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Natural quark mass patterns
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We incorporate the idea of natural mass matrices into the construction of phenomenologically viable quark
mass matrix patterns. The general texture pattern for natural Hermitian mass matrices is obtained and several
applications of this result are mad&0556-282(196)00121-X]

PACS numbgs): 12.15.Ff, 12.10.Kt

I. INTRODUCTION According to a recent study], the value ofQ in the above

Recently, we proposed the idea of natural mass matriceesquatlon Is likely to be somewhat smalleQ€22.7-0.8);

[1], an organizing principle useful in the construction of phe-arld the range of values for the quark mass ratios may be

nomenologically viable grand unification thedi§UT) scale even fu_rther narrowed down tm“/md_0'553t.0'043 and
guark mass matrix patterns. In this note, we present a den-?slmd_ls'9i 0.8. In terms of the mass rafio parameter
tailed implementation and discuss certain applications of thi§ s of Table |, the latter translates to

result, among which is the construction of some supersym-
metric (SUSY) GUT mass matrix patterns. We begin with a
brief summary of the low energy dateED) which we use

as inputs and a discussion of the evolution of these param-
eters in the minimal supersymmetric standard mode
(MSSM). This is followed by the introduction of a conve-
nient parametrization of Hermitian mass matrices which

gl Esp=1.09+0.04. )

Typically, one wishes to construct mass patterns at some
igh energy scales as, for instance, one does when building
certain GUT models. To do so, using the LED inputs of
Table |, one must also take into account the evolution of
these parameters. Here, as an example, we consider the scal-

along with the “naturalness” requiremeft], allows us to . . ; .
derive the general texture pattern for natural Hermitian quarl%ng| behavior of the LED parameters in the M.SSM which
ctually has a rather simple description, provided that the

mass matrices. The usefulness of this result is then demofi . . M ; .
strated through several examples. Specifically, using the e _nderlymg mass matrices are “natural{1]. Denoting the
pression for this general pattern, we conduct an efficient vi 3.”3] matrix elements of thq-type andd-type Yukawa ma-
ability check on a known quark mass pattern, perform arffiCeS asky andiq, respectively, one has

exercise of finding mass patterns with most texture zeros,

and finally, we construct some simple, generic mass patterns Eel(Me)/ Ecr= Eu(Me)/ Eur=Tu, G

which may be useful as templates for contemplating “pre-

dictive” quark massAnsdze Esb(Mg)/ Esp™ Ean(Ma)/ Eab=Td (4)
ANmg)/A=0c(mg)/o=1, (5)

II. LED INPUTS AND THEIR EVOLUTION IN MSSM

In our bottom-up approach of constructing quark mass A(mg)/A=r, (6)
matrices, we use as inputs the quark mass ratios evaluated at
m,=175 (GeV) and values of Cabibbo-KobayaShi-MaskawaWhere the scaling parameters are defined by
(CKM) matrix elements in the standard Wolfenstein

parametrizatior}. 1 (inmg
Notice, in particular, the different degrees of experimental 1= exp( - Wf {3\5() +N5(w)}d Ing
uncertainties associated with the LED. Roughly speaking, Inmy
AN is about 1% AA,A ¢, are slightly below~10% while
Ao, A&y, Aéq,Aég, are of ~30% andé is only loosely B _LJ'””’G
bounded. fa=€XR ~ 16,2

Additionally, one can impose the existing constraints on
the relative sizes of the light quark masses from current al-
gebra analyseR2]:

2

ﬂ) v iz(%
myg/  Q°imy

{N2(p)+3N5(w)}d |n,u),

Inm;

2Assuming quark and lepton mass matrices are “natural,” the
corresponding Yukawa matrices then exhibit a certain definite hier-
2 archy. In particular, th€3,3] matrix elements are much greater than
) =1, with Q=24+1.6. ) the rest, a fact gainfully exploited in the simplification of solutions
to the one-loop renormalization group equatidRGE's) for the
Yukawa matrice$4].
3For conciseness, unless otherwise specified, values of the param-
!see Ref[1] for the sources of the numbers summarized in Tableeters in the expressions below are taken to be those evaluated at
I m; .
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54 NATURAL QUARK MASS PATTERNS 5751

