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Top-quark mass and isospin breaking in the dynamical symmetry-breaking scenario
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We consider a scenario where the top-quark mass is generated dynamically, and study the implications of the
present experimental values fox and theT parameter. We assume a technicolorlike scenario for inducing the
W mass and an effective four-Fermi operator for inducing the top-quark mass. We also assume that only this
four-Fermi operator is relevant at low energy. Then we estimate in detail the st@rayil the intrinsic mass
scaleM of the four-Fermi operator. A unitarity bound is used to quantify the strengi®.oiVe find that
G/4m~1 and thatM is of the order ofArc=1-2 TeV or less. Namely the four-Fermi operator cannot be
treated as “pointlike” around the electroweak scale. Furthermore we estimate the contribution of the four-
Fermi operator to th& parameter. We find that the QCD correction to the top-quark mass function reduces the
contribution to thelT parameter by about 40%. By comparing the results with the present experimental bound,
we obtain another upper bound oM which is typically in the several to 10 TeV region.
[S0556-282(96)02721-X

PACS numbd(s): 14.65.Ha, 11.30.Qc

I. INTRODUCTION From the observed value of the top-quark mass
m,=175 GeV [1], this naive argument suggests that

The SU(2)X U(1) gauge theory for describing the elec- 1//\2~mt/A§W and that the new physics scaleis not too
troweak interactions has been very successful both theoretiar from Agy,.
cally and experimentally. However, all experimental tests During the last decade, there were many analyses of the
have been done for its gauge part and we have little knowldynamical symmetry-breaking scenarios in the case of a
edge on the electroweak symmetry-breaking mechanism darge top-quark massn,>100 GeV. In 1985, Appelquist
far. In light of the naturalness problem, we may suppose thaét al. [5] studied thep parameter T parameterin the con-
there exists some new physics related to electroweak symext of extended technicolor models. They pointed out that
metry breaking at the energy scale 100 GeV-1 TeV. Dynaively the mass difference between the teddnand its
namical symmetry breaking is one of the attractive candiisopartner technb is proportional to the top-quark mass, so
dates for a solution to the naturalness problem. We considehat this difference would contribute to tHE parameter.
this possibility and study the implications of the present ex-Also, they noted that an extra isospin-violating operator
perimental data for the top-quark md4$ and theT param-
eter[2-4]. 3~ . 3

In dynamical symmetry-breaking scenarios such as tech- 172 QrY 07 QrQRY,07Qr, )
nicolor models, an effective four-Fermi operator

whereQr=(Ug,Dg)", may give a large contribution to the
1 T parameter sincd’ is considered to approximatk. (For
ﬁ:PULURthL+ H.c. (1) m=175 GeV, the latter effect would be more significant
than the formej. It was suggested in Ref6] that theT
parameter would be enhanced in the walking technicolor sce-
is introduced in order to generate the top-quark mass, whengario. More detailed analyses on thearameter were given
A represents the new physics scébxtended technicolor later in Refs[7,8]. Recently the experimental constraint on
scale andU denotes a new fermioftechnifermion intro-  theT parameter has become more severe, and deviation from
duced in the symmetry-breaking sector. When this fermiorthe standard model prediction is seen to be very sfdgll
forms a pair condensatg), Ug)#0, the top quark acquires Reflecting the present constraint, some dynamical symmetry-
its mass breaking models have been propod@dl0] in which the
operator (4) is suppressed at low energy. Refererndéd]
— studied the constraints from the pres&marameter and top-
N (UUr) 7 quark mass data, and discussed the top-color-assisted techni-
t A% color model in this context.

In this paper we assume that at low energy the four-Fermi
operators other than Eq@l) can be neglected. We estimate
tgfe strength and the intrinsic mass scale of the particular
operator(1) in detail based on this assumption. Since it is a
(nonrenormalizableeffective operator, the tree-level unitar-
. ity of some processes induced by this operator is violated
(U URYP~ Ay~ 1 TeV. (3)  above some energy. This fact is used to quantify the intrinsic

Because the condensate also gives mass tévtbeson, one
may naively expect that the condensate has the same order
magnitude as the electroweak symmetry-breaking scale:
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mass scale of the operator. Then we estimate the contribution TCgluon .
of this operator to thel parameter. We include the QCD S °p®
correction to the top-quark mass function and study its effect = &2 +

U
on theT parameter.

