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Gauge-invariant resummation formalism for two-point correlation functions
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The consistent description of unstable particles, renormalons, or other Schwinger-Dyson-type solutions
within the framework of perturbative gauge field theories necessitates the definition and resummation of
off-shell Green’s functions, which must respect several crucial physical requirements. A formalism is presented
for resummation of off-shell two-point correlation functions, which is mainly based on arguments of analyt-
icity, unitarity, gauge invariance, and renormalizability. The analytic results obtained with various methods,
including the background field gauges and the pinch technique, are confronted with the physical requirements
imposed; to one-loop order the pinch technique approach satisfies all of them. Using renormalization group
arguments, we discuss the issues of the uniqueness of the resummation procedure related to the latter method.
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[. INTRODUCTION truncation is necessary, which, if carried out casually, may
give rise to physically meaningless answers, such as gauge-
It is well known that in non-Abelian gauge theories indi- dependent expressions for ostensibly gauge-independent,
vidual off-shell Green’s functions are, in general, plaguedphysical quantities.
with various pathologies, such as gauge dependences, bad Even though the need for a self-consistent scheme for
high-energy behavior, or lack of renormalizability, which, constructing off-shell Green’s functions is more or less ex-
strictly speaking, render them void of any physical meaningpected when dealing with a strongly coupled theory such as
To the extend that the physical issues at hand can be deEIlICD, perhaps the most compelling physical circumstances
with within the confines of conventional perturbation theory,advocating its necessity have been encountered in the con-
the aforementioned pathologies pose no real problem. Inext of a “weakly” coupled theory, namely, the electroweak
deed, when combined together to form observables, the in5y(2) @ U(1), model [2-4]. Indeed, the presence of un-
dividually pathological Green’s functions conspire in such agigple particles makes it impossible to compute physical am-

W":‘jy as to givi a phyﬁicallyAmeianiljgful anslvver]; ﬁrderbbly litudes for arbitrary values of the kinematic parameters, un-
order, in perturbation theory. A classic example of the subllgagg 5 resummation has first taken place. Simply stated,
cancellation mechanisms in effect is the computation of elec-

troweak S-matrix elements in the unitary gauge; there evenperturbation theory breaks down in the vicinity of reso-
) Yy gauge, there, nances, and information about the dynamics to “all orders”
though the conventional two-, three-, and four-point func-

. . : . needs be encoded already at the level of Born amplitudes. As
tions are not even renormalizable, the fiGaiatrix element as already pointed out if2], if one attempts to naivel
turns out to be well defined. was Yy pol ut ipgj, 1 pts ively

There is, however, a plethora of physically importantpromOte Veltman’s formalism for scalar theorigs to the

questions, which cannot be treated in the framework of conS@S€ Of gauge theories, one is invariably led to gross viola-
ventional perturbation theory. In quantum chromodynamicdions of gauge invariance and unitarity. As explained4h
(QCD) for example, the only known way to study in the "€Summing the conventional two-point function of a gauge
continuum phenomena, such as chiral symmetry breaking dt0son in order to construct a Breit-Wigner-type propagator,
g|u0n mass generation, is by means of the Schwinger-Dysoﬁlkes into account hlgher order corrections for Only certain
equationg1]. Here, the pathologies of the Green’s functionsparts of the Born amplitude, whereas crucial contributions
start playing a role. Indeed, the Schwinger-Dyson equationsriginating from box and vertex graphs are not included
are built up by off-shell Green’s functions; if one could solve properly. As a result, the subtle cancellation mechanism al-
these equations exactly, the Green’'s functions obtainetuded to before, even though in reality is still in effect, gets
would again conspire to yield physically meaningful an-distorted by the casual resummation, resulting in artifacts,
swers. However, since the Schwinger-Dyson series constiwhich thwart the predictive power @-matrix perturbation
tutes an infinite set of coupled nonlinear integral equations, geory.
Given the subtle nature of the problem, the question natu-
rally arises, what set of physical criteria must be satisfied by
:Electronic address: papavass@cpt.univ-mrs.fr a resummation algorithm, in order for it to qualify as “physi-
Address after 1st of October: Max-Planck-Institute,hfieger ~ cal.” In other words, what are the guiding principles, which
Ring 6, D-80805 Muchen, FRG. Electronic address: will allow one to determine whether or not the resummed
pilaftsis@v2.rl.ac.uk quantity carries any physically meaningful information, and
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to what extent it captures the essential underlying dynamics®/I's that the effective off-shell Green’s functions satisfy is
To address these questions in this paper, we postulate a settbat for large asymptotic momenta transfess+{») the self-
field-theoretical requirements that we consider crucial wherenergy under construction must capture the running of the
attempting to define a proper resummed propagator. Ougauge coupling, as it happens in quantum electrodynamics
considerations propose an answer to the question of how t@ED). Because of the Abelian-type WI's and on account of
analytically continue the Lehmann—Symanzik-Zimmermanrresummation, the above argument can be generalized to
(LSZ) formalism[6] in the off-shell region of Green’s func- n-point functions. In addition, the off-shellpoint transition
tions in a way which is manifestly gauge invariant and con-amplitudes should display the correct high-energy limit as is
sistent with unitarity. In addition, we demonstrate that thedictated by the equivalence theor¢fb].

off-shell Green’s functions obtained by the pinch technique (v) Multiplicative renormalization Since we are inter-
(PT) [7-1(] satisfy all these requirements. In fact, these re-ested in renormalizable theories, i.e., theories containing op-
guirements are, in a way, inherent within the PT approach, aerators of dimension no higher than four, the off-shell
we will see in detail in what follows. Green’s functions calculated within an approach should ad-

In particular, the following is required from an off-shell, mit renormalization. However, this requirement alone is not
one-particle irreduciblé1Pl), effective two-point function.  sufficient when resummation is considered. The appearance

(i) ResummabilityThe effective two-point functions must of a two-point function in the denominator of a resummed
be resummable. For the conventionally defined two-poinpropagator makes it unavoidable to demand that renormal-
functions, the resummability can be formally derived fromization bemultiplicative otherwise, the analytic expressions
the path integral. In th& matrix PT approach, the resumma- will suffer from spurious ultraviolefUV) divergences. Par-
bility of the effective two-point functions is more involved ticular examples of the kind are some ghost-free gauges,
and must be based on a careful analysis of the structure sluch as the light cone or planar gaugdé].
the S-matrix to higher orders in perturbation thed#yj. (vi) Position of the poleSince the position of the pole is

(i) Analyticity of the off-shell Green’s functioAn ana- the only gauge-invariant quantity that one can extract from
lytic two-point function has the property that its real and conventional self-energies, any acceptable resummation pro-
imaginary parts are related by a dispersion relatidR), up  cedure should give rise to an effective self-energies which do
to a maximum number of two subtractions. The latter is anot shift the position of the pole. This requirement drastically
necessary condition when considering renormalizableéeduces the arbitrariness in constructing an effective two-
Green’s functions, as we will discuss in Sec. Il. point correlation function.

