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Top-quark mass and isospin breaking in the dynamical symmetry-breaking scenario

T. Asaka, Y. Shobuda, and Y. Sumino
Department of Physics, Tohoku University, Sendai, 980-77 Japan

~Received 1 May 1996!

We consider a scenario where the top-quark mass is generated dynamically, and study the implications of the
present experimental values formt and theT parameter. We assume a technicolorlike scenario for inducing the
W mass and an effective four-Fermi operator for inducing the top-quark mass. We also assume that only this
four-Fermi operator is relevant at low energy. Then we estimate in detail the strengthG and the intrinsic mass
scaleM of the four-Fermi operator. A unitarity bound is used to quantify the strength ofG. We find that
G/4p;1 and thatM is of the order ofLTC.1–2 TeV or less. Namely the four-Fermi operator cannot be
treated as ‘‘pointlike’’ around the electroweak scale. Furthermore we estimate the contribution of the four-
Fermi operator to theT parameter. We find that the QCD correction to the top-quark mass function reduces the
contribution to theT parameter by about 40%. By comparing the results with the present experimental bound,
we obtain another upper bound onM which is typically in the several to 10 TeV region.
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I. INTRODUCTION

The SU(2)3U(1) gauge theory for describing the elec
troweak interactions has been very successful both theo
cally and experimentally. However, all experimental tes
have been done for its gauge part and we have little kno
edge on the electroweak symmetry-breaking mechanism
far. In light of the naturalness problem, we may suppose t
there exists some new physics related to electroweak s
metry breaking at the energy scale 100 GeV–1 TeV. D
namical symmetry breaking is one of the attractive can
dates for a solution to the naturalness problem. We cons
this possibility and study the implications of the present e
perimental data for the top-quark mass@1# and theT param-
eter @2–4#.

In dynamical symmetry-breaking scenarios such as te
nicolor models, an effective four-Fermi operator

L5
1

L2ULURtRtL1H.c. ~1!

is introduced in order to generate the top-quark mass, wh
L represents the new physics scale~extended technicolor
scale! andU denotes a new fermion~technifermion! intro-
duced in the symmetry-breaking sector. When this ferm
forms a pair condensatêŪLUR&Þ0, the top quark acquires
its mass

mt;
^ULUR&

L2 . ~2!

Because the condensate also gives mass to theW boson, one
may naively expect that the condensate has the same ord
magnitude as the electroweak symmetry-breaking scale:

^ULUR&1/3;LEW; 1 TeV. ~3!
54821/96/54~9!/5698~7!/$10.00
-
reti-
ts
wl-
so

hat
ym-
y-
di-
ider
x-

ch-

ere

ion

er of

From the observed value of the top-quark mass
mt.175 GeV @1#, this naive argument suggests that
1/L2;mt /LEW

3 and that the new physics scaleL is not too
far from LEW.

During the last decade, there were many analyses of th
dynamical symmetry-breaking scenarios in the case of a
large top-quark massmt.100 GeV. In 1985, Appelquist
et al. @5# studied ther parameter (T parameter! in the con-
text of extended technicolor models. They pointed out that
naively the mass difference between the techni-U and its
isopartner techni-D is proportional to the top-quark mass, so
that this difference would contribute to theT parameter.
Also, they noted that an extra isospin-violating operator

1

L82
QRgms3QRQRgms3QR , ~4!

whereQR5(UR ,DR)
T, may give a large contribution to the

T parameter sinceL8 is considered to approximateL. ~For
mt.175 GeV, the latter effect would be more significant
than the former.! It was suggested in Ref.@6# that theT
parameter would be enhanced in the walking technicolor sce
nario. More detailed analyses on theT parameter were given
later in Refs.@7,8#. Recently the experimental constraint on
theT parameter has become more severe, and deviation from
the standard model prediction is seen to be very small@4#.
Reflecting the present constraint, some dynamical symmetry
breaking models have been proposed@9,10# in which the
operator ~4! is suppressed at low energy. Reference@11#
studied the constraints from the presentT parameter and top-
quark mass data, and discussed the top-color-assisted techn
color model in this context.

