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Renormalization factors are most easily extracted by going to the massless limit of the quantum field theory
and retaining only a single momentum scale. We derive the factors and renormalized Green’s funetibns to
orders in perturbation theory for rainbow graphs and vefmxscatteringy diagrams at zero momentum
transfer, in the context of dimensional regularization, and we prove that the correct anomalous dimensions for
those processes emerge in the liDit> 4. [S0556-282(96)00320-1
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I. INTRODUCTION ) ]
. o jQ(G)E(pZ)SHE_D/zf [dPk/(k?)>I€(k+p)?].

The connection between knot theory and renormalization
theory[1] is one of the more exciting developments of field It has to be said that, although the procedure is straightfor-
theory in recent years because it relates apparently differetyard, extracting the ¥term innth order requires consider-
Feynman diagrams through the common topology of the agable graft. Kreimer has proven that the simple poleirs
sociated knots. Thus it serves to explain why transcendentéiee of Riemann zeta functions.
numbers for the renormalization consta@tccur in some In this paper we shall show that the problem can be
diagrams[2] and not in others, thereby allowing the Feyn- solved toall orders in perturbation theory for ladders and
man graphs to be grouped into equivalence classes. Someinbows[4], in the context of renormalization in dimen-
times, in gauge theories tiefactors within a particular class sional regularization because of two fortuitous circum-
may cancel because of the existence of Ward identities, leatances(i) the Green’s function satisfies a differential equa-
ing a non-transcendental result far this happens in elec- tion and (i) this equation is actually soluble in terms of
trodynamics of scalar and spinor particles to fourth order inBessel functions. The limit &3 —4 may then be taken at the
the quenched limit and in chromodynamics to third of@r  end and, as a useful check, the anomalous dimension prop-

The class of graphs which correspond to ladders and rairerly emerges(it is a rather delicate limit, requiring a saddle-
bows are especially simple in this connection because thepoint analysis of the integral representation of the Bessel
possess trivial knot topologies. Thus one may anticipate thdtinction, since it looks quite singulaWe have successfully
Z factors for them are particularly easy to evaluate. Kreimecarried out this program for meson-fermion theories, both for
[1] has provided rules for extracting them within the frame-Vvertex functions and rainbow diagrams; however we have
work of dimensional regularization, through the standard exnot succeeded in solving the problem ndar6 for ¢°
pedient of finding the simple &~ 2/(4—D) pole term aris- theory because the differential equation is of fourth order and
ing in products of functions, after removing lower-order polecannot be expressed in terms of standard functions; never-
terms connected with subdivergences. Thus vertex diagraniBeless we can obtain the answer in the limi-0 or

bring in function factors of the type p—c for D=6.
g4-2ek In the next section we treat the vertex diagrams for scalar
.A(e)z(pz)f(jJrl)f e ———— mesons, while the following section contains the analysis of
! (k)" 4(k+p) the rainbow diagrams. The Appendix contains details of the
while rainbow graphs lead to products of vector meson case, which are rather more complicated.
Il. VERTEX DIAGRAMS
*Electronic address: bob.delbourgo@phys.utas.edu.au We shall consider a theory of massless fermignsand
"Electronic address: ack@theorie3.physik.uni-erlangen.de mesonsy in D dimensions since the purpose of our work is
*Electronic address: thompson@ictp.trieste.it to investigate the behavior of the Green'’s function as
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tends t/c2> 4. lety[r] signify the product ofr y matrices(of y- 3G (X) - 9= Z 8y 82(X) +icS(—) g2A () Gig (X),
size 22x 2P’2) normalized to unity, namely, .41 SO 4
VVPRR 4
that we can write the meson-fermion interaction in the form
— ” where the massless meson propagator iid.(x)
Li=9¢ vy, =T(D/2—1)(—x?>+i€)1"P"2147P”, Because the coupling
constant is a dimensionful quantity, we can define a dimen-

1] i i
where ¢'"! is the corresponding tensor meson field. TheSionless strength= fine structure constant #via

equation for the renormalized tensor vertex functigg at

zero meson momentum, taking out the faagois (=) c3g?T (D/2— 1) =167"2u4 Pa

) — 1
F[s](P)=Z7[r]5rs—|92f qu')’[r]ﬁ upon introducing a mass scale This simplifies the result-
1 ing expressions, as we can see in the purely scalar case,
Xr[s](q)HY[r’]A”’(p_q), 1) where there is but a single term and equation:

_ 072_ 4a/X2 _ 2X2 2—-D/2 G(x :_25D X). (5)
whered®q=dPq/(27)°. We shall assume that the massless L= AR 1660 ()

meson propagator abova"'(p—q), can be chosen in a The equation is readily solved in dimensign=4 yielding
Fermi-Feynman gauge so Go(—x?+ie)"1"ITR2  For D#£4 we can make
. ) progress by passing to a Euclidean metrie=t —x?):
AT =(=1)"" I(p—a)?,
d> D-1d 4a

whgre n stands for the diagonal Minkowskian metri_c. per- —+ — — —(un)*P|G(r)=28°(r).
taining to the  tensor  structure,  specifically dr rodr r
n[MlVl. .. nﬂr]”rr_