(i) Unitarity and the optical relationin the conventional A closer look at these requirements reveals that they are,
framework, unitarity is defined only for on-she-matrix  in fact, very tightly interwoven; relaxing even one of them
elements, leading to the familiar optical theoré@T) for the  could give rise to unphysical results, sometimes in rather
forward scattering. Here, we postulate the validity of the op-subtle ways. As an example of the subtleties involved, we
tical relation for the off-shell Green’s function, when embed-investigate the BFG11,17 in Sec. VIIl. Despite the fact
ded in anS-matrix element, in a way which will become that the background fields of the BFG obey the WI's of the
clear in what follows. An important consequence of this re-classical Lagrangian, even after quantizing the theory, the
guirement is that the imaginary part of the off-shell Green'sBFG expressions for the self-energies depend explicitly on
function should not contain any unphysical thresholds. As dhe quantum gauge parametgy; in turn, in theories with
counterexample, in Sec. VII, it will be shown that this pa- spontaneous symmetry breakit®SB), this dependence on
thology is, in fact, induced by the quantum fields in theéq gives rise tounphysicalthreshold channels foé,# 1.
background-field-gaugeBFG) method[11] for &5+ 1. Obviously, such unphysical absorptive contributions should

(iv) Gauge invarianceAs has been mentioned above, onenot be resummed to all orders. In fact, we find that the sub-
has to require that the effective Green’s functions are gaugeamplitudes containing physical Landau singularities, and
fixing parameteGFP) independent and satisfy Ward iden- those which do not, satisfy the same BFG WI's. Only the
tities (WI's) in compliance with the classical action. For in- case of BFG with{o=1 is free from unphysical poles, and
stance, the latter is guaranteed in the BFG method but not tiée results of the Green’s functions collapse to these of the
former. This condition also guarantees that gauge invariancBT. Evidently, relaxing the requirement of GFP indepen-
does not get spoiled after Dyson summation of the GFPdence, by allowingq to survive, interferes with unitarity in
independent self-energies. In some of the recent literature, nontrivial way.
the terms of gauge invariance and gauge independence haveWe now present a roadmap of our paper: In Sec. I, we
been used for two different aspects. For example, in the BF@eview the crucial properties of analyticity of two-point cor-
the classical background fields respect gauge invariance irelation functions. We then derive some important conse-
the classical action. However, this fact does not ensure thajuences arising from dispersion relatiofiBR’s), which
the quantum fields respect some form of quantum gauge irshould be satisfied by a consistent analytic approach. The
variance, neither does imply that some kind of a Becchi+esults of this analysis may also be applied to eliminate a
Rouet-Stora(BRS) symmetry[12] is present for the fields large degree of arbitrariness in defining off-shell transition
inside the quantum loops after fixing the gauge of the theonamplitudes. Issues of renormalization are also discussed.
[13,14. In our discussion, when referring to gauge invari- In Sec. Ill, we discuss the I® of unitarity and OT and
ance, we will encompass both meanings, i.e., gauge invarelucidate their connection with gauge invariance. In Sec. IV,
ance of the tree-level classical particles as well as BRS inwe show how to employ unitarity, analyticity, and elemen-
variance of the quantum fields. A direct but nontrivial tary tree-level WI's (EWI's), in order to obtain a self-
consequence of the gauge invariance and of the Abelian-typgonsistent picture in the context of QCD. In particular, we
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work with the right-hand sidéRHS) of the OT, where only
physical particlegno ghosts appear as intermediate states.
In Sec. V, we focus again on the same process as in the
previous section and present a differéaquivalent but non-
trivial) point of view. In particular, we start again from the
RHS of the OT and show how the unitarity of an on-shell
transition amplitude and the BRS symmeftty?] of the quan-
tum action can be exploited to reinforce gauge invariance
and GFP independence for off-shell Green’s functions. In the
context of one-loop QCD, these properties rigorously prove
the independence of the PT on the gauge-fixing procedure.

In Sec. VI, the analysis of Sec. V is extended to the case
of the minimal standard modéSM). We concentrate on a
charged process withonconserveexternal currents and re-
sort again to théslightly more involved EWI's. The propa-
gatorlike expression obtained by working with the RHS of
the OT is then fed into a twice subtracted DR. The result
obtained is identical to the real part of the PFboson self- , , , , ,
energy, already known from previous considerations. Thi®ling constants. The Iqtter notion of RGE invariance is to be
example convincingly demonstrates the combined power ofdopted throughout this paper.
unitarity and analyticity. In Sec. VII, we take a different ~ Finally, we present our conclusions in Sec. X.
point of view and work directly with the left-hand-side
(LHS) of the OT, where “unphysical” degrees of freedom,
such as ghosts and would-be Goldstone bosons, appear now
as intermediate states. Using the usual Cutkosky rules, and Analyticity is one of the most important properties that
exploiting again the EWI's of the theory to the fullest, we govern physical transition amplitudes. Correlation functions
arrive at the imaginary part of the PW-boson self-energy. are considered to be analytic in their kinematic variables,
This constitutes a highly nontrivial self-consistency check,which is expressed by means of the so-called OR&-20.
demonstrating that as long as one fully exploits the elemenin this section, we briefly review some important facts about
tary symmetries of the theory, one can work freely with ei-DR’s and renormalization and discuss the subtleties encoun-
ther side of the optical relation, arriving at the same physitered in non-Abelian gauge theories.
cally consistent results. If a complex functionf(z) is analytic in the interior of

In Sec. VIII, we turn our attention to the BFG and show and upon a closed Cur\@T' say in Fig. 1, anck+ie (with
that the dependence of the resummed BFG two-point funck, ¢ e R ande>0) is a point within the closed cun@,; , we
tions on the “quantum” GFR, is far from innocuous, lead- then have the Cauchy’s integral form
ing to the violation of unitarity, because of the appearance of
unphysical thresholds. Furthermore, the physical and un-
physical expressions are found to satisfy exactly the same
tree-level WI's. This fact demonstrates beyond any doubt
that a combination of requirements need be imposed in order
to arrive at a physically reliable result. Indeed, satisfying
external tree-level WI's is a necessary but not sufficient rewhere$ denotes that the pat@, is singly wound. Using
quirement in this context. Schwartz’s reflection principle, one also obtains

