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pNs term, s̄s in the nucleon, and the scalar form factor: A lattice study
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We report on a lattice QCD calculation of thepNs term, the scalar form factor, and̂Nus̄suN&. The
disconnected insertion part ofspN is found to be 1.860.1 times larger than the connected insertion contribu-
tion. The q2 dependence ofspN(q

2) is about the same asGE(q
2) of the proton so that

spN(2mp
2 )2spN(0)56.660.6 MeV. The ratioy5^Nus̄suN&/^Nuūu1d̄duN&50.3660.03. Both results favor

aspN;53 MeV, slightly larger than our direct calculation ofspN549.762.6 MeV. We also computeFs and
Ds and find that the agreement with those from the octet baryon mass splittings crucially depends on th
inclusion of the large disconnected insertion. Finally, we give our result for theKNs term.
@S0556-2821~96!04521-3#

PACS number~s!: 12.38.Gc, 13.75.Gx, 13.75.Jz, 14.20.Dh
Like the pion mass in the meson sector, thepNs term is
a measure of the explicit chiral symmetry breaking in th
baryon sector. It is considered a fundamental quantity whi
pertains to a wide range of issues in low-energy hadron ph
ics, such as quark and baryon masses, strangeness conte
the nucleon, pattern of SU~3! breaking,pN andKN scatter-
ings, kaon condensate in dense matter, trace anomaly,
decoupling of heavy quarks. Defined as the double comm
tator of the isovector axial charge with the Hamiltonian de
sity taken between the nucleon states, i.e.,

spN5
1

3 (
a51,3

^Nu†Qa
5 ,@Qa

5 ,H~0!#‡uN& ~1!

which appears in the off-shellpN scattering amplitude@1#, it
has in QCD the expression

spN5m̂^Nuūu1d̄duN&, ~2!

wherem̂5(mu1md)/2.
It is shown@2# that at lowest order inmp ~i.e.,mp

2 ), it is
equal to the unphysical, but on shell, isospin eve
pN-scattering amplitude at the Cheng-Dashen poin
SpN5 f p

2 T̄1(s5mN
2 ,t5q252mp

2 ). Thus, SpN can be ex-
tracted frompN-scattering experiment via fixed-t dispersion
relation for instance@2#. It is further shown@3# that the next
higher order term which is nonanalytic in quark mass~i.e.,
proportional tom̂3/2 or mp

3 ) drops out ifSpN is identified
with spN(2mp

2 ) @3# which is only a function ofq2. This
shows that the difference DR in the relation
SpN5spN(2mp

2 )1DR is of the ordermp
4 /mN

4 and has been
shown to be indeed negligible (;0.35 MeV! in a chiral
perturbation calculation@3,4#.

Various estimates ofSpN have ranged from 22 to 110
MeV over the years, but eventually settled around 60 Me
@4#. On the other hand, a puzzle was raised by Cheng@5#. If
one assumes that̂Nus̄suN&50, a reasonable assumption
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from the OZI rule, thespN
(0) obtained from the octet baryon

masses gives only 32 MeV, almost a factor 2 smaller than
SpN extracted from thepN scattering. This puzzle was tack-
led from both ends. First, the scalar form factor was calcu-
lated @4# in chiral perturbation theory (xPT! with the two
correlated pions as the dominating intermediate state. As a
result, the scalar form factor is found to be exceedingly soft
which leads to a large change ofspN(q

2) in a small range of
q2, i.e., DspN5spN(2mp

2 )2spN(0)515.260.4 MeV.
Thus, this reducesspN ,

spN5SpN2DspN , ~3!

to ;45 MeV. The remaining discrepancy betweenspN and
spN
(0) is reconciled if one admits the possibility of a larges̄s

content in the nucleon@5,6#. From the pattern of SU~3!
breaking in the octet baryon masses, one finds@6,5#

spN5spN
~0! /~12y!, ~4!

wherey52^Nus̄suN&/^Nuūu1d̄duN&. GivenspN
(0)532 MeV

from the octet baryon masses@5#, or 35~5! MeV from the
one-loop chiral perturbation theory (xPT! calculation@6# and
spN545 MeV, Eq.~4! implies y50.2–0.3.

