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Renormalization and chiral symmetry breaking in quenched QED in arbitrary covariant gauges
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We extend a previous Landau-gauge study of subtractive renormalization of the fermion propagator Dyson-
Schwinger equation in strong-coupling, quenched four-dimensional QEDbitrary covariant gauges. We
use the fermion-photon proper vertex proposed by Curtis and Pennington with an additional correction term
included to compensate for the small gauge dependence induced by the ultraviolet regulator. We discuss the
chiral limit and the onset of dynamical chiral symmetry breaking in the presence of nonperturbative renormal-
ization. We extract the critical coupling in several different gauges and find evidence of a small residual gauge
dependence in this quantity50556-282196)03620-X

PACS numbgs): 11.30.Rd, 11.10.Gh, 11.30.Qc, 12.20.Ds

I. INTRODUCTION where we refer t\(p?)=1/Z(p?) as the finite momentum-
dependent fermion renormalization and whehé(p?)
Strong coupling four-dimension&QED,) has been stud- =B(p?)/A(p?) is the fermion mass function. In the massless

ied for some time within the Dyson-Schwinger equationtheory (i.e., in the absence of an ECSB bare fermion mass
(DSE) formalism both for its intrinsic interest and also as thepy definition DCSB occurs wheh (p?) #0.
basis for Abelianized models of nonperturbative phenomena until relatively recently, most studies have used the bare
in technicolor theories and QCD. For recent reviews ofyertex as amnsatzfor the one-particle irreducibleLPl) ver-
Dyson-Schwinger equations and their application and nutex I'*(k,p), [5-9] despite the fact that this violates the
merous references see, for example, REfs.3]. The usual  ward-Takahashi identityWTI) [10]. The resulting fermion
approach is to write the DSE for the fermion propagator ofpropagator is not gauge covariant, i.e., physical quantities
self-energy, possibly including equations for the photonsych as the critical coupling for dynamical symmetry break-
vacuum polarization or the fermion-photon proper vertex. Ining and the fermion mass pole are gauge deper{ddnr{13.
a recent study4] it was shown for the first time how to There have been several studies, which attempted to make
implement nonperturbative renormalization in a numericakhe fermion DSE gauge covariant by using improved vertex
way within the DSE formalism. In that work the calculations forms, which satisfy the WTI, but which possess kinematic
were carried out in quenched approximation in Landausingularities in the limit of zero photon momentyt3,14.
gauge. Here we will extend these studies to arbitrary covaria general form forl'*(k,p), which does satisfy the Ward
ant gauges and we also will study the chiral limit in some|gentity and which has no unphysical kinematic singularities
detail. was given by Ball and Chiu in 198[L5]; it consists of a
The DSE's are an infinite tower of coupled integral equa-minimal longitudinally constrained term which satisfies the
tions and so it is always necessary to truncate this tower a)/T|, and a set of tensors spanning the subspace transverse to
some point and introduce sAnsatzfor any necessary unde- the photon momentury.
fined Green’s functions. It is of course important to ensure \while the WTI is necessary for gauge invariance, it is not
that thisAnsatzbe consistent with all appropriate symmetries 3 sufficient condition and in itself does not ensure gauge
of the theory and that it have the correct perturbative limit.coyariance of the fermion propagator. Furthermore, with
The resulting nonlinear integral equations are solved numerimany vertexAnsdzethe fermion propagator DSE is not mul-
cally in Euclidean space by iteration. Dynamicat sponta- tjplicatively renormalizable, which is equivalent to saying
neous chiral symmetry-breakingDCSB) occurs when the  that overlapping logarithms are present. There has been
fermion propagator develops a nonzero scalar self-energy ighuch recent research on the use of the transverse parts of the
the absence of an explicit chiral symmetry-breakiBESB  vertex to ensure both gauge covariant and multiplicatively
fermion mass. We will refer to coupling constants strongrenormalizable solutiongl2,16—24, some of which will be
enough to induce DCSB as supercritical and those weakejiscussed below.
are called subcritical. We write the fermion propagator as With the exception of Ref[4], studies have mostly ne-
glected the issue of the subtractive renormalization of the
2(p?) 1 DSE for the fgrm_ion propagator. Typically these studies hgve
- — , (1) assumed an initially massless theory and have renormalized
p—M(p%) A(p>p—B(p? at the ultraviolet cutoff of the loop integration, taking
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Z,=Z,=1. Where a nonzero bare mass has been used, it has B. Vertex ansatz
simply been added to the scalar term in the propagator. Tpe requirement of gauge invariance in QED leads to a

While in some circumstances for the special case of Landade of identities referred to as the Ward-Takahashi Identities
gauge this can be a reasonable approximation, it is in gener@yv-n). The WTI for the fermion-photon vertex is
incorrect. Although there have been earlier formal discus-

sions of renormalizatiof2,12,19, the important step of sub- q”F“(k,p)zs_l(k)—S_l(p), (5)
tractive renormalization had not been performed prior to the
recent study in Landau gaudé]. whereg=k—p . This is a generalization of the original dif-

Here we present the results of a study of subtractiveerential Ward identity, which expresses the effect of insert-
renormalization in the fermion DSE iarbitrary covariant ing a zero-momentum photon vertex into the fermion propa-
gauge for quenched strong-coupling QENote that here gator:
the term “quenched” means that the bare photon propagator
is used in the fermion self-energy DSE, so tdat=1 and S Y(p)
there is no renormalization of the electron charge. This is a p =I""(p,p). (6
somewhat different usage to that found in lattice gauge !

theory studies, since in our study virtual fermion loops still the \ward identity Eq.(6) follows immediately from the

may be present in the proper fermion-photon vertex. WTI of Eq. (5) after setting to zero all but the component
The organization of the paper is as follows: The formal- ¢ g, dividing both sides of the WTI by, and then taking

ism is discussed in Sec. Il. This section contains discussion& 0. In general, for nonvanishing photon momentam

of the DSE for the renormalized fermion propagator,Ame gy the ongitudinal component of the proper vertex is con-

saze for the proper vertex, the subtractive renormalizationgirzined  ie.. the WTI provides no information on

procedure, the chiral limit, and renormalization point trans-lw(k p)=7T (k,p) for q#0. [We use the notation
formations. Our detailed numerical results are presented iaJyE'gW_(qu”yléz) and EWE'(quV/qz) for the trans-

Sec. Il and we present our summary and conclusions in SeQ;/erse and longitudinal projectors, respectivElg.particular,

. the WTI guarantees the equality of the propagator and vertex
renormalization constan,=Z; (at least in any reasonable
subtraction schemfgl].) The WTI can be shown to be satis-
fied order-by-order in perturbation theory and also can be
A. Renormalized DSE derived nonperturbatively.

