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Renormalization and chiral symmetry breaking in quenched QED in arbitrary covariant gauges
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We extend a previous Landau-gauge study of subtractive renormalization of the fermion propagator Dyson-
Schwinger equation in strong-coupling, quenched four-dimensional QED toarbitrary covariant gauges. We
use the fermion-photon proper vertex proposed by Curtis and Pennington with an additional correction term
included to compensate for the small gauge dependence induced by the ultraviolet regulator. We discuss the
chiral limit and the onset of dynamical chiral symmetry breaking in the presence of nonperturbative renormal-
ization. We extract the critical coupling in several different gauges and find evidence of a small residual gauge
dependence in this quantity.@S0556-2821~96!03620-X#
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I. INTRODUCTION

Strong coupling four-dimensional~QED4) has been stud-
ied for some time within the Dyson-Schwinger equati
~DSE! formalism both for its intrinsic interest and also as t
basis for Abelianized models of nonperturbative phenom
in technicolor theories and QCD. For recent reviews
Dyson-Schwinger equations and their application and
merous references see, for example, Refs.@1–3#. The usual
approach is to write the DSE for the fermion propagator
self-energy, possibly including equations for the phot
vacuum polarization or the fermion-photon proper vertex.
a recent study@4# it was shown for the first time how to
implement nonperturbative renormalization in a numeri
way within the DSE formalism. In that work the calculation
were carried out in quenched approximation in Land
gauge. Here we will extend these studies to arbitrary cov
ant gauges and we also will study the chiral limit in som
detail.

The DSE’s are an infinite tower of coupled integral equ
tions and so it is always necessary to truncate this towe
some point and introduce anAnsatzfor any necessary unde
fined Green’s functions. It is of course important to ensu
that thisAnsatzbe consistent with all appropriate symmetri
of the theory and that it have the correct perturbative lim
The resulting nonlinear integral equations are solved num
cally in Euclidean space by iteration. Dynamical~or sponta-
neous! chiral symmetry-breaking~DCSB! occurs when the
fermion propagator develops a nonzero scalar self-energ
the absence of an explicit chiral symmetry-breaking~ECSB!
fermion mass. We will refer to coupling constants stro
enough to induce DCSB as supercritical and those wea
are called subcritical. We write the fermion propagator as

S~p!5
Z~p2!

p”2M ~p2!
5

1

A~p2!p”2B~p2!
, ~1!
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where we refer toA(p2)[1/Z(p2) as the finite momentum-
dependent fermion renormalization and whereM (p2)
[B(p2)/A(p2) is the fermion mass function. In the massles
theory ~i.e., in the absence of an ECSB bare fermion mas!
by definition DCSB occurs whenM (p2)Þ0.

Until relatively recently, most studies have used the ba
vertex as anAnsatzfor the one-particle irreducible~1PI! ver-
tex Gn(k,p), @5–9# despite the fact that this violates the
Ward-Takahashi identity~WTI! @10#. The resulting fermion
propagator is not gauge covariant, i.e., physical quantit
such as the critical coupling for dynamical symmetry brea
ing and the fermion mass pole are gauge dependent@11–13#.
There have been several studies, which attempted to m
the fermion DSE gauge covariant by using improved verte
forms, which satisfy the WTI, but which possess kinemat
singularities in the limit of zero photon momentum@13,14#.
A general form forGn(k,p), which does satisfy the Ward
Identity and which has no unphysical kinematic singularitie
was given by Ball and Chiu in 1980@15#; it consists of a
minimal longitudinally constrained term which satisfies th
WTI, and a set of tensors spanning the subspace transvers
the photon momentumq.

While the WTI is necessary for gauge invariance, it is n
a sufficient condition and in itself does not ensure gau
covariance of the fermion propagator. Furthermore, wi
many vertexAnsätzethe fermion propagator DSE is not mul-
tiplicatively renormalizable, which is equivalent to sayin
that overlapping logarithms are present. There has be
much recent research on the use of the transverse parts o
vertex to ensure both gauge covariant and multiplicative
renormalizable solutions@12,16–24#, some of which will be
discussed below.

With the exception of Ref.@4#, studies have mostly ne-
glected the issue of the subtractive renormalization of t
DSE for the fermion propagator. Typically these studies ha
assumed an initially massless theory and have renormali
at the ultraviolet cutoff of the loop integration, taking
5361 © 1996 The American Physical Society



a
es

t-
-

-

ex

e

t;

-

t

s

5362 54HAWES, WILLIAMS, AND ROBERTS
Z15Z251. Where a nonzero bare mass has been used, it
simply been added to the scalar term in the propaga
While in some circumstances for the special case of Land
gauge this can be a reasonable approximation, it is in gen
incorrect. Although there have been earlier formal discu
sions of renormalization@2,12,19#, the important step of sub-
tractive renormalization had not been performed prior to t
recent study in Landau gauge@4#.

Here we present the results of a study of subtracti
renormalization in the fermion DSE inarbitrary covariant
gauge for quenched strong-coupling QED4. Note that here
the term ‘‘quenched’’ means that the bare photon propaga
is used in the fermion self-energy DSE, so thatZ351 and
there is no renormalization of the electron charge. This is
somewhat different usage to that found in lattice gau
theory studies, since in our study virtual fermion loops st
may be present in the proper fermion-photon vertex.

The organization of the paper is as follows: The forma
ism is discussed in Sec. II. This section contains discussi
of the DSE for the renormalized fermion propagator, theAn-
sätze for the proper vertex, the subtractive renormalizatio
procedure, the chiral limit, and renormalization point tran
formations. Our detailed numerical results are presented
Sec. III and we present our summary and conclusions in S
IV.

