated both ordered and random starts for the
tion with these lattice perturbation theory results in the weakp;tial guesses for the)’s. Each iteration consisted of choos-

coupling regiongz,u_L<5. _ _ing the source distributions randomly over the entire lattice
The weak coupling calculations above were done by i, the momentum space such thét) 5(0,0)=0, (2)

troducing an ultraviolet cutoff, the lattice spaciag Since — ~, > _~,_ . .
the final result shows sensitivity only to the infrared regula-p (k) =p(=k), and(3) both the real and imaginary parts of

tor, namely, the siz&, one can ask whether these results carfach p(k) were random Gaussian numbers with variance
be derived without introducing the lattice inspace at all. 1/y2. The p distribution was then obtained by an explicit
The answer turns out to be affirmative. One can easily shofourier transformation. Using the conjugate gradient
that the continuum problem can be formulated in the mo M€thod, the set af’s for 'Te absolute minimum was found.
mentum space of a finite square box of lengttBecause of If the minimum wasO(a”) or smaller, then the matrices
the discrete momentum spectra, the corresporigimgasure UEU(p) were used- to compute the chreIatlon functions on
is then well defined. One then solves E8). by first expand-  the lattice. We obtainy,, from the relation

ing U(x) and then Fourier transforming the resultant equa-
tion. The final results, of course, remain unchanged when

k
) . Tk @, =
compared with the— 0 limit above.

1

K=— g—alm[U(xt)UT(xtwLaM)]. (35
We have also checked that the symmetric difference defini-
tion for the derivative yields the same result. Just as in Eq.

In order to obtain a result for the correlation functions of (17), we define the “reduced” gauge fields and compute
the o' fields which is free of the infrared cutoff, one has to correlators by taking the product of these gauge fields. This
take the limitL—oo. Since it thus necessarily takes one outprocedure is repeated over several iterations, typically a few
of the weak coupling region, we now turn to the procedurehundred, and the correlation function is averaged over these
we used to solve the stochastic difference equations in Edterations. The errors are determined in the usual way by
(14) numerically. To simplify our computations and as a test,computing the standard deviations. Note that the sejsf

B. Numerical method
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FIG. 1. (a) The correlation function§’(x)=(a{(x)aj(0)) asa  pling results are indeed justified, af@) our numerical pro-
function of x/L for j=1 (circles and j=2 (crosses for  cedure works fine.
g’uL=L=0.5 andL=41a. The continuous line is the weak cou-  Figyre ¥b) further shows that these results are indeed the
pling result of Eq(26). (b) Same as Fig. () but forL=21a and  ¢ontinuum results. It displays the results for the same
L=41a and forl** only. g?ul but on N=21 and 41 lattices. The results for the

. o ] ) j=2 correlation are again displayed as a function of the
in successive iterations are totally independent and one thyfimensionless distance/L and the results are seen to be

has negligibly small autocorrelations. lattice-size independent. One may wonder why the correla-
tion function is negative, given that it can now be thought of
IV. RESULTS as a continuum property. The weak coupling result of Eq.

(26) provides a hint for understanding this. The leading term

In view of the facts that the coupling for the lattice theory jn jt is negative forx—x'=L/2 and the successive terms
above isg’ua, and that none of the three quantities in this alternate in sign and become progressively smaller in mag-
expression occurs independently, we chose t@$et=1in  njtude. Thus, for any finité, the correlation function will be
our simulations and varieg?ua by varying the lattice spac- negative midway if one is in the weak coupling domain.
ing a. Simt_JIations were performed for a range of lattice Although the(«a(x)}(0)) correlation function appears
sizes, ranging fromN=21 to N=211, and for values of o be zero at alk/L in Figs. 4a) and Xb), it has an inter-
g®uL ranging from 0.5-20. Typically, 200 iterations were esting structure as well. As Fig. 2 shows =21 and 41
performed, each consisting of an independent set ofpthe |attices, this correlation function decreases monotonically as
distributions, unless stated otherwise. Noting from E4)  y increases but remains positive all through. We will later
that g?u? sets the scale of the correlation functions, andcompare this behavior for largg?uL but it is interesting to
using the definition in Eq(35), one can show that the factor pote this difference with the leading order weak coupling
(9%na)® relates the dimensionless lattice correlation func-hehavior. As remarked earlier in Sec. Il A, we do expect a
tion to the physicak' correlations. We, therefore, show the ponvanishing contribution to it from the next-to-leading or-

results for the latter in the units @fu.”. _ der contribution and a detailed examination of it also reveals
In Fig. 1(a) we show the results of our computation for jt to be positive definite.
(af(x)e}(0))/g°u? j=1,2, plotted as a function of the di-  Having tested both the weak coupling limit and the con-

mensionless distanceL for a small value ofg?4L=0.5.  jugate gradient method on the lattice, we increased the
The lattice size was 4441. Also shown are the analytic g2uL, first by retaining the same lattice size N&=21 and
weak coupling results of Eq26) for this lattice size which  then increasing it as well up t=71 such that the lattice
agree rather well with the direct computation. One also seespacing stayed ah=0.1. This value was determined by
clearly that thex; correlation is very small compared to the making runs on thél=21 lattice for various and by check-