In Sec. IX, we show under mild assumptions that the PT
resummation gives rise to “unique” results. By “unique”
we mean that at the end of the PT rearrangement, and after f(x—ig)=— i é . f(2) 2.2
renormalization has been completed, no further pieces may 2mi Jo,  z—x+ie’ '
be moved around without leading to a violation of some of
the physical properties characterizing the PT Green'’s func-
tions. Here, we should mention that in the framework of theNote thatCt =C, . Sometimes, an analytic function is called
S-matrix perturbation theory, the evaluation of &matrix ~ holomorphic; both terms are equivalent for complex func-
element or a gauge-invariant operator at a given order ofions.
loop expansion is not unique in general, in the sense that the Of significant importance in the discussion of physical
analytic result depends on the renormalization prescriptiorocesses is a DR, which relates the imaginary part of an
used to remove the UV divergences. Of course, the summanalytic functionf(x) to its real part, and vice versa. We
tion of all infinite perturbative contributions should formally assume for the moment that the analytic functiga) has
yield a unique result independent of the choice of renormalthe asymptotic behaviotf(z)|<C/R¥, for large radiiR as
ization. Furthermore, to a given order of perturbation theoryshown in Fig. 1, wher€ is a real non-negative constant and
one can invoke the renormalization group equatiRGE) in k>0; this assumption will be relaxed later on, giving rise to
order to show that this uniqueness of the final expressiomore involved DR. Taking now the limi¢—0, it is easy to
gets spoiled by terms which are of higher order in the couevaluate R&x) through

Smz 4

FIG. 1. Contours of complex integration.

II. ANALYTICITY AND RENORMALIZATION

F(x+ie)= m @

2i c Zz—x—is’ @1
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2Ref(x)="“lim "[f(x+is)+F*(x—ig)] Rell(s)=Rell(m?)+ (s—m?)Rell’ (m?)
£—0
(s=m?)?_(+=  ImI(s")
=*lim "ifmdxwm(,f(# +T,.. i Pf A s =)
e0 TJoo X'—X—ie
2.7
(2.3

From Eq.(2.7) one can readily see that the two subtractions,
Here, “lim,_," means that the limit should be takeafter ~ Rell(m?) and the derivative Ré’(m?), correspond to the
the integration has been performed, and mass and wave-function renormalization constants, respec-
tively, in the on-mass shell0S) scheme. At higher orders,
1 w , internal renormalizations of Ihli(s), due to counterterms
r.=—Ilim Ref dof(Re?). (24 (CT’s) coming from lower orders, should also be taken into
R 0 account. Then, Eq2.7) is still valid, i.e., it holds to order
. ) . n provided InI(s) is renormalized to orden—1. In gen-
Because of the assumed asymptotic behaviof(af at in- o5 the function Ifi(s) has its support in the non-negative
finity, the integral over the upper infinite semicircle in Fig. 1, o axis, i.e.. fors=0. This can be attributed to the semi-
I'.., can be easily shown to vanish. Employing the well-pq ndness of the spectrum of the Hamiltonian, $pe6

known identity for distributions, [21]. Note that for spectrally represented two-point correla-
1 1 tion functions, we have the additional condition
2
“Ilm =P——+imd(x' —X), ImII(m9)=0[22,23. , , ,
o X' —x—ie x'—X As has been mentioned above, in renormalizable field
theories it is required thall(s) should be finite after two
we arrive at the unsubtracted DR, subtractions have been performed. This implies that
1 (+=  Imf(X) ITI(s)|<Cs", with k<2, (2.9
Ref(x)= —PJ dx' —; . (2.5 _ ) ]
T J-w X =X ass—. Obviously, the same inequality holds true for the

real as well as the imaginary part ®f(s). In pure non-
In Eq. (2.5 the symbol P in front of the integral stands for Abelian Yang-Mills theories, such as quarkless QCD, the
principle value integration. Following a similar line of argu- transverse parl(s) of the gluon vacuum polarization be-
ments, one can express the imaginary partf@f) as an haves asymptotically as
integral over R&(x).

In the previous derivation, the assumption thgiz)| ap-
proaches zero sufficiently fast at infinity has been crucial,
since it guarantees thht.— 0. However, if we were to relax
this assumption, additional subtractions need be included ifhis result is consistent with Eq2.8) for any n<cc. Fur-
order to arrive at a finite expression. For instance, fothermore, we mention that the Froissart—Martin bo{@d,
|f(2)|<CRX with k<1, it is sufficient to carry out a single

s n
HT(s)—>Cs( InF) .

2
subtraction at a poirt=a. In this way, one has ITi(s)|<Cs® InE) , (2.9
So
Imf X
Ref(x)= Ref(a)+ f dx’ ( )_ at s—, which may be derived from axiomatic methods of
—a)(xX'=x) field theory, is weaker than E@2.8). In fact, the Froissart-

(260 Martin bound [24] refers to the asymptotic behavior of a
total cross sectiowr(s) in the limit s—o. This is expressed

as o(s)<C[In(gsy)]°>. Furthermore, the OT gives the rela-
on so(s)=ImT(s), whereT(s) is the forward-scattering
mplitude. If one assumes the absence of accidental cancel-
ations between the two-point functioH(s), and higher
n-point functions within the expression Ts), one can de-

rive that

From Eq.(2.6) it is obvious that R&x) can entirely be
obtained from Infi(x), up to a unknown, real constant ti
Ref(a). Usually, the pointa is chosen in a way such that
Ref(a) takes a specific value on account of some physic
requirement. For example, if Ifg?) is the imaginary part
of the magnetic form factor of an electron with photon vir-
tuality g2, one can prescribe that the physical condition
Ref(0)=0 should hold true in the Thomson limit. [ImII(s)|<Cs2ImT(s)<Cs[In(s/sy)]>.

We next focus on the study of some crucial analytic prop-
erties of off-shell transition amplitudes within the context of Because of analyticity, the dependence of Iid(s) will
renormalizable field theories. In such theories, one is allowedffect the highs behavior of/ TI(s)|. Even if we assume that
to have at most two subtractions for a two-point correlationthe s dependence thus induced dii(s)| is the most modest
function. If I1(s) is the self-energy function of a scalar par- possible, i.e.|II(s)|~ImII(s) ass—, still the tightest up-
ticle with massm and off-shell momentung (s=q?), the  per bound one could obtain from these considerations is that
fermionic or vector case is analogous, then the (ealdis-  of Eq. (2.9). The analytic expression of gluon vacuum polar-
persive part of this amplitude can be fully determined by its ization satisfies Eq2.9). As a counterexample to this situa-
imaginary(or absorptive part via the expression tion, we may consider the Higgs self-energy in the unitary
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FIG. 2. Two-point correlation functiohl ;(s) at one loop.

gauge; the absorptive part of the Higgs self-energy has an

s? dependence at high energies, and its resumm&gshis,
therefore, not justified.
We will now illustrate how DR’s work in practice in the
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Evidently, the absorptive part dil4(s) obtained from Eq.

(2.12 is equal to Inkl4(s) in Eq. (2.11). Furthermore, one

can verify the validity of a DR of Eq2.6), singly subtracted
ats=0. Since

Relly(0)= |2 T

o )_W o YetinT

}, (2.13

one can check that indeed,

S o
—P J ds
T Jam?

