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Lattice computations of small-x parton distributions in a model of parton densities
in very large nuclei
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Using weak coupling methods McLerran and Venugopalan expressed the parton distributions in large nuclei
as correlation functions of a two-dimensional Euclidean field theory. The theory has the dimensionful coupling
g2m, wherem2;A1/3 is the valence quark color charge squared per unit area. We use a lattice regularization
to investigate these correlation functions both analytically and numerically for the simplified case of SU~2!
gauge theory. In weak coupling (g2mL!5), whereL is the transverse size of the nucleus, the numerical results
agree with theanalytic lattice weak coupling results. Forg2mL@5, no solutions exist atO(a4) wherea is the
lattice spacing. This suggests an ill-defined infrared behavior for the two-dimensional theory. A recent proposal
of Jalilian-Marian, Kovner, McLerran, and Weigert for ananalytic solution of the classical problem is dis-
cussed briefly.@S0556-2821~96!01221-0#

PACS number~s!: 12.38.Mh, 12.38.Bx
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I. INTRODUCTION

In Ref. @1# McLerran and Venugopalan proposed th
weak coupling methods can be used to compute small-x par-
ton distribution functions in large nuclei. They wrote down
partition function for wee partons withx!A21/3 in the pres-
ence of external sources which are the valence qu
charges. The only large component of the valence quark c
rent isJ1, which is modeled by

Ja
m5dm1ra~x

1,xW'!d~x2!, ~1!

wherera is the density~per unit area! of valence quark color
charges. Their partition function is obtained by integrati
the QCD partition function, coupled to the above static cu
rent, over allra’s with a Gaussian weight. The variance o
this Gaussian distribution of valence quark charg
m2;A1/3 fm22, the average valence quark color char
squared per unit area, is the only dimensionful paramete
the theory. Ifm2@LQCD

2 , aS(m
2)!1 and weak coupling

methods can be used. This model could then be studied
toy model to understand both the rapid growth of structu
functions at smallx @2# and the eventual saturation of thes
structure functions as dictated by unitarity@3,4#. Note that
the model of Ref.@1# is gauge invariant because of th
Gaussian distribution for the valence quark densities.

In Ref. @5# the saddle-point solution of the partition func
tion in the presence of the Gaussian random source was
tained by solving the classical Yang-Mills equation
DmF

mn5Jn. Here,Dm is the covariant derivative,Fmn the
non-Abelian field strength tensor, andJn is the current in Eq.
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~1!. It was shown that the classical background field tha
satisfies the Yang-Mills equations has a simple structure
Consequently, the classical parton distributions can be ex
pressed as correlation functions of a two-dimensional Euclid
ean field theory. This is not too surprising since it is well
known that at very high energies the longitudinal and trans
verse coordinates decouple. Indeed, it has been proposed
cently that the limit ofx→0 and colorNc→` is an exactly
solvable two-dimensional field theory@6#. In papers subse-
quent to Ref.@5#, the problem of quantum fluctuations about
the background field@7–9# and that of initial conditions in
heavy ion collisions were addressed@10,11#. For a brief re-
view of these results, we refer the reader to Ref.@12#. An
excellent introduction to all aspects of the low-x problem is
given in Ref.@13#.

In this paper, we will discuss only the classical solutions
of the Yang-Mills equations. As we shall see in Sec. II, com-
puting the correlation functions requires that we solve a sto
chastic differential equation for each color charge configura
tion. Since the equations are highly nonlinear, no analytic
solutions were found. However, it was claimed in Ref.@5#
that the parton distributions have the Weizsa¨cker-Williams
behavior in the weak coupling regionaSm!kt :
dN/dxd2kt}1/xkt

2 . It was conjectured that the solution of
the stochastic differential equations in the strong coupling
region of LQCD!aSm!m would reveal that the classical
gluons generate a screening massmscreen;aSm. If there is
such a screening mass, its existence would strongly sugge
that a mechanism for the restoration of unitarity at very smal
x already exists at the classical level.

We will address here the question of a screening mass
the classical theory quantitatively by solving stochastic dif-
ference equations on a two-dimensional lattice. In Sec. III
we will describe how we set up the problem and how we us
lattice perturbation theory to identify the weak coupling and
strong coupling regimes of the theory. We define ‘‘reduced’’
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5796 54RAJIV V. GAVAI AND RAJU VENUGOPALAN
correlation functions of gauge fields which are on
dimensional projections of the original two-dimension
fields. If a screening mass existed in the theory, these
duced correlation functions may be expected to have a v
characteristic exponential falloff at large distances.