As discussed if1,25], this can be thought of as just one
of a set of six general requirements on the vertgx:the
vertex must satisfy the WTI(ii) it should contain no kine-
S™H(p)=Zx(u,A)[p—mg(A)] matic singularities;(iii) it should transform under charge
conjugation ), parity inversion P), and time reversal
(T) in the same way as the bare vertex, e.g.,

II. FORMALISM

The DSE for the renormalized fermion propagator, in an
arbitrary covariant gauge, is

A d

4K

ko
-1 17T~
) C Tu(kp)C=~T,(=p,—k) )

(where the superscripT indicates the transpoge(iv) it
should reduce to the bare vertex in the weak-coupling limit;
(v) it should ensure multiplicative renormalizability of the
DSE in Eq.(2); (vi) the transverse part of the vertex should

hereq=k—p is the photon momentumy is the renormal-
ization point, andA is a regularizing parametétaken here

to be an ultraviolet momentum cut@fiWe write my(A) for o )
the regularization-parameter dependent bare mass. Tlpee specified fo ensure gauge covariance OT the DSE.
renormalized charge ie (as opposed to the bare charge Ball and thu[15] have given a degcr!ptlon of the. most
€p), and the general form for the renormalized photon propag.eneral fermion-photon vertex that Sat'ff'es the V,\,/TI’ It con-
gator is sists of a Io.ng|tud_|nlally const.ralne(de., Ball-Chiu™) pgrt
I'&c, which is a minimal solution of the WTI, and a basis set
of eight transverse vector§‘(k,p), which span the hyper-
1 g“q”) 1 plane specified byl,,T;(k,p)=0 [i.e., q,T{(k,p)=0],
1+11(qd) —§ RE ? 3 whereq=k— p. The minimal longitudinally constrained part
of the vertex will be referred to as the Ball-Chiu vertex and is
given by
with ¢ the covariant gauge parameter. Since we work in the
guenched approximation, we have for the coupling strength
and gauge parameter, respectively=e?/47= aOEeSMTr
and é= &g, and for the photon propagator we have

a“q”
9

(k+p)*
k2_p2

k+p
2

® :E 2 2 M
Ige(kip)= S [AKT) +A(P) ]v*+

X{[AKY) = A(p*) ] ——

. wq=] | —grer L] FA] L
D**(q)—D§ (q)—{( g*"+ qz) £ ]qz- @ —[B(k2>—B(p2>]]. ®
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Note that since neithef ,,I'gc(k,p) nor 7, I'g(k,p) van-  Subsequent papers established the form of the solutions for
ish identically, the Ball-Chiu vertex has both longitudinal the renormalization and the mgl] and studied the gauge
and transverse components. The transverse tensors can d@pendence of the solutiofik2]. Dong, Munczek, and Rob-

conveniently written a$26] erts[22] subsequently showed that the lack of exact gauge
" o " covariance of the solutions was due to the use of a momen-
T1(k,p)=p*“(k-q)—k (p-q), 9 tum cutoff in the integral equations, since this type of regu-
larization is not Poincar@variant. The fact that there is still
T2 (k,p)=[p*(k-a) —k*(p-q)](K+p), (10 some residual gauge dependence in the physical observables
Bk ) = Rk — gh such as the chiral critical point shows that with a momentum
Ts(k,p)=a"y*—q“q, (1) cytoff the CP vertexinsatzs not yet the ideal choice. Dong,
. Munczek, and Robert2?2] derived anAnsatzfor the trans-
— N2 ARV ’
Ti(kp)=aTy*(p+K) —p“—k]=2i(p—k)*k*p UA(Vl,Z) verse vertex terms, which satisfies the WTI and makes the

fermion propagator gauge covariant under hard momentum-
cutoff regularization.
Bashir and Penningtof23,24 subsequently described
“ 212 L two different vertexAnsaze which make the fermion self-
Te(k,p)=y*(p"= k) +(p+k)“d, (14) energy exactly gauge covariant, in the sense that the critical
point for the chiral phase transition is independent of gauge.

T’g(k,p)z _Iq VO-VMa (13)

TH(k,p)= E(pz_ K[ y*(p+K)— p*—kH] Specific constraints they have assumed for the vertex are, in
2 [23] that the transverse vertex parts vanish in the Landau
—i(k+p)“k p¥oy,, (15) gauge, and ||1j24_1] that Fhe anomalous dlmensl_on of the ferm—

ion mass functiony,, is exactly 1 at the critical coupling.
TE(k,p)=— yEK" P,y + KPP — PPk, (16) Their work is a continuation of that of Dong, Munczek, and

Roberts, and indeed their verténsatzcorresponds to the

where we use the conventiomg”=diag(1,~1,—1,—1), general form suggested [22]. _
{y*,y"}=2g*", and a*"=(i/2)[ y*,¥"]. Note that these However, the kinematic factors, 3 ¢ g in both vertex
tensors have been written in a different linear combination tdorms are rather complicated and depend upon a pair of as

the ones presented in R§fl]. A general vertex is then writ-  Yet undetermined function#/; ,(k? p?), which must be cho-
ten as sen to guarantee that the weak-coupling limif éf matches

the perturbative result. Renormalization studies of the DSE
using these new verteAnsadze should be interesting and
T#(k,p)=T#c(k,p)+ >, 7(k%,p%a®)TH(k,p), (17)  represent a direction for further research.
=1 For the solutions to the fermion DSE using the CP vertex,
where ther, are functions that must be chosen to give thethe critical point for the chiral phase transition has been
correctC, P, andT invariance properties. shown to have.a much weaker gauge depende_nce thgn that
%or the DSE with the bare or minimal Ball-Chiu vertices

