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Probing lepton-number and lepton-flavor violation in semileptonict decays into two mesons

A. Ilakovac
Faculty of Science, Department of Physics, University of Zagreb, Bijenicˇka 32, 10 000 Zagreb, Croatia

~Received 27 October 1995!

The evaluation, systematic analysis, and numerical study of the semileptonict-lepton decays with two
mesons in the final state has been made in the frame of the standard model extended by right-handed neutrinos.
In the analysis, heavy-neutrino nondecoupling effects, finite quark masses, quark and meson mixings, finite
widths of vector mesons, chiral symmetry breakings in vector-meson–pseudoscalar-meson vertices, and effec-
tive Higgs-boson–pseudoscalar-meson couplings have been included. Numerical estimates reveal that the
decayst2→e2p2p1, t2→e2K2K1, andt2→e2K0K̄0 have branching ratios of the order of 1026, close to
present-day experimental sensitivities.@S0556-2821~96!00521-8#

PACS number~s!: 13.35.Dx, 11.30.Fs, 12.39.Fe, 14.60.St
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I. INTRODUCTION

The neutrinolesst-lepton decays belong to the family o
phenomena which, if experimentaly confirmed, would una
biguously show that physics exists beyond the stand
model~SM!. Specifically, the lepton sector would have to b
modified. In the SM, these decays are forbidden, due to
fact the SM neutrinosne , nm , andnt are exactly massless,
fact which follows from the doublet nature of neutrino an
Higgs-boson fields, left-handedness of the neutrinos,
chirality conservation. Neutrinolesst-lepton decays, if stud-
ied with sufficient accuracy, from the experimental point
view, are very promising due to the large momentum trans
involved @1,2#. In addition, the large mass of thet lepton
allows many decay channels. Therefore, SM~deviations
from the SM! can be tested in a variety of ways. Experime
tal data on these decays constantly improve@3,4#. The CLEO
experiment@4#, has improved the previous upper bounds
22 neutrinoless decay channels of thet lepton by almost an
order of magnitude.

Neutrinolesst-lepton decays and many other lepto
number and lepton-flavor-violating decays have been stud
in a number of models, e.g., SU(2)3U(1) theories with
more than one Higgs doublet@5#, leptoquark models@6#,
R-parity-violating supersymmetry scenarios@7#, superstring
models with E6 symmetry@8#, left-right symmetric models
@9#, and theories containing heavy Dirac and/or Majora
neutrinos@10,11#. Here, the models with heavy Dirac and/o
Majorana neutrinos will be used to estimate the processe
interest.

This paper is devoted to the analysis of semileptonic
cays with two pseudoscalar mesons in the final state, den
by t2→ l7P1P2. Together with papers@12,13#, it completes
the analysis of the lepton-number and lepton-flavor-violat
decays of thet lepton reported by the CLEO Collaboratio
@4#. In addition to the heavy-neutrino nondecoupling effe
@12–16#, finite quark mass contibutions, Cabbibo
Kobayashi-Maskawa~CKM! quark mixings, and meson mix
ings already studied in the previous work@13#, this analysis
includes vector-meson–pseudoscalar-meson couplings,
ral symmetry-breaking effects, finite widths of the vect
mesons, and effective Higgs-pseudoscalar couplings.
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hadronic matrix elements are derived in a few independe
ways, in order to check the formalism used.

For the evaluation of the leptonic part of the
t2→ l7P1P2 matrix elements, the formalism and conven-
tions of the model described in Ref.@10# are adopted. The
model is based on the SM group. Its neutrino sector is ex
tended by the presence of a number (nR) of neutral isos-
inglets leading tonR heavy Majorana neutrinos (Nj ). The
quark sector of the model retains the SM structure. In cou
plings of charged and neutral current interactions, CKM-typ
matricesB andC appear@10,12,17#. These matrices satisfy a
number of identities, assuring the renormalizability of the
model@10,18# and reducing the number of free parameters in
the theory. These identities may be used to estabilish th
relation betweenB andC matrices and neutrino masses, too
For example, in the model with two right-handed neutrinos
B andC matrices read@12#

BlN1
5

r1/4sL
n l

A11r1/2
, BlN2

5
isL

n l

A11r1/2
,

CN1N1
5

r1/2

11r1/2(l51

nG

~sL
n l !2, CN2N2

5
1

11r1/2(l51

nG

~sL
n l !2,

CN1N2
52CN2N1

5
ir1/4

11r1/2(l51

nG

~sL
n l !2, ~1.1!

wherer5mN2
2 /mN1

2 andsL
n l are heavy-light neutrino mixings

@19# defined by

~sL
n l !2[12(

i51

3

uBln i
u25(

j51

nR

uBlN j
u2. ~1.2!

The second equation~1.2! follows from the aforementioned
relations forB andC matrices. In the theory with more than
one isosinglet, the heavy-light neutrino mixing and light-
neutrino masses (mn l

) are not necessarily correlated through

the traditional seesaw relation (sL
n l)2}mn l

/mM . The (sL
n l)2
5653 © 1996 The American Physical Society
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5654 54A. ILAKOVAC
scales as@mD
† (mM

21)2mD# l l @17,19#, while light-neutrino
masses depend on the matrixmDmM

21mD
T . If the condition

mDmM
21mD

T50 is satisfied, tree-level light-neutrino mass
are equal zero, while (sL

n l)2 can assume large values. Th
light neutrinos receive nonzero values radiatively, but
reasonablemM values, their values are in agreement with t
experimental upper bounds@10#. Independence of the light
neutrino masses and the heavy-light neutrino mixings
plies that (sL

n l)2 may be treated as free phenomenologic
parameters, which may be constrained by low energy d
@19,20#. In this way, the following upper limits for the
heavy-light neutrino mixings have been found@20#:

~sL
ne!2,~sL

nm!2,0.015,

~sL
nt!2,0.050,

~sL
ne!2~sL

nm!2,1028. ~1.3!

More recently, a global analysis of all available electrowe
data accumulated at the CERN Large Electron Positron C
lider ~LEP! has yielded the more stringent limits@21#

~sL
ne!2,0.0071,

~sL
nm!2,0.0014,

~sL
nt!2,0.033 ~0.024 including LEP data!, ~1.4!

at the 90% confidence level~C.L.!. In this paper, the limits
obtained in Ref.@20# will be used because the results of th
analysis in Ref.@21# depend to certain extent on the C.L
considered in the global analysis and on some mod
dependent assumptions@12#. The discussion on possibl
theoretical dependence of the upper limits, such as thos
Eqs.~1.3! and ~1.4!, may be found in Ref.@13#.

The hadronic part of the amplitudes contains matrix e
ments of quark currents between vacuum and a hadro
state. Vector and axial-vector quark currents are identifi
with vector and pseudoscalar mesons through PCAC~partial
conservation of axial-vector current! @22# and vector meson
dominance@23–25# relations. The scalar quark current is e
pressed in terms of pseudoscalar mesons, identifying Q
and the chiral-model Lagrangian. Intermediate vector m
sons are described by the Breit-Wigner propagators w
momentum-independent width@26–28#. The vector-meson–
pseudoscalar vertices are described by a nongau
U(3)L3U(3)R /U(3)V chiral Lagrangian containing hidde
U(3)local symmetry@29#, through which the vector meson
are introduced. Both U(3)L3U(3)R /U(3)V-symmetric and
more realistic U(3)L3U(3)R /U(3)V-broken Lagrangians
@30# are used in the evaluation of the matrix elements. T
gauge couplings of mesons are introduced indirectly throu
the quark gauge couplings in the above-mentioned ma
elements of quark currents.

This paper is organized as follows. In Sec. II, the analy
cal expressions for branching ratios of decay proces
es
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t2→e1P1
2P2

2 and t2→e2P1
2P2

1/e2P1
0P2

0 are derived.
Technical details are relegated to the Appendices. Numerica
results are presented in Sec. III. Conclusions are given in
Sec. IV.

II. t2
˜ l 87P1P2

In the model containing heavy Majorana neutrinos, there
are two possible types of the semileptonict-lepton decays
into two pseudoscalar mesons~1! t2→ l 81P1

2P2
2 and ~2!

t2→ l 82P1
Q1P2

Q2, Q11Q250, whereP1 andP2 are pseudo-
scalar mesons, andQ1 andQ2 are their charges. Type~1!
violates both lepton flavor and lepton number, and requires
the exchange of Majorana neutrinos; henceforth these reac
tions will be referred to as theMajorana-type. Type ~2! vio-
lates lepton flavor and proceeds via the exchange of Dirac or
Majorana neutrinos; the appelationDirac-typewill be attrib-
uted to these decays. Feynman diagrams pertinent to the
Majorana-type and Dirac-type decays are given in Figs. 1~a!
and 1~b!, respectively. As mentioned in the Introduction,
only the decays with two-pseudoscalar final states, which are
currently under experimental investigation, are considered.
The decays with other two-meson final states could be cal-
culated within the model, too, but they are phase-space sup
pressed, they have not been experimentally searched for, an

FIG. 1. Feynman graphs pertinent to the semileptonic lepton-
number-violating decayst2→ l 81P1

2P2
2 ~a! and to the semilep-

tonic lepton-flavor-violating decayst2→ l 82P1P2 ~b!. The hatched
blobs represent sets of lowest-order diagrams contributing to three
point and four-point functions violating lepton flavor. These sets of
diagrams may be found in Refs.@12–16#. The double hatched blobs
represent interactions through which the final state pseudoscala
mesons are formed.
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they decay into the final states with more than two pse
oscalar mesons. The complete calculation of such decay
much more involved than for the decays with two pseud
calar mesons in the final state@27#.