TABLE I. LED inputs used in quark mass pattern construction.

my/m=&N"  £,=0.49+0.15
me/m=&N*  €,=1.46+0.13
my/mp=E4pA*  &4,=0.58+0.18
mg/my=éA?  £5,=0.55+0.18
Vis=A+O(\7) A=0.221+0.002
CKM parameters Vep=ANZ+O(\%) A=0.78+0.05
Vyp=Ao\%e™? ¢=0.36+0.09,6=[45,158]

Quark mass ratios

Nl )N g={ () Y4 1= (314m®)N21 ()} Y2,

1 Inm
r:exp( =] IR PHIE T e
t M) Ng={ 7" () AN ()N ()} 112,

The\(w)’s in these expressions are furthermore determined

from the RGE’s where
di, 1 s o ) i . | i o
dine ~ (am? oMt TG0 () =11 {afa(u}o™, ' (=TI {eilen(m)}™,
_d)\d 1 2032132 A1p2 and
dinu (477)2{6)\d+7\u+)\e_ci 97 \g» y
|(M)Ef 7(p)dInu.
d)\e {4)\2+3)\2 " 2})\ Inm,
ding~ (4m)? —Cigi e,
din— (4m)= e T Expressed in terms of the above parameters and functions,
d 1 one has
9 —
dinp (477)?bigi (i=1,23. (8) F={Ny(Ma)/A )~ Y8 p(me) V12 )

Here, N\, denotes the [3,3] matrix element of From these results one sees thatl except wher, ap-

the lepton Yukawa matrix andc;=(13/15, 3, 16/3), Pproaches a small region defined by=27/3I(mg) where
¢/ =(7/15, 3, 16/3) ¢/ =(9/5, 3, 0),b;=(33/5, 1-3). The I rapidly drops to zero. _ .
scalemg=10' (GeV) is the unification point of the three- ~ For large tag’s, the analysis becomes more involved and
gauge couplings which we shall take to be©ne has to rely upon numerical methods for solving B9y.
a;=(0.017, 0.033, 0.100jwith a;=g?/47) following Ref. and evaluating the’s in Eq. (7). Interestingly, the values of
[5]. the r’s do not deviate much from being of order 1 unless
Further simplification is possible if one assumes that@n3 reaches near the value of,/m, where they begin to
tang<O(m,/m,), in which case the contributions of the drastically decrease again. For a qualitative understanding of
Ay and\, terms in Eq.(7) can be largely neglected and as athis observation, we solve Eq8) with the assumption

result,ry=r andr,=r°. In the same limit, the evolutions of Mu=Xd (corresponding to tg=m;/m;) while momentarily
\, and\y are given by ignoring contributions from the leptonic sector. In this limit,
u

we find

17

Nu(p)=Ng(p)*{1—(3.5/4m?) 1 (u)} 12

0.8y, which yields approximately ,(mg),Ag(Mg) —0o°. Referring
rd r moreover to the results in Eqé7) and (9), we have then
ry=rq=r2 with r—0.
o For easy reference, we include in Fiya plot based on
numerical solutions of Eq$7) and(8) subject to the bound-
0.4] ary conditiort (at m,)

