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Non-Abelian Weizsaker-Williams field and a two-dimensional effective color charge density
for a very large nucleus

Yuri V. Kovchegov
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We consider a very large ultrarelativistic nucleus. Assuming a simple model of the nucleus and weak
coupling we find a classical solution for the gluon field of the nucleus and construct the two-dimensional color
charge density for McLerran-Venugopalan model out of it. We prove that the density of states distribution, as
a function of color charge density, is Gaussian, confirming the assumption made by McLerran and Venugo-
palan.[S0556-282(196)01721-3

PACS numbeps): 12.38.Aw, 24.85+p

I. INTRODUCTION of the quark fields. We make a gauge transformation which
changes the total potential to the light-cone gauge. So we get
Consider a very large nucleus, probably larger than can ba solution to the classical equations of motion in the light-
physically realized. The nucleons are distributed homogeeone gauge, where the field, is directly related to the
neously inside the nucleus. Recently McLerran and Venugogluon distribution in the smabl-region[1].
palan proposed a program of computing the gluon distribu- Following McLerran and Venugopalan the nucleus is con-
tion fuctions for such a nucleus at smal(1,2]. sidered to be very large; thus, although the field of each
One of the interesting problems in the McLerran-individual nucleon is weak, the total field is strong at low
Venugopalan model for the smallpart of the gluon distri- momentum in the light-cone gauge due to the overlap of the
bution of such a large nucled4,2] is finding the classical fields of a huge number of nucleons. Still we can neglect the
solution for the gluon field, treating the valence quarks of thecontributions of several nucleons, without changing the an-
nucleons in the nucleus as recoiless sources, whichsare swer; i.e., we work in the leading power of the number of
functions along the light cone when the nucleus is movinghucleons.
near the velocity of light. A convenient way to deal with the ~ We may treat the source as classical only when we are at
problem is by working in the light-cone gauge. The source issufficiently small momenta that the individual quarks cannot
characterized by a two-dimensional color charge densitpe resolved. It was shown ifil] that this requires that
p(X), wherex is a vector in the transverse direction. The k%< u?, wherek is the typical momentum scale. The weak
proposed model assumes that in order to find the averagmupling approximation is valid whelgz>AéCD Then the
value of any observable having longitudinal coherencemomentum range we consider Acp<k?< u?.
length long compared to the nucleus, one calculates this ob- Now the task is to construct the two-dimensional charge
servable for a giverp(x), and then averages it over all  density, giving the correct classical solution. This is done by

with the measure just substituting the classical solution in the equations of
1 motion. The density we find this way happens to satisfy the

dolexd — f d2xp2(x ) 1 Gau_ssmn d|s§r|but|on. We shOV\_/ .thIS by qalculatmg the cor-

f Ldp] p( 2u° p7(x) @ relation functions of the densities at different transverse

. ] points and proving that they are exactly what one would
wheren” is the average charge density §quarec‘j‘. expect for the Gaussian distributi¢fy). That is, we justify
We consider a large nucleus consisting of “nucleons,”the method for averaging the observables proposed by
which for simplicity of description are chosen to be just pjcLerran and Venugopalan.
quark-antiquark pair¢see Fig. 1. Valence quark and anti- | Sec. Il we calculate the solution of the classical equa-

quark are treated as point particles free to move inside of thgons of motion, the non-Abelian Weizsieer-Williams field.
nucleon, but unable to get out.

We are interested in the gluon field of the ultrarelativistic
nucleus viewed in the laboratory frame. We assume that the
field in each individual nucleon is not large. This allows us
to approximate the covariant gauge potential of each quark
by a single-gluon exchange. In a covariant gauge the classi-
cal field of a single ultrarelativistic particle is proportional to
a & function in thex_ direction[3]. Since in our model of a
ultrarelativistic nucleus different quarks have different
coordinates in the laboratory frame, the fields of individual
guarks do not overlap, which allows us to superimpose them
and justifies our single-gluon exchange approximation. Then
the total field of the nucleus in the covariant gauge is the sum FIG. 1. Nucleus with “nucleons” being quark-antiquark pairs.
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In Sec. lll we construct the two-dimensional charge density. g B8 X—Xi
In Sec. IV we show that the charge density has a Gaussian  F/ =— > TATH| S(x_—x_j)——
distribution by calculating the correlation functions. In Sec. 2T a=1i=1 Ix—x|?

V we confirm the techniques proposed|[ii.