To start with, we consider the Majorana-type deca
At the lowest, fourth order in the weak interaction couplin
constant, only tree diagrams contribute to the Majorana-t
decays. The chirality projection operators proje
ud-
s is
os-

ys.
g
ype
ct

out the mass terms of the numerators of the neutrin
propagators. For that reason, only massive neutrin
contribute to the t2→ l 81P1

2P2
2 amplitude. Since the

W-boson and heavy neutrino masses@10# are much
larger than the energy scale at which quarks hadronize
mesons, their propagators may be shrunk to points so as
form an effective amplitude depending only on one spac
time coordinate:
atura-
of
g the

bove

inte-

n

S~t2→ l 81P1P2!5
2 iaW

2 p2

2MW
4 (

a,b51

2

Vuda
* Vudb

* (
i51

nR Bl 8Ni
* BtNi

*

mNi

ūl 8~12g5!utE d4xe2 i ~p2p8!x

3^P1
2P2

2ud̄a~x!gm~12g5!u~x!d̄b~x!gm~12g5!u~x!u0&, ~2.1!

whereaW5aem/sin
2uW'0.0323 is the weak fine-structure constant,MW is theW-boson mass,Vuda

are CKM matrix elements,

mNi
are heavy neutrino masses, andu(x) andda(x) are quark fields foru, d, ands quarks (d15d andd25s). A more reliable

calculation would also include the QCD corrections of four quark operators in Eq.~2.1! ~they introduce new quark operators,
and mixing of all quark operators!, along with a renormalization-group analysis of their coefficients@31,32#. Since such
refinements will not alter our conclusions concerning the magnitude of the amplitude, they will be ignored.

The hadronic matrix element may be evaluated using a vacuum saturation approximation and PCAC. The vacuum s
tion approximation@32,33# allows one to split the matrix elements involving four-quark operators into matrix elements
two-quark operators. The two-quark operators forming axial-vector currents may be combined into the currents havin
same quark content as the produced pseudoscalar mesons,P, Am

P(x). The matrix elements of the currentsAm
P(x) are evaluated

using the PCAC relation@22#

^0uAm
P~x!uP8~pP8!&5dPP8A2 f P8pm

P8e2 ipP8x, ~2.2!

wheref P8 is the decay constant of pseudoscalar mesonP8. The Kronecker symboldPP8 assures that the matrix elements~2.2!
give the nonzero result only if the final-state quantum numbers match those of the axial-vector current. Following the a
procedure, one obtains the expression for the generic matrix element of thet2→ l 81P1

2P2
2 process:

T~t2→ l 81P1
2P2

2!52
i8aW

2 p2

3
Vuda
* Vudb

*
f P1f P2
MW

4 (
i51

nR

Bl 8Ni
* BtNi

*
1

mNi

~pP1pP2!ūl 8~12g5!ut . ~2.3!

The corresponding branching ratio reads

B~t2→ l 81P1
2P2

2!5S
aW
4 p~ f P1f P2!

2

36Gtm
3MW

10 uVuda
Vudb

u2U(
i51

nR

Bl 8NiBtNi

MW

mNi
U2E

~m11m2!2

~m2m8!2

dtv, ~2.4!

whereS is the statistical factor, equal to 1/2 if two equal pseudoscalars appear in the final state, andv is a phase-space integral
of the Mandelstam-variable dependent part of the square of the amplitude which is defined in Appendix C.

Now we turn to the Dirac-type decays. The scattering matrix element oft2→ l 82P1P2 receives contributions from
g-exchange graphs,Z-boson-exchange graphs, box graphs, Higgs-boson- (H-!exchange graphs andW1-boson–
W2-boson–exchange graphs:

S~t2→ l 82P1P2!5Sg~t2→ l 82P1P2!1SZ~t2→ l 82P1P2!1Sbox~t2→ l 82P1P2!

1SH~t2→ l 82P1P2!1SW2W1~t2→ l 82P1P2!. ~2.5!

The g, Z-boson, and Higgs-boson amplitudes factorize into leptonic vertex corrections and hadronic pieces. The loop
grations are straightforward. The hadronic parts of theg- andZ-boson amplitudes consist of the vacuum-to-vector-meson
matrix element of the local vector and axial-vector quark current~only vector quark currents have nonzero contributions, since
only vector mesons decay into the two-pseudoscalar-meson state!, a propagator of the vector meson and the vector-meso
P1-P2 vertex. The hadronic part of theH amplitude contains vacuum-to-P1-P2 matrix element of the local scalar quark
current. Exploiting translation invariance, the phases that describe the motion of the meson~s! formed in a vacuum-to-hadron
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5656 54A. ILAKOVAC
matrix element may be isolated. Therefore, only the space-time independent hadronic matrix elements remain. These
assure four-momentum conservation. Theg, Z-boson, and Higgs-boson amplitudes read

Sg~t2→ l 82P1P2!5~2p!4d~4!~p2p82p12p2!(
Ṽ0

Tg
m~t→ l 8Ṽ0!iSṼ0,mn~q!Tn~Ṽ0→P1P2!,

SZ~t2→ l 82P1P2!5~2p!4d~4!~p2p82p12p2!(
Ṽ0

TZ
m~t→ l 8Ṽ0!iSṼ0,mn~q!Tn~Ṽ0→P1P2!,

SH~t2→ l 82P1P2!5~2p!4d~4!~p2p82p12p2!TH~t→ l 8P1P2!, ~2.6!

wherep, p8, p1, andp2 are the four-momenta oft, l 8, P1, andP2, respectively,( Ṽ0 is a sum over vector mesons that appea
simultaneously inTg,Z

m andTn(Ṽ0→P1P2) amplitudes,SṼ0,mn(q) is a constant-width Breit-Wigner propagator@26–28# of the
vector mesonṼ0:

SṼ0,mn~q!5
2gmn1qmqn /MṼ0

2

q22M
Ṽ0
2

1 iM Ṽ0G Ṽ0
, ~2.7!

Tn(Ṽ0→P1P2) multiplied by theṼ polarization vector,«m
Ṽ0(q), gives aṼ02P12P2 vertex, which may be read from the

Lagrangians~A1! and~A11!, Tg,Z
m (t→ l 8Ṽ0) areg andZ parts of theT-matrix elements for thet→ l 8Ṽ0 reaction@12#, from

which a polarization vector of theṼ0 meson is removed:

Tg~t→ l 8Ṽ0!5Tg
m~t→ l 8Ṽ0!«m

Ṽ0~q!52 ieLg
m^Ṽ0u j m

em~0!u0&

[
iaW

2 sW
2

4MW
2 ūl 8FFg

t l 8S gm2
qmq”

q2 D ~12g5!2Gg
t l 8
ismnqn

q2
@m~11g5!1m8~12g5!#Gut

3 K Ṽ0U 23 ū~0!gmu~0!2
1

3
d̄~0!gmd~0!2

1

3
s̄~0!gms~0!U0L , ~2.8!

TZ~t→ l 8Ṽ0!5TZ
m~t→ l 8Ṽ0!«m

Ṽ0~q!5
2 igW
4cW

LZ
m^Ṽ0uVm

Z~0!2Am
Z~0!u0&

[
iaW

2

16MW
2 FZ

t l 8ūl 8g
m~12g5!utF ^Ṽ0uū~0!gmS 12g52

8

3
sW
2 Du~0!u0&

2^Ṽ0ud̄~0!gmS 12g52
4

3
sW
2 Dd~0!u0&2^Ṽ0us̄~0!gmS 12g52

4

3
sW
2 D s~0!u0&G , ~2.9!

andTH(t→ l 8P1P2) is the T-matrix element of thet→P1P2 reaction:

TH~t→ l 8P1P2!5
2 iaW

2

8MH
2MW

2 ~mūl 8~11g5!utFH
t l 81m8ūl 8~12g5!utGH

t l 8!

3^P1P2umuū~0!u~0!1mdd̄~0!d~0!1mss̄~0!s~0!u0&. ~2.10!

