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Goldstino couplings to matter
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A nonlinearly realized supersymmetric action describing the invariant couplings of the Goldstino to matter
is constructed. Using the Akulov-Volkov Lagrangian, any operator can be made part of a supersymmetric-
invariant action. Of particular interest are interaction terms which include the product of the Akulov-Volkov
Lagrangian with the ordinary matter Lagrangian as well as the coupling of the product of the covariant
derivative of the Goldstino field to the matter supersymmetry current. The latter is the lowest dimensional
operator linear in the Goldstino field. A Goldstino Goldberger-Treiman relation is established and shown to be
satisfied by the effective actiopS0556-282(96)01321-5
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I. INTRODUCTION qguences of spontaneous symmetry-breaking using the
Nambu-Goldstone degrees of freedom. This is true whether
If supersymmetry(SUSY) is to be realized in nature, it the part of the theory responsible for the symmetry breaking
must be as a broken symmetry. The breaking mechanisiis strongly or weakly interacting. If weakly interacting, such
which maintains the preponderance of the dynamical conas in the standard electroweak model with a light Higgs sca-
straints of the symmetry and hence is theoretically most atlar, then the low energy physics can be directly calculated in
tractive, is a spontaneous one. Indeed, many of the currentlgerturbation theory. On the other hand, if the symmetry
investigated attempts to construct realistic models of elecbreaking sector of the model is strongly interacting, then
troweak symmetry breaking incorporating SUSY use spontaexplicit direct calculations of dynamical consequences can
neous supersymmetry breaking in one form or another. Thiprove quite difficult. Since there are many such models of
includes both the so-called hidden sedtbf and visible sec- SUSY breaking presently being studied, it is worthwhile to
tor classes of model2]. determine, in a completely model-independent way, the vari-
A general consequence of the spontaneous breakdown ofis consequences of the supersymmetry breaking.
global supersymmetry is the appearance of a Nambu- Using nonlinear realizations of supersymmetry for both
Goldstone fermion, the Goldstiff®,4]. The leading term in  the Goldstino and non-Goldstino degrees of freedom, Sam-
the action describing its self-dynamics at energy scales besel and Wes$6] constructed supersymmetric-invariant cou-
low 47/, where 1k is the Goldstino decay constant, is plings of the Goldstino to matter. Their construction entailed
uniquely fixed by the Akulov-Volkov effective Lagrangian a somewhat elaborate procedure in which the Goldstino field
[ 3] which takes the form and all matter fields are promoted to become superfields
whose lowest components are the ordinary fields themselves
1 and whose higher components involve the product of Gold-
Lav=— ﬁdelA, (1.3) stino fields and derivatives of the lowest components. For the
special case of the Goldstino-promoted superfields gtioe

where 6 components also contain the Goldstino decay constant as
S an additive component. Using these superfields, every ordi-
Azféz'f‘iKz)\ d 0"\, (1.2 nary operator can then be cast as a part of a manifestly su-
_ persymmetric action. While this procedure is elegant and
Here,\(\) is the Goldstino Weyl spinor field. This effective complete, it does require the introduction of a considerable
Lagrangian provides a valid description of the Goldstinoamount of additiona({supejstructure.
self-interactions independent of the particulaonperturba- In this paper, we present an alternate construction of a
tive) mechanism by which the SUSY is dynamically brokennonlinearly realized supersymmetric-invariant action. Our
[5]. Moreover, if the spontaneously broken supersymmetnprocedure works directly with the ordinarfcomponent
is gauged, with the erstwhile Goldstino degrees of freedonGoldstino and matter fields and does not require the intro-
absorbed to become the longitudirigpin 1/2 modes of the duction of the entire superfield structures. Thus, in a simple
gravitino via the super-Higgs mechanism, then the actiorand straightforward manner, we can make any ordinary op-
formed from the Akulov-Volkov Lagrangian also describeserator part of a manifestly supersymmetric action. After in-
the dynamics of those modes. This is completely analogousoducing the nonlinear SUSY transformations and covariant
to using the gauged nonlinear sigma model to represent thaerivative, we construct the SUSYand internal symmetry-
dynamics of the longitudinal degrees of freedom of e invariant action terms using the special properties of the
and Z, vector bosons independent of the particular mechaAkulov-Volkov Lagrangian. We focus on two particular in-
nism employed to break the electroweak symmetry. teraction terms. One involves the coupling of the Akulov-
Nonlinear realizations of symmetry transformations allowVolkov Lagrangian to the ordinary matter action. Once the
a model-independent analysis of the dynamical conseerdinary matter action is appropriately normalized, the coef-
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ficient of this term is fixed solely by the Goldstino decay
constant. Another action term, which is the lowest-
dimensional operator linear in the Goldstino field, involves
the coupling of its(SUSY-covariant derivative to the ordi-

