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Renormalization factors are most easily extracted by going to the massless limit of the quantum field theory
and retaining only a single momentum scale. We derive the factors and renormalized Green’s functions toall
orders in perturbation theory for rainbow graphs and vertex~or scattering! diagrams at zero momentum
transfer, in the context of dimensional regularization, and we prove that the correct anomalous dimensions for
those processes emerge in the limitD→4. @S0556-2821~96!00320-7#
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I. INTRODUCTION

The connection between knot theory and renormalizati
theory @1# is one of the more exciting developments of fiel
theory in recent years because it relates apparently differ
Feynman diagrams through the common topology of the
sociated knots. Thus it serves to explain why transcende
numbers for the renormalization constantsZ occur in some
diagrams@2# and not in others, thereby allowing the Feyn
man graphs to be grouped into equivalence classes. So
times, in gauge theories theZ factors within a particular class
may cancel because of the existence of Ward identities, le
ing a non-transcendental result forZ; this happens in elec-
trodynamics of scalar and spinor particles to fourth order
the quenched limit and in chromodynamics to third order@3#.

The class of graphs which correspond to ladders and ra
bows are especially simple in this connection because th
possess trivial knot topologies. Thus one may anticipate t
Z factors for them are particularly easy to evaluate. Kreim
@1# has provided rules for extracting them within the fram
work of dimensional regularization, through the standard e
pedient of finding the simple 1/e52/(42D) pole term aris-
ing in products of functions, after removing lower-order po
terms connected with subdivergences. Thus vertex diagra
bring in function factors of the type

jD~e![~p2!e~ j11!E d422ek

~k2!11 j e~k1p!2
,

while rainbow graphs lead to products of
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jV~e![~p2!31 j e2D/2E @dDk/~k2!21 j e~k1p!2# .

It has to be said that, although the procedure is straightfo
ward, extracting the 1/e term innth order requires consider-
able graft. Kreimer has proven that the simple pole ine is
free of Riemann zeta functions.

In this paper we shall show that the problem can be
solved toall orders in perturbation theory for ladders and
rainbows @4#, in the context of renormalization in dimen-
sional regularization because of two fortuitous circum-
stances:~i! the Green’s function satisfies a differential equa-
tion and ~ii ! this equation is actually soluble in terms of
Bessel functions. The limit asD→4 may then be taken at the
end and, as a useful check, the anomalous dimension pro
erly emerges.~It is a rather delicate limit, requiring a saddle-
point analysis of the integral representation of the Besse
function, since it looks quite singular.! We have successfully
carried out this program for meson-fermion theories, both fo
vertex functions and rainbow diagrams; however we hav
not succeeded in solving the problem nearD56 for f3

theory because the differential equation is of fourth order an
cannot be expressed in terms of standard functions; neve
theless we can obtain the answer in the limitx→0 or
p→` for D56.

In the next section we treat the vertex diagrams for scala
mesons, while the following section contains the analysis o
the rainbow diagrams. The Appendix contains details of th
vector meson case, which are rather more complicated.

II. VERTEX DIAGRAMS

We shall consider a theory of massless fermionsc and
mesonsf in D dimensions since the purpose of our work is
to investigate the behavior of the Green’s function asD
5373 © 1996 The American Physical Society
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tends to 4. Letg [ r ] signify the product ofrg matrices~of
size 2D/232D/2) normalized to unity, namelyg [m1m2•••mr ]

so
that we can write the meson-fermion interaction in the for

Lint5gc̄g [ r ]cf [ r ] ,

where f [ r ] is the corresponding tensor meson field. Th
equation for the renormalized tensor vertex functionG [s] at
zero meson momentum, taking out the factorg, is

G [s]~p!5Zg [ r ]ds
r2 ig2E d̄Dqg [ r ]

1

g•q

3G [s]~q!
1

g•q
g [ r 8]D

rr 8~p2q!, ~1!

whered̄Dq[dDq/(2p)D. We shall assume that the massle
meson propagator above,D rr 8(p2q), can be chosen in a
Fermi-Feynman gauge so

