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We consider a variant of the standard electroweak theory in which the Higgs sector has been modified so
that there is a classically stable weak scale soliton. We explore fermion-number-violating processes which
involve soliton decay. A soliton can decay by tunneling under the sphaleron barrier, or the decay can be
collision induced if the energy is sufficient for the barrier to be traversed. We present a classical solution to the
Minkowski space equations of motion in which a soliton is kicked over the barrier by an incoming pulse. This
pulse corresponds to a quantum coherent state with a mean numbleguainta~ 2.5/g% whereg is the SU2)
gauge coupling constant. We also give a self-contained treatment of the relationship between classical solu-
tions, including those in which solitons are destroyed, and tree-level quantum amplitudes. Furthermore, we
consider a limit in which we can reliably estimate the amplitude for soliton decay induced by collision with a
singleW boson. This amplitude depends grike exp(—cg™ %), and is larger than that for spontaneous decay
via tunneling in the same limit. Finally, we show that in soliton decays light2pUdoublet fermions are
anomalously produced. Thus we have a calculation of a two-body process with energy above the sphaleron
barrier in which fermion number is violatefi50556-282(196)00306-3

PACS numbsgs): 11.30.Fs, 11.15.Kc, 12.39.Dc, 12.60.Fr

I. INTRODUCTION In this paper, we explore the robustness of these ideas by
studying a variant of the standard model in which the ampli-
In the standard electroweak theory, fermion number viotudes for certain fermion-number-violating collisions, as well
lation is present at the quantum level but these processes a@& for spontaneous decays, can be reliably estimated for
seen only outside of ordinary perturbation theory. A baryorsmall couplingg. The model is the standard electroweak
number three nucleus can decay into three leptons. The préheory with the Higgs boson mass taken to infinity and with
cess is described as an instanton-mediated tunneling evedtSkyrme term{6] added to the Higgs sector. With these
[1], leading to an amplitude which is suppressed bymodifications, the Higgs sector supports a classically stable
exp(—872/g?), with g=0.65 the SW2) gauge coupling con- soliton which can be interpreted as a partlclle whose mass is
stant. At energies above the sphaleron baii@ fermion- of order the weak scal&’]. Quantum mechanically, the soli-

number-violating processes involving two particles in theton can decay via barrier penetratk#-10. Classically, i.e.,

initial state are generally believed to be also exponentially(':'VOIVIng in Minkowski space using the Euler-Lagrange

suppressed3]. (At energies comparable to, but below the equations, the soliton can be kicked over the barrier if it is hit
sphaleron barrier, Euclidean methddg have been used to with an appropriate gauge field pulse. Correspondingly, the

h hat th il ion is | h soliton can be induced to decay quantum mechanically if it
show that the exponential suppression is less acute than ghqq g the right gauge field quanta. Regardless of whether

lower energies, but.the approximations used fail at energieg,q decay is spontaneous or induced, ordinary baryon and
of order the barrier height and aboveUnsuppressed |gpion number are violated in the decay. We shall see that
fermion-number-violating processes are generally believe¢he model has a limit in which fermion-number-violating
to have of order 4/g? particles in both the initial and final amplitudes can be reliably estimated both for processes
states. This all suggests that fermion number violation willyhich occur by tunneling and for those which occur in two
remain unobservable at future accelerators no matter howarticle collisions between a soliton and a singeboson
high the energy, whereas in the high temperature environwith energy above the barrier.

ment of the early Universe such processes did play a signifi-
cant role[5].

A. The model
To modify the standard model so that it supports solitons,
*Electronic address: farhi@mitlns.mit.edu proceed as follows. Note that in the absence of gauge cou-
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where The standard electroweak Higgs boson plus gauge boson
sector is obtained by gauging the @J X U(1)y subgroup
0 —¢1 of SU(2). XSU(2)g in the Lagrangian(1.1). Throughout
D(x,t)= o1 b ) (1.2 this paper we neglect the () interactions. The complete

Lagrangian we consider is obtained upon gauging th€25U

(¢0,¢1) is the Higgs doublet, and =246 GeV. One ad- L Symmetry of(1.7):

vantage of writing the Lagrangian in this form is that it 2

makes the S(2), X SU(2) invariance of the Higgs sector = — i-m:,w,: + v—Tr[D“UTD U]
manifest. The scalar fiel® can also be written as 2g° kYo 4 a

1
d=0U, (1.3 t + 2

+ 3262Tr[U D,U,UD,UJ% (1.8
whereU is SU?2) valued ando is a real field. In terms of

these variables, where

2

2
o2 %) R

Fuv=0,A,—d,A,—i[A, A,

‘:%TH:%azTr[aﬂufaf‘UHaﬂaaﬂa—)\
D,U=(3,~iA,)U, (1.9

The Higgs boson mass i@&\v. We work in the limit where

the Higgs boson mass is set to infinity amds frozen atits ~ With A, =A% 0%/2 where ther® are the Pauli matrices. In the

vacuum expectation valug/ 2. Now unitary gaugel =1, and the Lagrangian is
=t t = ] TR mETIA A iTlr[A A2
/QH:ZTI’[(?MU O’I'U“U] (15) ‘:*’_52 2 wv % 85 RIAY )
(1.10
which is the nonlineas- model with scale factos. We will .
consider only those configurations for which the fields apV"ere we have introduced
proach their vacuum values pg— for all t. We can then 2
impose the boundary condition Q 4e
p y m=>- and &=—. (1.1
lim U(x,t)=1 (1.6
[x|—o0 Note that the equations of motion derived fr¢in10 agree

with those obtained by varyinl.8) and then settindJ = 1.
which means that at any fixed time,is a map fromS® into  Also note that for fixecm and ¢, the classical equations of
SU(2). These maps are characterized by an integer-valueghotion are independent af. Sincem is dimensionful and
winding number which is conserved as thefield evolves  sets the scale, characteristics of the classical theory depend
continuously. However, if we take a localized winding num- only on the single dimensionless parameter
ber one configuration and let it evolve according to the clas-
sical equations of motion obtained frofh.5), it will shrink
to zero size. To prevent this we follow Skyrrf@] and add a
four-derivative term to the Lagrangian. The Skyrme term is The classical lowest energy configuration @£10 has
the unique Lorentz invariant, §P), X SU(2)g-invariant A,=0 and the quantum theory built upon this configuration
term which leads to only second-order time derivatives in thhas three spin-one bosons of equal massin the limit
equations of motion and contributes positively to the energywhereg goes to zero witte andv fixed (hence,¢ goes to

infinity), the Lagrangian(1.8) is well approximated by its

v fou 1 ‘ N ) ungauged versionfl.7) which supports a stable soliton, so

Prands= 7 1119,V 9*U]+ 555U 9,U,U"9, U], one suspects that for large the Lagrangian(1.8) and its
(1.7) gauge-fixed equivalen(L.10 also support a soliton. In fact,

Ambjorn and Rubakoy10] showed that foré larger than

wheree is a dimensionless constant. £*=10.35, the LagrangiafilL.10 does support a classically

Of course, this Lagrangian is just a scaled-up version obtable soliton whereas fof<&*, such a configuration is
the Skyrme Lagrangian which has been u$éd 1,13 to  unstable. LeU,(x) be the winding number one soliton, the
treat baryons as stable solitons in the nonlineamodel  Skyrmion, associated with the ungauged Lagrandia).
theory of pions. To obtain the original Skyrme Lagrangian,For large¢, this configuration is a good approximation to the
replacev in (1.7) by f_.=93 MeV. The stable soliton of this soliton of the gauged Lagrangiafi.8), so in the unitary
theory, the Skyrmion, has a mass of f73e and a size gauge the soliton iA*=iUlgU,, AS'=0. For all £>¢*,
~2/(ef,) [12]. Best fits to a variety of hadron properties the quantum version of the theory described byl 0 has, in
give e=5.5[12]. The soliton of(1.7) has a mass of 7@/e addition to the three equal ma®é bosons, a tower of par-
and a size~2/(ev) and we takee as a free parameter since ticles which arise as quantum excitations about the soliton,
the particles corresponding to this soliton have not yet beejust as the proton, neutron, and delta can be viewed as quan-
discovered. tum excitations about the original Skyrmidhl,12.

B. The soliton and the sphaleron

2
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The Lagrangian(1.10 determines a potential energy width comparable to the soliton size, there is a threshold
functional which depends on the configuratién(x). The pulse energy above which the soliton is destroyed. The en-
absolute minimum of the energy functional isAf=0. For  ergy threshold is larger than the barrier height, and it does
£> &% there is a local minimum at the soIitdnﬂzAff'(x) depend on the pulse profi]e. Howev'er, 'ghe existence of a
with nonzero energy given by the soliton mads,. [Of  threshold energy above which the soliton is destroyed seems
course, a translation or rotation miol(x) produces a con- robqst,_ and in this sense the choice of a particular pulse
figuration with the same energy so we imagine identifyingprOfIIe IS not important.

these configurations so that the soliton can be viewed as a A classical wave na_lrrowly peaked_a_t frequency_wnh
. .2 . . . . total energyE can be viewed as containirig/# w particles.
single point in configuration spadeConsider a path in con-

figuration space fromA, =0 to AfLO'(x). The energy func- Making a mode decomposition, we can then estimate the

tional al thi th I : hich i ter th number of gauge field quanta, thatW¢ bosons, in a pulse
lonal along this path has a maximum which IS greater thary, ;. destroys the electroweak soliton. Frgin10 we see

the soliton mass. As we vary the path, the maximum varieSy -+ <ich a pulse has an energy proportional 43 g fixed

Cnstable Soluton to the cisical equations of motion whict 8ndE: ThUS, the parile numbetof any such puise goes
q r]ike some constant ovey?. For example, at=12 we have

we call the sphaleron of this theorgThe sphaleron of the o ) ;
standard mode[2] marks the lowest point on the barrier found pulses withg"N~2.5. At this value of¢, by varying

. L - the pulse shape we could redugdN somewhat but we
separating/acuawith different winding numbers. Here, the oubt that we could make it arbitrarily small. Upon reducin
sphaleron barrier separates the vacuum from a soliton wit@ % ; y - pont 9
towards £&* and thus lowering the energy barri&vE,

nonzero energy.For fixed v and e, the sphaleron mass smaller values ofg?N become possible. For example, at
Mgpngoes to infinity ag) goes to zero, reflecting the fact that £=11 we have found pulses wit?N=1. In the standard

for g=0, configurations of different windinfU'’s with di- model, finding gauge boson pulses which traverse the sphale-
ferent winding in(1.7)] cannot be continuously deformed ron barrier and which have smalN, appears to be much

) ; "
into each other. For fixed andm, as¢ approacheg *from more challengind15]. Note from the form of(1.10 that
above, the sphaleron mass comes down untg-at* the Ki h i < th = classical
sphaleron and soliton have equal masses. F0&*, the t_a g g t_o Zero with m .and ¢ fixed is the semi-classica

' ' limit. In this limit, the soliton mass, the sphaleron mass, and

local minimum at nonzero energy has disappeared. their differenceAE all grow as 1¢?. The number of par-

For £>£7, the classically stable soliton can decay byticles in any classical pulse which destroys the soliton also
barrier penetratiof8—10]. This process has been studied in grows as ]gz P y

detail by Rubakov, Stern, and Tinyakf{3] who computed : . . .
X . . . . The existence of soliton-destroying classical pulses has
the action of the Euclidean space solution associated with the ST . :
antum implications beyond a naive estimate of the number

tunneling. They show that in the semi-classical limit, asaY . . . . .
£—o0 the action approachesi/g? whereas ag— &* with of particles associated with a classical wave. In Appendix B

fixed the action oes to zero since the barrier disappearsV give a full and self-contained account of the relationship
9 9 PPEASy etween classical solutions and the guantum tree approxima-

tion in a simple scalar theory. In a theory with an absolutely
stable soliton, the Hilbert space of the quantized theory sepa-
In this paper, we focus on processes where there igates into sectors with a fixed number of solitons, and states
enough energy to go over the barrier. In the standard modein different sectors have zero overlgi6]. We argue in Sec.
the sphaleron mass is of ord®fg? and the sphaleron size is lll, using the results of Appendix B, that the existence of
of order 1m. This means that for smat}, two incidentw  classical solutions in which solitons are destroyed demon-
bosons, each with energy half the sphaleron mass, hawirates that there are states in the zero- and one-soliton sec-
wavelengths much shorter than the sphaleron size. This migors of the quantum theory whose overlap in the semi-
match is the reason that over the barrier processes are geglassical limit is not exponentially small. These states are
erally believed to be exponentially suppressetMa W col-  coherent states with a mean numberVéfbosons of order
lisions. In contrast, in the model we consider, we can take d/g%. Knowing that some quantum processes exist which
soliton as one of the initial state particles. To the extent thaconnect the zero- and one-soliton sectors suggests that we go
the soliton is close to the sphaleron, we have a head start ipeyond the semi-classical limit and look for such processes
going over the barrier. We can also choose parameters sudhvolving only a single incidentV boson.
that an incidentW boson, with enough energy to kick the  There is an interesting limit in which we can reliably es-
soliton over the barrier, has a wavelength comparable to botimate amplitudes for single-particle-induced decays. Recall
the soliton and sphaleron sizes. that form andg fixed, as¢ approacheg* from above, the
We first look at solutions to the Minkowski space classi-sphaleron mass approaches the soliton mass. We can hold
cal equations of motion derived from the Lagrangiarl0. m fixed and pick¢ to be a function ofg chosen so that as
To simplify the calculations we work in the spatial sphericalg goes to zero¢ approachesé* in such a way that
ansatz[14]. We solve the equations numerically. As initial AE=Mg,— Mg, remains fixed. We call this the fixeAE
data we take a single electroweak soliton at rest with dimit. It is different from the semi-classical limit in that as
spherical pulse of gauge field, localized at a radius mucly goes to zero the classical theory is changing. We will argue
greater than the soliton size, moving inward toward the soliin Sec. IV that for¢ nearé*, it is possible to isolate a mode
ton. In the next section, we display one example of a solitonef oscillation about the soliton whose frequency is near zero,
destroying pulse in detail. F@rwithin about a factor of 2 of  which is in the direction of the sphaleron. This normalizable
&*, for all the pulse profiles we have tried with the pulse mode, which we call th& mode, is coupled to a continuum