For simplicity, we will consider an SU~2! gauge theory in
our numerical work. We use the conjugate gradient meth
to solve the difference equations on the lattice. Details of
numerical procedure are also discussed in Sec. III. In S
IV, we describe lattice results for the reduced correlat
functions and compare them to the results expected fr
lattice perturbation theory in weak coupling. It is observ
that in the weak coupling region, the numerical results rep
duce to high accuracy the results of lattice perturbat
theory. However, as one approaches the strong coupling
gion on the lattice, the number of the stochastic differen
equations to which solutions can be found decreases
eventually, in the strong coupling region, no solutions of t
lattice equations exist at the desiredO(a4) accuracy. In Sec.
V, we will interpret these results and state our conclusion

II. PARTON DISTRIBUTIONS AS CORRELATION
FUNCTIONS OF A 2D FIELD THEORY

In the model of McLerran and Venugopalan, the partiti
function which describes the ground-state properties of w
partons withx!A21/3 and transverse momentaqt!A1/6 fm
21, is @1#

Z5E @dAtdA1#@dc†dc#@dr#

3expS iS1 igE d4xA1~x!d~x2!r~x!

2
1

2m2E d2xtr
2~0,xt! D . ~2!

In the above,r is the valence quark color charge densit
Also, the parameterm2;A1/3 fm22 is the average valence
quark color charge squared per unit area. Sincem2 is the
only scale in the partition function above, the coupling co
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stant will run as a function of this scale@9#. If m2@LQCD
2 , as

will be true forvery large nuclei,aS(m
2)!1 and weak cou-

pling methods can be used.
If we integrate over ther fields first, we obtain an effec-

tive action for the wee partons with nonlocal propagators an
vertices. Instead, the procedure followed in Ref.@5# was to
perform ther integrations last. In that approach, one need
to calculate the saddle-point solution of the action for eac
r configuration to determine the classical background field
Any physical observable, such as a correlation function, i
then obtained by evaluating it for the saddle-point solution
and then averaging it over all possibler configurations. The
saddle-point solution is nothing else but the solution to th
classical Yang-Mills equation,

DmF
mn5gJn, ~3!

in the presence of the external sourceJn5dn1r(xt)d(x
2). It

was shown in Ref.@5# that the solutions of these classical
equations of motion are

A150,

A250,

Aj5u~x2!a j~xt!. ~4!

The transverse componentsAj , where j51,2, further satisfy
the equations,F1250 and¹•a5gr, where the latter equa-
tion follows from the Gauss’ law. Since the fieldsAj are thus
gauge transforms of vacuum configurations with a gaug
condition determined by ther configuration, one can write
a j (xt)5( i /g)U(xt)¹ jU

†(xt), whereU is a unitary SU~3!
matrix for QCD and an SU(N) matrix for a theory withN
colors. Substituting fora j in the gauge condition results in
the stochastic differential equation

¹W •U¹W U†52 ig2r~xt!. ~5!

Using the solutions of the equation above, which are th
saddle-point configuration of the partition function in Eq.
~2!, one can show that theclassical correlation functions
may be expressed~in matrix representation! as correlation
functions of a two-dimensional Euclidean field theory:
^a i
ab~xt!a j

a8b8~0!&r5
21

g2 E @dr#@U~xt!¹U
†~xt!#r

ab@U~0!¹U†~0!#r
a8b8expS 2

1

2m2E d2xtr
a~xt!r

a~xt! D Y I , ~6!
s
e

where the Gaussian random measure,

I5E @dr#expS 2
1

2m2E d2xtr
a~xt!r

a~xt! D , ~7!

is all that is left from the original partition function. Note
that the charges are highly localized in the transverse pla

^ra~xt!&50 ; ^ra~xt!r
b~yt!&r5m2dabd~2!~xt2yt!.

~8!
ne:

In order to ensure that the valence quark color charge i
confined to the transverse radius of the nucleus, we requir
that

E d2xtr
a~xt!50. ~9!

This constraint was not stated in Ref.@5#. In the momentum
space this condition decrees thatra(kt50)50. Thus, the
kt50 mode is excluded explicitly.
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To compute the correlation function in Eq.~6!, we need to
solve Eq.~5! to determineU[U(r) for eachr configura-
tion. We were unable to find an analytic solution to th
highly nonlinear equation for all values of the coupling. I
the following and subsequent sections we will discuss t
analytic weak coupling solution and the numerical solutio
of this equation on a two-dimensional lattice.

