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Collision-induced decays of electroweak solitons: Fermion number violation
with two and few initial particles
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We consider a variant of the standard electroweak theory in which the Higgs sector has been modified so
that there is a classically stable weak scale soliton. We explore fermion-number-violating processes which
involve soliton decay. A soliton can decay by tunneling under the sphaleron barrier, or the decay can be
collision induced if the energy is sufficient for the barrier to be traversed. We present a classical solution to the
Minkowski space equations of motion in which a soliton is kicked over the barrier by an incoming pulse. This
pulse corresponds to a quantum coherent state with a mean number ofW quanta;2.5/g2 whereg is the SU~2!
gauge coupling constant. We also give a self-contained treatment of the relationship between classical solu-
tions, including those in which solitons are destroyed, and tree-level quantum amplitudes. Furthermore, we
consider a limit in which we can reliably estimate the amplitude for soliton decay induced by collision with a
singleW boson. This amplitude depends ong like exp(2cg21/3), and is larger than that for spontaneous decay
via tunneling in the same limit. Finally, we show that in soliton decays light SU~2!L doublet fermions are
anomalously produced. Thus we have a calculation of a two-body process with energy above the sphaleron
barrier in which fermion number is violated.@S0556-2821~96!00306-2#

PACS number~s!: 11.30.Fs, 11.15.Kc, 12.39.Dc, 12.60.Fr
by
li-
ll
for
k
h
e
ble
is

e
it
he
it
her
nd
at

es
o

s,
ou-
I. INTRODUCTION

In the standard electroweak theory, fermion number v
lation is present at the quantum level but these processes
seen only outside of ordinary perturbation theory. A bary
number three nucleus can decay into three leptons. The p
cess is described as an instanton-mediated tunneling e
@1#, leading to an amplitude which is suppressed
exp(28p2/g2), with g.0.65 the SU~2! gauge coupling con-
stant. At energies above the sphaleron barrier@2#, fermion-
number-violating processes involving two particles in th
initial state are generally believed to be also exponentia
suppressed@3#. ~At energies comparable to, but below th
sphaleron barrier, Euclidean methods@4# have been used to
show that the exponential suppression is less acute tha
lower energies, but the approximations used fail at energ
of order the barrier height and above.! Unsuppressed
fermion-number-violating processes are generally believ
to have of order 4p/g2 particles in both the initial and final
states. This all suggests that fermion number violation w
remain unobservable at future accelerators no matter h
high the energy, whereas in the high temperature envir
ment of the early Universe such processes did play a sign
cant role@5#.

*Electronic address: farhi@mitlns.mit.edu
†Electronic address: goldstone@mitlns.mit.edu
‡Electronic address: ithron@mit.edu
§Present address: California Institute of Technology, Pasade

CA 91125. Electronic address: krishna@theory.caltech.edu
540556-2821/96/54~8!/5336~25!/$10.00
io-
are
on
ro-
vent
by

e
lly
e

n at
ies

ed

ill
ow
on-
ifi-

In this paper, we explore the robustness of these ideas
studying a variant of the standard model in which the amp
tudes for certain fermion-number-violating collisions, as we
as for spontaneous decays, can be reliably estimated
small couplingg. The model is the standard electrowea
theory with the Higgs boson mass taken to infinity and wit
a Skyrme term@6# added to the Higgs sector. With thes
modifications, the Higgs sector supports a classically sta
soliton which can be interpreted as a particle whose mass
of order the weak scale@7#. Quantum mechanically, the soli-
ton can decay via barrier penetration@8–10#. Classically, i.e.,
evolving in Minkowski space using the Euler-Lagrang
equations, the soliton can be kicked over the barrier if it is h
with an appropriate gauge field pulse. Correspondingly, t
soliton can be induced to decay quantum mechanically if
absorbs the right gauge field quanta. Regardless of whet
the decay is spontaneous or induced, ordinary baryon a
lepton number are violated in the decay. We shall see th
the model has a limit in which fermion-number-violating
amplitudes can be reliably estimated both for process
which occur by tunneling and for those which occur in tw
particle collisions between a soliton and a singleW boson
with energy above the barrier.

A. The model

To modify the standard model so that it supports soliton
proceed as follows. Note that in the absence of gauge c
plings the Higgs sector can be written as a linears model

LH5
1

2
Tr@]mF†]mF#2

l

4
~Tr@F†F#2v2!2 ~1.1!na,
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where

F~x,t !5S w0 2w1*

w1 w0*
D , ~1.2!

(w0 ,w1) is the Higgs doublet, andv5246 GeV. One ad-
vantage of writing the Lagrangian in this form is that
makes the SU~2! L3SU(2)R invariance of the Higgs sector
manifest. The scalar fieldF can also be written as

F5sU, ~1.3!

whereU is SU~2! valued ands is a real field. In terms of
these variables,

LH5
1

2
s2Tr@]mU

†]mU#1]ms]ms2lS s22
v2

2 D 2. ~1.4!

The Higgs boson mass isA2lv. We work in the limit where
the Higgs boson mass is set to infinity ands is frozen at its
vacuum expectation valuev/A2. Now

LH5
v2

4
Tr@]mU

†]mU# ~1.5!

which is the nonlinears model with scale factorv. We will
consider only those configurations for which the fields a
proach their vacuum values asuxu→` for all t. We can then
impose the boundary condition

lim
uxu→`

U~x,t !51 ~1.6!

which means that at any fixed time,U is a map fromS3 into
SU~2!. These maps are characterized by an integer-valu
winding number which is conserved as theU field evolves
continuously. However, if we take a localized winding num
ber one configuration and let it evolve according to the cla
sical equations of motion obtained from~1.5!, it will shrink
to zero size. To prevent this we follow Skyrme@6# and add a
four-derivative term to the Lagrangian. The Skyrme term
the unique Lorentz invariant, SU~2! L3SU(2)R-invariant
term which leads to only second-order time derivatives in t
equations of motion and contributes positively to the energ

LH andS5
v2

4
Tr@]mU

†]mU#1
1

32e2
Tr@U†]mU,U

†]nU#2,

~1.7!

wheree is a dimensionless constant.
Of course, this Lagrangian is just a scaled-up version

the Skyrme Lagrangian which has been used@6,11,12# to
treat baryons as stable solitons in the nonlinears model
theory of pions. To obtain the original Skyrme Lagrangia
replacev in ~1.7! by f p593 MeV. The stable soliton of this
theory, the Skyrmion, has a mass of 73fp /e and a size
;2/(e fp) @12#. Best fits to a variety of hadron propertie
give e55.5 @12#. The soliton of~1.7! has a mass of 73v/e
and a size;2/(ev) and we takee as a free parameter since
the particles corresponding to this soliton have not yet be
discovered.
it
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The standard electroweak Higgs boson plus gauge bo
sector is obtained by gauging the SU~2! L3U(1)Y subgroup
of SU(2)L3SU(2)R in the Lagrangian~1.1!. Throughout
this paper we neglect the U~1! interactions. The complete
Lagrangian we consider is obtained upon gauging the SU~2!

L symmetry of~1.7!:

L52
1

2g2
TrFmnFmn1

v2

4
Tr@DmU†DmU#

1
1

32e2
Tr@U†DmU,U

†DnU#2, ~1.8!

where

Fmn5]mAn2]nAm2 i @Am ,An#,

DmU5~]m2 iAm!U, ~1.9!

with Am5Am
asa/2 where thesa are the Pauli matrices. In the

unitary gauge,U51, and the Lagrangian is

L5
1

g2 H 2
1

2
TrFmnFmn1m2TrAmA

m1
1

8j
Tr@Am ,An#2J ,

~1.10!

where we have introduced

m5
gv
2

and j5
4e2

g2
. ~1.11!

Note that the equations of motion derived from~1.10! agree
with those obtained by varying~1.8! and then settingU51.
Also note that for fixedm and j, the classical equations of
motion are independent ofg. Sincem is dimensionful and
sets the scale, characteristics of the classical theory dep
only on the single dimensionless parameterj.

B. The soliton and the sphaleron

The classical lowest energy configuration of~1.10! has
Am50 and the quantum theory built upon this configuratio
has three spin-one bosons of equal massm. In the limit
whereg goes to zero withe andv fixed ~hence,j goes to
infinity!, the Lagrangian~1.8! is well approximated by its
ungauged version~1.7! which supports a stable soliton, so
one suspects that for largej the Lagrangian~1.8! and its
gauge-fixed equivalent~1.10! also support a soliton. In fact,
Ambjorn and Rubakov@10# showed that forj larger than
j*510.35, the Lagrangian~1.10! does support a classically
stable soliton whereas forj,j* , such a configuration is
unstable. LetU1(x) be the winding number one soliton, the
Skyrmion, associated with the ungauged Lagrangian~1.7!.
For largej, this configuration is a good approximation to th
soliton of the gauged Lagrangian~1.8!, so in the unitary
gauge the soliton isAi

sol. iU 1
†] iU1 , A0

sol50. For all j.j* ,
the quantum version of the theory described by~1.10! has, in
addition to the three equal massW bosons, a tower of par-
ticles which arise as quantum excitations about the solito
just as the proton, neutron, and delta can be viewed as qu
tum excitations about the original Skyrmion@11,12#.
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The Lagrangian~1.10! determines a potential energy
functional which depends on the configurationAm(x). The
absolute minimum of the energy functional is atAm50. For
j.j* , there is a local minimum at the solitonAm5Am

sol(x)
with nonzero energy given by the soliton massM sol. @Of
course, a translation or rotation ofAm

sol(x) produces a con-
figuration with the same energy so we imagine identifyin
these configurations so that the soliton can be viewed a
single point in configuration space.# Consider a path in con-
figuration space fromAm50 to Am

sol(x). The energy func-
tional along this path has a maximum which is greater th
the soliton mass. As we vary the path, the maximum vari
and the minimum over all paths of this maximum is a sta
unstable solution to the classical equations of motion whi
we call the sphaleron of this theory.~The sphaleron of the
standard model@2# marks the lowest point on the barrie
separatingvacuawith different winding numbers. Here, the
sphaleron barrier separates the vacuum from a soliton w
nonzero energy.! For fixed v and e, the sphaleron mass
M sphgoes to infinity asg goes to zero, reflecting the fact tha
for g50, configurations of different winding@U ’s with dif-
ferent winding in ~1.7!# cannot be continuously deformed
into each other. For fixedg andm, asj approachesj* from
above, the sphaleron mass comes down until atj5j* the
sphaleron and soliton have equal masses. Forj,j* , the
local minimum at nonzero energy has disappeared.

For j.j* , the classically stable soliton can decay b
barrier penetration@8–10#. This process has been studied
detail by Rubakov, Stern, and Tinyakov@13# who computed
the action of the Euclidean space solution associated with
tunneling. They show that in the semi-classical limit, a
j→` the action approaches 8p2/g2 whereas asj→j* with
g fixed the action goes to zero since the barrier disappea

C. Over the barrier

In this paper, we focus on processes where there
enough energy to go over the barrier. In the standard mod
the sphaleron mass is of orderm/g2 and the sphaleron size is
of order 1/m. This means that for smallg, two incidentW
bosons, each with energy half the sphaleron mass, h
wavelengths much shorter than the sphaleron size. This m
match is the reason that over the barrier processes are
erally believed to be exponentially suppressed inW2W col-
lisions. In contrast, in the model we consider, we can take
soliton as one of the initial state particles. To the extent th
the soliton is close to the sphaleron, we have a head star
going over the barrier. We can also choose parameters s
that an incidentW boson, with enough energy to kick the
soliton over the barrier, has a wavelength comparable to b
the soliton and sphaleron sizes.

We first look at solutions to the Minkowski space class
cal equations of motion derived from the Lagrangian~1.10!.
To simplify the calculations we work in the spatial spheric
ansatz@14#. We solve the equations numerically. As initia
data we take a single electroweak soliton at rest with
spherical pulse of gauge field, localized at a radius mu
greater than the soliton size, moving inward toward the so
ton. In the next section, we display one example of a solito
destroying pulse in detail. Forj within about a factor of 2 of
j* , for all the pulse profiles we have tried with the puls
g
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width comparable to the soliton size, there is a threshold
pulse energy above which the soliton is destroyed. The en
ergy threshold is larger than the barrier height, and it doe
depend on the pulse profile. However, the existence of
threshold energy above which the soliton is destroyed seem
robust, and in this sense the choice of a particular puls
profile is not important.

A classical wave narrowly peaked at frequencyv with
total energyE can be viewed as containingE/\v particles.
Making a mode decomposition, we can then estimate th
number of gauge field quanta, that isW bosons, in a pulse
which destroys the electroweak soliton. From~1.10! we see
that such a pulse has an energy proportional to 1/g2 for fixed
m andj. Thus, the particle numberN of any such pulse goes
like some constant overg2. For example, atj512 we have
found pulses withg2N;2.5. At this value ofj, by varying
the pulse shape we could reduceg2N somewhat but we
doubt that we could make it arbitrarily small. Upon reducing
j towards j* and thus lowering the energy barrierDE,
smaller values ofg2N become possible. For example, at
j511 we have found pulses withg2N.1. In the standard
model, finding gauge boson pulses which traverse the sphal
ron barrier and which have smallg2N, appears to be much
more challenging@15#. Note from the form of~1.10! that
taking g to zero withm and j fixed is the semi-classical
limit. In this limit, the soliton mass, the sphaleron mass, and
their differenceDE all grow as 1/g2. The number of par-
ticles in any classical pulse which destroys the soliton also
grows as 1/g2.

