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Non-Abelian Weizsäcker-Williams field and a two-dimensional effective color charge density
for a very large nucleus

Yuri V. Kovchegov
Physics Department, Columbia University, New York, New York 10027

~Received 30 May 1996!

We consider a very large ultrarelativistic nucleus. Assuming a simple model of the nucleus and weak
coupling we find a classical solution for the gluon field of the nucleus and construct the two-dimensional color
charge density for McLerran-Venugopalan model out of it. We prove that the density of states distribution, as
a function of color charge density, is Gaussian, confirming the assumption made by McLerran and Venugo-
palan.@S0556-2821~96!01721-3#

PACS number~s!: 12.38.Aw, 24.85.1p
I. INTRODUCTION

Consider a very large nucleus, probably larger than can
physically realized. The nucleons are distributed homo
neously inside the nucleus. Recently McLerran and Venu
palan proposed a program of computing the gluon distrib
tion fuctions for such a nucleus at smallx @1,2#.

One of the interesting problems in the McLerran
Venugopalan model for the small-x part of the gluon distri-
bution of such a large nucleus@1,2# is finding the classical
solution for the gluon field, treating the valence quarks of t
nucleons in the nucleus as recoiless sources, which ard
functions along the light cone when the nucleus is movi
near the velocity of light. A convenient way to deal with th
problem is by working in the light-cone gauge. The source
characterized by a two-dimensional color charge dens
r(x), wherex is a vector in the transverse direction. Th
proposed model assumes that in order to find the aver
value of any observable having longitudinal coheren
length long compared to the nucleus, one calculates this
servable for a givenr(x), and then averages it over allr
with the measure

E @dr#expS 2
1

2m2E d2xr2~x! D , ~1!

wherem2 is the average charge density squared.
We consider a large nucleus consisting of ‘‘nucleons

which for simplicity of description are chosen to be ju
quark-antiquark pairs~see Fig. 1!. Valence quark and anti-
quark are treated as point particles free to move inside of
nucleon, but unable to get out.

We are interested in the gluon field of the ultrarelativist
nucleus viewed in the laboratory frame. We assume that
field in each individual nucleon is not large. This allows u
to approximate the covariant gauge potential of each qu
by a single-gluon exchange. In a covariant gauge the cla
cal field of a single ultrarelativistic particle is proportional t
a d function in thex2 direction@3#. Since in our model of a
ultrarelativistic nucleus different quarks have differentx2

coordinates in the laboratory frame, the fields of individu
quarks do not overlap, which allows us to superimpose th
and justifies our single-gluon exchange approximation. Th
the total field of the nucleus in the covariant gauge is the s
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of the quark fields. We make a gauge transformation which
changes the total potential to the light-cone gauge. So we get
a solution to the classical equations of motion in the light-
cone gauge, where the fieldAm is directly related to the
gluon distribution in the small-x region @1#.

Following McLerran and Venugopalan the nucleus is con-
sidered to be very large; thus, although the field of each
individual nucleon is weak, the total field is strong at low
momentum in the light-cone gauge due to the overlap of the
fields of a huge number of nucleons. Still we can neglect the
contributions of several nucleons, without changing the an-
swer; i.e., we work in the leading power of the number of
nucleons.

We may treat the source as classical only when we are at
sufficiently small momenta that the individual quarks cannot
be resolved. It was shown in@1# that this requires that
k2!m2, wherek is the typical momentum scale. The weak
coupling approximation is valid whenk2@LQCD

2 Then the
momentum range we consider isLQCD

2 !k2!m2.
Now the task is to construct the two-dimensional charge

density, giving the correct classical solution. This is done by
just substituting the classical solution in the equations of
motion. The density we find this way happens to satisfy the
Gaussian distribution. We show this by calculating the cor-
relation functions of the densities at different transverse
points and proving that they are exactly what one would
expect for the Gaussian distribution~1!. That is, we justify
the method for averaging the observables proposed by
McLerran and Venugopalan.

In Sec. II we calculate the solution of the classical equa-
tions of motion, the non-Abelian Weizsa¨cker-Williams field.

FIG. 1. Nucleus with ‘‘nucleons’’ being quark-antiquark pairs.
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In Sec. III we construct the two-dimensional charge dens
In Sec. IV we show that the charge density has a Gaus
distribution by calculating the correlation functions. In Se
V we confirm the techniques proposed in@1#.