This simple example explicitly demonstrates the analytic na-

,ImIIg(s")

m = Rd_[(p(S) — Rel'[(D(O).

context of a scalar field theory. As an example, we consideture of a two-point correlation function.

a toy model with interaction Lagrangian,

A
Lin=% °, (2.10

In the context of gauge field theories, one should antici-
pate a similar analytic structure for two-point correlation
functions. However, an extra complication appears in such
theories when off-shell transition amplitudes are considered.
In a theory with SSB, such as the SM for example, this
complication originates from the fact that, in addition to the

where\ is a nonvanishing coupling constant of dimensionsphysical particles of the spectrum of the Hamiltonian, un-

of mass. We denote the mass of the sceldny m and the
one of thed by M and assume thd#l =m.

physical, gauge-dependent degrees of freedom, such as
would-be Goldstone bosons and ghost fields, make their ap-

One can calculate the imaginary part of the one-loop selfpearance. Although, on-shell transition amplitudes contain
energy I14(s) by using Cutkosky rules. The self-energy only the physical degrees of freedom of the particles in-

I1,(s) develops a branch cut far=p?>4m?, which arises
from the on-shellp-pair contribution shown in Fig. 2. Thus,
it is not difficult to obtain

)\2 2\ 1/2
Iqu)(S):E(l_T) 6(s—4m2). (21])

volved on account of unitarity, their continuation to the off-
shell region is ambiguous, because of the presence unphysi-
cal Landau poles, introduced by the aforementioned
unphysical particles. A reasonable prescription for accom-
plishing such an off-shell continuation, which is very close
in spirit to the previous example of the scalar theory, would
be to continue analytically an off-shell amplitude by taking
only physicalLandau singularities into account.

On the other hand, adopting dimensional regularization in Consider for example the off-shell propagator of a gauge

dimensiondD =4—-2¢, we have

A2 1 T u?
H@(S)Zm z—’yE'Hn m2 +2
Am?2\ 12
am?) 2 ( EX .
_( - s) In a2\ 172 ,
-] -

(2.12

wheres should be analytically continued ®+ie. In fact,
for s>4m?, the logarithmic function in Eq(2.12 assumes
the form

particle in the convention®, gauges or BFG’s, which runs
inside a quantum loop, viz.,

1 3
(é0) _ Z Q
Aofv(q)_tﬂv(q)qZ_MZ_/,lLV(q)qZ_gQMZY
(2.149
with
q.9. , q.9,
tu(A)=—0,,+ —rg Ll d)= g :

One can write two separate DR’s for the transverse self-
energyll; of a massive gauge boson, which crucially de-
pend on the pole structure of E@.14): namely,

Rell(s)=Rell(M?)+(s— M2)Rell}(M?)
(s—=M?2 (4= Imll(s')
+TPLM5M} (& —M2(s —s)’
(2.15
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Rdﬁgo)(s) =(s— M2) RdT(qu)(Mz) II-I. UNITARITY ANQ GAl-JGE INYARIANCE o
In this section, we will briefly discuss the basic field-
(s—M?2)2 [+ |mﬁ_(r§Q>(sr) theoretical consequences resulting from the unitarity of the
+ J , ds' — MD2S ) S-matrix theory, and establish its connection with gauge in-
™ Mg (S =MHH(s"—9) variance. In addition to the requirement of explicit gauge

(2.1 invariance, the necessary conditions derived from unitarity

will constitute our guiding principle to analytically continue

In the first DR given in Eq.2.15, the real part offl n-point correlation functions in the off-shell region. Further-
— . ; S . T more, we arrive at the important conclusion that the re-

Rdly, is determined from branch cuts induced by phy,s'calsummed self-energies, in addition to being GFP independent,

poles, where the masses of the geal on-shell particles in tr\%ust also be “unitary,” in the sense that they do not spoil

loop are collectively denoted HM 4. In what follows we itarity when embedded in @matrix element.

refer to such a DR aghysicalDR. Note that REl; depends The T-matrix element of a reaction- f is defined via the

only implicitly on the gauge choice. In fact, Hg can be relation

viewed as the truncated part of the self-energy that will sur-

vive if Rell; is embedded in &-matrix element. In Eq. (f|Siy=8n+i(2m)* sV (P—P)(f|Tli), (3.0

2.16), the dispersive part of the two-point function depends . s

éxpl?:itly on EQ-depeEdent unphysicpal thresholds, C%"ec_wherePi (Py) is the sum of all initial(final) momenta of the

tively denoted b){Mﬁnphy}y which are induced by the longi- |i2 (If)) state. Furthermore, imposing the unitarity relation

tudinal parts of the gauge propagators contained inS S=1 leads to the OT:
Imr_lng) Evidently, one has the decomposition
(T TIH*=i X (2m)*a (P, —P)
— TéQ) :
= + Q
ImII+(s) = ImII(s) + ImILF9(s), (| TIFY ([T, (3.2
RdTT(s):ReTTT(s)+ Reﬁ(fQ)(s) 2.17 In Eq. (3.2, the sumZ;, should be understood to be over the
T . .

entire phase space and spins of all possible on-shell interme-

) diate particles’. A corollary of this theorem is obtained if
From Eq.(2.14) one can now isolate that part of the propa-—¢_|n this particular case, we have

gator that should be used in a physical DR. Egr 1, one

has 1
Im(i[Tli)= 52, (2m)*o“(P—PY(TITIDI% 3.3

AR U, (@) =AF) (). (218 _ _ _ _
In the conventionalS-matrix theory with stable particles,

Egs.(3.2) and(3.3) hold also perturbatively. To be precise, if

one expands the transitioh=T®+T@+ ...+ TMW ..

ato a given orden, one has

It is, therefore, obvious that the “physical” sector of an off-
shell transition amplitude in BFGfor {é,#1), or equiva-
lently, the part of the off-shell matrix element that satisfies

physical DR, is effectively obtained by considering all the n-1

internal propagators in the unitary gaugg (=), but leav- TV-TP* =i (2m)*s@ (P, —P) >, TH*TIw.
ing the Feynman rules for the vertices in the geneigl i’ k=1

gauge. 3.4

. _In vi_ew of a physipal DR, the gauggzl is VETY SP€- " There are two important conclusions that can be drawn from
cific, since the physical and unphysical poles coincide 'nEq. (3.4). First, the anti-Hermitian part of the LHS of Eq.