For completeness, let us recall that the relation betwe
distribution functions and the correlation functions above
straightforward and is discussed explicitly in Ref.@7#:

1

pR2

dN

dxd2kt
5

1

~2p!3
1

xE d2xte
iktxtTr@^a i

ab~xt!a j
a8b8~0!&#,

~10!

where the trace is over both Lorentz and color indices.
It was argued in Ref.@5# that the distribution function has

the general form

1

pR2

dN

dxd2kt
5

~Nc
221!

p2

1

x

1

aS
H~kt

2/aS
2m2!, ~11!

whereH(kt
2/aS

2m2) is a nontrivial function obtained by ex-
plicitly solving Eq. ~5!. The effective coupling constant of
this theory was believed to beaSm/kt and that in the ‘‘weak
coupling’’ limit aSm!kt , H(kt

2/aS
2m2)→aS

2m2/kt
2 , recover-

ing the Weizsa¨cker-Williams result scaled bym2. It was also
conjectured that the functionH would have the form
aS
2m2/(kt

21M2), where M5caSm is a screening mass
which is a constantc times the dimensionful scaleaSm.

Interestingly, the problem formulated above is analogo
to the problem of the critical behavior of Ising-like model
coupled to a random magnetic field. As discussed by Pa
and Sourlas@15#, the partition function in that case has
structure identical to Eq.~2!, albeit they only discussed the
case of a scalar theory. It was argued in Ref.@15# that the
singular behavior of the theory near the critical point wa
best described by correlation functions analogous to those
Eq. ~6!. The remarkable result of Parisi and Sourlas was th
their scalar version of Eq.~6! could be written as correlation
functions of a theory which is identical to the original theor
without the random magnetic fieldsbut inD22 dimensions,
whereD is the dimensionality of the original theory. This
dimensional reduction is a consequence of a hidden sup
symmetry of the expression analogous to Eq.~6!. The gauge
theory analogue of this symmetry is nothing other than t
well-known BRST symmetry. Unfortunately, Parisi-Sourla
dimensional reduction will not apply to Eq.~6! because the
analogue of their scalar field is the compact fieldU as op-
posed to the gauge fielda.

Therefore, in order to test our conjecture about the exi
ence of a screening mass in the strong coupling domain,
address the question numerically by formulating the proble
on a lattice. This also enables us to define the weak coupl
limit more precisely. As we will discuss in the following
section, the above statements about weak coupling are m
fied somewhat by the precise formulation of the problem
the lattice. The effective coupling of the theory is indee
aSm/kt but only for discrete multiples ofkt52p/L. Here,
L is the transverse size of the nucleus. Correspondingly, o
obtains a discrete version of the Weizsa¨cker-Williams result
is
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for weak coupling (g2mL!5 as we will show! by using
lattice perturbation theory. However, since the limitL→` is
synonymous with strong coupling, the Weizsa¨cker-Williams
result of Ref.@5# for continuous transverse momenta will not
be recovered.

III. THE 2D THEORY ON THE LATTICE

As discussed in the previous section, to compute correla
tion functions of the two-dimensional field theory, we need
to solve stochastic differential equation@Eq. ~5!# for an arbi-
trarily large coupling. We intend to do this numerically by
introducing a spatial lattice. The lattice spacinga serves as
an ultraviolet regulator. Indeed, without such a regularization
the functional integrals in Eq.~6! are not well defined since
the correlations of ther fields are proportional to ad func-
tion. Introducing the lattice, one sees from Eq.~7! that each
ra(x) is m/a times a Gaussian random number of unit vari-
ance. Approximating the circular transverse side of the
nucleus of diameterL by a square of lengthL, one sees it to
be aN3N grid of lattice points withL5Na. The continuum
limit consists of takinga→0 andN→` such thatL is held
constant. The farther removal of the infrared regulator can b
achieved by takingL→`, which was the limit in which the
weak coupling considerations of Refs.@1,5# led to their com-
putational scheme of the low-x parton distributions.

Using the unitarity condition on theU matrices, the sto-
chastic differential equation@Eq. ~5!# can be rewritten as

~U¹2U†2¹2U•U†!522ig2r. ~12!

On the lattice, finite differences replace the derivatives:

¹2U†5 (
j51,2

U†~xt1aj !1U†~xt2aj !22U†~xt!

a2
1O~a2!.

~13!

The labelsj51,2 refer to the orthonormal directions on the
lattice andaj denotes a displacement by a single site, i.e., by
distancea, in the j th direction. The resultant stochastic dif-
ferential equation form~to O(a4) accuracy! of Eq. ~5! is

FU~xt! (
j51,2

@U†~xt1aj !1U†~xt2aj !#G2H.c.

12ig2mar~xt!50. ~14!

In the equation above, H.c. denotes Hermitian conjugate an
we have scaledr→mr/a. This has the advantage that the
Gaussian random measure defined in Eq.~7! is now indepen-
dent both of the lattice spacinga and the dimensionful pa-
rameterm. It is redefined to be

E @dra#expS 2
1

2(xt
ra~xt!r

a~xt! D . ~15!