To make further progress we utilize the nonamputatedrhe whole point of the manipulation is that one is fortunately

Green’s function, able to solve this equatioffor r#0 at firsy in terms of
known functions, namely Bessel functions. The correct
Gpy(p)= (1/y-p) ' iny(p) (1/y-p)., choice of solution, up to an overall factor, is

to remain with the “simpler” linear integral equation

—5..Crs1(a)
— ; 2 Dn_—Ls]
y-PGig(P)y-pP=Z&y+i(—)"crg f d Y=g because in the limit as—0 we recover the free-field solu-
(2) tion r2P. For dimensional reasons, let us carry out our renor-

o _ malization so thatG(1/u)=u? €. With that convention,
The nature of the couplings in massless theories means thgde vertex function reduces to

the Green’s function always stays proportionalytQ, and
can be decomposed into just two pie¢Bs|: G(r)=(rlw) 3, [N=4a(ur)elld, y(\—dale).
6
Gg(P) = ¥gA(PY) + v Py Y- PB(P?). ) ®

G(r)ere 13, [V—4a(ur)¥e]; D=4-2¢

On the right-hand side of Eq2), c}y;q= v vig ¥, is Furthermore the correct singularity for the time-ordered
i . 1 l ' X . . N _ 2 .
essentially an element of the Fierz transformation matrix fofunction 5(x) emerges if we reinterpref = —x°+ie above.

any D, given by[5] We shall not worry at this stage whetharis positive or
negative, the sign can vary with the model anyway, since we
s s q D—r\/(r can easily continue the function frothto | as needed.
¢ =(-1 ; D% s q/lq) The problem presents itself: how does the four-

dimensional result, with its anomalous scaje-\1+4a
We shall convert the integral equati¢®) into a differen- —1, emerge from Eq(6) ase—0", say? This is clearly a
tial equation by taking the Fourier transforrfin fact we  delicate limit because both the index and the argument of the
could almost have done this from the start by writing theBessel function become infinitely large. Before answering
equation for the full Green’s function in coordinate space. this question, let us note that, in a perturbative expansion of
This maneuver produces Eq. (4), viz., a small argument expansion &f

[1+a(ur)?/e(2e—1)+a%(ur)*/2¢*(2e—1)(3e—1)+ - - -]
[1+a/e(2e—1)+a%/2e*(2e—1)(3e—1)+ - - -] ’

G(r)=r?¢2
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the poles ine cancel out to any particular order en For  in four dimensions; we have chosen the root which reduces

instance up to ordea? we obtain, as—0, to the free field solution wheg=0 although one can con-
Y 5 ) ) template strictly nonperturbative solutiofE0].
G(r)=r"T1+2(—a+a’)lnur+2a*(Inur)=+---] The difficulty is symptomatic of what happens i3

which agrees precisely with the expansion of the anomaloutheory near six dimensions; in that case the Green'’s function,
dimension in the logarithmic terms. Returning to the limit of G(p) =I"(p)/p* obeys the Fourier transformed equatfa,
small €, we will make use of the saddle-point method of 4 6-D; 4 _> <D
obtaining asymptotic expansions of integrals. Suppose that ("= 4al(ur)™ EIrDG) =287(r). ®
f(t) has a minimum at= 7 in the integral representation:  This is a differential equation of fourth order mand its
solution cannot readily be expressed in terms of familiar
FZ(—i/ZW)f exd f(t)]dt. transcendental functions. However in the limit@s- 6, it is
¢ quite simple to find thé€power law solution;

G(r)=rf, B=-1-\5-24+a,

Then the saddle point method gives

F=expf(7) - + o S () hich ly red he free field soluti 2
=expf (7 - s which correctly reduces to the free field solutigh= —
V27t'(7) 8L"(n]" 241"(7)] when the coupling vanishes.
nn 2
35 f"(7)] IIl. RAINBOW DIAGRAMS

B

As confirmation of the correctness of the terms above we cap,
verify that the Debye expansid8] of the Bessel function is
properly reproduced:

We wish to treat the corrections to the fermion propagator
a similar manner, by considering the rainbow corrections.
In such an approximation the rainbow graphs give rise to a
self-energy, which is self-consistently determined according

—i [imtee , ~ to _
- v(sinht/coshr—t)
JV(V/COSW) > 7iw+mdte E (p): _Ing qu i_iz (q)ijl
P : (P-?[ya »a " yal
- with the unrenormalized propagator determined by
v2mvtanhr Sr(p)= 1/y-p—(1/yp) Zr(p)(1/y-p)
x| 1+ ﬂ 1— ?(Cothf)Z +., at this level[8]. This leads to the renormalized rainbow cor-
8v 3 rected propagator equation:
because the integrand minimum occurs=atr. Our cas€6) @q
is a variant of this. Working only to first order ia, and 7'pSQ(p)y~p=Z¢*y'p+igzj WS(q). 9
taking a negative initially, the integrand exponent is P—a
(V—4asinht+t)/ e+ —4alnursinit—t The nature of the massless problem is that one can always
) ] write Sg(p) = y-po(p), and by Fourier transformation, con-
and is stationary at the complex valtre 7, where vert Eq.(9) from an integral equation to a differential equa-
coshr=[(e—1)/\—4a(l+elnur)]. tion:
Following through the mathematical steps, and omitting ly- 0070 () =Ty~ 0Z2,0"(X) +1g"Ac(X)iy- da(x)
straightforward details, to order we end up with or
G(r):r2572(ﬂr)1757\5‘m 1— 2ae |n(/.Lr)+ . (7) [072+ingc(X)](9/LO'(X): —Zwﬁﬂb‘D(X). (10)