0.64

v v v

0.2 m,=—=A,SinB, m AgCOSB, m, A COSB,
t\/zu:B b\/zdsg \/EESG

0 70 30 7 B % tanp
“More detailed results of some related calculations based on two-
FIG. 1. Scaling parameters as functions of@an loop RGE's can be found in Ref6].
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TABLE Il. Quark mass patterns with five texture zeros and their “predictiori$hie subleading terms
A’s in the above expresssions for. and|V.,| are relegated to Table I)I.
M, M, “Prediction”
0 U]_2)\6 0 0 d127\3 0 |Vus| =V md /msi All
1 UpA® Ut 0 AEAZ dyh2  dyoh2 +0(\%)
0 0 ug 0 d,»2 d
* 2 3 |Vub|:|vcb| vmy /mg
+A,+0O(\)
0 Ulz)\ﬁ 0 0 dlz)\s 0 |VUS| = de/m iA21
2 NS 0 Up\? AENZ dyh2  dyoh2 +O(\%)
0 u\? u 0 d*a?2 d
2 ® 2 % |Vub| = |Vcb| vmy /mg
+ Ayt O(NO)
0 0 U13)\4 0 dlz}\s 0 |VUS| =My /mS+ A31
3 0 uA* 0 EAZ dyh2  dyo\2 +0(\%)
u\* 0 u 2
e # 0 dash U3 |Vub| =ymy/m;
+Ag+ O(N5)
0 U127\6 0 0 dlZ)\?’ 0 |Vus| =V md /rnSi A41
4 UAS  Uphd Uph2 d*A3 dyh?2 0 +O(\%)
0  up\? u 0 0 d
? = # IVubl = Vol vmy /mg
+ A4t O(N)
0 0 ug\? 0 dA® 0 [Vud = Vmg/ms* Agy
5 0 Up\* Up? d*A3 dyh2 0 +O(\%)
A U\ U 0 0o d —
' 2 % % |Vub|: mu/mc{_|vcb|2
+mg/mg 2
+ Ag+ O(MS)
with v=246.2 (GeV), m=175 (GeV), m,=2.78 (GeV), and the CKM matrix(in the standard forpn[7]
and m_=1.76 (GeV). _
C1C3 S;C3 sze 10
I1l. GENERAL TEXTURE PATTERN OF NATURAL is is
HERMITIAN QUARK MASS MATRICES V=| 75127 C15,53€"  C1C2515,55€ S2C3 |,
_ s _ _ is
A. Parametrization of Hermitian quark mass matrices S1527 C1€254€ C1527 51€254€ C2Cs (11)
Given the(scaled diagonal quark mass matricgs|
e’ 0 0 the most general Hermitian mass matrices can be constructed
o ut . from
MY m)=| O A0, ~ ~
a ) b M,=UMagyt (12)
0 0 1 _ o
My =DM (13
&\ 0 O o
Mgiag(mt): 0 £\ 0], (10) in which the unitary matricet),D are subject to the con-
0 0 1 straint

®Notice the end regions of the plot in Fig. 1 depend rather sensiwhere®, 4 are some diagonal phase matrices. Furthermore,

tively on the exact values of the numbers taken.

U'D=d Vd,, (14

aside from a trivial quark-phase redefinitiomhich amounts
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TABLE lll. Expressions for the subleading terms in the last column of Table .

A= sax/m“
11=C0 m.
A= s,s\/m“
21=CO m.
A31:O

A o/
41=CO FC
Agy=cossn/
51~ CO m,

me -12
4 ey -2
1 TV

ymgmg

A= Cogm—b [Veol

VMgMg me B
e Vol + ™
b t

% or definiteness, we assume for this number the special caf#,arg0 and alsad,3>0.

to U~TU and D-~W¥D, ¥ being some common phase

B. Texture pattern of natural mass matrices

matrix), one can always, for example, choose to parametrize Following the procedure described in REf], we proceed

the unitary matrice&),D according to

(i) D—D, andthen UT—V®D, (15)
or, somewhat analogously,
(i) UT—U! andthen D—UD'"V, (16)

whereDyg, U! are the matrice®, U™ written in the standard
form (of V) after necessary rephasing, afd®' are some

diagonal phase matrices which can be arranged to have only

two phases in each.
In what follows, we shall adopt prescriptidii) since we

have found it to be more convenient for constructing natural

mass matrice® Specifically, we let

e€® 0 0
d'=| 0 €V 0 (17)
0 0 1

to expresy/ in the Wolfenstein parametrizati¢8] and like-
wise the matrice€’s as perturbative expansions in terms of
the small parametex (Table ). Subsequently, we apply our
“naturalness” criterion[1] on the resulting quark mass ma-
trices to arrange for natural mass patterns. Below, we sum-
marize our main result.