X=X/
—8(x_—x.;) . (6)
Il. APPROXIMATE SOLUTION Ix—x/|?

We start with some random distribution of nucleons in theFrom here on the subscript will mean that the object is a

nucleus and gquarks and antiquarks in the nucleons. The - o
q d vector in the transverse space over this index.

nucleons, in the rest frame of the nucleus, are assumed to be . .
We now perform a gauge transformation to transorm this

spheres with equal radius, and the quarks and antiquarks are, . . : I
distributed randomly inside each sphere, with equal probabﬁ?sgld into the light cone gauge. The potential in a new gauge

ity to be at any place inside the sphere, but with zero prob-
ability to get outside. The density in the rest frame is given

[
by A,=SA S '~ a(aMS)s*l. (7)
.38 . Requiring the new gauge to be the light cone gauge,
p(0= 2 T2, (2 A,=0, we obtain
X_
with S(x,x_)= Pexp{ —igf dx’A;(x,x’)). (8)
N Then the field in the light-cone gauge is
PYX) =92 (THAX=x)=8x=x)], ()

Alx,x_)= f T X Fl (xX)

Whereii is the coordinate of a quark in thth nucleon(there .
are N nucleons in the nuclelisx’ is the coordinate of the :f dx” S(x,x")F,  (x,x2)S™Hx,x"). (9)
antiquark, T* are generators of S8) in color space, and o

o © .
(T) are similar generators in the color space of eachhn\y transverse components are non-zero. Substituting
nucleon. The reason we separate them is becatisemes F'. (x,x") from Eq.(6) we get

from the currentjizgq_ayﬂ(Ta)aﬁqB, and so the expres-

sion for p® should include ar# acting in each individual 9 8 N
nucleon’s color space. Ax,x_)=——2 > (T3
In the laboratory frame for the ultrarelativistic nucleus the 2m a=1i=1
density is X—X;
X S(Z:X—i)TaS_l(LX—i)ﬁz9(X——X—i)
8 N = =
g
pxx)=— 2 > TATHS(x-—x-)8(x—%) x—x',
J2 a=ti=1 —S(;,x’,i)TaS*l(g,x’,i);_—;,PH(X,—x’,i) .
= 3(x- =X 8(x=x))]. (4) (10)

;qhis is our estimate of the solution of the classical equations
of motion for a given configuration of quarks inside the
nucleons and nucleons inside the nucleus. Formd@
gives us the non-Abelian Weizasker-Williams field gener-
ated by the valence quarks.

Assuming that the coupling is weak and using the expressio
for the potential of a single particle in a covariant ga{ige
Appendix A] we approximate the field of the nucleus by
superposition as

8 N
, g ara Ill. TWO-DIMENSIONAL COLOR CHARGE DENSITY
Al=—— 2 2 TA(THLSx-—x-)In(x—xN) , L
27 a=1i=1 The equation of motion is
—8(x_—x")In(]x—x/[\)], A’=0, A’ =0, D, F*'=J". (11

(5) In the McLerran-Venugopalan moddl] the classical current
J# only has components in the direction and is propor-
where\ is some infrared cutoff. The prime at the field or the tional to aé function of x_ :
field strength denotes the covariant gauge. The field strength
in the covariant gauge is then JH(X)= 6T 8(Xx_)p(X). (12
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This can be treated as a definition of the two-dimensionaBut the matrices we exponentiatg;(ands,) commute(for
color density. Our goal now is to constrysfx). Integrating  the same), and so

both sides of Eq(11) overx_ and using Eq(12) gives
. o 8

N
e ig 2 e | XXl
p(x)= J—oc dx-DiF (%% S(LXJ:LIl EXI{E a=1 T(Tn |l_¥i’|)
:fmdxf{ai':ﬂ(l:x—)—ig[Ai(é,Xf),Fﬂ(&Xf)]}, XO(X-=X_i)|. (18)

13
(13 Here we neglected the contribution of the “last” nucleon,

where i=1,2 (transverse direction Using A(x,x_) from i.e., the nucleorior several nucleonsvhose quarks or anti-

Eqg. (10) , we can calculaté-, | (x,x_). Substituting both quarks may overlap the point_ at which we calculate

in Eq. (13) we end up with the following expression for the S(x,x_). These nucleons may potentially cause us some

density: trouble, but the philosophy of the large nucleus approxima-
tion implies that the fields of individual nucleons are small,

8 N .
_ a 1 _ and we construct a strong field out of a large number of
PX)=9 a§=:1 Z:l (TOIS(xi x-)T*S™ % . X-1) AX=X)  pycleons. The contribution of each individual nucleon is neg-
ligible; it is their sum which matters. That means we can

—S(x/ X" T3S 1% ,x" ) d(x—x)]. (14  neglect these “last” nucleons.