nary matter supersymmetry current. This coupling is then

used to show that a Goldberger-Treiman relafi@h associ-
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g
P(a)\“=a*3d,\"?,
P(@)N =2k, N,
s%(a)pi=a*d,¢;, 2.9

ated with the spontaneous supersymmetry breaking is indeegith a# the global space-time translation parameter and

satisfied.

1. NONLINEAR SUSY TRANSFORMATIONS

The self-dynamics of the Goldstino can be encapsulate
in the Akulov-Volkov Lagrangian, Eq.1.1). The supersym-

metry transformations are nonlinearly realized on the Gold-

stino field by
- 1 — _
ﬁ(g,g)xazzga— i K(NoPE— EaPN) I N,

SUEON,

1 _ _
—&,—ik(NaPE—EaPN)d,N,, (2D
K

where g“,g_d are Weyl spinor SUSY transformation param-

eters. The Akulov-Volkov Lagrangian then transforms as a

total divergence

£, Lay= ik, [(No"E=E0*N) Lay] (22
and hence, the associated action
| ay = f d*XLay (2.3
is SUSY invariant:
89£,8)1 ay=0. (2.9

The supersymmetry algebra can also be nonlinearly realized

on the mattenon-Goldsting fields, generically denoted by
¢;, wherei can represent any Lorentz or internal symmetry
labels, as

SUEE) pi=—1k(NaPE—EaPN) b - (2.5
This is referred to as the standard realizatiéf. Forming
the SUSY Ward identity functional differential operator

5%(¢,6)= f ] 29BN 57+ DN =
+2 5%5@5% , (2.6
one readily establishes the SUSY algebra
[6%(£,6),6% 9. )= —2i (¢~ noé)
[8%(¢,6),67(a)]=0. 2.7

As usual, the space-time translations are given by

5 _
=+,

P a
o (a)\ N

O\,

a

sP(a)= f d*x
d

+ 8%

o
a) 5% (2.9

is the space-time translation Ward identity functional differ-
ential operator.

Under the nonlinear SUSY standard realization, the de-
rivative of a matter field transforms as

SRUE,E)(0,1) = 0,[ 8°UE,€) ]
—ik(NoPE— EGN)3,(3, )

—iKkd,(NTPE—E0PN) . (2.10

In order to eliminate the second term on the right-hand side
(RHS) and thus restore the SUSY-covariance, we introduce a
SUSY covariant derivative which transforms analogously to
¢; . To achieve this, we note that

Q£ HAL=—ik[(\aPE— EaPN)d, A,

+3,(NaPE— EaPN)AY], (2.1

from which it follows that

8A&6) (A =— (A 1E[ &6 ATI(A Y
—ik{(Na"E~£a"N) (A7),

—d,(Na"E—Ea"N(ATH0], (212
where
(A™HAP=6". (2.13

We are thus led to define the nonlinearly realized SUSY-
covariant derivative as

D[L¢i:(A_1)Z(9V¢i ' (214)
so that under the standard realization of SUSY:
R(E,E) (D)= —ik(N0PE— E0PN)3,(Dyh). (219