II. FORMALISM

A. Renormalized DSE

The DSE for the renormalized fermion propagator, in a
arbitrary covariant gauge, is

S21~p!5Z2~m,L!@p”2m0~L!#

2 iZ1~m,L!e2EL d4k

~2p!4
gmS~k!Gn~k,p!Dmn~q!;

~2!

hereq5k2p is the photon momentum,m is the renormal-
ization point, andL is a regularizing parameter~taken here
to be an ultraviolet momentum cutoff!. We writem0(L) for
the regularization-parameter dependent bare mass.
renormalized charge ise ~as opposed to the bare charg
e0), and the general form for the renormalized photon prop
gator is

Dmn~q!5H S 2gmn1
qmqn

q2 D 1

11P~q2!
2j

qmqn

q2 J 1q2 , ~3!

with j the covariant gauge parameter. Since we work in t
quenched approximation, we have for the coupling stren
and gauge parameter, respectively,a[e2/4p5a0[e0

2/4p
andj5j0, and for the photon propagator we have

Dmn~q!→D0
mn~q!5H S 2gmn1

qmqn

q2 D2j
qmqn

q2 J 1q2 . ~4!
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B. Vertex ansatz

The requirement of gauge invariance in QED leads to
set of identities referred to as the Ward-Takahashi Identiti
~WTI!. The WTI for the fermion-photon vertex is

qmGm~k,p!5S21~k!2S21~p!, ~5!

whereq5k2p . This is a generalization of the original dif-
ferential Ward identity, which expresses the effect of inser
ing a zero-momentum photon vertex into the fermion propa
gator:

]S21~p!

]pn
5Gn~p,p!. ~6!

The Ward identity Eq.~6! follows immediately from the
WTI of Eq. ~5! after setting to zero all but then component
of q, dividing both sides of the WTI byqn and then taking
qn→0. In general, for nonvanishing photon momentumq,
only the longitudinal component of the proper vertex is con
strained, i.e., the WTI provides no information on
GT

m(k,p)[TmnGn(k,p) for qÞ0. @We use the notation
Tmn[gmn2(qmqn/q2) and Lmn[(qmqn/q2) for the trans-
verse and longitudinal projectors, respectively.# In particular,
the WTI guarantees the equality of the propagator and vert
renormalization constantsZ2[Z1 ~at least in any reasonable
subtraction scheme@1#.! The WTI can be shown to be satis-
fied order-by-order in perturbation theory and also can b
derived nonperturbatively.

As discussed in@1,25#, this can be thought of as just one
of a set of six general requirements on the vertex:~i! the
vertex must satisfy the WTI;~ii ! it should contain no kine-
matic singularities;~iii ! it should transform under charge
conjugation (C), parity inversion (P), and time reversal
(T) in the same way as the bare vertex, e.g.,

C21Gm~k,p!C52Gm
T~2p,2k! ~7!

~where the superscriptT indicates the transpose!; ~iv! it
should reduce to the bare vertex in the weak-coupling limi
~v! it should ensure multiplicative renormalizability of the
DSE in Eq.~2!; ~vi! the transverse part of the vertex should
be specified to ensure gauge covariance of the DSE.

Ball and Chiu@15# have given a description of the most
general fermion-photon vertex that satisfies the WTI; it con
sists of a longitudinally constrained~i.e., ‘‘Ball-Chiu’’ ! part
GBC

m , which is a minimal solution of the WTI, and a basis se
of eight transverse vectorsTi

m(k,p), which span the hyper-
plane specified byLmnTi

n(k,p)50 @i.e., qnTi
n(k,p)50#,

whereq[k2p. The minimal longitudinally constrained part
of the vertex will be referred to as the Ball-Chiu vertex and i
given by

GBC
m ~k,p!5

1

2
@A~k2!1A~p2!#gm1

~k1p!m

k22p2

3H @A~k2!2A~p2!#
k”1p”

2

2@B~k2!2B~p2!#J . ~8!
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Note that since neitherLmnGBC
n (k,p) nor TmnGBC

n (k,p) van-
ish identically, the Ball-Chiu vertex has both longitudina
and transverse components. The transverse tensors ca
conveniently written as@26#

T1
m~k,p!5pm~k•q!2km~p•q!, ~9!

T2
m~k,p!5@pm~k•q!2km~p•q!#~k”1p” !, ~10!

T3
m~k,p!5q2gm2qmq” , ~11!

T4
m~k,p!5q2@gm~p”1k” !2pm2km#22i ~p2k!mklpnsln ,

~12!

T5
m~k,p!52 iqnsnm, ~13!

T6
m~k,p!5gm~p22k2!1~p1k!mq” , ~14!

T7
m~k,p!5

1

2
~p22k2!@gm~p1k” !2pm2km#

2 i ~k1p!mklpnsln , ~15!

T8
m~k,p!52gmknplsnl1kmp”2pmk” , ~16!

where we use the conventionsgmn5diag(1,21,21,21),
$gm,gn%52gmn, and smn[( i /2)@gm,gn#. Note that these
tensors have been written in a different linear combination
the ones presented in Ref.@4#. A general vertex is then writ-
ten as

Gm~k,p!5GBC
m ~k,p!1(

i51

8

t i~k
2,p2,q2!Ti

m~k,p!, ~17!

where thet i are functions that must be chosen to give th
correctC, P, andT invariance properties.

Curtis and Pennington published a series of articl
@12,19–21# describing their specification of a particula
transverse vertex term, in an attempt to produce gauge co
riant and multiplicatively renormalizable solutions to th
DSE. In the framework of massless QED4, they eliminated
the four transverse vectors which are Dirac even and m
generate a scalar term. By requiring that the vert
Gm(k,p) reduce to the leading log result fork@p, they were
led to eliminate all the transverse basis vectors exceptT6

m ,
with a dynamic coefficient chosen to make the DSE mul
plicatively renormalizable. This coefficient had the form

t6~k
2,p2,q2!52 1

2 @A~k2!2A~p2!#/d~k,p!, ~18!

whered(k,p) is a symmetric, singularity-free function ofk
and p, with the limiting behavior limk2@p2d(k,p)5k2.
@Here,A(p2)[1/Z(p2) is their 1/F(p2).# For purely mass-
less QED, they found a suitable form,d(k,p)
5(k22p2)2/(k21p2). This was generalized to the case wit
a dynamical massM (p2), to give

d~k,p!5
~k22p2!21@M2~k2!1M2~p2!#2

k21p2
. ~19!