Hence, a consistent solution seems to have emerged
which suggests thatspN;45 MeV, DspN;15 MeV, and
y;0.2–0.3. In this paper, we undertake a lattice QCD cal-
culation of the above quantities to scrutinize the viability of
this resolution. It turns out that our study points to a signifi-
cantly different solution. Our results indicate that the scalar
form factor is not as soft as envisioned in thexPT calcula-
tion @4#. Instead of 15 MeV, we findDspN56.660.6 MeV.
We also find thaty50.3660.03 which is larger than the
phenomenologically deduced value above. Both of these
numbers imply a largerspN;53 MeV. This is only one and
a halfs larger than our direct calculation at 49.7~2.6! MeV.
We shall argue that the direct calculation ofspN is more
susceptible to systematic errors thanDspN andy.

The calculation ofspN in lattice QCD has been attempted
by several groups@7,8# who employed the Feynman-
Hellman theorem

a-
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m̂
]MN

]m̂
5m̂^Nuūu1d̄duN&CI1m̂^Nuūu1d̄duN&DI ~5!

and obtainedspN through the derivative of the nucleon
mass. We note that in Eq.~5! the connected insertion~CI!
part comes from the differentiation with respect to the v
lence quark propagator; whereas thedisconnected insertion
~DI! part comes from the derivative of the fermion determ
nant. Their contributions to the scalar chargec̄c in the
nucleon are shown schematically in Fig. 1. In the DI th
quark flow lines are not joined together as in the CI. Th
are, nonetheless, correlated via the background gauge fi
which are not drawn. In the quenched approximation a
proach, it is found thatspN obtained from the derivative of
the nucleon mass is only about 15–25 MeV@7#. This is much
smaller than the phenomenological value of;45 MeV @4#.
The smallness ofspN in this case is traced to the fact that th
nucleon mass in the quenched approximation is calcula
with the determinant set to a constant, so that its derivat
corresponds to the CI only~which is verifiable by comparing
to the direct evaluation of the CI@9,10#! and it does not
include DI which can be substantial. Indeed, when the d
rivative of MN is calculated with dynamical fermions in
cluded, it is found@8# that the left-hand side~LHS! of Eq. ~5!
which now includes the DI becomes;2 to 3 times larger
than the CI contribution. This implies a large contribution
the DI. Since the error on]MN /]m̂ is quite large@10,8#, we
decide to calculate the DI directly@10# with the help of the
Z2 noise@11#. Following our calculation of the flavor single
gA
0 @12#, we calculate the CI and DI ofspN directly in the
quenched approximation. In terms of the Feynman-Hellm
theorem, it would correspond to calculating]MN /]m̂ by tak-
ing the derivative of the determinant first before setting it
a constant.

Lattice calculations of three-point functions have be
used to study the EM@13#, axial ~isovector! @14#, and pseu-
doscalar (pNN) @15# form factors, and the flavor single
gA
0 @12#. For the scalar form factor, we calculate the follow
ing two- and three-point functions:

GPP
aa~ t,pW !5(

xW
e2 ipW •xW^0uxa~x!x̄a~0!u0&, ~6!

GPSP
aa ~ t f ,pW ,t,qW !5 (

xW f ,x
W
e2 ipW •xW f1 iqW •xW^0uxa~xf !S~x!x̄a~0!u0&,

~7!

wheret and t f indicate the time for the scalar insertion an
the nucleon sink as illustrated in Fig. 1.pW is the momentum

FIG. 1. ~a! Connected insertion,~b! disconnected insertion.
a-

i-

e
ey
elds
p-

e
ted
ive

e-
-

of

t

an

to

en

t
-

d

of the nucleon at the sink andqW is the momentum transfer of
the scalar density. Since we use a point source for the
nucleon which contains all lattice momenta, momentum con-
servation will pick out the momentumpW 85pW 2qW for the
nucleon source.xa is the proton interpolating field andS is
the scalar density

S~x!52k/8kc@ ūu~x!1d̄d~x!#, ~8!

where we have implemented the mean-field improvement
tadpole factor 8kc to define the lattice operator@16#. We
shall calculate CI and DI separately.