), correlation. In fact, the former is consistent with zero oning that the errors because of fingeemained small. For the
the scale of this plot. This, together with the excellent agreerest of our numerical work we have attempted to stay close
ment with the weak coupling result, reassures us thafor  to this value ofa; thus increasing the lattice si2¢ in order
smallg?uL the assumptions made in deriving the weak couto increaseg?ulL. Figure 3 displays the results for the
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FIG. 3. Theaj-correlation function as a function of/L for FIG. 4. Thea!-correlation function in the units af®«*L? as a
2 — : H H . 2 _ . .
g°uL=05,1,2,3,4,5,6,and 7. The lattice sizes can be found irfunction of x/L for g°’uL=0.5, 1, 2, 3, 4, and 5. The lattice sizes
the text. can be found in the text.

a’-correlation functions in the units @ u? as a function of
x/L for g?uL=0.5, 1, 2, 3, 4, 5, 6, and 7. It appears to
remain almost independent gfuL until it reaches our es-

timated region of the validity of the weak coupling theory:
for g?uL=5 the correlation function tends to be less andlo’ and 20. These runs were madefw 61, 71, 111, and

less negative agZul increases. This signals a departure21l lattices and the last two have very few iterations, being

from the leading order weak coupling result which, as seel“ill and 6, respectively. All the corresponding minima were

, 4 2 T .
in Eq. (27), is independent of?.L when viewed as a func- '([joof_ h'%h C()frT}Fared[t)m)f(q ). kThe pka_rim;teRdlns F'g'b6 'i
tion of the dimensionless variabiéL . An obvious source of o€ as ho ?V\]ﬁts'h edlnlrjdﬁl (%), f_ & an d','tc(i) det;[ €
the departure from Eq26) is higher order contributions. If terms on the left-hand sid@.HS) of Eq. (14) divided by
these tedious terms are indeed responsible for it then one
expects a growth in the; correlation as we argued in Sec.
Il A. 0 <..>/(@uLl’
Figure 4 exhibits thex}-correlation function in the units 10 ¥ X <>
of g°u*L? as a function of/L for g2uL up to 5. They do s
indeed group together to suggest a universal curve, and thus x
confirm the rise of this correlation function ag?L)?. Fig- o ’ x
ure 5 demonstrates this in another way and also suggests that = 10% z E
g?uL~5 is the boundary of the weak coupling region. What ~ >° s
is shown there is the=0 value for this correlation function
in the units ofg2u? as a function ofy?uL, both before and
after scaling out the factorgluL)?. Note the scale of both
the axes. A linear rising curve is thus an indication of the
power law which seems to be consistent with the power two.
What can also be inferred from this figure is a small trend to
push this power up as one goes ab@?e.L=5. A priori,
such a behavior could also be because of yet more higher 5
order terms. However, these results also suffer from a further
defect. 2
For the larger values af?uL, one sees th&,, slowly 10° L L L L L L L
creeping up and going beyond ti&a?) level. Indeed, typi- 00 10 20 30 20 50 60 70 80
cally one fails to obtain any acceptable minimum at that g ul
level for about 10-15% of the iterations. This should be
contrasted with the smai?uL case whereF i, was a lot FIG. 5. Thed}-correlation function ax=0 as a function of
smaller thanO(a?) for eachiteration. Increasing thg?uL g?ul without (crosses and with (squares a division by
even further, this becomes worse very quickly and by(g?uL)?.

g?uL =10 no minimum exists at that accuracy.
In order to better understand the reason behind this, we
show in Fig 6 a normalized histogram plot fg?uL =6, 7,
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0.1

FIG. 6. The histograms of the fraction of total
equations solved at an accurRy’ as a function
of R. These are plotted for the following values
of g?ulL: 6, 7, 10, and 20. For details, see the
text.

NQR)

0.01

0.001 k-

a*, one sees tha®*(x,)=0, for all x, andk, is the desired strictive. However, because we need to satisfy Gauss’ law in
solution. A value ofR(x,)# 0 measures how far away from two dimensions, periodic boundary conditions appear to be
the desired minimuntfound by minimizingF) is the solu- the appropriate physical choice.