such a case, making.them indistinguishable. At one-loop or 3.4) contains, in general, would-be Goldstone bosons or
der, the results of this gauge are found to collapse t0 thosgy, o fieldg26]. Such contributions manifest themselves as
.obt_a|r?ed via thfe PT17]. Flnally,.wle. remark in pa§5|ng that, Landau singularities at unphysical points, e@gungM\zN

if TI+ in é5# 1 is used for a def|n|t|on_ of a “ph_y5|cal” self- for a W propagator in a general BFG. However, unitarity
energy, one encounters problems with the high-energy unizqires that these unphysical contributions should vanish, as
tarity behavior, even though the full (£o) is asymptotically 51 pe read off from the RHS of E(8.4). Second, the RHS
well behaved. In the case of the one-labpself-energy for  expjicitly shows the connection between gauge invariance
example, for§q# 1 [17], [Ty contains terms proportional to and unitarity at the quantum loop level. To lowest order for
q* all such terms eventually cancel in the entli{¢y)  example, the RHS consists of the product of GFP-
against the part that contains the unphysical poles. Incidenndependent on-shell tree amplitudes, thus enforcing the
tally, it is interesting to note that the recovery of the correctgauge invariance of the imaginary part of the one-loop am-
asymptotic behavior is the more delay@ée., it happens for plitude on the LHS.

larger values of}®) the larger the value ofg. However, if The above powerful constraints imposed by unitarity will
one was to resum only tHd; part, the terms proportional to be in effect as long as one computiedl amplitudes to a

g* would survive, leading to bad high-energy behavior. If, onfinite order in perturbation theory. However, for resumma-
the other hand, one had resummed the Fi{£y), then one  tion purposes, a certain subamplitude, i.e., a part of the full
would have introduced unphysical poles, as explained abovemplitude, must be singled out and subsequently undergo a
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Dyson summation, while the rest of tBematrix is computed
to a finite ordern. Therefore, if the resummed amplitude —
contains gauge artifacts and/or unphysical thresholds, the q q X M
cancellations imposed by E¢3.4) will only operate up to SR
ordern, introducing unphysical contributions of order 1 (p2) g(k2), v,
or higher. To avoid the contamination of the physical ampli-
tudes by such unphysical artifacts, we impose the following (a) (b) (o)
two requirements on the effective Green'’s functions, when
we attempt to continue them analytically in the off-shell re-
gion for the purpose of resummation.
(i) The off-shelln-point correlation functions ought to be Ae v
derivable from or embeddable in®matrix elements. Ty,
(ii) The off-shell Green'’s functions should not display un-
physical thresholds induced by unphysical Landau singulari- (d)
ties, as has been described above.
Even though propertyi) is automatic for Green’s func-
tions generated by the functional differentiation of the con- 5 3 pig
ventional path-integral functional, in general the off-shell gan
amplitudes so obtained fail to satisfy propefiy. In the PT

framework instead, both conditions are satisfied: effectiveE 3.3 The RHS invol hell physical
Green’s functions are directly derived from tBematrix am- g. (3.3. The INVOIVES On-shell physical processes,

plitudes[so condition(i) is satisfied by constructignand V\;ht'ﬁh Sats\;vylj[hel E\éVI’s. It tut:ns out rh‘? thedfull exploVF?tlon f
contain only physical thresholds, so that unitarity is not ex-O! those S leads unambiguously 1o a decomposition o
plicitly violated [4]. t_he tree-level amplitude into propagator-, vertex-, and box-
In our discussion of unitarity at one loop, we will make !{'ﬁe structures. Thte %r%ﬁ)agaftforlltke structure tcorresdponds to
extensive use of the following two-body Lorentz-invariant € imaginary part ot tneé elfective propagator under con-

phase-spacéIPS) integrals: The scalar integral struction. By imposing the additional requirement that the
’ effective propagator be an analytic function @#, one ar-

a(pm) 9k a

gramga)—(c) contribute to?’zt; and diagran(d) to

1 . rives at a DR, which, up to renormalization-scheme choices,
f dxupszwf d4k1f d*k, 8., (Kf—m?) leads to a unique result for the real part.
Consider the forward-scattering procesg—qqg. From
X 8, (k3—m3) 84 (q—ky—kj) the OT, we then have

=0(9%) 6[9*— (M +m;)?]
— 11 —
Im<<ﬂT|qQ>=§<§HdXL.ps<QEFT|gg><gngqu>*-

1
X ———\ (g2, m2,m3), (3.5 (4.2)

8mq

where \(x,y,2)=(x—y—2)2—4yz and 6, (k*—m?)
= 9(k% 8(k*—m?), and the tensor integral: In Eg. (4.1, the statistical factor 1/2 in parentheses arises
from the fact that the final on-shell gluons should be consid-
ered as identical particles in the total rate. We now set
f dXups(ky—ka) u(k1—ka), M={(qq[T|qg) and 7=(qq[T|gg), and focus on the RHS
s 2 2 s 2 2 of Eq. (4.1). Diagrammatically, the amplitud& consists of
A(g®,mi,m3) A(QT,mp,m3) two distinct partsit- and u-channel graphs that contain an
39° my q° —a internal quark propagat tff; as shown in Figs. @) and
3(b), and ans-channel amplitudd3", which is given in Fig.
3(c). The subscripts §” and “t" refer to the corresponding
/‘”(q)]fdxups' S Mandelstam variables, i.es=q?=(p;+ p,)2=(k;+k,)?,
andt=(p;—k;)%=(p,—kj)?2. Defining

+2(m2+m3)

The Lorentz projection tensors, ,(q) and /,,(q), have
been defined after E¢2.14).

c

A
IV. THE CASE OF QCD Vo =0v(P2) 5 7,u(pP1), 4.2

In this section, we show that a self-consistent picture may
be obtained by resorting to such fundamental properties of
the S matrix as unitarity and analyticity, using as additional we have that
input only EWI's for tree-level, on-shell processes, and tree-
level vertices and propagators. It is important to emphasize TP — 7P (g 72D 4.3
that the GFP independence of the results emeagésmati- preooRy m
cally from the previous considerations.

We begin from the RHS of the optical relation given in with
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T25(6)=—gf A ()T, ., (9, — kg, — ko) VE,

Suv

(4.9
T=—ig v(pz)()\b ;)\—aw
pi—k;—m 2
+}\—a 7”;7”)\:) u(pa), (4.5
27 pr—kp—m" 2
where
[y 0(d, =k, —Kp) = (K1 —k2) g, + (A +K2) .00,

_(q+kl)vg)\V' (46)

Note that7; depends explicitly on the GFP, through the

tree-level gluon propagatoﬂsé?v(q), whereasZ; does not.
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1
ImM=Z[TE(&) + TP (ky, 7a)

XPM(ko, [ TEE)+ TN . (413
The next step is to verify that any dependence on the GFP
inside the propagatoA{),(q) of the off-shell gluon will
disappear. This is indeed so, because the longitudinal parts of
Ao, either vanish because the external quark current is con-
served, or because they trigger the following EWI:

AT p(0 ki — k) = (K= K)Qos, (414
which vanishes on shell. This last EWI is crucial, because in
general, current conservation alone is not sufficient to guar-
antee the GFP independence of the final answer. In the co-
variant gauges for example, the gauge-fixing term is propor-