In order to incorporate the dynamics of symmetry break-
ing into our analyses, we solve numerically the Schwinger-

Dyson and Bethe-Salpeter equations in the improved-ladder ~ ©P top
approximation[12]. We follow the formalism developed in i
Refs.[13—-15; in these papers, takinf,=94 MeV as the o g g TCeMon

only input parameter for QCD, the quantitie’ocp, D
(vw), m,, My, My, f,, andf, have been calculated,

which meet the experimental values within 20—-30 % accu- FIG. 1. The graphical representation for the coupled Schwinger-

racy for Aocp, - - - ma, and within a factor of 2 forf, and Dyson equations for the mass functions of tecdnand top quark,

. . and for the Schwinger-Dyson equation for the mass function of
fal. Thus, we expect to study the dynamical effect semiquan;, WingerLy quat Hnet

L . . techniD.
titatively using the formalism.

In Sec. Il we present our assumption on the dynamicafndamental interaction, there should be some energy scale
symmetry-breaking scenario. Then we estimate the strengtihove which this operator will resolve, and we call this scale
of the four-Fermi operator from the_observed top-quark Masy) . In other words, it is the scale where higher dimensional
and W boson mass in Sec. lll. Using the result, the contri-gnerators neglected in E67) become relevant. We may ne-
butions to theT parameter are estimated in Sec. IV. Theglect the higher dimensional operators if all the energy scales
conclusion and discussion are given in Sec. V. involved in our calculation satisE/M<1. In particular,

The explicit formulas of the Schwinger-Dyson and Bethe-gjnce we will incorporate the nonperturbative dynamics of
Salpeter equations, as well as other equations used in oOge SUNyc) technicolor interaction by solving the

numerical analyses, are collected in the Appendix. Schwinger-Dyson and Bethe-Salpeter equations, the validity
of our effective treatment of the four-Fermi operatdy as a
Il. SYMMETRY-BREAKING SECTOR contact interaction would be justified if the technicolor scale
AND FOUR-FERMI OPERATOR A satisfiesA rc<M.

In this section we explain our assumption on the scenari% Z\rlstc?rsssgmgrtthhagnwé qg%h?cehgﬁgbﬂlbegf?ncéalfegc’:;_:;i;m'
of the dynamical generation of the top-quark mass. P

First, we assume a technicolorlike scendfi6] for break- energy in the models such as exten_ded techni_co!or models
ing eléctroweak gauge symmetry. We introduce non-[18]' (See, however, the discussion in S_ec) Vhis is be-
standard-model fermions following the one-doublet technj-"ause an operator such as E4) would give a very large
color (TC) model as contribution to theT parameter. We do not consider the dy-

namical origin of the operatdi) in this paper.
U
D

,  Ugr, Dg. 5
L

QL= Ill. STRENGTH AND MASS SCALE

OF THE FOUR-FERMI OPERATOR
The weak hypercharges are assigned ¥6Q,)=0, . _ . s
Y(Ug)=1/2, andY(Dg)= — 1/2. These fermions belong to In this section, we estimate the strengihand the intrin-

- i léM of the four-Fermi operato(7) from the
the fundamental representation of the 8lJ§) gauge group, SIC mass sca
and they form the pair condensates observed top-quark and/-boson masses.