tion for that value ofx, and k. What Fig. 6 depicts, for The absence of solutions fgfuL >5 is a serious prob-
different values ofj?uL, is the fraction of the BI? equations lem for the classical theory discussed in Ré&f. Not only
which have, for the best minimum &f, R given by the value because the conjectured scenario of a screening mass needed
on thex axis. We have checked that the similar histogramthe coupling to be strong but also because the removal of the
plots for the weak coupling region have only the bin nearinfrared regulator pushes it in that region. Considering that
zero occupied, i.e., they peak sharply at zero. What one se€yen the very large nuclei will be finite in size, one could
in Fig. 6 though, are increasing deviations away fromcheck whether the condition above is physically acceptable.
R=0, fewer and fewer of theN® equations are being satis- If we take L~2A'3, then the weak coupling condition
fied at the required level of accuracy. Noting tiR1/a,  g?xL <5 holds only for very smalh. This is because of the
which is ~10 for these runs, corresponds to the equationgact thatu~AY® and the coupling? is also evaluated at the
not being satisfied ab(a®) level, one finds that the mini- scalew. Thus, this condition contradicts the weak coupling
mum of F has increasingly many equations such as that. Thigssumption of the four-dimensional theory in Réf| which

is thus an indication that fog2uL =10, no solutions to the is expected to be valid only for very large

stochastic equations exist @(a*).

Our results, therefore, suggest the following: when
g?ulL <5, the correlation functions computed directly agree
very well with the expectations from lattice perturbation In Ref.[1], a QCD-based model was formulated to study
theory. For intermediate valueg?uL~5, the lattice results the properties of low, wee partons in large nuclei. For very
still agree reasonably well with the analytical lattice expres{arge nuclei, it was argued that the problem could be formu-
sions but one notices an increasing trend of lack of solutiongated as a weak coupling, many-body problem. In R&F. it
to more and more equations at thitlevel. For larger values was shown that the classical saddle-point solution of the
of g2uL>10, no solutions exist at that level. model could be expressed as a two-dimensional Euclidean

The absence of solutions as we incregégL was unex- field theory with the dimensionful couplingsu. Computing
pected. Increasing®ulL for a fixed value ofa is equivalent correlation functions in this 2D theory required the solution
to merely increasing the number of sitds In other words, of highly nonlinear stochastic differential equations in the
the number of equations has been increased but the structuseesence of a Gaussian random source. No analytic solution
of the equations and the coupling is unchanged. Why thenf these equations was found in RES].
are there no solutions as we go beyafdL ~5? One way However, it was argued that classical distribution func-
to understand this is as follows: sinte=exp(g?ua-¢) and  tions had a Weizsker-Williams distribution at large mo-
in weak coupling¢=N, increasingg?uL will cause theU mentak;> agu. It was also conjectured that at smaller mo-
matrices to deviate increasingly away from identity. How- menta, in “strong coupling,” the theory acquired a screening
ever, sincegua is unchanged and it remains small, and massM ~ agu, which regulated the growth of the distribu-
sincep remains of order 1, Eq14) will still prefer theU to  tion function at smalk;. The existence of a screening mass
be close to identity. The ensuing mismatch will thus result inwould be suggestive of a weak coupling, albeit nonperturba-
a lack of solutions for largg?uL. It is possible that our lack tive, restoration of unitarity already at the classical level.
of solutions is because our boundary conditions are too re- In this paper, we have discussed the analytic weak cou-

V. SUMMARY AND OUTLOOK
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pling and the numerical solutions of the stochastic differen-argue that the cross-product term above cannot be dropped
tial equations on a two-dimensional lattice. For our numeri-because of its peculiar singular structure. They argue that the
cal work, we made the simplifying assumption of two colorssource term must be regularized so that instead of being a
and investigated an SP) gauge theory. With lattice pertur- § function inx™, the charge density depends on the space-
bation theory as our guide, we identifiyuL <5 as the weak time rapidityy = —In(x"). The above equation is then rewrit-
coupling condition. Our numerical results on the lattice agregen as
very well with those with the lattice perturbation theory for

these values. For larger values g@fuL, no solutions are

found which satisfy the stochastic equations at the required

level of accuracy. Thus, not only is a screening mass absenth D. is th ant derivati It is claimed in Ref
but a further implication of this result is that the classical WNeréLi IS the covarniant cerivalive. it 1S claimed in Ref.

theory is ill defined in the infrared. Furthermore, if we iden- [16.3] that th'?’ equation can be SON?d exactly anq th_e corre-

tify L~2AY3 fm, the lattice weak coupling condition is sat- lation functions computed analytically. The distribution

isfied only for very smallA. This limit appears to contradict functions have the Welgsker-vvzllllams form for large

the weak coupling limit in the full theory, which is expected transverse mpmentaj N/d%k~ 1k : Fo_r small transvzerse

to be valid only for very large nuclei. In sum, our work Momenta, it has the logarithmic formdN/d°k;

suggests that the classical theory in R] is seriously ~IN[K/x(Y,K)] Hefey)((y,ktz)ZILOa&y,dY'MZ(Y',QZ)- We

flawed. refer the reader to Ref16] for the details of their calcula-
Recently, McLerran and collaboratdrs6] have proposed tion.

that the original classical theory is flawed because the au-

thors in Ref.[5] failed to properly solve the Yang-Mills ACKNOWLEDGMENTS

equations for the transverse componeitsof the classical

field. These are determined through the equation

d
Did—y=gp(y,xt), (37
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