In Eqs. ~2.7!–~2.10! m, m8, MH , mu , md , andms are masses of thet, l 8, Higgs boson,u, d, ands quarks, respectively;
sW5sinuW is the sine of the Weinberg angle;Lg

m andLZ
m representt→ l 8g andt→ l 8Z loop functions, respectively, multiplied

by corresponding gauge-boson propagators;j m
em(0) is quark electromagnetic current; andVm

Z(0) andAm
Z(0) are vector and

axial-vector quark currents for a quark-Z-boson interaction. The loop form factorsFH
t l 8 andGH

t l 8 may be found in Appendix B

andFg
t l 8 andFZ

t l 8 in Eq. ~2.6! in Ref. @12#.
The box andW1-W2 diagrams are more involved as they contain bilocal hadron currents. In the case of the box dia

the bilocality problem can be overwhelmed since the twoW bosons in the loop assure the high virtualities of the loo
momenta. That allows one to approximate the loop-quark propagator with the free quark propagator, and to replace the
vector and axial-vector current operators with the local ones@13#. As in g andZ amplitudes, only the vector quark current
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operators contribute, giving rise to the vector mesons, which decay into the two-pseudoscalar-meson final state. In this
one arrives at the following expression for the boxS-matrix element:

Sbox~t2→ l 82P1P2!5~2p!4d~4!~p2p82p12p2!(
Ṽ0

Tbox
m ~ l→ l 8Ṽ0!iSṼ0,mn~q!Tn~Ṽ0→P1P2!, ~2.11!

whereTbox
m ( l→ l 8Ṽ0) is the box part of theT-matrix element for the processl→ l 8Ṽ0 @12#, from which the polarization vector

of the vector meson,Ṽ0, is removed:

Tbox~ l→ l 8Ṽ0!5Tbox
m ~ l→ l 8Ṽ0!«m

Ṽ0~q!

5Lbox,uu
m ^Ṽ0uVm

box,uu~0!2Am
box,uu~0!u0&2 (

da,b5d,s
Lbox,dadb

m ^Ṽ0uVm
box,dadb~0!2Am

box,dadb~0!u0&

5
iaW

2

16MW
2 ūl 8gm~12g5!utFFbox

t l 8uu^Ṽ0uū~0!gm~12g5!u~0!u0&

2 (
da,b5d,s

Fbox
t l 8dadb^Ṽ0ud̄a~0!gm~12g5!db~0!u0&G , ~2.12!

whereLbox,qq8 are box loop functions, andVm
box,qq8(0) andAm

box,qq8(0) are the corresponding vector and axial-vector quark

currents in at→ l 8q̄q8 amplitude. The loop form factorsFbox
t l 8dadb andFbox

t l 8uu are defined in Ref.@13#.
As in the t2→ l2P1

2P2
2 amplitude, theW bosons in theW1-W2-exchange diagram may be shrunk to points. So, an

effective amplitude depending on two space coordinates is formed. The chiral projection operators extract the momen
dependent parts of the numerators of the neutrino propagators, so that both heavy and light neutrinos contribute. The he
neutrino propagators could also be shrunk to a point, and, therefore, the corresponding amplitudes depend on one space
coordinate. By contrast, light-neutrino contibutions cannot be reduced from the bilocal to a local form. To enable the co
parison of contributions of heavy and light neutrinos, all contributions to the transition matrix element are written in the
bilocal form:

S~t2→ l 82P1P2!5
iaW

2 p2

2MW
4 (

da,b5d,s
Vuda
* Vudb(i51

nR

Bl 8NiBtNi
* E d4xd4y

d4l

~2p!4
ei ~ l2p!x1 i ~p82 l !yūl 8gnS łl 2 1

ł

mN
2 Dgm~12g5!ut

3^P1P2uū~y!gn~12g5!db~y!d̄a~x!gm~12g5!u~x!u0&. ~2.13!
As l 2<mt
2 and the lightest heavy-neutrino mass exceeds

GeV @10#, the local~heavy-neutrino! terms are supressed
least by factor 1024 relatively to the nonlocal~light-neutrino!
terms. Therefore, one can safely neglect them.

The amplitudes ~2.6!, ~2.11!, and ~2.13! comprise
three types of hadronic matrix elemen
^Ṽ0uq̄(0)gmq(0)u0&, ^P1P2umqq̄(0)q(0)u0&, and
^P1P2uū(x)gmda(x)d̄b(y)gnu(y)u0&.

The evaluation of thêṼ0uq̄(0)gmq(0)u0& matrix element
proceeds as follows. The two-quark operatorq̄(0)gmq(0) is
expressed in terms of vector currents,Vm , having the same
quark content as the produced vector mesons,Ṽ0. Exploiting
the vector-meson dominance relation@23#, correlating a
vector-meson fieldṼm(x) and vector currentVm , having the
same quark content asṼm(x),

Vm
Ṽ~x!5

m
Ṽ

2

A2g Ṽ

Ṽm~x!, ~2.14!
100
at

ts:

one arrives at the expression

^0uVm
Ṽ8~x!uṼ0~pṼ0!&5d Ṽ8Ṽ 0

m
Ṽ0
2

A2g Ṽ0
« Ṽ0m~pṼ0,l Ṽ0!e

2 ipṼ0x.

~2.15!

The Kronecker symbold Ṽ8Ṽ 0, assures that the matrix
elements give nonzero contributions only if the
vector-meson quantum numbers match those of the vector
current.

The ^P1P2u(q5u,d,smqq̄(0)q(0)u0& matrix elements may
be evaluated comparing the quark sector of the SM Lagrang-
ian, and the corresponding effective chiral Lagrangian, con-
tained in the first and second curly brackets of Eq.~A1!, one
obtains the expression for the scalar two-quark current in
terms of pseudoscalar fields@34#,
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TABLE I. Quark content of the pseudoscalar meson states and fields: The meson states listed in this
correspond to the tensor description of meson states, which is more appropriate for chiral model calculat
The statesup1& and K̄0& have opposite signs from that referred to in Ref.@13#.

uM & Quark content ofuM & Quark content ofM (x)

uK1& usc;bu
†ds

† suc;dsbu
uK0& dsc sdc

up1& udc duc

up0& 1

A2
(uuc2ddc)

1

A2
(uuc2ddc)

up2& duc udc

uK2& suc usc

uK̄0& sdc dsc

uh8& 1

A6
(uuc1ddc22ssc)

1

A6
(uuc1ddc22ssc)

uh1& 1

A6
(uuc1ddc1ssc)

1

A6
(uuc1ddc1ssc)

uh& cosuPuh8&2sinuPuh1& cosuPh8(x)2sinuPh1(x)
uh8& sinuPuh8&1cosuPuh1& sinuPh8(x)1cosuPh1(x)
q̄~x! iq~x! j52
1

4
f p
2 r @U~x!1U~x!†# i j , ~2.16!

whereU(x)5exp@2ip(x)/ f p#, p(x)5Tapa(x), pa(x) are
pseudoscalar meson fields,Ta5la/2, la are the Gell-Mann
matrices and
r5
2mp

2

md1mu
5

2mK0
2

md1ms
5

2mK1
2

mu1ms
. ~2.17!

Exploiting Eq.~2.16!, one can write theH2q̄2q part of the
Yukawa Lagrangian in terms of pseudoscalar fields
uged
hiral
from
LH q̄q52
gW
2MW

H~x! (
q5u,d,s

mqq̄~x!q~x!

52
gW
4MW

H~x!Fmp
2
„p2~x!p1~x!1p0~x!p0~x!…1mK1

2 K1~x!K2~x!1mK0
2 K0~x!K̄0~x!

1
2A2
3

~2mp
22mK1

2
2mK0

2
!h1~x!h8~x!1

1

3
~mK1

2
1mK0

2
1mp

2 !h1
2~x!1

1

3
~2mK1

2
12mK0

2
2mp

2 !h8
2~x!G ,

~2.18!

whereH(x) is the Higgs field andp2(x), p1(x), p0(x), etc., are pseudoscalar-meson fields. Replacing the fieldsh8(x) and
h1(x) by physical fieldsh(x) andh8(x) given in Table I, one obtains the set ofH-boson–pseudoscalar-meson couplings.

The evaluation of thêP1P2uū(x)gmda(x)d̄b(y)gnu(y)u0& matrix element is, in its full complexity, a highly nonpertuba-
tive problem due to the nonlocality of the four-quark operators. The one-loop pertubative QCD analysis of theW1W2 diagram
shows that the corresponding amplitude has strong IR divergencies, but no UV divergencies, even ifW propagators are shrunk
to points. That suggests the evaluation of the matrix element in the model which is valid at very low energies, the ga
U(3)L3U(3)R /U(3)V chiral model with pseudoscalar mesons coupled to the SM gauge bosons. The calculations in the c
model show that the contributions to the amplitude come only from the diagrams with pseudoscalar mesons emitted
different space-time points. In the quark picture that would correspond to splitting of the hadronic matrix element~2.13! into
two vacuum to pseudoscalar-meson matrix elements of the two quark operators:

^P1P2uū~x!gm~12g5!da~x!d̄b~y!gn~12g5!u~y!u0&'^P1uū~x!gmg5da~x!u0&^P2ud̄b~y!gng5u~y!u0&1~P1↔P2!