(U Ug)#0 and (D, Dg)#0 (6) A. Relation betweenG and M

via the SUNTc) gauge interaction. Later, when we solve the W€ solve numerically the coupled Schwinger-Dyson

Schwinger-Dyson equations numerically, we will deal with €quations for the techié- and top quark as well as the
both the technicolorlike and walking-technicolor-likg7] ~ Schwinger-Dyson equation for techii- (See the Appendix

scenarios by varying the running behavior of the gauge coufor details) These equations are depicted diagrammatically

pling constant. In the following analyses, we consider only!" Fig. 1. In order to set a mass scale in the numerical cal-

the casedl;c=2 and 3, taking into account the present strin-culation, we use the charged decay constapt, which is

gent experimental constraif4] on theS parametef2]. calculated using the generalized I_Dagels—St_okar foriiih
Second, in order to generate the top-quark mass, we if-"0m theW-boson mas#dy,, F = is normalized as

troduce an effective four-Fermi operator

2My
Foe= =g =250 GeV, ®)

G —
W(QLUR)(thL)+H-C-- (7)
whereg is the SU(2) gauge coupling constant. Also, we
whereq, denotes the ordinary quark doublét (b,)". Gis  input the top-quark mass to lﬁt(mf)zmtzﬂs GeV[1].
a dimensionless coupling amd is the intrinsic mass scale of These two inputs relate the coupli@yand the intrinsic mass
this operator. Because the four-Fermi operator cannot be scaleM of the four-Fermi operatof7).



5700 T. ASAKA, Y. SHOBUDA, AND Y. SUMINO 54

(A) SU(N,,.) Technicolor (B) Walking Technicolor
FIG. 2. The allowed regions in th@-M plane

300 300 obtained by solving the coupled Schwinger-
o Dyson equations forlA) SU(Nyc) technicolor
20y 250 cases and fofB) the walking-technicolor case.
Curved lines represent the coupligdM). Hori-
200 ¢ 200 ¢ zontal lines show the upper bounds fGr ob-
7. tained from the unitarity limit. For SW¢)
© 150 : / ’ ] O 150 technicolor cases, the solid and dot-dashed lines
L correspond tdN;c=2 andN;-=3, respectively.
wor— 1. 1 100 ¢ For comparison, also shown as dots is the cou-
pling G(M) when the QCD correction to the top-
501 _] 1 1 301 quark mass function and the top-loop contribu-
L L tion to the technid mass function are switched
O'00.0 1.0 20 30 40 50 60 7.0 O'00.0 10 20 30 40 50 60 70 Off successively.

M [TeV] M [TeV]

Let us demonstrate the relation betwegdrandM in the  each case. It should be noted that for both technicolor and
simple case where we can neglect both the top-loop contriwalking-technicolor cases, the couplig should be rather
bution of the Schwinger-Dyson equation for the tecbni- strong, typically G/47~O(1) in order to explain the ob-
and the QCD correction of the equation for the top quark. Inserved top-quark mass.
this case the top-quark mass can be calculated from the massWe also show as dotted lines in these figures @&l
function of the technld, %, as relation in the case without a QCD correction to the top-

quark mass function. We find that the QCD effect decreases

G — the couplingG(M). This is because for>m; the top-quark
mt_W<U'-UR>M ' ®  mass becomes smallé,(u?)<m;,, due to the QCD correc-
tion
where
In(m2/A2cp) |72

1 d'p i S =Smd) ez S Ay
<ULUR>M:_f atr K12 qep

2)p2=m2(2m)" | p—3(p)

_ N

JMZ X34 (X) where 8=11-2n¢3 is the lowest order coefficient of the
"~ 8n?

(10)  function of the QCD renormalization group equation, so that
a weaker couplindgs is necessary to generate the top-quark
mass.

with x=pg=—p® Note that we define the intrinsic mass  we further switch off the second term on the right-hand

scaleM of the four-Fermi operatof7) as the momentum side of the Schwinger-Dyson equation for the techni-

cutoff of the integral in Eq(10) since the four-Fermi opera- namely, the contribution of the top-quark loop via the opera-
tor will resolve above the energy scae By calculating the  tor (7). The neglect of the top-quark contribution would have
condensatdU Ug)y for a given M, and substituting the been justified if the coupling were small and the intrinsic
top-quark massn,=175 GeV in Eq(9), we obtain the cou- mass scaléM were largeM > A1c. Note that the operator
pling G as a function oM. (7) affects the mass function of techdi-but not that of
Now returning to the solution to the coupled Schwinger-techniD. The change in th&-M relation in this case is also

Dyson equationgFig. 1), we show theG-M relation in Fig.  shown as dots in the same figures. The effect of the top-