The existence of soliton-destroying classical pulses ha
quantum implications beyond a naive estimate of the numbe
of particles associated with a classical wave. In Appendix B
we give a full and self-contained account of the relationship
between classical solutions and the quantum tree approxim
tion in a simple scalar theory. In a theory with an absolutely
stable soliton, the Hilbert space of the quantized theory sepa
rates into sectors with a fixed number of solitons, and state
in different sectors have zero overlap@16#. We argue in Sec.
III, using the results of Appendix B, that the existence of
classical solutions in which solitons are destroyed demon
strates that there are states in the zero- and one-soliton se
tors of the quantum theory whose overlap in the semi-
classical limit is not exponentially small. These states are
coherent states with a mean number ofW bosons of order
1/g2. Knowing that some quantum processes exist which
connect the zero- and one-soliton sectors suggests that we
beyond the semi-classical limit and look for such processe
involving only a single incidentW boson.

There is an interesting limit in which we can reliably es-
timate amplitudes for single-particle-induced decays. Reca
that form andg fixed, asj approachesj* from above, the
sphaleron mass approaches the soliton mass. We can ho
m fixed and pickj to be a function ofg chosen so that as
g goes to zeroj approachesj* in such a way that
DE5M sph2M sol remains fixed. We call this the fixedDE
limit. It is different from the semi-classical limit in that as
g goes to zero the classical theory is changing. We will argue
in Sec. IV that forj nearj* , it is possible to isolate a mode
of oscillation about the soliton whose frequency is near zero
which is in the direction of the sphaleron. This normalizable
mode, which we call thel mode, is coupled to a continuum
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of modes with frequenciesv.m. If the l mode is suffi-
ciently excited by energy transferred from the continuu
modes, then the soliton will decay. We are able to estim
the amplitude for a singleW boson of energyE to excite the
l mode enough to induce the decay. At threshold, the cr
section goes like exp(2c/g1/3), wherec is a dimensionless
constant. In the same limit we can calculate the rate for
soliton to decay by tunneling and we get exp{2@9/(9
22A3)#c/g1/3}. Both are exponentially small asg goes to
zero and the ratio of the tunneling rate to the induced dec
rate is exponentially small.

D. Fermion production

We introduce fermions into this theory as in the standa
model. The left-handed components transform as SU~2! L
doublets whereas the right-handed components are sing
The fermion mass is generated in a gauge-invariant way b
Yukawa coupling to the Higgs field. For simplicity, we only
consider the case where both the up and down compon
of the fermion doublet have equal massmf . In any process
where a soliton is destroyed, there is a violation of fermio
number. The nature of this violation is different dependin
on whether the fermion is light,mfL!1, or heavy,
mfL@1, whereL is the characteristic size of the soliton. I
the light fermion case, when the soliton disappears one
anti-fermion is produced in the process. In the heavy fermi
case, no fermions are produced. However, in this case
soliton carries heavy fermion number and when the soliton
destroyed this quantum number is violated. In both cas
there is a change of fermion number of minus one and hea
minus light fermion number is conserved as it must be sin
the heavy and light fermion number currents have the sa
anomalous divergence.

E. Relating the model to the real world

The metastable electroweak soliton of the modified Hig
sector is an intriguing object to study. Yet this beast is n
found in the standard electroweak theory where the Hig
sector is a linears model with no higher derivative terms. I
is reasonable to ask if the modified theory gives a credib
description of physics at the weak scale. To date, the Hig
boson has not been found. If it is found and the mass is l
so thatl of ~1.1! is small, then working in the infinitel limit
would not well approximate reality. However, if the Higg
boson is heavy, then working with infinitel could be justi-
fiable. Working at the scalev and below, we then integrate
out the heavy Higgs boson, leaving a low energy effecti
action. In this strongly interacting case, higher derivativ
terms in the effective action would not be perturbative
small and we would expect all possible higher derivati
terms consistent with the symmetries. This effective theo
would or would not support stable solitons. If it did then ou
use of the Skyrme term is justified as a simple way to wr
an effective action which supports solitons.

It is possible that the Higgs boson is not fundament
Rather, the Higgs sector may be an effective theory desc
ing the massless degrees of freedom which arise as a re
of spontaneous symmetry breaking in some more fundam
tal theory. For example, this is the basis of technicolor the
ries in which the symmetry breaking is introduced via
m
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scaled up version of QCD. In technicolor theories one find
technibaryons which can be described as electroweak so
tons just as the baryons of QCD can be described as Sk
mions. For now, regardless of whether the underlying theo
is specifically a technicolor model, as long as we are cons
tent with symmetry considerations, we are free to choose t
effective theory to conveniently describe the particles whic
interest us. Thus~1.7! is a simple way to describe three
massless bosons@which are eaten in the gauged version
~1.8!# as well as a stable@metastable in~1.8!# heavy particle.
Of course, the effective theory includes higher derivativ
terms other than the Skyrme term, so it is not the precis
form of ~1.8! which we think is plausible, but rather the
physical picture which it describes.

It is worth asking what processes can sensibly be d
scribed using the effective theory. The effective theory is
derivative expansion in momenta overv. Consider the
~fermion-number-conserving! production of soliton-
antisoliton pairs inW-W collisions. These processes are be
yond the regime of applicability of the effective theory be
cause the incident particles have momenta which are grea
thanv, and the underlying theory must therefore be invoked
~For example, in a technicolor theory the production proce
would be described as techniquark-antitechniquark pair pr
duction followed by technihadronization.! The effective
theory is, however, wellsuited to describing soliton deca
induced by a singleW boson with energy just aboveDE in
the fixed DE limit. In this limit, m is held fixed while
g→0, and thusv→`. Therefore, the ratio of the incident
Wmomentum to the scalev is going to zero, and a treatment
using the effective theory is justified.

II. SOLITON DESTRUCTION SEEN
IN CLASSICAL SOLUTIONS

We begin our investigations classically. We wish to find
solutions to the Minkowski space classical equations of m
tion derived from the Lagrangian~1.10! which at early times
have an electroweak soliton and an incident pulse and whi
at late times have outgoing waves only, the soliton havin
been destroyed. In this section, we investigate solutions
the equations of motion numerically. In order to make th
numerical problem tractable, we work in the spatial spheric
ansatz@14#.

The unitary gauge Lagrangian~1.10! yields the equations
of motion

DmF
mn1m2An1

1

4j
†@Am,An#,Am‡50, ~2.1!

where

DmF
mn5]mF

mn2 i @Am ,F
mn#. ~2.2!

In the unitary gauge Lagrangian, the Skyrme term
Tr@Am ,An#2, is the same as the quartic term in TrFmn

2 . Thus,
the unitary gauge equations of motion~2.1! are the same as
the equations of motion for a massive non-Abelian vecto
field except that the coefficient of the cubic term is now
(111/4j). The classical equations of motion depend only o
m, which sets the scale, and on the dimensionless parame
j, but do not depend ong.
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The spherical ansatz@14# is given by expressing the gaug
field Am in terms of four real functionsa0 , a1 , a, andg of
r and t:

A0~x,t !5
1

2
a0~r ,t !s• x̂,

Ai~x,t !5
1

2 Fa1~r ,t !s• x̂x̂i1
a~r ,t !

r
~s i2s• x̂x̂i !

1
g~r ,t !

r
e i jk x̂ jskG , ~2.3!

wherex̂ is the unit three-vector in the radial direction ands
are the Pauli matrices. ForAm to be regular at the origin, we
require thata0 , a, a12a/r , andg/r vanish asr→0. In the
spherical ansatz, the unitary gauge equations of motion~2.1!
are

]m~r 2f mn!2 i @xDnx*2x*Dnx#

52anF r 2m21
1

2j
ux1 i u2G , ~2.4a!

FD21
1

r 2
~ uxu221!Gx

52m2~x1 i !1
1

4j
~x1 i !Fama

m2
1

r 2
ux1 i u2G , ~2.4b!

where

f mn5]man2]nam , ~2.5a!

x5a1 i ~g21!, ~2.5b!

Dmx5~]m2 iam!x. ~2.5c!

The indices take the values 0 and 1 and are raised and l
ered with the (111)-dimensional metricds25dt22dr2.
The notation suggests that we are dealing with
(111)-dimensional U~1! gauge theory with gauge fieldam
and a complex scalarx of charge 1. In fact, the left-hand
sides of~2.4! are U~1! gauge covariant whereas the righ
hand sides involving the mass and Skyrme terms are n
This can be understood as follows. Before gauge fixing, t
underlying theory~1.8! is SU~2! gauge invariant. If we take
fields in the spherical ansatz, gauge transformations of
form exp@iV(r,t)s• x̂/2# keep the fields in the spherical an
satz. Thus, the spherical ansatz has a residual U~1! gauge
invariance. In the unitary gauge, the mass and Skyrme te
lose their covariant form which is seen in~2.4!. Note that
a0 , which determinesA0 , is not a dynamical degree of free
dom so the problem has been reduced to the dynamical
grees of freedomx anda1 .

Our task is to choose initial conditions and then to evol
the fields forward in time. We specify initial conditions b
specifyingx anda1 and their time derivatives att50. We
then use then50 component of~2.4a!, which is Gauss’ law,
to determinea0 . Then51 component of~2.4a! and the Eq.
~2.4b! are the second order equations of motion which w
use to evolvex anda1 forward in time. At every time step,
e
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t-
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we updatea0 using Gauss’ law. We present some details o
the numerical methods in Appendix A. In order to have
check on the accuracy of our numerical methods we ha
also solved the equations inA050 gauge and the details of
this approach are also given in Appendix A.

In describing the solutions, it is convenient to writex as

x52 ir~r ,t !exp@ iu~r ,t !#. ~2.6!

The r50 boundary conditions ona andg imply

r~0,t !51, ~2.7a!

u~0,t !50. ~2.7b!

The boundary condition~2.7b! should strictly be thatu(0,t)
is an integer multiple of 2p. However, sincer never van-
ishes at the origin,u is constant in time there and we have
taken it to vanish. In vacuum,r51 andu50 everywhere.
Finite energy solutions must satisfy

lim
r→`

u~r ,t !52np ~2.8!

at all times. Thus we see that in the spherical ansatz, fin
energy configurations withrÞ0 at all r can be characterized
by n, the integer-valued winding of thex field. This winding
is the number of times the complex-valuedx wraps around
x50 asx goes from2 i at r50 to 2 i at r5`. Note that
this winding can change only ifx passes throughx50, that
is, if r goes through zero at somet and r .

We now look at the soliton in terms of the variablesx and
am . To understand the qualitative form of the soliton con
figuration, it is useful to begin with the Skyrme model as w
did in Sec. I. Recall that forg→0 with e and v fixed, the
Lagrangian~1.10! reduces to~1.7! and the soliton becomes
the Skyrme soliton written in unitary gauge. In this limit,
Ai
sol→ iU 1

†] iU1 (A0
sol50 for all values ofg), whereU1 is the

winding number one Skyrme configuration. NowU1 is of the
form

U15exp@ is• x̂F~r !/2#, ~2.9!

whereF(0)50 andF(`)52p. In terms ofx andam this
configuration is

am50, x52 i exp@ iF ~r !#. ~2.10!

In this case we see thatn, the winding ofx, is equivalent to
the winding ofU, both of which are51. For g→0 with e
and v fixed, the electroweak soliton configuration is de
scribed by~2.10!. For nonzerog with j>j* , the soliton
field configuration is still approximately of the form~2.10!.

To find the precise form of the electroweak soliton we ad
energy nonconserving damping terms to the equations
motion. Specifically, we add2G dx/dt and2G da1 /dt to
the right-hand sides of~2.4b! and then51 component of
~2.4a!, respectively, whereG is a constant. The solutions to
the modified equations of motion lose energy as they evolv
Depending on the initial configuration, this modified evolu
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FIG. 1. The soliton configuration forj512.
Panels~a! and~b! showr andu, respectively, as
functions of r measured in units of the inverse
W mass. Note thatu changes by 2p. Panel~c!
shows x52 irexp(iu) vs r . The projection of
this curve onto thex plane is shown in Fig. 2. In
panel ~d! we show the energy density vsr . By
energy density we meanr 2 times the three-
dimensional energy density; the total energy o
the configuration is the area under this curve.
nd

rd

d

i-
tion leads either to the vacuum or to the soliton.1 For a given
j, we find the soliton by choosing initial configurations wit
n51 and evolving them using the modified equations. Wh
we find an initial configuration which evolves to a nonva
cuum configuration, we check that the configuration so o
tained is indeed a static, stable solution to the unmodifi
equations of motion. In Fig. 1, we showr, u, x and the
energy density for the electroweak soliton withj512. In
Fig. 2, we show howxsol changes withj. For j approaching
j* , the soliton configuration does not change qualitative
and, in particular,r remains well away from zero andn
remains 1. In thej→` limit, r→1, a1→0 like m/Aj, and
the size of the soliton, i.e., the size of the region over whi
u varies, shrinks like 1/(mAj).