The rescaledr on the lattice satisfies the following equations
in analogy with their continuum version:

^ra~xt!&50 ; ^ra~xt!r
b~yt!&r5dabdxt ,yt

~2! . ~16!
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The zero net color charge constraint naturally becomes a s
on the lattice andra(kt50)50 is true on the lattice as well
The only coupling this lattice theory has is the dimensionle
g2ma and the scale for the theory is provided by the nucle
transverse sizeL. Physical quantities can, therefore, be o
tained as a function ofg2ma or equivalently,g2mL.

In computing correlation functions on the lattice, we w
find it most convenient to study correlations of on
dimensional projections of the two-dimensional gauge fiel
These ‘‘reduced’’ gauge fields are defined as

a j
r~x2!5

(x1
a j~x1 ,x2!

N
. ~17!

This one-dimensional projection sets the momentumk150.
If there exists a mass gapM in the theory, then

^am
r ~x2!am

r ~y2!&5Aexp~2M ux22y2u!, ~18!

for sufficiently largeux22y2u ~to avoid influence of excited
states, if any!. An exponential falloff of the correlations o
these reduced gauge fields would, therefore, be an un
biguous signature of a mass gap in the theory.

A. Weak coupling limit

Since the above-mentioned functionH and, therefore, the
correlation functions we wish to obtain, have earlier be
obtained in weak coupling limit of the two-dimensional~2D!
theory, it will be instructive to first calculate them in th
weak coupling limit on the lattice. For small enoughg2ma,
Eq. ~14! clearly admits a solution forU(xt) which is close to
the identity matrix for allxt modulo aglobal gauge rotation.
Writing the matricesU in terms of the generatorstk of the
SU(N) gauge group asU(xt)5exp@ig2ma•f(xt)#, with
f(xt)5(kf

k(xt)•t
k, one sees that weak coupling implie

that g2ma•f!1. One can, therefore, expand the fieldU as

U511 ig2ma•f2 1
2 ~g2ma!2•f21••• . ~19!

Keeping terms of only lowest order, Eq.~14! becomes

(
j51,2

@f~xt1aj !1f~xt2aj !22f~xt!#5r~xt!. ~20!

These equations can be solved by Fourier transforming
fieldsf and the sourcesr: Let

f~xt!5
1

N2(
nW

exp~2p inW •xtW /L !f̃S 2pnW

L
D , ~21!

with nW 5(n1 ,n2) and2(N21)/2<nj<(N21)/2 ~assuming
N to be odd!. Defining similarly the Fourier transform o
r(xt), we obtain the following solution of Eq.~20!:

f̃S 2pnW

L
D 5

r̃ S 2pnW

L
D

2( j51,2FcosS 2pnja

L D21G . ~22!

Substituting back in the equation forf(xt), we have
um

ss
ar
-

ll
-
s.

m-

n

s

the

f~xt!5
1

2N2(
nW

exp~2p inW •xtW /L !

( j51,2FcosS 2pnja

L D21G r̃ S 2pnW

L
D . ~23!

In this leading order of weak coupling,a j (xt)
5gm@f(xt1aj )2f(xt2aj )#, and the one-dimensional pro
jections of thea fields, are easily computed to be

a1
r ~x2!50,

a2
r ~x2!5

gm i

2N2( 8
n2

sinS 2pn2a

L D r̃ S 2pn2a

L D
FcosS 2pn2a

L D21G expS 2p in2x2
L D .

~24!

Here, prime denotes the exclusion of then250 because of
the total vanishing charge condition. To obtain the ‘‘re
duced’’ correlators, we take the product of thea r fields and
take the average over ther̃ fields. Using the relation between
r and r̃, and Eq.~16!, one can easily show thatr̃ satisfies
similar equations as well except that its two-point correlati
function has an extra factor ofN2:

^r̃ a~kt!r̃
b~ l t!& r̃5N2dabdkt ,l t

~2! . ~25!

Using the relation above and after some simple algebra,
obtain

^a1
r ~x!a1

r ~x8!&50,

^a2
r ~x!a2

r ~x8!&5
g2m2

2N2 (
n251

~N21!/2 sin2S 2pn2a

L D
FcosS 2pn2a

L D21G2
3cosS 2pn2~x2x8!

L D . ~26!

In the continuum limit ofa→0 andN→`,

^a2
r a2

r &a→05
g2m2

2p2 (
n251

` cosS 2pn2~x2x8!

L D
n2
2 . ~27!

By constructing similar ‘‘reduced’’ correlators for the calcu
lations of Ref.@1#, one can easily see that our results are ve
similar to theirs, except that our expression above still ha
finite L. Consequently, only discrete momenta are allowed
our sum and the lowest-allowed momentum is 2p/L. A na-
ive L→` yields identical results to those of Ref.@1# but it
turns out that this limit is not allowed.