2 for the SU(2) and SU(3) technicolor cases, and also fogyuark contribution can be understood as follows. The top-

the walking-technicolor case.We neglect the region quark loop diagram in Fig. 1 gives additive contribution to

M =< A ;¢ where our effective treatment of the four-Fermi op- (U Ug)w so that the couplings is reduced. The effect in-

erator (7) as a contact interaction breaks down. We definecrease for largeM since the couplingG is larger in this

A+c as the scale where the leading-logarithmic running couregion.

pling constant of technicolor diverges. The values\gt; in

our numerical estimates are;c = 1.7, 1.3, and 0.6 TeV for o _ _

the SU?2), SU®) technicolor, and the walking-technicolor B. Unitarity constraint for the coupling G

cases, respectively. We see tl&tM) increases wittM for We have seen that the coupli@ should be quite large.

As a criterion for testing the strength @&, we study the
tree-level unitarity limit related to the four-Fermi operator
In our analyses, the walking-technicolor case corresponds to thé7). There are a few scattering amplitudes induced by this

SU(3) technicolor theory with one technifermion doublet which is operator at the tree level which increase in high energy and

introduced in Eq.(5) and ten technifermion singlets under at some energy would violate the unitarity bound. The tree-

SU(2).xU(1)y. The one-loopgB function reduces to approxi- level unitarity violation occurs at lower energy for a larger

mately 1/3 of the S(B) technicolor case. value of G in general. However, the energy to reach the

0 XX"‘EU(X)Z’
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unitarity limit should be above the scald, since we have technilU mass function in the Schwinger-Dyson equations
assumed that the four-Fermi operat@y can be treated as a causes this differencéSee Fig. 1. We estimate thdl pa-
contact interaction below the scaM; that is, the higher rameter and compare with the present experimental bound,
dimensional operators are irrelevant at energy sEateM.  from which we extract another bound for the mass stéle
We see that this requirement leads to the upper bound fasf the four-Fermi operator.
G. We calculate the charged and neutral decay constants

Let us consider the two-body to two-body scatterings ofF .- and F o from the mass functions of techhi-and D
fermions via the operatof7) at the energy scale where using the generalized Pagels-Stokar form@a]. Then the
E>A+c. In this energy region the confinement effect of contribution to thel parameter T, is calculated as
technicolor may be ignored. The tree-level matrix elements

. . . 2 2

of these processes increase quadratically with the center-of- F +—F o
mass energy. We find that the scattering amplitude for aTnew:F—Zo' (15
tt—UU in the J=0 channel will reach the unitarity limit i

most quickly. The partial-wave amplitude is given by wherea = 1/128 is the fine structure constant. Thus, we can

NoNw G calculateT ., as a function ofG andM.
T=0(s)= BC—WTC MZS (12) Let us first neglect the QCD effect & . The results are

shown in Fig. 3 when the coupling is on the corresponding
dotted linesG=G(M) in Fig. 2. One sees thdt,,, increases
with M (or G). This behavior is consistent with the naive
estimate ofT parameter by the fermion one-loop calculation

where /s is the center-of-mass enerfy.We set
m,=my =0 consideringe> A 1. Unitarity limit [20] for an
inelastic scattering channel is given hy’|<1. We may
demand that the tree-level unitarity should not be violateo[z]
below \s=M, that is, \
TC
|T=0(Js=M)|=<1, (13 T= 1277Sir? 6,,cOS O\

(16)

(Am)z}
M3 |
which can be translated to the upper bound®@oas

combined with a naive estimate of the mass difference of
techniU and D from the coupled Schwinger-Dyson equa-

G< 8_77 (14  tions (i.e., the top-loop contribution in Fig.)1
VNcNtc
The bound is so stringent that there are hardly allowed Am= S—;ZG(M)mt. (17)

regions in theG-M planes in Fig. 2 foM > A¢. This result

suggests that our effective treatment of the four-Fermi opera- ) ) )

tor as a contact interaction breaks down. Since the couplin§lS0 we see thafl e, is larger for the walking-technicolor