In this paper we assume that at low energy the four-Ferm
operators other than Eq.~1! can be neglected. We estimate
the strength and the intrinsic mass scale of the particula
operator~1! in detail based on this assumption. Since it is a
~nonrenormalizable! effective operator, the tree-level unitar-
ity of some processes induced by this operator is violated
above some energy. This fact is used to quantify the intrinsic
5698 © 1996 The American Physical Society
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mass scale of the operator. Then we estimate the contribu
of this operator to theT parameter. We include the QCD
correction to the top-quark mass function and study its eff
on theT parameter.

In order to incorporate the dynamics of symmetry brea
ing into our analyses, we solve numerically the Schwing
Dyson and Bethe-Salpeter equations in the improved-lad
approximation@12#. We follow the formalism developed in
Refs. @13–15#; in these papers, takingfp594 MeV as the
only input parameter for QCD, the quantitiesLQCD,
^C̄C&, mr , ma1

, ma0
, f r , and f a1 have been calculated

which meet the experimental values within 20–30 % acc
racy forLQCD, . . . ,ma0

and within a factor of 2 forf r and

f a1. Thus, we expect to study the dynamical effect semiqu
titatively using the formalism.

In Sec. II we present our assumption on the dynami
symmetry-breaking scenario. Then we estimate the stren
of the four-Fermi operator from the observed top-quark ma
andW boson mass in Sec. III. Using the result, the cont
butions to theT parameter are estimated in Sec. IV. Th
conclusion and discussion are given in Sec. V.

The explicit formulas of the Schwinger-Dyson and Beth
Salpeter equations, as well as other equations used in
numerical analyses, are collected in the Appendix.

II. SYMMETRY-BREAKING SECTOR
AND FOUR-FERMI OPERATOR

In this section we explain our assumption on the scena
of the dynamical generation of the top-quark mass.

First, we assume a technicolorlike scenario@16# for break-
ing electroweak gauge symmetry. We introduce no
standard-model fermions following the one-doublet tech
color ~TC! model as

QL5SUD D
L

, UR , DR. ~5!

The weak hypercharges are assigned asY(QL)50,
Y(UR)51/2, andY(DR)521/2. These fermions belong to
the fundamental representation of the SU(NTC) gauge group,
and they form the pair condensates

^ULUR&Þ0 and ^DLDR&Þ0 ~6!

via the SU(NTC) gauge interaction. Later, when we solve th
Schwinger-Dyson equations numerically, we will deal wi
both the technicolorlike and walking-technicolor-like@17#
scenarios by varying the running behavior of the gauge c
pling constant. In the following analyses, we consider on
the casesNTC52 and 3, taking into account the present stri
gent experimental constraint@4# on theS parameter@2#.

Second, in order to generate the top-quark mass, we
troduce an effective four-Fermi operator

G

M2 ~QLUR!~ t̄RqL!1H.c., ~7!

whereqL denotes the ordinary quark doublet (tL ,bL)
T. G is

a dimensionless coupling andM is the intrinsic mass scale o
this operator. Because the four-Fermi operator cannot b
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fundamental interaction, there should be some energy scale
above which this operator will resolve, and we call this scale
M . In other words, it is the scale where higher dimensional
operators neglected in Eq.~7! become relevant. We may ne-
glect the higher dimensional operators if all the energy scales
involved in our calculation satisfyE/M!1. In particular,
since we will incorporate the nonperturbative dynamics of
the SU(NTC) technicolor interaction by solving the
Schwinger-Dyson and Bethe-Salpeter equations, the validity
of our effective treatment of the four-Fermi operator~7! as a
contact interaction would be justified if the technicolor scale
LTC satisfiesLTC!M .

We assume that we may neglect all effective four-Fermi
operators other than Eq.~7! which would be induced at low
energy in the models such as extended technicolor models
@18#. ~See, however, the discussion in Sec. V.! This is be-
cause an operator such as Eq.~4! would give a very large
contribution to theT parameter. We do not consider the dy-
namical origin of the operator~7! in this paper.