C. Over the barrier
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of modes with frequencies>m. If the N mode is suffi- scaled up version of QCD. In technicolor theories one finds
ciently excited by energy transferred from the continuumtechnibaryons which can be described as electroweak soli-
modes, then the soliton will decay. We are able to estimat¢ons just as the baryons of QCD can be described as Skyr-
the amplitude for a singlev boson of energyE to excite the  mions. For now, regardless of whether the underlying theory
A mode enough to induce the decay. At threshold, the crosis specifically a technicolor model, as long as we are consis-
section goes like exp{c/g"®), wherec is a dimensionless tent with symmetry considerations, we are free to choose the
constant. In the same limit we can calculate the rate for theffective theory to conveniently describe the particles which
soliton to decay by tunneling and we get exgP/(9  interest us. Thugl1.7) is a simple way to describe three
_2J§)]C/gl/3}_ Both are exponentially small ag goes to massless bosongvhich are eaten in the gauged version

zero and the ratio of the tunneling rate to the induced decafl-8)] as well as a stablenetastable i{1.8)] heavy particle.
rate is exponentially small. Of course, the effective theory includes higher derivative

terms other than the Skyrme term, so it is not the precise
form of (1.8) which we think is plausible, but rather the
) ] . . ] cJ:)hysical picture which it describes.

We introduce fermions into this theory as in the standard |t is worth asking what processes can sensibly be de-
model. The left-handed components transform a{25U  scribed using the effective theory. The effective theory is a
doublets whereas the right-handed components are singletgerivative expansion in momenta over. Consider the
The fermion mass is generated in a gauge-invariant way by @lermion-number-conserving production  of  soliton-
Yukawa coupling to the Higgs field. For simplicity, we only antisoliton pairs inW-W collisions. These processes are be-
consider the case where both the up and down componenigng the regime of applicability of the effective theory be-
of the fermion doublet have equal mass. In any process cayse the incident particles have momenta which are greater
where a soliton is destroyed, there is a violation of fermionyyan,, | and the underlying theory must therefore be invoked.
number. The nature of .thIS ylolz_itlon is different dependmg(,:or example, in a technicolor theory the production process
on whether the fermion is lightmiL<1, or heavy, \ould be described as techniquark-antitechniquark pair pro-
m¢L>1, whereL is the characteristic size of the soliton. In gyction followed by technihadronizationThe effective
the light fermion case, when the soliton disappears one ngheory is, however, wellsuited to describing soliton decay
anti-fermion is produced in the process. In the heavy fermionnquced by a singl&V boson with energy just abouvkE in
case, no fermions are produced. However, in this case th@e fixed AE limit. In this limit, m is held fixed while
soliton carries heavy fermion number and when the soliton i§1—>0, and thusy—o. Therefore, the ratio of the incident

destro_yed this quantum _number is viola_ted. In both case§y momentum to the scateis going to zero, and a treatment
there is a change of fermion number of minus one and heaVMsing the effective theory is justified.

minus light fermion number is conserved as it must be since
the heavy and light fermion number currents have the same
anomalous divergence.

D. Fermion production

II. SOLITON DESTRUCTION SEEN
IN CLASSICAL SOLUTIONS

E. Relating the model to the real world We begin our investigations classically. We wish to find

. - . solutions to the Minkowski space classical equations of mo-
The metastable electroweak soliton of the modified H'gg%on derived from the Lagrangie(ri.l()) which a(t] early times

sector Is-an intriguing object to study. Yet this beast is .nOthave an electroweak soliton and an incident pulse and which
found in the standard electroweak theory where the ngg%1

. . . . R t late times have outgoing waves only, the soliton havin
sector is a linearr model with no higher derivative terms. It going Y g

is reasonable to ask if the modified theory gives a credibl been destroyed. In this section, we investigate solutions to

o . D%he equations of motion numerically. In order to make the
description of physics at the weak scale. To date, the Higg umerical problem tractable, we work in the spatial spherical

boson has not been found. If it is found and the mass is Iov%msatz[14]

so that\ of (1.1) is smal_l, then worklng in the |nf|_n|te I|m|_t The unitary gauge Lagrangida.10 yields the equations
would not well approximate reality. However, if the Higgs of motion

boson is heavy, then working with infinite could be justi-

fiable. Working at the scale and below, we then integrate 1

out the heavy Higgs boson, leaving a low energy effective D FA"+m2A”+ E[[A”,A”],Aﬂkoy (2.1
action. In this strongly interacting case, higher derivative

terms in the effective action would not be perturbatively\yhere

small and we would expect all possible higher derivative

terms consistent with the symmetries. This effective theory D, F#"=a,Fr"—i[A, ,F*"]. (2.2
would or would not support stable solitons. If it did then our

use of the Skyrme term is justified as a simple way to writeln the unitary gauge Lagrangian, the Skyrme term,
an effective action which supports solitons. TIA, ,A,]?, is the same as the quartic term irl—‘ﬁry. Thus,

It is possible that the Higgs boson is not fundamentalthe unitary gauge equations of motigh 1) are the same as
Rather, the Higgs sector may be an effective theory descrilthe equations of motion for a massive non-Abelian vector
ing the massless degrees of freedom which arise as a resfiktld except that the coefficient of the cubic term is now
of spontaneous symmetry breaking in some more fundamerfd + 1/4¢). The classical equations of motion depend only on
tal theory. For example, this is the basis of technicolor theom, which sets the scale, and on the dimensionless parameter
ries in which the symmetry breaking is introduced via a¢, but do not depend og.
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The spherical ansafi4] is given by expressing the gauge we updatea, using Gauss’ law. We present some details of
field A, in terms of four real functionay, a;, @, andy of  the numerical methods in Appendix A. In order to have a

r andt: check on the accuracy of our numerical methods we have
L also solved the equations #&,=0 gauge and the details of
_t A this approach are also given in Appendix A.
Ao =5 20(1,D o X, In describing the solutions, it is convenient to wrjteas
1 . a(rt e =—ip(r,tyexdio(r,t)]. 2.6
Ai(x,t)=§ aq(r,t)yo xx+ ( )((ri—mxxi) X p(rexdior. ] 29
Ther =0 boundary conditions on andy imply
+ @ X (2.3
Gk k) ' p(01) =1, (2.73
whereX is the unit three-vector in the radial direction aad 6(04)=0. 2.79

are the Pauli matrices. Fév, to be regular at the origin, we
require thatay, a, a;—a/r, andvy/r vanish ag —0. In the
spherical ansatz, the unitary gauge equations of mgfdh
are

The boundary conditiofi2.7b should strictly be that(0,t)

is an integer multiple of zZ. However, sincep never van-
ishes at the origing is constant in time there and we have
taken it to vanish. In vacuunp=1 and #=0 everywhere.

M(r3f,,)—i[xD,x*—x*D 1K€ . _
pr) ZIXDXT = x "D ox] Finite energy solutions must satisfy

1
=y rim eyl (243 lim 6(r,t)=2na 2.9
oo
2 1 2 . . . o
D+ r_2(|X| -1)|x at all times. Thus we see that in the spherical ansatz, finite
L L energy configurations with# 0 at allr can be characterized
. . . by n, the integer-valued winding of the field. This winding
= —m*(x+i)+ 4_§(X+') a,a’— F2|X+'|2 + (24D S the number of times the complex-valugdwraps around
x=0 asy goes from—i atr=0 to —i atr=c«. Note that
where this winding can change only j passes througl=0, that
is, if p goes through zero at sonteandr.
fur=0,8,=3d,8,, (2.5a We now look at the soliton in terms of the variabjeand
) a, . To understand the qualitative form of the soliton con-
x=ati(y=1), (2.5b figuration, it is useful to begin with the Skyrme model as we
) did in Sec. I. Recall that fog—0 with e andv fixed, the
Dux=(d,—ia,)x. (2.59 Lagrangian(1.10 reduces ta1.7) and the soliton becomes

the Skyrme soliton written in unitary gauge. In this limit,

V%\iSO|~>iU 19,U, (ASY'=0 for all values ofg), whereU, is the

afWinding number one Skyrme configuration. Naly is of the
orm

The indices take the values 0 and 1 and are raised and lo
ered with the (3 1)-dimensional metricds?=dt?>—dr2.
The notation suggests that we are dealing with
(1+1)-dimensional W1) gauge theory with gauge field,
and a complex scalagy of charge 1. In fact, the left-hand
sides of(2.4) are U1) gauge covariant whereas the right-
hand sides involving the mass and Skyrme terms are not. .
This can be understood as follows. Before gauge fixing, thévhereF(0)=0 andF(=)=2. In terms ofy anda, this
underlying theory(1.8) is SU2) gauge invariant. If we take configuration is
fields in the spherical ansatz, gauge transformations of the
form exgiQ(r,t)o- x/2] keep the fields in the spherical an-
satz. Thus, the spherical ansatz has a resida) Yauge
invariance. In the unitary gauge, the mass and Skyrme ternis this case we see that the winding ofy, is equivalent to
lose their covariant form which is seen {@.4). Note that the winding ofU, both of which are=1. Forg—0 with e
ay, which determined\y, is not a dynamical degree of free- and v fixed, the electroweak soliton configuration is de-
dom so the problem has been reduced to the dynamical deeribed by(2.10. For nonzerog with é=¢&*, the soliton
grees of freedony anda; . field configuration is still approximately of the for(2.10.

Our task is to choose initial conditions and then to evolve To find the precise form of the electroweak soliton we add
the fields forward in time. We specify initial conditions by energy nonconserving damping terms to the equations of

U,=exdio XF(r)/2], (2.9

a,=0, x=-—iexdiF(r)]. (2.10

specifying y anda,; and their time derivatives dt=0. We
then use thez=0 component 0f2.43, which is Gauss’ law,
to determinea,. The v=1 component of2.4g and the Eq.

motion. Specifically, we ade-T" dy/dt and —TI" da;/dt to
the right-hand sides of2.4b and ther=1 component of
(2.49, respectively, wheré' is a constant. The solutions to

(2.4b are the second order equations of motion which wethe modified equations of motion lose energy as they evolve.

use to evolvey anda, forward in time. At every time step,

Depending on the initial configuration, this modified evolu-
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(a) (b)
7
1
\_— | -
0.8 :
5
,:0.6 ':4
= E
04
02 2 FIG. 1. The soliton configuration fof=12.
‘ 1 Panelg@) and(b) showp and 6, respectively, as
° ° functions ofr measured in units of the inverse
° s (m,,‘q) 5 0 ! rEdius (rrws‘) 4 5 W mass. Note that changes by z. Panel(c)

shows y=—ipexp(6d) vs r. The projection of
© (@ this curve onto they plane is shown in Fig. 2. In

200 panel(d) we show the energy density vs By
Bl energy density we meam? times the three-
05 NESO dimensional energy density; the total energy of
) = the configuration is the area under this curve.
= 0 §1oo
- 8
05 5 50
6 2 4 % 1 2 3 4 5
radius (my") Imy (1) radius (my ')
tion leads either to the vacuum or to the solitdfor a given X = (Xso— Xvad + Xpuise (2.11)

&, we find the soliton by choosing initial configurations with

n=1 and evolving them using the modified equations. WhenRyhere

we find an initial configuration which evolves to a nonva-

cuum configuration, we check that the configuration so ob- ib _

tained is indeed a static, stable solution to the unmodified Xpulse= — 1+ f[ezmg(r)—l], (2.12
equations of motion. In Fig. 1, we shop, 6, xy and the

i?ergy\,\,deeg;gzv f;])(; the ;ﬁgrz\;\lﬁfmsoég?g ;VE}TOEZC'NI: with b a constant whose absolute value is less than one and
9- 2, Wsol 9 ' pp 9 with the functiong(r) given by

&*, the soliton configuration does not change qualitatively,
and, in particular,p remains well away from zero and
remains 1. In th&—oo limit, p—1, a;—0 like m/\/¢, and
the size of the soliton, i.e., the size of the region over which 9(n=1 1, rs<ro. (213
¢ varies, shrinks like 1f0\¢).