G exceeds the perturbative unitarity limit f>A,c, the ~ Case than that of te_chnlcolor case for the sa@merThis ten-
higher order corrections d& are large and should modify dency has been pointed out by Chivuk{€. _

the tree-level amplitude to restore unitrairy at energy scale Comparing the results with the present experimental data
E~A+c. Such corrections induce the higher dimensionalon theT parametef4]

operators which become relevant at an energy scale

E~ A+1c. Thus the scal®1 above which the operatgr) will Texpi— Tsm(my=175 GeVmy =1 TeV)=0.32£0.20, (18)
resolve is found to be arountl¢ or less.

we may put & upper bounds for the intrinsic mass scale
IV. CONTRIBUTIONS TO THE T PARAMETER M as follows:

Because the four-Fermi operat@ violates isospin sym-
metry, one may expect that the results obtained in the previ-
ous section may lead to large isospin-violating effects. In this
section we estimate the contributions of the four-Fermi op- M=s5 TeV for SU3) technicolor,
erator to thelT parameter.

M=<7 TeV for SU2) technicolor,

M=4 TeV for walking technicolor. (29
A. Contribution of ¥,—3

Here we consider the isospin-violating effect originatingNote that the bound is more stringent for the walking-

from the difference of techri} and techni® mass func- technicolor case.

tions. The contribution of the four-Fermi operator to the Next, we inculde the QCD correction @ . The results
are also shown in Fig. 3. Note that the QCD correction re-
ducesT ., by about 40%. This can be understood from Egs.

2In our previous papell9], we incorrectly omitted the color and (16) and (17) if we note that bothG(M) and 3(u?)
technicolor factors in Eq(12) which come from the normalization (x>m;) get smaller by the QCD correctior(See Sec.
of the initial and final states. Il A). Similarly, 30 upper bounds foM are obtained:
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(A) SU(2) Technicolor

----- without QCD corr.
10 — with QCD corr.

08t

0.6 ¢

TNEW

0.4

02 ¢

0.0 e
00 20 40 60 80 100 12.0

M [TeV]
(B) SU(3) Technicolor
————— without QCD corr.
ol — with QCD corr.
0.8
; 0.6
=
0.4
0.2
0.0 : : * '
00 20 40 60 80 100
M [TeV]
(C) Walking Technicolor
----- without QCD corr.
10 — with QCD corr.
0.8 r
; 0.6
—
04
0.2 r
0.0 e
00 10 20 30 40 50

M [TeV]

FIG. 3. The contribution to thel parameter,T,q,, from
3y —2p when the coupling is on the curved lin€s= G(M) in Fig.
2, for (A) SU(2) technicolor, (B) SU(3) technicolor, and(C)
walking-technicolor cases. The dotted lines &g, without a QCD

UR QL UR
t R t R
Ur QL Ur

__FIG. 4. Athree-loop Feynman diagram that induces the operator
UR'}’MURUR')’MUR~

M=12 TeV for SU2) technicolor,
M=9 TeV for SU3) technicolor,

M=<4 TeV for walking technicolor . (20

B. Contribution of U_R'yuU rUr7"Ug

We started our analyses assuming that only the four-
Fermi operatof7) exists at low energy in order to dispense
with the potentially dangerous operator

CUgy,UrUry“Ug, (21)

which would induce a larg& parametef5]. We found in the
previous section, however, that the higher order corrections
of the operator(7) cannot be neglected. In fact, the above
operator(21) is generated by four insertions of the operator
(7) at three-loop leve(Fig. 4). From a dimensional analysis
of this graph, we estimate

_Ne ¢
(4m)° M?”

(22

Then the contribution of the operat(#l) to theT parameter

can be estimated as
my |4 2Tev\|?
1TeV M

4 A2 2
%) ( |n—T2°) . (23)

Ntc(N7c+1)

_ -2
T~6X10 12

X

We should note that the three-loop graph is very sensitive to
the cutoff of the loop momenta. Therefore the estimated
value, Eq.(23), may change by a factor 10 by a slight
change of the cutoff and therefore it may give a non-
negligible contribution to th& parameter. We should also
remark that Eq(22) may suggest self-inconsistency of our
assumption that we neglect all four-Fermi operators other
than Eq.(7). We will discuss this point in the next section.