III. STRENGTH AND MASS SCALE
OF THE FOUR-FERMI OPERATOR

In this section, we estimate the strengthG and the intrin-
sic mass scaleM of the four-Fermi operator~7! from the
observed top-quark andW-boson masses.

A. Relation betweenG and M

We solve numerically the coupled Schwinger-Dyson
equations for the techni-U and top quark as well as the
Schwinger-Dyson equation for techni-D. ~See the Appendix
for details.! These equations are depicted diagrammatically
in Fig. 1. In order to set a mass scale in the numerical cal-
culation, we use the charged decay constantFp6, which is
calculated using the generalized Pagels-Stokar formula@21#.
From theW-boson massMW , Fp6 is normalized as

Fp65
2MW

g
.250 GeV, ~8!

whereg is the SU(2)L gauge coupling constant. Also, we
input the top-quark mass to beS t(mt

2)5mt.175 GeV@1#.
These two inputs relate the couplingG and the intrinsic mass
scaleM of the four-Fermi operator~7!.

FIG. 1. The graphical representation for the coupled Schwinger-
Dyson equations for the mass functions of techni-U and top quark,
and for the Schwinger-Dyson equation for the mass function of
techni-D.
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FIG. 2. The allowed regions in theG-M plane
obtained by solving the coupled Schwinger-
Dyson equations for~A! SU(NTC) technicolor
cases and for~B! the walking-technicolor case.
Curved lines represent the couplingG(M ). Hori-
zontal lines show the upper bounds forG ob-
tained from the unitarity limit. For SU(NTC)
technicolor cases, the solid and dot-dashed lines
correspond toNTC52 andNTC53, respectively.
For comparison, also shown as dots is the cou-
plingG(M ) when the QCD correction to the top-
quark mass function and the top-loop contribu-
tion to the techni-U mass function are switched
off successively.
Let us demonstrate the relation betweenG andM in the
simple case where we can neglect both the top-loop con
bution of the Schwinger-Dyson equation for the techni-U
and the QCD correction of the equation for the top quark.
this case the top-quark mass can be calculated from the m
function of the techni-U, SU, as

mt5
G

M2 ^ULUR&M , ~9!

where

^ULUR&M5
1

2EpE2<M2

d4p

~2p!4
trS i

p”2SU~p!
D

5
NTC

8p2E
0

M2

dx
xSU~x!

x1SU~x!2
, ~10!

with x5pE
252p2. Note that we define the intrinsic mas

scaleM of the four-Fermi operator~7! as the momentum
cutoff of the integral in Eq.~10! since the four-Fermi opera-
tor will resolve above the energy scaleM . By calculating the
condensatêULUR&M for a givenM , and substituting the
top-quark massmt.175 GeV in Eq.~9!, we obtain the cou-
pling G as a function ofM .

Now returning to the solution to the coupled Schwinge
Dyson equations~Fig. 1!, we show theG-M relation in Fig.
2 for the SU(2) and SU(3) technicolor cases, and also
the walking-technicolor case.1 We neglect the region
M&LTC where our effective treatment of the four-Fermi op
erator ~7! as a contact interaction breaks down. We defi
LTC as the scale where the leading-logarithmic running co
pling constant of technicolor diverges. The values ofLTC in
our numerical estimates areLTC . 1.7, 1.3, and 0.6 TeV for
the SU~2!, SU~3! technicolor, and the walking-technicolo
cases, respectively. We see thatG(M ) increases withM for

1In our analyses, the walking-technicolor case corresponds to
SU~3! technicolor theory with one technifermion doublet which
introduced in Eq. ~5! and ten technifermion singlets unde
SU(2)L3U(1)Y . The one-loopb function reduces to approxi-
mately 1/3 of the SU~3! technicolor case.
tri-
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each case. It should be noted that for both technicolor and
walking-technicolor cases, the couplingG should be rather
strong, typicallyG/4p;O(1) in order to explain the ob-
served top-quark mass.