In addition to the SUSY and space-time translations, we
can also defin® transformations under which the Goldstino
field transforms a§8]

ER(w))\“=ia))\a,

SR\, =—iw\,. (2.16
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Forming theR-transformation Ward identity functional dif- ) . .
ferential operator lo=—2k CoJ d XﬁAvOZCoJ d*x(detd)O, (3.2
) — 5 with C, a constant, is SUSY invariant:
5R(w)=J d*x 5R(w)7\“5)\a+5R(w))\d=_ o
Na A(£,8)10=0. (3.3

2.17 Since L,y is defined so as to contain the additive constant
' term — 1/2«? (or equivalently, the dét starts with the iden-
tity), the actionl, includes the piec€,[d*xO(x) for any
it is readily established that the algebra operatorQ.
L L One special case is afforded by using the internal
[R(w),89£,6)]= % —iwé,iwé) (2.189  symmetry-invariant ordinary matter Lagrangidn,(¢,D¢)
where all derivatives are replaced by SUSY-covariant de-
holds independent of the form ofR(w)¢;. The action rivatives. Under SUSY
formed from the Akulov-Volkov Lagrangian is invariant un- — ) — —
derR-symmetry, supersymmetry and space-time translations. 5Q(§v§)£¢(¢’pd’) =—ik(NoPE=EaPN) 0, Ly($, D),
Moreover, the improved currents associated with these sym- 34
mefries have been shows] to form. the components of & while under the internal group transformation, the Lagrang-
supercurrenf9]. Thus, all conservation laws and anomallesian is invariant:
are derivable from the supercurrent conservation law and the ’
generalized trace anomgy0,11]. 5G(A)£¢(¢,D¢):0. (3.5
Since the Goldstino field transforms as a singlet under
any internal symmetry transformation,6®(A)A“=0 It follows that the action

= 86%(A)\,,, the Akulov-Volkov action is also invariant un-
der internal symmetry transformations: I =— Zsz d4x£¢(¢,D¢)ﬁAV()\,>\) (3.6

5S(A)l ay=0, (2.19

)
+Z 6R<w>¢i5—¢i

is both SUSY and internal symmetry invariant

where A parametrizes the transformation. Denoting the in- SRAED =0 3

ternal symmetry matter field transformation &S(A)¢;, (&0)1..=0, 3.7
then the Ward identity functional differential operator char- SS(A) =0 3.9
acterizing the internal symmetry transformation is L '

Note that in the absence of Goldstino fields, this action re-
5G(A):j d4x2 5G(A)¢ii_ (2.20 duces to _the ordinar_y matter actiogz_fd4x£¢(qb,a ) so

i oo, I . contains the ordinary matter action as well as couplings

of the Goldstino to matter. Thus, once the normalization of

Note that if the internal symmetry is gauged, the nonlinearlythe ordinary matter action is fixed, so are its couplings to the

realized SUSY, gauge-covariant derivative, Ef14), is re-  Goldstino field. As such this term requires no additional in-
placed with dependent coupling constant. Further note that using the non-
linear realization, various higher-dimensional operators, such
DMdJi:(A*l)MVDVd)i, (2.21 as the electron anomalous magnetic moment operator, can

also be made part of a SUSY-invariant action. On the other

whereD , ¢; is the ordinary gauge-covariant derivative. hand, such a term cannot be included in a SUSY-invariant

action if the supersymmetry is linearly realizgt?].