The CI is calculated in the same way as the isovector
axial couplinggA

3 and its form factorgA
3(q2) @14#. The lattice

gS,con
L 5^Nuūu1d̄duN&con

L is obtained by fitting the two- and
three-point functionsGPP andGPSP to two exponentials in

the form f e2mtf8 andgS,con
L f e2mtf simultaneously, using the

data-covariance matrix to account for correlations. The form
factor at different momentum transferq2 are evaluated by
taking the appropriate combination ofGPP andGPSP in Eqs.
~6! and ~7!: i.e.,

GPSP
aa ~ t f ,pW ,t,qW !GPP

aa~ t,pW !

GPP
aa~ t f ,pW !GPP

aa~ t,qW !
→

t f ,t@a
gS,con
L ~q2!, ~9!

wherepW is the momentum of the nucleon sink which we take
to be 0W .

Our quenched gauge configurations were generated on a
163324 lattice atb56.0. The gauge field was thermalized
for 5000 sweeps from a cold start and 24 configurations
separated by at least 1000 sweeps were used. Periodic
boundary conditions were imposed on the quark fields in the
spatial directions. In the time direction, Dirichlet boundary
conditions were imposed on the quarks to provide larger time
separations than available with periodic boundary conditions.
The nucleon sink and source were placed symmetrically with
respect to the time boundaries so that eachZ factor, the
amplitude for the nucleon interpolating field to excite the
ground state from the vacuum, is canceled in the ratios of
correlation function in Eq.~9! @13,14#. This is in contrast
with a calculation offp , for example, where the matrix el-
ement of the current between the pion and the vacuum is
explicitly needed and could be contaminated by boundary
effects. As long as the time separationst and t f2t are large
enough, the form factorgS(q

2) should not depend on the
nucleon interpolation field. All quark propagators were cho-
sen to originate from lattice time slice 5; the secondary
nucleon source was fixed at time slice 20~except for
k50.154 where the quark propagators from time slice 3 to
22 were used!. We also averaged over the directions of
equivalent lattice momenta in each configuration; this re-
duces error bars.

We have verified that the time separation is sufficient so
that there is a plateau for the scalar density insertion at time
slicest after the proton ground state is achieved. This is done
for the three lightest quarks withk50.154, 0.152, and 0.148
andqW 2a2 up to 4(2p/L)2. The numerical detail of this part is
given in Ref. @14#. The nucleon massesMNa for
k50.154, 0.152, and 0.148 are 0.746~23!, 0.884~15!, and
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1.17~1!, respectively. The corresponding pion massesmpa
are 0.385~9!, 0.493~7!, and 0.689~6!. Extrapolating the
nucleon and pion masses to the chiral limit where we det
minekc50.1568(1) and the nucleon mass at the chiral lim
to be 0.54~3!. Using the nucleon mass to set the scale wh
we believe to be appropriate for studying nucleon propert
@14,15,12#, the lattice spacinga2151.74(10) GeV is deter-
mined. The threek8s then correspond to quark masses
about 120, 200, and 370 MeV, respectively.

Plotted in Fig. 2~a! are the latticegS,con
L results. Due to the

fact that the quenchedxPT calculation exhibits a leading
nonanalytic behavior ofm3/2 for the nucleon mass@17#, we
extrapolategS,con

L to the chiral limit (kc50.1568) with the
form C1Dm1/2. This is so becausegS,con

L 5]MN /]m̂ in the
quenched approximation as we alluded to earlier in Eq.~5!.
As a result, we obtaingS,con

L 53.04(9) as shown in Fig. 2~a!.
ThegS in the continuum with the modified minimal subtrac
tion (MS) scheme is related to its lattice counterpart by t
relationgS5ZSgS

L , whereZS is the finite lattice renormaliza-
tion constant. The one-loop calculation givesZS50.995 for
b56.0 @16#, from which we findgS,con53.0260.09. We
also computed isovectorgS

35^Nuūu2d̄duN& which does not
involve the DI and found it to be 0.63(7).