52 f P1f P2dP1P~uda
c!dP2P~dbu

c!e
ip1xeip2yp1mp2n1~P1↔P2!, ~2.19!
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where P(uda
c) and P(dbu

c) are pseudoscalar mesons having quantum numbers of the combinations of quarksuda
c and

dbu
c, respectively (qc is symbol for antiquark!. Both the chiral model approach and quark model approach, in which Eq.~2.19!

is assumed, give the same results. Although the obtained result is appealing, one must have in mind that chiral mod
for momentum transfers&1 GeV2. Therefore, it is worth comparing this result with results obtained by some other me
e.g., sum rules. In the sum rule approach, it is quite unlikely that one can split the matrix element as in Eq.~2.19!, and
consequently the quarks coming from the different space-time points are expected to form the~neutral! pseudoscalar mesons
also. That somewhat lessens the value of the approximation~2.19!. Unfortunately, the matrix element with two light pseudo
scalar mesons in the final state cannot be treated by usual sum rule techniques as in the case of processes with only
pseudoscalar meson in the final state, as, for instance, inD*→Dp decays@35#, because of complications of large distanc
strong interactions. The approximation~2.19! will be used here, because from phenomenology it is known that such
approximation can hardly fail the correct value of the amplitude by a factor larger than 5, and because chiral model cal
suggests that approximation.

Following the procedure outlined above, one obtains the expression for the genericT(t2→ l 82P1P2) matrix element:

T~t2→ l 82P1P2!5ūl 8gm~12g5!ut~AP1P2
t l 8 ~p12p2!

m1BP1P2
t l 8 qm!1ūl 8

ismaq
a

q2
@m~11g5!1m8~12g5!#utCP1P2

t l 8 ~p12p2!
m

1ūl 8~11g5!utDP1P2
t l 8 1ūl 8~12g5!utEP1P2

t l 8 1ūl 8p” 2~p”2p” 1!p” 1~12g5!utFP1P2
t l 8 . ~2.20!
The first two terms belong to theg, Z-boson, and box am-
plitude, the third and fourth to the Higgs-boson amplitud
and the last one to theW12W2 amplitude. The composite

form factorsAP1P2
t l 8 , BP1P2

t l 8 , CP1P2
t l 8 , DP1P2

t l 8 , EP1P2
t l 8 , andFP1P2

t l 8

read

AP1P2
t l 8 52(

V0
pBW
V0 ~q!CV0P1P2

i ~aV0
t l 81bV0

t l 8!,

BP1P2
t l 8 5(

V0
pBW
V0 ~q!CV0P1P2

i ~aV0
t l 81bV0

t l 8!
m1
22m2

2

MV0
2 ,

CP1P2
t l 8 5(

V0
pBW
V0 ~q!CV0P1P2

icV0
t l 8,

DP1P2
t l 8 52

iaW
2

16MW
2

MHP1P2
2

MH
2 mFH

t l 8 ,

EP1P2
t l 8 52

iaW
2

16MW
2

MH0P1P2

2

MH0
2 m8GH

t l 8 ,

FP1P2
t l 8 5 i

aW
2 p2

MW
4 Vuda

Vudb
* f P1f P2FW2W1

t l 8 , ~2.21!

where

pBW
V0 5

1

t2mV0
2

1 imV0GV0
~2.22!

is a denominator-part of Breit-Wigner propagator for a ve
tor mesonṼ0 ~2.7!. CV0P1P2

areV02P12P2 couplings de-
e,

c-

fined by the Lagrangian~A1!, aV0
t l 8, bV0

t l 8, andcV0
t l 8 are com-

posite form factors fort→ l 8V0 decays found in Ref.@13#

and listed in Appendix B; andFW2W1
t l 8 is the tree-level form

factor,

FW2W1
t l 8 5

1

~p2p1!
2(
Ni

Bl 8NiBtNi
* . ~2.23!

Here a few comments are in order.
~1! From the structure of the total amplitude~2.20!, one

can easily find which of the amplitudesTg , TZ , Tbox, TH ,
andTW2W1 give the dominant contribution. The amplitudes
Tg , TZ , and Tbox contain a common factor (iaW

2 /
16MW

2 )(grpp /gV). In place of that factor, in the amplitudes
TH andTW2W1 are factors (iaW

2 /16MW
2 )(MHP1P2

2 /MH
2 ) and

( iaW
2 p2/MW

2 )( f P1f P2 /MW
2 )Vuda

Vudb
* (Ni

Bl 8NiBtNi
* , respec-

tively. The amplitudesTZ andTH contain loop form factors
behaving as the square of the heavy neutrino mass,mN

2 , in
the large-mN limit, Tg and Tbox have lnmN asymptotics in
that limit, andTW2W1 is almost independent onmN . Ap-
proximating roughly all momenta of outer particles with
t-lepton mass, one obtains the approximate ratio of the mag-
nitudes of the amplitudes

Tg,Z,box:TH :TW2W1'
grpp

gr
FZ

t l 8 :
MHP1P2

2

MH
2 FH

t l 8:16p2
f P1f P2
MW

2

3Vuda
Vudb
* (

Ni
Bl 8NiBtNi

* . ~2.24!

For heavy-light neutrino mixings (sL
ne)250.01, (sL

nm)250,

and (sL
nt)250.05, FZ

t l 8 and FH
t l 8 assume values20.01 and
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0.01, respectively, formN5100 GeV, and values21.6 and
2.2, respectively, for maximal value ofmN allowed by the
pertubative unitarity relation @see Eq. ~3.1! below#,
mN53700 GeV. Putting these values into Eq.~2.24!, one
finds that theTW2W1 andTH amplitudes are six to four and
four orders of magnitude smaller than theTg,Z,box amplitude,
respectively. The numerical study of relativeTg,Z,box, TH ,
andTW2W1 contributions to thet2→ l 8P1P2 branching ra-
tios shows that theTg,Z,box amplitude participates even mor
than forseen by this rough estimate. Therefore, one
safely neglectH andW2W1 contributions in the expression
for the largest branching ratios. Since within approximati
~2.19! only TH amplitude participates to
t2→ l 82p0p0/ l 82hh/ l 82hh8 channels, it will be kept for
illustration of magnitudes of corresponding branching rati
in Fig. 2.

~2! As mentioned in the Introduction, the hadronic matr
elements are evaluated using the nongaug
U(3)L3U(3)R /U(3)V Lagrangian containing hidden
U(3)local local symmetries. The effective gauge-boson
meson couplings are introduced through the gauge-bos
quark couplings and PCAC~2.2! and vector-meson domi-
nance ~2.14! relations. The corresponding effectiv
Lagrangians for vector-boson–g and vector-boson–Z inter-
actions read

FIG. 2. Branching ratios~BR’s! vs heavy-neutrino mass
mN5mN1

5
1
3mN2

for the decayst2→e2p2p1 ~thick solid line!,

t2→e2K2K1 ~thick dashed line!, t2→e2K0K̄0 ~thick dot-dashed
line!, t2→e2p2K1/e2p1K2 ~1!, t2→e2p0K0/e2p0K̄0 ~2!,
t2→e2hK0/e2hK̄0 ~3!, t2→e2h8K0/e2h8K̄0 ~4!,
t2→e2p0p0 ~5!, t2→e2hh ~6!, t2→e2hh8 ~7!,
t2→e1p2p2 ~8!, t2→e1p2K2 ~9!, t2→e1K2K2 ~10!, as-
suming (sL

ne)250.01 and (sL
nt)250.05.
e
can
s
on

os

ix
ed

–
on–

e

LgV052eAmS mr
2

2gr
rm
01

mf
2

2A3gf

cVfm
01

mv
2

2A3gv

sVvm
0 D ,

LZV052
gW
4cW

ZmFmr
2

gr
c2Wrm

01
mf
2

gf
S cVc2WA3

1
sV

A6D fm

1
mv
2

gv
S sVc2WA3

2
cV

A6D vmG , ~2.25!

wheresV5sinuV andcV5cosuV . Theg, Z, andW2W1 am-
plitudes could be also evaluated using the gauged version of
the U(3)L3U(3)R /U(3)V chiral Lagrangian with hidden
U(3)local symmetry. Both approaches give the same results
for these amplitudes. That follows from the comparison of
the effective Lagrangians~2.25! and the corresponding terms
in the gauged chiral Lagrangian~A1!. Identifying

ag fp
25

mr
2

2gr
5

mf
2

2gf
5

mv
2

2gv
, ~2.26!

the Lagrangians~2.25! and the corresponding parts of the
Lagrangian~A1! become equal. This identification is justi-
fied numerically. The same type of identification for
W-boson–pseudoscalar-meson couplings is trivial, because
both approaches use the same hadronic parameters,
pseudoscalar-meson decay constants. The indirect way to
evaluate the hadronic part of the amplitudes was chosen be-
cause theTbox and TH amplitudes do not have their chiral
model counterparts. Moreover, this approach enables one to
use the experimental values for the meson masses and
branching ratios. In the chiral model, they are determined by
the symmetries of the model.