We now consider initial conditions with a soliton and a
incoming pulse which destroys the soliton. We have expe
mented with severalAnsätze for the pulse shape. Here, we
present one which we feel is fairly simple and which do
destroy the soliton. Recall that for the solitonx52 i at
r50 and wraps once around the origin asr increases from
0 to infinity. At t50, the incident pulse we choose ha
xpulse5xvac52 i for r<r 0 ~where r 0 is large compared to
the soliton! and hasxpulse→xvac as r→`. As r increases
from r 0 , we choosexpulseto loop in the complex plane in the
opposite direction to that in whichxsol winds. xpulse is a
small enough excitation aboutxvac that uxpulse2xvacu,1 and
the pulse hasn50. Specifically, as the initial condition for
x we use

1It can also lead to a multiple winding number soliton wit
n.1. These configurations have been studied by Brihaye and K
@17#. They have more energy thann widely separated solitons, and
we are not concerned with them in this paper.
h
en
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x5~xsol2xvac!1xpulse, ~2.11!

where

xpulse52 i1
ib

2
@e2p ig~r !21#, ~2.12!

with b a constant whose absolute value is less than one a
with the functiong(r ) given by

g~r !5H exp@2~r2r 0!
2/s2#, r.r 0 ,

1, r<r 0 . ~2.13!

We choose initial conditions witha15a1
sol and with ȧ1 such

that a050. Now, we must specifyẋ. We wish to do this in
such a way that the energy of the pulse propagates inwa
toward the soliton rather than outward toward larger . In a
massive theory, it is impossible to achieve this exactly, an
we use the following prescription which works well enough
for our purposes. Forx5xpulse given by ~2.12! and ~2.13!,
(x2xvac) has a mean wave number squared of approx
mately (p/s)2 and a mean frequencyv;Am21(p/s)2.
So, we define a velocity

v5
p/s

Am21~p/s!2
~2.14!

and choose the initial condition

ẋ5v
dxpulse

dr
. ~2.15!

h
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Thus, in this ansatz the initial conditions are parametrized
the amplitudeb, the pulse widths, and the initial radius
r 0 .

Figure 3 shows the result of hitting the soliton atj512
with a pulse chosen using the above ansatz withb50.23,
s5p/5m, and r 054/m. We plot r, u, x, and the energy
density as functions ofr for a number of different times.
First, note that the pulse does move inward toward the s
ton. The soliton energy is 72.67m, the sphaleron energy is
73.9m, and the total energy of the solution is 85.85m. Thus,
neglecting the small amount of energy initially in the puls
which goes outward, the soliton is hit with a pulse with e
ergy Epulse513.18m which is larger than
DE5M sph2M sol51.2m. We see that at timet57.2/m,
there is an outgoing pulse with somewhat less energy th
Epulse, and the soliton has been somewhat distorted, as
begins to fall apart. At timet58.59/m, r is very close to
zero atr50.94/m. At late times, we see from the plot ofu
that the windingn is zero, and we see from the plot of th
energy that there is in fact no soliton present. We estim
N, the number ofW bosons in the incident pulse which
destroyed the soliton, as

g2N;
Epulse

v
;

Epulse

Am21~p/s!2
;2.5. ~2.16!

We now sketch how the results of Fig. 3 change as
vary b ands. First, upon increasingb from 0.23~and thus
increasingEpulseandg

2N), the time delay between the emer
gence of an outgoing pulse and the collapse of the soli
decreases—the soliton is destroyed more promptly. Upon

FIG. 2. x for the electroweak soliton for different values ofj.
All the curves begin atx52 i at r50, traverse a counter-clockwise
loop which encirclesx50, and return tox52 i asr goes to infin-
ity. The dotted, dot-dashed, dashed, and solid lines correspon
j5`, 15, 12, and 10.5, respectively. Recall that there is no sta
soliton for j,j*510.35. The range ofr over which the loops are
traversed, i.e., the size of the soliton, is approximately 2/(mj1/2). At
j5`, uxu51 and the dotted curve is a circle. This reflects the fa
that asj approaches infinity the soliton configuration approach
the form ~2.10!.
by
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creasingb, the time delay increases—less energy is deliv
ered to the soliton and the soliton takes longer to fall apa
Decreasingb further, we find a threshold somewhere be
tween b50.21 andb50.22 below which the soliton sur-
vives. Below this threshold, after the emergence of an ou
going pulse, the soliton radiates any remaining excess ene
outward and settles back to its undisturbed state. For seve
values ofs ranging from half to twice that in Fig. 3, the
thresholdb is about the same.

We have worked at values ofj ranging from 10.5 to 100.
For a givens, the threshold amplitude is lower for values of
j closer toj* . For j511, for example, we have found soli-
ton destroying pulses withg2N;1. Asj becomes very large,
the soliton size@;1/(mAj)# becomes much smaller than the
sphaleron size (;1/m) and the barrier heightDE grows like
M solAj. At largej, therefore, the energy of soliton destroy-
ing pulses must become large compared toM sol and also
compared to the inverse sphaleron size. It is nevertheles
logical possibility that such pulses could be found with hig
frequencies and small values ofg2N. For j550 and above,
however, we have only found soliton-destroying pulse
which have largeg2N. This suggests that because at larg
j the soliton is no longer similar to the sphaleron, we lose th
advantage that we have in this model, relative to the standa
model, in finding sphaleron crossing solutions withg2N
small.

We have chosen to present results forj512 ~rather than
choosingj closer toj* where both the threshold amplitude
and the thresholdg2N are lower! because atj512 the tun-
neling lifetime of the soliton is much longer than any time
scale in Fig. 3. As we discuss in Sec. V, Rubakov, Ster
and Tinyakov @13# write the tunneling lifetime as
t;(1/m)exp(2B) and calculate thatg2B5461 for j512.
Thus, forg50.65 andj512, t;108/m.

We have tried a number of incident pulse shapes that
not fall into the ansatz we have described in detail, and ha
found qualitatively similar results. For all the cases which w
have considered withj within a factor of 2 ofj* , we have
observed that as we vary the amplitude of a pulse whose s
is comparable to that of the soliton, for amplitudes abov
some threshold the soliton is destroyed. For a given pul
shape, both the threshold energy and the thresholdg2N de-
crease asj decreases towardj* . Among the few pulse
shapes which we tried, the threshold energy was lowest f
the ansatz of~2.12!, but we have certainly not found the
lowest energy or lowest particle number pulses which d
stroy the soliton. Indeed, a soliton-destroying pulse with en
ergy just aboveDE could be obtained by starting with a
slightly perturbed sphaleron, watching it decay to the solito
and then time reversing. We will see in Sec. IV that forj
nearj* , a ‘‘pulse’’ so obtained would be avery long train of
small amplitude waves, rather than a simple pulse of the kin
we have used to destroy solitons in our numerical expe
ments.

The lesson of this section is that in the model we ar
treating, it is straightforward to find soliton-destroying
sphaleron-crossing, fermion-number-violating classical sol
tions. Particular pulse profiles are not required—pulses
any shape we have tried~with sizes comparable to the soliton
size! destroy the soliton if their energy is above some shap
dependent threshold.
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FIG. 3. ~a! This figure shows the destruction of thej512 soliton by the pulse specified in the text. The simulations were done on a lattice which extended
r516/m, but only0<r<12/m is displayed. In this part, we show snapshots ofr(r ) at eight different times. Each panel displaysr(r ) at two times; the solid curve
showsr(r ) at the earlier time, and the dot-dashed curve showsr(r ) at the later time. For example, in the first panel the solid curve att50.0/m shows the incident
pulse superimposed on the soliton of Fig. 1. The dot-dashed curve showsr at t53.2/m when the pulse has moved inward towardr50. By t54.8/m, the solid curve
in the second panel, it is clear that the soliton has been disturbed. Att57.2/m, there is an outgoing pulse atr;3/m and the soliton has not returned to its initial shape.
At t58.59/m, r50 at r50.94/m. At t515.2/m, the final time shown, there is an outgoing pulse atr;11/m followed by the outgoing remnants of the soliton at
r;6/m. ~b! In this part, we show snapshots ofu(r ) corresponding to the preceding snapshots ofr(r ). We show two times per panel, and the solid curve is the earlier
of the two. At all times beforet58.59/m, u increases fromu50 at r50 to u52p at larger . At t58.59/m, note the large slope inu at r50.94/m which is where

r vanishes. At later times,u is no longer wound.~c! In this part, we combiner andu from the previous parts into three-dimensional plots ofx52 irexp(iu) as a
function of r at eight times. Initially, we see the pulse incident upon the soliton. Betweent56.4/m andt59.6/m, we see the soliton shed an outgoing pulse, and then

shrink from a loop which encirclesx50 to an excitation about the vacuumx52 i which does not. Att515.2/m, x is close to the vacuum for smallr , and at larger

r we see the outgoing pulse and the outgoing remnants of the soliton.~d! Finally, we show snapshots of the energy density at the same times as before. There are

times per panel, the solid line at the earlier time and the dot-dashed line at the later time. As in Fig. 1, by energy density we meanr 2 times the three-dimensional

energy density. Att50, we see that the incident pulse has much less energy than the soliton, but, nevertheless, it destroys the soliton. The destruction of the

is seen most clearly by looking att515.2/m. At this time, there is no energy density visible forr less than about3/m, which is where the soliton was att50. The

soliton is no more. There is an outgoing pulse atr;11/m which has an energy comparable to but slightly lower than that of the incident pulse. This is followed

r;6/m by an outgoing shell with energy comparable to that of the soliton.
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FIG. 3. ~Continued.!
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III. QUANTUM IMPLICATIONS OF CLASSICAL
SOLUTIONS WHICH DESTROY SOLITONS

In a theory like the ungauged Skyrme model with a sta
classical solution which is absolutely stable, that is, se
rated by an infinite energy barrier from the classical vacu
configuration, the Hilbert space of the quantized theory se
rates into sectors with a fixed number of solitons, and sta
in different sectors have zero overlap@16#. The one soliton
sector, for example, is a Fock space of states with one sol
and any number of mesons. The mesons~pions in the
Skyrme model! are the quantized fluctuations about the so
ton configuration, and the states in the one soliton sector
scattering states of mesons in the presence of a soliton
process, not even one involving large numbers of meso
tic
pa-
um
pa-
tes

iton

li-
are
. No
ns,

connects states in the one soliton sector with states in th
vacuum sector.

In our theory, the electroweak soliton is not absolutely
stable. It is separated by a barrier of finite height from the
vacuum. The Hilbert space has sectors with a fixed numbe
of solitons and any number ofW bosons. However, we now
argue that the existence of the classical solutions described
the previous section, in which incident pulses destroy a sol
ton, demonstrates that there are states in the zero- and on
soliton sectors with nonzero overlap.

Consider a classical solution obtained by taking a solutio
in which a soliton is destroyed and the time reverse of
different such solution and combining them as we now de
scribe. At very early times, there are two incoming pulses
widely separated in time. The inner pulse, of total energ
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FIG. 3. ~Continued.!
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E1 , is the time reverse of a solution of the kind found in Se
II. It forms a soliton, an outgoing pulse of energyE12M sol
is radiated, and the soliton of massM sol is left sitting at the
origin. Then the outgoing pulse passes the second incom
pulse at a radius large enough that the amplitudes of b
pulses are small, and no interaction occurs. Subsequently,
second pulse of total energyE2 arrives at the soliton and
destroys it, yielding a second outgoing pulse of ener
E21M sol. At very late times there is no soliton present, an
there are two outgoing pulses. This entire solution falls in
the class of classical solutions discussed in Appendix B,
that at very early and very late times the fields are sm
amplitude excitations about the vacuum. By the arguments
Appendix B, the existence of this solution implies that w
can construct normalized coherent states

u f in
1 , f in

2 & ~3.1!

and

u f out
1 , f out

2 &, ~3.2!

such that

^ f out
1 , f out

2 u f in
1 , f in

2 &5expH iug2 1O~g0!J ~3.3!

asg→0, with u a real phase. The energy and particle num
ber in the in and out states areO(1/g2). Equation ~B24!
expressesu as an integral of the classical fields over spac
time. When the time separationT between the pulses 1 and
2 is large compared to the times necessary for the format
and destruction of the soliton, this integral can be written
the sum of three terms:

u

g2
5

u1
g2

1
u2
g2

1M solT, ~3.4!
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whereu1 depends only onf out
1 and the formation solution,

u2 only on f in
2 and the destruction solution, andM sol is the

classical energy of the soliton which is of order 1/g2.
With this information concerning asymptotic states, th

only possible interpretation is that there are coherent states
W bosons in the one-soliton sectorusol,f out

1 & and usol,f in
2 &,

and that

^sol,f out
1 u f in

1 &5expH iu1g2 1O~g0!J , ~3.5!