Curtis and Pennington published a series of article 5 hi K i h . )
[12,19-2] describing their specification of a particular 7l In t Is work we will use the Curtis-Penningtaénsatz
s the basis for our calculations.

transverse vertex term, in an attempt to produce gauge cov&s Th ; di Di dd q i
riant and multiplicatively renormalizable solutions to the € eggaﬂons are separate |r)to a m’;xc-o part_ escrib-
ing the finite propagator renormalizatié{p<), and a Dirac-

DSE. In the framework of massless QE[they eliminated for th | i i fth
the four transverse vectors which are Dirac even and mu&Yen part for the scalar self-energy, by takiffy of the DSE

generate a scalar term. By requiring that the vertexultiplied by p/p? and 1, respectively. The equations are
I'“(k,p) reduce to the leading log result fke p, they were solz\l/ed in Euclidean space and S0 the volume m_tegrals
led to eliminate all the transverse basis vectors ex@épt /d '; can be separated into angle integrals and an 'F‘tegra'
with a dynamic coefficient chosen to make the DSE multi—f dk’; the angle integrals are easy to perform analytically,

plicatively renormalizable. This coefficient had the form f:";:smg the two equations, which will be solved numeri-

m6(k2,p%,0%) = — S[AK®) - A(pH)]/d(k,p), (18 One refinement of our treatment of the CP vertex in the
present work is associated with subtleties in the ultraviolet
whered(k,p) is a symmetric, singularity-free function &  regularization scheme. Although there have been some ex-
and p, with the limiting behavior lime. 2d(k,p)=k?  ploratory studies of dimensional regularization for the DSE
[Here,A(p?)=1/Z(p?) is their 1/F(p?).] For purely mass- [28], this has not yet proven practical in nonperturbative field
less QED, they found a suitable formd(k,p) theory and momentum cutoffs for now remain the regular-
= (k?>— p?)?/(k®+ p?). This was generalized to the case with ization scheme of choice in such studies. Naive imposition of

8

a dynamical masM (p?), to give a momentum cutoff destroys the gauge covariance of the
DSE because the self-energy integral contains terms, related
(k2= p?)2+[M?(k?)+ M?(p?)]? to the vertex WTI, which should vanish but which are non-
d(k.p)= k?+p? ' (19) zero when integrated under cutoff regularizatj@2,23. In

the Appendix we derive an expression for one such undesir-
They then showed that multiplicative renormalizability is re- able term and show how it may be subtracted in a simple
tained up to next-to-leading-log order in the DCSB caseway from the regularized self-energy. We also have calcu-
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lated some DSE solutions with the usual uncorrected UV 3 (u,Ap)=2g(p AspP) P+ Ee(m,Aip?) (22)
cutoff method for comparison purposes, but otherwise we _

use this “gauge-improved” regularization combined with [and similarly for the renormalized quantit},(u,p)]. By
the CP vertex throughout this work. This will be Commentedimposing the renormalization boundary condition

on futher in the discussion of numerical results in Sec. lll.

SY(p)|p2 2=p—m(p), (23

one gets the relations

The subtractive renormalization of the fermion propagator ~
DSE proceeds similarly to the one-loop renormalization of Sas(mip?) =26 (. ApP) =g (A u?)  (29)
the propagator in QED(This is discussed ifil] and in[29],
p. 425ff) One first determines a finitaegularized self-  for the self-energy,
energy, which depends on both a regularization parameter , ]
and the renormalization point; then one performs a subtrac- Zo(p M) =143 (A ) (29
tion.at t_he renormalization point, in.orde.r to define the renory - e renormalization constant, and
malization parametei®,, Z,, Z;, which give the full(renor-
malized theory in terms of the regularized calculation. — S 2

A review of the literature of DSE’s in QED shows, how- Mo(A)=[m(p) =Zg(p, Asu) ) Zo(p, A) — (26)
ever, that this step is never actually performed. Curtis angor the bare mass. The mass renormalization constant is then
Pennington[12] for example, define their renormalization given by
point at the UV cutoff.

Many studies takeZ,=Z,=1 [12,16,18-2]; this is a Zn(, A)=mo(A)/m(w), (27
reasonable approximation in Landau gauge in cases where ] )
the couplinga is sufficiently small(i.e., a<1), but if a is  I-€. as the ratio of the bare to renormalized mass.
chosen large enough, the value of the dynamical mass at the The vertex renormalizationZ,(«,A), is identical to
renormalization point may be significantly large comparedZ2(#,A) as long as the verteRnsatzsatisfies the Ward

C. Subtractive renormalization

with its maximum in the infrared. For instance, in REf2], Identity; this is how it is recovered for multiplication into
figures for the fermion mass are given with=0.97, 1.00, '(x,A;p) in Eq.(21). . _ .
1.15, and 2.00 in various gauges. ko 2.00, thefermion In order to obtain numerical solutions, the final

mass at the cutoff is down by only an order of magnitudeMinkowski-space integral equations are first rotated to Eu-
from its limiting value in the infrared. In general for strong clidean space[Note that all equations in Secs. | and Il are
coupling and/or gauges other than Landau gauge, this apritten in Minkowski spacd.They then are solved by itera-
proximation is unreliable. tion on a logarithmic grid from an initial guess. The solutions
As shown in Ref[4] subtractive renormalization can be are confirmed to be independent of the initial guess and are
properly implemented in numerical DSE studies withoutSolved with a wide range of cutoffsA(, renormalization
such approximations. We begin with a summary of thePoints (), couplings ), covariant gauge choiceg), and
renormalization procedurfl,4]. One defines a regularized renormalized massgsn(u)].
self-energy>’(u,A;p), leading to the DSE for the renor- The chiral limit occurs by definition when the bare mass

malized fermion propagator, is taken to zero sufficiently rapidly as the regularization is
_ removed. This is guaranteed, for example, by maintaining
S Y p)=Z,(u, AM)[p—mo(A)]—3"(u,A;p) mo(A)=0 as A—o. Explicit chiral symmetry breaking