In terms of the CKM matrix parametersi (A,A
=cgA/\, ), the quark mass ratio£'s) and the free phases
(@, ¢) introduced in Eq(17), natural Hermitian quark mass
matrices exhibit the following general texture pattern:

T
2
Upah“ |,

Uss

U’ upN®
-~ *\ 6
M,=| U

urn?

Upoh

U3\ 2

dyn?
*y 3
12)\

*\ 4
13)‘

dyon®
dooh?

* 3 2
23)\

din?
doh? |

d33

=)
i

(18)

and write, in terms of some orthogonal rotation matricesyith®

(C’s) and some diagonal phase matricéa’s)
V=C,AC3ATC,
and, accordingly,
U= CluAuC3uAIC2u .

Defining three more orthogonal
Ci,C; (i=1,2,3) we have, by Eq16),

matricesC;y=

D={CygH{Cl(A,CssA])Cy}
X{CI(A,CIAD)(CoyCIP " Co)(ACATC, ).

Ugs= Eut-{ et [ugg2IA +0(A?),
Ugp= afeit Ugglpst O(N?),
Ugo= Ecit [Uzg >+ O(N?),
Ugz=1+0(\%),
dys=Eapt|d1d?/ ép+ O(N?),
dip=Ea{e' P+ an}+O(N?),

8n specifying the values of quark masses or mass ratios we con-
ventionally quote these numbers as being positive. In the expres-

ePrevioust, in Ref[1], we followed(i) to construct several mass sions below and throughout the presentation of our results, how-

pattern examples.

ever, quark masses,’'s (and, in general, quark mass ratigs as

"See Ref[1] for the precise definitions of the matrices introduced well) can be chosen to have either positive or negative sign, de-

below.

pending upon the context of expressions they are in.
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TABLE IV. Numerical estimates for the CKM “predictions” of the five texture-zero pattefNaimbers
in the curly brackets are results incorporating the additional constraint of2Eg).

A o
1 (0.23+0.05)+ (0.06+0.01)cos (0.27+0.05)+ (0.03+ 0.01)cos
{(0.23+0.01)+ (0.06+0.01)cos } {(0.27+0.05)+ (0.03+0.01) cos }
2 (0.23+0.05)+ (0.06+ 0.01)cos (0.27+0.05)+ (0.08+ 0.03) co$
{(0.23+0.01)+ (0.06+0.01) cos } {(0.27+0.05)+ (0.08+ 0.03) cos }
3 0.23+0.05 (0.42+0.07)+ (0.03+0.01)cos
{0.23+0.0% {(0.42+0.07)+ (0.03+0.01)cos }
4 (0.23+0.05)+ (0.06+ 0.01)cos 0.27+0.05
{(0.23+0.01)+ (0.06+0.01)cos } {0.27£0.05
5 (0.23+0.05)+ (0.03+0.01)cos 0.32+0.08
{(0.23+0.01)+ (0.03+0.01)cos } {0.32£0.08
di3=Usst+ aAe?+ Ae'(?~9 —d ,d,on + O(N2), argdy3— Us3— (dag— Upg) (Ugo— UggUpg)/ Ecp+ dipdagh }
— 2
d2o=Espt O(NT), —argd;o/ Esp— (Ugo— UggUpg) M €t — arg{doz— Upgh=— 6.