We now consider initial conditions with a soliton and an I . . | L
incoming pulse which destroys the soliton. We have experiWe choose initial conditions W|Fh.1:a§° aT‘d witha, sgc_h
mented with severaAnsaze for the pulse shape. Here, we thata,=0. Now, we must specify. We wish to do this in
present one which we feel is fairly simple and which doesSUCh a way thgt the energy of the pulse propagates inward
destroy the soliton. Recall that for the solitgp=—i at towar_d the sohto_n _rat_her tha_m outward_ towarc_i largein a
r=0 and wraps once around the origin ricreases from massive theory, |t_ is |mposs_|bl_e to a<_:h|eve this exactly, and
0 to infinity. At t=0, the incident pulse we choose has we use the following prescrlpno_n which works well enough
Xpulse= Xvac= —1 for r<rq (wherer is large compared to for_our puLposes. FOX = Xpuise glvenbby (2.12 agd (f2'13>' :
the soliton and hasxpuise— Xvac @S —. AS I increases (x )l(Vf“‘) /a32 a |;1ean wavef number Sjjirzio_/wzpmx"
fromr g, we chooseypyseto loop in the complex plane in the g:tey ng‘.T) an Ia ‘mean frequency~ ym=+ (7/a)".
opposite direction to that in whiclysy WIinds. ypuse IS @ » We define a velocity
small enough excitation abot,,c that | xpyise— Xvad <1 and
the pulse has=0. Specifically, as the initial condition for 7lo

X we use v= —\/m (2.19

exgd —(r—ro)?la?], r>rq,

4t can also lead to a multiple winding number soliton with and choose the initial condition

n>1. These configurations have been studied by Brihaye and Kunz
[17]. They have more energy thanwidely separated solitons, and =0 dXpuise (2.19
we are not concerned with them in this paper. dr '
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Thus, in this ansatz the initial conditions are parametrized bygreasingb, the time delay increases—less energy is deliv-
the amplitudeb, the pulse widtho, and the initial radius ered to the soliton and the soliton takes longer to fall apart.
rog. Decreasingb further, we find a threshold somewhere be-
Figure 3 shows the result of hitting the solitongt12  tweenb=0.21 andb=0.22 below which the soliton sur-
with a pulse chosen using the above ansatz With0.23,  vives. Below this threshold, after the emergence of an out-
o=m/5m, andr,=4/m. We plotp, 6, x, and the energy going pulse, the soliton radiates any remaining excess energy
density as functions of for a number of different times. outward and settles back to its undisturbed state. For several
First, note that the pulse does move inward toward the solivalues ofo ranging from half to twice that in Fig. 3, the
ton. The soliton energy is 72.6Y the sphaleron energy is thresholdb is about the same.
73.9m, and the total energy of the solution is 85n85Thus, We have worked at values gfranging from 10.5 to 100.
neglecting the small amount of energy initially in the pulseFor a giveno, the threshold amplitude is lower for values of
which goes outward, the soliton is hit with a pulse with en-¢ closer tog*. For é=11, for example, we have found soli-
ergy  Epuse—13.18n  which is larger than ton destroying pulses with’N~ 1. As £ becomes very large,
AE=Mgp—Mg=1.2m. We see that at time=7.2/m, the soliton sizg ~1/(my/€)] becomes much smaller than the
there is an outgoing pulse with somewhat less energy thagphaleron size+ 1/m) and the barrier heighk E grows like
Epuser @nd the soliton has been somewhat distorted, as /¢ At large &, therefore, the energy of soliton destroy-
begins to fall apart. At time=8.59/m, p is very close to ing pulses must become large comparedMg, and also
zero atr =0.94/m. At late times, we see from the plot 8 compared to the inverse sphaleron size. It is nevertheless a
that the windingn is zero, and we see from the plot of the logical possibility that such pulses could be found with high
energy that there is in fact no soliton present. We estimatéequencies and small values @fN. For ¢=50 and above,
N, the number ofW bosons in the incident pulse which however, we have only found soliton-destroying pulses
destroyed the soliton, as which have largeg®N. This suggests that because at large
£ the soliton is no longer similar to the sphaleron, we lose the

Eou E advantage that we have in this model, relative to the standard
g°N~ =~ e ~25, (216  model, in finding sphaleron crossing solutions wigfN
©  Jm(wlo)® small.

. We have chosen to present results §&r 12 (rather than
We now sketch how the results of Fig. 3 change as Weaosinge closer tog* where both the threshold amplitude
vary b and o. First, uzpon mcrt_aasmg from 0.23(and thus  gnq the thresholg@?N are lowej because ag=12 the tun-
increasingEpiseandgN), the time delay between the emer- nqjing |ifetime of the soliton is much longer than any time
gence of an outgoing pulse and the collapse of the solitog¢gie in Fig. 3. As we discuss in Sec. V, Rubakov, Stern,
decreases—the soliton is destroyed more promptly. Upon deg,q Tinyakov [13] write the tunneling lifetime as

7~ (1/m)exp(aB) and calculate tha?B=4+1 for £é=12.
Thus, forg=0.65 andé=12, 7~ 10¢/m.

We have tried a number of incident pulse shapes that do
not fall into the ansatz we have described in detail, and have
found qualitatively similar results. For all the cases which we
have considered witl within a factor of 2 of¢*, we have
observed that as we vary the amplitude of a pulse whose size
is comparable to that of the soliton, for amplitudes above
some threshold the soliton is destroyed. For a given pulse
shape, both the threshold energy and the threshtiNl de-
crease ast decreases towar@*. Among the few pulse
shapes which we tried, the threshold energy was lowest for
the ansatz 0f(2.12, but we have certainly not found the
lowest energy or lowest particle number pulses which de-
stroy the soliton. Indeed, a soliton-destroying pulse with en-
ergy just aboveAE could be obtained by starting with a
o ry : o 1 slightly perturbed sphaleron, watching it decay to the soliton,
and then time reversing. We will see in Sec. IV that for
nearé*, a “pulse” so obtained would be @erylong train of

FIG. 2. y for the electroweak soliton for different values &f small amplitude waves, rather than a simple pulse of the kind
All the curves begin ay=—i atr =0, traverse a counter-clockwise W€ have used to destroy solitons in our numerical experi-
loop which encirclesc=0, and return toy=—i asr goes to infin- ~ MeNts. _ o _
ity. The dotted, dot-dashed, dashed, and solid lines correspond to The lesson of this section is that in the model we are
&=, 15, 12, and 10.5, respectively. Recall that there is no stabléreating, it is straightforward to find soliton-destroying,
soliton for £< £* =10.35. The range af over which the loops are  Sphaleron-crossing, fermion-number-violating classical solu-
traversed, i.e., the size of the soliton, is approximatelyngzi?d. At tions. Particular pulse profiles are not required—pulses of
&=, |x|=1 and the dotted curve is a circle. This reflects the factany shape we have trigdith sizes comparable to the soliton
that as¢£ approaches infinity the soliton configuration approachessize) destroy the soliton if their energy is above some shape-
the form(2.10. dependent threshold.
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FIG. 3.(a) This figure shows the destruction of tlife= 12 soliton by the pulse specified in the text. The simulations were done on a lattice which extended to
r=16/m, but onlyO=<r=12/m is displayed. In this part, we show snapshot$@f) at eight different times. Each panel displays) at two times; the solid curve
showsp(r) at the earlier time, and the dot-dashed curve shop(r$ at the later time. For example, in the first panel the solid curte=#.0/m shows the incident
pulse superimposed on the soliton of Fig. 1. The dot-dashed curve ghatts= 3.2/m when the pulse has moved inward toward0. By t=4.8/m, the solid curve
in the second panel, it is clear that the soliton has been disturbeek AR/m, there is an outgoing pulse at-3/m and the soliton has not returned to its initial shape.

At t=8.59/m, p=0 atr=0.94/m. At t=15.2/m, the final time shown, there is an outgoing pulse atl1/m followed by the outgoing remnants of the soliton at
r~6/m. (b) In this part, we show snapshots éfr) corresponding to the preceding snapshotg(of. We show two times per panel, and the solid curve is the earlier

of the two. At all times beforé=8.59/m, 6 increases fromd=0 atr=0 to =2 at larger. At t=8.59/m, note the large slope ifi atr =0.94/m which is where

p vanishes. At later timed] is no longer wound(c) In this part, we combing and ¢ from the previous parts into three-dimensional plotsyef —ipexp(6) as a
function ofr at eight times. Initially, we see the pulse incident upon the soliton. Bettveénd/m andt=9.6/m, we see the soliton shed an outgoing pulse, and then
shrink from a loop which encircleg=0 to an excitation about the vacuug= —i which does not. At=15.2/m, y is close to the vacuum for smal) and at larger

r we see the outgoing pulse and the outgoing remnants of the sdliiofinally, we show snapshots of the energy density at the same times as before. There are two
times per panel, the solid line at the earlier time and the dot-dashed line at the later time. As in Fig. 1, by energy density édimesirthe three-dimensional
energy density. At=0, we see that the incident pulse has much less energy than the soliton, but, nevertheless, it destroys the soliton. The destruction of the soliton
is seen most clearly by looking &t 15.2/m. At this time, there is no energy density visible fotess than abous/m, which is where the soliton was &+ 0. The

soliton is no more. There is an outgoing pulsea at11l/m which has an energy comparable to but slightly lower than that of the incident pulse. This is followed at
r~6/m by an outgoing shell with energy comparable to that of the soliton.
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FIG. 3. (Continued)
1. QUANTUM IMPLICATIONS OF CLASSICAL connects states in the one soliton sector with states in the
SOLUTIONS WHICH DESTROY SOLITONS vacuum sector.

] ) ) In our theory, the electroweak soliton is not absolutely

In & theory like the ungauged Skyrme model with a staticgiaple. It is separated by a barrier of finite height from the
classical solution which is absolutely stable, that is, sepagszcyuum. The Hilbert space has sectors with a fixed number
rated by an infinite energy barrier from the classical vacuunyt sglitons and any number &% bosons. However, we now
configuration, the Hilbert space of the quantized theory sepagrgue that the existence of the classical solutions described in
rates into sectors with a fixed number of solitons, and statefhe previous section, in which incident pulses destroy a soli-
in different sectors have zero overl&p6]. The one soliton ton, demonstrates that there are states in the zero- and one-
sector, for example, is a Fock space of states with one solitosoliton sectors with nonzero overlap.
and any number of mesons. The mesdp#ons in the Consider a classical solution obtained by taking a solution
Skyrme modeél are the quantized fluctuations about the soli-in which a soliton is destroyed and the time reverse of a
ton configuration, and the states in the one soliton sector amifferent such solution and combining them as we now de-
scattering states of mesons in the presence of a soliton. Nerribe. At very early times, there are two incoming pulses
process, not even one involving large numbers of mesonsyidely separated in time. The inner pulse, of total energy
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FIG. 3. (Continued)

E,, is the time reverse of a solution of the kind found in Sec.where ¢, depends only orf’, and the formation solution,

II. It forms a soliton, an outgoing pulse of enerBy—Mg, 6, only on 2 and the destruction solution, aly,, is the

is radiated, and the soliton of mabk, is left sitting at the  classical energy of the soliton which is of ordeg3/

origin. Then the outgoing pulse passes the second incoming with this information concerning asymptotic states, the
pulse at a radius large enough that the amplitudes of botbnly possible interpretation is that there are coherent states of

pulses are small, and no interaction occurs. Subsequently, t¢ hosons in the one-soliton Sectkgo|,fém> and |So|'fﬁ1>,
second pulse of total enerdy, arrives at the soliton and gnd that

destroys it, yielding a second outgoing pulse of energy
E,+ Mg, . At very late times there is no soliton present, and
there are two outgoing pulses. This entire solution falls into i6,
the class of classical solutions discussed in Appendix B, in (sol,féu,jfﬁQ:exp{ —2+O(90)}, (3.5
that at very early and very late times the fields are small 9
amplitude excitations about the vacuum. By the arguments of
Appendix B, the existence of this solution implies that we i0
can construct normalized coherent states (fﬁszol,fﬁ,)=exp{ 9—22+O(g°)]. (3.6)
|fins i (3.0
and Thus, there are processes connecting the one-soliton sector to
1 o the vacuum sector which are not exponentially suppressed as
| oue foup» (32  g—0, though they do involvé®(1/g?) W bosons.
In the remainder of this paper our goal is to study quan-
such that tum processes in which a singl¢ boson incident upon the
io soliton kicks it over the barrier causing it to decay. In Sec. V,
<f(])-ut,fgmjfi]r-vfﬁ1>:e)q{ —2+O(g°)] (3.3  Wwe will do a controlled calculation of this process in a limit
g in which & goes toé* asg goes to zero. In order to do this
calculation, however, we first need a better understanding of

asg—0, with ¢ areal phase. The energy and particle num- ¢|55sical dynamics of the theory withnearé*, and to this
ber in the in and out states a@(1/g°). Equation(B24)  \\a now turn.