The explicit expression oA (q) depends on the specific tional tog“q”; current conservation kills such a term. But if
gauge-fixing procedure chosen. In addition, we define thgve had chosen an axial gauge instead, i.e.,

quantitiess®® and R%" as

k{ 4
SP=gfee SVe=—gf**" SV, 7
q q
and
R2P=gfaboye . (4.9
Clearly,
kIR3P= —kgR =25, (4.9
We then have
1 2N bx
ZTZ 7(k1,71)P (kz,ﬁz)T‘;)\
1 ab abipuo
Z[Tsw(§)+7tw]P (ky,71)
XP ko, m) Ton (O + Tigx*], (410
where the polarization tensé*”(k, ») is given by
7],ukv+ nvk,u 2 k,ukV
P, (k,p)=—g,,+ - .
" ( 77) gM 77k Y (nk)Z
(4.11
Moreover, we have that on shell, i.e. fok?=0,
k“P,,=0. By virtue of this last property, we see immedi-

ately that if we write the three-gluon vertex of E@.6) in
the form

ko) =[(k1—=K2)x0,,*20,9x,— 20,9, ]

+ (=K Ot Ko O )
=T7,.(d,— k1, —kp)

ks),

[y (d, =Ky, —

+T75 (0, — Ky, — (4.12

P
the term l"pﬂ

T < (&) the part ofZg which survives, Eq(4.10 becomes

dies after hitting the polarization vectors
p.o(kl1771) and P,,(k,,7,). Therefore, if we denote by

P,.(q,7
AO/LV(q): M:

q (4.15

where# 7 in general, then only the term,q, vanishes
because of current conservation, whereas the tey
only disappear if Eq(4.14 holds. So, Eq(4.13 becomes

1
IMM=2(TE+ TP (ke ) P (Ko, ) (TE+ TO 3

(4.16
where the GFRadependentjuantity 7 - is given by
F.ab_ gp)\
/]dS/J,Va gfabc q )\Iuv(qv_kla_kZ)V;' (417)

Next, we want to show that the dependencesgnand 7
stemming from the polarization vectors disappears. Using
the on-shell conditiong;=k3=0, we can easily verify the

EWI's
KT 20= 2K, 8% - R, (4.18
KT, 2= 2k, , S+ R, (4.19
Ke T2 =R32", (4.20
K$T3h=—R3, (4.20)
from which we have that
K&Ky Tsifb— 2852, (4.22
KikST20 = — 252, (4.23

Using the above EWI's, it is now easy to check that indeed,
all dependence on both, and »? cancels in Eq(4.16), as it
should, and we are finally left witfomitting the fully con-
tracted color and Lorentz indices
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2
(4.30

Here,Cyy=1/e— yg+In47+C, with C being some constant
The first part is the genuine propagatorlike piece, the secongéind w. is a subtraction point. In Eq4.30), it is interesting to
is the vertex, and the third the box. Employing the fact thatnote that a change @f°>— w'? gives rise to a variation of the

constantC by an amounC’ —C=Inu'%u?. Thus, a general

1 A ag 1lc
ImM=Z[(TETE* ~88S) +(TET + T8 1) + T 17 | ()= 7 3 (@0

=

=ImM +ImM,+ImM,. (4.24

reTL# = —=80%,,(0) +4(ki—kp) (k1= ko), u-scheme renormalization yields
(4.2 . A A A
. 117(s) =Il1(s) — (s~ u®)Rell( u?) — Relly(1?)
an
ag 11c, ( s) u?
=— s/ In| — -1+ —]. 4.3
st mgene i e @ otk ke ar 3 i s 439
A p(q2)2 N 4 AVp (q2)2 A

(4.26) From Eg.(2.7), one can readily see that fi@(s) can be
calculated by the following double-subtracted DR:
wherec, is the eigenvalue of the Casimir operator in the R
adjoint representatiofica=N for SU(N)], we obtain, for - (s=u?? (= Iml(s")
join Rell7(s)= ——P| ds'——2 5 :
ImAM 4, m o (s'=u9)(s'—s)
2 (4.32
9

- 1
ImM1=?CAVZ?[_4q2tﬂV(Q) Inserting Eq.(4.29 into Eq.(4.32, it is not difficult to show
that it leads to the result given in E@.31), a fact that
R demonstrates the analytic power of the DR.
+(ki—k) (ki —kp) ]?Vv- (4.27) It is important to emphasize that the above derivation rig-
orously proves the GFP independence of the one-loop PT
This last expression must be integrated over the availablgfféctive Green’s functions, foevery gauge-fixing proce-

phase space. With the help of E¢3.5) and(3.6), we arrive dure. Indeed, in our derivation, we have solely relied on the
at the final expression RHS of the OT, which we have rearranged in a well-defined

way, after having explicitly demonstrated its GFP indepen-
L 1 . 1 dence. The proof of the GFP independence of the RHS pre-
ImM1=V;—2|mHW(q)—2V§, (4.28 sented here is, of course, expected on physical grounds, since
q q it only relies on the use of EWI's, triggered by the longitu-
dinal parts of the gluon tree-level propagators. Note that the
tree-level tri-gluon couplind’y ,, is uniquely given by Eqg.
(4.6). Since the GFP dependence is carried entirely by the
ImII (q)=— s 11CAq2t (), (4.29 longitudinal parts of the gluon tree-level propagatoraimy
’” 4 3 Y gauge-fixing scheme whereas thg*” part is GFP-
independent and universal, the proof presented here is gen-
and as= g% (4). erally true. Obviously, the final step of reconstructing the
Before we proceed, we make the following remark. It isreal part from the imaginary one by means of a DR does not
well known that the vanishing of the longitudinal part of the introduce any gauge dependences.
gluon self-energy is an important consequence of gauge in-
yariancg. O_ne might naively expect that even if a nonvanish—v_ THE QCD ANALYSIS FROM BRS CONSIDERATIONS
ing longitudinal part had been induced by some contributions
which do not respect gauge invariance, it would not have In this section, we will show how we can obtain the same
contributed to physical processes, since the gluon self-energnswer by resorting only to the EWI’s that one obtains as a
couples to conserved fermionic currents, thus projecting oudirect consequence of the BRS symmetry of the quantum
only the transverse degrees of the gluon vacuum polarizd-agrangian.
tion. However, this expectation is not true in general. Indeed, If we considerTf‘ﬁ as before, it is easy to show that it
if one uses, for example, the tree-level gluon propagator iatisfies the BRS identitid27]
the axial gauge, as given in E¢4.15, then there will be
residualy-dependent terms induced by the longitudinal com-  K{78%=k,,S*°,  Kk373°=k;,S?,  Kkiks7T55=0,
ponent of the gluon vacuum polarization, which would not (5.0
vanish, despite the fact that the external quark currents are
conserved. Such terms are obviously gauge dependent. Ewithere S?° is the ghost amplitude shown in Fig(d3; its
dently, projecting out only the transverse parts of Green'slosed form is given in Eq4.7).
functions will not necessarily render them gauge invariant. ~ Note that the BRS identities of Ed5.1) are different
The vacuum polarization of the gluon within the PT is from those listed in Eqs(4.18—(4.23, because the term
given by[7] FZ,,p had been removed in the latter group. Here, we follow

with




5324 JOANNIS PAPAVASSILIOU AND APOSTOLOS PILAFTSIS 54

a different sequence and do not cancel the tFﬁpp; in- we obtain
stead, we will exploit thexactBRS identities from the very 1
beginning. MMy =7 (TE76% ~T8TE* + TET* + TE* T~ 255¥)