II. APPROXIMATE SOLUTION

We start with some random distribution of nucleons in t
nucleus and quarks and antiquarks in the nucleons.
nucleons, in the rest frame of the nucleus, are assumed t
spheres with equal radius, and the quarks and antiquarks
distributed randomly inside each sphere, with equal proba
ity to be at any place inside the sphere, but with zero pr
ability to get outside. The density in the rest frame is giv
by

r~xW !5 (
a51

8

Tara~xW !, ~2!

with

ra~xW !5g(
i51

N

~Ti
a!@d~xW2xW i !2d~xW2xW i8!#, ~3!

wherexW i is the coordinate of a quark in thei th nucleon~there
areN nucleons in the nucleus!, xW i8 is the coordinate of the
antiquark,Ta are generators of SU~3! in color space, and
(Ti

a) are similar generators in the color space of ea
nucleon. The reason we separate them is becausera comes
from the currentj m

a5gq̄agm(T
a)abqb , and so the expres

sion for ra should include aTa acting in each individual
nucleon’s color space.

In the laboratory frame for the ultrarelativistic nucleus t
density is

r~x,x2!5
g

A2
(
a51

8

(
i51

N

Ta~Ti
a!@d~x22x2 i !d~x2xi !

2d~x22x2 i8 !d~x2xi8!#. ~4!

Assuming that the coupling is weak and using the express
for the potential of a single particle in a covariant gauge@3,
Appendix A# we approximate the field of the nucleus b
superposition as

A18 52
g

2p
(
a51

8

(
i51

N

Ta~Ti
a!@d~x22x2 i !ln~ ux2xi ul!

2d~x22x2 i8 !ln~ ux2xi8ul!#, A850, A28 50,

~5!

wherel is some infrared cutoff. The prime at the field or th
field strength denotes the covariant gauge. The field stren
in the covariant gauge is then
ity.
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F1'8 5
g

2p
(
a51

8

(
i51

N

Ta~Ti
a!S d~x22x2 i !

x2xi

ux2xi u2

2d~x22x2 i8 !
x2x8 i

ux2xi8u
2D . ~6!

From here on the subscript' will mean that the object is a
vector in the transverse space over this index.

We now perform a gauge transformation to transorm this
field into the light cone gauge. The potential in a new gauge
is

Am5SAm8S
212

i

g
~]mS!S21. ~7!

Requiring the new gauge to be the light cone gauge,
A150, we obtain

S~x,x2!5PexpS 2 igE
2`

x2

dx28 A18 ~x,x28 ! D . ~8!

Then the field in the light-cone gauge is

A~x,x2!5E
2`

x2

dx28 F1'~x,x28 !

5E
2`

x2

dx28 S~x,x28 !F1'8 ~x,x28 !S21~x,x28 !. ~9!

Only transverse components are non-zero. Substituting
F1'8 (x,x28 ) from Eq. ~6! we get

A~x,x2!5
g

2p
(
a51

8

(
i51

N

~Ti
a!

3S S~x,x2 i !T
aS21~x,x2 i !

x2xi
ux2xi u2

u~x22x2 i !

2S~x,x2 i8 !TaS21~x,x2 i8 !
x2x8 i

ux2xi8u
2 u~x22x2 i8 !D .

~10!

This is our estimate of the solution of the classical equations
of motion for a given configuration of quarks inside the
nucleons and nucleons inside the nucleus. Formula~10!
gives us the non-Abelian Weizsa¨cker-Williams field gener-
ated by the valence quarks.

III. TWO-DIMENSIONAL COLOR CHARGE DENSITY

The equation of motion is

DmF
mn5Jn. ~11!

In the McLerran-Venugopalan model@1# the classical current
Jm only has components in the1 direction and is propor-
tional to ad function of x2 :

Jm~x!5dm1d~x2!r~x!. ~12!
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This can be treated as a definition of the two-dimensio
color density. Our goal now is to constructr(x). Integrating
both sides of Eq.~11! over x2 and using Eq.~12! gives

r~x!5E
2`

1`

dx2DiF1 i~x,x2!