We also show as dotted lines in these figures theG-M
relation in the case without a QCD correction to the top-
quark mass function. We find that the QCD effect decreases
the couplingG(M ). This is because form.mt the top-quark
mass becomes smaller,S t(m

2),mt , due to the QCD correc-
tion

S t~m2!5S t~mt
2!F ln~mt

2/LQCD
2 !

ln~m2/LQCD
2 ! G

4/b

, ~11!

whereb51122nf/3 is the lowest order coefficient of theb
function of the QCD renormalization group equation, so that
a weaker couplingG is necessary to generate the top-quark
mass.

We further switch off the second term on the right-hand
side of the Schwinger-Dyson equation for the techni-U,
namely, the contribution of the top-quark loop via the opera-
tor ~7!. The neglect of the top-quark contribution would have
been justified if the couplingG were small and the intrinsic
mass scaleM were large,M@LTC. Note that the operator
~7! affects the mass function of techni-U but not that of
techni-D. The change in theG-M relation in this case is also
shown as dots in the same figures. The effect of the top-
quark contribution can be understood as follows. The top-
quark loop diagram in Fig. 1 gives additive contribution to
^ULUR&M so that the couplingG is reduced. The effect in-
crease for largerM since the couplingG is larger in this
region.

B. Unitarity constraint for the coupling G

We have seen that the couplingG should be quite large.
As a criterion for testing the strength ofG, we study the
tree-level unitarity limit related to the four-Fermi operator
~7!. There are a few scattering amplitudes induced by this
operator at the tree level which increase in high energy and
at some energy would violate the unitarity bound. The tree-
level unitarity violation occurs at lower energy for a larger
value of G in general. However, the energy to reach the

the
is
r
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unitarity limit should be above the scaleM , since we have
assumed that the four-Fermi operator~7! can be treated as a
contact interaction below the scaleM ; that is, the higher
dimensional operators are irrelevant at energy scaleE!M .
We see that this requirement leads to the upper bound
G.

Let us consider the two-body to two-body scatterings
fermions via the operator~7! at the energy scale where
E@LTC. In this energy region the confinement effect
technicolor may be ignored. The tree-level matrix eleme
of these processes increase quadratically with the center
mass energy. We find that the scattering amplitude
t t̄→UŪ in the J50 channel will reach the unitarity limit
most quickly. The partial-wave amplitude is given by

TJ50~As!5
ANCNTC

8p

G

M2 s, ~12!

where As is the center-of-mass energy.2 We set
mt5mU50 consideringE@LTC. Unitarity limit @20# for an
inelastic scattering channel is given byuTJu<1. We may
demand that the tree-level unitarity should not be violat
belowAs5M , that is,

uTJ50~As5M !u<1, ~13!

which can be translated to the upper bound forG as

G<
8p

ANCNTC

. ~14!

The bound is so stringent that there are hardly allow
regions in theG-M planes in Fig. 2 forM.LTC. This result
suggests that our effective treatment of the four-Fermi ope
tor as a contact interaction breaks down. Since the coup
G exceeds the perturbative unitarity limit forM.LTC, the
higher order corrections ofG are large and should modify
the tree-level amplitude to restore unitrairy at energy sc
E;LTC. Such corrections induce the higher dimension
operators which become relevant at an energy sc
E;LTC. Thus the scaleM above which the operator~7! will
resolve is found to be aroundLTC or less.

IV. CONTRIBUTIONS TO THE T PARAMETER

Because the four-Fermi operator~7! violates isospin sym-
metry, one may expect that the results obtained in the pre
ous section may lead to large isospin-violating effects. In t
section we estimate the contributions of the four-Fermi o
erator to theT parameter.

A. Contribution of SU2SD

Here we consider the isospin-violating effect originatin
from the difference of techni-U and techni-D mass func-
tions. The contribution of the four-Fermi operator to th

2In our previous paper@19#, we incorrectly omitted the color and
technicolor factors in Eq.~12! which come from the normalization
of the initial and final states.
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techni-U mass function in the Schwinger-Dyson equations
causes this difference.~See Fig. 1.! We estimate theT pa-
rameter and compare with the present experimental bound,
from which we extract another bound for the mass scaleM
of the four-Fermi operator.