- 5 ) (ECSB occurs when the bare masg(A) is not zero(or
=p—m(u)—Z(u;p)=A(P)P—B(p%), (200  more precisely, whenever it is not taken to zero sufficiently
rapidly as A—o). Dynamical chiral symmetry breaking

where the(regularized self-energy is (DCSB) is said to have occurred wheM (p?)#0 in the
absence of ECSB. As the coupling strength increases from
A d*k ~ zero, there is a transition to a DCSB phase at the critical
2’(M,A;p):izl(,u,A)e2J 2 YMS(u;K) couplinga,. Concisely, the absence of ECSB means that we

cannot seimy(A)=0, and the absence of both ECSB and
XT7(w:k,p)Dy (11 (p—K)). (21) DCSB(i.e, a<ac) means thaM(p.Z), m(u), andmg(A)
simultaneously vanisH.Recall that in the notation that we
use, hereM (p?_=B(p?)/A(p?) andm(u)=M(u?).] This

[To avoid confusion we will follow Refl1] and in this sec- %' e définition of the chiral limit that is used in non-

tion only we will denote regularized quantities with a prime perturbative studies of QCD: see, e.g., Réfs-3,30, and

and renormalized ones with a tilde, e.8.,(u,A;p) is the f herein. Obvious| imit d h
regularized self-energy depending on both the renormaliza- erences therein. Obviously, any limiting procedure where
we takemgy(A)—0 sufficiently rapidly asA— will also

tion point x and regularization parametdr and>(w;p) is lead to the chiral limif2].
the renormalized self-enerdyAs suggested by the notation
(i.e., the omission of th& dependengerenormalized quan-
tities must become independent of the regularization param-
eter as the regularization is removéce., asA—x). The A renormalization point transformation is a change of
self-energies are decomposed into Dirac and scalar parts: renormalization scalg.e., R(u,u') for u—u'] such that the

D. Renormalization point transformations
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bare mas®9 and couplings) remain fixed for fixed regular-
ization parameterA) and fixed renormalization scheme.
This ensures that the physical observables of the theory are
invariant under such a transformation. This set of transfor-
mations is associativgR (u,u )R(u' ,u")=R(u,u")], con-
tains the identity[R(u,u)=Z], and contains all inverses
[R(u,u') " '=R(u',)] and hence is called the renormaliza-
tion group.

For the purposes of the discussion here, we will now in-
dicate explicitly the choice of renormalization point by a
u-dependence of the renormalized quantities, i.e.,
A(u;p?)=1/1Z(1;p?), M(u;p?)=B(u;p?)/A(u;p?), etc.
Note that Eq.(20) implies that

A(;p2)=Zo(1,A) =S (e, Asp2) =1—S4(p,A;p?),

——— e ——

[ SOSrSHy

10O 105 10 1015

p*(spacelike)

10

Finite Renormalization A(p%)

1200
1000

B(u;p?) =Zy(p, A)mg(A)+Z 4, A5p?) 800

=m() + 3y, A; ). 600
400

200

(28)

Mass M(p?)

The renormalization point boundary condition in EG3)
then leads to>(u,A;u?)=0, or equivalently, to the two
boundary conditions A(u;u?)=1 and M(u;ux?)
=B(u;u?)=m(n). From Eq. (28) and the fact that
Zi(pu,A)=2Z,(w,A), we have

1OO 105 1010 15

p*(spacelike)

10

FIG. 1. The finite renormalizatioA(p?) and the mass function

[A(p; P Zo(, A)]=1=[Z (. A; P Zy (1, )],

[B(,u:pz)/Zz(,U«,A)]=mo(/\)+[2é(M.A;D2)/Zl(M,A2%é)

Consider the effects of an arbitrary rescaling(p?)
—cA(p?) and B(p?)—cB(p?), [i.e., M(p?) fixed], for

M (p?) are shown for various gauge parametérsThese results
have couplingr=1.00,renormalization poini.2=108, and renor-

malized massn(u)=400. In the lowp? region the larger gauge
parameter has the larger valueM{p?).

solution at any other renormalization poifpt’) without the
need for any further computation.

some real constartt. It is straightforward to see that under  An alternative derivation of this result, which starts
such a rescaling, we haveS(p)—(1/c)S(p) and from the renormalized action and which applies to the
I'*(p’,p)—cI’”(p’,p). It follows that the RH sides of Egs. general unquenched case can be found for example in Sec.
(29) are unaffected by such an arbitrary rescaling. Hence, i2.1 of Ref.[1]. For brevity we can denote the above renor-
follows that the choice of renormalization point boundary malization point dependence of the fermion propagator by
conditions is equivalent to the choice of scale for the func-’§(,u;p)”g'(ﬂ;p)ml/zz(ﬂ'/\). In the general unquenched case

tions A andB. [29], we would have in addition D7"(w;q)&(uw)

Let us consider this observation in more detail. Since we

T o 1/Z5(u,A), Zo(u  A)NZ3(, A Z9 (e, A), d
are working in the quenched approximation, whefeand :( )ﬁfé‘ ) ) )j(z’ugoc K;H’u )/Za(p,A), - an
D are unaffected by a change of renormalization point, it A S
follows from Eq.(21) that 3’ (u,A;p?)/Z;(w,A) is renor-

malization point independent since a change of renormaliza-

tion point is a rescaling oA andB. Then sincemo(A) is  gpjutions were obtained in Euclidean space for the DSE
renormalization point independent by definition, the entire,, couplings @ from 0.1 to 1.30, in gauges witf from
nght-ha_nd sidgRHS) o_f Eqs.(29)_ must be independent of _ o5 tg 3, andwvith a variety of renormalization points and
the choice of renormalization point. Thus, under a renormalienormalized masses. All results in this section refer to Eu-
ization point transformation, we must haver all p<, clidean space quantities. In the graphs and tables that follow,
' 2 N 5 there are no explicit mass units. Since the equations have no
M(u":p%)=M(u;p%)=M(p), inherent mass scale, the cutaff renormalization poinu,
m(u), and units ofM(p?) or B(p?) all scale multiplica-
tively, and the units are arbitrary. In four dimensions the
coupling has no mass dimension, therefore, it remains un-
changed for all such choices of mass units.
Figure 1 shows a family of solutions characterized by
a=1.00,u?=1x10% m(u)=400, andgauge parameters