expresse® as an integral of the classical fields over space-
time. When the time separatidn between the pulses 1 and

2 is large compared to the times necessary for the formation

and destruction of the soliton, this integral can be written as

the sum of three terms: In order to discuss the special features of the dynamics of
our system foré near £, and because we will need it to

6 0, N 0> AMT (3.4 discuss the quantum version of this theory, we introduce the

g2 g® g2 T ' Hamiltonian which arises froril.10:

IV. CLASSICAL DYNAMICS FOR & NEAR ¢&*
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.11 -
H=f d3x[ngrH'H'+97 ETrF'JF”—mZTrAMA“ A(X,t)—AP(x)= > q(t)f (X)),
—iTr[A A,1%|—2 T{AD;I1'] (4.2
g St ' (%) =2 pa(t)fu(0). (4.5
[Note that the transformation fronA(x,t), II(x,t) to
where q“(t), p,(t) is canonicall Upon making this transformation,
(4.4 has the form
1 ) : . P
HI:;FIO, D,IT'=4,IT —i[A, ,IT']. (4.2) H=39"#(q)p.Ps+V(a). (4.9
A canonical transformation of the form
Now A° has no conjugate momentum and #tequation is , 9P
9 q q'“=q’“(q) and Pa=qraPs (4.7
1 , . can be viewed as a general coordinate transformation with
2pA0 0 2 —
A 4_5[[AI’A L.Al+9g"DiIl'=0. (4.3 p, transforming as a covariant vector. It is always possible
to choose coordinates such that
This linear equation foAC can be solved givind\° in terms raf_ 99’ aq'? Se 4.9
of A" andII' but we do not need to do this explicitly. The 49° dq° '
Hamiltonian for our system is given b.1) with A° deter- _ . . _
mined by(4.3), and has the general form is equal tos*? with 9g’*#/9q' <=0 at any given point. In
fact, this can be accomplished gt=0 (the soliton) with a
transformation of the formg’*=Cggf+Cj,0°q°. This
g2 . 1 means that the Hamiltoniai#.6) can be written as
H=ZTIM (AT + ?V[A], (4.9

H=2p.[5*°+0(a?)pg+V(a), (4.9

where the sum over the coordinatethe spatial index, and ~ Where we have made the required canonical transformation
the group index are all implicit. The matrid ~*(A) in- ~ and dropped the primes. Note tha(q=0)=Ms and
volves derivatives with respect to, and depends on the (9V/90)[q—0=0. o _
configurationA, and we assume thafl “1(A) is positive. For £>&* consider small oscillations about the soliton.
Note that static solutions to the equations of motion, that is he frequencies squared are given by the eigenvalues of the
those with II=A=0. occur wheresV/SA=0 and have fluctuation matrixd*v/aq“aq” atq=0. The soliton is a lo-
II=0. The classical’equation of motion fér which arises calized object so fluctuations far from the soliton propagate
from (4.4) is independent ofy. Thus for the discussion of freely. Therefore, the fluctuation matrix at the soliton has a

- . - - - . . 1 2 1 i 1 -
classical dynamics which we are having in this section, wetOntinuous spectrum above”. A given soliton configura

can setg=1. We will restore they dependence in the next tion and a translation or rotation of that configuration have
section.

the same energy and both solv¥/dq“=0. This implies
The potential energy function® A] has its overall scale

that at q=0, there are six zero eigenvalues of
set bym but the topography of fixed energy contours is set’ ¥/#4°90”. The associated modes which correspond to

by £ Ambjorn and Rubakov[10] showed that for translating and rotating the soliton, are not of interest to us

£>¢*=10.35, there is a local minimum, the soliton, @nd will be systeTatlcaIIy ignored. _
whereas foré<&*, this minimum is absent. Fog> &* For ¢ close to&*, we now argue that there is one normal-

there is also a sphaleron, that is a saddle point con1‘iguratioiﬁ*able mode whose frequenay, goes to zero ag goes to
whose energy is greater than that of the soliton.gAap- ¢ - 10 See this, we write
proachest* from above, the sphaleron and soliton merge.

2
We are patrticularly interested in configurations which, at a_\/a = a_\i + (l_vﬁ qf N

least initially, are small perturbations around the soliton. To C I PR L P g P P

work with these configurations, we find it convenient to

make a canonical transformations, which has the effect of n 1 Y% B oy 4 41

settingM ~*(Aso) =1 anddM~*/dA|,_=0. To see that this 2 99“aqPaqc qquSprgSph oo (410

is possible, lef , be some complete set of orthonormal, spa-

tial vector, matrix-valued functions ok, indexed bya, At the soliton @=0) and at the sphaleron, the first deriva-
which can be used to expafilandA. Let the coefficients of tives are zero. Ag approacheg™, the sphaleron and soliton
the expansion ofA relative to the soliton beg® and the merge soq‘s’ph goes to zero. It is useful to introduce the nor-
coefficients of the expansion &f be p,, that is malized functionggpy:
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— Q& Up to cubic order, the Hamiltoniaf.9) is
quhzﬁy (4.119
H=Mgo+ Ep2+ sz)\2+ 9)\3+ EJ dw p?
where "2 2°° 3 2)m @
2 + EJ do w?q?
Q :g quhquh' (4.11h 2)m @
As £ goes to£*, Q goes to zero butjg,, does not. From +f do do' do” c(w,0’,©")q,9, 0y
(4.10, we then have m
9V 1 PV +>\Zf dw d(w)q,
m

[— AP -0 —~a B A€
aqaaqﬁ q:Oqspl‘ﬂSph 2Q aqaaqﬁaqe q:Oqurqspkgsph
+0(Q). (4.12 +>\fmdw do’ e(®,0')q,qy + (4.13

For ¢>¢&*, the fluctuation matrix?V/dq®aq” at the soliton
has only positive eigenvaludexcept for the translation and
rotation zero modes which play no role in this discuskion
Equation(4.12 tells us that ag=&*, whereQ=0, the fluc-
tuation matrix has a zero eigenvalue with eigenvecig
whereas for¢ close to¢*, there is a small eigenvalueg,
whose associated eigenvector is close@gh. Note that
Qsph Points from the soliton to the sphaleron. Thus, the low
frequency mode, which we call themode, is an oscillation  , “g5e5 to zero but we expect no dramatic behaviobof
about the soliton close to the direction of the sphaleron. c. d. orein this limit.

For ¢>¢*, at the sphaleron there is one negative mode, "~ cider thex-mode potential
that is one negative eigenvalue of the appropriately defined
fluctuation matrix. As¢ comes down taf*, the sphaleron 1 b
and soliton become the same configuration so this negative V(N)= Ew%)\2+ §)\3+---. (4.19
eigenvalue must come up to zero in order for the spectra of
the ﬂuituanon matrices of the 50“;[0” and sphalerqn to_agretf.here is a local minimum at =0, which is the soliton, and
at£=&*. Therefore, forg close to&*, the unstable direction ) 2 . .
off the sphaleron has a small negative curvature. There ard local maximum ah = —wg/b, Wh'(,:h IS apprgxmately the
two directions down from the sphaleron. One heads towardPaleron, where the second derivative-is;. We work
the soliton and the other headsitimately) to the classical With & sufficiently close to&* so thatw, is small. This
vacuum atA=0. We see that fo£ near&*, the soliton can means_that\ at the sphaleron is small and if we only stgdy_
be destroyed by imparting enough energy to themode dynamics up to and just beyond the sphaleron we are justi-

since it is this mode which is pointed towards the sphalerori€d in neglecting the quartic and higher terms\inwe also
and beyond. see that ag goes to£*, so thatw, goes to zero, the soliton

We wish to describe the interaction of themode with ~ @nd sphaleron come together and¢até™, the A potential
the other degrees of freedom. We use the Hamiltonian writhas an inflection point at=0 and the soliton is no longer
ten in the form(4.9). At this point it is convenient to make an classically stable. _ _
orthogonal transformation on thgg®} so that the trans- In order to discover the relationship betwees and
formed set are the eigenvectors of the soliton fluctuation maté —&*) as & approaches™, it is necessary to study the
trix &ZV/ﬁq“ﬁqﬁlq:o. We will label these vectors as,, behavior of thex-mode potential ag approaches™. In

where ? is the eigenvalue of the fluctuation matrix. The (4.14 for every value of¢, we have shiftec\ so that the
eigenfunctions include the following. minimum of the potential is aih=0. This &-dependent

change of variables obscures the behavior of the coefficients
(i) The continuum stateg, with eigenvaluesw?>m?. of the potential before the shift. Calling the unshifted vari-
(Note that for eachw?, in general, there is more than one able \, then if we expand the potential in terms of
eigenvector. The extra labels ay, are suppressed in our e=§&—&* aboute=0, where there is an inflection point, we

where in the ellipsis we now include all terms with modes of
type (iii) and(iv) as well as higher order interactions of the
N mode and the continuum modgsis the momentum con-
jugate ton andp, is the momentum conjugate tp,. The
numberb and the functiong, d, ande are determined by
the soliton configuration. For examplé(w) is presumably
peaked at values ab which correspond to wavelengths of
order the size of the soliton. A&goes toé*, we know that

compact notation. have
(it) The normalizable state, =\ with eigenvaluew? _ _ - _
which goes to zero ag goes toé* . V(\,€)=0(e)\+0(e)\*+(b+O0(e))N\3+---, (4.19
(iii) The zero eigenvalue states associated with translation _ _
and rotation. whereb is a constant. We know that the coefficients of

(iv) Other normalizable states which might exist butand \? are zero at=0, and we assume that these coeffi-
whose frequencies do not have any reason to approach zec@nts can be expanded abaut 0 and we know of no rea-
as ¢ goes toé*. son for the ordeg terms to vanish. Foe>0, the minimum
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of the potential is ad~ €2 (\ is shifted relative ta\ by 105
this amount and at the minimum of the potential
9?VIoN>~ €2, that is

0.95

wp~ (= &)12 (4.16
0.9F
A small amplitude oscillation of tha mode will decay 085}
because of its coupling to the continuum modes which can -
carry energy away from the soliton. However, fep<<m * 08}
this decay is very slow in the sense that the characteristic
time for the decay is much greater thamd/ To understand 0781 ]

this considemn (t) as a source for radiation in the continuum
via the coupling\?f ,dw d(w)q,, in the Hamiltonian(4.13.
Suppose thak (t) is a purely sinusoidal oscillation with fre- 065 .
guencywg and with an amplitude which is small. Radiation ° z
with frequencywg is not possible because the continuum