They then showed that multiplicative renormalizability is re
tained up to next-to-leading-log order in the DCSB cas
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Subsequent papers established the form of the solutions
the renormalization and the mass@21# and studied the gauge
dependence of the solutions@12#. Dong, Munczek, and Rob-
erts @22# subsequently showed that the lack of exact gau
covariance of the solutions was due to the use of a mom
tum cutoff in the integral equations, since this type of reg
larization is not Poincare´ invariant. The fact that there is still
some residual gauge dependence in the physical observa
such as the chiral critical point shows that with a momentu
cutoff the CP vertexAnsatzis not yet the ideal choice. Dong,
Munczek, and Roberts@22# derived anAnsatzfor the trans-
verse vertex terms, which satisfies the WTI and makes t
fermion propagator gauge covariant under hard momentu
cutoff regularization.

Bashir and Pennington@23,24# subsequently described
two different vertexAnsätze, which make the fermion self-
energy exactly gauge covariant, in the sense that the criti
point for the chiral phase transition is independent of gaug
Specific constraints they have assumed for the vertex are
@23# that the transverse vertex parts vanish in the Land
gauge, and in@24# that the anomalous dimension of the ferm
ion mass functiongm is exactly 1 at the critical coupling.
Their work is a continuation of that of Dong, Munczek, an
Roberts, and indeed their vertexAnsatzcorresponds to the
general form suggested in@22#.

However, the kinematic factorst2,3,6,8 in both vertex
forms are rather complicated and depend upon a pair of
yet undetermined functionsW1,2(k

2,p2), which must be cho-
sen to guarantee that the weak-coupling limit ofGm matches
the perturbative result. Renormalization studies of the DS
using these new vertexAnsätze should be interesting and
represent a direction for further research.

For the solutions to the fermion DSE using the CP verte
the critical point for the chiral phase transition has bee
shown to have a much weaker gauge dependence than
for the DSE with the bare or minimal Ball-Chiu vertices
@27#. In this work we will use the Curtis-PenningtonAnsatz
as the basis for our calculations.

The equations are separated into a Dirac-odd part desc
ing the finite propagator renormalizationA(p2), and a Dirac-
even part for the scalar self-energy, by taking1

4Tr of the DSE
multiplied by p” /p2 and 1, respectively. The equations ar
solved in Euclidean space and so the volume integr
*d4k can be separated into angle integrals and an integ
*dk2; the angle integrals are easy to perform analyticall
yielding the two equations, which will be solved numeri
cally.

One refinement of our treatment of the CP vertex in th
present work is associated with subtleties in the ultravio
regularization scheme. Although there have been some
ploratory studies of dimensional regularization for the DS
@28#, this has not yet proven practical in nonperturbative fie
theory and momentum cutoffs for now remain the regula
ization scheme of choice in such studies. Naive imposition
a momentum cutoff destroys the gauge covariance of t
DSE because the self-energy integral contains terms, rela
to the vertex WTI, which should vanish but which are non
zero when integrated under cutoff regularization@22,23#. In
the Appendix we derive an expression for one such undes
able term and show how it may be subtracted in a simp
way from the regularized self-energy. We also have calc
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lated some DSE solutions with the usual uncorrected U
cutoff method for comparison purposes, but otherwise
use this ‘‘gauge-improved’’ regularization combined wit
the CP vertex throughout this work. This will be commente
on futher in the discussion of numerical results in Sec. III

C. Subtractive renormalization

The subtractive renormalization of the fermion propagat
DSE proceeds similarly to the one-loop renormalization
the propagator in QED.~This is discussed in@1# and in@29#,
p. 425ff.! One first determines a finite,regularized self-
energy, which depends on both a regularization parame
and the renormalization point; then one performs a subtr
tion at the renormalization point, in order to define the reno
malization parametersZ1, Z2, Z3, which give the full~renor-
malized! theory in terms of the regularized calculation.

A review of the literature of DSE’s in QED shows, how
ever, that this step is never actually performed. Curtis a
Pennington@12# for example, define their renormalization
point at the UV cutoff.

Many studies takeZ15Z251 @12,16,18–21#; this is a
reasonable approximation in Landau gauge in cases wh
the couplinga is sufficiently small~i.e., a&1!, but if a is
chosen large enough, the value of the dynamical mass at
renormalization point may be significantly large compare
with its maximum in the infrared. For instance, in Ref.@12#,
figures for the fermion mass are given witha50.97, 1.00,
1.15, and 2.00 in various gauges. Fora52.00, thefermion
mass at the cutoff is down by only an order of magnitu
from its limiting value in the infrared. In general for stron
coupling and/or gauges other than Landau gauge, this
proximation is unreliable.

As shown in Ref.@4# subtractive renormalization can be
properly implemented in numerical DSE studies witho
such approximations. We begin with a summary of th
renormalization procedure@1,4#. One defines a regularized
self-energyS8(m,L;p), leading to the DSE for the renor-
malized fermion propagator,

S̃21~p!5Z2~m,L!@p”2m0~L!#2S8~m,L;p!

5p”2m~m!2S̃~m;p!5A~p2!p”2B~p2!, ~20!

where the~regularized! self-energy is

S8~m,L;p!5 iZ1~m,L!e2EL d4k

~2p!4
glS̃~m;k!

3G̃n~m;k,p!D̃ln~m;~p2k!!. ~21!

@To avoid confusion we will follow Ref.@1# and in this sec-
tion only we will denote regularized quantities with a prim
and renormalized ones with a tilde, e.g.,S8(m,L;p) is the
regularized self-energy depending on both the renormali
tion pointm and regularization parameterL and S̃(m;p) is
the renormalized self-energy.# As suggested by the notation
~i.e., the omission of theL dependence! renormalized quan-
tities must become independent of the regularization para
eter as the regularization is removed~i.e., asL→`!. The
self-energies are decomposed into Dirac and scalar parts
V
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S8~m,L;p!5Sd8~m,L;p2!p”1Ss8~m,L;p2! ~22!