Ill. RESULTS

A(p'ip%) _Za(p' )
A(p;p?)  Zy(p,A)

from which it follows for the fermion propagator that
S(u'";p)/S(w;p)=Zs(,A)Zy(p',A) in the usual way.
The behavior in Eq(30) is explicitly tested for our numeri- from —0.25 t01.25. We see that whil& andB are strongly
cal solutions. It is clear from Eq30) that having a solution gauge dependent, the mass functiétp?)=B(p?)/A(p?) is
at one renormalization poirfu) completely determines the relatively insensitive t€. The location of the mass pole of

1
:A(M';MZ):W' (30)
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o TABLE I. Renormalization constanZ,(u,A), bare masses
%‘ 1.20 . . . . . mg(A), and mass renormalizatiofy,(«,A), as a function of UV
o 1:10 CL_Jtoff for a:;.ls_ in th_e Landau gaug&=0). All solut_ions are
.§ v \ with renormalization poinj?=1.00x 108 and renormalized mass
e s m(x) =400.0.
= 0.90
g 0.80 =A% =10 \\ A2 Zo(u,A) Mo(A) Zon( i, )
&‘5 g‘zg_ \ 1x108 0.9999135  2.306x10? 5.765x<10°*
2 050 N 1x10° 0.9998483  5.358x 10" 1.339x107!
‘E 10~ 1902 100 105 101010121020 1><101‘1’ 0.9998468 4.443 1.111><107§
p(spacelike) 1x10 0.9998469 —3.932 —9.831x10
‘ 1x 102 0.9998469 —2.847 -7.117x10°3
1x 103 0.9998469 —1.182 —2.954x1073
1400 e 1x10'*  0.9998469 —3.408x10°* —8.520x107*
1200 F : 1x 10 0.9998469 —5.390x1072 —1.348x10°*
< 1000} 1 1x10'®  0.9998469  1.043x10°2 2.607x10°°
g 800 1 1x 10" 0.9998469 1.276x10°2 3.191x107°
P 600 1 1x10'8 0.9998469  6.171x1073 1.543x1075
g A00f--- ] 1x10°  0.9998469  2.042x10°3 5.105x10°¢
200 F
—
10718075 100 10° 101910151070 lations with increasing\, which is directly related to the

p*(spacelike) oscillations characteristic of the supercritical coupling and
subtractive renormalization at large¥ (see additional dis-
FIG. 2. The finite renormalizatioA(p?) and the mass function cussion later
M (p?) are shown for various choices of the regularization param- Figure 3 shows solutions with the coupling varying from
eter(i.e., ultraviolet cutoff A. These results have coupling=1.15,  gypcritical (#=0.6) to supercritical (e=1.4) values, with

renormalization pointu*=10°, renormalized massn(u)=400,  igentical renormalization point, renormalized mass, and
and_gaL_Jge parametéat_O.ZS. The stability of the subtractive renor- gauge. Here we see that the nodes in the mass function
malization procedure is apparent. M ( > I
p“) move to lower momenta and the oscillations become

more pronounced as the coupling is increased further and
the physical electron must of course be independent ofurther above critical coupling.
gauge, and this gauge independence has been demonstratedn order to test the gauge invariance of the chiral critical
explicitly using the WTI for example by Atkinson and Fry point, we extracted the critical coupling from solutions in the
[31]. Their proof assumes that the bare mag$A) is itself  Landau gauge and in two other covariant gauges, with
independent of gauge. Hence, in a fully gauge covariang=0.25 and 0.5. Miranskyet al, [3,6] working in the
treatment the mass function is independent of gauge at twguenched ladder approximation in Landau gauge, found that

scales(i.e., at the mass pole and at the UV regularizationthe infrared limit of the dynamical mass (0) has an
scaleA). In our study we find that the mass function is rela- infinite-order phase transition,

tively insensitive to the choice of gauge for aff. The na-

ture of the Landau-Khalatnikov transformatiof82] makes

the possibility of a gauge independéit(p?) seem rather

unlikely. - . . . cutoff for «=1.15 in the gauge witl§=0.25. All solutions are with
The stability of the renormalized DSE solutions with re- ..o aiization point u?=1.00x 108 and renormalized mass

spect to variations in the ultraviolet cutoff is evident in Fig. m( ) =400.0.

2. This graph shows solutions with=1.15, u2=108,

TABLE Il. Renormalization constanZ,(u,A), bare masses
my(A), and mass renormalizatiof,(u,A), as a function of UV

m(u) =400, and gaugé=0.25. The cutoffA? was varied A2 Zo(w,A) mo(A) Zo(i,A)
over several orders of magnitude with no apparent change in
the solutions over the common range of momenta. This nul>10° 0.999943 2.239x10 5.598x10*
merical stability was shown in other tests as well. For in-1x10° 0.9486 4.918x10* 1.229x107*
stance, we extracted the maggp?=0) for solutions with 1x10'°  0.8999 2.034 5.085x107°
«=1.00,u%=10% m(x)=0, and observed variations of less 1x 10" 0.8537 —4.898 —1.225x102
than one part in 19as the UV cutoff was varied over six 1x10'? 0.8099 -3.102 —7.756x10°°
orders of magnitude. 1x10'3 0.7683 —-1.193 —2.981x1073
Tables 1, 1I, and 1l show the evolution of the renormal- 1x10'4 0.7289 —3.059x10°!  -7.647x107*
ization constantsZ,(w,A), Zm(w,A), and the cutoff- 1x10'° 0.6915 —2.886x10°2  —7.214x10°°
dependent bare masg,(A) as a function of the UV regula- 1x10'® 0.6560 2.145x10°2 5.362x10°°
tor A. We see that as we move further from Landau gaugea x 107 0.6224 1.609x10° 2 4.023x10°°
Z,(w,A) decreases more rapidly with increasifgln addi-  1x 108 0.5904 6.679x10°3 1.670x10°5