V. CONCLUSION AND DISCUSSION

In this paper, within a scenario where the top-quark mass
is generated dynamically, we estimated the coup{thand

correction and the solid lines are the ones including the QCD corthe intrinsic mass scal® of the four-Fermi operator that

rection.

induces the top-quark mass. Also, we studied the contribu-
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tion of this four-Fermi operator to th€ parameter. Namely, suppose one could construct an extended techni-
Throughout our analyses, we made the following assumpeolor model that has ETC gauge bosons which induce only

tions. the four-Fermi operata(7) at the tree level. Then other four-
The W and Z bosons acquire their masses in the one-Fermi operators induced at higher loops would be suppressed

doublet technicolorlike scenario. by powers ofA;c/M, but this factor is close to 1 for the
The top quark acquires its mass via the effective fourtop-quark mass=175 GeV.

Fermi operatoK7). We consider only this four-Fermi opera-

tor and neglect all other effective four-Fermi operators that ACKNOWLEDGMENTS

may b‘? induced in various dyn_am|cal models. . We are grateful to K. Fujii, K. Hagiwara, K. Hikasa, J.
We incorporated the dynamics of a SUc) gauge inter- Hisano, B. Holdom, N. Maekawa, T. Moroi, H. Murayama,

action by solving the Schwinger-Dyson and Bethe-SaIpeteM Peskin, and J. Terning for fruitful discussion.
equations numerically in the improved-ladder approximation

(in all the analyses except in Sec. I\.B

In Sec. Ill, we studied in detail the streng® and the
intrinsic mass scaléVM of the four-Fermi operator using In this appendix, we list the Schwinger-Dyson equations
My, and m, as the input parameters. We obtain€das a as well as other formulas which are used in our numerical
function of M in the regionM> A1, and found thaG is  analyses.
rather strongG/47~0O(1). Then we compared the coupling  In Sec. lll, we solved the coupled and noncoupled
G with that demanded by the tree-level unitarity bound. OurSchwinger-Dyson equations in the improved-ladder approxi-
results suggest thatM should be of the order of mation for the mass functions of techdi-techniD, and top
Aqe=1~2 TeV or less, so that the four-Fermi operator can-duark &y, EsD , andZ,). All these equations can be written
not be treated as “pointlike” at scalE~ Ac. Convention- N the forms:
ally the four-Fermi operato(7) has been treated perturba-
tively in many papers, but the unitarity saturation shows that EU(X)=MX) v yEUZ(y) JMZ YM
such a treatment is inconsistent with the presently observed ax Jo CTy+Eply)  Jxo TAly+2G(Y)]
top-quark mass. We included part of the higher order correc- ,
tions of the four-Fermi operatdi?) by solving the coupled L Ne EIM y y2(y)
Schwinger-Dyson equations. Also we included the effect of a 8w M? ), y+2t2(y) ’
QCD correction on the top-quark mass function. These ef-
fects, respectively, are found to reduéé¢M). (X) [x

In Sec. IV we studied the contributions of the four-Fermi  ~p(X)= ax fo dy
operator(7) to the T parameter. First we estimated the con-
tribution of the difference between the mass functions of

APPENDIX

y2p(y) +JM2 ANY)2p(Y)
y+32(y) " YayrsAyT

NTCE M2 ySy(y)

techniU and technib. We found that the QCD correction is S (X)) =55 — .

large and reduces the contribution to tfieparameter by 8" MJo Ty+24(Y)

about 40%. The estimatel parameter is within the present N . s

experimental bound. Then we used the experimental bound N QCD(X)J' dy y2(y)

to obtain another upper bound fof, and found that typi- ax  Jo Cy+3{(y)

cally M is less than 10 TeV. The bound &h is more strin- ,

gent for the walking-technicolor case. Second, we pointed M d )‘QCD(y)ZEt(y) (A1)
out that the dangerous operatdgy,UgUg¥*Ug would be x aly+3i(y)]’

generated by the four-Fermi operat@h at the three-loop _ )
level, and estimated its contribution to tfieparameter from  Where\(x) andAqcp(x) denote the running coupling con-
a dimensional analysis. The contribution may become nonstants for technicolor and color interactions, respectively.