@and similarly for the renormalized quantity,S̃(m,p)#. By
imposing the renormalization boundary condition

S̃21~p!up25m25p”2m~m!, ~23!

one gets the relations

S̃d,s~m;p2!5Sd,s8 ~m,L;p2!2Sd,s8 ~m,L;m2! ~24!

for the self-energy,

Z2~m,L!511Sd8~m,L;m2! ~25!

for the renormalization constant, and

m0~L!5@m~m!2Ss8~m,L;m2!#/Z2~m,L! ~26!

for the bare mass. The mass renormalization constant is th
given by

Zm~m,L!5m0~L!/m~m!, ~27!

i.e., as the ratio of the bare to renormalized mass.
The vertex renormalization,Z1(m,L), is identical to

Z2(m,L) as long as the vertexAnsatzsatisfies the Ward
Identity; this is how it is recovered for multiplication into
S8(m,L;p) in Eq. ~21!.

In order to obtain numerical solutions, the fina
Minkowski-space integral equations are first rotated to Eu
clidean space.@Note that all equations in Secs. I and II are
written in Minkowski space.# They then are solved by itera-
tion on a logarithmic grid from an initial guess. The solution
are confirmed to be independent of the initial guess and a
solved with a wide range of cutoffs (L), renormalization
points (m), couplings (a), covariant gauge choices (j), and
renormalized masses@m(m)#.

The chiral limit occurs by definition when the bare mas
is taken to zero sufficiently rapidly as the regularization i
removed. This is guaranteed, for example, by maintainin
m0(L)50 as L→`. Explicit chiral symmetry breaking
~ECSB! occurs when the bare massm0(L) is not zero~or
more precisely, whenever it is not taken to zero sufficientl
rapidly as L→`!. Dynamical chiral symmetry breaking
~DCSB! is said to have occurred whenM (p2)Þ0 in the
absence of ECSB. As the coupling strength increases fro
zero, there is a transition to a DCSB phase at the critic
couplingac. Concisely, the absence of ECSB means that w
cannot setm0(L)50, and the absence of both ECSB and
DCSB ~i.e., a,ac) means thatM (p2), m(m), andm0(L)
simultaneously vanish.@Recall that in the notation that we
use, hereM (p2_[B(p2)/A(p2) andm(m)[M (m2).] This
is the same definition of the chiral limit that is used in non
perturbative studies of QCD; see, e.g., Refs.@1–3,30#, and
references therein. Obviously, any limiting procedure whe
we takem0(L)→0 sufficiently rapidly asL→` will also
lead to the chiral limit@2#.

D. Renormalization point transformations

A renormalization point transformation is a change o
renormalization scale@i.e.,R~m,m8! for m→m8# such that the
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bare mass~es! and coupling~s! remain fixed for fixed regular-
ization parameter~L! and fixed renormalization scheme
This ensures that the physical observables of the theory
invariant under such a transformation. This set of transf
mations is associative@R~m,m8!R~m8,m9!5R~m,m9!#, con-
tains the identity@R~m,m!5I#, and contains all inverses
@R~m,m8!215R~m8,m!# and hence is called the renormaliz
tion group.

For the purposes of the discussion here, we will now
dicate explicitly the choice of renormalization point by
m-dependence of the renormalized quantities, i
A(m;p2)[1/Z(m;p2), M (m;p2)[B(m;p2)/A(m;p2), etc.
Note that Eq.~20! implies that

A~m;p2!5Z2~m,L!2Sd8~m,L;p2!512S̃d~m,L;p2!,

B~m;p2!5Z2~m,L!m0~L!1Ss8~m,L;p2!

5m~m!1S̃s~m,L;p2!. ~28!

The renormalization point boundary condition in Eq.~23!
then leads toS̃(m,L;m2)50, or equivalently, to the two
boundary conditions A(m;m2)51 and M (m;m2)
5B(m;m2)5m(m). From Eq. ~28! and the fact that
Z1(m,L)5Z2(m,L), we have

@A~m;p2!/Z2~m,L!#512@Sd8~m,L;p2!/Z1~m,L!#,

@B~m;p2!/Z2~m,L!#5m0~L!1@Ss8~m,L;p2!/Z1~m,L!#.
~29!

Consider the effects of an arbitrary rescalingA(p2)
→cA(p2) and B(p2)→cB(p2), @i.e., M (p2) fixed#, for
some real constantc. It is straightforward to see that unde
such a rescaling, we haveS(p)→(1/c)S(p) and
Gn(p8,p)→cGn(p8,p). It follows that the RH sides of Eqs
~29! are unaffected by such an arbitrary rescaling. Hence
follows that the choice of renormalization point bounda
conditions is equivalent to the choice of scale for the fun
tionsA andB.

Let us consider this observation in more detail. Since
are working in the quenched approximation, wheree2 and
D̃ are unaffected by a change of renormalization point
follows from Eq. ~21! that S8(m,L;p2)/Z1(m,L) is renor-
malization point independent since a change of renormal
tion point is a rescaling ofA andB. Then sincem0(L) is
renormalization point independent by definition, the ent
right-hand side~RHS! of Eqs. ~29! must be independent o
the choice of renormalization point. Thus, under a renorm
ization point transformation, we must have,for all p2,

M ~m8;p2!5M ~m;p2![M ~p2!,

A~m8;p2!

A~m;p2!
5
Z2~m8,L!

Z2~m,L!
5A~m8;m2!5

1

A~m;m82!
, ~30!

from which it follows for the fermion propagator tha
S̃(m8;p)/S̃(m;p)5Z2(m,L)/Z2(m8,L) in the usual way.
The behavior in Eq.~30! is explicitly tested for our numeri-
cal solutions. It is clear from Eq.~30! that having a solution
at one renormalization point~m! completely determines the
.
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solution at any other renormalization point~m8! without the
need for any further computation.