tion, we observe that the bare mass exhibits decaying oscil
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TABLE Il Renormalizgtior! constanZ(u,A), ba.re masses Critical Curves for gauges £ = 0, 0.25, 0.5
mg(A), and mass renormalizatiofi,,(«,A), as a function of UV )
cutoff for =1.15 in the gauge witl§=0.5. All solutions are with 0.20
renormalization pointu?=1.00x10% and renormalized mass
m(u) =400.0. 0.18 |
s
A? Zy(1.A) mo(A) Z( . A) S o6
S
1x10°8 0.99997 2.176x10? 5.441x107* Z o |
1x10° 0.8999 4.513x10" 1.128x107* T
1x10° 0.8099 —1.455x10°! -3.638x10°* £ onth ]
1x10% 0.7289 —5.736 —1.434x1072 §
1x10%? 0.6560 —3.299 —8.248x10°° & oo
1x10" 0.5904 -1.181 —2.954x10°3 z
1x10™ 0.5314 —-2.653x10°'  -6.632x107¢ 0.08
1x10" 0.4783 -3.676x10°%  —-9.190x10°°
1x10' 04304  3.151X10°2  7.877x10°° 0005 1o oS LI 4 120 125 130
1x 107 0.3874 1.870x10 2 4.674x10°° Coupling o
FIG. 4. The critical curves for three choices of gauge parameter
M(0)=4A exg — ™ (31) showing the existence of residual gauge dependence in the Curtis-
Vialag)—1 ' Pennington vertex. All solutions were renormalized with the choice,

m(w)=0, with the renormalization point?=10*. The order pa-
Following their approach, we assume a similar form for therameter is evaluated using an arbitrary reference mass scale choice
dynamical mass near the critical coupling, of M’=200.0. Diamonds (<), connected by the solid smooth
curve, are order parameter values for the Landau gauge; fltses
connected by the dashed smooth curve, are value&for25; and
boxes(), connected by the dot-dashed smooth curve, are values
for £=0.5.
and construct an order parameter, which is expected to have
a second-order phase transitionl/INf[M(0)/M']. Since the inherent mass scal is not knowna priori, it is necessary

to choose a reasonable scdlg, and then calculate a cor-
rected fit, which also yields the actual value Mt

DSE solutions were obtained for several values of the
coupling in each gauge, with the renormalizatjof=10%.
We setm(u) =0 for the purpose of studying the transition.
The IR mass limit was extrapolated for each solution and
then the order parameters were calculated using an assumed
mass scal®1’ =200. Theresulting critical curves are shown
along with theM (0) values from the solutions, in Fig. 4. The
parameters from the nonlinear fits are given in Table IV. The
critical exponents3 are the same to within their numerical

M(0)=M exp[ (32

_;}
[(alar)—1]7)

04

Finite Renormalization A(p?)

1010 1015

107191075 100 10° tolerance, and suggest thatmay be independent of gauge.
p’(spacelike) Although the values ofy. are close in value, there is clear
evidence of residual gauge dependence.
Our value fora, in the Landau gauge is very close to the
1500 value of 0.933667 found by Atkinsoet al. [27] in their bi-
furcation analysis of the solutions of the fermion DSE with
< 1000 ] the Curtis-Pennington vertex. In addition, we find that the
b1 o6 ] critical coupling varies with¢ in the same direction. Recall
P 500 F T = = 08 that these authors used the unrenormalized equations and
g 0 [ a1 ] relaxed the UV momentum cutoff to infinity in order to re-
et = 1.4 move cutoff artifacts, whereas we have used subtractive
~500 ) , . ) renormalization and our gauge covariance correction. Hence,
107104575 10% 10° 1010 10!° we can anticipate a small difference between the critical cou-
p*(spacelike) plings in our approaches.

Figure 5 shows a family of equivalent solutions renormal-
ized at different momentum scalgs and these provide a
M(p2) are shown for various choices of the coupling strength ~ direct check on the behavior predicted in E80). All have
These results have renormalization pojat=10%, renormalized coupling #=1.15 andé=0.5, and the renormalization scale
massm(u) =400, andgauge parametef=0.50. u? is stepped by powers of 10, with renormalized masses

FIG. 3. The finite renormalizatioA(p?) and the mass function
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TABLE IV. Critical parameters for three choices of gauge0, 0.25, and 0.50. These are extracted from
nonlinear fits to the data in Fig. 4, using the form in E3R).

Parameter Landa(£=0) £=0.25 £&=0.5
c 2.877+0.027 2.85&0.043 2.8510.055
. 0.933070.00023 0.920760.00048 0.909460.00071
B 0.512+0.003 0.514:0.005 0.516:0.007
M 154.3+5.2 148.5-7.7 145.4-9.4
X?INpe 0.0959 0.0388 0.0211

m(u) chosen such than(u)=M (u?) for eachu. Itis clear tracted from the Landau gauge solutipn=1.716638. The
that the resulting mass curves are identical atpdlias ex- gauge dependence of, shows up as the slight difference in
pected, and in each ca#éu;p?) scales as predicted in Eq. slopes on the log-log plotThe dips apparent at the end of
(30), showing that the renormalized DSE does transform corthe curves are due to having a hard momentum cutoff

rectly. A?=10®. As A is increased these move to higher momenta
The anomalous dimension of the mags,, is defined by  also) In Landau gauge, the actual power op# mith which
the asymptotic scaling of the dynamical mass wifh M(p?) falls asymptotically iss=1—(y,/2)=0.141681.
For the gaugeg=0.25 and 0.5, the anomalous dimensions
p?\(m2)-1 are 1.713948 and 1.711274, giving powers gb?équal to
M(pz)N(ﬁz) : (33)  0.143026 and 0.144363, respectively.

Miransky has studied the form of the mass renormaliza-

: Lo - tion Z,, in the bare vertex approximation in Landau gauge,
As well as depending on the coupling, it shows a slight de- m . o .
pendence on ?he gagge, as shovxF/)n iﬁ Fig. 6. The dygnamicglnd without subtractive renormahzaﬂoﬁ?,?]. In this
masses shown are from DSE solutions with=05, treatment he findsZy(u,A)=(u?/A?)H2=7 with the
1?=10%, andm(u) =400, inLandau gauge and in gauges €xponent
£=0.25 and 0.5. They are scaled by multiplication with
(p?/ u?)r~m'2) where the value ofy,, used was that ex- Y ()=3J1-ala, (34)

where the critical coupling for DCSB in that approximation
is a.= /3. This would imply an asymptotic scaling for the