IIl. INVARIANT ACTIONS Both I oy and|l_ depend om,\ only throughA*” and

We now construct actions containing the Goldstino an hus only through the bilinear combination (and deriva-
. ; g . - -tives). While, by using the Goldstino field, any Lorentz and
matter fields which are invariant under both SUSY and in- ) y 9 y

| f . The Akulov-Volk . internal symmetry singlet can be incorporated into a
ternal symmetry transtormations. The Akulov-Volkov action g e qymmetric-invariant action, the most natural setting is

d self i Usi he Akulov-Volkov L My consider those pure matter actions which allow for linear
and seli-couplings. Using the Akulov-Volkov Lagrangian, \oqizations of the supersymmetry. In that case, using the

we can form SUSY-invariant actions out of any Lorentz and ¢ ciated internal symmetry singlet supersymmetry cur-

internal symmetry singlet operato©=0O(¢,D¢). To “ %
achieve this, we note that under the nonlinear standard reaic"ts Qea(¢:9,¢) andQ, (4.9, ¢), we can construct an-

ization of SUSY given by Eqe2.1), (2.5), and(2.10), such other invariant action whose Goldstino dependence is odd in
an operator transforms as A\ and, in fact, starts off as linear i@, \. Letting
o L hha=Qha(#, D) and Q% = ga(¢,D¢) be the matter
5°AE,6)O(p, D)= —ik(NoPE—E0PN)3,0(¢, D). (3.1 supercurrents where all space-time derivatives are replaced
by nonlinearly realized SUSY-covariant derivatives, it fol-
Consequently, the action lows that under the standard realization of SUSY
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R(&,6)Ql, = —ik(NaPE— £0°N) ,Q%,,
£ EQs =—ik(NaPE—EaN)3,Q5:, (3.9
while
8%(A)QY4,=0=5%(A)Q", . (3.10

When used in conjunction with the SUSY transformations:

SR(£,E)(D A= —ik(NaPE— EaN)3,(D,\),

SAEE)(D )= iK€= E0™N)d,(D,N), (311

we construct the invariant action

I)\Q: _2K3CQJ d4X£A\/(DM)\aQ"(Z0[+Q_f;“1DMF), (312

whereCg, is a constant. This action satisfies
5%(£,8)1,0=0, (3.13
8S(A)l1)o=0. (3.19

Using the form of the Akulov-Volkov Lagrangian and the
SUSY-covariant derivative, we see that

Q= chf d*X[ 3.\ “Q4 (.9, )

+Q: (6,9,8) 3\ T+, (3.19

which is coupling linear in the Goldstino field. In fact, this
mass dimension-six operator contains the smallest power

« coefficient of the various couplings of the Goldstino to
matter. The appearance of the coupling of the Goldstino field
to the divergence of the matter supersymmetry current is
certainly anticipated. In fact, it is reminiscent of the situation
in spontaneously broken chiral symmetry where the Nambu-
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5_4
so that
Sl Slay
=AY oy
ona - one KCaduQuat
i _
=— EdetA(A‘l)V“(chaM)\)a— kCqd,Qhat - -
= —ig" 9\~ KkCqd, Ql + - - (3.20
and the Goldstino field equation takes the form
“ 1 NG ©
O'Wi—&ﬂ)\ =kCqd,Qlat - (3.21)

IV. GOLDBERGER-TREIMAN RELATION

As a consequence of their Nambu-Goldstone nature, the
couplings of the Goldstino to matter are constrained to sat-
isfy certain general relationships. One such constraint is the
analogue of the Goldberger-Treiman relationghip famil-
iar from pion physics and spontaneously broken chiral sym-
metry. When applied to spontaneously broken supersymme-
try, the analogous relation ties form factors of the
supersymmetry and Goldstino currents at zero-momentum
transfer to the Goldstino decay constant and mass differences
between matter boson and fermion states. The Lorentz de-
composition of the supersymmetry curréif taken between
arbitrary single particlgscalaj Bose and(spin 1/2 Fermi
states|p,;B) and|p,;F), of massesng andmg and carry-
ing four-momentgpy andp%, respectively, takes the form