. (21)
d23: U23+Ae“//+ O()\z),
As an illustrative example, we apply the results of Eq.
dzz=1+0(\%). (19 (21) to the study of a mass pattern, recently propok@d
based on the idea of a “democratic” symmetry. In this
model, after some straightforward manipulations, the quark
mass matrices take the form

The remaining matrix element parameters in 8@) are not
fixed, but are constrained by our requirement of “natural-

ness” to
|usg,uzg,@=1. (20 0 u \7_
2 2
The quark mass matrices of E(L8), although defined M e u g€u g €u
apparently at the scale afi,, can, nonetheless, be imple- u= M '
mented at any energy scale so long as one properly takes into V2

account the renormalization groufRG) evolution of the 0 ~ g €u 1
guark mass ratios and the CKM parameters in @§).

0 de 0
IV. APPLICATIONS
de*iw 2 \/E
I Ze — T
A. Mass pattern viability check M g=m, g €d g €d ,
Given any natural mass pattern, once written in the form 2
of Eq. (18), one can examine its viability using Eq49) and 0 — €y 1
(20). Specifically, the matrix elements of the pattern must, to 9

a good approximation, obey the following constraints: ]
where the symmetry-breaking parameters<e,<1

Upp— | Upg 2= &y, and d<ey<1 are to be determined from the known
values of quark masses. Using the expressions of(EL),
d2o=&sp, one findse,=(9/2)é.\*, 4= (9/2)Es N2 u= & 1N P2 d
=Eaésph 3, and, furthermore, the following relations
|das—Uad =A, which can be regarded as the CKM “predictions” of the
pattern:

|d1a/ Esp— (Uga—UggUupm) N gy =1,
|d13— Ugg— (dpz— Upg) (Ugp— UggUpg)/ £t dialopah | = A,

2__ _
Ug1— [Usgl 2N = (|Ugo— Uglpg T ) N — £,4=0, ANZ=(ms/my—me/my)/\2,

N=+my/mg=coswym,/me,

di1—(&gpt |d12|2/§sb)20a O'A)\Sz(ms/mb_ mc/my) ym,/2me,
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TABLE V. Quark mass patterns which may be useful as templatésB, . . . ,|F) are fixed parameters
of order 1 and X,y,z)’s are adjustable parametdfrs.