410

0.4 .
1071940~

5

&

= 1.4 _ , ,

e b . dynamical mass that goes likd (p?)~(p?)? %2, so that

% R S \ ] the anomalous mass dimension would be related 'ty

N1 of  mesmmemmmemee > ] v'=(ym—1)/2. Recent articles by Holdorf83] and Mah-

E R anta[34,35 claim that for quenched theoriex criticality
o.8r ] h | di i hould b tly 1, giv-

5 i the mass anomalous dimensigp should be exactly 1, giv

g :

& 0.6F b i ]

3

8

&

100 105 1010 1015

p¥(spacelike) 2 405
5 400
E
1400 £
1200 E & 395
«— 1000 1 =
2 800 : & 100
= 600 : 2
g [
o 400 _ 7 2
= 200F "l -ae ; 2 385
OF 3 =
—R00 ! ’ ’ : % 380
107101075 109 10% 1010 101° )
p*(spacelike) p (spacelike)
FIG. 5. The finite renormalizatioA(p?) and the mass function FIG. 6. Asymptotic mass scaling below critical coupling as a

M(p?) are shown for various choices of renormalization point.function of gauge, witha=0.5, x>=10%, and m(u)=400. The
These results have coupling strength1.15 and gauge parameter scaling applied to the masses uses the anomalous dimension found
£=0.50. Each of these results corresponds Mgp?)=400 at for the Landau gauge,(é=0)=1.716638. The extracted anoma-
p?=10°%. Hence,M(p?) is renormalization point independent and lous  dimensions for the other two curves are
A(p?) varies as described in E(30). vm(0.25)=1.713498 andy,(0.5)=1.711274.
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=
< 1.4 ; ; ; ; 40
g Lok ] 30k a=1.15 §=0.00
;g . _-_——.\ o~ et @=1.16 §=0.25
S 1ok ] L;: ZOE ------ a=1.15 £=0.50
o without gauge fix »
E 0.8 F e with gauge fix ] g
% =
o 06 B 4
) -10 . . . .
- 04 . R . .
=i - 10 411 412 418 414 ,,15
‘E 10101075 100 10° 1010 ;ol5 1077 1077 1077 10° 10°% 10
p*(spacelike) p*(spacelike)
FIG. 8. Detail of the node in the mass functid(p?) for vari-
1400 . . — ous gauge choices. These results have coupling strengthl15,
1200 F s 1 renormalization point x?=108 and renormalized mass
~ 1000F : 3 m(u) =400.
2 soof 1 ) o )
= ook thout 5 E with « cosp=m(w). However, the approximations used in
withou auge 11X . . . . .
ﬁ 400k e with gafge fix ] deriving th|_s result are not applicable ou_t5|de Landau gauge
= o0ot E and even in Landau gauge lead to differences from the
of ] present treatment. We find that the functional form is sub-
TR0 e stantially correct, but that both the mass dimension and the
1077107 107 107 1077 10 period of oscillations depend on the coupling and the choice
p(spacelike) of gauge. In fact, for the case shown in Fig. 9, the mass

dimension that fit§M (p?)| is y,=1.115. Thedependence

- o 2 .
FIG. 7. The flnlte_renormall_zatloA(p ) and the mass function of the period orx anda is also not as simple as that in Eq.
M(p?) are shown with and without the gauge-covariance correc-(35)

tion. We see that the correction is a relatively small effect. These
results have coupling strengtk=1.15, renormalization point
12=108, renormalized massn(u)=400, andgauge parameter

£§=0.50. We have extended our previous work on the numerical
renormalization of the DSE4] to arbitrary covariant gauges.

ing M(p?)~1/p as in the bare approximation, and that in The procedure is straightforward to implement and ex-
particular this result should be independent of the gaug@emely stable. It becomes numerically more challenging for
[35]. In Miransky’s treatment this corresponds to the vanishcovariant gauges far removed from Landau gauge and for
ing of ‘)/, at the critical Coupling. We find for subcritical |arge Coup”ngs @> 1) The importance of the approach is
couplings thatyy, still has a slight gauge dependence. that it removes the issue of cutoff dependence and allows

The gauge-covariance correction described in the Appensplutions to be obtained for any choice of renormalization
dix leads to an exact restoration of gauge covariance in thgoint. We have described the procedure for performing
subcritical case with no explicit chiral symmetry breaking, renormalization group transformations between solutions
i.e., no bare masésee, e.g., Refl22]). The difference be- with different renormalization points. We saw that a knowl-
tween a DSE solution with naive cutoff regularization and
those with the gauge-covariance correction is shown in Fig. .
7. Both solutions have=1.15,£=0.5, and are renormalized
at u>=10% and m(x)=400. Thequantitative change in- o L
duced by our gauge-covariance correction was found to be
relatizvely small in the presence of a substantial mass function
M(p?).

We find, as in our previous study in Landau gaudé
that for supercritical couplings, the dynamic mass crosses
zero; for solutions with nonzerm(w), the position of the
first node depends on the gauge, as shown in Fig. 8. In fact
as the cutoff is increased) (p?) shows damped oscillations
periodic in log?, as shown in Fig. 9. This has been discussed ottt
by several authorf7,35,34; in particular it is shown using p’ (spacelike)
some simplifying approximations, if36] that in Landau
gauge, the DSE reduces to a differential equation for ) )
M (p), which has the solution I_:IG._ 9. Abso_lutt_a v_alue of the dynaml_cal mass, showing damped
oscillations periodic in Inf). The solution shown has=1.25,
£=0.25, and is renormalized with?=10* m(x)=0. The power-

-1
P 1 27,2 law fit, which runs tangent to the dynamical mass curve, is
—| codiin(p¥u)Jala.—1+¢], (35 ’ 9 y urve,
,u) $2In(p*/us)Valac ¢l (39 C(p?/ u?) 2 =1 with C=4.394x1072, y,,=1.115.

IV. SUMMARY AND CONCLUSIONS

— a=125E=025
~—=— power-law fit

Absolute Mass IM(p")l
5

M(p)=«
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edge of the solution at one renormalization point automati- ACKNOWLEDGMENTS
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is required.