In order to see why it is so, it is necessary to go back
the weak coupling conditiong2ma•f!1. Using the solution
for f(xt) obtained above, one can translate this conditi
into
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g2mLH 1

N3(
nW

exp~2p inW •xtW /L !

( j51,2FcosS 2pnja

L D21G r̃ S 2pnW

L
D J !1.

~28!

Further taking the continuum limit, one obtains

g2mLH 1

4p2L(nW
exp~2p inW •xtW /L !

j 1
21 j 2

2 r̃ S 2pnW

L D J !1.

~29!

One can now see that theL→` limit will violate the above
condition even if one ignores the possibly logarithmical
divergent factor in the curly brackets in that limit. The wea
coupling condition thus constrainsL to stay finite and small.
The expression in the curly brackets can be evaluated
merically and typically the largest values are;0.2 if one
keepsL finite. The weak coupling condition for a finite size
L is then~approximately!

g2mL!5. ~30!

The correlation function̂a1
r a1

r & becomes nonzero in the
next-to-leading order of the expansion when

am5g¹mf1 ig3@f¹mf2~¹mf!f#. ~31!

For the sake of brevity we have used here the continuu
notation to denote the finite differences. Using this expre
sion, the reduced correlator can be computed straightf
wardly. The final expression is fairly tedious~involving the
Gaussian average of fourr̃ fields!. The key result of this
computation is that, in the continuum limita→0,

^a1
r a1

r &}g2m2~g2mL !2; ~32!

i.e., the correlation function grows as (g2mL)2. In the next
section, we will compare the results of our lattice comput
tion with these lattice perturbation theory results in the we
coupling regiong2mL!5.

The weak coupling calculations above were done by i
troducing an ultraviolet cutoff, the lattice spacinga. Since
the final result shows sensitivity only to the infrared regul
tor, namely, the sizeL, one can ask whether these results ca
be derived without introducing the lattice inx space at all.
The answer turns out to be affirmative. One can easily sh
that the continuum problem can be formulated in the m
mentum space of a finite square box of lengthL. Because of
the discrete momentum spectra, the correspondingr̃ measure
is then well defined. One then solves Eq.~5! by first expand-
ing U(x) and then Fourier transforming the resultant equ
tion. The final results, of course, remain unchanged wh
compared with thea→0 limit above.

B. Numerical method

In order to obtain a result for the correlation functions o
thea r fields which is free of the infrared cutoff, one has t
take the limitL→`. Since it thus necessarily takes one ou
of the weak coupling region, we now turn to the procedu
we used to solve the stochastic difference equations in E
~14! numerically. To simplify our computations and as a tes
ly
k
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we choose to work with the gauge group SU~2!. No qualita-
tive differences are anticipated with regard to the existenc
of the mass gap as a result of this simplification. Writing an
SU~2! matrixU asa0I1 i tkak , we can write the first term of
Eq. ~14! as

FU~xt! (
j51,2

@U†~xt1aj !1U†~xt2aj !#G5b0I1 i tkbk .

~33!

Here,I is the unit 232 matrix andtk, k51,2,3 are the Pauli
matrices. The coefficientsak satisfy the unitarity condition,
(k50
3 ak

251, but the coefficientsbk do not. Equation~14! can
now be re-expressed asbk(xt ,xt6aj )1g2ma•rk(xt)50. In
order to solve these coupled nonlinear equations, we min
mize the functionF, defined by

F5(
xt

H(
k

@bk~xt ,xt6aj !1g2ma•rk~xt!#
2

1S (
k
ak
2~xt!21D 2J . ~34!

Minimizing F is equivalent to solving Eq.~14! for each lat-
tice point and color charge (3N2 equations! while simulta-
neously imposing the unitarity conditionU, U†51, at each
point on the lattice. The latter is done by the second set o
terms inF. Note thatF is a sum of squares of real numbers
with zero as its possible absolute and desired minimum.
lack of solution will be signaled by large values ofFmin for
the absolute minimum.

We use a multidimensional conjugate gradient method
described in the subroutineFRPRMN and its associated sub-
programs in Ref.@14#, to minimizeF to an accuracy better
thanO(a4) as dictated by accuracy of the original lattice
equations. The zero net charge condition compels us to u
periodic boundary conditions in accordance with the Gaus
law. We investigated both ordered and random starts for th
initial guesses for theU ’s. Each iteration consisted of choos-
ing the source distributions randomly over the entire lattic
in the momentum space such that~1! r̃(0,0)50, ~2!

r̃ * (kW )5 r̃(2kW ), and~3! both the real and imaginary parts of
each r̃(kW ) were random Gaussian numbers with varianc
1/A2. The r distribution was then obtained by an explicit
Fourier transformation. Using the conjugate gradien
method, the set ofU ’s for the absolute minimum was found.
If the minimum wasO(a4) or smaller, then the matrices
U[U(r) were used to compute the correlation functions on
the lattice. We obtainam from the relation

tk•am
k 52

1

ga
Im@U~xt!U

†~xt1am!#. ~35!