^ f out
2 usol,f in

2 &5expH iu2g2 1O~g0!J . ~3.6!

Thus, there are processes connecting the one-soliton secto
the vacuum sector which are not exponentially suppressed
g→0, though they do involveO(1/g2) W bosons.

In the remainder of this paper our goal is to study qua
tum processes in which a singleW boson incident upon the
soliton kicks it over the barrier causing it to decay. In Sec. V
we will do a controlled calculation of this process in a limi
in which j goes toj* asg goes to zero. In order to do this
calculation, however, we first need a better understanding
classical dynamics of the theory withj nearj* , and to this
we now turn.

IV. CLASSICAL DYNAMICS FOR j NEAR j*

In order to discuss the special features of the dynamics
our system forj near j* , and because we will need it to
discuss the quantum version of this theory, we introduce t
Hamiltonian which arises from~1.10!:
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H5E d3xH g2TrP iP i1
1

g2 F12TrFi j Fi j2m2TrAmA
m

2
1

8j
Tr@Am ,An#2G22 Tr@A0DiP

i #J , ~4.1!

where

P i5
1

g2
Fi0, DiP

i5] iP
i2 i @Ai ,P

i #. ~4.2!

Now A0 has no conjugate momentum and theA0 equation is

m2A01
1

4j
†@Ai ,A0#,Ai‡1g2DiP

i50. ~4.3!

This linear equation forA0 can be solved givingA0 in terms
of Ai andP i but we do not need to do this explicitly. The
Hamiltonian for our system is given by~4.1! with A0 deter-
mined by~4.3!, and has the general form

H5
g2

2
PM21~A!P1

1

g2
V@A#, ~4.4!

where the sum over the coordinatex, the spatial indexi , and
the group index are all implicit. The matrixM21(A) in-
volves derivatives with respect tox, and depends on the
configurationA, and we assume thatM21(A) is positive.
Note that static solutions to the equations of motion, that
those with Ṗ5Ȧ50, occur wheredV/dA50 and have
P50. The classical equation of motion forA which arises
from ~4.4! is independent ofg. Thus for the discussion of
classical dynamics which we are having in this section, w
can setg51. We will restore theg dependence in the nex
section.

The potential energy functionalV@A# has its overall scale
set bym but the topography of fixed energy contours is s
by j. Ambjorn and Rubakov @10# showed that for
j.j*510.35, there is a local minimum, the soliton
whereas forj,j* , this minimum is absent. Forj.j* ,
there is also a sphaleron, that is a saddle point configura
whose energy is greater than that of the soliton. Asj ap-
proachesj* from above, the sphaleron and soliton merge

We are particularly interested in configurations which,
least initially, are small perturbations around the soliton. T
work with these configurations, we find it convenient t
make a canonical transformations, which has the effect
settingM21(Asol)51 anddM21/dA uAsol50. To see that this

is possible, letf a be some complete set of orthonormal, sp
tial vector, matrix-valued functions ofx, indexed bya,
which can be used to expandP andA. Let the coefficients of
the expansion ofA relative to the soliton beqa and the
coefficients of the expansion ofP be pa , that is
is

e
t

et

,

tion

.
at
o
o
of

a-

A~x,t !2Asol~x!5(
a

qa~ t ! f a~x!,

P~x,t !5(
a

pa~ t ! f a~x!. ~4.5!

@Note that the transformation fromA(x,t), P(x,t) to
qa(t), pa(t) is canonical.# Upon making this transformation,
~4.4! has the form

H5 1
2g

ab~q!papb1V~q!. ~4.6!

A canonical transformation of the form

q8a5q8a~q! and pa85
]qb

]q8a pb ~4.7!

can be viewed as a general coordinate transformation w
pa transforming as a covariant vector. It is always possib
to choose coordinates such that

g8ab5
]q8a

]qd

]q8b

]qe gde ~4.8!

is equal todab with ]g8ab/]q8e50 at any given point. In
fact, this can be accomplished atqa50 ~the soliton! with a
transformation of the formq8a5Cb

aqb1Cbd
a qbqd. This

means that the Hamiltonian~4.6! can be written as

H5 1
2pa@dab1O~q2!#pb1V~q!, ~4.9!

where we have made the required canonical transformat
and dropped the primes. Note thatV(q50)5M sol and
(]V/]qa)uq5050.

For j.j* consider small oscillations about the soliton
The frequencies squared are given by the eigenvalues of
fluctuation matrix]2V/]qa]qb at q50. The soliton is a lo-
calized object so fluctuations far from the soliton propaga
freely. Therefore, the fluctuation matrix at the soliton has
continuous spectrum abovem2. A given soliton configura-
tion and a translation or rotation of that configuration hav
the same energy and both solve]V/]qa50. This implies
that at q50, there are six zero eigenvalues o
]2V/]qa]qb. The associated modes which correspond
translating and rotating the soliton, are not of interest to
and will be systematically ignored.

For j close toj* , we now argue that there is one norma
izable mode whose frequencyv0 goes to zero asj goes to
j* . To see this, we write

]V

]qaU
qsph

5
]V

]qaU
q50

1
]2V

]qa]qbU
q50

qsph
b

1
1

2

]3V

]qa]qb]qeU
q50

qsph
b qsph

e 1•••. ~4.10!

At the soliton (q50) and at the sphaleron, the first deriva
tives are zero. Asj approachesj* , the sphaleron and soliton
merge soqsph

a goes to zero. It is useful to introduce the nor
malized functionq̄sph:
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q̄sph
a 5

qsph
a

Q
, ~4.11a!

where

Q25(
a

qsph
a qsph

a . ~4.11b!

As j goes toj* , Q goes to zero butq̄sph does not. From
~4.10!, we then have

]2V

]qa]qbU
q50

q̄sph
a q̄sph

b 52
1

2
Q

]3V

]qa]qb]qeU
q50

q̄sph
a q̄sph

b q̄sph
e

1O~Q2!. ~4.12!

For j.j* , the fluctuation matrix]2V/]qa]qb at the soliton
has only positive eigenvalues~except for the translation and
rotation zero modes which play no role in this discussion!.
Equation~4.12! tells us that atj5j* , whereQ50, the fluc-
tuation matrix has a zero eigenvalue with eigenvectorq̄sph
whereas forj close toj* , there is a small eigenvaluev0

2 ,
whose associated eigenvector is close toq̄sph. Note that
q̄sph points from the soliton to the sphaleron. Thus, the lo
frequency mode, which we call thel mode, is an oscillation
about the soliton close to the direction of the sphaleron.

For j.j* , at the sphaleron there is one negative mod
that is one negative eigenvalue of the appropriately defin
fluctuation matrix. Asj comes down toj* , the sphaleron
and soliton become the same configuration so this nega
eigenvalue must come up to zero in order for the spectra
the fluctuation matrices of the soliton and sphaleron to ag
at j5j* . Therefore, forj close toj* , the unstable direction
off the sphaleron has a small negative curvature. There
two directions down from the sphaleron. One heads towa
the soliton and the other heads~ultimately! to the classical
vacuum atA50. We see that forj nearj* , the soliton can
be destroyed by imparting enough energy to thel mode
since it is this mode which is pointed towards the sphaler
and beyond.

We wish to describe the interaction of thel mode with
the other degrees of freedom. We use the Hamiltonian w
ten in the form~4.9!. At this point it is convenient to make an
orthogonal transformation on the$qa% so that the trans-
formed set are the eigenvectors of the soliton fluctuation m
trix ]2V/]qa]qbuq50 . We will label these vectors asqv

wherev2 is the eigenvalue of the fluctuation matrix. Th
eigenfunctions include the following.

~i! The continuum statesqv with eigenvaluesv2.m2.
~Note that for eachv2, in general, there is more than on
eigenvector. The extra labels onqv are suppressed in our
compact notation.!

~ii ! The normalizable stateqv0
[l with eigenvaluev0

2

which goes to zero asj goes toj* .
~iii ! The zero eigenvalue states associated with translat

and rotation.
~iv! Other normalizable states which might exist bu

whose frequencies do not have any reason to approach
asj goes toj* .
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Up to cubic order, the Hamiltonian~4.9! is

H5M sol1
1

2
p21

1

2
v0
2l21

b

3
l31

1

2Emdv pv
2

1
1

2Emdv v2qv
2

1E
m
dv dv8 dv9 c~v,v8,v9!qvqv8qv9

1l2E
m
dv d~v!qv

1lE
m
dv dv8 e~v,v8!qvqv81•••, ~4.13!

where in the ellipsis we now include all terms with modes o
type ~iii ! and ~iv! as well as higher order interactions of the
l mode and the continuum modes.p is the momentum con-
jugate tol andpv is the momentum conjugate toqv . The
numberb and the functionsc, d, ande are determined by
the soliton configuration. For example,d(v) is presumably
peaked at values ofv which correspond to wavelengths of
order the size of the soliton. Asj goes toj* , we know that
v0 goes to zero but we expect no dramatic behavior ofb,
c, d, or e in this limit.

Consider thel-mode potential

V~l!5
1

2
v0
2l21

b

3
l31•••. ~4.14!

There is a local minimum atl50, which is the soliton, and
a local maximum atl52v0

2/b, which is approximately the
sphaleron, where the second derivative is2v0

2 . We work
with j sufficiently close toj* so thatv0 is small. This
means thatl at the sphaleron is small and if we only study
dynamics up to and just beyond the sphaleron we are jus
fied in neglecting the quartic and higher terms inl. We also
see that asj goes toj* , so thatv0 goes to zero, the soliton
and sphaleron come together and atj5j* , the l potential
has an inflection point atl50 and the soliton is no longer
classically stable.

In order to discover the relationship betweenv0 and
(j2j* ) as j approachesj* , it is necessary to study the
behavior of thel-mode potential asj approachesj* . In
~4.14! for every value ofj, we have shiftedl so that the
minimum of the potential is atl50. This j-dependent
change of variables obscures the behavior of the coefficien
of the potential before the shift. Calling the unshifted vari
able l̄, then if we expand the potential in terms of
e[j2j* aboute50, where there is an inflection point, we
have

V~ l̄,e!5O~e!l̄1O~e!l̄21~ b̄1O~e!!l̄31•••, ~4.15!

where b̄ is a constant. We know that the coefficients ofl̄
and l̄2 are zero ate50, and we assume that these coeffi
cients can be expanded aboute50 and we know of no rea-
son for the ordere terms to vanish. Fore.0, the minimum
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of the potential is atl̄;e1/2, (l is shifted relative tol̄ by
this amount!, and at the minimum of the potentia
]2V/]l̄2;e1/2, that is

v0
2;~j2j* !1/2. ~4.16!

A small amplitude oscillation of thel mode will decay
because of its coupling to the continuum modes which c
carry energy away from the soliton. However, forv0,m
this decay is very slow in the sense that the characteri
time for the decay is much greater than 1/v0 . To understand
this considerl(t) as a source for radiation in the continuu
via the couplingl2*mdv d(v)qv in the Hamiltonian~4.13!.
Suppose thatl(t) is a purely sinusoidal oscillation with fre
quencyv0 and with an amplitude which is small. Radiatio
with frequencyv0 is not possible because the continuu
frequencies begin atv5m. However, l2 has frequency
2v0 and therefore ifv0.m/2, the coupling will excite
propagating modes withv52v0 and thel oscillation will
radiate at twice its fundamental frequency. Because the c
pling is of orderl2, the rate of energy loss will be small. I
v0,m/2 then radiation atv52v0 is also not possible.
However, ifm/3,v0,m/2, thel3qv coupling @which we
have not written in~4.13! because it is fourth order# allows
the l oscillation to radiate at three times its fundamen
frequency. There is another source of radiation w
v53v0 . The potential for thel mode is not exactly qua-
dratic so thel oscillation, although periodic, is not exactl
sinusoidal. If the period of the oscillation is 2p/v0 , l will
be a sum of terms of the form sinv0t, sin2v0t, sin3v0t, . . .
with diminishing coefficients. This means thatl2 will also
be a sum of terms of this form. Those terms inl2 with
frequencies greater thanm will excite radiation via the
l2qv coupling. Asv0 is reduced fromm toward zero, the
radiation is produced only by higher order couplings and
higher harmonics, and therefore the amplitude is reduced
the decay takes longer.