5E
2`

1`

dx2$] iF1 i~x,x2!2 ig@Ai~x,x2!,F1 i~x,x2!#%,

~13!

where i51,2 ~transverse direction!. Using A(x,x2) from
Eq. ~10! , we can calculateF1'(x,x2). Substituting both
in Eq. ~13! we end up with the following expression for th
density:

r~x!5 g (
a51

8

(
i51

N

~Ti
a!@S~xi ,x2 i !T

aS21~xi ,x2 i !d~x2xi !

2S~xi8 ,x2 i8 !TaS21~xi8 ,x2 i8 !d~x2xi8!#. ~14!

The details of calculations are presented in Appendix B.
can see now that our expression for two-dimensional den
is just a rotation of the three-dimensional density~in the
laboratory frame! we started with:

r~x!5E
2`

1`

dx2S~x,x2!A2r~x,x2!S21~x,x2!. ~15!

In the expression for the light cone potential we had
infrared cutoffl, and so it may seem that this cutoff wi
appear in theS(x,x2) and, consequently, inr(x). However,
this is not the case, because, although the light cone pote
is cutoff dependent,S(x,x2) is not. To see this let us per
form an explicit calculation ofS(x,x2): Substituting Eq.~5!
into Eq. ~8! and using the definition of the path-ordered e
ponential we obtain

S~x,x2!5)
i51

N

@u~x2 i8 2x2 i !e
S ieS i81u~x2 i2x2 i8 !eS i8eS i#,

~16!

with

S i5
ig2

2p
(
a51

8

Ta~Ti
a!ln~ ux2xi ul!u~x22x2 i !, ~17!

S i852
ig2

2p
(
a51

8

Ta~Ti
a!ln~ ux2x8 i ul!u~x22x2 i8 !.
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e
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But the matrices we exponentiate (S i andS i8) commute~for
the samei ), and so

S~x,x2!5)
i51

N

expF ig22p (
a51

8

Ta~Ti
a!lnS ux2xi u

ux2xi8u
D

3u~x22x2 i !G . ~18!

Here we neglected the contribution of the ‘‘last’’ nucleon,
i.e., the nucleon~or several nucleons! whose quarks or anti-
quarks may overlap the pointx2 at which we calculate
S(x,x2). These nucleons may potentially cause us some
trouble, but the philosophy of the large nucleus approxima-
tion implies that the fields of individual nucleons are small,
and we construct a strong field out of a large number of
nucleons. The contribution of each individual nucleon is neg-
ligible; it is their sum which matters. That means we can
neglect these ‘‘last’’ nucleons.

Another way to say this is that we want to perform a
calculation keeping the leading powers ofN only. Then
dropping a few nucleons will not change our result.

From Eq.~18! we see thatS(x,x2) is cutoff independent,
and so is the densityr(x).

IV. CALCULATION OF CORRELATION FUNCTIONS

Now that we found the charge density, let us show that its
distribution is Gaussian by calculating the density correlation
functions. First we note that the average density is zero, as
expected:^ra(x)&50, where ^•••& denotes the averaging
over all possible positions of quarks and antiquarks in the
nucleons, and nucleons in the nucleus, as well as averagin
over all possible colors~keeping each nucleon color neutral!.

For two densities correlation function we have

^ra~x!rb~y!&5)
k51

N E d3r k
~4/3!pR3

d3xkd
3xk8

@~4/3!pa3#2

3„aāura~x!rb~y!ubb̄…, ~19!

whereR is the radius of the nucleus,a is the radius of the
nucleons,r k is the position of the center of thekth nucleon in
the nucleus~in the rest frame!, andxk andxk8 are positions of
the quarks in the nucleons; (aāu•••ubb̄) implies an average
over all color-neutral states of the nucleons.

Using Eq.~14! we obtain„sincera(x)52Tr@Tar(x)#…
^ra~x!rb~y!&5 g2 )
k51

N E d3r k
~4/3!pR3

d3xkd
3xk8

@~4/3!pa3#2
(aāu (

c,d51

8

(
i , j51

N

~Ti
c!~Tj

d!