We calculate the charged and neutral decay constants
Fp6 and Fp0 from the mass functions of techni-U andD
using the generalized Pagels-Stokar formula@21#. Then the
contribution to theT parameter (Tnew) is calculated as

aTnew5
Fp6
2

2Fp0
2

Fp0
2 , ~15!

wherea 5 1/128 is the fine structure constant. Thus, we can
calculateTnew as a function ofG andM .

Let us first neglect the QCD effect onS t . The results are
shown in Fig. 3 when the couplingG is on the corresponding
dotted linesG5G(M ) in Fig. 2. One sees thatTnew increases
with M ~or G). This behavior is consistent with the naive
estimate ofT parameter by the fermion one-loop calculation
@2#

T.
NTC

12psin2uWcos
2uW

F ~Dm!2

MZ
2 G , ~16!

combined with a naive estimate of the mass difference of
techni-U andD from the coupled Schwinger-Dyson equa-
tions ~i.e., the top-loop contribution in Fig. 1!

Dm.
NC

8p2G~M !mt . ~17!

Also we see thatTnew is larger for the walking-technicolor
case than that of technicolor case for the sameM . This ten-
dency has been pointed out by Chivukula@6#.

Comparing the results with the present experimental data
on theT parameter@4#

Texpt2TSM~mt5175 GeV,mH51 TeV!50.3260.20, ~18!

we may put 3s upper bounds for the intrinsic mass scale
M as follows:

M&7 TeV for SU~2! technicolor ,

M&5 TeV for SU~3! technicolor ,

M&4 TeV for walking technicolor . ~19!

Note that the bound is more stringent for the walking-
technicolor case.

Next, we inculde the QCD correction onS t . The results
are also shown in Fig. 3. Note that the QCD correction re-
ducesTnew by about 40%. This can be understood from Eqs.
~16! and ~17! if we note that bothG(M ) and S t(m

2)
(m.mt) get smaller by the QCD correction.~See Sec.
III A !. Similarly, 3s upper bounds forM are obtained:
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FIG. 3. The contribution to theT parameter,Tnew, from
SU2SD when the coupling is on the curved linesG5G(M ) in Fig.
2, for ~A! SU~2! technicolor, ~B! SU~3! technicolor, and~C!
walking-technicolor cases. The dotted lines areTnewwithout a QCD
correction and the solid lines are the ones including the QCD c
rection.
M&12 TeV for SU~2! technicolor ,

M&9 TeV for SU~3! technicolor ,

M&4 TeV for walking technicolor . ~20!

B. Contribution of URgµURURgµUR

We started our analyses assuming that only the fou
Fermi operator~7! exists at low energy in order to dispense
with the potentially dangerous operator

CURgmURURgmUR , ~21!

which would induce a largeT parameter@5#. We found in the
previous section, however, that the higher order correction
of the operator~7! cannot be neglected. In fact, the above
operator~21! is generated by four insertions of the operato
~7! at three-loop level~Fig. 4!. From a dimensional analysis
of this graph, we estimate

C;2
NC
2

~4p!6
G4

M2 . ~22!

Then the contribution of the operator~21! to theT parameter
can be estimated as

T;631022
NTC~NTC11!

12 S mU

1TeVD 4S 2TeVM D 2
3S G

4p D 4S lnLTC
2

mU
2 D 2. ~23!

We should note that the three-loop graph is very sensitive
the cutoff of the loop momenta. Therefore the estimate
value, Eq.~23!, may change by a factor;10 by a slight
change of the cutoff and therefore it may give a non
negligible contribution to theT parameter. We should also
remark that Eq.~22! may suggest self-inconsistency of our
assumption that we neglect all four-Fermi operators othe
than Eq.~7!. We will discuss this point in the next section.