D rr 85~21!rh rr 8/~p2q!2,

whereh stands for the diagonal Minkowskian metric pe
taining to the tensor structure, specificall
h [m1n1

•••hmr ]nr8.
To make further progress we utilize the nonamputat

Green’s function,

G[ r ]~p!5 ~1/g•p! G [ r ]~p! ~1/g•p! ,

to remain with the ‘‘simpler’’ linear integral equation

g•pG[s]~p!g•p5Zds
rg [ r ]1 i ~2 !rcr

sg2E d̄Dq
G[s]~q!

~p2q!2
,

~2!

The nature of the couplings in massless theories means
the Green’s function always stays proportional tog [s] and
can be decomposed into just two pieces@5,6#:

G[s]~p!5g [s]A~p2!1g•pg [s]g•pB~p2!. ~3!

On the right-hand side of Eq.~2!, cr
sg [s]5g [ r ]g [s]g

[ r ] , is
essentially an element of the Fierz transformation matrix f
anyD, given by@5#

cr
s5~21!rs(

q
~21!qSD2r

s2q D S rqD .
We shall convert the integral equation~2! into a differen-

tial equation by taking the Fourier transform.~In fact we
could almost have done this from the start by writing th
equation for the full Green’s function in coordinate space!
This maneuver produces
m

e

ss

r-
y

ed

that

or

e
.

g•]G[s]~x!g•]Q5Zds
rg [ r ]d

D~x!1 icr
s~2 !rg2Dc~x!G[s]~x!,

~4!

where the massless meson propagator isiDc(x)
5G(D/221)(2x21 i e)12D/2/4pD/2. Because the coupling
constant is a dimensionful quantity, we can define a dime
sionless strengtha5 fine structure constant /4p via

~2 !rcr
sg2G~D/221![16pD/2m42Da

upon introducing a mass scalem. This simplifies the result-
ing expressions, as we can see in the purely scalar ca
where there is but a single term and equation:

@]22 ~4a/x2! ~2m2x2!22D/2#G~x!52ZdD~x!. ~5!

The equation is readily solved in dimensionD54 yielding
G}(2x21 i e)(212A114a)/2. For DÞ4 we can make
progress by passing to a Euclidean metric (r 2[2x2):

F d2dr2 1
D21

r

d

dr
2
4a

r 2
~mr !42DGG~r !5ZdD~r !.

The whole point of the manipulation is that one is fortunatel
able to solve this equation~for rÞ0 at first! in terms of
known functions, namely Bessel functions. The correc
choice of solution, up to an overall factor, is

G~r !}r e21J121/e@A24a~mr !e/e#; D[422e

because in the limit asa→0 we recover the free-field solu-
tion r 2D. For dimensional reasons, let us carry out our reno
malization so thatG(1/m)5m222e. With that convention,
the vertex function reduces to

G~r !5~r /m!e21J121/e@A24a~mr !e/e#/J121/e~A24a/e!.
~6!

Furthermore the correct singularity for the time-ordere
functiond(x) emerges if we reinterpretr 252x21 i e above.
We shall not worry at this stage whethera is positive or
negative, the sign can vary with the model anyway, since w
can easily continue the function fromJ to I as needed.

The problem presents itself: how does the four
dimensional result, with its anomalous scaleg5A114a
21, emerge from Eq.~6! as e→02, say? This is clearly a
delicate limit because both the index and the argument of t
Bessel function become infinitely large. Before answerin
this question, let us note that, in a perturbative expansion
Eq. ~4!, viz., a small argument expansion ofJ,
G~r !5r 2e22
@11a~mr !2e/e~2e21!1a2~mr !4e/2e2~2e21!~3e21!1•••#

@11a/e~2e21!1a2/2e2~2e21!~3e21!1•••#
,
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the poles ine cancel out to any particular order ina. For
instance up to ordera2 we obtain, ase→0,

G~r !5r22@112~2a1a2!lnmr12a2~ lnmr !21•••#

which agrees precisely with the expansion of the anomalo
dimension in the logarithmic terms. Returning to the limit o
small e, we will make use of the saddle-point method o
obtaining asymptotic expansions of integrals. Suppose t
f (t) has a minimum att5t in the integral representation:

F5~2 i /2p!E
C
exp@ f ~ t !#dt.