SincespN is renormalization group invariant, the CI con
tribution is spN,con5m̂gS,con

L where m̂ is the lattice quark
mass. Frommp

2 andMN , we findm̂55.84(13) MeV. Thus,
spN,con517.8(9) MeV which agrees well with previous ca
culations@7,9,20#. The CI part of the form factor is obtained
by extrapolatinggS,con

L (q2) at differentk to the chiral limit.
It is plotted in Fig. 2~b! together withgA

3(q2), the isovector
axial form factor. We see that theirq2 dependence are almos
identical within errors. Insofar as the concept of mes
dominance goes, this reflects in part the fact that the isov
tor scalar mesona0 mass and that of the axial-vector meso
a1 are close to each other in the lattice calculation. Such
in the case of the axial coupling constants@12#, we also find
that the ratioRS5gS

3/gS,con dips below the SU~6! result of
1/3 as the quark mass becomes lighter. This is interprete
due to the cloud quark or antiquark effect and is responsi
for the ū – d̄ parton difference reflected in the violation o
the Gottfried sum rule@21#. Only when the cloud degree o
freedom is eliminated in the valence approximation@21#,
where the Fock space is limited to the valence, do we reco
the SU~6! limit. This indirectly shows the effect of the cloud
quarks in the CI.

We calculate the DI in Fig. 1~b! the same way we did for

FIG. 2. ~a! The latticegS,con
L for the CI as a function of the quark

massma. The chiral limit result is indicated byd. ~b! The form
factorgS,con

L (q2) at the chiral limit.
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the DI part ofgA
0 @12# by summing overt, the insertion time

slice of the scalar density. Fort f@a, this sum becomes
@9,12#

(
t

GPSP
aa ~ t f ,pW ,t,qW !GPP

aa~ t,pW !

GPP
aa~ t f ,pW !GPP

aa~ t,qW !
→
t f@a

const1t fgS,dis
L ~q2!,

~10!

wherepW is the momentum of the nucleon sink which we take
to be 0W . t is summed from time slices 5 to 20~i.e., 4 time
slices away from the boundary! to avoid the contamination
from the fixed boundary in the time direction@12#.

Thus, we calculate the sum as a function oft f and take the
slope to obtain the DI part ofgS

L(q2). Since the DI involves
quark loops which entail the calculation of traces of the in-
verse quark matrices, we use the proven efficient algorithm
to estimate these traces stochastically with theZ2 noise@11#
which was shown to be the optimal choice yielding minimal
variance@22# and has been auspiciously applied to the study
of gA

0 @12#.
The results of Eq.~10! with 300 complexZ2 noise and 50

gauge configurations fork50.148, 0.152, and 0.154
are presented in Fig. 3. The correspondinggS,dis

L

5^Nuūu1d̄duN&dis
L are obtained from fitting the slopes in the

region t f>8 where the nucleon is isolated from its excited
states with the correlation among the time slices taken into
account @12#. The resultant straight-line fits covering the
ranges oft f with the minimumx2 are plotted in Fig. 3.
Finally, the errors on the fit, also shown in the figure, are
obtained by jackknifing the procedure.

Plotted in Fig. 4~a! are the results ofgS,dis
L with the same

sea-quark mass as those of the valence~and cloud! quarks in
the nucleon. They suggest a nonlinear behavior in the quar
mass. This is enhanced by our finding of a very soft form
factor@Fig. 4~b!# which is consistent with the expectations of

FIG. 3. The ratios of Eq.~10! for the scalar insertion are plotted
for the threek cases. ME is the fitted slope.

FIG. 4. ~a! The DI of ^Nuūu1d̄duN& and ^Nus̄suN& as a func-
tion of ma. The chiral limit result is indicated byd. ~b! The cor-
responding form factors.
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xPT @6# where the pion loop leads to a nonanalytic behav
in mq

3/2 Furthermore, this nonlinear behavior is seen prom
nently in hadron masses when dynamical fermions are
cluded@23#. For these reasons, we fit^Nuūu1d̄duN&dis with
the constant plusm1/2 form as for the CI and get a sma
x2 @see Fig. 4~a!#. The extrapolation to the chiral limit is
carried out in the same way as in the case ofgA

0 @12#. The
covariant matrix is adopted to consider the correlati
among the threek8s. The error on the chiral limit result is
again obtained by jackknifing the procedure of the extra
lation. To calculatêNus̄suN&, we fix the sea-quark mass a
0.154 and extrapolate the valence-quark mass to the c
limit with the form C1DAm̂1ms to reflect themK

3 depen-
dence of the nucleon mass from the kaon loop inxPT. These
results are also plotted in Fig. 4~a!.