frequencies begin ap=m. However, \* has frequenpy FIG. 4. As described in the text, we have perturbed the
2wg and. therefore If@°>m/2’ the COUplmg. WII.I eXC_Ite £=10.4 soliton and let it evolve for a long time. Here, we show
propagating modes wit=2w, and thex oscillation will p(r) for a series of different timest=0, 144, 288, ..., 1440
radiate at twice its fundamental frequency. Because the CoUz-1 This shows the envelope of the oscillationgofin Fig. 5, we
pling is of order\?, the rate of energy loss will be small. If showp atr=0.608m andr =10/m as a function of time.
we<m/2 then radiation atw=2w, is also not possible.
However, if m/3<wy<m/2, the\3q, coupling[which we  After a brief initial period during which any perturbations
have not written in(4.13 because it is fourth ordeéallows  not in thex mode radiate away, the outgoing radiation settles
the N oscillation to radiate at three times its fundamentaldown to a frequency 1.129, three times the fundamental
frequency. There is another source of radiation withfrequency.(At r=10m~!, we see in Fig. 5 that the fre-
w=3wy. The potential for thex mode is not exactly qua- quency 3vy oscillation of p has a small modulation with
dratic so thex oscillation, although periodic, is not exactly frequencywg. This is the tail of thex. mode oscillation and
sinusoidal. If the period of the oscillation isr2wg, N will is not seen at larger values of) The radiation causes the
be a sum of terms of the form sigt, SinZwgt, SiN3wgt, . .. amplitude of thex mode to decrease very slowly, by about
with diminishing coefficients. This means thaf will also 4% over 80 oscillations. We have done similar simulations
be a sum of terms of this form. Those termsNA with  at £&=11 and £&=12 also, where we findoo=0.80m and
frequencies greater tham will excite radiation via the «wy=0.98n, respectively. In these simulations, the oscillat-
\2q, coupling. Aswy is reduced fronm toward zero, the ing soliton emits radiation witlw=2w,, and the amplitude
radiation is produced only by higher order couplings and byof the radiation and the rate of decay of the fundamental
higher harmonics, and therefore the amplitude is reduced anskcillation are larger than these in Fig. 5. The valuesgf
the decay takes longer. for £=10.4, 11, and 12, which we have found numerically,
We have numerical evidence for this behavior within theare in good agreement with the relationskdpl6). This nu-
spherical ansatz. To watch an oscillating soliton radiate for anerical evidence suggests that we are justified in using the
long time, we implement energy-absorbing boundary condiHamiltonian (4.13 to describe the long-lived normalizable
tions at the larger boundary of the simulation lattice, as X mode withwo<m and its coupling to the continuum. In
described in Appendix A. We wish to excite themode and  the next section we will quantize this Hamiltonian and use it
watch it oscillate. It is convenient to choose initial conditionsto describe the excitation of the mode by singléNV-boson
by starting with somen=1 configuration and evolving it quanta.
using the equations of motion with damping terms added as Finally, we note that, in principle, it is possible to destroy
described in Sec. Il. Instead of running for long enough sa soliton with a minimum energy pulse, i.e., one whose en-
that the configuration is damped down to the soliton, we storgy is just aboveAE, and for ¢ close to&* this energy is
somewhat earlier. This yields a configuration which is thesmall. To find the form of this pulse we could time reverse a
soliton plus a small perturbation. Because the damping termsolution which starts at the sphaleron and is given a gentle
damp modes with higher frequencies more quickly thampush towards the soliton. Faj close toé* so that theh
those with lower frequencies, the perturbation that remains ismode has a small frequency, the configuration takes a very
mostly in the lowest few modes. We use the configuratioriong time to settle down to the soliton and in the process
just described as the initial condition for the equations ofemits a very long train of low amplitude outgoing waves.
motion with no damping terms. The resulting evolution is Although the time-reversed solution, consisting of a very
shown in Figs. 4 and 5 fof=10.4. The functiong, #, and long train of incoming low amplitude waves being absorbed
a; (though we showp only) all oscillate about the values by the soliton, would eventually go over the sphaleron bar-
they take at the soliton and the period of oscillation isrier and result in soliton decay, it would be rather difficult to
16.69n"1. We identify this with thex mode and so obtain set up initial conditions which produce this complicated,
wo=0.3764m. Furthermore, we see that away from the soli-finely-tuned, incoming configuration. Thus, the minimum en-
ton there is a small amplitude train of outgoing radiation.ergy, soliton-destroying pulses are not easy to build although
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FIG. 5. In the left panels, we show at
r=0.608Mm as a function of time. It oscillates
with period 16.69M, and the amplitude of the
oscillation is decreasing very slowly. In the right
panels, we show at r=10/m, to display the
outgoing travelling waves shed by the oscillating
soliton. These waves have three times the fre-
quency of the fundamental oscillation seen at
15210 r=0.608Mm. Note that the amplitude of the out-
going waves is so small that they are invisible in
the plots ofp(r) on the preceding page. We con-
~ 05 clude that foré=10.4, the soliton has an almost
0 stable mode of oscillation with frequency
wo=0.374m, the A mode, which slowly radiates
waves with frequency 3.
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we saw in Sec. Il that with some extra energy, fonear in order to take the fixedE limit we take g to zero with

£*, the soliton is easily killed. (6— &) ~g*3. [The reader who is concerned that the coef-
ficient of A2 in (5.1), w3/g?, goes to infinity in the fixed
V. QUANTUM PROCESSES IN THE FIXED AE LIMIT AE limit should note that because of tlgé in front of the
) . o p2in (5.1), the frequency of oscillation isy. ]
In the previous section we saw that forclose to&* it is When taking the fixed\E limit, it proves convenient to

possible to identify a low frequency vibration of the soliton, yescale according to
the A mode with frequencys, much less tham. If enough

energy is transferred to this mode, the soliton will decay. In N =Nwolg~Ng~ %2  p’'=pglwy~pg??
this section we discuss the quantum mechanics of this mode.
In this quantum setting the soliton can decay by barrier pen- b’=bg/wi~hg’. (5.3

etration as well as by being kicked over the barrier by a

singleW boson. We will see that if we work in a limit where \riting the Hamiltonian(5.1) in terms of the new variables
AE is held fixed as we takg to zero, then we can rellably and then dropping the primes we obtain

estimate the leading terms in both the tunneling and induced

decay rates. ) p?
The Hamiltonian for just th& mode coming fron{4.13 Hy=wg 5 +V(A), (5.4
is given by
H ¢ 2y L1l 9x3+--- (5.0 e
N 2 p EZ 2(‘00 3 ) . 1 b
VM) =35 N2= o N3+ (5.5

where we have restored tlgedependence. Note thaty, b 2 3
and all the terms in the elllp_ses dependgoandm bl_n noton  after rescaling, the sphaleron is at=1/b and the barrier
g. We have changed the sign dffor later convenience. As height is given by

£ goes to&*, wy goes to zero but the other terms are pre-

sumed not to change much. The classical soliton is=a0 AE=1/6b2. (5.6)
while the sphaleron is at=w3/b from which we have

6 Quartic and higher terms M(\) are all suppressed by pow-
1 oo 52 ©rS ofg/wy~g?>. Note thatw, now plays the role ofi in
6 g°b®" ' the Hamiltonian(5.4). As g goes to zero in the fixedE
limit, wo goes to zero likegg® and a semiclassicdWKB)
The fixedAE limit hasg going to zero withé taken toé* in  treatment is appropriate in order to compute the leading
such a way that5.2) is fixed. Sinceb(&,m) does not vary smallg behavior of the soliton destruction cross section.
much as¢ goes to&*, we see that in this limiwy~g*°. In the fixed AE limit, the ground state of the quantum
Using(5.2) and(4.16), we see thai?’AE~ (¢—&*)%?sothat  soliton has the\ degree of freedom in a wave function

AE=
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We can compare this calculation with that of Rubakov,
Vo Stern, and Tinyako{13] who numerically calculated the ac-
tion of the Euclidean space solution which tunnels under the
barrier. They used the equations of motion of the full
(3+ 1)-dimensional theory with the restriction to the spheri-
cal ansatz. Até=12, we haveAE:1.2m/gz, wo=0.98n
giving g?B=4.4 which is to be compared with what we read
off Fig. 2 of Ref.[13]: namely,g?B=4~+1. This agreement
again supports the view that themode is the relevant de-
gree of freedom for discussing soliton decay fonear&* .
AE - We now turn to induced soliton decay. Our picture is that
the soliton will decay if the. mode is excited to a state with
energy aboveAE. The N mode couples to the continuum
modesq,, which can bring energy from afar to the soliton.
The free quantum Hamiltonian for thg, is

EO
i\ — .\ 1 wZ
Ay Ao A _ 2n2 2
\ qu— Efmdw gps+ ?qw} (5.109

FIG. 6. The potential/(\) for real\. For later use, the energies = f do w[alaw+ 1/2], (5.10bh
E, andE are also showny, has three turning points, and=\ is m
the left-most of the thregfg has one turning point at=\g.

where
¥o(N) which is described approximately by a harmonic os- 1
i i N w(, .
cillator ground state wave function: a,= ( q +Igpw)- (5.11)
1 \4 2 V2wl 9
91’0(7‘)~( Wwo) exp( B zwo)' (5.7 The q,, have been chosen to diagonalize the fluctuation ma-

trix at the soliton. ThereforetH, describes noninteracting

There are three relevant scalesNipwhich differ in theirg massive W bosons propagating in a fixed soliton back-
dependence. First, the width of the ground state wave funaground. For each value ab, there are actually an infinite
tion \(o[A? o) goes like Jwo~gY®. The second scale, number of differentW-boson quanta. For example, there are
which goes likeg®, is the distance in between the sphale- the states with frequency and all values of angular mo-
ron atA=1/b and the minimum ak=0. Note also that Eq. mentum relative to the soliton center. These extra labels are
(5.7) is a good approximation tgq for A such that the cubic  omitted throughout but their presence is understood.
term inV(\) can be neglected relative to the quadratic term, The A mode couples to the continuum modes through
namely for|]A|<1/b. Finally, note that the quartic and higher cubic couplings of the form
terms inV(\) can be neglected fok less than of order
wo/g~g~ %3 the third scale. Hence, agis taken to zero 1,
with AE fixed, truncating the potential at cubic order be- Hi”t_w_g A fmd“’ d(w)g,
comes valid for larger and largar

The soliton will decay if thex degree of freedom tunnels g , ,
under the barrier given by the potenti{\) shown in Fig. + 9 )‘fmd“’ do’ &(w,0")0,0, 1, (512
6. The rate is of the form

which appear in4.13. We have rescalel according to Eq.

r=ce 2%, (5.8 (5.3. The couplingg5.12 arose upon expanding about the
) soliton. The functionsl(w) ande(w,w’) are peaked at val-
where the factoB is ues ofw corresponding to wavelengths of order the size of
\/5 3 8 A the soliton. They are also only peaked if the unspecified la-
3/ 1 18AE bels allow large overlap with the soliton. For example, even
_ N 219_ 3/ — _ - . ’
B= wo Jo dAVATT2=DAT3 =5 wob?> 5 wy with w chosen so thatg?—m?) ~ 2~ soliton size, it is only

(5.9  the low partial waves which havi( w) ande(w,w’) large.
The first term in(5.12 allows for the absorption of a

We are able to neglect the width of the wave functiéri’) single W-boson by the soliton. Th&V-boson energyE is
in this calculation because gsgoes to zero it is small com- transferred to tha mode. The second term {5.12) allows
pared to the change i during the tunneling process. Since, a singleW boson to scatter inelastically off the soliton, trans-
in the fixedAE limit wo~g®, we see that the tunneling rate ferring energyE to the X mode. We now calculate the rate
goes as expf constant§'’®). For the approximation to be for the absorption process; the calculation for the scattering
reliable we require thaB be much greater than one. This in process is similarThe coefficients of th& and\? operators
turn requires thag be small. have differeng dependence, but this will not affect the lead-
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ing g dependence of the cross section for either proressdependence of th&(E) asg—0 in the fixedAE limit is in
Assuming that the soliton starts in its ground state, in ordefact that of Eq.(5.17) with the coefficient ofAE/w, being

for the soliton to decay we requirE+ wo/2>AE. Since  (18-4,/3)/5 instead of 1. Thus, we will find that even
wo<AE we can approximate this @>AE. In the fixed  though the soliton destruction process does not involve tun-
AE limit we are free to choos&E to be a constant times neling, the correct cross section is exponentially small as
m where the constant is of order unitRecall thatmis held  ,,~ g3 goes to zero. The reader who is not interested in the
fixed throughout this papgrNow the soliton size is roughly  details of the evaluation of(E) can safely skip to Eq.
2/(my€) and in the fixedAE limit ¢ goes to&* =10.35. (5.29.

Thus, theW-boson wavelength and the soliton size can be We now wish to evaluate the leading semiclassical depen-
comparable. There is no length scale mismatch d)  dence of

need not be small.

Using Fermi's golden rule we now calculate the cross B 2
section forW+ soliton— anything with no soliton. Letk) I(EO’E)_f dA e A (5.18
be a singléN-boson state with enerdy, normalized to unit
particle flux. Now in the fixed AE limit where E>AE and AE>E,>0 and
) ) where ¢z and e, are WKB wave functions for the Hamil-
A A2— - :
_ _ — tonian (5.4) (see Fig. 6. The reader may be concerned that
(0[Himd k) ;g jmdw d(){0|a,[k) gzgd(k)’ Eq. (5.18 is infinite. [Both wave functions are real, and for

(5.13 large positive\ the integrand(5.18 has a nonoscillatory

_ piece which grows likex?\ ~%2] However, when the rel-
where we have defined(k) so that it is independent @  evant limits are taken correctly, the answer we seek is in fact
[see Eq.(5.11)]. The X mode starts in the statg,(\) with  finite. Recall that our problem reduces to that of themode
energy~ wo/2 which again we neglect relative toE. The  in a cubic potential only fot\|<wy/g~g~ 22 Therefore,
interaction(5.13 can cause a transition to a state(\) in we should do then integration fromA=—A to A\=+A,
which theX mode has energf. Since the width ofiyy is  whereA is real and positive and where we takeo infinity
~g*e<1, it is tempting to try approximating the states with more slowly tharg =23 asg goes to zero. The result of such

E>AE as plane waves an evaluation would go likeA ®%exp(—constanth,). Be-
1 cause we do not tak& to infinity before takingg to zero, the
- ; prefactor does not make the result infinite.
veM) w3 2E1’46Xp(I V2EN/ wo). (519 The evaluation of matrix elements of operators between
) N ) semiclassical states has been treated by Land8y and
The cross section for a transition frogy to e is although his final answer does not apply to our problem, we
— 2 follow his method to its penultimate step. Landau’s method
o gd(k) 2 yields only the leadingi.e., exponentialdependence of such
O destruction 2 I(E)~. (5.19 . .
wg matrix elements, and says nothing about the prefactors. Thus,

using Landau’'s method yields the leading sntpltlepen-
where\'is ag-independent constant and Wheli(E) is the  dence of Eq.(5.18 irrespective of whether the prefactors
integral make the integral infinite. In the calculation which follows, it

nevertheless proves convenient to multiply the integrand in

I(E)Zf dN (NN 2ge(N). (5.16  Ed.(5.18 by exp(~I\%wg) with J a constant. This does in

fact render the integral finite, but it may also modify the
exponential dependence of the result. Therefore, after the
g—0 limit has been taken we must take the-0 limit.
Landau’s method18] applied to our problem yields