~3! The chiral nonlinear Lagrangian based on the
U(3)L3U(3)R /U(3)V symmetry ~without hidden symme-
tries! describes well the threshold processes@28,29# with
pseudoscalar mesons in the final state only, i.e., amplitudes
of vanishing pseudoscalar momenta. To comprise the domi-
nant two-pseudoscalar channels of the final state interactions
which swich on at higher energies, vector mesons are intro-
duced. One of the most common ways to include the effects
of the presence of vector mesons into the low energy chiral
model amplitudes is to multiply them with the Breit-Wigner
propagators normalized to unity at zero-momentum transfer.
The constant-width normalized Breit-Wigner propagator has
the following form @26–28#:

M
Ṽ

2
2 iM ṼG Ṽ

M
Ṽ

2
2t2 iM ṼG Ṽ

, ~2.27!

whereMṼ andG Ṽ are vector-meson mass and decay width,
respectively. Theg, Z, and box amplitudes obtained in the
formalism of this paper have almost the same structure,

Tg,Z,box5Lg,Z,box
m ^~P1P2!Ṽ0uVm

g,Z,box2Am
g,Z,boxu0&

3Kg,Z,box

M
Ṽ0
2

M
Ṽ0
2

2t2 iM Ṽ0G Ṽ0
, ~2.28!
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whereLg,Z,box
m are loop parts of thet2→ l 82P1P2 amplitude

defined in Eqs.~2.8!, ~2.9!, and ~2.12!; Kg,Z,box are factors
containing coupling constants (Kg52 ie, KZ52 igW/4cW
andKbox51); and^(P1P2) Ṽ0uVm

g,Z,box2Am
g,Z,boxu0& comprise

products of a vacuum-to-vector meson amplitudes of a qu
current divided by square of the vector meson mass, a
nominator of the vector-meson propagators, and a vect
meson–pseudoscalar-meson vertex. The factorMV

2 which
divides the vacuum-to-vector meson amplitude of the qua
current, is extracted from the composite form factors for th

t2→ l 82Ṽ0, aV0
t l 8, bV0

t l 8, and cV0
t l 8, and is assigned to the

vector-meson propagator. The low energy limit of the matr
elementŝ P1P2uVm

g,Z,box2Am
g,Z,boxu0& may be derived from

the kinetic part of the chiral part of the Lagrangian~A1!,
( fp

2 /4)Tr(]mU]mU†), identifying the quark vector currents
with the corresponding pseudoscalar-meson vector curre
which may be found in Appendix A. These low energy lim
amplitudes coincide with the corresponding amplitudes
Eq. ~2.28! for zero-momentum transfer if the replacement

MV
2→MV

22 iM VGV ~2.29!

is made, if

gr5gv5gf ~2.30!

and if the identification

1

2gr

ga

2
51 ~2.31!

is made. The equality of the factorsg Ṽ0 is a consequence of
the U(3)L3U(3)R /U(3)V symmetry, and relation~2.31! is
nothing but the famous Kawarabayashi-Suzuki-Riazudd
Fayazuddin relation@36#. Therefore, only the replacemen
~2.29! has no natural explanation. It will be included ‘‘by
hand,’’ by replacing

M
Ṽ

2

A2g Ṽ

→
M

Ṽ

2
2 iM ṼG Ṽ

A2g Ṽ

~2.32!

in the vector-meson-dominance relation~2.14!.
ark
de-
or-

rk
e
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nts
it
in

in-
t

~4! The Lagrangian~A1! has U(3)L3U(3)R /U(3)V sym-
metry. The breaking of that symmetry will be introduced in
the way of Bando, Kugo, and Yamawaki@30# by adding
extra terms in the Lagrangian@compare Eqs.~A1! and~A11!#
and by renormalizing the pseudoscalar fields. In that way, the
hidden U(3)local symmetry, which becomes dependent on
U(3)L3U(3)R symmetry through the gauge fixing, is also
broken. Since the Bandoet al. Lagrangian is not Hermitian,
the Lagrangian in Eq.~A11! is written as half of the sum of
their Lagrangian and its Hermitian conjugate. Assuming the
ideal mixing between SU~3!-octet and SU~3!-singlet vector
meson states, uV5arctan(1/A2), Bando, Kugo, and
Yamawaki obtained the following relations between pseudo-
scalar decay constants, vector-meson masses, and vecto
meson gauge coupling constants:

f p5
f K

A11CA

,

mr
25mv

25ag2f p
25

mK*
2

11CV
5

mf
2

~11CV!2
,

ggr

mr
2 5

3ggv

mv
2 52

3ggf

A2mf
2

5
1

g
, ~2.33!

whereCA andCV are breaking parameters appearing in the
Lagrangian~A11!, andggr , ggv , andggf are gauge-boson–
vector-meson coupling constants which may be read from
the Lagrangians~A1! and ~A11!. Replacing the expressions
for the gauge coupling constants from Eq.~2.33! with the
corresponding expressions in the Lagrangians~2.25! into the
third of Eqs.~2.33!, one obtains again Eq.~2.30!. Therefore,
if the ideal mixing between SU~3!-octet and SU~3!-singlet
vector mesons is assumed, the equality ofg Ṽ0’s is preserved
after the symmetry breaking. In this paper, the ideal mixing
condition is relaxed: the mixing angleuV is evaluated from
the experimental meson masses using the quadratic Gel
Mann–Okubo mass formula.

Keeping in mind the above comments, one can derive the
corresponding expression for the branching ratios from the
expression for the generict2→ l 82P1P2 amplitude:
B~t2→ l 82P1P2!5
1

256p3m3Gt
E

~m11m2!2

~m2m8!2

dtE
s1

2

s1
1

ds1^uT~t2→ l 82P1P2!u2&

5
1

64p3m3Gt
E

~m11m2!2

~m2m8!2

dtFauAP1P2
t l 8 u21b~AP1P2

t l 8 BP1P2
t l 8* 1H.c.!1guBP1P2

t l 8 u22d~AP1P2
t l 8 CP1P2

t l 8* 1H.c.!

2«uCP1P2
t l 8 u21zXAP1P2

t l 8 SDP1P2
t l 8* 1

m8

m
EP1P2

t l 8* D1H.c.C1hXBP1P2
t l 8 SDP1P2

t l 8* 1
m8

m
EP1P2

t l 8* D1H.c.C
1qXCP1P2

t l 8 SDP1P2
t l 8* 1

m8

m
EP1P2

t l 8* D1H.c.C1i~ uDP1P2
t l 8 u21uEP1P2

t l 8 u2!1k~DP1P2
t l 8 EP1P2

t l 8* 1H.c.!G , ~2.34!
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FIG. 3. Branching ratios vs new electroweak parameters of the model.~a! BR’s vs mN5mN1
5mN2

, assuming (sL
ne)250.01 and

(sL
nt)250.05. ~b! BR’s vs mN5mN1

5mN2
, assuming (sL

ne)250.01 and (sL
nt)250.02. ~c! BR’s vs (sL

nt)2, assumingmN54000 GeV and

(sL
ne)250.01. ~d! BR’s vs (sL

ne)2, assumingmN54000 GeV and (sL
nt)250.05.
o

where integration boundariess1

6 and partsa, b, g, d, «, z,
h, q, i, andk of the square of the amplitude depending
the momentum transfer variablet may be found in Appendix
C.

III. NUMERICAL RESULTS

In the numerical analysis, the extension of the SM w
two heavy neutrinos is assumed. The description of
model and the relevant formulas forB andC matrices may
be found in the Introduction. The additional parameters
the model are three heavy-light mixings,sL

n l , and two heavy-
neutrino masses,mN1

andmN2
. The upper limits~1.3! and

~1.4! experimentally constrain the mixingssL
n l , while the up-
n

ith
the

of

per bound on heavy neutrino masses,

mN1
2 <

2MW
2

aW

11r21/2

r1/2 F(
i

~sL
n i !2G21

, r>1, ~3.1!

may be obtained from the perturbative unitarity relations
@12,15,37#. The experimental upper bound limits~1.3! sug-
gest that eithersL

ne or sL
nm is approximately equal zero. Here

will be assumed that sL
nm'0, and, therefore, only

t2→e7P1P2 decays are considered. The results obtained
for sL

ne'0 case, that is fort2→m7P1P2 decays, almost

coincide with correspondingsL
nm'0 results, and it is super-
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FIG. 4. Branching ratios vs
the ratio mN2

/mN1
for the de-

cays of Fig. 3, assuming
mN1

5mN2
54 TeV, (sL

ne)2

50.01, and (sL
nt)250.05.
fluous to discuss them separately. Thet2→e7P1P2 decays
depend on new parameters of the model,sL

ne , sL
nt , andmNi

,
as well as on a whole set of quark-level parameters and m
son observables: CKM mixing angles, quark masses, mix
angle between octet and singlet vector-meson states, me
masses and decay widths, pseudoscalar-meson decay
stants, constants describing the coupling strength of vec
mesons to the gauge bosons and vector-meso
pseudoscalar-meson coupling constants. In calculations,
average of the experimental upper and lower values
CKM matrix elements are used, and the quark masses

mu50.005 GeV, md50.010 GeV, ms50.199 GeV,

mc51.35 GeV, mb54.3 GeV, mt5176 GeV,
~3.2!

cited in Refs.@38,39#. The masses off all quarks are kept i
evaluation of matrix elements, sincet and c quarks give
comparable contributions to some amplitudes. The mixi
angle between singlet and octet vector-meson states is
e-
ing
son
con-
tor
n–
the
for

n

ng
not

taken to be equal to the ideal-mixing value,
uV5arctan(1/A2), but is either determined from the qua-
dratic Gell-Mann–Okubo mass formula, or treated as a free
parameter. For pseudoscalar decay constantsfp6 and f K6,
appearing only in theW1W2 amplitudes oft2→e1P1

2P2
2

decays andt2→e1P1
2P2

2 amplitudes, the experimental val-
ues are used@38#,

fp6592.4 MeV, f K65113 MeV. ~3.3!