We start again with the expression for.\h given in Eq.
(4.10. First of all, it is easy to verify again that the depen-

dence on the GFP of the off-shell gluon vanishes. This is so = 1(74;74;* —855*), (5.7)
because of the tree-level EWI, involving tHall vertex 4
e which is the same result found in the previous section, i.e.,

A e L) — L2 L2 Eq. (4.249).
0 a8~ ke, —ka) =Koty (k) =Kt (ky). (5.2 An interesting by-product of the above analysis is that one

is able to show the independence of the PT results of the
number of the external fermionic currents. An explicit proof
of the process independence of the PT self-energy at one
loop has already been presented16], through the detailed
study of all possible combinations of on-shell states one can
consider, including fermions, gluons, and scalars. In this
analysis, the number and type of incomifautgoing par-
TP (k1,71) P (K, 1) T%, ticles is such that they can all merge to produce an off-shell
gluon through onlyone elementary interaction vertex. Here,
instead, we pay more attention to the independence of the
(quwa_zggk) results on the number of fermionic currents used to produce
the intermediate two-gluon state. In such a case, several el-
1 ementary vertices are needed in general. The main ingredient
=[(TE+7T5+ Tt)MV(T§+T§’+7;)ZV—235*], of the proof is the observation that the BRS identities in Egs.
4 (5.1), as well as those given in EE5.6), will still hold for
(5.3 any transition amplitude afi-fermionic currents to two glu-
ons. By analogy, one can decompose the transition amplitude
where into 7; andZ structures. Similarly, the forms of the substruc-
tures7- and 7% will then change accordingly. In fact, the
(9, — ki, —k)VS. (5.4 only modification will be that the vector currer,, con-
P tained in Egs(4.17) and(5.4), will now represent the tran-
} ] ) sition of one gluon tan-fermionic currents. Making use of
At this point, one must recognize that due to the four-the “intrinsic” PT, one then obtains the result given in Eq.
momenta of the trilinear vertek” insideTSP one can further (57) Hence, we can conclude that the PT does not depend

trigger the EWI's, exactly as one did in order to derive fromon the number of the external fermionic currents attached to
Eq. (4.9 the last step of Eq5.3). In fact, only the process- gluons.

independent terms contained in A will be projected out

on account of the BRS identities of Ec.1). It is important VI. THE ELECTROWEAK CASE

to emphasize thaTE and 7; do not contain any pinching In this section, we will show how the same considerations
momenta. This is particular to this example, where we havepply directly to the case of the electroweak sector of the
only two gluons as final states, but is not true for more glu-SM. We consider the charged current proceSs—e™ v

ons. To further exploit the EWI's derived from BRS symme- and assume that the electron masgsis nonzero, so that the
tries, we rewrite the RHS of Ed5.3) in the following way  external current is not conserved. We focus on the part of the

The RHS of Eq.(5.2 vanishes after contracting with the
polarization vectors, and employing the on-shell condition
k?=k3=0. Again, by virtue of the BRS identities and the
on-shell conditionk?=k5=0, the dependence of ltW on
the parameters,, and »? cancels, and we eventually obtain

ImM=

INEONEE

N
TP,ab: —-g fabcﬂl—‘P

Suv q2 Auv

(we omit the fully contracted Lorentz indices amplitude which has a threshold gf=M3, This corre-
1 sponds the virtual proce®d™ —W™ y, wherey is the pho-
ImM= Z[(Tt+ TPHTE)N T+ T0+TF)* —2854] ton. From the OT, we have

1
. im(e v{Tle™s) =5 | dXpfe vITIW )
= J[(TETE —T0TE* + TET + 7T - 255%)

X(W~ y|T|e" v)*. (6.1
HRT S +TTY)+TT¢ ] . s _ -
We set againM=(e” v|T|e" v) and7=(e v|T|W y).
= |m7\/t\1+ |m7\/1\2+ |m7\/l\3. (5.5 As in the case of QCD, the amplitude consists of two distinct

parts, a part that contains an electron propagia. 4(a)]
In Eqg. (5.5), the reader may recognize the rearrangemenand a part that does not, which is shown in Figd) 4nd
characteristic of the “intrinsic” PT, presented [28]. 4(c). As before, we denote them W and 74(¢,,), respec-
Inserting the explicit form of7t given in Eq.(5.4) into tively. We first define
Eq. (5.5 and using the BRS identities,

Ow —
TPT*=-28s*, TPTD*=285*, (5.6) Vf:ﬁv(pz)’}’”(l_)’s)u(pl) (6.2
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—\W+
elm) _  ylke)v T 2 " (— k2,0, — k) Q¥ (ky) P7(kz, 7)
- w-, — st
e >G{f ¢ =Mul 25 Y QM (k) PH(ke, ), (6.10
#(p2) W= (k) p and the EWI of Eq.(6.4), and we obtain the following

&n-independent expression far: " :
(2) (b) () T =ieV iU, () ""#(—Kz,0,—ky)
= ithU)\p(q)rF’VpM( - k2 a,— kl) = 7~SF’MV’

FIG. 4. Amplitudes contributing to the reactien v—W™ y. 6.11)

and where contraction over the polarization tens@g, and
P, is implied. In the last step of Eq6.11), we have used
Se= 9w Me — (P2 (1+ yo)u(py). 6.3 the fact that thd ™™ part of the vertex, defined in E¢4.12),
2\/_ Mw vanishes when contracted with the polarization tensors.
Next, following arguments analogous to the QCD case, it
Clearly, one has the EWI is straightforward to show that any dependence on the four-
vector 7, and the parameten? vanishes, and that finally
a.V{=MwSg. (6.9 ImM takes on the form
The amplitudeZ; can then be written down in the closed |mM=—(T§+7;)WQW(|(1)(7§+7;):V
form
=(TS+ DM (TLH D)},
Tou(&0) =1V PA GV P(a)T 700 +iSD (@)1 78 "
65 (TF+T)“” K 1(TF+T)
(Ew) () — 2_ 2 w-wt
where Do (@M="~ &uMw), = Ty — ImME+ ImAMP., 6.12
eI‘VW( kz,q, k,) is the tree-levely W~ W™ vertex, and
r VG =eMyg,, is the tree-levelyG" W™ vertex. In the  The absorptive subamplitude Jm? consists of three terms:
expreSS|or(6 5), we explicitly display the dependence on the
GFP¢, . In addition, the amplitudd; is given by IMMA=TETEX +(TE T + TT5*) + TTY
—ImAga A7 a “7a
- iegw_( e | 1 o =ImM i+ ImM 5+ImM 3. (6.13
= v —y5)——y"Uu .
t 22 P2)y Vs Y uip