From Fig. 4~a!, we find that ^Nuūu1d̄duN&dis
5ZS^Nuūu1d̄duN&dis

L 55.41(15). This is 1.8(1) times the
CI and is consistent with previous indirect calculations bas
on ]MN /]m̂ with dynamical fermions@8#, a direct calcula-
tion with staggered fermions@19#, and the recent direct cal
culation @20# which gives a ratio of 2.2(6). Similarly, we
find from Fig. 4~a! that ^Nus̄suN&5ZSf (ma)^Nus̄suN&L

51.53(7) where we have included the finitema correction
factor f (ma)50.79 which was computed by comparing th
triangle diagram in the continuum and on the lattice@18#.
This is much smaller than the recent calculation@20# which
gives ^Nus̄suN&52.84(44). Part of the disagreement com
from the fact that a finitema correction factor which is only
appropriate for a CI was used in Ref.@20# for the DI. This
leads to an overestimate by;30%. In addition, summing
(xWS(xW ,t) in Eq. ~10! over the edges in time where the fixe
boundary condition is applied as is done in Ref.@20#, gives a
systematic error. We find that^(xWS(xW ,t)& is a fairly uniform
function of t except toward the edges of the lattice in th
time direction due to the fixed boundary condition impos
there. For this reason we exclude four time slices at eac
the time boundaries for both the nucleon source or sink
the S(x,t) density insertion. But this unphysical bounda
effect is included in Ref.@20#. In order to estimate the mag
nitude of the effect, we extended the density insertion to
time boundary and found̂Nus̄suN& to be increased by 4%
Thus, we estimate that^Nus̄suN& in Ref. @20# to be overesti-
mated by;35%. Correcting this reduces their^Nus̄suN& to
2.10~33! which is then much closer to our result. The r
maining difference between this and our result of 1.53~7!
may be attributable to scaling and the finite volume effe
The results of Ref.@20# are based on 123320 lattices at
b55.7; whereas ours are based on 163324 lattices at
b56.0.

From the above results, we list̂puūu1d̄dup&con,
^puūu1d̄dup&dis, ^puūuup&, ^pud̄dup&, ^Nus̄suN&, FS
5(^puūuup&2^Nus̄suN&)/2, and DS5(^puūuup&
22^pud̄dup&1^Nus̄suN&)/2 in Table I. We see that both
DS and FS compare favorably with the phenomenologic
values obtained from the SU~3!-breaking pattern of the octe
baryon masses with either linear@9,24# or quadratic mass
relations@25#. Especially, we should point out that the agre
ment is significantly improved from the valence-quark mod
which predictsFS,1 andDS50 and also those of the C
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alone @9,24#. The latter yields FS50.91(13) and
DS520.28(10) which are only half of the phenomenologi-
cal values@9,24,25#. This underscores the importance of the
sea-quark contributions. We also obtain the form factor
gS,dis
L (q2)5^Nuūu1d̄duN&dis

L (q2) for the DI as plotted in
Fig. 4~b!. We see that it is exceedingly soft which is remi-
niscent of the two-p intermediate state in thexPT calcula-
tion @4#. This possibility can be seen in Fig. 1~b! with the two
p intermediate state depicted. Indeed, if we assume that th
DI part completely saturatesspN with gS58.43(24), it
would giveDspN511.5(2.1) MeV similar to that of thexPT
calculation@4#. However, there is also the CI part@Fig. 2~b!#
which is much harder than the DI. When combined, it yields
a scalar form factorgS(q

2) which is softer thangA
3(q2) and

becomes close toGE(q
2) of the proton. They are plotted in

Fig. 5 for comparison. Fitting thegS(q
2) to a dipole form

gives a dipole massmD50.80(4) GeV. This predicts
DspN56.6(6) MeV, much smaller than the 15.2~4! MeV
obtained solely based on the two-p dominance. We conclude
from this that thexPT calculation@4# is relevant to the DI
but missed the CI which may be dominated by the scalar

FIG. 5. The normalized form factorgS(q
2)/gS(0) compared

with GE(q
2) andgA

3(q2) and their respective experimental results.