An alternative derivation of this result, which starts
from the renormalized action and which applies to th
general unquenched case can be found for example in S
2.1 of Ref.@1#. For brevity we can denote the above renor
malization point dependence of the fermion propagator b
S̃(m;p)S̃~m;p!}1/Z2(m,L). In the general unquenched case
@29#, we would have in addition D̃sn(m;q)}j(m)
}1/Z3(m,L), e(m)}Z2(m,L)AZ3(m,L)/Z1(m,L), and
e(m)G̃n(m;q,p)}Z2(m,L)AZ3(m,L).

III. RESULTS

Solutions were obtained in Euclidean space for the DS
for couplingsa from 0.1 to 1.30, in gauges withj from
20.25 to 3, andwith a variety of renormalization points and
renormalized masses. All results in this section refer to E
clidean space quantities. In the graphs and tables that follo
there are no explicit mass units. Since the equations have
inherent mass scale, the cutoffL, renormalization pointm,
m(m), and units ofM (p2) or B(p2) all scale multiplica-
tively, and the units are arbitrary. In four dimensions th
coupling has no mass dimension, therefore, it remains u
changed for all such choices of mass units.

Figure 1 shows a family of solutions characterized b
a51.00,m2513108, m(m)5400, andgauge parameters
from 20.25 to1.25. We see that whileA andB are strongly
gauge dependent, the mass functionM (p2)[B(p2)/A(p2) is
relatively insensitive toj. The location of the mass pole of

FIG. 1. The finite renormalizationA(p2) and the mass function
M (p2) are shown for various gauge parametersj. These results
have couplinga51.00,renormalization pointm25108, and renor-
malized massm(m)5400. In the lowp2 region the larger gauge
parameter has the larger value ofM (p2).
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the physical electron must of course be independent
gauge, and this gauge independence has been demons
explicitly using the WTI for example by Atkinson and Fr
@31#. Their proof assumes that the bare massm0(L) is itself
independent of gauge. Hence, in a fully gauge covari
treatment the mass function is independent of gauge at
scales~i.e., at the mass pole and at the UV regularizati
scaleL!. In our study we find that the mass function is rel
tively insensitive to the choice of gauge for allp2. The na-
ture of the Landau-Khalatnikov transformations@32# makes
the possibility of a gauge independentM (p2) seem rather
unlikely.

The stability of the renormalized DSE solutions with r
spect to variations in the ultraviolet cutoff is evident in Fi
2. This graph shows solutions witha51.15, m25108,
m(m)5400, and gaugej50.25. The cutoffL2 was varied
over several orders of magnitude with no apparent chang
the solutions over the common range of momenta. This
merical stability was shown in other tests as well. For
stance, we extracted the massM (p250) for solutions with
a51.00,m25104,m(m)50, and observed variations of les
than one part in 104 as the UV cutoff was varied over six
orders of magnitude.

Tables I, II, and III show the evolution of the renorma
ization constantsZ2(m,L), Zm(m,L), and the cutoff-
dependent bare massm0(L) as a function of the UV regula-
tor L. We see that as we move further from Landau gau
Z2(m,L) decreases more rapidly with increasingL. In addi-
tion, we observe that the bare mass exhibits decaying o

FIG. 2. The finite renormalizationA(p2) and the mass function
M (p2) are shown for various choices of the regularization para
eter~i.e., ultraviolet cutoff! L. These results have couplinga51.15,
renormalization pointm25108, renormalized massm(m)5400,
and gauge parameterj50.25. The stability of the subtractive reno
malization procedure is apparent.
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lations with increasingL, which is directly related to the
oscillations characteristic of the supercritical coupling an
subtractive renormalization at largep2 ~see additional dis-
cussion later!.

Figure 3 shows solutions with the coupling varying from
subcritical ~a50.6! to supercritical ~a51.4! values, with
identical renormalization point, renormalized mass, an
gauge. Here we see that the nodes in the mass funct
M (p2) move to lower momenta and the oscillations becom
more pronounced as the coupling is increased further a
further above critical coupling.

In order to test the gauge invariance of the chiral critic
point, we extracted the critical coupling from solutions in th
Landau gauge and in two other covariant gauges, w
j50.25 and 0.5. Miranskyet al., @3,6# working in the
quenched ladder approximation in Landau gauge, found t
the infrared limit of the dynamical massM (0) has an
infinite-order phase transition,

m-

r-

TABLE I. Renormalization constantZ2(m,L), bare masses
m0(L), and mass renormalizationZm(m,L), as a function of UV
cutoff for a51.15 in the Landau gauge~j50!. All solutions are
with renormalization pointm251.003108 and renormalized mass
m(m)5400.0.

L2 Z2(m,L) m0(L) Zm(m,L)

13108 0.9999135 2.3063102 5.76531021

13109 0.9998483 5.3583101 1.33931021

131010 0.9998468 4.443 1.11131022

131011 0.9998469 23.932 29.83131023

131012 0.9998469 22.847 27.11731023

131013 0.9998469 21.182 22.95431023

131014 0.9998469 23.40831021 28.52031024

131015 0.9998469 25.39031022 21.34831024

131016 0.9998469 1.04331022 2.60731025

131017 0.9998469 1.27631022 3.19131025

131018 0.9998469 6.17131023 1.54331025

131019 0.9998469 2.04231023 5.10531026

TABLE II. Renormalization constantZ2~m,L!, bare masses
m0~L!, and mass renormalizationZm~m,L!, as a function of UV
cutoff for a51.15 in the gauge withj50.25. All solutions are with
renormalization pointm251.003108 and renormalized mass
m(m)5400.0.

L2 Z2(m,L) m0(L) Zm(m,L)

13108 0.999943 2.2393102 5.59831021

13109 0.9486 4.9183101 1.22931021

131010 0.8999 2.034 5.08531023

131011 0.8537 24.898 21.22531022

131012 0.8099 23.102 27.75631023

131013 0.7683 21.193 22.98131023

131014 0.7289 23.05931021 27.64731024

131015 0.6915 22.88631022 27.21431025

131016 0.6560 2.14531022 5.36231025

131017 0.6224 1.60931022 4.02331025

131018 0.5904 6.67931023 1.67031025
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M ~0!.4L expF2
p

A~a/ac!21
G . ~31!