Mu Md

=0O(\% =05 y,Be % <O0\%) Fe a3 yFe 43

1 =09 B\ x,BA Feva\3 E\2 X4EN?
y,Bd®\*  x B\ A yFE?3  xEN? D

C\ zC\ oy Be <O(\% Fe a3 yFe 43

2 z,C\' BAY x,BA Feva\3 EN? X{ENZ
yBe®nd  x Br* A YoFePN®  xEN? D

=0\ C\°® =009 =<O(\% Fe Wa\® ygre %3

3 C\®  =OM% BN Fé¥\d  EN2 XgEN2
=08  B\? A yaFe?ad  xEN2 D

C\ o zCN =0(®) <O(M%) Fea\® ygFe 43

4 zC\N =O0(\%  BA? Feva\3 EN? X4EN?
<O(\% B\ A ygFe?\3 X EN? D

=O(\9% =OO\% O\ =<O(\5 Fe a3 y Fe'%a)\3

5 =O(N®%) xC\* BN Fé/a3  EN? XJEN2
ot B A YaFEPNS X EN? D

and S=w+ O(\). One sees, when referring to the data indition, we have also included estimates with the much more
Table |, that this pattern leads to extremely low values forstringent constraint of Eq2) taken into account.
Vel @and |V, although it has an acceptable value for the To implement the above five texture-zero patterns at the
quantity |V, /Vep - GUT scale in the MSSM, the only necessary modification
required of Tables Il and Ill is the insertion of the RG scaling
_ factors (,'s, rq's, andr’s) in front of the quark mass ratios
B. Mass patterns with most texture zeros and the parameter¥,, and V,,, based on Eqs(3)—(6).
Starting with Eqs(18)—(20), arranging for patterns with Having done so, one sees that the CKM predictions of pat-
multiple texture zeros can be particularly efficient. As anterns 1, 2, and 4 are unaltered to the leading order and,
exercise, we insert zeros in all entries of the mass matrices ¢herefore, these patterns are also viable as SUSY GUT pat-
Eq. (18) where possible. We find, in this way, a total of five terns; the same is true for patterns 3 and 5 for most vHlues
allowable five texture-zero, low energst the scale ofn,)  Of tan3. However, near the end regions of the plot in Fig. 1
patterns. To ensure consistence with the LED, the matrixwhere, for example, tghis very smal), the |V,,| predic-
elements of these five texture-zero patterns are specified #iPns of these patterns can become unsound. Incidently, as it
accordance with Eq(19). In Table Il we list these patterns Wwas observed in Ref[10], the nearest conceivable six
and their CKM constraints or “predictions’” texture-zero SUSY GUT pattern corresponds to pattern 2 in
Numerically, with the signs of the quark masses and thos&able Il with the parametat,; of M4 set to zero. As a result,
of the A terms in Table Il judiciously chosen, the CKM this pattern generates an extra, but unfortunately, generally
predictions of these patterns can be estimated using the quankfavorable, CKM “prediction” |V, ={ \/ru/rz}\/mclmI
mass ratios and the value pf .| given in Table I. As an +O(\*) (since the ratior,/r? is typically close to 1 accord-
example, in Table IV we give some results, corresponding tang to Fig. 3. Nonetheless, in light of our discussion on the
a certain possible choice of the aforementioned signs. In adevolution of the LED parameters, this six texture-zero pat-
tern could still be viable, should the scenario in which
tan3<O(m,/m,) (consequently,r,/r?=r) and, further-
%Predictions” ensue whenever certain matrix elements or parammore,r=0O(\) prevails.
eters are overspecifi¢d]. For each of the mass patterns in Table I,
for example, Eq(19) renders two of the LED parameters dependent
(chosen here to be and A or, equivalently|V,¢ and|V,|) while 10This is consistent with the findings of R¢1.0] where these five
the remaining ones are not overspecified and as a result, their exexture-zero patterns, obtained through a detailed numerical analy-
perimental values can always be accommodated. sis, were first presented.
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TABLE VI. CKM *“Predictions” of the patterns in Table V.

|Vus| |Vcb| Vub
D Xy YMdMs gy T omiag
mg my Yd m, Yu m,
my ,Mme Me /m m
+co —_— —_— + X, — u c .
1 b mg Yu m tmy * FJ" yﬁ H' Vcb| ] e'ld
C t
+0(\3) +0(\) m.
*+Xq ) |Vus|+o()\6)
Ma xdE \/mdmse_i‘/’d+ %e_i‘#u
mS mb yd mb yu mt
m, M TRV m, ,me .
2 +z, Ew“ﬁ Cosjy umt +2z, HC""yuHl |Vcb| e'vd
4
+O()\4) +O()\ ) 2 .
+Xd |Vus|+o()\ )
Mg [Me Vmgms
m m, YT, © d
m, ms
*cosy\/ — —Xg— [Mu i
3 e me Imy, * E|Vcb| ] e'Vd
+0O(\3) +O(\%) m,\ 2
+Xq ) |Vus|+o()\6)
Mg AL Vmgms
m m, e, © d
my ms m
+2z,— —Xg— u i
4 2 COYa *Xdm, T Ve ] el
+0(\% +0(\%

m
x ) Vad +O0N®)

My %(1+W*1) _ mdms oida_ lmu
mg m; Yo m

t

+ mU 1+ X mS
5 Cosfy\/ mc( w) I, + (1+W)|Vcb|] i¥q

+0(\*? +O(\*%?
+ Xy

m
) Vad+ 00182

3n these expressionsy is defined to be the quantifynZ/x2m,m.}® for notational brevity.