V. CONCLUSION AND DISCUSSION

In this paper, within a scenario where the top-quark mas
is generated dynamically, we estimated the couplingG and
the intrinsic mass scaleM of the four-Fermi operator that
induces the top-quark mass. Also, we studied the contribu

or-

FIG. 4. A three-loop Feynman diagram that induces the operat
URgmURURgmUR .
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tion of this four-Fermi operator to theT parameter.
Throughout our analyses, we made the following assum

tions.
The W and Z bosons acquire their masses in the on

doublet technicolorlike scenario.
The top quark acquires its mass via the effective fo

Fermi operator~7!. We consider only this four-Fermi opera
tor and neglect all other effective four-Fermi operators th
may be induced in various dynamical models.

We incorporated the dynamics of a SU(NTC) gauge inter-
action by solving the Schwinger-Dyson and Bethe-Salpe
equations numerically in the improved-ladder approximat
~in all the analyses except in Sec. IV B!.

In Sec. III, we studied in detail the strengthG and the
intrinsic mass scaleM of the four-Fermi operator using
MW andmt as the input parameters. We obtainedG as a
function ofM in the regionM.LTC, and found thatG is
rather strong,G/4p;O(1). Then we compared the couplin
G with that demanded by the tree-level unitarity bound. O
results suggest thatM should be of the order of
LTC.1;2 TeV or less, so that the four-Fermi operator ca
not be treated as ‘‘pointlike’’ at scaleE;LTC. Convention-
ally the four-Fermi operator~7! has been treated perturba
tively in many papers, but the unitarity saturation shows t
such a treatment is inconsistent with the presently obser
top-quark mass. We included part of the higher order corr
tions of the four-Fermi operator~7! by solving the coupled
Schwinger-Dyson equations. Also we included the effect o
QCD correction on the top-quark mass function. These
fects, respectively, are found to reduceG(M ).

In Sec. IV we studied the contributions of the four-Ferm
operator~7! to theT parameter. First we estimated the co
tribution of the difference between the mass functions
techni-U and techni-D. We found that the QCD correction i
large and reduces the contribution to theT parameter by
about 40%. The estimatedT parameter is within the presen
experimental bound. Then we used the experimental bo
to obtain another upper bound forM , and found that typi-
cally M is less than 10 TeV. The bound onM is more strin-
gent for the walking-technicolor case. Second, we poin
out that the dangerous operatorURgmURURgmUR would be
generated by the four-Fermi operator~7! at the three-loop
level, and estimated its contribution to theT parameter from
a dimensional analysis. The contribution may become n
neglegible.

We found that the four-Fermi operator~7! cannot be
treated as ‘‘pointlike’’ at the scaleE;LTC. In order to make
a more consistent analysis, one needs to specify the ‘‘st
ture’’ of the four-Fermi operator, i.e., specify the dynamic
origin of this operator. One way is to rewrite the four-Ferm
operator in terms of a massive-gauge-boson exchange in
action as in extended technicolor models. We are curre
making further analyses in this direction.

We started our analyses on the assumption that all fo
Fermi operators except Eq.~7! can be neglected. We found
however, that other four-Fermi operators generated in hig
orders of the operator~7! may be non-negligible~e.g., the
operatorURgmURURgmUR). This self-inconsistency seem
to impose certain constraints when constructing a via
model of dynamical electroweak symmetry breakin
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Namely, suppose one could construct an extended techn
color model that has ETC gauge bosons which induce onl
the four-Fermi operator~7! at the tree level. Then other four-
Fermi operators induced at higher loops would be suppresse
by powers ofLTC/M , but this factor is close to 1 for the
top-quark mass.175 GeV.
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APPENDIX

In this appendix, we list the Schwinger-Dyson equations
as well as other formulas which are used in our numerica
analyses.

In Sec. III, we solved the coupled and noncoupled
Schwinger-Dyson equations in the improved-ladder approxi
mation for the mass functions of techni-U, techni-D, and top
quark (SU , SD , andS t). All these equations can be written
in the forms:3

SU~x!5
l~x!

4x E
0

x

dy
ySU~y!

y1SU
2 ~y!

1E
x

M2

dy
l~y!SU~y!

4@y1SU
2 ~y!#

1
NC

8p2

G

M2E
0

M2

dy
yS t~y!

y1S t
2~y!