_ _ _ _ Another way to say this is that we want to perform a
The details of calculations are presented in Appendix B. Wesalculation keeping the leading powers Nf only. Then
can see now that our expression for two-dimensional densitgropping a few nucleons will not change our result.
is just a rotation of the three-dimensional dengiiy the From Eq.(18) we see thaS(x,x_) is cutoff independent,
laboratory framgwe started with: and so is the density(x).

+ oo
p(x)=f dx_S(x,x_)V2p(x,x_)S H(x,x_). (15)
o IV. CALCULATION OF CORRELATION FUNCTIONS

_In the expression for the light cone potential we had an N that we found the charge density, let us show that its
infrared cutoffA, and so it may seem that this cutoff will gistripution is Gaussian by calculating the density correlation
appear in the5(x,x-) and, consequently, ip(x). However,  fynctions. First we note that the average density is zero, as
this is not the case, because, although the light cone pOte”t'@kpected:<pa(x)>=0, where(- - -) denotes the averaging

is cutoff dependent3(x,x-) is not. To see this let us per- qoyer il possible positions of quarks and antiquarks in the
form an explicit calculation o8(x,x): Substituting Eq(S)  nycleons, and nucleons in the nucleus, as well as averaging
into Eq. (8) and using the definition of the path-ordered ex-gyer all possible colorékeeping each nucleon color neural

ponential we obtain For two densities correlation function we have
N
six,x =11 [6(x"—x_)e¥ie™ +a(x_—x")e¥e™], N ﬁ f d3r,  d3xd%x,
i=1 (16) <p (X)P (¥)>_k=1 (4/3)’7TR3 [(4/3)’7733]2
with X (aalp*(x)p°(y)| BB), (19

ig? whereR is the radius of the nucleus, is the radius of the

8
19

2 o gl THTHIN(X=xi[N) O(x-—x_p), (1D nucleonsr, is the position of the center of theh nucleon in

- the nucleusin the rest framg andx, andx;, are positions of

ig2 8 the quarks in the nucleonse |- - -| 38) implies an average
S=—— TATHIN(|x—x"i|N) O(x_ —x",). over all color-neutral states of the nucleons.
27 a=1 - Using Eq.(14) we obtain(sincep®(x)=2T T?p(x)])

3 3y 3%/ N
d°ry d>x, dxy

N 8
a — C d
<P (Z)pb(¥)>_ g2 |£Il J’ (4/3)7TR3 [(4/3)7Ta3]2(a5|rc’dz=l i,j2=1 (Tl )(TJ)

X{2 T T2S(x; ,X_) TS H(x; . x_)18(x—%)) —2 T TAS(x, , X" TS (x| ,x")18(x—x/)}

{2 TTPS(x; X)) TS~ 20x . x_)]18(y—x) =2 TATPS(x /TS 4x x_)18(y—x)}IBA). (20
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In S(x; ,x_;) the “last” nucleon is thath nucleon. Applying

the same arguments we had before we can drop this “last” N—Tf[(TiC)(Tfj)]Z 5
nucleon. Then there will be noTf) matrices inS(x; ,X_;) ¢

and S(gi’ ,x_;). It is convenient to label nucleons according

to their coordinates along the. axis. The greater the coor- Each density is a difference of the quark and antiquark parts.
dinate, the greater the number of the nucleon. Without anyn Eq. (20) one can easily see that the product of qunkd

loss of generality we can assume thatj. Then, ifi>] the  antiquark components gives & function ofx andy , while

(T) matrix in front will be the only matrix in théth nucleon  the product of quark and antiquark components gives some
color space for the term corresponding to fixeghdj in our ~ smooth function. In most of the physical applications we will
expression. So when we do the color averaging it will givebe looking at scales much smaller than the nucleon’s radius
zero[ Tr(T;)=0]. That means thdt=j. Then color averag- a [4]. At these scales we can neglect this cross terms with
ing in theith nucleon space gives respect to thes function terms:

1
d
Néc.

c

N
2 d3r|

d3x,d3x,,
(P (RP°0)= e xH 4,3)WR32 :