We have also checked that the symmetric difference defin
tion for the derivative yields the same result. Just as in Eq
~17!, we define the ‘‘reduced’’ gauge fieldsa r and compute
correlators by taking the product of these gauge fields. Th
procedure is repeated over several iterations, typically a fe
hundred, and the correlation function is averaged over the
iterations. The errors are determined in the usual way b
computing the standard deviations. Note that the sets ofr ’s
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in successive iterations are totally independent and one
has negligibly small autocorrelations.

IV. RESULTS

In view of the facts that the coupling for the lattice theo
above isg2ma, and that none of the three quantities in th
expression occurs independently, we chose to setg2m51 in
our simulations and variedg2ma by varying the lattice spac-
ing a. Simulations were performed for a range of latti
sizes, ranging fromN521 to N5211, and for values of
g2mL ranging from 0.5–20. Typically, 200 iterations we
performed, each consisting of an independent set of thr
distributions, unless stated otherwise. Noting from Eq.~26!
that g2m2 sets the scale of the correlation functions, a
using the definition in Eq.~35!, one can show that the facto
(g2ma)2 relates the dimensionless lattice correlation fun
tion to the physicala r correlations. We, therefore, show th
results for the latter in the units ofg2m2.

In Fig. 1~a! we show the results of our computation fo
^a j

r(x)a j
r(0)&/g2m2, j51,2, plotted as a function of the di

mensionless distancex/L for a small value ofg2mL50.5.
The lattice size was 41341. Also shown are the analytic
weak coupling results of Eq.~26! for this lattice size which
agree rather well with the direct computation. One also s
clearly that thea1

r correlation is very small compared to th
a2
r correlation. In fact, the former is consistent with zero

the scale of this plot. This, together with the excellent agr
ment with the weak coupling result, reassures us that~1! for
smallg2mL the assumptions made in deriving the weak co

FIG. 1. ~a! The correlation functionsG j (x)[^a j
r(x)a j

r(0)& as a
function of x/L for j51 ~circles! and j52 ~crosses! for
g2mL5L50.5 andL541a. The continuous line is the weak cou
pling result of Eq.~26!. ~b! Same as Fig. 1~a! but for L521a and
L541a and forG2 only.
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pling results are indeed justified, and~2! our numerical pro-
cedure works fine.

Figure 1~b! further shows that these results are indeed the
continuum results. It displays the results for the same
g2mL but on N521 and 41 lattices. The results for the
j52 correlation are again displayed as a function of the
dimensionless distancex/L and the results are seen to be
lattice-size independent. One may wonder why the correla-
tion function is negative, given that it can now be thought of
as a continuum property. The weak coupling result of Eq.
~26! provides a hint for understanding this. The leading term
in it is negative forx2x85L/2 and the successive terms
alternate in sign and become progressively smaller in mag-
nitude. Thus, for any finiteL, the correlation function will be
negative midway if one is in the weak coupling domain.

Although the^a1
r (x)a1

r (0)& correlation function appears
to be zero at allx/L in Figs. 1~a! and 1~b!, it has an inter-
esting structure as well. As Fig. 2 shows forN521 and 41
lattices, this correlation function decreases monotonically as
x increases but remains positive all through. We will later
compare this behavior for largerg2mL but it is interesting to
note this difference with the leading order weak coupling
behavior. As remarked earlier in Sec. III A, we do expect a
nonvanishing contribution to it from the next-to-leading or-
der contribution and a detailed examination of it also reveals
it to be positive definite.

Having tested both the weak coupling limit and the con-
jugate gradient method on the lattice, we increased the
g2mL, first by retaining the same lattice size ofN521 and
then increasing it as well up toN571 such that the lattice
spacing stayed ata.0.1. This value was determined by
making runs on theN521 lattice for variousa and by check-
ing that the errors because of finitea remained small. For the
rest of our numerical work we have attempted to stay close
to this value ofa; thus increasing the lattice sizeN in order
to increaseg2mL. Figure 3 displays the results for the

-

FIG. 2. Thea1
r -correlation function as a function ofx/L for

g2mL50.5 andN521 and 41 lattices.
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a2
r -correlation functions in the units ofg2m2 as a function of

x/L for g2mL50.5, 1, 2, 3, 4, 5, 6, and 7. It appears t
remain almost independent ofg2mL until it reaches our es-
timated region of the validity of the weak coupling theory
for g2mL>5 the correlation function tends to be less an
less negative asg2mL increases. This signals a departur
from the leading order weak coupling result which, as se
in Eq. ~27!, is independent ofg2mL when viewed as a func-
tion of the dimensionless variablex/L. An obvious source of
the departure from Eq.~26! is higher order contributions. If
these tedious terms are indeed responsible for it then o
expects a growth in thea1

r correlation as we argued in Sec
III A.