The constantsg Ṽ , describing the coupling strengths of vec-
tor mesons to the gauge bosons, are either extracted from
Ṽ→e1e2 decay rates,

gr052.519, gv52.841, gf53.037, ~3.4!

or estimated using SU~3!-octet symmetry:gK0*5gr0. Notice
that the equality of g Ṽ0’s predicted by the
the U(3)L3U(3)R /U(3)V symmetric chiral model and by
the U(3)L3U(3)R /U(3)V broken chiral model is reasonably
satisfied. The decay rates of vector mesons, involved through
the vector-meson propagators, are taken to be equal
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FIG. 5. Branching ratios vsmN5mN1
5mN2

for the decays of Fig. 3, assuming (sL
ne)250.01 and (sL

nt)250.05. The figure illustrates the
dependence of BR’s on few ingredients of hadronic part of the amplitudes.~a! The influence of the vector meson propagators on BR’s.~b!
The influence of the U(3)L3U(3)R /U(3)V breaking on BR’s.~c!: BR’s for uV530°. Thin lines represent the reference graphs and coincide
with thick lines in Fig. 3~a!. Thick lines show BR’s in a situation when one of the ingredients of the hadronic part of the amplitudes is
changed.
p

to their experimental total-decay-rate values@38#, and are not
treated as momentum dependent quantities@27#. The r-p-
p coupling is derived from ther→2p decay width, while
the other vector-meson–pseudoscalar-meson couplings
fixed by one of the chiral models described in Appendix A.
is visible from the above that, whenever possible, the para
eters were extracted from experiment and model-depend
relations determining them were relaxed.

In this paper, 17 t2→e7P1P2 decays are studied nu
merically. For orientation of the reader, decay widths of
17 reactions are plotted in Fig. 2 as functions ofmN1

5
1
3mN2

for upper bound values of heavy-light neutrino mixing

~1.3!. Concerning themN1
dependence, the decays can
are
It
m-
ent

-
all

s

be

split into four groups:t2→e2p1p2/e2K1K2/e2K0K̄0,
t2 → e2p1K2 / e2p2K1 / e2p0K0 /e2p0 K̄0/e2K0h/
e2K̄0h/e2K0h8/e2K̄0h8, t2→e2p0p0/e2hh/e2hh8,
andt2→e1p2p2/e1p2K2/e1K2K2. Only the decays of
the first group are interesting from the experimental point of
view and receive contributions from all fivet2→e2P1P2

amplitudes@see Eq.~2.5!#. The others are suppressed by at
least 8 orders of magnitude relative to the first group of de-
cays for various reasons. The members of the second grou
are Cabbibo suppressed, and only box andW1W2 diagrams
contribute to them. The decays of the third group originate
from the H amplitude and are suppressed by the factor
(MHP1P2

2 /MH
2 )2 from Eq. ~2.24!. The last group belongs to
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the Majorana-type decays, receives contributions only fr
tree-level amplitudes and is suppressed by two facto
by the factor ;(TW2W1 /Tg,Z,box)

2 from Eq. ~2.5!,
and by the additional factor;(mt

2/mN1
2 )2 coming from the

heavy-neutrino propagators. In Fig. 2, the choi
mN1

5mN2
/3 was made since Majorana-type decays vanis

the masses of heavy neutrinos are equal.
In the following, only the first group of decays is dis

cussed. The results are given in Figs. 3–6. Figures 3 an
show the dependence of the branching rat
B(t2→e2p1p2/e2K1K2/e2K0K̄0) on new weak inter-
action parameters of the model,sL

n i andmNi
. Figures 5 and 6

illustrate the dependence of these branching ratios on m
assumptions for hadronic part of the amplitude and on so
strong interaction parameters.

Figures 3~a! and 3~b! illustrate mN5mN1
5mN2

depen-

dence of the branching ratios for (sL
ne)250.01 and two dif-

ferent values of (sL
nt)2. The maximum values for branchin

ratios are obtained for maximalmN , (sL
ne)2, and (sL

nt)2 val-
ues permitted by Eqs.~3.1! and ~1.3!:

B~t2→e2p1p2!&0.7431026~0.3531026!,

B~t2→e2K1K2!&0.4231026~0.2031026!,

B~t2→e2K0K̄0!&0.2631026~0.1231026!. ~3.5!

FIG. 6. Partial decay rates divided by thet decay width as
functions of t5(p2p8)2 assuming mN1

5mN2
53700 GeV,

(sL
ne)250.01, and (sL

nt)250.05.
om
rs:

ce
h if

-
d 4
ios

odel
me

g

The expressions in the parentheses are obtained for the upper
bound (sL

ne)2 and (sL
nt)2 values referred in Eq.~1.4!. The

present experimental bound exists only for one of these de-
cays

B~t2→e2p1p2!,4.431026, ~3.6!

because the maint2→Ṽ0 contribution mode to the
t2→e2K1K2/e2K0K̄0 decays,t2→e2f, has not been
experimentaly searched for yet. In Figs. 3~a! and 3~b!, the
branching fractionsB(t2→e2p1p2/e2K1K2/e2K0K̄0)
are shown. The behavior of the branching ratio terms qua-
dratic and quartic insL

n i expansion have similar behavior as
the corresponding terms int→e2M0 decays@12,13#. For
mN values below 200 GeV, quadratic (sL

n i)2 terms, that have
ln(mM

2 /mW
2 ) large-mN behavior, prevail, while for largermN

quartic terms havingmN
2 large-mN asymptotics dominate. As

(sL
nt)2 decreases, the branching fractions also decrease, but at

the same time the pertubative unitarity upper bound onmN
increases, and, therefore, branching ratios increase in the
largermN interval. These two opposite effects lead to the
small difference of the largest values for branching fractions
in Eq. ~3.5!. The nondecoupling behavior of the branching
ratios displayed in Figs. 3~a! and 3~b! is a consequence of the
implicit assumption that the mixingssL

n i may be kept con-
stant in the wholemN interval of interest. As mentioned in
the Introduction,sL

n i}mD /mM}mD /mNi
, and, therefore, the

constancy ofsL
n i implies that for largemNi

values, the Dirac

components,mD , are large also. Since the Dirac-mass values
are bounded by the typical SM SU(2)3U(1) breaking scale,
v;250 GeV ~more precisely, pertubative unitarity upper
bound on the Dirac mass ismD<1 TeV @37#!, this condition
cannot be satisfied in themN→` limit, leading to vanishing
effects of heavy neutrinos@40#. Nevertheless, for 0.1 TeV
<mN<10 TeV it can be fullfilled. Nondecoupling effects of
the heavy neutrinos were first studied in Ref.@14#, and were
also extensively studied in Refs.@12,13,15,16#.

Figures 3~c! and 3~d! present the dependence of the
branching ratios on (sL

nt)2 and (sL
ne)2, respectively, for

mN54000 GeV. The branching ratios are almost quadratic
functions of (sL

nt)2, and almost linear functions of (sL
ne)2.

Such dependence is expected from the large-mN behavior of
form factors@12# ~see also Appendix B!.

Figure 4 illustrates Majorana-neutrino quantum effects. It
displays the dependence of branching fractions on the ratio
mN2

/mN1
for fixed valuesmN1

51 TeV andmN1
50.5 TeV.

The maximalB(t2→e2p1p2/e2K1K2/e2K0K̄0) values
are obtained formN2

/mN1
;3. These effects are also a con-

sequence of largesL
n i mixings~large Dirac components of the

neutrino mass matrix!, since they enter through the loop
functions depending on two heavy-neutrino masses, which
can be found only in quartic terms in thesL

n i expansion. A
similar behavior has been found fort2→ l 82M0 @13# and
t2→ l 82l 1

2l 2
1 @12# decays.

Figures 5~a!–5~c! show the influence of the main ingredi-
ents of the hadronic part of the amplitudes discussed in the
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comments of Sec. II on the branching ratios. Thick lines
Figs. 5~a!–5~c! correspond to the situation when one of th
theoretical assumptions is changed. Thin lines serve as
erence results and they coincide with the comple
calculation graphs shown in Fig. 3~a!.