3$2 Tr@TaS~xi ,x2 i !T
cS21~xi ,x2 i !#d~x2xi !22 Tr@TaS~xi8 ,x2 i8 !TcS21~xi8 ,x2 i8 !#d~x2xi8!%

3$2 Tr@TbS~xj ,x2 j !T
dS21~xj ,x2 j !#d~y2xj !22 Tr@TbS~xj8 ,x2 j8 !TdS21~xj8 ,x2 j8 !#d~y2xj8!%ubb̄). ~20!
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In S(xi ,x2 i) the ‘‘last’’ nucleon is thei th nucleon. Applying
the same arguments we had before we can drop this ‘‘la
nucleon. Then there will be no (Ti

c) matrices inS(xi ,x2 i)
andS(xi8 ,x2 i8 ). It is convenient to label nucleons accordin
to their coordinates along thex2 axis. The greater the coor
dinate, the greater the number of the nucleon. Without a
loss of generality we can assume thati> j . Then, if i. j the
(Ti

c) matrix in front will be the only matrix in thei th nucleon
color space for the term corresponding to fixedi and j in our
expression. So when we do the color averaging it will gi
zero@ Tr(Ti

c)50#. That means thati5 j . Then color averag-
ing in the i th nucleon space gives
st’’

g
-
ny

ve

1

Nc
Tr@~Ti

c!~Ti
d!#5

1

2Nc
dcd.

Each density is a difference of the quark and antiquark parts
In Eq. ~20! one can easily see that the product of quark~and
antiquark! components gives ad function ofx andy , while
the product of quark and antiquark components gives some
smooth function. In most of the physical applications we will
be looking at scales much smaller than the nucleon’s radius
a @4#. At these scales we can neglect this cross terms with
respect to thed function terms:
^ra~x!rb~y!&5
g2

Nc

1

pa2
d~x2y!)

l51

N E d3r l
~4/3!pR3(

i51

N
3

2
A12

~x2r i !
2

a2 )
k51

i21 E d3xkd
3xk8

@~4/3!pa3#2

3(aāu(
c51

8

4 Tr@TaS~xi ,x2 i !T
cS21~xi ,x2 i !# Tr@T

bS~xi ,x2 i !T
cS21~xi ,x2 i !#ubb̄). ~21!
After dropping the ‘‘last’’ nucleonS(x,x2 i)5S(x,x2 i8 ).
For two traceless 333 matricesM andN the following

formula is true:

(
a51

8

Tr@MTa# Tr@NTa#5
1

2
Tr@MN#. ~22!

Using this, and making some approximation when integr
ing over r i (a!R), we get

^ra~x!rb~y!&5dab
3g2

2Nc

N

pR2 d~x2y!A12
x2

R2. ~23!

Here, for the first time we made an assumption about
geometry of the nucleus and nucleons in it — when doi
the average over the positions of quarks and nucleons
assumed that the nucleus and nucleons are spherical in
rest frame. For a cylindrical nucleus~in the z direction! one
would get

^ra~x!rb~y!&5dab
g2

Nc

N

pR2 d~x2y!.

By employing a similar technique of dropping the ‘‘last’
nucleon in theS(xi ,x2 i) and keeping the leading powers o
N only, we can show that the four-density correlation fun
tion is

^ra~x!rb~y!rc~z!rd~w!&

5^ra~x!rb~y!&^rc~z!rd~w!&1^ra~x!rc~z!&

3^rb~y!rd~w!&1^ra~x!rd~w!&^rb~y!rc~z!& ~24!

and prove a similar formula for a correlation function wit
any even number of densities, i.e., that it can be represen
as
at-

the
ng
we
the

’
f
c-

h
ted

^ra1~x1!•••ra2n~x2n!&

5^ra1~x1!ra2~x2!&•••^ra2n21~x2n21!ra2n~x2n!&

1 permutations, ~25!

wherex1, . . . ,x2n are just 2n arbitrary points in the nucleus.
Also we can show that a correlation function with an odd
number of densities is zero to all orders inN ~for details see
Appendix C!:

^ra1~x1!•••ra2n11~x2n11!&50. ~26!

V. CONCLUSIONS

By calculating the two-density correlation function~23!
and proving Eq.~25! and ~26! we showed that, for anyn
pointsx1•••xn,

^ra1~x1!•••ran~xn!&

5
*@dr#ra1~x1!•••ran~xn!exp@2*d2xr2~x!/2m2~x!#

*@dr#exp@2*d2xr2~x!/2m2~x!#
,

~27!

with

m2~x!5
3g2

2

CF

Nc

N

pR2A12
x2

R2

5
3g2

2

CF

Nc

1

pa2
N1/3A12

x2

R2 ~28!

in our model. Note that ourm2 goes asN1/3, as expected. The
average on the left hand side is understood as
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^•••&5)
k51

N E d3r k
~4/3!pR3

d3xkd
3xk8

@~4/3!pa3#2
~aāu•••ubb̄!.