1+4a

It is satisfying that this produces the all-ordéirs coupling, Now for any functionf (yx?), using the two lemmas,

a) result at four dimensions whea—0, with the correct gﬂf:x#f’/\/)?, (113
anomalous scale.

The problem can be treated in much the same way for a
pseudoscalar meson field. The only possible difference is a 9,0,f=
change in sign of, because of %5" matrix anticommuta-
tion. As for the vector caser Es=1), the procedure pro-
duces a pair of coupled equations for the two scalar comp
nentsA and B of the Green’s functionG,(p) = yMA(pZ)
Ty PYLY pB(p?). A discussion of this case is given in the
Appendix, where it is shown that the only easy limit is
D=4; one finds after Euclidean rotation that

A=arf, B=brf*2 a/b=c(B+2)/(B-2), In 4D this has the simple solutiof(r)or ~2~2T%2 in turn
H implying S(p)=y-pp~*"2T72 However it is in fact pos-
where sible to solve Eq(12) for any D. The proper solution, nor-

B=—-1+\5+/16+4c+c2 and c=g?%272, malized toS(1/u)=u3 2¢is

X, X,

frx
Nuv™— X2

—+

\/F

we can carry out an Euclidean rotation in order to arrive at
%he differential equation for the scalar functidk=do/dr:

Xy
Qz £, (11b)

4a(ur)*P
—

d/D-1 d
ar\ 1t Tar

S(r)= —Z¢5D(r). (12
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ol [ 4a da(pur)€l €] during 1995—when the majority of this work was carried
et (13  out.
Ji-2(V—4ale)

To get the rainbow propagator, we must first integrate,

a(r)=["S(r)dre2 002 2c12m(V—4a(ur)/e), and then The vector vertex function

Fourier transform to obtaiSg(p)=v-po(p). ) )
If the mesons are neither scalar nor pseudoscalar, but ten- Gu(P)=A(P) ¥t 7 PYuy-PB(PY),

sor, the coupling constant is multiplied by the factyr, that

is all.

S(r)y=r(rfu)c
APPENDIX: THE VECTOR CASE

upon Fourier transformation and tracing wihy, produces
the coordinate space equation,
IV. CONCLUSIONS

(29,,—2d,d,)A+d*n,,B

We have demonstrated that it is possible to work out the .
all-orders solution of Green'’s functiopns for ladder and rain- =an,6(x)+|g2(D—2)AC(x)
bow diagrams for any dimensidd and that, in the limit as X[ 7,,A+(8%n,,—2d,3,)B].
D approaches the physical dimension, the correct scaling di- r proer
mension is obtained. We have exhibited fully how this hap-Using lemmas(11), and identifying the terms multiplying
pens for scalar theories, but have succeeded only to a limiteg = andx «X,, we arrive at the pair of coupled equations
extent in vector theories, because the equations are couple

and end up as fourth-order ones, with no transparent expres- 2 dB

sion in terms of standard functions of mathematical physics. Ol ~A+OBJ+ 5 = =iga(D—2)A( A+ — Car OB}
In any event, it is clear from the form of the Green’s function

that there are no transcendental constants in sight, even when QA=ig%(D—2)A.0B,

we expand the answers perturbatively in terms ofui)( so
that the renormalization constants are free of them. This conrwhere O=[d?/dr?+(D—1)/r(d/dr)] and Q=[d%dr?
firms the finding of Kreimer for arbitrary ladder or rainbow —(1/r)(d/dr)]. We have not suceeded in solving these
order[2] and does not come as a surprise. equations in terms of familiar functions f+ 4. However
One can extend the ideas here to scattering process@s4D, one can make considerable progress by looking for a
which contain a single momentum scale, such as fermionpower-law solution of the type(r)=ar?, B(r)=brf"2.
fermion scatteringagain ladder graphdor any D. It is a  Simple calculation reveals that a solution exists provided that
simple matter of taking the Fourier transform in particular
channels and converting the momentum integral equations to alb=c(B+2)/(B-2),
differential ones in coordinate space. We shall not labor the )
issue in this paper since the steps are fairly obvious and can c™tac—B(B-2)(B+2)(B+4)=0
easily be filled in by the reader. What we have not solved for
any D is the case of crossed ladders, when the kernel will
presumably lead to transcenderdatonstants; that is a task
for the future.

c=g%272.

The quartic in the power exponegtis fortunately simple to
solve in terms of the couplingpr ¢), the answer being

B=—1+ 5+ 16+ 4c+c2=2+c/3—c?/54- -,
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