We have numerical evidence for this behavior within t
spherical ansatz. To watch an oscillating soliton radiate fo
long time, we implement energy-absorbing boundary con
tions at the larger boundary of the simulation lattice, a
described in Appendix A. We wish to excite thel mode and
watch it oscillate. It is convenient to choose initial conditio
by starting with somen51 configuration and evolving it
using the equations of motion with damping terms added
described in Sec. II. Instead of running for long enough
that the configuration is damped down to the soliton, we s
somewhat earlier. This yields a configuration which is t
soliton plus a small perturbation. Because the damping te
damp modes with higher frequencies more quickly th
those with lower frequencies, the perturbation that remain
mostly in the lowest few modes. We use the configurat
just described as the initial condition for the equations
motion with no damping terms. The resulting evolution
shown in Figs. 4 and 5 forj510.4. The functionsr, u, and
a1 ~though we showr only! all oscillate about the values
they take at the soliton and the period of oscillation
16.69m21. We identify this with thel mode and so obtain
v050.3764m. Furthermore, we see that away from the so
ton there is a small amplitude train of outgoing radiatio
l
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After a brief initial period during which any perturbations
not in thel mode radiate away, the outgoing radiation settle
down to a frequency 1.129m, three times the fundamental
frequency.~At r510m21, we see in Fig. 5 that the fre-
quency 3v0 oscillation of r has a small modulation with
frequencyv0 . This is the tail of thel mode oscillation and
is not seen at larger values ofr .) The radiation causes the
amplitude of thel mode to decrease very slowly, by about
4% over 80 oscillations. We have done similar simulations
at j511 and j512 also, where we findv050.80m and
v050.98m, respectively. In these simulations, the oscillat-
ing soliton emits radiation withv52v0 , and the amplitude
of the radiation and the rate of decay of the fundamenta
oscillation are larger than these in Fig. 5. The values ofv0
for j510.4, 11, and 12, which we have found numerically,
are in good agreement with the relationship~4.16!. This nu-
merical evidence suggests that we are justified in using th
Hamiltonian ~4.13! to describe the long-lived normalizable
l mode withv0,m and its coupling to the continuum. In
the next section we will quantize this Hamiltonian and use i
to describe the excitation of thel mode by singleW-boson
quanta.

Finally, we note that, in principle, it is possible to destroy
a soliton with a minimum energy pulse, i.e., one whose en
ergy is just aboveDE, and forj close toj* this energy is
small. To find the form of this pulse we could time reverse a
solution which starts at the sphaleron and is given a gent
push towards the soliton. Forj close toj* so that thel
mode has a small frequency, the configuration takes a ve
long time to settle down to the soliton and in the proces
emits a very long train of low amplitude outgoing waves.
Although the time-reversed solution, consisting of a very
long train of incoming low amplitude waves being absorbed
by the soliton, would eventually go over the sphaleron bar
rier and result in soliton decay, it would be rather difficult to
set up initial conditions which produce this complicated,
finely-tuned, incoming configuration. Thus, the minimum en-
ergy, soliton-destroying pulses are not easy to build althoug

FIG. 4. As described in the text, we have perturbed the
j510.4 soliton and let it evolve for a long time. Here, we show
r(r ) for a series of different times:t50, 144, 288, . . . , 1440
m21. This shows the envelope of the oscillation ofr. In Fig. 5, we
showr at r50.608/m and r510/m as a function of time.
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FIG. 5. In the left panels, we showr at
r50.608/m as a function of time. It oscillates
with period 16.69/m, and the amplitude of the
oscillation is decreasing very slowly. In the right
panels, we showr at r510/m, to display the
outgoing travelling waves shed by the oscillating
soliton. These waves have three times the fre-
quency of the fundamental oscillation seen at
r50.608/m. Note that the amplitude of the out-
going waves is so small that they are invisible in
the plots ofr(r ) on the preceding page. We con-
clude that forj510.4, the soliton has an almost
stable mode of oscillation with frequency
v050.374m, thel mode, which slowly radiates
waves with frequency 3v0 .
we saw in Sec. II that with some extra energy, forj near
j* , the soliton is easily killed.

V. QUANTUM PROCESSES IN THE FIXED DE LIMIT

In the previous section we saw that forj close toj* it is
possible to identify a low frequency vibration of the soliton
thel mode with frequencyv0 much less thanm. If enough
energy is transferred to this mode, the soliton will decay.
this section we discuss the quantum mechanics of this mo
In this quantum setting the soliton can decay by barrier pe
etration as well as by being kicked over the barrier by
singleW boson. We will see that if we work in a limit where
DE is held fixed as we takeg to zero, then we can reliably
estimate the leading terms in both the tunneling and induc
decay rates.

The Hamiltonian for just thel mode coming from~4.13!
is given by

Hl5
g2

2
p21

1

g2 H 12v0
2l22

b

3
l31•••J , ~5.1!

where we have restored theg dependence. Note thatv0 , b
and all the terms in the ellipses depend onj andm but not on
g. We have changed the sign ofl for later convenience. As
j goes toj* , v0 goes to zero but the other terms are pr
sumed not to change much. The classical soliton is atl50
while the sphaleron is atl5v0

2/b from which we have

DE5
1

6

v0
6

g2b2
. ~5.2!

The fixedDE limit hasg going to zero withj taken toj* in
such a way that~5.2! is fixed. Sinceb(j,m) does not vary
much asj goes toj* , we see that in this limitv0;g1/3.
Using~5.2! and~4.16!, we see thatg2DE;(j2j* )3/2 so that
,

In
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in order to take the fixedDE limit we takeg to zero with
(j2j* );g4/3. @The reader who is concerned that the coef-
ficient of l2 in ~5.1!, v0

2/g2, goes to infinity in the fixed
DE limit should note that because of theg2 in front of the
p2 in ~5.1!, the frequency of oscillation isv0 .#

When taking the fixedDE limit, it proves convenient to
rescale according to

l85lv0 /g;lg22/3, p85pg/v0;pg2/3,

b85bg/v0
3;bg0. ~5.3!

Writing the Hamiltonian~5.1! in terms of the new variables
and then dropping the primes we obtain

Hl5v0
2 p

2

2
1V~l!, ~5.4!

where

V~l!5
1

2
l22

b

3
l31••• . ~5.5!

After rescaling, the sphaleron is atl51/b and the barrier
height is given by

DE51/6b2. ~5.6!

Quartic and higher terms inV(l) are all suppressed by pow-
ers ofg/v0;g2/3. Note thatv0 now plays the role of\ in
the Hamiltonian~5.4!. As g goes to zero in the fixedDE
limit, v0 goes to zero likeg1/3 and a semiclassical~WKB!
treatment is appropriate in order to compute the leading
small-g behavior of the soliton destruction cross section.

In the fixedDE limit, the ground state of the quantum
soliton has thel degree of freedom in a wave function
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c0(l) which is described approximately by a harmonic o
cillator ground state wave function:

c0~l!;S 1

pv0
D 1/4expS 2

l2

2v0
D . ~5.7!

There are three relevant scales inl, which differ in theirg
dependence. First, the width of the ground state wave fu
tion A^c0ul2uc0& goes likeAv0;g1/6. The second scale,
which goes likeg0, is the distance inl between the sphale-
ron atl51/b and the minimum atl50. Note also that Eq.
~5.7! is a good approximation toc0 for l such that the cubic
term inV(l) can be neglected relative to the quadratic ter
namely forulu!1/b. Finally, note that the quartic and highe
terms in V(l) can be neglected forl less than of order
v0 /g;g22/3, the third scale. Hence, asg is taken to zero
with DE fixed, truncating the potential at cubic order be
comes valid for larger and largerl.

The soliton will decay if thel degree of freedom tunnels
under the barrier given by the potentialV(l) shown in Fig.
6. The rate is of the form

G5Ce22B, ~5.8!

where the factorB is

B5
A2
v0

E
0

3/2b

dlAl2/22bl3/35
3

5

1

v0b
2 5

18

5

DE

v0
.

~5.9!

We are able to neglect the width of the wave function~5.7!
in this calculation because asg goes to zero it is small com-
pared to the change inl during the tunneling process. Since
in the fixedDE limit v0;g1/3, we see that the tunneling rate
goes as exp(2 constant/g1/3). For the approximation to be
reliable we require thatB be much greater than one. This i
turn requires thatg be small.

FIG. 6. The potentialV(l) for reall. For later use, the energies
E0 andE are also shown.c0 has three turning points, andl5l0 is
the left-most of the three.cE has one turning point atl5lE .
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We can compare this calculation with that of Rubakov
Stern, and Tinyakov@13# who numerically calculated the ac-
tion of the Euclidean space solution which tunnels under th
barrier. They used the equations of motion of the full
(311)-dimensional theory with the restriction to the spheri-
cal ansatz. Atj512, we haveDE51.2m/g2, v050.98m
giving g2B54.4 which is to be compared with what we read
off Fig. 2 of Ref.@13#: namely,g2B5461. This agreement
again supports the view that thel mode is the relevant de-
gree of freedom for discussing soliton decay forj nearj* .

We now turn to induced soliton decay. Our picture is tha
the soliton will decay if thel mode is excited to a state with
energy aboveDE. The l mode couples to the continuum
modesqv which can bring energy from afar to the soliton.
The free quantum Hamiltonian for theqv is

Hqv
5
1

2EmdvFg2pv
21

v2

g2
qv
2 G ~5.10a!

5E
m
dv v@av

†av11/2#, ~5.10b!

where

av5
1

A2v
S vqv

g
1 igpvD . ~5.11!

Theqv have been chosen to diagonalize the fluctuation ma
trix at the soliton. Therefore,Hqv

describes noninteracting

massiveW bosons propagating in a fixed soliton back-
ground. For each value ofv, there are actually an infinite
number of differentW-boson quanta. For example, there are
the states with frequencyv and all values of angular mo-
mentum relative to the soliton center. These extra labels a
omitted throughout but their presence is understood.

The l mode couples to the continuum modes through
cubic couplings of the form

H int5
1

v0
2 H l2E

m
dv d~v!qv

1
v0

g
lE

m
dv dv8 e~v,v8!qvqv8J , ~5.12!

which appear in~4.13!. We have rescaledl according to Eq.
~5.3!. The couplings~5.12! arose upon expanding about the
soliton. The functionsd(v) ande(v,v8) are peaked at val-
ues ofv corresponding to wavelengths of order the size o
the soliton. They are also only peaked if the unspecified la
bels allow large overlap with the soliton. For example, even
with v chosen so that (v22m2)21/2; soliton size, it is only
the low partial waves which haved(v) ande(v,v8) large.

The first term in~5.12! allows for the absorption of a
singleW-boson by the soliton. TheW-boson energyE is
transferred to thel mode. The second term in~5.12! allows
a singleW boson to scatter inelastically off the soliton, trans-
ferring energyE to thel mode. We now calculate the rate
for the absorption process; the calculation for the scatterin
process is similar.~The coefficients of thel andl2 operators
have differentg dependence, but this will not affect the lead-
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ing g dependence of the cross section for either proces!
Assuming that the soliton starts in its ground state, in ord
for the soliton to decay we requireE1v0/2.DE. Since
v0!DE we can approximate this asE.DE. In the fixed
DE limit we are free to chooseDE to be a constant times
m where the constant is of order unity.~Recall thatm is held
fixed throughout this paper.! Now the soliton size is roughly
2/(mAj) and in the fixedDE limit j goes toj*510.35.
Thus, theW-boson wavelength and the soliton size can
comparable. There is no length scale mismatch andd(E)
need not be small.

Using Fermi’s golden rule we now calculate the cro
section forW1soliton→ anything with no soliton. Letuk&
be a singleW-boson state with energyE, normalized to unit
particle flux. Now

^0uH intuk&5
l2

v0
2 E

m
dv d~v!^0uqvuk&[g

l2

v0
2 d̄~k!,

~5.13!

where we have definedd̄(k) so that it is independent ofg
@see Eq.~5.11!#. Thel mode starts in the statec0(l) with
energy;v0/2 which again we neglect relative toDE. The
interaction~5.13! can cause a transition to a statecE(l) in
which thel mode has energyE. Since the width ofc0 is
;g1/6!1, it is tempting to try approximating the states wit
E.DE as plane waves

cE~l!;
1

v0
1/2E1/4exp~ iA2El/v0!. ~5.14!

The cross section for a transition fromc0 to cE is

sdestruction5NS gd̄~k!

v0
2 D 2I~E!2. ~5.15!

whereN is ag-independent constant and whereI(E) is the
integral

I~E!5E dlc0~l!l2cE~l!. ~5.16!

If we take c0 and cE as in Eqs.~5.7! and ~5.14!, respec-
tively, I(E) is easily evaluated, yielding

I~E!;exp~2E/v0!, ~5.17!

where we have dropped all prefactors. This result is in fa
incorrect.2 While it is true that Eqs.~5.7! and ~5.14! yield a
good approximation to the integrand where the integrand
biggest, the result~5.17! is exponentially smaller than the
integrand. This raises the possibility that corrections to t
wave functions neglected to this point may change~5.17!.
We must, therefore, use WKB wave functions which tak
into account the quadratic and cubic terms in the poten
V(l). As g→0 in the fixedDE limit, v0→0 and using
semiclassical wave functions becomes a better and better
proximation. We show below that forE5DE the leading

2We are grateful to D. T. Son for noticing this, and for pointing u
toward the correct answer.
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dependence of theI(E) asg→0 in the fixedDE limit is in
fact that of Eq.~5.17! with the coefficient ofDE/v0 being
(1824A3)/5 instead of 1. Thus, we will find that even
though the soliton destruction process does not involve tu
neling, the correct cross section is exponentially small a
v0;g1/3 goes to zero. The reader who is not interested in th
details of the evaluation ofI(E) can safely skip to Eq.
~5.29!.