Figure 5~a! shows the dependence of the branching rat
on vector-meson resonances. When the vector-meson pr
gators are replaced by their zero-momentum-transfer val
that is when the normalized vector-meson propagators~2.27!
are replaced by 1, one obtains the chiral-limit values for
branching ratios plotted in Fig. 5~a!, which are considerably
smaller. TheB(t2→e2p1p2/e2K2K1) branching ratios
decrease by factors;5 and;20, respectively. The decreas
of the t2→e2K2K1 branching ratio is more prominent
because it receives a main contribution from the narrow
f resonance, while toB(t2→e2p1p2) only the r reso-
nance contributes. Thet2→e2K0K̄0 branching ratio be-
comes almost equal to zero because its amplitude is pro

tional to the expressionFbox
t l 8dd2Fbox

t l 8sswhich is almost equal
to zero.

In Fig. 5~b!, the U(3)3U(3)R /U(3)V breaking effects
are emphasized by comparing the branching ratios obta
in the U(3)3U(3)R /U(3)V symmetric chiral model with
reference results which include U(3)3U(3)R /U(3)V sym-
metry breakings. The symmetry breaking does not influe
B(t2→e2p2p1), butB(t2→e2K2K1/e2K0K̄0) are en-
larged by a factor;1.5.

The reference results include theuV value derived from
the Gell-Mann–Okubo quadratic mass formula,uV539.1°.
In Fig. 5~c!, these results are compared with branching rat
evaluated foruV530°. As uV is known to be close to the
ideal mixing value arctan(1/A2), the weakuV dependence
displayed in Fig. 5~c! implies thatuV variation cannot influ-
ence the branching ratios strongly.

The influence of the replacement~2.29! induces so small
changes of the branching ratios that they cannot be obse
in a figure. For that reason these results have not been p
ted.

Figure 6 gives the dependence of the partial decay ra
on the momentum transfer variable,t5(p2p8)2. The
t2→e2p2p1 decay rate receives the contribution from th
broadr0 resonance only. Thet2→e2K2K1/e2K0K̄0 de-
cays receive contributions from all three flavor-neutral re
nances, but for the kinematical reasons only a very narr
f resonance can be noticed in the spectra.

IV. CONCLUSIONS

This paper completes the analysis of the experiment
investigated neutrinolesst-lepton decays within heavy
Majorana or Dirac-neutrino extensions of the SM, started
the previous publications@12,13#. For the experimentally
most promising decays, t2→e2p1K2/m2p2K1/
m1p2K2, the calculated branching ratios were found to
much smaller than the current experimental upper boun
Nevertheless, the 3 of 17 explored decay
t2→e2p1p2/e2K1K2/e2K0K̄0, were found to have
branching fractions of the order of 1026, and the first of them
the branching fraction close to the current experimental s
in
e
ref-
te-

ios
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ined

nce
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ds.
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en-

sitivity. The other two decays have not been measured yet
because the reactiont2→e2f, giving the main contribution
to these decays, has not been experimentally investigate
yet.

The main feature of the leptonic sector of the model used
here is largeness of the heavy-light neutrino mixingssL

n i .

From it the dominance of the quarticsL
n i terms and themNi

2

behavior oft2→e2p1p2/e2K1K2/e2K0K̄0 in the large-
mN limit follows, giving rise to the enhancement of the
branching ratios by the factor 40 relative to the results ob-
tained by the analysis in which the respective terms are omit
ted. ThesL

n i behavior and themN2
/mN1

dependence of the

branching ratios are also consequences of largesL
n i mixings.

Particularly, themN2
/mN1

dependence leads to the maxima

of branching ratios formN2
/mN1

;3, the same as in

t2→ l 82l 1
2l 2

1 @12# andt2→ l 82M0 @13# decays.
Several ingredients of the hadronic part of the

t2→ l 82P1P2 amplitudes, that influence the magnitude of
the corresponding branching ratios, were discussed. Th
most prominent contribution comes from the vector-meson
resonances, giving rise to enhancemens of
B(t2→e2p1p2/e2K1K2) by factors;5 and;20 and
making B(t2→e2K0K̄0) different from its chiral limit
value, zero, and approximately equal to branching values o
the other two decays. The narrower resonances lead to large
enhancements. The U(3)L3U(3)R /U(3)V breaking of the
chiral symmetry induce smaller changes of the branching
ratios, and they influence only thet2→e2K1K2/e2K0K̄0

branching fractions. All other modifications of or changes in
the hadronic part of thet2→ l 87P1P2 amplitudes discussed
here have negligible influence on the branching ratios.
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APPENDIX A: STRONG INTERACTION LAGRANGIANS

The gauged chiral U(3)L3U(3)R /U(3)V Lagrangian ex-
tended by hidden U(3)local symmetry and the mass term for
pseudoscalar mesons reads
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L5LA1aLV1Lmass1Lkin

52
1

4
f p
2Tr~DmjLjL

†2DmjRjR
† !22

a

4
f p
2Tr~DmjLjL

†1DmjRjR
† !21Lmass1Lkin

5H f p
2

4
Tr~]mU]mU†!J 1H f p

2

4
rTr„m~U1U†!…J 1H 2e~ag fp

2 !S rm
01

cV

A3
fm1

sV

A3
vmDAm

2e~ag fp
2 !X122sW

2

2sWcW
rm
01S cVA3

122sW
2

2sWcW
1

sV

A6
1

2sWcW
D fm1S sVA3

122sW
2

2sWcW
2

cV

A6
1

2sWcW
D vmCZmJ

1
2 iga

4
$r0,m~2p1 ]Jmp21K1 ]JmK

22K0]JmK̄
0!1A3sVvm~K1 ]JmK

21K0]JmK̄
0!

1A3cVfm~K1 ]JmK
21K0]JmK̄

0!1K0* ,m~2A2p1 ]JmK
21p0]JmK̄

01A3cPK̄0]Jmh1A3sPK̄0]Jmh8!

1K̄0* ,m~A2p2 ]JmK
12p0]JmK

02A3cPK0]Jmh2A3sPK0]Jmh8!%1•••, ~A1!
whereLkin is the kinetic Lagrangian of gauge fields,f p is the
pseudoscalar decay constant,a is a free parameter equal t
2 if the vector-meson dominance is satisfied,g is the cou-
pling of ~hidden symmetry induced! vector mesonsV, to the
chiral fieldsjL,R , cW5cosuW,

DmjL~x!5@]m2 iVm~x!#jL~x!1 i jL~x!Lm~x!

~L↔R,Lm↔Rm!, ~A2!

jL,R~x!5eis~x!/ fpe7 ip~x!/ fp, s~x!50, ~A3!

s(x)50 being a special~unitary! gauge choice.Lm(x) and
Rm(x) are combinations of gauge fields:

Lm~x!5eQ„Am~x!2tWZm~x!…

1
e

sWcW
TzZm~x!1

e

A2sW
Wm ,

Rm~x!5eQ„Am~x!2tWZm~x!…, ~A4!

where

Q5
1

3 S 2 0 0

0 21 0

0 0 21
D , Tz5

1

2 S 1 0 0

0 21 0

0 0 21
D ,

~A5!

are quark charge and isospin matrices,

Wm~x!5S 0 Wm
1~x!cc Wm

1~x!sc

Wm
2~x!cc 0 0

Wm
2~x!sc 0 0

D , ~A6!
o
cc andsc are the cosine and sine of the Cabbibo angle, re-
spectively.Am(x), Zm(x), andWm

6(x) are photon,Z-boson,
andWm

6-boson fields. The dots in Eq.~A1! represent the
remaining terms in the gauged chiral U(3)L3
U(3)R /U(3)V Lagrangian containing hidden
U(3)local symmetry, not interesting for the topics discussed
in this paper. The first curly bracket contains a minimal non-
gauged chiral model Lagrangian. Using the Gell-Mann–
Lévy procedure@41#, the pseudoscalar-meson vector currents
may be derived from that Lagrangian:

Vm
a ~x!522Tr$Ta@p~x!,]mp~x!#%, ~A7!

with p(x) andTa defined below Eq.~2.16!. For instance, the
vector current having quantum numbers ofr meson reads

1

A2
Vm
35

1

A2
p1 ]Jmp21

1

2A2
K1 ]JmK

22
1

2A2
K0]JmK̄

0.

~A8!

Pseudoscalar mass terms may be found in the second curly
bracket. Them is a mass matrix ofu, d, ands quarks, and
r is defined in Eq.~2.17!. Terms in the third curly bracket
represent photon–vector-boson andZ-boson–vector-boson
interactions. These interactions define the corresponding
gauge-boson–vector-meson coupling strengths~for instance,
photon–r-meson couping is equal to2eag fp

2 ). The fourth
curly bracket comprises vector-meson–two-pseudoscalar-
meson interactions and defines the corresponding couplings.