If we take iy, and g as in Egs.(5.7) and (5.14), respec-
tively, Z(E) is easily evaluated, yielding

I(E)~exp —Elwg), (5.17

(1)0)\2
where we have dropped all prefactors. This result is in fact I(EO’E)Nlm{ f dx {[VIN)—Eol[ V(M) —E]} Y4
incorrect? While it is true that Eqs(5.7) and (5.14) yield a 1 \
good approximation to the integrand where the integrand is - \/7_
biggest, the resulf5.17) is exponentially smaller than the xex;{ wo( Lodx 2LV(¥) ~Eo]
integrand. This raises the possibility that corrections to the
wave functions neglected to this point may chargel?). A _— 2
We must, therefore, use WKB wave functions which take B J)\de 2AAVO)—EI=IN )
into account the quadratic and cubic terms in the potential
V(N\). As g—0 in the fixed AE limit, wy—0 and using In this expression) is treated as complex and it is under-
semiclassical wave functions becomes a better and better agtood that the contour has been deformed into the upper half
proximation. We show below that fdE=AE the leading plane. This is done both in order to avoid the turning points
on the real axis shown in Fig. 7, and because in deriving Eq.
(5.19 Landau uses expressions for WKB wave functions
2We are grateful to D. T. Son for noticing this, and for pointing us which are valid only in the upper half plane and not on the
toward the correct answer. real axis. The first square root in the exponent in Gdl9 is

]. (5.19
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We now describe the behavior of at large |\|. Write
A=Aexp 6. We have chosen the branch cut to run vertically
ﬂ’ and so it is ah=/2 for largeA. To the right of the cut, that
I is for #/2>6>0, asA goes to infinity

¢ X~ —A%%sin(56/2) — IA%coq26), (5.22

and theJ term is subleadingX goes to+« at largeA for
/2> 6>27/5 and goes to-« for 27/5>6>0. The descent
to — is most rapid foré==/5. To the left of the cut, that is
for m=60=m/2, asA goes to infinity

- Ay X~X* + A" Y%sin(0/2) —IA?cog26),  (5.23

where X* is a constant independent df A, and 6. (For

FIG. 7. This figure is a sketch showing the important points ind=0, as A goes to infinity for 7==6=n/2, X—X* and
the complex\ plane discussed in the text. The branch points areY—0.) For nonzeraJ, there is a saddle point at finite For
marked with dots, and the branch cuts are shaded. The contour BmallJ, this saddle point is a#=~3m/5 andA ~J~2". Thus,
(5.19, just above the real axis, and the deformed contour we use t8sJ— 0 the saddle point recedes to infinity as promised, and
evaluate the integral are both shown. JA? at the saddle point goes to zero. Therefore, inhe0

limit X at the saddle point goes to the valgé.

taken to be positive on the real axis for<\ ¢ and the second We now deform the contour as sketched in Fig. 7. For
is taken to be positive on the real axis fori\g. nonzeroJ, the saddle point is at finite and we choose the

The equationV(x) —E=0 has three roots. One is Bf, contour to follow the path of steepest descent from this
on the negative real axis, and the other two,\g} and saddle point. To the left of the saddle point, the steepest

&> have nonzero imaginary partgor E—AE, \p,, goes to descent pqth curves to_ward the real a_xis, and then app.roaches

the real axis ak o= 1/b.) In evaluating Eq(5.19 we must ~ the real axis asymptotically. As we discuss belohpy) is
keep in mind that at =Xy, in the upper half plane, the greaterthan X*. Therefore, to the right of the sa_ddle point,
integrand has a branch point. This singularity will play anthe path of steepest descent from the saddle point cannot get
important role in our analysigUnlike in the example treated @round the branch point and necessarily runs into the branch
explicitly by Landau, it does not arise from a singularity in CUt- After reaching the cut, the next section of the path
V()\).] The branch cut from,, must not cross the real axis, ascendsas it traversesll), following the cut inward toward
and it is convenient to take it to run upward vertically. The the origin, until it reaches the region of the branch point
integrand in Eq(5.19 is a function which is analytic in the Mbp- Along (Il), X ascends monotonically fronX* to
upper half plane except at,, and along the associated cut. X(App)- Y iS not constant. Then, to the right of the cut, the
To evaluate the integral, we are free to push the contougontour follows the path of steepest desceht toward in-
upward away from the real axis as long as we ensure that finity along 6=/5. o _ _
does not touch the branch poik, or cross the branch cut.  There are two contributions to the integi&.20. First,

We now evaluate the leading exponential dependence dhe saddle point makes a contribution which goes like

Eq.(5.19.3 To this end, we drop the prefactors in E§.19.  €XPX*/wp). (Note that we take thg— O limit and then take
We write the integral as the J—0 limit.) The second contribution arises because the

path must ascend from the saddle point at infinity as it
1 traversedll) in order to get around the branch point, before
j dhexp—[X(N)+iY(N)] (5.20 then descending alon@ll) to the right. Therefore, the inte-
@o gral (5.20 receives a contribution from the region of the
branch point which goes like eR§(\pp)/ wo). In sum, there-
fore, the integral5.20 goes like

x+iv=ﬁdx 2[V(x)—Eo]—fde 2[V(x)—E]-I\2. Z(Eg,E)~exp(X*/wg) +exp(X(\ppllwp),  (5.24
\o e

(5.2  Wwhere we have dropped the prefactors, about which Land-

au’s method says nothing. At this point, we can take the
It is easy to check that fo}=0 the integrand in Eq5.20  Eo—0 and E—AE limits simply by settingE,=0 and
has no saddle points at finile However, making) nonzero E=AE. Prior to this point in the calculation, taking these
introduces a saddle point at largel which moves off to  limits would require careful treatment of branch points.
infinity as J is taken to zero and it is convenient for us to Henceforth we seE,=0 and comput&(E) =Z(0,E).
evaluate the integral with nonzefoand then take thd—0 It only remains to evaluate the relative sizeXqfA ;) and
limit. X*. Both X(\pp) andX* depend orE. After some calcula-

tion one finds that foE=AE

whereX andY are real and where

3 . . ; 18
The analy5|s_descr|bed below and the re€a29 were provided X*=—woB=— — AE, (5.2
by A.V. Matytsin. 5
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whereB is the tunneling amplitude computed in E®.9), We have computed the cross section for a sivglboson
and to be absorbed by the soliton and to excite thmode to a
continuum state above the barrier, which in our picture re-
b i ; ;
_ NIRRT sults in soliton decay. The cross section fokMaboson to
X(Npp) = \/EJO dAVAS2—DbA713 destroy the soliton by scattering off the soliton and transfer-

ring energyE to the A mode can be calculated using the
18 AE( - i) second term in Eq(5.12. The calculation is similar to the
5 3\/§ ' one we have done and the result has the same exponential
factor as in Eq(5.28 but would have a different prefactor.
(520 Because the exponent in E(5.28 includes wy t~g~ Y3,

S0 X(Apy) is the larger(i.e., least negativeof the two at these cross sections go to zero faster than any powgrasf

E=AE. At large E, both X(\,p) and X* decrease like g goes to zero in the fixed E limit. Note that this suppres-
_E56 .For E>AE ’the integrgls in Eq(5.2) must be sion arises even though the process does not involve tunnel-

evaluated numerically. We find that boX{\p,) andX* de- ing and even though there is no length scale mismatch. It

crease monotonically with increasing energy, af(d ) is ta;]rlses ::S a}[ c;?nnset?uence ?I}t{;}e tl'lrinn']tit'rawr:'fhixve tuave ﬁtor;]e
always greater thaX*. Consequently, the integral is domi- € computation, because a estroying the sofito
reduces to exciting a single degree of freedom to an energy

nateAd byhthe_ region of the branch point for all energieslevel infinitely many (AE/w,) levels above its ground
=AE. : : )
E=AE. Thatls state. Thus, taking— 0 at fixedAE makes the computation
I(E)~ expX(\pp) wo) (5.27)  tractable but makes the induced decay rate exponentially
small, albeit larger than the tunneling rate.

_ 132_18
=~ 52 _ﬁ__

and
VI. FERMION NUMBER VIOLATION

o= A2(K)EXP(2X (N pp)/ @), 5.2 _ _ .
T destruction” 4" (K) EXPZX (N op)/ o) .28 We have described classical and quantum processes in
where we have dropped all prefactors excd_ptThus, al- Wwhich electroweak solitons are destroyed. In this section, we
though the integrand has a saddle pdattinfinity), the in-  argue that iflwe cpuple a quantizgd chiral fermion to the
tegral is not dominated by that saddle point. This occurdauge and Higgs fields considered in this paper, then soliton
because the path of steepest descent from the saddle pogﬁstruction implies nonconservation of fermion number. The
necessarily runs into the branch cut. Equivalently, the presd’gument we present treats the gauge and Higgs fields as
ence of the branch cut prevents the actual contour of integr&@ssical backgrounds. In particular, we ask how many fer-
tion from being deformed into a path of steepest descenff?ions are produced in a background given by a solution to
through the saddle point. Although the path can be deformel® classical equations of motion in which a soliton is de-
to pass through the saddle, it must ascend from the saddle %rqyed. We expect. that our conclugons will also be valid for
the region of the branch poinfNote that althoughX(\ ) soliton destruction induced by a singfé boson. _
>X* for all energiesE=AE, X(\p,) is greater tharBawy, We introduce a quantized fermion f|e1_Id, and as in the
and the rate for induced soliton decay is greater than th&t@ndard electroweak theory but neglecting thi#)nterac-
tunneling rate, only fo within a range of energies which tion, we couple only the left-handed component of the ferm-
we determine numerically to hfE<E=<1.74AE.] ion to the nqn—Abellan gauge fleld. We add. the .usual
BecauseX (A, decreases monotonically with increasing Y_ukawa coup_llng between the fermlon and the Higgs fl_eld to
E, the cross sectiotb.28) for the soliton to be destroyed by 9iVe the _fern_uon a gauge-invariant mass. The Lagrangian for
a singleW boson is least suppressed B(E) at threshold.  the fermion is
For E= AE the soliton destruction cross section goes like termion. =
g femion_ylj 4D —m(UPg+UTP)I¥, (6.1

36—84/3

- q? o PV where D,=d,—iA,P,, P.=3(1-ys), and Pg
Tdestruction” O (k)eXp< 5 AFlwo] (629 T ve). The Higgs field® of (1.2) is given by
®=(v/\2)U. For simplicity, both the up and the down
components of# have the same mas®;. The gauge-
invariant normal-ordered fermion current

asg—0 in the fixedAE limit. _

We expectd(E) and accordinglyd(k) to be appreciable
when E~AE so long asAE is comparable to the inverse
soliton size, which is of order the inver&® mass. Under J#::quMI,: 6.2
these conditions, there will be no length scale mismatch and
d(E) will not depend sensitively orE for E~AE, so s not conserved; that is,

O gestructionWill be maximized forE=AE. Thus the maximum

rate for soliton decay induced by collision with a singlée " 1 uvaf

boson is proportional to ekp (36/5—8/3/5)AE/w,]. This Ipd" =552 € THF 1, F ap). 6.3

is to be compared with the tunneling rate in the same limit

which is proportional to eXp-(36/5)AE/wy]. Both go to We consider backgrounds given by solutions of the kind

zero agy goes to zero like expfconstanty'®), but the ratio  found numerically in Sec. Il. After the soliton has been de-
of the tunneling rate to the induced decay rate is exponerstroyed the solution dissipates. By dissipation we mean that
tially small. at late times the energy density approaches zero uniformly
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throughout space. This means that at late times the solutioribat the fermion state reached by this adiabatic process is not
are well described by solutions to the linearized equations ofiecessarily the lowest energy fermion state in the back-
motion groundA ,(X).
Consider the case when the final configuration has the
special formA;(x)=iU {aiul, Ao=0 whereU, is a winding
in unitary gauge. It is tempting to try to integrat@.3 and number one map, say of the fori®.9), with a characteristic
relate the fermion number violation to the topological chargesiz€ L+ In this caseNcd A] is the winding ofU,, that is
NcdiUl9,U ]1=1. Thus the state arrived at the end of the
1 4y _uvap interpolation has fermion charge one. We now examine what
Q= 32772J d*x e Tr(F 4o ap). 6-5  this state is. At all times during the interpolation we can
define an instantaneous single-particle Dirac Hamiltonian by
First, note that because the region of space-time in whiclkig.6) and we can therefore discuss how the spectrum of the
F,.»#0 is not bounded, there is no reason to ex@to be  instantaneous Hamiltonian varies during the interpolation. At
an integer. Furthermore, it is shown in RgL9] that for a  the beginning we have the free massive Dirac Hamiltonian
background which satisfie&.4) at early and/or late times, \yhich has a gap betweeam; andm; . If m;>1/L, then the
the integral in(6.5) is not absolutely convergent a®ican-  gpectrum is not perturbed much by the gauge field and, in
not sensibly be defined. articular, no energy levels cross zero during the interpola-
In a background given by a solution to the equations ofjon. In this case, throughout the interpolation the fermion
motion which dissipates at early and late times, the numbegtate is the lowest energy fermion state in the presence of the
of fermions produced is known to be given by the change imosonic background. However,rifL <1, it has been shown
Higgs winding numbef19,20. In this paper, the Higgs bo- [9] that one level crosses zero from below during the inter-
son mass is infinite so the Higgs winding number can nevepoation. This means that fon,L <1, the state reached at the
change. For solutions with no solitons in the initial or final gng of the interpolation is the lowest energy fermion state in
states, the arguments of REL9] apply, and no fermions are he presence ok =iU14,U; plus a single fermion. Thus the

produched. However, if tfhereﬂis ahsolithon inlth_e ingi_al or final charge of the lowest energy fermion state in the presence of
state the assumption of RéfL9] that the solution dissipates A _j\;T5.u, is zero formL<1. However form,L>1, the