We now wish to evaluate the leading semiclassical depe
dence of

I~E0 ,E!5E dlcE0
l2cE ~5.18!

in the fixedDE limit where E.DE and DE.E0.0 and
wherecE andcE0

are WKB wave functions for the Hamil-
tonian ~5.4! ~see Fig. 6!. The reader may be concerned tha
Eq. ~5.18! is infinite. @Both wave functions are real, and for
large positivel the integrand~5.18! has a nonoscillatory
piece which grows likel2l23/2.# However, when the rel-
evant limits are taken correctly, the answer we seek is in fa
finite. Recall that our problem reduces to that of thel mode
in a cubic potential only forulu,v0 /g;g22/3. Therefore,
we should do thel integration froml52L to l51L,
whereL is real and positive and where we takeL to infinity
more slowly thang22/3 asg goes to zero. The result of such
an evaluation would go likeL3/2exp(2constant/v0). Be-
cause we do not takeL to infinity before takingg to zero, the
prefactor does not make the result infinite.

The evaluation of matrix elements of operators betwee
semiclassical states has been treated by Landau@18#, and
although his final answer does not apply to our problem, w
follow his method to its penultimate step. Landau’s metho
yields only the leading~i.e., exponential! dependence of such
matrix elements, and says nothing about the prefactors. Th
using Landau’s method yields the leading small-g depen-
dence of Eq.~5.18! irrespective of whether the prefactors
make the integral infinite. In the calculation which follows, it
nevertheless proves convenient to multiply the integrand
Eq. ~5.18! by exp(2Jl2/v0) with J a constant. This does in
fact render the integral finite, but it may also modify the
exponential dependence of the result. Therefore, after t
g→0 limit has been taken we must take theJ→0 limit.
Landau’s method@18# applied to our problem yields

I~E0 ,E!;ImH E dl
v0l

2

$@V~l!2E0#@V~l!2E#%1/4

3expF 1v0
S E

l0

l

dxA2@V~x!2E0#

2E
lE

l

dxA2@V~x!2E#2Jl2D G J . ~5.19!

In this expression,l is treated as complex and it is under-
stood that the contour has been deformed into the upper h
plane. This is done both in order to avoid the turning point
on the real axis shown in Fig. 7, and because in deriving E
~5.19! Landau uses expressions for WKB wave function
which are valid only in the upper half plane and not on th
real axis. The first square root in the exponent in Eq.~5.19! is

s
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taken to be positive on the real axis forl,l0 and the second
is taken to be positive on the real axis forl,lE .

The equationV(x)2E50 has three roots. One is atlE ,
on the negative real axis, and the other two, atlbp and
lbp* , have nonzero imaginary parts.~ForE→DE, lbp goes to
the real axis atlsph51/b.) In evaluating Eq.~5.19! we must
keep in mind that atl5lbp in the upper half plane, the
integrand has a branch point. This singularity will play a
important role in our analysis.@Unlike in the example treated
explicitly by Landau, it does not arise from a singularity i
V(l).# The branch cut fromlbp must not cross the real axis
and it is convenient to take it to run upward vertically. Th
integrand in Eq.~5.19! is a function which is analytic in the
upper half plane except atlbp and along the associated cu
To evaluate the integral, we are free to push the conto
upward away from the real axis as long as we ensure tha
does not touch the branch pointlbp or cross the branch cut.

We now evaluate the leading exponential dependence
Eq. ~5.19!.3 To this end, we drop the prefactors in Eq.~5.19!.
We write the integral as

E dlexp
1

v0
@X~l!1 iY~l!# ~5.20!

whereX andY are real and where

X1 iY5E
l0

l

dxA2@V~x!2E0#2E
lE

l

dxA2@V~x!2E#2Jl2.

~5.21!

It is easy to check that forJ50 the integrand in Eq.~5.20!
has no saddle points at finitel. However, makingJ nonzero
introduces a saddle point at largeulu which moves off to
infinity as J is taken to zero and it is convenient for us t
evaluate the integral with nonzeroJ and then take theJ→0
limit.

3The analysis described below and the result~5.29! were provided
by A.V. Matytsin.

FIG. 7. This figure is a sketch showing the important points
the complexl plane discussed in the text. The branch points a
marked with dots, and the branch cuts are shaded. The contou
~5.19!, just above the real axis, and the deformed contour we use
evaluate the integral are both shown.
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We now describe the behavior ofX at large ulu. Write
l5Lexpiu. We have chosen the branch cut to run vertically
and so it is atu5p/2 for largeL. To the right of the cut, that
is for p/2.u.0, asL goes to infinity

X;2L5/2sin~5u/2!2JL2cos~2u!, ~5.22!

and theJ term is subleading.X goes to1` at largeL for
p/2.u.2p/5 and goes to2` for 2p/5.u.0. The descent
to 2` is most rapid foru5p/5. To the left of the cut, that is
for p>u>p/2, asL goes to infinity

X;X*1L21/2sin~u/2!2JL2cos~2u!, ~5.23!

whereX* is a constant independent ofJ, L, and u. ~For
J50, as L goes to infinity for p>u>p/2, X→X* and
Y→0.! For nonzeroJ, there is a saddle point at finitel. For
smallJ, this saddle point is atu.3p/5 andL;J22/5. Thus,
asJ→0 the saddle point recedes to infinity as promised, an
JL2 at the saddle point goes to zero. Therefore, in theJ→0
limit X at the saddle point goes to the valueX* .

We now deform the contour as sketched in Fig. 7. Fo
nonzeroJ, the saddle point is at finitel and we choose the
contour to follow the path of steepest descent from this
saddle point. To the left of the saddle point, the steepe
descent path curves toward the real axis, and then approach
the real axis asymptotically. As we discuss below,X(lbp! is
greater thanX* . Therefore, to the right of the saddle point,
the path of steepest descent from the saddle point cannot g
around the branch point and necessarily runs into the bran
cut. After reaching the cut, the next section of the path
ascendsas it traverses~II !, following the cut inward toward
the origin, until it reaches the region of the branch poin
lbp. Along ~II !, X ascends monotonically fromX* to
X(lbp!. Y is not constant. Then, to the right of the cut, the
contour follows the path of steepest descent~III ! toward in-
finity along u5p/5.

There are two contributions to the integral~5.20!. First,
the saddle point makes a contribution which goes like
exp(X* /v0). ~Note that we take theg→0 limit and then take
the J→0 limit.! The second contribution arises because th
path must ascend from the saddle point at infinity as i
traverses~II ! in order to get around the branch point, before
then descending along~III ! to the right. Therefore, the inte-
gral ~5.20! receives a contribution from the region of the
branch point which goes like exp„X(lbp)/v0…. In sum, there-
fore, the integral~5.20! goes like

I~E0 ,E!;exp~X* /v0!1exp„X~lbp!/v0…, ~5.24!

where we have dropped the prefactors, about which Land
au’s method says nothing. At this point, we can take th
E0→0 and E→DE limits simply by settingE050 and
E5DE. Prior to this point in the calculation, taking these
limits would require careful treatment of branch points.
Henceforth we setE050 and computeI(E)5I(0,E).

It only remains to evaluate the relative size ofX(lbp) and
X* . Both X(lbp) andX* depend onE. After some calcula-
tion one finds that forE5DE

X*52v0B52
18

5
DE, ~5.25!
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whereB is the tunneling amplitude computed in Eq.~5.9!,
and

X~lbp!52A2E
0

1/b

dlAl2/22bl3/3

5 2
1

5b2 S 32
2

A3D 5 2
18

5
DES 12

2

3A3D ,
~5.26!

so X(lbp) is the larger~i.e., least negative! of the two at
E5DE. At large E, both X(lbp) and X* decrease like
2E5/6. For E.DE, the integrals in Eq.~5.21! must be
evaluated numerically. We find that bothX(lbp) andX* de-
crease monotonically with increasing energy, andX(lbp) is
always greater thanX* . Consequently, the integral is dom
nated by the region of the branch point for all energ
E>DE. That is

I~E!;exp„X~lbp!/v0… ~5.27!

and

sdestruction;d̄2~k!exp„2X~lbp!/v0…, ~5.28!

where we have dropped all prefactors exceptd̄. Thus, al-
though the integrand has a saddle point~at infinity!, the in-
tegral is not dominated by that saddle point. This occ
because the path of steepest descent from the saddle
necessarily runs into the branch cut. Equivalently, the pr
ence of the branch cut prevents the actual contour of inte
tion from being deformed into a path of steepest desc
through the saddle point. Although the path can be deform
to pass through the saddle, it must ascend from the sadd
the region of the branch point.@Note that althoughX(lbp)
.X* for all energiesE>DE, X(lbp) is greater thanBv0 ,
and the rate for induced soliton decay is greater than
tunneling rate, only forE within a range of energies which
we determine numerically to beDE<E&1.74DE.#

BecauseX(lbp) decreases monotonically with increasin
E, the cross section~5.28! for the soliton to be destroyed b
a singleW boson is least suppressed byI(E) at threshold.
For E5DE the soliton destruction cross section goes like

sdestruction;d̄2~k!expS 2
3628A3

5
DE/v0D ~5.29!

asg→0 in the fixedDE limit.
We expectd(E) and accordinglyd̄~k! to be appreciable

whenE;DE so long asDE is comparable to the invers
soliton size, which is of order the inverseW mass. Under
these conditions, there will be no length scale mismatch
d(E) will not depend sensitively onE for E;DE, so
sdestructionwill be maximized forE5DE. Thus the maximum
rate for soliton decay induced by collision with a singleW
boson is proportional to exp@2(36/528A3/5)DE/v0#. This
is to be compared with the tunneling rate in the same lim
which is proportional to exp@2(36/5)DE/v0#. Both go to
zero asg goes to zero like exp(2constant/g1/3), but the ratio
of the tunneling rate to the induced decay rate is expon
tially small.
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We have computed the cross section for a singleW boson
to be absorbed by the soliton and to excite thel mode to a
continuum state above the barrier, which in our picture r
sults in soliton decay. The cross section for aW boson to
destroy the soliton by scattering off the soliton and transfe
ring energyE to the l mode can be calculated using th
second term in Eq.~5.12!. The calculation is similar to the
one we have done and the result has the same expone
factor as in Eq.~5.28! but would have a different prefactor.
Because the exponent in Eq.~5.28! includesv0

21;g21/3,
these cross sections go to zero faster than any power ofg as
g goes to zero in the fixedDE limit. Note that this suppres-
sion arises even though the process does not involve tunn
ing and even though there is no length scale mismatch.
arises as a consequence of the limit in which we have do
the computation, because in that limit destroying the solito
reduces to exciting a single degree of freedom to an ene
level infinitely many (;DE/v0) levels above its ground
state. Thus, takingg→0 at fixedDE makes the computation
tractable but makes the induced decay rate exponentia
small, albeit larger than the tunneling rate.

VI. FERMION NUMBER VIOLATION

We have described classical and quantum processes
which electroweak solitons are destroyed. In this section,
argue that if we couple a quantized chiral fermion to th
gauge and Higgs fields considered in this paper, then soli
destruction implies nonconservation of fermion number. Th
argument we present treats the gauge and Higgs fields
classical backgrounds. In particular, we ask how many fe
mions are produced in a background given by a solution
the classical equations of motion in which a soliton is d
stroyed. We expect that our conclusions will also be valid f
soliton destruction induced by a singleW boson.

We introduce a quantized fermion fieldC, and as in the
standard electroweak theory but neglecting the U~1! interac-
tion, we couple only the left-handed component of the ferm
ion to the non-Abelian gauge field. We add the usu
Yukawa coupling between the fermion and the Higgs field
give the fermion a gauge-invariant mass. The Lagrangian
the fermion is

L fermion5C̄@ igmDm2mf~UPR1U†PL!#C, ~6.1!

where Dm5]m2 iAmPL , PL5 1
2(12g5), and PR

5 1
2(11g5). The Higgs field F of ~1.2! is given by

F5(v/A2)U. For simplicity, both the up and the down
components ofC have the same massmf . The gauge-
invariant normal-ordered fermion current

Jm5:C̄gmC: ~6.2!

is not conserved; that is,

]mJ
m5

1

32p2 emnabTr~FmnFab!. ~6.3!

We consider backgrounds given by solutions of the kin
found numerically in Sec. II. After the soliton has been de
stroyed the solution dissipates. By dissipation we mean th
at late times the energy density approaches zero uniform
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throughout space. This means that at late times the soluti
are well described by solutions to the linearized equations
motion

~]n]n1m2!Am
lin50 ~6.4!

in unitary gauge. It is tempting to try to integrate~6.3! and
relate the fermion number violation to the topological char

Q5
1

32p2E d4x emnabTr~FmnFab!. ~6.5!

First, note that because the region of space-time in wh
FmnÞ0 is not bounded, there is no reason to expectQ to be
an integer. Furthermore, it is shown in Ref.@19# that for a
background which satisfies~6.4! at early and/or late times,
the integral in~6.5! is not absolutely convergent andQ can-
not sensibly be defined.