The breaking of the U(3)L3U(3)R /U(3)V symmetry is
introduced in the way of Bando, Kugo, and Yamawaki@30#.
In addition to the terms containing only thejL or jR fields,
they added the additional mixing terms, combined with the
matrix-valued parameters,
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«A,V5S 0 0

CA,V

D ~A9!

defining the magnitude of the symmetry breaking. These ad-
ditional terms change the kinetic part of the pseudoscalar-

field Lagrangian. To restore the original form of kinetic
terms pseudoscalar-meson fields have to be renormalized

p~x!→p r~x![lA
1/2p~x!lA

1/2, ~A10!

where lA,V511«A,V . Following the described procedure,
one obtains the expression
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wheregA,V5CA,V11 andp, h, . . . arerenormalized pseu-
doscalar fields~the superscriptr is omitted!. In the above
expression, only the gauge-boson–vector-meson~first curly
bracket! and vector-meson–two-pseudoscalar-meson~second
curly bracket! interactions are kept.

APPENDIX B: FORM FACTORS AND LOOP FUNCTIONS

The composite form factors fort→ l 8V0 decays,aM0,
bM0, and,cM0, appearing in the first three Equations~2.21!,
may be decomposed into the composite loop form facto

Fg
t l 8 , Gg

t l 8 , FZ
t l 8 , Fbox

t l 8dadb, andFbox
t l 8uu, in the following way:

aV0
t l 85

iaW
2

16MW
2

mV0
2

gV0
@aV0

Z FZ
t l 81aV0

box,uuFbox
t l 8uu1aV0

box,ddFbox
t l 8dd

1aV0
box,ssFbox

t l 8ss1aV0
box,dsFbox
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box,sdFbox

t l 8sd#,
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g Fg
t l 8 ,

cV0
t l 85

iaW
2

16MW
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mV0
2

gV0
gV0

g Gg
t l 8 . ~B1!

The factorsaV0 bV0, andgV0, containing information on the
quark content of a vector mesonV0 ~see Table I!, and in part
information on quark-g and quark-Z0 couplings, may be
found in Table II.

The loop form factorsFg
t l 8 , Gg

t l 8 , FZ
t l 8 , Fbox

t l 8dadb , and

Fbox
t l 8uu , andFH

t l 8 andGH
t l 8 contain the leptonic part ofTg ,

TZ , Tbox, andTH amplitudes, and may be further decom
posed into elementary loop functionsFg , Gg , FZ , GZ ,
HZ , Fbox, Hbox, FH , GH , andHH . The loop form factors

Fg
t l 8 , Gg

t l 8 , FZ
t l 8 , Fbox

t l 8dadb , andFbox
t l 8uu, together with the el-

ementary loop functionsFg , Gg , FZ , GZ , HZ , Fbox,
rs

-

Hbox may be found in Refs.@12,13#. The composite loop

form factorGH
t l 8 and the loop functionsFH andGH were

calculated for the case of degenerate heavy neutrino masses
in Ref. @14#. Here the expressions for the composite loop

form factorsFH
t l 8 andGH

t l 8 are listed,
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(lX5mX
2/MW

2 ) together with the loop form factorsFH ,
GH , andHH contained in them:
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For the reader’s convenience,FH , GH , andHH are evaluated for some special values of arguments:
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, GH~1,1!5GH~0,0!50, GH~0,1!52

3

4
, GH~1,0!5

1

4
,

HH~x,x!5
25x14x21x32~10x226x312x4!lnx

4~12x!3
, HH~x,1!5

x3/2 @728x1x21~314x2x2!lnx#

2~12x!3
,

HH~1,x!5
x1/2 @2517x211x219x32~8x22x216x3!lnx#

8~12x!3
, HH~0,x!5HH~x,0!5HH~1,1!50. ~B4!

If sL
n i are kept constant, all composite loop form factors are increasing functions of the heavy-neutrino masses. The asym

behavior of the form factorsFg
t l 8, Gg

t l 8, andFZ
t l 8, in the limit l1@1 andr5l2 /l1>1, are listed in Ref.@12#. Here we list the

form factorsFH
t l 8 andGH

t l 8 in the same limit:

FH
t l 8 ,GH

t l 8→sL
ntsL

n l 8S 581
lH

4
lnl11

lH

4

lnr

11r1/2D1sL
ntsL

n l 8(
l51

nG

~sL
n l !2

3rl1@414r1/21~12r1/2!lnr#

4~11r1/2!3
. ~B5!

TABLE II. Coefficients defining composite form factors fort→ l 8V̄0 decays: In addition to the constants listed in this table, there are two
more constants different from zero:aK0*

box,ds
51/A2 anda

K̄0*
box,ds

51/A2.

V0 aV0
Z aV0

box,uu aV0
box,dd aV0

box,ss bV0
g gV0

g

r0 c2W
1
2

1
2 0 2sW

2 22sW
2

v sVc2W
A3

2
cV
A6

sV

2A3
1

cV
A6

2
sV

2A3
2

cV
A6

sV
A3

2
cV
A6

2

A3
sW
2 sV 2

2

A3
sW
2 sV

f cVc2W
A3

1
sV
A6

cV

2A3
2

sV
A6

2
cV

2A3
1

sV
A6

cV
A3

1
sV
A6

2

A3
sW
2 cV 2

2

A3
sW
2 cV
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APPENDIX C: PHASE-SPACE FUNCTIONS

The momentum dependent part of the absolute squares of thet2→ l 87P1P2 amplitudes may be expressed in terms of the
Mandelstam variablest5(p2p8)2 ands15(p81p1)

25(p2p2)
2. Thet2→ l 87P1P2 decay rates contain the integrals of the

corresponding absolute squares of the amplitudes overs1 and t variables:

G~t2→ l 87P1P2!5
1

256p3m3E
~m11m2!2

~m2m8!2

dtE
s1

2

s1
1

ds1^uT~t2→ l 87P1P2!u2&, ~C1!

where^uT(t2→ l 87P1P2)u2& is the square of the amplitude averaged over initial and summed over final lepton spins.
boundarys1 values,s1

6(t), read

s1
6~ t !5m21m2

21
B~ t !

A~ t !
6

AB~ t !224A~ t !C~ t !

A~ t !
, ~C2!

where

A~ t !54t, B~ t !522~m22m821t !~ t1m2
22m1

2!, C~ t !5m2~ t1m2
22m1

2!21m2
2l~m2,m82,t !, ~C3!

and l(x,y,z)5x21y21z222xy22xz22yz. Since the momentum dependent parts of the squared amplitude in Eq.~C1!
contain only powers of thes1 variable,s1 integration is easily performed resulting with expressions which are denoted
a, b, g, d, «, z, h, q, i, k, andv:

a52S1
21S1

1@2t22~m21m821m1
21m2

2!#1S1
0F2

t

2
~m21m82!1

1

2
~m21m82!212m1

2m2
2G ,

b5S1
1@m22m82#1S1

0F t2 ~m22m82!2
1

2
~m42m84!2~m2m1

22m82m2
2!G ,

g5S1
0F2

t

2
~m21m82!1

1

2
~m22m82!2G ,

d5S1
1F1t ~m22m82!~m1

22m2
2!G1S1

0F2
t

2
~m21m82!1

1

2
~m22m82!~m1

22m2
2!1

1

2
~m22m82!21~m1

21m2
2!~m21m82!

1
1

t S 2
1

2
~m42m84!~m1

22m2
2!2~m2m1

22m82m2
2!~m1

22m2
2!2~m1

21m2
2!~m22m82!2D G ,

«5S1
2F2t ~m21m82!G1S1

1F2~m21m82!2
2

t
~~m21m82!21~m21m82!~m1

21m2
2!!2

2

t2
~m42m84!~m1

22m2
2!G

1S1
0F t2 ~m21m82!2

1

2
~m22m82!22~m21m82!~m1

21m2
2!1

1

t S 2m2m82~m21m82!24m2m82~m1
21m2

2!

2~m42m84!~m1
22m2

2!1
1

2
~m21m82!~m1

21m2
2!2D1

1

t2 S 2~m42m84!~m2m1
22m82m2

2!

1~m42m84!~m1
42m2

4!1S 12m413m2m821
1

2
m84D ~m1

22m2
2!2D G

z5mSS111S1
0F t22

1

2
~m21m82!2m1

2G D ,
h5mS1

0F2
t

2
1
m22m82

2 G ,
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q5mSS11F1t ~m22m82!G1S1
0F2

1

2t
~m22m82!~m21m821m1

21m2
2!1

1

2
~m22m821m2

22m1
2!G D ,

i5S1
0F12 ~m21m822t !G ,

k5mm8S1
0 ,

v5S1
0F12 ~ t2m1

22m2
2!2~m21m822t !G , ~C4!

where

S1
n5E

s1
2

~ t !

s1
1

~ t !
ds1s1

n . ~C5!

The definitions of other quantities in Eqs.~C1!–~C3! may be found in the previous text. Thet integration of expression~C1!
has been performed numerically.
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