IS not satisfied. !n ﬂ.“s section, we s_how.that Ina l:’a‘Ckgmun%harge of the lowest energy fermion state in this background
given by a solution in which one soliton is destroyed, one Nes one. This ends our brief review

antifermion is produced if the fermion is lightmiL<1 In the case at hand the electroweak soli&sf' is only

wherelL is the size of the solitonand no fermions are pro- . . .
duced if the fermion is heavyn{;L>1). In them;L>1 cage approximately of .the form.U Iailijl qnd the Qhern-S|mons
however, there is still a violation of fermion number in the number of the soliton configuration is not an integer. In fact,

sense that the soliton carries heavy fermion number where geperal#ackgroudmi{iﬁ(x) hWI" hot carrk))/ an_mte%er-valued
the dissipated configuration after the soliton is destroye ermion charge and this chargé can beé viewed as a conse-
does not. quence of the polar|zat|on of the vacuum by _the t_)ackground.
We now review some known facts about fermion Charge4\Ionetheless, we will argue that when the soliton is destroyed
which a background field configuration can cafi,9,23. anénteg%r numtl:))erkof ferngon; IS %roducetlj.f in which
Consider some localized time-independent field configura- I'tonsl c?r ? acd g;gfn__l_gzznthy alstc_J ution in \tN '(; a
tion A ,(X) in the unitary gaugé) = 1. Imagine adiabatically sotiton IS destroyed. A== 1o € Solution consists ot a
interpolating from the trivial background,,(x)=0 to the soliton at rest and an incoming pulse whilg &Ty>0 there

A, (x) of interest and following the adiabatic evolution of the :CS on_ly our':gomg rzidLatlon. Weh_vwshdto av_0|d zvaluatllr;g ':(he
fermion state which at the beginning of the interpolation is ermion charge atf *To. To this end we intro iuce a back-
the fermion vacuum. At the beginning of the interpolation, 9round configurationA, (x,t) for —T<t<T with T>T,
the state has all negative energy levels filled with the mod&/hich agrees with the solutioh, (x,t) for —To<t<T,. At
functions determined by the single-particle Dirac Hamil-t=—T we choose the background,(x,—T)=iUl3U,
tonian whereU, is a winding number one map which produces a
_ configuration which is close to the soliton, that is,
Hierm(t) = Y[ —19'Di+m¢]—AgPL (6.0  A™=iUlsU;. In particular, the length scale, over which
. o U, varies, is determined by the size of the soliton. Thus the
with A,=0. The change, from the beginning to the end ofiierpolation, running backward from Ty, turns off the in-
the mterpol;atlog, of thg expectation of the fermion charge;oming pulse and distorts the soliton until it is of the form
operator fd°x J WlthJ given by§6.2), has been calculatgd iUL?iUl- Now at t=T, the solution is just the outgoing
[21]. The result is the Chern-Simons number of the f'eldremnam_s of the soliton and the initial pulse, and-afl we

Au: chooseA ,(x,T)=0. Thus, betweefT, andT the interpola-

1 ) tion turns off the outgoing pulse bringing the background to
NCiA]Z Wf d3x e"kTr

(9,0"+m?)A=0 (6.4)

3

5 . (6.7 its vacuum configuration.

The interpolationA ,(x,t) begins att=—T with a con-
Since at the beginning of the interpolation, the fermionfiguration of the formA;(x,~T)=iU]4U; and ends at

charge is zeroNcs is the charge of the state arrived at by A,(x,T)=0. The scale olJ, is L. Consider a fermion field
adiabatically following the initial vacuum state. We will see coupled to this background witim¢L>1, the heavy fermion
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case. The initial gauge field configuration has heavy fermiorand  fermion number zero if m;L<1. Since
number one. Consider the instantaneous Dirac Himiltoniamcs[iulaiul]zl, this means that as we reduog from
(6.6). Throughout the interpolation the gauge fiedd, is ~ mM;>1/L to m<1/L, one(neY level must cross zero from
small compared tan; and we conclude that no level crossesbelow. Accordingly, for one or more values wof;, of order
zero throughout the interpolation. Thus, even without a del/L, the Dirac Hamiltonian(6.6) has a zero energy bound
tailed field theory description of fermion production, we con-state in the Skyrmion background and, furthermore, there is a
clude that the fermion state we reach at the end of the intef?onzero value ofm; below which there is no zero energy
polation has no extra heavy fermions. The final configuratiorpoulflwI sta':.te. N?IW, C(_?_”ts'dﬁ]r lntelr.i)olatlngf.from tt.he Séy;mlon
is A,(x,T)=0 so the fermion number of this gauge field configuration a 0 the soliton confguration. Define

*

configuration is zero. The heavy fermion number of the (1) *to be the_ largest _valge ofry .SUCh that for all
gauge field background has changed from one to zero and ABe=m; (t) the Dirac Hamiltonian(6.6) in the background
heavy fermion has been produced and hence we see 4n.(X,t) never has a zero energy bound state. From our un-
anomalous violation of heavy fermion number. derstanding of the Skyrmion background, we know that

We now turn to the light fermion casen;L<1. At mf (—T) is of order 1L. By making¢ arbitrarily large, the
t=—T the configurationA_(x “T)=iUutaU, has light difference between the Skyrmion and soliton configurations
= itX, =1Uq01Uy

fermion number zero and we bedin in the lowest ener can be made arbitrarily small, and accordingly the change in
ermion numboer zero a € oegn € lowest energy, spectrum of the Dirac Hamiltonian during the interpola-
fermion State in this backgro_L!nd, which has all negative ®Mtion can be made arbitrarily small. Therefore, for large
ergy levels filled and all positive energy levels empty. BOthenoughg, throughout the interpolation from the Skyrmion to

| di he diff b &he soliton,mf (t) remains nonzero. We now assume that
same anomalous divergent®3) so the difference between this is in fact the case for af>&*. We feel that this is a

light and heavy fermion numbers is strictly conserved. Wegagonable assumption since, as Fig. 2 shows, the soliton
conclude that at=T the state we arrive at must have light configuration is quite similar to the corresponding Skyrmion
fermion number minus one. The final configuration configuration even fog near&*. Making this assumption,

A, (x,T)=0 has light fermion number zero. Thus we see thaive conclude that form;L<1, as for m;L>1, no level

the fermion state dt=T has one more light antifermion than crosses zero during  the interpolation  between
fermion. Thus, in the background, betweent=—T and Ai(X1—T):iUI<9iU1 and A#:A/Sfl' Hence, no fermion
t=T, no heavy fermion is produced but one net light anti-(light or heavy is produced during the interpolation between
fermion is produced. —T and —T,. Therefore, in the background betweerT,

We have discussed fermion production in a backgrouncind T,, which is a classical solution in which a soliton is
going fromAi(x,—T)in’{aiU1 to Ai(x,T)=0, whereas we destroyed, no heavy fermion is produced but one net light
are really interested in fermion production only in the pres-antifermion is produced.
ence of the solutioi ,(x,t) for —To<t<T,. Therefore, we Suppose we are only interested in light fermion produc-
need to argue that no fermion is produdéight or heavy  tion. We can view the heavy fermion as a device introduced
between—T and — T, and betweenT, and T. By making only for the purpose of making an argument. Because we
T, arbitrarily large, we can make the amplitude of the inci- have not included the back reaction of the fermions, heavy or
dent and outgoing pulses arbitrarily small, and hence maké&ght, on the bosonic background, any conclusions we reach
their effect on the Dirac Hamiltonian arbitrarily small. This about the light fermion are in fact independent of whether
ensures that no fermion is produced during the interpolatiothere is or is not a heavy fermion in the theory. Therefore, in
betweenT, andT. It also ensures that, working backwards any process in which a soliton is destroyed, one net antifer-
in time from — T, we can interpolate to a configuration with mion from each light S(2) doublet is anomalously pro-
AMZAZ"', removing the incident pulse, without producing duced.
any fermion.

__It only remains to consider the interpolation between
Ai(x,—T)=iU]gU; andA,=A%". We can choos&); to

be the winding number one map which characterizes the We have described a theory which agrees with the stan-
Skyrmion with the same andv as the soliton of interest. dard electroweak model at presently accessible energies but
We can then choose the interpolating configurations to be @hich includes a metastable soliton with mass of order sev-
sequence of solitons with fixed and v with g changing eral TeV. This Higgs sector soliton may have a dual descrip-
from the value of interest to zero. The behavioryotluring  tion as a bound state particle made of more fundamental
such an interpolation is depicted in Fig. 2. Note that in takingconstituents or it may be that the Higgs sector is fundamental
g to zero with fixede andv, £ goes to infinity andn goesto  and when quantum effects are taken into account, a meta-
zero in such a way that the soliton size stays fixed. Note alsstable soliton is found. In any event, given the soliton, under
that while we are choosing the configurations during the incertain circumstances we can reliably estimate the rate for
terpolation to be solitons with differing values gf the cou-  collision-induced decays. The parameters of the theory can
pling between the gauge field and the fermions is held fixedbe chosen so that the soliton configuration is close to the
For m;L>1, throughout the interpolation the fermion spec-sphaleron configuration, which means that using the soliton
trum is never perturbed much by the gauge field, and so nas an initial particle makes it easy to find sphaleron crossing
level crosses zero. In our brief review we learned that therocesses. Indeed, we have found classical solutions in
configurationiUIﬁiul has fermion number one if;L>1  which the soliton is destroyed where the incoming pulse cor-

VIl. CONCLUDING REMARKS
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responds to a quantum coherent state withlg? W bosons.  with # vanishing at the origin. Under a gauge transformation
The rate for such processes is not exponentially suppressed the form expiQ(r.t)-o-X/2] with Q(0t)=0, configura-
asg goes to zero. Furthermore, in the lingtgoes to zero tions in the spherical ansatz remain in the spherical ansatz
with AE=Mg,i— Mg, fixed, we can reliably estimate the and continue to satisfy the appropriate boundary conditions
rate for a two-particle scattering process in which a singleat the origin. Thus, the S@) gauge theory reduced to the
incidentW boson kicks the soliton over the barrier causing itspherical ansatz has a residudll)Jgauge invariance.

to decay. We have argued that in all processes in which the In the spherical ansatz, the action associated with the La-
soliton disappears, fermion number is violated. This modefrangian(1.8) takes the form

may be relevant only as a theoretical foil, as a demonstration

that fermion number violating high energy scattering pro- 47 © 1 ,

cesses can be very different than in the standard model. S~ ?f dtfo dr[—Zer# f, T (D*X)*D,x

However, if no light Higgs boson is discovered, it is even

possible that nature may be described by such a model. 2

1
—?(|X|2—1)2

1
22
+2r°m (&lm— Eaf‘
ACKNOWLEDGMENTS

) 1
We wish to acknowledge crucial assistance received from —m?(|x|*+ 1) —2m?Reli x* €7) - @G(% 7)
A. V. Matytsin and D. T. Son. We have also had helpful
conversations with J. Baacke, L. Brown, S. Coleman, N. 2 1
Christ, M. Luty, R. Mawhinney, A. Mueller, A. Naqvi, V. X _4(‘9/”7_ 2% +?G(X”7)H' (A4)

Petrov, V. A. Rubakov, R. Singleton, P. Tinyakov, F. Wil-
czek, and L. Yaffe. J.G. and K.R. acknowledge the hospitalwhere
ity of the Aspen Center for Physics, and K.R. acknowledges
that of the Institute for Advanced Study and the theory group G(x,m)=|x+ie?"? (A5)
at the Lawrence Berkeley Laboratory, where part of this
work was completed. The work of E.F., J.G., and A.L. wasand the rest of the notation is as in Sec. Il. The notation is
supported in part by funds provided by the U.S. Departmenthosen to manifest the () gauge invariance present in the
of Energy (DOE) under Grant No. DF-FC02-94ER40818. action (1.4). The complex scalar fieldg and ¢ have U21)
The work of K.R. was supported in part by the Harvardcharges of 1 and 1/2, respectively, is the Ul) gauge
University Society of Fellows, by the Milton Fund of field, f,, is the field strength, an®, is the covariant de-
Harvard University, and by the National Science Foundatiorrivative. The indices are raised and lowered with the
under Grant No. PHY-92-18167. (1+1)-dimensional metrids?=dt?>—dr2.