H [(413) wa3]2

(x—r )22

8
X(aa] 2, 4 TS X)) TS M X)) THT'S(x x-) TS % x-)1[BA). (2D

After dropping the “last” nucleonS(x,x_;) = S(x,X";). (p?a(xY)- - .pazn(x2n)>
For two traceless 83 matricesM andN the following h h

formula is true: = (p(x}) p22(x2)) - - - p2n-1(x2N 1) plan(x2N))
8

1 .
> T{MTa] TH{NT?]= 5 THIMN]. (22) + permutations, (25)

wherex?, " are just 2 arbitrary points in the nucleus.
Also we can show that a correlation function with an odd
number of densities is zero to all ordersNin(for details see

Appendix O:
(P*(X)p"(Y))= 5ab 5(X YyVi-m (23

Here, for the first time we made an assumption about the
geometry of the nucleus and nucleons in it — when doing V. CONCLUSIONS
the average over the positions of quarks and nucleons we
assumed that the nucleus and nucleons are spherical in the

rest frame. For a cylindrical nucleim the z direction one and provmg Eq {29 and (26) we showed that, for anp
would get pointsx*- - - x",

(pP1(x)- - pn(xM))

_ JTdplp®(xh)- - - pn(xMexd — [d*xp*(x)/2u*(X)]

Using this, and making some approximation when integrat-
ing overr; (a<R), we get

(p1(x1)- - - pPnr1(x2" T 1) =0. (26)

By calculating the two-density correlation functid@3)

2 N
(P*(X)p°(y))= Wba—c —2 0X=Y).

By employing a similar technique of dropping the “last” JIdplexd — fd*xp(x)/2u?(x)] '
nucleon in theS(x; ,x_;) and keeping the leading powers of 27)
N only, we can show that the four-density correlation func-
tion is with
(P*(x)p°(Y)p%(2)p(W)) , 3g Cr

mA(X)= N, w_RZ
=(p*(X)p°(Y)(p%(2)p(W)) +(p*(X)p%(2))
X (pP(y) pd(w)) +{p2(x) pd(W) ) p°(y) p%(2)) (24 _3g Ce 1 s x?
(P°(Wp (W) +{p*(x)p" (W) {p"(Y)p(2)) (24) > N 7z \/ —= (28)

and prove a similar formula for a correlation function with
any even number of densities, i.e., that it can be represented our model. Note that oyn? goes adN'?® as expected. The
as average on the left hand side is understood as
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N d3rk d Xkd3

=11 | G fam e @el 188).

For a spherical nucleyg? is a function ofx.
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sented as some functional K (x’,x) p(x)d?x; namely, the

value of this observable for a giver(x) is

0,=F

p

f K(x",x)p(x)d?], (29)

whereF(f) is some functional an&(x’,x) is some kernel
independent op(x). For instance, one can consider the Wil-
son loopW={( Tr Pexp(-igfdx-A)). It is a functional of
as |f we perform a Fourier transform
JK(x'",x)p(x)d?x. Then, using the definition of a path-

ordered integral, we can expand the Wilson loop in powers A, (k)=

A(x). The field A(x) can be represented

of A(X):
W:< TrH [1—igdxk-A(xk)]>
k
=< Tr; CrA(Xp) - - 'A(Xn)>1 (30)
with some coefficients c¢,. Writing A(x) as
A(x)==5_,T3[K3(x,x")p(x")d?x’, we achieve

8

W=§n) c, >

al...an=]_

Tr[Tal. . .Tan]

X J dxq - AKX x7) - K(Xq %)
X{(p(Xy)---p(X}))- (31)

Now we can use E27), obtaining
2
f[dp]ex;{ fdzxig(—)) Tr Pex;{—igf dx.A>
2 .
e P (X
f[dp]exr{ fd X7 — (x)

A similar treatment can be applied to any observabikich
can be represented as Eg9)] to prove that

W:

(32

 JTdplexd - Fdxp?(x)/242(x)10,
(O0)= FrdpTexd — Txp? (012120 ]

(33

This confirms the assumption made by McLerran and

Venugopalan in their mode[1].

1| have recently learnefd_. McLerran to A. Mueller(private com-

APPENDIX A

From [3] the light cone potential of a charge moving

with a velocityv is

J2e 1

A, = A=A_=0.

AT 2x®+(1-v)x?

(A1)

f dX+dX_dZXeik+X,+ik,X+—i£~lA”(X)
(A2)

1
(2m)?
and take the limiv — 1, we get, for the ultrarelativistic par-
ticle,
ed(k_)

2mk?