The solutions are stable and the renormalized quantities
become independent of regularization as the regularization is
removed, which is as expected. For example, the mass func- Regulators applied to divergent integrals in field theory
tion M(p?) and the momentum-dependent renormalizationalways destroy some continuous symmetry, and in particular
A(p?)=1/Z(p? are unchanged to within the numerical ac- the use of a momentum cutoff destroys gauge covariance.
curacy of the computation as the integration cutoff is in-This appendix describes a modification of the self-energy
creased by many orders of magnitude. The mass renormahtegrals in the regularized DSE, which will at least partially
ization constanEZ,(«,A) converges to zero with increasing restore this symmetry.

A because the mass functidh(p?) falls to zero sufficiently The basis of this change in the regularization scheme is
rapidly at large p2. The absence of divergences of that when the self-energy, given in Eq.(21), is evaluated
Zy(w,A)=2Zy(m,A), mo(A), and Z,(n,A) in the limit  under cutoff regularization, it contains a term related to the
A— is a purely nonperturbative result and is in sharp convertex WTI, which should vanish but which integrates to
trast to the perturbative case where these constants divergegive a nonzero contribution because the cutoff regularization
all orders. scheme is not translationally invariaf22,23. We, there-

In order to study the critical point and exponents for thefore, evaluate this term separately and subtract it from the
transition to DCSB, one sets the renormalized mmagg) to  self-energy. It turns out to affect only the value of the renor-
0 and varies the coupling. For subcritical couplingg(A) malizationZ,(u,A).
remains zero, and the dynamical mag¢p?) is identically We write the photon propagator, in Minkowski momen-
zero, while for supercritical couplingsvl(p?)#0 [and  tum space and in an arbitrary covariant gauge, as
my(A) #0 for finite A]. We have extracted the critical cou-

APPENDIX: UV REGULATOR
AND GAUGE COVARIANCE

pling for DCSB in Landau gauget0), and in gauges with (q)=( — qnqv) 1 1 9.9 1 (A1)
£=0.25 and0.5. Our Landau gauge result is very close to~ ~” g2 ) 14+11(g2) o2 q° q°
the value found if27]; the values in the other gauges show
a small residual gauge dependence. 1

For subcritical couplings, we find that the mass renormal- =—T7u(q) mf) aﬁ - Euv(Q)gaZ (A2)
ization Z.,(u,A) scales approximately asZ,(w,A)
o (A2 (@82 \where, e.g.,ym(0.5,0)=1.716638. =D, (q)+D},(9), (A3)

Above the critical coupling, the mass function shows

damped oscillations around zero, periodic irpf)(We have ~ where7,,(q) and.,,(q) are the transverse and longitudinal

extracted mass anomalous dimensiggsfor some subcriti- ~ projectors, respectively,Z,,(q)=9,,~d,d,/9% £,.(q)

cal and supercritical couplings, and find them all greater tharr qﬂqquz.

1. The renormalized fermion propagator is as in Ed).
We have shown that our modified Curtis-Pennington verd",(k,p) is the renormalized proper verteg;=k—p is the

tex, while removing the violation of gauge covariance in thephoton momentum. The renormalization point 8", and

massless subcritical cagee., when there is no explicit or D is p>=u?, however, we will not always write it explicitly.

dynamical chiral symmetry breakindas not been sufficient The “naively” regularized self-energyunder a regular-

to remove the small residual violation of gauge covariance irization scheme with parametdy) is

the general case. Hence it is important to attempt to extend A ik

this work to include other regularization schemesy., di- Asn 2 N

mensional regularizationand to vertices of the Bashir- 2P =iZy(p,A)e J (2m)* Y SUOT (k. p)D Q)

Pennington typé23,24. (A4)
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(where we write the regularization as though it were a mo-This modification combined with the CP vertex is #hesatz
mentum cutoff, but it need not helf I'’(k,p) satisfies the used in all calculations in this work unless explicitly stated
WTI, q,I'"(k,p)=S1(k)—S (p), we can rewrite the otherwise.

DSE as Converting to Euclidean metribut suppressing the “Eu-
N clidean” subscript on momenta for conveniepgives
2w, A5p)
/ ) A ) 2 (A dk p-q
A ZJA d*k ST (kD1 2a(p, A p?) =g (e, Asp%) — €21 (A )e 2m) P2
=1Z4(m Me” | s v SIOT(kp)D,,, () (A10)
—iz,( A)eZJA d*k #S(K)T*(k p)gqnqv i Since in our case the regularization is an ultraviolet cutoff in
e 2m*” ’ a° q° momentum, we have
s A 2 A d4k “S(KT (K T (AS) o
=iz | g v ST K pIDL @ S APD) =S5 (1 ATPD) ~ 24, ) 5
Ad% ¢ 1 G ™ p-q
—1€Zy(u, A ezf —— xf k2dk2f ifedo-——. All
g l(lu’ ) (277_)4 q2 q2 0 Sl p2q4 ( )
K g Introducing the variablesx=p?, y=k? z=(k—p)?

. A _ 1
+'§Zl(M,A)ezf 27 ?S(k)s 1(p)? - (AB)  =x+y—2yXycod, x- =max(Ky), X-=min(xy), we have

’ N2y =S A 12\ _ i
The boxed integral is odd ig, and should vanish in any Tal AP =2a (A7) ~€Za(m, A) 272

translationally invariant regularization scheme; otherwise, it
contributes and we expect it to destroy the gauge covariance % fAzydyf "sirtode VXycos#—x
of . However, we can define a “gauge-improved” self- 0 xz°

energy by canceling this undesirable term

=34(m.A;p?)
R , L d%k g1
S, Ap) =2 (p,ATp) +HiEZy(p,A)e J YTy af w1 (a2 (X<—X)y
(2m)"a°q —Zi(wN) 5257 Yy w w
(A7) 27 2 XJo (Xs —X<)Xs
and since the added integral is Dirac odd, upon decomposing <A L a_f
into scalar and spinor parts as in E82), we have =24 (AP +Zy(p,A) 8n (A12)
S A pA) =34 u,A;p?), (A8)  Thus the gauge covariance correction that we use here is to
cancel the boxed term in EQ.(A6) by adding
Eé(,u,A;p2)=23(M,A;p2)+igzl(,u,A)e2 Zi(m,A)aé/87 to the naive regularized self-energy in Eq.
4 (A4) and this is how it is implemented in our program. The
A dk p-q (A9) effects of including and not including this gauge covariance

(2m)* p?q* correction can be studied numerically.
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