,

SD~x!5
l~x!

4x E
0

x

dy
ySD~y!

y1SD
2 ~y!

1E
x

M2

dy
l~y!SD~y!

4@y1SD
2 ~y!#

,

S t~x!5
NTC

8p2

G

M2E
0

M2

dy
ySU~y!

y1SU
2 ~y!

1
lQCD~x!

4x E
0

x

dy
yS t~y!

y1S t
2~y!

1E
x

M2

dy
lQCD~y!S t~y!

4@y1S t
2~y!#

, ~A1!

wherel(x) andlQCD(x) denote the running coupling con-
stants for technicolor and color interactions, respectively.

According to Ref.@13#, we takel(x) as:

l~x!5l035
C if t<t0 ,

C2
1

2

A

~11AtIF !2
~ t2t0!

2

~ t IF2t0!
, if t0<t<t IF ,

1

11At
if t IF<t,

~A2!

3Here, note that the four-Fermi operator~7! resolves ~and is
crudely set equal to zero! above the scaleM . For the technigluon’s
and gluon’s loop diagrams, we replace the ultraviolet cutoff scale
by M approximately, because the mass functions and the runnin
coupling constants decrease in the energy regionx@LTC .
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with

t5 lnx and C5
1

2

A~ t IF2t0!

~11AtIF !2
1

1

11AtIF
,

wherel0 /A512C2 /b0 andb0 is the one loop order coeffi-
cient of theb function andC25(NTC

2 21)/2NTC represents
the second Casimir. Thus, above the infrared cutoff sc
t>t IF , l(x) is related to the one-loop running coupling con
stantgTC(x) as

l~x!5
3

4p2C2gTC
2 ~x!. ~A3!

In our numerical calculation, we fix the pointt05 lnm0
2 rela-

tive toLTC and consider the infrared cutoff scalet IF as a free
parameter. We defineLTC as the point where the leading
logarthmic running coupling constant diverges:

11AlnLTC
2 50. ~A4!

As for all the dimensionful quantities in our calculation, w
set the scale by normalizing the decay constant as in Eq.~8!.

For the QCD coupling constant,lQCD(x) takes the same
form as Eq.~A2!. Above the infrared cutoff scale of QCD
lQCD(x) can be expressed by the one-loop running coupl
constantgQCD(x) as

lQCD~x!5
3

4p2C2
QCDgQCD

2 ~x!. ~A5!

whereC2
QCD5(NC

221)/2NC and NC53. We set the mass
scale of QCD by takingLQCD 5 200 MeV.

As mentioned earlier, we calculated the charged de
constantFp6 in order to set the mass scale. We define t
decay constant as
ale
-

e

ng

ay
e

^0uQ̄Lg
mTbQL~0!upa~q!&5

i

2
Fp
abqm, ~A6!

whereTa (a51,2,3! is the generator of SU(2)L . Then the
charged and neutral decay constants, respectively, are given
by Fp6[Fp

115Fp
22 andFp0[Fp

33

We calculate the charged decay constantFp6 and the
neutral oneFp0 using the generalized Pagels-Stokar formu-
las @21#

Fp0
2

5
NTC

8p2E
0

`

dxI0~SU ,SD!, ~A7!

Fp6
2

5
NTC

8p2E
0

`

dxI6~SU ,SD!, ~A8!

with

I 0~SU ,SD![x

SU
2 2

x

4

d

dx
SU
2

~x1SU
2 !2

1x

SD
2 2

x

4

d

dx
SD
2

~x1SD
2 !2

, ~A9!

I6~SU ,SD![x

SU
2 1SD

2 2
x

4

d

dx
~SU

2 1SD
2 !

~x1SU
2 !~x1SD

2 !

1
x2

2

SU
2 2SD

2

~x1SU
2 !~x1SD

2 !

d

dx
lnFx1SU

2

x1SD
2 G . ~A10!

In our calculation, we cut off the integral atM instead of
infinity in Eqs. ~A7! and~A8!. The approximation would be
valid since SU(x) and SD(x) vanish swiftly the region
x@LTC
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