Figure 4 exhibits thea1
r -correlation function in the units

of g6m4L2 as a function ofx/L for g2mL up to 5. They do
indeed group together to suggest a universal curve, and t
confirm the rise of this correlation function as (g2mL)2. Fig-
ure 5 demonstrates this in another way and also suggests
g2mL;5 is the boundary of the weak coupling region. Wha
is shown there is thex50 value for this correlation function
in the units ofg2m2 as a function ofg2mL, both before and
after scaling out the factor (g2mL)2. Note the scale of both
the axes. A linear rising curve is thus an indication of th
power law which seems to be consistent with the power tw
What can also be inferred from this figure is a small trend
push this power up as one goes aboveg2mL.5. A priori,
such a behavior could also be because of yet more hig
order terms. However, these results also suffer from a furth
defect.

For the larger values ofg2mL, one sees theFmin slowly
creeping up and going beyond theO(a4) level. Indeed, typi-
cally one fails to obtain any acceptable minimum at th
level for about 10–15% of the iterations. This should b
contrasted with the smallg2mL case whereFmin was a lot
smaller thanO(a4) for each iteration. Increasing theg2mL
even further, this becomes worse very quickly and b

FIG. 3. Thea2
r -correlation function as a function ofx/L for

g2mL50.5, 1, 2, 3, 4, 5, 6, and 7. The lattice sizes can be found
the text.
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g2mL510 no minimum exists at that accuracy.
In order to better understand the reason behind this, we

show in Fig. 6 a normalized histogram plot forg2mL56, 7,
10, and 20. These runs were made onN561, 71, 111, and
211 lattices and the last two have very few iterations, being
11 and 6, respectively. All the corresponding minima were
too high compared toO(a4). The parameterR in Fig. 6 is
defined as follows. DefiningRk(xt), k51, 2, and 3, to be the
terms on the left-hand side~LHS! of Eq. ~14! divided by

in
FIG. 4. Thea1

r -correlation function in the units ofg6m4L2 as a
function of x/L for g2mL50.5, 1, 2, 3, 4, and 5. The lattice sizes
can be found in the text.

FIG. 5. Thea1
r -correlation function atx50 as a function of

g2mL without ~crosses! and with ~squares! a division by
(g2mL)2.
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FIG. 6. The histograms of the fraction of total
equations solved at an accuracyRa4 as a function
of R. These are plotted for the following values
of g2mL: 6, 7, 10, and 20. For details, see the
text.
ed
e
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a4, one sees thatRk(xt)50, for all xt andk, is the desired
solution. A value ofRk(xt)Þ0 measures how far away from
the desired minimum~found by minimizingF) is the solu-
tion for that value ofxt and k. What Fig. 6 depicts, for
different values ofg2mL, is the fraction of the 3N2 equations
which have, for the best minimum ofF, R given by the value
on thex axis. We have checked that the similar histogra
plots for the weak coupling region have only the bin ne
zero occupied, i.e., they peak sharply at zero. What one s
in Fig. 6 though, are increasing deviations away fro
R50, fewer and fewer of the 3N2 equations are being satis
fied at the required level of accuracy. Noting thatR51/a,
which is ;10 for these runs, corresponds to the equatio
not being satisfied atO(a3) level, one finds that the mini-
mum ofF has increasingly many equations such as that. T
is thus an indication that forg2mL>10, no solutions to the
stochastic equations exist atO(a4).

Our results, therefore, suggest the following: whe
g2mL,5, the correlation functions computed directly agre
very well with the expectations from lattice perturbatio
theory. For intermediate values,g2mL'5, the lattice results
still agree reasonably well with the analytical lattice expre
sions but one notices an increasing trend of lack of solutio
to more and more equations at thea4 level. For larger values
of g2mL.10, no solutions exist at that level.