For a spherical nucleusm2 is a function ofx.
The most general observable in our system can be rep

sented as some functional of*K(x8,x)r(x)d2x; namely, the
value of this observable for a givenr(x) is

Or5FS E K~x8,x!r~x!d2xD , ~29!

whereF( f ) is some functional andK(x8,x) is some kernel
independent ofr(x). For instance, one can consider the Wi
son loopW5^ Tr Pexp(2ig*dx•A)&. It is a functional of
A(x). The field A(x) can be represented as
*K(x8,x)r(x)d2x. Then, using the definition of a path-
ordered integral, we can expand the Wilson loop in powe
of A(x):

W5K Tr)
k

@12 igdxk•A~xk!#L
5K Tr(

n
cnA~x1!•••A~xn!L , ~30!

with some coefficients cn . Writing A(x) as
A(x)5(a51

8 Ta*Ka(x,x8)r(x8)d2x8, we achieve

W5(
n

cn (
a1•••an51

8

Tr@Ta1•••Tan#

3E d2x18•••d
2xn8K

a1~x1 ,x18!•••Kan~xn ,xn8!

3^r~x18!•••r~xn8!&. ~31!

Now we can use Eq.~27!, obtaining

W5

*@dr#expF2*d2x
r2~x!

2m2~x!G Tr PexpS 2 igE dx•AD
E @dr#expF2E d2x

r2~x!

2m2~x!G
.

~32!

A similar treatment can be applied to any observable@which
can be represented as Eq.~29!# to prove that

^Or&5
*@dr#exp@2*d2xr2~x!/2m2~x!#Or

*@dr#exp@2*d2xr2~x!/2m2~x!#
. ~33!

This confirms the assumption made by McLerran an
Venugopalan in their model1 @1#.

1I have recently learned@L. McLerran to A. Mueller~private com-
munication!# that similar conclusions have been reached by Profe
sor L. McLerran and collaborators.
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APPENDIX A

From @3# the light cone potential of a chargee moving
with a velocityv is

A15
A2e
4p

1

A2x2
2 1~12v2!x2

, A5A250. ~A1!

If we perform a Fourier transform

Am~k!5
1

~2p!2
E dx1dx2d

2xeik1x21 ik2x12 ik•xAm~x!

~A2!

and take the limitv→1, we get, for the ultrarelativistic par-
ticle,

A1~k!5
ed~k2!

2pk2
. ~A3!

If we go back to the coordinate space, by performing an
inverse Fourier transform of Eq.~A3!, we end up with

A1~x!52
e

2p
d~x2!ln~ uxul!, ~A4!

which is different form thev→1 limit of the original expres-
sion by a gauge transformation.

APPENDIX B

Defining

f i~x,x2!5
g

2p
(
a51

8

~Ti
a!S~x,x2!TaS21~x,x2!, ~B1!

we can rewrite Eq.~10! as

A~x,x2!5(
i51

N S f i~x,x2 i !
x2xi

ux2xi u2
u~x22x2 i !

2 f i~x,x2 i8 !
x2x8 i

ux2x8 i u2
u~x22x2 i8 !D . ~B2!

Then the field strength is

F1'~x,x2!5
]

]x2
A~x,x2!

5(
i51

N S f i~x,x2 i !
x2xi

ux2xi u2
d~x22x2 i !

2 f i~x,x2 i8 !
x2x8 i

ux2x8 i u2
d~x22x2 i8 !D . ~B3!

Substituting Eqs.~B2! and ~B3! into Eq. ~13! we get
s-
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r~x!5(
i51

N

@ f i~x,x2 i !2pd~x2xi !2 f i~x,x2 i8 !2pd~x2xi8!#

1(
i51

N S ¹ f i~x,x2 i !
x2xi

ux2xi u2
2¹ f i~x,x2 i8 !

x2xi8

ux2xi8u
2D

2 ig (
i , j51

N S @ f i~x,x2 i !, f j~x,x2 j !#
x2xi

ux2xi u2
x2xj

ux2xj u2
u~x2 j2x2 i !

2@ f i~x,x2 i !, f j~x,x2 j8 !#
x2xi

ux2xi u2
x2xj8

ux2xj8u
2 u~x2 j8 2x2 i !