TABLE I. Scalar contents,DspN , y, andspN in comparison
with phenomenology.

Lattice Phenomenology

^puūu1d̄dup&con 3.02~9!

^puūu1d̄dup&dis 5.41~15!

^puūuup& 4.53~16!

^pud̄dup& 3.90~16!

^Nus̄suN& 1.53~7!

FS 1.51~12! 1.52 @9,24#–1.81@25#
DS -0.88~28! -0.52 @9,24#–0.57@25#

^r 2&S
1/2(ud) 0.85~4! fm

^r 2&S
1/2(s) 1.06~9! fm

DspN 6.61~59! MeV 15.2~4! MeV @4#

y 0.36~3! 0.2–0.3@4#

spN 49.7~2.6! MeV 45 MeV @4#

sKN 362~13! MeV 395 MeV @26#
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meson. On the other hand, the^Nus̄suN&(q2) comes only
from the DI, hence it is very soft. Its rms radiu
^r 2&S

1/2( s̄s)51.06(9) fm can be interpreted as the size of t
KK̄ meson cloud in the scalar channel@see Fig. 1~b!#.

For the parametery in Eq. ~4!, we find it to be 0.36~3!.
Both DspN andy differ significantly from the phenomeno
logical solution based onxPT as mentioned earlier which did
not take into account the CI with a possible scalar dom
nance. This points to a higherspN than 45 MeV. Our result
of DspN56.6(6) MeV suggests a higherspN5SpN
2DspN;53 MeV from Eq.~3!, assumingSpN;60 MeV.
This is further enhanced by the finding of a largery. Given
s (0);32 MeV from the octet baryon masses@5#, or 35~5!
MeV from the one-loopxPT calculation@6#, our result of
y50.36(3) also putsspN to be around 53 MeV from Eq.
~4!.

Now, we turn to our result ofspN . Our direct calculation
gives ^Nuūu1d̄duN&58.43(24) andspN549.7(2.6) MeV.
This is about one and a halfs smaller than 53 MeV inferred
from DspN andy. Since the direct computation ofspN in-
volves the determination of the quark mass which is mo
susceptible to systematic errors~such as the extrapolation in
the quark mass and the continuum limit! than theq2 depen-
dence of the form factor and the ratioy, we believe that our
result onspN is less reliable thanDspN andy. To examine
the sensitivity of these three quantities as far as the ch
limit extrapolation is concerned, we fit them to a linear fun
tion in m instead ofm1/2 and find thatDspN54.7(8) MeV,
y50.42(3), andspN539.0(2.0) MeV. Again, we see tha
both DspN and y favor a higherspN;55 MeV which is
s
he

-

i-

re

iral
c-

t

very close to the above estimate of 53 MeV with them1/2

extrapolation. Yet, the directly calculatedspN falls short of
this expectation and is also much smaller than that of th
m1/2 extrapolation.

Clearly, calculations on larger lattices, smaller lattice
spacings, and smaller quark masses will be needed to brin
the systematic errors under control and obtain a complete
consistent solution onDspN ,y, andspN . Eventually, dy-
namical fermions need to be included to complete the pic
ture. Nevertheless, based on what we have on a qualitativ
and semiquantitative level, we find that a consistent solutio
might be close toDspN56.6(6) MeV, y50.36(3), and
spN;53 MeV which are significantly different from the
present phenomenological values. We should stress that o
results onFS and DS , like their counterparts in the axial
couplings, agree well with those deduced from the SU~3!-
breaking pattern of the octet baryon masses and that the DI
the important ingredient for this agreement. In addition, we
report the KNs term sKN5(m̂1ms)^Nuūu1d̄d
12s̄suN&/4 in Table I. If we assume that they are similarly
depressed as inspN , we would then predict the finalsKN at
389~14! MeV. It agrees withsKN5395 MeV from a recent
chiral analysis ofKN scattering@26#. Finally, we note that
ms^Nus̄suN&5183(8) MeV. Together with the kinetic and
potential energy contribution of290 MeV @27#, the strange
quark contributes about 90 MeV to the nucleon mass.
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