neglegible. According to Ref[13], we take\ (x) as:

We found that the four-Fermi operat@?) cannot be ]
treated as “pointlike” at the scalE~ A1c. In order to make C it ts<to,
a more consistent analysis, one needs to specify the “struc- 1 A (t—tg)?

ture” of the four-Fermi operator, i.e., specify the dynamical C—5 2 , I tosStstg,
origin of this operator. Oge way is to repwritfgthe fo)l/Jr-Fermi A(X)=RoX 2 (1+Ate)” (tie —to)
operator in terms of a massive-gauge-boson exchange inter- 1
action as in extended technicolor models. We are currently 1+ At
making further analyses in this direction. (A2)

We started our analyses on the assumption that all four-
Fermi operators except E¢Z) can be neglected. We found,
however, that other four-Fermi operators generated in higher3Here, note that the four-Fermi operat6?) resolves(and is
orders of the operatof7) may be non-negligiblée.g., the  crudely set equal to zerabove the scal#l. For the technigluon’s
operatorUgy,UgUry*Ug). This self-inconsistency seems and gluon’s loop diagrams, we replace the ultraviolet cutoff scale
to impose certain constraints when constructing a viabléy M approximately, because the mass functions and the running
model of dynamical electroweak symmetry breaking.coupling constants decrease in the energy regism 1.

if te<t,
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with — i
OlQUY*T*QU(O)#*(@) = 5F3a*,  (A6)
1 A(t—to) 1

2 (1+A4e)"  1+ALE whereT? (a=1,2,3 is the generator of SU(2) Then the
charged and neutral decay constants, respectively, are given

t=Inx and C=

where\o/A=12C, /B, and B, is the one loop order coeffi- 1122 ° L33
cient of theB function andC,=(N2.—1)/2N¢ represents by Fre=F,=F. andF=F;

the second Casimir. Thus, above the infrared cutoff scalenel\ﬁ/rzl c;ar:;lilateu;ir:]e f[:::rg:ge;dae"czae)é (F:)c;nséir%tstt (?kn z:jr ft(r)]remu-
t=tr, N(x) is related to the one-loop running coupling con- w0 9 g 9

stantgrc(X) as las[21]
3 2 Nyc (=
N0 =7 7 Co07c(x). (A3) Fro= g2 JO dxlo(2y, o), A1)
In our numerical calculation, we fix the poim:In,uS rela- 5> Nic (=
tive to At and consider the infrared cutoff scdje as a free er:m 0 dxl.(Zy,2p), (A8)
parameter. We defind ;¢ as the point where the leading
logarthmic running coupling constant diverges: with
2 _
1+AInATC— 0. (A4) - i i ) - i i )
o L . iy 20 2 2b
As for all the dimensionful quantities in our calculation, we | ¢ g |_ adx 7 " 4dx (A9)
set the scale by normalizing the decay constant as inf@g. >~V 7P " (x+32)2 (x+32)2
For the QCD coupling constantocp(x) takes the same
form as Eq.(A2). Above the infrared cutoff scale of QCD, ) , xd )
Noco(X) can be expressed by the one-loop running coupling 20t 7 g (3ut D)
constantgocp(X) as 1. (2y,.2p)=X
QcD +(2u.2p) (Xx+33)(x+33)
3
__° ~QcD,2 2 2 N2 2
Nqcp(X) 4772C2 9aco(X)- (A5) X 2;1 %5 , in E;J . (A10)
2(x+3)(x+3p) dx | x+35

where CS°P=(N2—-1)/2Nc and Nc=3. We set the mass

scale of QCD by taking\ gcp = 200 MeV. In our calculation, we cut off the integral & instead of
As mentioned earlier, we calculated the charged decainfinity in Egs. (A7) and(A8). The approximation would be

constantF _= in order to set the mass scale. We define thevalid since X (x) and %p(x) vanish swiftly the region

s

decay constant as x>A2%..
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