2@ f i~x,x2 i8 !, f j~x,x2 j !#
x2xi8

ux2xi8u
2

x2xj
ux2xj u2

u~x2 j2x2 i8 !

1@ f i~x,x2 i8 !, f j~x,x2 j8 !#
x2xi8

ux2xi8u
2

x2xj8

ux2xj8u
2 u~x2 j8 2x2 i8 !D . ~B4!

A straightforward calculation yields

¹ f i~x,x2 i !5
ig3

~2p!2(a51

8

(
b51

8

(
j51

N

~Ti
a!~Tj

b!H x2xj
ux2xj u2

u~x2 i2x2 j !

3@S~x,x2 j !T
bW~x,x2 i ,x2 j !T

aS21~x,x2 i !2S~x,x2 i !T
aW~x,x2 j ,x2 i !

3TbS21~x,x2 j !#2
x2xj8

ux2xj8u
2 u~x2 i2x2 j8 !@S~x,x2 j8 !TbW~x,x2 i ,x2 j8 !Ta

3S21~x,x2 i !2S~x,x2 i !T
aW~x,x2 j8 ,x2 i !T

bS21~x,x2 j8 !#J ~B5!

and

@ f i~x,x2 i !, f j~x,x2 j !#5
g2

~2p!2(a51

8

(
b51

8

~Ti
a!~Tj

b!@S~x,x2 i !T
aW~x,x2 j ,x2 i !

3TbS21~x,x2 j !2S~x,x2 j !T
bW~x,x2 i ,x2 j !T

aS21~x,x2 i !], ~B6!

where

W~x,x2 i ,x2 j !5PexpS 2 igE
x2 j

x2 i
dx2A18 ~x,x2! D . ~B7!

Plugging this back into Eq.~B4! we end up with

r~x!5(
i51

N

@ f i~x,x2 i !2pd~x2xi !2 f i~x,x2 i8 !2pd~x2xi8!#, ~B8!

which is equivalent to Eq.~14!.

APPENDIX C

Let us prove that the three-density correlation function is zero. Then the proof for an arbitrary correlation function of an
number of densities will become obvious. Similar to Eq.~20! we write



zero.
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^ra~x!rb~y!rc~z!&5g3 )
l51

N

E d3r l

~4/3!pR3

d3xld
3xl8

@~4/3!pa3#2
(aāu (

a8,b8,c851

8

(
i , j ,k51

N

~Ti
a8!~Tj

b8!~Tk
c8!

3$2 Tr@TaS~xi ,x2 i !T
a8S21~xi ,x2 i !#d~x2xi !22 Tr@TaS~xi8 ,x2 i8 !Ta8S21~xi8 ,x2 i8 !#d~x2xi8!%

3$2 Tr@TbS~xj ,x2 j !T
b8S21~xj ,x2 j !#d~y2xj !22 Tr@TbS~xj8 ,x2 j8 !Tb8S21~xj8 ,x2 j8 !#d~y2xj8!%

3$2 Tr@TcS~xk ,x2k!T
c8S21~xk ,x2k!#d~z2xk!22 Tr@TcS~xk8 ,x2k8 !Tc8S21~xk8 ,x2k8 !#d~z2xk8!%ubb̄).

~C1!

After dropping the ‘‘last’’ nucleon and averaging over the colors of this nucleon, we get

^ra~x!rb~y!rc~z!&5g38)
l51

N

E d3r l

~4/3!pR3

d3xld
3xl8

@~4/3!pa3#2
(aāu (

a8,b8,c851

8

(
i51

N

Tr@~Ti
a8!~Ti

b8!~Ti
c8!#

3 Tr@TaSxT
a8Sx

21# Tr@TbSyT
b8Sy

21# Tr@TcSzT
c8Sz

21#ubb̄)

3@d~x2xi !2d~x2xi8!#@d~y2xi !2d~y2xi8!#@d~z2xi !2d~z2xi8!#, ~C2!

whereSx5S(x,x2 i)5S(x,x2 i8 ) ~after dropping the ‘‘last’’ nucleon! and independent ofxi . The product of three brackets with
d functions integrated overxi andxi8 obviously gives zero. Sôr

a(x)rb(y)rc(z)&50, as advertised.
Similar techniques can be applied to an arbitrary odd number of densities to show that their correlation function is
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