A, (k)= (A3)

If we go back to the coordinate space, by performing an
inverse Fourier transform of EGA3), we end up with
e
A+ ()= 5—8(x-)In(x]), (A4)

which is different form they — 1 limit of the original expres-
sion by a gauge transformation.

APPENDIX B
Defining
8
ﬁ(x,x,)—— 2 (THS(XX) TS H(x,x0), (B1)
’7T a=1
we can rewrite Eq(10) as
N
Ax)=2, | fixx- .>| |20(x_ )
= I
, L X=X ,
— XX ) 0 x| (B2
[x—x'il
Then the field strength is
F -2 a
+L(¥1Xf)_ 0—,)(_7_(51)(*)
N X=X
=§l fi(X,X_ ')|Z L 5 O(X_—X_;)
—X';
—fi(x, x,l)| x_ |25(x,—x,,) (B3)
AT A

munication)] that similar conclusions have been reached by Profes-

sor L. McLerran and collaborators.

Substituting Eqs(B2) and (B3) into Eq. (13) we get
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N
p(x)=,_21 [fi(x,X_)2m8(x—x;) — fi(x,x_ ) 2w S(x—x/)]

!

—=Vii(x, x_,) ¥i|2

N
+2
=1

Vii(x, x_,)| |
X=X X—X
_Ig|2—l ([fi(lvxi)afj(Xan)]Wme(xj—Xi)

!

X—X]
—[fi(x,x-), (%, X-,)]—zmﬁ( i Xi)

!

X —
=[x, f(x.x- J)]| |2><_—><_J|f‘9(x =%

X=X X—X
+LFixx2), Fi(x, ij)]| |2m9( Li=x)

A straightforward calculation yields
igd & 3 X X—X;
Vhx-) =gz 2y 20 2 (T [y =)

XS, X ) TPW(X, X, X_ ) TASTH(X,X_j) = S(X,X_ ) TAW(X,X_j ,X_;)
x—x’
XTPS Y(x,x_j)]— Wo(x_ =X DISOGXE ) TPW(X, X, X2 ) T?

X STHx, %) = S(X X TAW(X, X | X ) TPS L (x, X )]

and
92 8 8
_ a b Ta . .
[fixx- ) fixx 1= 5522 2 (TOTDISHKX- DT WX X-)
XTbS?l(X!ij)_S(Zixfj)TbW(llei 1ij)Tasil(5!Xfi)]1
where

W(X,X_j,X_j)= Pex;{ —ig JXidx_A;(g,x_)).
X

Plugging this back into EqB4) we end up with

N
P =2, [fixx-)2m3(x=x) ~ fi(x X)) 2w 8(x=x)],

which is equivalent to Eq14).
APPENDIX C

(B4)

(B5)

(B6)

(B7)

(B8)

Let us prove that the three-density correlation function is zero. Then the proof for an arbitrary correlation function of an odd

number of densities will become obvious. Similar to E20) we write
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N dir,  d3xd3/

8 N
a b c —n3 Ta’ T-b, -|-c’
(P*(X)p°(Y)p%(2) =7 .1]1 e [(4/3>wa3]2(“aa.b%=li,j%l( ETYTE)

X{2 TETS(x; X ) TS 2(x; X 18(x—x;) — 2 TATAS(x, . ) TS (x/ x)]8(x—x))}
x{2 T TS(x; X )T S™H(x; X )18(y—x) =2 TATOS(x{ X" TP S™H(x/ X" )18y —x])}

{2 TTOS(xk . X ) TS~ 0ty X 18(z= %) =2 T TES(x, X ) TS'S™Hxp X" 18(z— %)} BB).

(CY
After dropping the “last” nucleon and averaging over the colors of this nucleon, we get
N dir, A d3x/ 8 N
(p*(0p"(pt(2) =8 ] e (4/3”&3]2(0[5(61,,%,:1 2 T
X T TS, T2 S 1 T T°S, T°'S, ] THTeS,T¢'S; 11 88)
X[8(x=x) = 8(x =X )1 8(y— %) — 8y —x) ][ 8(z— %) — 8(z— X] )], (C2

whereS,=S(x,x_;)=S(x,x_;) (after dropping the “last” nucleonand independent of; . The product of three brackets with
8 functions integrated over; andx obviously gives zero. S6p?(x)p°(y)p®(2))=0, as advertised.
Similar techniques can be applied to an arbitrary odd number of densities to show that their correlation function is zero.
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