The detailed CKM “predictions” of the five patterns other hand, pattern 3 imposes no such restriction; instead, it
given here can be used to further speculate in favofoof favors a somewhat largéV,,| when compared to the rest.
against them, especially if experimental data becomes more
precise. For instance, taking into account E2), one sees
from Tables Il and IV that for patterns 1, 2, and 4 to be
successful, th€ P phases must be quite large. The same is By relating the matrix elements in E¢18) which may
true for pattern 5, although to a slightly lesser degree. On thbave similar orders of magnitude, one can search or arrange

C. Mass patterns useful as templates
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m m
_c, |Vub|zﬁfx

for patterns that have fewer independent parameters and thus [mg m, m,
ms me m,

m
having potentially greater predictive power. Below, we pro- |V 4= e |V epl= m—s+
vide five such simple quark mass patterns in Tabl¢axd ¢ ¢ b
the CKM “predictions” of these patterns in Table Mwith
the hope that they may be useful as templates for conten&nd 6= ¢,— 7 (which, of course, yields the correct value for
plating quark mas#nsaze!! & automatically wheng, is suitably chosen To check the
In deriving the results of Tables V and VI, the parameterssoundness of the above “predictions,” we input the quark
(x,y,2)’s are assumed to be of order 1 or less, but are othmass ratios of Table | and find
erwise unspecified. This allows for certain flexibility in pat-
tern fitting. Evid_ently, not all values for thex{y,z)’s work IV, =0.22+0.05,
equally well; using Table VI and the LED of Table I, how-
ever, one can readily determine the feasibility of a given set
of values for these adjustable parameters. |Vepl=0.030£0.009, and |V,,|=0.0034+0.0003
Certainly, construction of more elaborate patterns is also
possible. But already, a host of interesting patterns can bg, reasonable agreement with the CKM data, also given in
obtained from Table V. In particular, nqtlce t.hat texture ze-Tgple |. [If we incorporate Eq(2) into the calculation of
ros can easily be accommodated by inserting them wherﬁ/us| above, we have insteafl/,J=0.22+0.01] Corre-

allowed or by selectively specifying some of they(,z)’s to spondingly, as a SUSY GUT pattern, it predicts:
be 0's!? Similarly, equalities among matrix elements can be

arranged by specifying some of the y,z)’s to be 1's. As an

illustrative example, let us choose in pattern 2, Vyd=~ /Mg ﬂ—{r }ﬂ
Ya=0,X,=Y,=2Z,=Xq=1, andyy= ; the result is a rather us ms mg “m,’
simple-looking pattern in which

CA7  CMA Ba%e % v |~(r_d]%+[r_u]ﬁ v |~[r_u]ﬁ
M,=| O\ BA* BAY | ol my L fme T fm
Br%el 4 B4 A
and, again,é=¢,— . Since for most values of tg@h
0 F\% o0 rq/r=21 andr,/r is of order 1(Fig. 1), one sees that these
M.=| Ex3 Ex2 EN2 GUT pattern “predictions” are equally “sound,” with pos-
d 5 ' sible exceptions noted for extreme values ofdan
0 Ex* D It is worth pointing out that using the results of E¢s3)—

. . _(20), the quark mass patterns of our examples are constructed
As a low energy pattern, it gives, to a very good approxima- . 7 -
. o g in a completely systematic and often very efficient manner;
tion, the CKM “predictions”: - AN X
moreover, “predictions” of these mass patterns are readily
obtained in the form of explicit analytical expressions, mak-

ing transparent the viability conditions of each pattern.
1170 implement these patterns at the GUT scale in the MSSM, one 9 P y P

simply takes into account the RG scaling of the quark mass ratios
and the CKM parameters in Table VI, in complete analogy to the | would like to thank Professor Roberto Peccei for sug-

previous case of five texture-zero patterns. gesting this project and for many valuable comments. This
12n fact, the five texture-zero patterns of Table Il can be gotterwork was supported in part by the U.S. Department of En-
this way as well. ergy under Grant No. FG03-91ER40662.
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