Following their approach, we assume a similar form for th
dynamical mass near the critical coupling,

M ~0!5M expF2
c

@~a/ac!21#bG , ~32!

and construct an order parameter, which is expected to h
a second-order phase transition,21/ln@M(0)/M8#. Since the

FIG. 3. The finite renormalizationA(p2) and the mass function
M (p2) are shown for various choices of the coupling strengtha.
These results have renormalization pointm25108, renormalized
massm(m)5400, andgauge parameterj50.50.

TABLE III. Renormalization constantZ2~m,L!, bare masses
m0~L!, and mass renormalizationZm~m,L!, as a function of UV
cutoff for a51.15 in the gauge withj50.5. All solutions are with
renormalization pointm251.003108 and renormalized mass
m(m)5400.0.

L2 Z2(m,L) m0(L) Zm(m,L)

13108 0.99997 2.1763102 5.44131021

13109 0.8999 4.5133101 1.12831021

131010 0.8099 21.45531021 23.63831024

131011 0.7289 25.736 21.43431022

131012 0.6560 23.299 28.24831023

131013 0.5904 21.181 22.95431023

131014 0.5314 22.65331021 26.63231024

131015 0.4783 23.67631023 29.19031026

131016 0.4304 3.15131022 7.87731025

131017 0.3874 1.87031022 4.67431025
e

ave
inherent mass scaleM is not knowna priori, it is necessary
to choose a reasonable scaleM 8, and then calculate a cor-
rected fit, which also yields the actual value ofM .

DSE solutions were obtained for several values of th
coupling in each gauge, with the renormalizationm25104.
We setm(m)50 for the purpose of studying the transition.
The IR mass limit was extrapolated for each solution an
then the order parameters were calculated using an assum
mass scaleM 85200. Theresulting critical curves are shown
along with theM (0) values from the solutions, in Fig. 4. The
parameters from the nonlinear fits are given in Table IV. Th
critical exponentsb are the same to within their numerical
tolerance, and suggest thatb may be independent of gauge.
Although the values ofac are close in value, there is clear
evidence of residual gauge dependence.

Our value forac in the Landau gauge is very close to the
value of 0.933667 found by Atkinsonet al. @27# in their bi-
furcation analysis of the solutions of the fermion DSE with
the Curtis-Pennington vertex. In addition, we find that th
critical coupling varies withj in the same direction. Recall
that these authors used the unrenormalized equations a
relaxed the UV momentum cutoff to infinity in order to re-
move cutoff artifacts, whereas we have used subtracti
renormalization and our gauge covariance correction. Henc
we can anticipate a small difference between the critical co
plings in our approaches.

Figure 5 shows a family of equivalent solutions renorma
ized at different momentum scalesm and these provide a
direct check on the behavior predicted in Eq.~30!. All have
couplinga51.15 andj50.5, and the renormalization scale
m2 is stepped by powers of 10, with renormalized masse

FIG. 4. The critical curves for three choices of gauge paramet
showing the existence of residual gauge dependence in the Cur
Pennington vertex. All solutions were renormalized with the choic
m(m)50, with the renormalization pointm25104. The order pa-
rameter is evaluated using an arbitrary reference mass scale cho
of M 85200.0. Diamonds ~L!, connected by the solid smooth
curve, are order parameter values for the Landau gauge; pluses~1!,
connected by the dashed smooth curve, are values forj50.25; and
boxes~h!, connected by the dot-dashed smooth curve, are valu
for j50.5.
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TABLE IV. Critical parameters for three choices of gauge,j50, 0.25, and 0.50. These are extracted from
nonlinear fits to the data in Fig. 4, using the form in Eq.~32!.

Parameter Landau~j50! j50.25 j50.5

c 2.87760.027 2.85860.043 2.85160.055
ac 0.9330760.00023 0.9207660.00048 0.9094660.00071
b 0.51260.003 0.51460.005 0.51660.007
M 154.365.2 148.567.7 145.469.4

x2/NDF 0.0959 0.0388 0.0211
n
f
toff
ta

ns

a-
e,

n
e
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ound
-
re
m(m) chosen such thatm(m)5M (m2) for eachm. It is clear
that the resulting mass curves are identical at allp2 as ex-
pected, and in each caseA(m;p2) scales as predicted in Eq
~30!, showing that the renormalized DSE does transform c
rectly.

The anomalous dimension of the mass,gm , is defined by
the asymptotic scaling of the dynamical mass withp2,

M ~p2!;S p2m2D ~gm/2!21

. ~33!

As well as depending on the coupling, it shows a slight d
pendence on the gauge, as shown in Fig. 6. The dynam
masses shown are from DSE solutions witha50.5,
m25108, andm(m)5400, in Landau gauge and in gauge
j50.25 and 0.5. They are scaled by multiplication wit
(p2/m2)12(gm/2), where the value ofgm used was that ex-

FIG. 5. The finite renormalizationA(p2) and the mass function
M (p2) are shown for various choices of renormalization poin
These results have coupling strengtha51.15 and gauge paramete
j50.50. Each of these results corresponds toM (p2)5400 at
p25108. Hence,M (p2) is renormalization point independent an
A(p2) varies as described in Eq.~30!.
.
or-

e-
ical

s
h

tracted from the Landau gauge solutiongm51.716638. The
gauge dependence ofgm shows up as the slight difference i
slopes on the log-log plot.~The dips apparent at the end o
the curves are due to having a hard momentum cu
L251016. AsL is increased these move to higher momen
also.! In Landau gauge, the actual power of 1/p2 with which
M (p2) falls asymptotically iss512(gm/2)50.141681.
For the gaugesj50.25 and 0.5, the anomalous dimensio
are 1.713948 and 1.711274, giving powers of 1/p2 equal to
0.143026 and 0.144363, respectively.