Then the saddle point method gives

F5expf ~t!
1

A2p f 9~t!
F11

f 99~t!

8@ f 9~t!#2
2
5@ f 98~t!#2

24@ f 9~t!#3

1
35@ f 99~t!#2

384@ f 9~t!#4
1••• G .

As confirmation of the correctness of the terms above we c
verify that the Debye expansion@9# of the Bessel function is
properly reproduced:

Jn~n/cosht!5
2 i

2pE2 ip1`

ip1`

dten~sinht/cosht2t !

5
en~ tanht2t!

A2pntanht

3F11
cotht

8n S 12
5

3
~cotht!2D1••• G ,

because the integrand minimum occurs att5t. Our case~6!
is a variant of this. Working only to first order ine, and
takinga negative initially, the integrand exponent is

~A24asinht1t !/e1A24alnmrsinht2t

and is stationary at the complex valuet5t, where

cosht5 @~e21!/A24a~11e lnmr !# .

Following through the mathematical steps, and omittin
straightforward details, to ordere we end up with

G~r !5r 2e22~mr !12e2A114aF12
2ae

114a
ln~mr !1••• G . ~7!

It is satisfying that this produces the all-orders~in coupling,
a) result at four dimensions whene→0, with the correct
anomalous scale.

The problem can be treated in much the same way fo
pseudoscalar meson field. The only possible difference i
change in sign ofa, because of ‘‘g5’’ matrix anticommuta-
tion. As for the vector case (r5s51), the procedure pro-
duces a pair of coupled equations for the two scalar com
nentsA and B of the Green’s function,Gm(p)5gmA(p

2)
1g•pgmg•pB(p2). A discussion of this case is given in th
Appendix, where it is shown that the only easy limit i
D54; one finds after Euclidean rotation that

A5arb, B5brb12, a/b5c~b12!/~b22!,

where

b5211A51A1614c1c2 and c5g2/2p2,
us
f
f
hat

an

g

r a
s a

po-

e
s

in four dimensions; we have chosen the root which reduc
to the free field solution wheng50 although one can con-
template strictly nonperturbative solutions@10#.

The difficulty is symptomatic of what happens inf3

theory near six dimensions; in that case the Green’s functio
G(p)5G(p)/p4 obeys the Fourier transformed equation@7#,

„]424a@~mr !62D/r 4#…G~x!5ZdD~r !. ~8!

This is a differential equation of fourth order inr and its
solution cannot readily be expressed in terms of famili
transcendental functions. However in the limit asD→6, it is
quite simple to find the~power law! solution:

G~r !}r b, b5212A522A41a,

which correctly reduces to the free field solutionb522
when the coupling vanishes.

III. RAINBOW DIAGRAMS

We wish to treat the corrections to the fermion propagat
in a similar manner, by considering the rainbow correction
In such an approximation the rainbow graphs give rise to
self-energy, which is self-consistently determined accordi
to

SR~p!52 ig2E d̄Dq

~p2q!2 F 1

g•q
2

1

g•q
SR~q!

1

g•qG ,
with the unrenormalized propagator determined by

SR~p!5 1/g•p2~1/g•p! SR~p!~1/g•p!

at this level@8#. This leads to the renormalized rainbow cor
rected propagator equation:

g•pSR~p!g•p5Zcg•p1 ig2E d̄Dq

~p2q!2
S~q!. ~9!

The nature of the massless problem is that one can alw
write SR(p)5g•ps(p), and by Fourier transformation, con-
vert Eq.~9! from an integral equation to a differential equa
tion:

2 ig•]]2s~x!5 ig•]ZcdD~x!1 ig2Dc~x!ig•]s~x!

or

@]21 ig2Dc~x!#]ms~x!52Zc]mdD~x!. ~10!