The absence of solutions as we increaseg2mL was unex-
pected. Increasingg2mL for a fixed value ofa is equivalent
to merely increasing the number of sitesN. In other words,
the number of equations has been increased but the struc
of the equations and the coupling is unchanged. Why th
are there no solutions as we go beyondg2mL;5? One way
to understand this is as follows: sinceU5exp(ig2ma•f) and
in weak couplingf}N, increasingg2mL will cause theU
matrices to deviate increasingly away from identity. How
ever, sinceg2ma is unchanged and it remains small, an
sincer remains of order 1, Eq.~14! will still prefer theU to
be close to identity. The ensuing mismatch will thus result
a lack of solutions for largeg2mL. It is possible that our lack
of solutions is because our boundary conditions are too
m
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ns
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strictive. However, because we need to satisfy Gauss’ law in
two dimensions, periodic boundary conditions appear to be
the appropriate physical choice.

The absence of solutions forg2mL.5 is a serious prob-
lem for the classical theory discussed in Ref.@5#. Not only
because the conjectured scenario of a screening mass need
the coupling to be strong but also because the removal of th
infrared regulator pushes it in that region. Considering that
even the very large nuclei will be finite in size, one could
check whether the condition above is physically acceptable
If we take L'2A1/3, then the weak coupling condition
g2mL,5 holds only for very smallA. This is because of the
fact thatm;A1/6 and the couplingg2 is also evaluated at the
scalem. Thus, this condition contradicts the weak coupling
assumption of the four-dimensional theory in Ref.@1# which
is expected to be valid only for very largeA.

V. SUMMARY AND OUTLOOK

In Ref. @1#, a QCD-based model was formulated to study
the properties of lowx, wee partons in large nuclei. For very
large nuclei, it was argued that the problem could be formu-
lated as a weak coupling, many-body problem. In Ref.@5#, it
was shown that the classical saddle-point solution of the
model could be expressed as a two-dimensional Euclidea
field theory with the dimensionful couplingaSm. Computing
correlation functions in this 2D theory required the solution
of highly nonlinear stochastic differential equations in the
presence of a Gaussian random source. No analytic solutio
of these equations was found in Ref.@5#.

However, it was argued that classical distribution func-
tions had a Weizsa¨cker-Williams distribution at large mo-
mentakt@aSm. It was also conjectured that at smaller mo-
menta, in ‘‘strong coupling,’’ the theory acquired a screening
massM;aSm, which regulated the growth of the distribu-
tion function at smallkt . The existence of a screening mass
would be suggestive of a weak coupling, albeit nonperturba-
tive, restoration of unitarity already at the classical level.

In this paper, we have discussed the analytic weak cou
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pling and the numerical solutions of the stochastic differe
tial equations on a two-dimensional lattice. For our nume
cal work, we made the simplifying assumption of two colo
and investigated an SU~2! gauge theory. With lattice pertur
bation theory as our guide, we identifyg2mL!5 as the weak
coupling condition. Our numerical results on the lattice agr
very well with those with the lattice perturbation theory fo
these values. For larger values ofg2mL, no solutions are
found which satisfy the stochastic equations at the requi
level of accuracy. Thus, not only is a screening mass abs
but a further implication of this result is that the classic
theory is ill defined in the infrared. Furthermore, if we iden
tify L;2A1/3 fm, the lattice weak coupling condition is sa
isfied only for very smallA. This limit appears to contradic
the weak coupling limit in the full theory, which is expecte
to be valid only for very large nuclei. In sum, our wor
suggests that the classical theory in Ref.@5# is seriously
flawed.

Recently, McLerran and collaborators@16# have proposed
that the original classical theory is flawed because the
thors in Ref. @5# failed to properly solve the Yang-Mills
equations for the transverse componentsAi of the classical
field. These are determined through the equation

¹ i]
1Ai1Ai3]1Ai5gJ1. ~36!

Reference@5# argued for a solution of the form in Eq.~4!:
Ai5a iu(x2). If one then ignores the commutator terms, b
cause it involves fields at the samex2, one then obtains
¹•a5gr, which gives us the stochastic equation we solv
for U using a i5U¹ iU

†/(2 ig). The authors of Ref.@16#
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argue that the cross-product term above cannot be dropp
because of its peculiar singular structure. They argue that th
source term must be regularized so that instead of being
d function inx2, the charge densityr depends on the space-
time rapidityy52 ln(x2). The above equation is then rewrit-
ten as

Di

dAi

dy
5gr~y,xt!, ~37!

whereDi is the covariant derivative. It is claimed in Ref.
@16# that this equation can be solved exactly and the corre
lation functions computed analytically. The distribution
functions have the Weizsa¨cker-Williams form for large
transverse momenta,dN/d2kt;1/kt

2 . For small transverse
momenta, it has the logarithmic formdN/d2kt
; ln@kt

2/x(y,kt
2)#. Here,x(y,kt

2)5*maxy,y8
y0 dy8m2(y8,Q2). We

refer the reader to Ref.@16# for the details of their calcula-
tion.
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