In a background given by a solution to the equations
motion which dissipates at early and late times, the num
of fermions produced is known to be given by the change
Higgs winding number@19,20#. In this paper, the Higgs bo-
son mass is infinite so the Higgs winding number can nev
change. For solutions with no solitons in the initial or fina
states, the arguments of Ref.@19# apply, and no fermions are
produced. However, if there is a soliton in the initial or fina
state the assumption of Ref.@19# that the solution dissipates
is not satisfied. In this section, we show that in a backgrou
given by a solution in which one soliton is destroyed, one n
antifermion is produced if the fermion is light (mfL!1
whereL is the size of the soliton! and no fermions are pro-
duced if the fermion is heavy (mfL@1). In themfL@1 case,
however, there is still a violation of fermion number in th
sense that the soliton carries heavy fermion number wher
the dissipated configuration after the soliton is destroy
does not.

We now review some known facts about fermion charg
which a background field configuration can carry@21,9,22#.
Consider some localized time-independent field configu
tion Am(x) in the unitary gaugeU51. Imagine adiabatically
interpolating from the trivial backgroundAm(x)50 to the
Am(x) of interest and following the adiabatic evolution of th
fermion state which at the beginning of the interpolation
the fermion vacuum. At the beginning of the interpolatio
the state has all negative energy levels filled with the mo
functions determined by the single-particle Dirac Ham
tonian

H ferm~ t !5g0@2 ig iDi1mf #2A0PL ~6.6!

with Am50. The change, from the beginning to the end
the interpolation, of the expectation of the fermion char
operator,*d3x J0 with J0 given by~6.2!, has been calculated
@21#. The result is the Chern-Simons number of the fie
Am :

NCS@A#5
1

24p2E d3x e i jkTrFAiAjAk1
3

2
iF i j AkG . ~6.7!

Since at the beginning of the interpolation, the fermio
charge is zero,NCS is the charge of the state arrived at b
adiabatically following the initial vacuum state. We will se
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that the fermion state reached by this adiabatic process is
necessarily the lowest energy fermion state in the bac
groundAm(x).

Consider the case when the final configuration has t
special formAi(x)5 iU 1

†] iU1 , A050 whereU1 is a winding
number one map, say of the form~2.9!, with a characteristic
size L. In this case,NCS@A# is the winding ofU1 , that is
NCS@ iU 1

†] iU1#51. Thus the state arrived at the end of th
interpolation has fermion charge one. We now examine wh
this state is. At all times during the interpolation we ca
define an instantaneous single-particle Dirac Hamiltonian
~6.6! and we can therefore discuss how the spectrum of t
instantaneous Hamiltonian varies during the interpolation.
the beginning we have the free massive Dirac Hamiltoni
which has a gap between2mf andmf . If mf@1/L, then the
spectrum is not perturbed much by the gauge field and,
particular, no energy levels cross zero during the interpo
tion. In this case, throughout the interpolation the fermio
state is the lowest energy fermion state in the presence of
bosonic background. However, ifmfL!1, it has been shown
@9# that one level crosses zero from below during the inte
polation. This means that formfL!1, the state reached at the
end of the interpolation is the lowest energy fermion state
the presence ofAi5 iU 1

†] iU1 plus a single fermion. Thus the
charge of the lowest energy fermion state in the presence
Ai5 iU 1

†] iU1 is zero formfL!1. However formfL@1, the
charge of the lowest energy fermion state in this backgrou
is one. This ends our brief review.

In the case at hand the electroweak solitonAi
sol is only

approximately of the formiU 1
†] iU1 and the Chern-Simons

number of the soliton configuration is not an integer. In fac
a general backgroundAm(x) will not carry an integer-valued
fermion charge and this charge can be viewed as a con
quence of the polarization of the vacuum by the backgroun
Nonetheless, we will argue that when the soliton is destroy
an integer number of fermions is produced.

Consider a background given by a solution in which
soliton is destroyed. Att52T0!0 the solution consists of a
soliton at rest and an incoming pulse while att5T0@0 there
is only outgoing radiation. We wish to avoid evaluating th
fermion charge att56T0 . To this end we introduce a back-
ground configurationĀm(x,t) for 2T<t<T with T.T0
which agrees with the solutionAm(x,t) for 2T0<t<T0 . At
t52T we choose the backgroundĀm(x,2T)5 iU 1

†] iU1

whereU1 is a winding number one map which produces
configuration which is close to the soliton, that is
Ai
sol. iU 1

†] iU1 . In particular, the length scaleL, over which
U1 varies, is determined by the size of the soliton. Thus t
interpolation, running backward from2T0 , turns off the in-
coming pulse and distorts the soliton until it is of the form
iU 1

†] iU1 . Now at t5T0 the solution is just the outgoing
remnants of the soliton and the initial pulse, and att5T we
chooseĀm(x,T)50. Thus, betweenT0 andT the interpola-
tion turns off the outgoing pulse bringing the background
its vacuum configuration.

The interpolationĀm(x,t) begins att52T with a con-
figuration of the form Āi(x,2T)5 iU 1

†] iU1 and ends at
Ām(x,T)50. The scale ofU1 is L. Consider a fermion field
coupled to this background withmfL@1, the heavy fermion
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case. The initial gauge field configuration has heavy fermi
number one. Consider the instantaneous Dirac Hamilton
~6.6!. Throughout the interpolation the gauge fieldĀm is
small compared tomf and we conclude that no level crosse
zero throughout the interpolation. Thus, even without a d
tailed field theory description of fermion production, we con
clude that the fermion state we reach at the end of the int
polation has no extra heavy fermions. The final configurati
is Ām(x,T)50 so the fermion number of this gauge fiel
configuration is zero. The heavy fermion number of th
gauge field background has changed from one to zero and
heavy fermion has been produced and hence we see
anomalous violation of heavy fermion number.

We now turn to the light fermion case,mfL!1. At
t52T the configuration Āi(x,2T)5 iU 1

†] iU1 has light
fermion number zero and we begin in the lowest ener
fermion state in this background, which has all negative e
ergy levels filled and all positive energy levels empty. Bo
the light and the heavy fermion number currents have t
same anomalous divergence~6.3! so the difference between
light and heavy fermion numbers is strictly conserved. W
conclude that att5T the state we arrive at must have ligh
fermion number minus one. The final configuratio
Ām(x,T)50 has light fermion number zero. Thus we see th
the fermion state att5T has one more light antifermion than
fermion. Thus, in the backgroundĀm betweent52T and
t5T, no heavy fermion is produced but one net light an
fermion is produced.

We have discussed fermion production in a backgrou
going fromĀi(x,2T)5 iU 1

†] iU1 to Āi(x,T)50, whereas we
are really interested in fermion production only in the pre
ence of the solutionAm(x,t) for 2T0<t<T0 . Therefore, we
need to argue that no fermion is produced~light or heavy!
between2T and2T0 and betweenT0 andT. By making
T0 arbitrarily large, we can make the amplitude of the inc
dent and outgoing pulses arbitrarily small, and hence ma
their effect on the Dirac Hamiltonian arbitrarily small. Thi
ensures that no fermion is produced during the interpolat
betweenT0 andT. It also ensures that, working backward
in time from2T0 , we can interpolate to a configuration with
Ām5Am

sol, removing the incident pulse, without producin
any fermion.

It only remains to consider the interpolation betwee
Āi(x,2T)5 iU 1

†] iU1 and Ām5Am
sol. We can chooseU1 to

be the winding number one map which characterizes
Skyrmion with the samee and v as the soliton of interest.
We can then choose the interpolating configurations to b
sequence of solitons with fixede and v with g changing
from the value of interest to zero. The behavior ofx during
such an interpolation is depicted in Fig. 2. Note that in takin
g to zero with fixede andv, j goes to infinity andm goes to
zero in such a way that the soliton size stays fixed. Note a
that while we are choosing the configurations during the
terpolation to be solitons with differing values ofg, the cou-
pling between the gauge field and the fermions is held fixe
For mfL@1, throughout the interpolation the fermion spe
trum is never perturbed much by the gauge field, and so
level crosses zero. In our brief review we learned that t
configurationiU 1

†] iU1 has fermion number one ifmfL@1
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and fermion number zero if mfL!1. Since
NCS@ iU 1

†] iU1#51, this means that as we reducemf from
mf@1/L to mf!1/L, one ~net! level must cross zero from
below. Accordingly, for one or more values ofmf , of order
1/L, the Dirac Hamiltonian~6.6! has a zero energy bound
state in the Skyrmion background and, furthermore, there is
nonzero value ofmf below which there is no zero energy
bound state. Now, consider interpolating from the Skyrmio
configuration att52T to the soliton configuration. Define
mf* (t) to be the largest value ofmf such that for all
mf,mf* (t) the Dirac Hamiltonian~6.6! in the background
Ām(x,t) never has a zero energy bound state. From our u
derstanding of the Skyrmion background, we know tha
mf* (2T) is of order 1/L. By makingj arbitrarily large, the
difference between the Skyrmion and soliton configuration
can be made arbitrarily small, and accordingly the change
the spectrum of the Dirac Hamiltonian during the interpola
tion can be made arbitrarily small. Therefore, for larg
enoughj, throughout the interpolation from the Skyrmion to
the soliton,mf* (t) remains nonzero. We now assume tha
this is in fact the case for allj.j* . We feel that this is a
reasonable assumption since, as Fig. 2 shows, the soli
configuration is quite similar to the corresponding Skyrmio
configuration even forj nearj* . Making this assumption,
we conclude that formfL!1, as for mfL@1, no level
crosses zero during the interpolation betwee
Āi(x,2T)5 iU 1

†] iU1 and Ām5Am
sol. Hence, no fermion

~light or heavy! is produced during the interpolation between
2T and2T0 . Therefore, in the background between2T0
andT0 , which is a classical solution in which a soliton is
destroyed, no heavy fermion is produced but one net lig
antifermion is produced.

Suppose we are only interested in light fermion produc
tion. We can view the heavy fermion as a device introduce
only for the purpose of making an argument. Because w
have not included the back reaction of the fermions, heavy
light, on the bosonic background, any conclusions we rea
about the light fermion are in fact independent of whethe
there is or is not a heavy fermion in the theory. Therefore,
any process in which a soliton is destroyed, one net antife
mion from each light SU~2! L doublet is anomalously pro-
duced.

VII. CONCLUDING REMARKS

We have described a theory which agrees with the sta
dard electroweak model at presently accessible energies
which includes a metastable soliton with mass of order se
eral TeV. This Higgs sector soliton may have a dual descri
tion as a bound state particle made of more fundamen
constituents or it may be that the Higgs sector is fundamen
and when quantum effects are taken into account, a me
stable soliton is found. In any event, given the soliton, und
certain circumstances we can reliably estimate the rate f
collision-induced decays. The parameters of the theory c
be chosen so that the soliton configuration is close to th
sphaleron configuration, which means that using the solito
as an initial particle makes it easy to find sphaleron crossin
processes. Indeed, we have found classical solutions
which the soliton is destroyed where the incoming pulse co
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responds to a quantum coherent state with;1/g2 W bosons.
The rate for such processes is not exponentially suppres
asg goes to zero. Furthermore, in the limitg goes to zero
with DE5M sph2M sol fixed, we can reliably estimate the
rate for a two-particle scattering process in which a sing
incidentW boson kicks the soliton over the barrier causing
to decay. We have argued that in all processes in which
soliton disappears, fermion number is violated. This mod
may be relevant only as a theoretical foil, as a demonstrat
that fermion number violating high energy scattering pr
cesses can be very different than in the standard mo
However, if no light Higgs boson is discovered, it is eve
possible that nature may be described by such a model.
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APPENDIX A

In Sec. II, we presented the equations of motion in t
spherical ansatz in the unitary gauge. In this appendix,
begin by presenting the action and equations of motion in
spherical ansatz without fixing a gauge. All the numeric
solutions presented in this paper were obtained by solv
both the unitary gauge equations of motion and theA050
gauge equations of motion using different numeric
schemes. We sketch both methods in this appendix.

The spherical ansatz is given by expressing the gau
field Am and the Higgs fieldF in terms of six real functions
a0 , a1 , a, g, m, andn of r and t. Am is given in~2.3! and
F is given by

F~x,t !5
1

g
@m~r ,t !1 in~r ,t !s• x̂#. ~A1!

For Am andF to be regular at the origin, we require tha
a0 , a, a12a/r , g/r , andn vanish asr→0. It is convenient
to define the complex field

f5m1 in. ~A2!

When the Higgs boson mass is set to infinity,ufu is frozen at
its vacuum expectation valueA2m and

f5A2m exp@ ih~r ,t !#, ~A3!
sed
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with h vanishing at the origin. Under a gauge transformatio
of the form exp@iV(r,t)•s• x̂/2# with V(0,t)50, configura-
tions in the spherical ansatz remain in the spherical ansa
and continue to satisfy the appropriate boundary conditio
at the origin. Thus, the SU~2! gauge theory reduced to the
spherical ansatz has a residual U~1! gauge invariance.

In the spherical ansatz, the action associated with the L
grangian~1.8! takes the form

S5
4p

g2 E dtE
0

`

drH 2
1

4
r 2f mn f mn1~Dmx!*Dmx

12r 2m2S ]mh2
1

2
amD 22 1

2r 2
~ uxu221!2

2m2~ uxu211!22m2Re~ ix* e2ih!2
1

4j
G~x,h!