§priBIQL(O P2 F) =[Ay(a?)a" + Ag(q?)k*

+A3(q2)U’LFQ]gXB(p2)F
+[A4(0?) o+ As(q?) g o-q

+As(qDK o qlaax (P2, (4.D)

Goldstone pion couples derivatively to the spontaneously

broken matter chiral symmetry current.

whereg”=(p,—p2)* andk*=(p1+p2)*, and the fermion

Combining the various terms, we secure the SUSY- an@Pinors satisfy

internal symmetry-invariant action
| = IAV+ | |_|_+ | AQ™ f d4X£AV_2K2f d4X£A\/£¢

—2k3Cq f d*%Cav(D N Q4+ QDY) (316
which satisfies
8£,6)1=0 (3.17
and
8%(A)1=0. (3.18

The action starts out as

| = j d4X[£AV+£¢+ KCQ(&IL)\QQ{;Q—FQ_Z&&MF)—F .. .]'
(3.19

o P2x(P2)r= —Mex(P2)E,

o Pox(P2)E=—Mex(P2)E - 4.2
Conservation of the supersymmetry currentQ, =0, then
relates the various form factors as

97 A1(9%) —As(g?)]=(m3—m2)Ax(q?).

Since the massless Goldstino directly couples to the su-
persymmetry current, some of these form factors are singular
in theq®— 0 limit. Thus, before taking this limit, we need to
include the effect of the massless Goldstino pole. This pole is
reflected in the nonvanishing matrix element of the super-
symmetry current between the vacuum and single Goldstino
state,|q;\), of four-momentung* which is given by

4.3

1,
(01Q&(0)a:N)= o XX (4.4)
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wherex ! is the Goldstino decay constant. L Substituting into Eq(4.3) and taking theg?—0 limit, we
It follows that the combinationQ“— (1/fix)c" \* has Secure the Goldstino Goldberger-Treiman relation

vanishing matrix element between the vacuum and single i
Goldstino state. The matrix element of this combination ——Bl(0)=(m§—m§)A2(O). 4.9
taken between the single Bose state and single Fermion state K

can then be Lorentz decomposed just as in @dl) where To establish that the effective actipBq. (3.16)] satisfies

now the various form factors are all nonsingular in theis Goldstino Goldberger-Treiman relation, we note that a

2 - )
q°—0 limit. _ . . Noether construction of the conserved supersymmetry cur-
Finally, the Goldstino currenj; is defined through the (ent starts out as

Goldstino field equation

QL=CqQl,t -, (4.10
1 —
Uzdi—%?\”ﬂs- (4.5  while the Goldstino field equatiof8.21) provides the iden-
tification of the Goldstino current as
Taking its matrix element between the Bose and Fermi states G M
leads to the Lorentz decomposition Ja= kCQd, Qg+ -+ (4.1

. For the “matter” supersymmetry current we ug®13
(p1:Bli%(0)|p2:F) =B1(0) xalP)r+ Bo(?) persymmetry k213

_ B gAY+ (4.12
X (0 q) aaX “(P2)F (4.9 o ¢
4 th whereA() are the BoséFermi fields creatingdestroying
and, thus, the Bosg(Fermi states in the matrix elements of the Lorentz
- By(q?) _ - decomposition of the supersymmetry and Goldstino currents.
p1;BIAY(0)|po;F)=— a-q)x.(P2)E e matrix elements are readily computed, yielding
2(0) 7 ) ) Th ix el dil d, yieldi
- i
+Bo(0?) x“(P2)E - 4.7) AZ(O):_ECQ'
Since the form factors of the combination «
Q% —(1fik)o™ \“ are regular ag>—0, we see on compari- B1(0)= 5 (m3g—mZ)Co, (4.13

. 2
son of Egs.(4.1) and (4.7) that theA;(q?) form factor is

regular while theA(g?) form factor is singular. The singu- and the Goldberger-Treiman relati¢h9) is indeed satisfied.
lar piece is given by
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