Miransky has studied the form of the mass renormaliz
tion Zm in the bare vertex approximation in Landau gaug
and without subtractive renormalization@7,8#. In this
treatment he findsZm(m,L)5(m2/L2)(1/2)2g8, with the
exponent

g8~a!5 1
2A12a/ac, ~34!

where the critical coupling for DCSB in that approximatio
is ac5p/3. This would imply an asymptotic scaling for th
dynamical mass that goes likeM (p2);(p2)g821/2, so that
the anomalous mass dimension would be related tog8 by
g8[(gm21)/2. Recent articles by Holdom@33# and Mah-
anta @34,35# claim that for quenched theoriesat criticality
the mass anomalous dimensiongm should be exactly 1, giv-

t.
r

d

FIG. 6. Asymptotic mass scaling below critical coupling as
function of gauge, witha50.5, m25108, andm(m)5400. The
scaling applied to the masses uses the anomalous dimension f
for the Landau gaugegm~j50!51.716638. The extracted anoma
lous dimensions for the other two curves a
gm(0.25)51.713498 andgm(0.5)51.711274.
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ing M (p2);1/p as in the bare approximation, and that i
particular this result should be independent of the gau
@35#. In Miransky’s treatment this corresponds to the vanis
ing of g8 at the critical coupling. We find for subcritica
couplings thatgm still has a slight gauge dependence.

The gauge-covariance correction described in the App
dix leads to an exact restoration of gauge covariance in
subcritical case with no explicit chiral symmetry breakin
i.e., no bare mass~see, e.g., Ref.@22#!. The difference be-
tween a DSE solution with naive cutoff regularization an
those with the gauge-covariance correction is shown in F
7. Both solutions havea51.15,j50.5, and are renormalized
at m25108 andm(m)5400. Thequantitative change in-
duced by our gauge-covariance correction was found to
relatively small in the presence of a substantial mass funct
M (p2).

We find, as in our previous study in Landau gauge@4#,
that for supercritical couplings, the dynamic mass cross
zero; for solutions with nonzerom(m), the position of the
first node depends on the gauge, as shown in Fig. 8. In f
as the cutoff is increased,M (p2) shows damped oscillations
periodic in logp2, as shown in Fig. 9. This has been discuss
by several authors@7,35,36#; in particular it is shown using
some simplifying approximations, in@36# that in Landau
gauge, the DSE reduces to a differential equation
M (p), which has the solution

M ~p!5kS pm D 21

cos@ 1
2 ln~p2/m2!Aa/ac211f#, ~35!

FIG. 7. The finite renormalizationA(p2) and the mass function
M (p2) are shown with and without the gauge-covariance corre
tion. We see that the correction is a relatively small effect. The
results have coupling strengtha51.15, renormalization point
m25108, renormalized massm(m)5400, andgauge parameter
j50.50.
n
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with k cosf5m(m). However, the approximations used in
deriving this result are not applicable outside Landau gaug
and even in Landau gauge lead to differences from th
present treatment. We find that the functional form is sub
stantially correct, but that both the mass dimension and th
period of oscillations depend on the coupling and the choic
of gauge. In fact, for the case shown in Fig. 9, the mas
dimension that fitsuM (p2)u is gm51.115. Thedependence
of the period ona andac is also not as simple as that in Eq.
~35!.

IV. SUMMARY AND CONCLUSIONS

We have extended our previous work on the numerica
renormalization of the DSE@4# to arbitrary covariant gauges.
The procedure is straightforward to implement and ex
tremely stable. It becomes numerically more challenging fo
covariant gauges far removed from Landau gauge and fo
large couplings (a@1). The importance of the approach is
that it removes the issue of cutoff dependence and allow
solutions to be obtained for any choice of renormalization
point. We have described the procedure for performing
renormalization group transformations between solution
with different renormalization points. We saw that a knowl-

c-
se

FIG. 8. Detail of the node in the mass functionM (p2) for vari-
ous gauge choices. These results have coupling strengtha51.15,
renormalization point m25108, and renormalized mass
m(m)5400.

FIG. 9. Absolute value of the dynamical mass, showing dampe
oscillations periodic in ln(p2). The solution shown hasa51.25,
j50.25, and is renormalized withm25104, m(m)50. The power-
law fit, which runs tangent to the dynamical mass curve, is
C(p2/m2)(gm/2)21, with C54.39431022, gm51.115.
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edge of the solution at one renormalization point automa
cally provides the solutions at all renormalization points.

This then allows also comparisons with results from la
tice studies of QED, which should prove useful in providin
further guidance in the choice of reasonableAnsätze for the
vertex and photon propagator. Without renormalization, on
the unrenormalized, regulated quantities would be obtain
and any such comparisons would be meaningless. In ad
tion, in order to study the nonperturbative behavior of reno
malization constants such asZ1(m,L), Z2(m,L), and
Zm(m,L), they must be numerically extracted and so
method such as that described here would be essential.

The context of this study has been quenched fou
dimensional QED with a modified Curtis-Pennington verte
since that vertexAnsatzhas the desirable properties of mak
ing the solutions approximately gauge invariant and al
multiplicatively renormalizable up to next-to-leading log or
der. The technique described can be generalized to ap
elsewhere~e.g., QCD!, whenever numerical renormalization
is required.

The solutions are stable and the renormalized quantit
become independent of regularization as the regularizatio
removed, which is as expected. For example, the mass fu
tion M (p2) and the momentum-dependent renormalizati
A(p2)[1/Z(p2) are unchanged to within the numerical ac
curacy of the computation as the integration cutoff is i
creased by many orders of magnitude. The mass renorm
ization constantZm(m,L) converges to zero with increasing
L because the mass functionM (p2) falls to zero sufficiently
rapidly at large p2. The absence of divergences o
Z1(m,L)5Z2(m,L), m0(L), and Zm(m,L) in the limit
L→` is a purely nonperturbative result and is in sharp co
trast to the perturbative case where these constants diverg
all orders.

In order to study the critical point and exponents for th
transition to DCSB, one sets the renormalized massm(m) to
0 and varies the coupling. For subcritical couplingsm0(L)
remains zero, and the dynamical massM (p2) is identically
zero, while for supercritical couplingsM (p2)Þ0 @and
m0(L)Þ0 for finiteL#. We have extracted the critical cou
pling for DCSB in Landau gauge (j50), and in gauges with
j50.25 and0.5. Our Landau gauge result is very close
the value found in@27#; the values in the other gauges sho
a small residual gauge dependence.