3F24S ]mh2
1

2
amD 21 1

2r 2
G~x,h!G J , ~A4!

where

G~x,h!5ux1 ie2ihu2 ~A5!

and the rest of the notation is as in Sec. II. The notation
chosen to manifest the U~1! gauge invariance present in the
action ~1.4!. The complex scalar fieldsx andf have U~1!
charges of 1 and 1/2, respectively,am is the U~1! gauge
field, f mn is the field strength, andDm is the covariant de-
rivative. The indices are raised and lowered with th
(111)-dimensional metricds25dt22dr2.

The equations of motion in the spherical ansatz are

]m~r 2f mn!5 i @xDnx*2x*Dnx#1~]nh2 1
2an!

3S 2r 2m21
1

j
G~x,h! D , ~A6a!

FD21
1

r 2
~ uxu221!1m2Gx

52 im2e2ih2
1

4j
~x1 ie2ih!

3F24~]mh2 1
2am!21

1

r 2
G~x,h!G , ~A6b!

]mF S r 21 1

2m2j
G~x,h! D ~]mh2 1

2a
m!G

5Re~x* e2ih!1
1

4m2j
Re~x* e2ih!

3F24~]mh2 1
2am!21

1

r 2
G~x,h!G . ~A6c!

The same equations are obtained either by varying the act
~1.8! and then imposing the spherical ansatz or by varyin
the action~A4!. The unitary gauge action and the equation
of motion of Sec. II are obtained by settingh50. As a con-
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sequence of the U~1! gauge invariance, the five equation
above are not independent, and in Sec. II we chose to disc
~A6c!.

In presenting the results of Sec. II, we found it useful
use the variablesr, u, anda1 . The first is explicitly gauge-
invariant. The latter two are specific to the unitary gaug
and are equivalent to the gauge invariant variabl
(u22h) and (a122]1h), respectively. For an extensive
discussion of gauge-invariant variables in the spherical a
satz, see Ref.@23#.

In the simulations of Sec. II, the boundary conditions
the large-r boundary of the lattice are not important, sinc
we are interested in an ingoing pulse and its effects on
soliton and we stop the simulation before the remnants of
soliton reach the large-r boundary. In doing the simulation in
Fig. 5 of Sec. IV, we must have energy absorbing bounda
conditions at the large-r boundary of the simulation so tha
we can see the amplitude of thel-mode oscillation decreas-
ing as it radiates energy away. At large radius,x satisfies
@]2/]t22]2/]r 22m2#x(r ,t)50. We choose to impose
ẋ52]x/]r at the large-r boundary. This has the virtue tha
the energy flux at the boundary is never negative—t
boundary can only absorb energy but cannot emit it.

We now give brief descriptions of the methods we used
solve the unitary gauge andA050 gauge equations. In
A050 gauge, we chose to write a lattice version of the acti
~A4! and vary it, thus obtaining discretized versions of th
equations of motion. The fieldsx andh live at the sites of
the lattice, whilea1 lives on the spatial links. For a more
detailed description of this technique as applied to t
(111)-dimensional Abelian Higgs model, see Refs.@24,25#.
In the A050 gauge, we have the freedom to make a tim
independent gauge transformation and we used this to
h(r ,0)50. However,h does not remain zero at later times
We specified initial conditions forx, ẋ, a1 , andḣ at t50,
and then chose initial values forȧ1 such that Gauss’ law is
satisfied. The equations of motion are second order in ti
derivatives of the fieldsx, a1 , andh. We used the fields at
two successive time steps to determine the fields at the n
time step. We used a lattice with 4000 sites and a latt
spacingdr50.004/m, and used a time stepdt5dr/2. Be-
cause the equations of motion were obtained by varying
lattice action, there is a lattice version of Gauss’ law which
satisfied during the evolution up to the precision allowed
computer arithmetic. Energy conservation was satisfi
throughout the evolution to better than one part in a tho
sand. We verified that reducingdr anddt did not change any
results quantitatively, and reduced the violation of ener
conservation. We also checked that if we take the final co
figuration from a simulation such as that of Fig. 3, chan
the sign of all time derivatives, and run the simulation bac
wards in time, we obtain the initial configuration of the orig
nal simulation.

With the unitary gauge equations of motion, we followe
a different strategy. We first wrote them as first order equ
tions for a0 , a1 , x, and the canonical momentaPa1

and

Px . Of these seven equations, one is redundant. In doing
numerical evolution it was convenient to drop the equati
for Ṗa1

. We therefore chose initial conditions by specifyin

x, a1 , a0 , andPx , and then chosePa1
such that Gauss’
s
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law was satisfied. Rather than using a lattice action, we dis
cretized the equations of motion themselves. We took car
however, to putx, Px , and a0 at the lattice sites while
putting a1 andPa1

on the links, and to discretize the equa-
tions of motion in such a way that all quantities were accu
rate to one order indr beyond the trivial one. We imple-
mented the time evolution using a fourth order Runge-Kutt
algorithm. We worked with a lattice spacing of
dr50.02/(mAj), equal to 0.0058/m for j512, and a time
spacingdt50.002/m. We verified that energy conservation
and the equation forṖa1

were satisfied. For smallerdr and

dt, no qualitative change occurred and both checks wer
satisfied more accurately.

APPENDIX B: CLASSICAL SOLUTIONS
AND COHERENT STATES

There is clearly a relation between classical solutions i
Minkowski space and the tree approximation in quantum
field theory @26#; here we derive a version of this relation
useful for our purpose. This appendix is self-contained an
can be read independently of the rest of this paper.

For simplicity, consider real scalar field theory with the
action

S5
1

g2E d4x$ 1
2 ]mf]mf2 1

2m
2f22V~f!%, ~B1!

whereV(f) is a polynomial containing cubic and higher
terms. The classical field equation

~]21m2!fc~x!1V8„fc~x!…50 ~B2!

is equivalent to the integral equation

fc~x!5F in~x!1Fout* ~x!2 i E DF~x2y!V8„fc~y!…d4y,

~B3!

where

DF~x!52
1

~2p!4i E d4k
e2 ikx

k22m21 i e
~B4!

is the Feynman propagator and

F in
out

~x!5E dk f in
out

~k!e2 ikx. ~B5!

In ~B5!, k05uAk21m2u anddk is the Lorentz invariant mea-
sure

dk5
1

~2p!3
1

2k0
d3k. ~B6!

We do not yet require thatfc(x) is real. f in and f out are then
arbitrary complex functions ofk.

Equation~B3! can be solved by iteration, and the solution
expressed as a sum of terms described by Feynman d
grams. A typical diagram@for V(f)5 1

6f
3# is shown in Fig.

8. Its contribution tofc(x) is
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1

2E d4y d4z~2 i !2DF~x2y!DF~y2z!$Fout* ~z!%2F in~y!.

~B7!

The sum is over allconnected, treediagrams. The combina
torial factors are determined by the symmetry of the d
grams in the usual way.

We now ask which quantity in the quantum field theo
with action ~B1! is given in tree approximation by the sam
set of diagrams. The answer is

fc~x!5^f̂~x!& f ,tree[F ^ f outuf̂~x!u f in&
^ f outu f in&

G
tree

, ~B8!

whereu f in
out

& are coherent states defined by

u f in
out

&5(
n

1

gnn! E f in
out

~k1!dk1••• f in
out

~kn!dkn

3uk1•••kn ; in
out&, ~B9!

where uk1•••kn ; in
out& are the usual asymptoticn-particle

states. In terms of the quantum fieldf̂(x),

u f in
out

&5S expH i

g2
lim

x0→7`

E d3x

3FF in
out

~x!S ]W

]x0
2

]Q

]x0D f̂~x!G J D u0&. ~B10!

Note that with our definitions ofSandu f &, both sides of~B8!

are independent ofg. The one-loop corrections tôf̂(x)& f
are of orderg2. Note also the normalizations

I5(
n

1

n! E dk1•••dknuk1•••kn&^k1•••knu ~B11!

and

FIG. 8. Diagram for~B7!.
-
ia-

ry
e

^kuf̂~x!u0&5geikx, ~B12!

^0u f in
out

&51, ~B13!

^ f in
out

u f in
out

&5expS 1g2E u f in
out

u2dkD . ~B14!

It is important to note that the number of particles in the
statesu f & is of order 1/g2.

There is certainly a large class of solutionsfc(x) which
behave at early and late times like incoming and outgoing
wave solutions of the free field equation, with amplitudes
which go to zero at early and late times because of both th
spread in three-space and the dispersion due tomÞ0. For
such solutions, withf in

out
smooth enough, we have

x0→2`, fc~x!;E dk fin~k!e2 ikx1E dk hin* ~k!eikx,

~B15a!

x0→1`, fc~x!;E dk hout~k!e2 ikx1E dk fout* ~k!eikx,

~B15b!

where, using ~B3! and the values ofDF(x2y) as
x0→7`,

hin* ~k!5 f out* ~k!2 i E d4y e2 ikyV8„fc~y!…, ~B16a!

hout~k!5 f in~k!2 i E d4y eikyV8„fc~y!…. ~B16b!

With a given complexfc(x), we read off f in(k) from the
positive frequency part asx0→2`, and f out* (k) from the
negative frequency part asx0→1` to discover what
fc(x) is the tree approximation to. Iffc(x) is real,

h in
out

~k!5 f in
out

~k!, ~B17!

and Eqs.~B16b! become equivalent relations which deter-
mine f out(k) in terms off in(k). Of course, we are concerned
with given real solutionsfc(x) and we simply read off both
f in and f out from the asymptotic behavior; we do not need
Eqs.~B16b! to relate them.
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FIG. 9. Diagram for~B19!.
Returning to the complex case, we derive an expressio
for the matrix element̂ f outu f in& in the tree approximation in
terms of the correspondingfc . The quantum perturbation
theory gives

^ f outu f in&5expS 1g2T~ f out, f in! D , ~B18!

with T expressed as the sum ofconnectedFeynman dia-
grams. A typicaltree diagram @again, forV(f)5 1

6f
3# is

shown in Fig. 9. This contributes
~2 i !3

2 E DF~x2y!DF~y2z!$F in~x!%2Fout* ~y!F in~z!Fout* ~z!d4xd4yd4z ~B19!

to T( f out, f in). Now, consider small changesd f
out
in . It can be seen that

dT~ f out, f in!5E dk d f out* ~k!H f in~k!1 i E d4y eiky~]21m2!^f̂~y!& f J
1E dk d f in~k!H f out* ~k!1 i E d4y e2 iky~]21m2!^f̂~y!& f J , ~B20!

where

^f̂~x!& f5
^ f outuf̂~x!u f in&

^ f outu f in&
. ~B21!

In the treeapproximation, using~B8!, ~B2!, and~B16!,

dTtree~ f out, f in!5E dk$d f out* ~k!hout~k!1d f in~k!hin* ~k!%. ~B22!

We can now verify that~B22! is satisfied by

Ttree~ f out, f in!5
1

2E dk fout* ~k!hout~k!1
1

2E dk fin~k!hin* ~k!2 i E d4x$ 1
2fc~x!$~]21m2!fc~x!%1V„fc~x!…%. ~B23!
Of course, Eq.~B23! is i times the classical action plu
boundary terms. The point of the preceding argument is
get the boundary terms right. The expression~B23! can also
be derived from the stationary value of a functional integ
expression for̂ f outu f in&. Note that the integral over space
time can be written as

u5E d4x@V„fc~x!…2 1
2fc~x!V8„fc~x!…# ~B24!

and so converges for typical solutionsfc(x) which fall off
rapidly enough in both space and time.

Now considerf in out which correspond to areal solution
fc(x). Then@using ~B18!#,
s
to

ral
-

^ f outu f in& tree5expF 1

2g2E u f outu2dk1
1

2g2E u f inu2dk2
iu

g2G ,
~B25!

whereu given by ~B24! is real. Using ~B14!, we see that

u^ f outu f in& treeu2

^ f outu f out&^ f inu f in&
51. ~B26!

One-loop corrections toT( f out, f in) are of orderg2. Thus, if
we consider states

u f̃ in
out

&5

u f in
out

&

^ f in
out

u f in
out

&1/2
~B27!



o-
nt

5360 54FARHI, GOLDSTONE, LUE, AND RAJAGOPAL
normalized to unity,

u f̃ in&5e2 iu/g2au f̃ out&1uc&, ~B28!

where ^cu f̃ out&50 and uau is not of order exp(2c/g2) as
g→0. In fact ~not proved here!, to orderg0, i.e., one loop,

uau25e2P, ~B29!

whereP is the probability of the transition vacuum→ one
pair of f particles in the theory with action
S85
1

2E d4x$]mf]mf2m2~x!f2%, ~B30!

where

m2~x!5m21V9„fc~x!…. ~B31!

Thus, to each real solutionfc(x) to the Minkowski space
classical equations of motion, there corresponds a not exp
nentially suppressed scattering process between cohere
states~containing of order 1/g2 particles!.
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