Now for any functionf (Ax2), using the two lemmas,

]m f5xm f 8/Ax2, ~11a!

]m]n f5S hmn2
xmxn

x2 D f 8

Ax2
1
xmxn

x2
f 9, ~11b!

we can carry out an Euclidean rotation in order to arrive
the differential equation for the scalar functionS[ds/dr:

F ddr SD21

r
1

d

dr D1
4a~mr !42D

r 2 GS~r !52ZcdD~r !. ~12!

In 4D this has the simple solutionS(r )}r2122A11a, in turn
implying S(p)}g•pp2412A11a. However it is in fact pos-
sible to solve Eq.~12! for anyD. The proper solution, nor-
malized toS(1/m)5m322e is
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S~r !5r ~r /m!e22
J122/e@A24a~mr !e/e#

J122/e~A24a/e!
. ~13!

To get the rainbow propagator, we must first integra
s(r )5* rS(r )dr}(m50

` J222e12m(A24a(mr )e/e), and then
Fourier transform to obtainSR(p)5g•ps(p).

If the mesons are neither scalar nor pseudoscalar, but
sor, the coupling constant is multiplied by the factorc1

r ; that
is all.

IV. CONCLUSIONS

We have demonstrated that it is possible to work out t
all-orders solution of Green’s functions for ladder and rai
bow diagrams for any dimensionD and that, in the limit as
D approaches the physical dimension, the correct scaling
mension is obtained. We have exhibited fully how this ha
pens for scalar theories, but have succeeded only to a lim
extent in vector theories, because the equations are cou
and end up as fourth-order ones, with no transparent exp
sion in terms of standard functions of mathematical physi
In any event, it is clear from the form of the Green’s functio
that there are no transcendental constants in sight, even w
we expand the answers perturbatively in terms of ln(mr), so
that the renormalization constants are free of them. This c
firms the finding of Kreimer for arbitrary ladder or rainbow
order @2# and does not come as a surprise.

One can extend the ideas here to scattering proces
which contain a single momentum scale, such as fermio
fermion scattering~again ladder graphs! for any D. It is a
simple matter of taking the Fourier transform in particula
channels and converting the momentum integral equation
differential ones in coordinate space. We shall not labor t
issue in this paper since the steps are fairly obvious and
easily be filled in by the reader. What we have not solved
any D is the case of crossed ladders, when the kernel w
presumably lead to transcendentalZ constants; that is a task
for the future.
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APPENDIX: THE VECTOR CASE

The vector vertex function

Gm~p!5A~p2!gm1g•pgmg•pB~p2!,

upon Fourier transformation and tracing withgn , produces
the coordinate space equation,

~]2hmn22]m]n!A1]4hmnB

5Zhmnd~x!1 ig2~D22!Dc~x!

3@hmnA1~]2hmn22]m]n!B#.

Using lemmas~11!, and identifying the terms multiplying
hmn andxmxn , we arrive at the pair of coupled equations

O@2A1OB#1
2

2

dA

dr
5 ig2~D22!DcFA1

2

r

dB

dr
2OBG ,

QA5 ig2~D22!DcQB,

where O[@d2/dr21(D21)/r (d/dr)# and Q[@d2/dr2

2(1/r )(d/dr)]. We have not suceeded in solving these
equations in terms of familiar functions forDÞ4. However
in 4D, one can make considerable progress by looking for
power-law solution of the typeA(r )5arb, B(r )5brb12.
Simple calculation reveals that a solution exists provided th

a/b5c~b12!/~b22!,

c214c2b~b22!~b12!~b14!50,

c[g2/2p2.

The quartic in the power exponentb is fortunately simple to
solve in terms of the coupling~or c), the answer being

b5211A51A1614c1c2521c/32c2/54•••,

so thata/b.1215c/31•••.
is
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