For subcritical couplings, we find that the mass renorm
ization Zm(m,L) scales approximately asZm(m,L)
}(m2/L2)12gm(a,j)/2, where, e.g.,gm(0.5,0)51.716638.
Above the critical coupling, the mass function show
damped oscillations around zero, periodic in ln(p2). We have
extracted mass anomalous dimensionsgm for some subcriti-
cal and supercritical couplings, and find them all greater th
1.

We have shown that our modified Curtis-Pennington ve
tex, while removing the violation of gauge covariance in th
massless subcritical case~i.e., when there is no explicit or
dynamical chiral symmetry breaking!, has not been sufficient
to remove the small residual violation of gauge covariance
the general case. Hence it is important to attempt to exte
this work to include other regularization schemes~e.g., di-
mensional regularization! and to vertices of the Bashir-
Pennington type@23,24#.
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APPENDIX: UV REGULATOR
AND GAUGE COVARIANCE

Regulators applied to divergent integrals in field theo
always destroy some continuous symmetry, and in particu
the use of a momentum cutoff destroys gauge covarian
This appendix describes a modification of the self-ene
integrals in the regularized DSE, which will at least partia
restore this symmetry.

The basis of this change in the regularization scheme
that when the self-energyS, given in Eq.~21!, is evaluated
under cutoff regularization, it contains a term related to t
vertex WTI, which should vanish but which integrates
give a nonzero contribution because the cutoff regularizat
scheme is not translationally invariant@22,23#. We, there-
fore, evaluate this term separately and subtract it from
self-energy. It turns out to affect only the value of the reno
malizationZ2(m,L).

We write the photon propagator, in Minkowski momen
tum space and in an arbitrary covariant gauge, as

Dmn~q!5S 2gmn1
qmqn

q2 D 1

11P~q2!

1

q2
2j

qmqn

q2
1

q2
~A1!

[2Tmn~q!
1

11P~q2!

1

q2
2Lmn~q!j

1

q2
~A2!

[Dmn
T ~q!1Dmn

L ~q!, ~A3!

whereTmn(q) andLmn(q) are the transverse and longitudin
projectors, respectively,Tmn(q)5gmn2qmqn /q

2, Lmn(q)
5qmqn /q

2.
The renormalized fermion propagator is as in Eq.~1!.

Gn(k,p) is the renormalized proper vertex;q5k2p is the
photon momentum. The renormalization point forS, G, and
D is p25m2, however, we will not always write it explicitly.

The ‘‘naively’’ regularized self-energy~under a regular-
ization scheme with parameterL) is

SL~p!5 iZ1~m,L!e2EL d4k

~2p!4
gmS~k!Gn~k,p!Dmn~q!

~A4!
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~where we write the regularization as though it were a m
mentum cutoff, but it need not be!. If Gn(k,p) satisfies the
WTI, qnGn(k,p)5S21(k)2S21(p), we can rewrite the
DSE as

SL~m,L;p!

5 iZ1~m,L!e2EL d4k

~2p!4
gmS~k!Gn~k,p!Dmn

T ~q!

2 iZ1~m,L!e2EL d4k

~2p!4
gmS~k!Gn~k,p!j

qmqn

q2
1

q2

~A5!
5 iZ1~m,L!e2EL d4k

~2p!4
gmS~k!Gn~k,p!Dmn

T ~q!

2 i jZ1~m,L!e2EL d4k

~2p!4
q”

q2
1

q2

1 i jZ1~m,L!e2EL d4k

~2p!4
q”

q2
S~k!S21~p!

1

q2
. ~A6!

The boxed integral is odd inq, and should vanish in any
translationally invariant regularization scheme; otherwise
contributes and we expect it to destroy the gauge covaria
of SL. However, we can define a ‘‘gauge-improved’’ sel
energy by canceling this undesirable term

S8~m,L;p![SL~m,L;p!1 i jZ1~m,L!e2EL d4k

~2p!4
q”

q2
1

q2

~A7!

and since the added integral is Dirac odd, upon decompo
into scalar and spinor parts as in Eq.~22!, we have

Ss8~m,L;p2!5Ss
L~m,L;p2!, ~A8!

Sd8~m,L;p2!5Sd
L~m,L;p2!1 i jZ1~m,L!e2

3EL d4k

~2p!4
p•q

p2q4
. ~A9!
o-

, it
nce
f-

sing

This modification combined with the CP vertex is theAnsatz
used in all calculations in this work unless explicitly stated
otherwise.

Converting to Euclidean metric~but suppressing the ‘‘Eu-
clidean’’ subscript on momenta for convenience! gives

Sd8~m,L;p2!5Sd
L~m,L;p2!2jZ1~m,L!e2EL d4k

~2p!4
p•q

p2q4
.

~A10!

Since in our case the regularization is an ultraviolet cutoff in
momentum, we have

Sd8~m,L;p2!5Sd
L~m,L;p2!2jZ1~m,L!

a

2p2

3EL2

k2dk2E
0

p

sin2udu
p•q

p2q4
. ~A11!

Introducing the variables x5p2, y5k2, z5(k2p)2

5x1y22Axycosu, x.5max(x,y), x,5min(x,y), we have

Sd8~m,L;p2!5Sd
L~m,L;p2!2jZ1~m,L!

a

2p2

3EL2

ydyE
0

p

sin2udu
Axycosu2x

xz2

5Sd
L~m,L;p2!

2Z1~m,L!
aj

2p2

p

2

1

xE0L
2

dy
~x,2x!y

~x.2x,!x.

5Sd
L~m,L;p2!1Z1~m,L!

aj

8p
. ~A12!

Thus the gauge covariance correction that we use here is
cancel the boxed term in Eq.~A6! by adding
Z1(m,L)aj/8p to the naive regularized self-energy in Eq.
~A4! and this is how it is implemented in our program. The
effects of including and not including this gauge covariance
correction can be studied numerically.
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