The equations of motion in the spherical ansatz are

APPENDIX A .
aﬂ(rzfyv)zl[XDVX*_X*DVX]+(&V77_%aV)

In Sec. Il, we presented the equations of motion in the
spherical ansatz in the unitary gauge. In this appendix, we
begin by presenting the action and equations of motion in the
spherical ansatz without fixing a gauge. All the numerical
solutions presented in this paper were obtained by solvin 1
both the unitary gauge equations of motion and Aye=0 fD2+ r—z(|)(|2—1)+m2
gauge equations of motion using different numerical
schemes. We sketch both methods in this appendix. 5 i 1 I

The spherical ansatz is given by expressing the gauge = —Im“e "—4—§(X+le )
field A, and the Higgs fieldb in terms of six real functions

X

1
2r’m?+ EG(X,U)), (A6a)

X

ag, a1, a, vy, 4, andv of r andt. A, is given in(2.3) and 1
(I)O is glgiven by g X| —4(d,n—3a,)*+ r—zG(X,ﬂ) : (A6b)
d(x t)=1[,u(r t)+iv(r,t)o-X]. (A1) 2 1 o Llap
g ’ ’ | r +WEG(X’77) (9#n—za")

For A, and @ to be regular at the origin, we require that . 2 1 . 2i
ag, @, a;—alr, yIr, andv vanish ag —0. It is convenient =Re(x"e” ")+ AmZE Re(x*e””)
to define the complex field

b=p+iv. (A2) X

1
—4(d,m—3a,)*+ r—zG(x,n)}- (ABc)

When the Higgs boson mass is set to infinji| is frozen at  The same equations are obtained either by varying the action
its vacuum expectation valug2m and (1.8 and then imposing the spherical ansatz or by varying
the action(A4). The unitary gauge action and the equations
b= J2m exdin(r,t)], (A3) of motion of Sec. Il are obtained by setting=0. As a con-
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sequence of the (@) gauge invariance, the five equations law was satisfied. Rather than using a lattice action, we dis-
above are not independent, and in Sec. Il we chose to discamtetized the equations of motion themselves. We took care,
(A6C). however, to puty, IT,, anda, at the lattice sites while
In presenting the results of Sec. II, we found it useful toputtinga; andIl, on the links, and to discretize the equa-
use the variablep, 6, anda,. The first is explicitly gauge- tions of motion in such a way that all quantities were accu-
invariant. The latter two are specific to the unitary gaugerate to one order irdr beyond the trivial one. We imple-
and are equivalent to the gauge invariant variablesnented the time evolution using a fourth order Runge-Kutta
(6—2%) and (@;,—2d,7), respectively. For an extensive algorithm. We worked with a lattice spacing of
discussion of gauge-invariant variables in the spherical andr=0.02/(m/¢), equal to 0.0058h for ¢=12, and a time
satz, see Ref23]. spacingdt=0.002m. We verified that energy conservation
In the simulations of Sec. Il, the boundary conditions atand the equation fof[a11 were satisfied. For smalletr and
the larger boundary of the lattice are not important, sincedt, no qualitative change occurred and both checks were
we are interested in an ingoing pulse and its effects on theatisfied more accurately.
soliton and we stop the simulation before the remnants of the
soliton reach the large-boundary. In doing the simulation in

Flg 50f Sec. IV, we must have energy a.bsorbi.ng bOUndary APPENDIX B: CLASSICAL SOLUTIONS

conditions at the large-boundary of the simulation so that AND COHERENT STATES

we can see the amplitude of themode oscillation decreas-

ing as it radiates energy away. At large radiyssatisfies There is clearly a relation between classical solutions in

[ 6219t — %1 ar2—m?]x(r,t)=0. We choose to impose Minkowski space and the tree approximation in quantum

x=—dx/dr at the large- boundary. This has the virtue that field theory[26]; here we derive a version of this relation
the energy flux at the boundary is never negative—theiseful for our purpose. This appendix is self-contained and
boundary can only absorb energy but cannot emit it. can be read independently of the rest of this paper.

We now give brief descriptions of the methods we used to  For simplicity, consider real scalar field theory with the
solve the unitary gauge anf,=0 gauge equations. In action
A,=0 gauge, we chose to write a lattice version of the action 1
(A4) and vary it, thus obtaining discretized versions of the — J 401 Lh— Lm2 b2 —
equations of motion. The fieldg and # live at the sites of S 52 Pizdupdt—zm " =V(e), (B
the lattice, whilea; lives on the spatial links. For a more i i . ) )
detailed description of this technique as applied to theéVhereV(#) is a polynomial containing cubic and higher
(1+1)-dimensional Abelian Higgs model, see Ré®#,25.  t€rms. The classical field equation
In the A;=0 gauge, we have the freedom to make a time- 2., 2 , -
independent gauge transformation and we used this to set (+M)GeX) TV (6c(X))=0 B2
7(r,0)=0. However,» does not remain zero at later times. s equivalent to the integral equation
We specified initial conditions fox, x, a;, and»n att=0,
and then chose initial values fay such that Gauss’ law is . _ , 4
satisfied. The equations of motion are second order in time ¢C(X):Fin(x)+Fout(X)_|f De(x—y)V'(¢c(y))d%,
derivatives of the fieldg, a;, and . We used the fields at (B3)
two successive time steps to determine the fields at the next
time step. We used a lattice with 4000 sites and a lattic&vhere
spacingdr=0.004im, and used a time stegt=dr/2. Be- 1 ikx
cause the equations of motion were obtained by varying a De(x)=— f 4 °© . (B4)
lattice action, there is a lattice version of Gauss’ law which is (2m)“ k*—m*+ie
satisfied during the evolution up to the precision allowed by,
computer arithmetic. Energy conservation was satisfiedS theé Feynman propagator and
throughout the evolution to better than one part in a thou-
sand. We verified that reducinty anddt did not change any F in(x)zf dk fin(k)e (B5)
results quantitatively, and reduced the violation of energy out out
conservation. We also checked that if we take the final con- >, . : :
figuration from a simulation such as that of Fig. 3, changeIn (B5), k°=|Jk?+m? anddkis the Lorentz invariant mea-
the sign of all time derivatives, and run the simulation back->4
wards in time, we obtain the initial configuration of the origi-
nal simulation. dk

With the unitary gauge equations of motion, we followed
goﬂgign;jtr:fg;; \évr? dﬁtrr?; Vg’;ﬁ;E:ZTrsgrS;S;l;:dznzquaWe.do not yet require thaﬁc(x) is real.f;, andf, are then

) ) 1 arbitrary complex functions df.

IT, . Of these seven equations, one is redundant. In doing the £qation(B3) can be solved by iteration, and the solution
numerical evolution it was convenient to drop the eq“at'orbxpressed as a sum of terms described by Feynman dia-
for Hal. We therefore chose initial conditions by specifying grams. A typical diagranffor V(¢)= 343] is shown in Fig.

X, a1, &g, andIl,, and then chosél, such that Gauss’ 8. Its contribution top.(x) is

- d%k
“emr ek (B5)

X!
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FIG. 8. Diagram for(B7).
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(k| p(x)|0)=ge**, (B12)
(0]fin)=1, (B13)
out
e vaed L[5 2 )
{finlfin) ex"(sff [fn|"dk). (B14)

It is important to note that the number of particles in the
stateg|f) is of order 1¢2.

There is certainly a large class of solutiosg(x) which
behave at early and late times like incoming and outgoing
wave solutions of the free field equation, with amplitudes
which go to zero at early and late times because of both the
spread in three-space and the dispersion dum#d0. For

The sum is over altonnectedtree diagrams. The combina- such solutions, withf 'n smooth enough, we have
torial factors are determined by the symmetry of the dia-

grams in the usual way.

We now ask which quantity in the quantum field theory
with action(B1) is given in tree approximation by the same X0— — oo,

set of diagrams. The answer is

(foul p(X)[T in)
) =(¢(0)r, r[f— . (B8
< OUtI |n> tree
where|f in) are coherent states defined by
out
fm=2 .ffm<k yky- -+ in (kn)dky
out n
X|ky - kns i), (B9)

where |k1~--kn;g&t) are the usual asymptotia-particle
states. In terms of the quantum fiefex),

lim f d3x

X — F oo

[fin)

- =(exp[
out

i 9\~
ln(X)(_o_m)fﬁ(X)”>|o>- (B10)

Note that with our definitions o and|f), both sides ofB8)

are independent aj. The one-loop corrections t(ﬁ)(x)>f
are of orderg?. Note also the normalizations

1
=2 Hf dky- - dKolKy- - Kp)(ky- k| (BLD)

and

¢C(x)~f dk fin(k)e‘”‘“rf dk h(k)e',
(B153

x0— + oo, ¢C(x)~f dk hout(k)e‘ik"+f dk ¥, (k)e**,
(B15b)

where, using (B3) and the values ofDg(x—y) as

XO—>$OO,

M0 =Tk -1 [ dy eV gy, (B16a

ool = k)1 [ 0 @9V (6 (). B16D

With a given complex¢c(x) we read offf;,(k) from the
positive frequency part as’— —o, and f* (k) from the
negative frequency part ag —>+oo to discover what
d:(X) is the tree approximation to. kb.(x) is real,

hin (K)="fin(k),

out out

(B17)

and Egs.(B16b become equivalent relations which deter-
mine f (k) in terms off;,(k). Of course, we are concerned
with given real solutiongp.(x) and we simply read off both
fin and f,, from the asymptotic behavior; we do not need
Egs.(B16b) to relate them.
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Returning to the complex case, we derive an expression
for the matrix elementf,.{fi,) in the tree approximation in
terms of the corresponding.. The quantum perturbation

z theory gives

<f0utinn>:eXF<éT(foutafin))1 (818)

with T expressed as the sum obnnectedFeynman dia-
grams. A typicaltree diagram[again, forV(¢)=1¢°] is

FIG. 9. Diagram for(B19). shown in Fig. 9. This contributes

_i\3
( 2|) fDp(x—y)DF(y—Z){Fm(X)}ZFZm(y)Fm(Z)Féut(Z)d“xd“yd“z (B19)

to T(fout, fin). Now, consider small change%fgml. It can be seen that

5T(fout-fin):f dk 5fz;ut(k) fin(k)"'if d4y eiky(&2+m2)<$(y)>f]

+ [ ax 5fm<k>[f::m<k>+i [ aty e-‘ky<a2+m2><<?><y>>f], (820
where

~ fou / fin
<¢(X)>f:—< <ﬂij)f(i)n|> >- (B21)

In the tree approximation, usingB8), (B2), and(B16),

Ntreéfoutvfin):J dk{af;ut(k)hout(k)+5fin(k)hi$1(k)}- (822)

We can now verify thatB22) is satisfied by

— 1 * 1 * ; 4,51 2 2
Tued foufi)= 5 | Ak Tullauk) 5 | 0K BB [ 456030011 601+ V(S 00)) . (829

Of course, Eq.(B23) is i times the classical action plus 1 ) 1 ) i0
boundary terms. The point of the preceding argument is to {foul fin)tree=€X Z_gZJ |f oud *dk+ z—ng |finl*dk— 2/
get the boundary terms right. The expressiB&3) can also (B25)

be derived from the stationary value of a functional integral
expression for f,.{f;,). Note that the integral over space- where 6 given by (B24) is real. Using (B14), we see that
time can be written as 2

|<foutlfin>treel _

<fout|fout><fin|fin> B

One-loop corrections t&(f ., fi,) are of orderg?. Thus, if
we consider states

1. (B26)
02[ d™X[V(h(X)— 3 dc(X)V (he(x))]  (B29)

and so converges for typical solutiods(x) which fall off Ifin)
rapidly enough in both space and time. T o\ ou
Now considerf ;, ,,t Which correspond to &al solution |f(')ﬂt>_ (fin|fin )12 (B27)

¢c(x). Then[using (B18)], out ouf
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normalized to unity,

[T =e"9a[To) 1), (B29)
where ([fo,»)=0 and|a| is not of order exp{c/g?) as
g—0. In fact(not proved herg to orderg®, i.e., one loop,

P (B29)

lal?=e”

whereP is the probability of the transition vacuum one
pair of ¢ particles in the theory with action

FARHI, GOLDSTONE, LUE, AND RAJAGOPAL

S’=% f d*x{a, " —m*(x) 7}, (B30)

where

m2(X) =m2+ V" (¢(X)). (B31)

Thus, to each real solutios.(x) to the Minkowski space
classical equations of motion, there corresponds a not expo-
nentially suppressed scattering process between coherent
states(containing of order I particles.
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