P1—Kko—me The first term ImM 2 can easily be identified with a propa-
(6.6 gatorlike contribution. In particular, using E@.25), we find

Note that7}"" does not depend o0&, . Denoting byk, the Im M 2=e2V PU (o) - 892t**(q)

four-momentum of th&V and byk, that of the photon, Eq. ! Loen

(6.1) becomes +4(ki—kp)#(Ky—kp) U n (Q)V}. (6.19
ImMM=1T,,Q""(ky)P"(ky, )T}, , (6.7 The amplitudes I\ & and ImM § are vertex- and boxlike

contributions, respectlvely, and they will not be considered
where P#” is the photon polarization tensor given in EQ. any further here.
(4.11), and We must now isolate the corresponding propagatorlike

Kk piece from Im\UP. It is easy to find the relation

wrk)=—g""t — 6.8 . .
Q"o 9 M ©9 k’lLTs,Fw_ IeVLV_IeVL}xU}\p(q)[(kl_k2)pk21/
is the W polarization tensor. The polarization tensor —2M \2ng1/]' (6.19

Q*”(k) shares the property that, on shell, i.e., k8&=M S\,
k*Q,,(k)=0. Furthermore, in Eq(6.7), we omit the inte-
gration measure 1f21X| ps.

First, we will show how the dependence on the GFP kAT, =ieV,,+M €0wMe— 1+
cancels. To that end, we employ the usual decomposition tuy = Ly W \/_ Wv(pZ)( 7s)

In addition, we evaluate the EWI

q qv 1
Agm(@=U,(@)- D@, (6.9 X ——————y,u(py)
M p1—Ko—me

the EWI —ieV,,+MyL,, (6.16
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by means of a doubly subtracted DR given in E}.7).

e(p1) y(ks), v ~ 5 Furthermore, we have to assume a fictitious photon mass
1 i ., in order to regulate the infraredR) divergences. More
€ ko= + Mw - e explicitly, the DR of our interest reads
———NAN ——L -
7(p2) W (k1) p w- G- Rd’—\l ¥V’R(S) — Rd:[ ¥V(S)

—(g—M 2 W 2N _ W 2
(2) (b) (c) (s—M )ReIT" (M) —RellT(M )

o (s=My)?
= lim lim ——~p
FIG. 5. Elementary BRS identity for tredependent amplitude Amoepy—0 T
v ~
T! jA ds’ImHW(S’) 6.2
which is shown diagrammatically in Fig. 5. Adding Egs. (MW+#y)2(S'—M\2,V)2(S'—S)' 6.22

(6.19 and(6.16) by parts, we obtain .
_ . , To obtain the analytic form of R&}"R(s), we first evaluate
k/f(Tg_'—?;)MV:_IeVL)\U p(q)[(kl_kZ)pKZV_ZM ngv] the integrals

+MyL, (6.17 [ 1
Fo(s)=(s—M )PJ ds'— -
and after a straightforward calculation, we eventually arrive w My+ry)?  (8"=M W(s' —s)
"’“ _(Is=M3
Ime: —evapUp”(Q) =—In W y (623
X[AM 38,0, + 2(ks = k) u(ky — ko) ,JU™N (@) Vi L[ 1 M2,
Fi(s)=(s—M Pf ds’ —
—2ieMy[V, UP(9) L} = LU™NQ VL] - L7L (= OTMWP 2 M) s
=ImM 2+ ImM 5+ 1mAT 5. (6.18 __M\z,v (|S—M§\,|)_( _M\z,\,)ln My
— —~ S 2M S 2 ’
Adding the two propagatorlike parts Il § and Ikal’ Wity Hy
from Eqgs.(6.14) and(6.18), respectively, we find (6.24
MM, =ImM 2+ ImAL 0 2 o[ : 1 M
1 1 1 FZ(S):(S_M W)P ds r_ 2 r_ 2
2/ p 24uy 2 v My+u)?  (8"=My)(s'=s) s
=e“V{U,.(Q)[ —8g°t*’(q) —4M yg*
+2(ky — ko) “(ky—kp) U (@V . (6.19 M, ('S_MGV') In MW)+1 M
- - v . . =——In| ——— -,
17 Ko 17 Ko A L 2 2MWM7 2/J«y s
Next, we carry out the phase-space integration over (6.29

1/2fd X ps, using the formulas given in EqE3.5) and(3.6),
and the fact thak (g% M 2,,0)=q?—M 3,>0. In this way, Armed with the integrals defined in Eq&.23—(6.25, one

we have then obtains
- SW - 1 4 1
IlivapUp”(Q)lmHYI,\IyU )\(q)VL)\, (6.20 Rd_[¥—v(8) (S M W)( Fot = 3 Fi+= 3 Fz)
with (6.26
ImHW (@)= Imil ( 2y W(q)+|ml'[ (qz)/w(q) Equation(6.26) coincides with the PTW-boson self-energy

[8] or equivalently, with theN-boson self-energy computed
~ dom , in the BFG forég=1 [17].
ImIIT(g%) = T(qz_ M )
VII. CUTKOSKY CONSIDERATIONS

In this section, we focus on the LHS of the OT and
present a different point of view and a self-consistency
5 A check. In particular, we consider the one-lodBmatrix ele-

~ W, o Qem o 9 2My My, ment for a given process and compute its imaginary part by
ImIL7(q%) = T(q ~Mw| - o2 + g ) direct application of the Cutkosky rules. The expressions so

(6.21 obtained consist of the product of the tree-level amplitudes,
with the important difference that now “unphysical” de-

Here, aem=e%(4) is the electromagnetic fine structure grees of freedom appear as intermediate states, giving, in
constant. The real part of the transverse, on-shell renormayrn, rise to “unphysical” thresholds. These tree-level am-
ized, W-boson self-energy, Ffé R(s), can be determined plitudes are related by EWI's. We show that, when fully

X

11 4|v|W M4
"33 T3t
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exploited, these EWI's give rise to propagator-, vertex-, and . H{px) e "
boxlike expressions, which contain physical thresholds only, . ‘
whereas all the unphysical thresholds disappear completely.
The expressions so derived are identical to the imaginary
parts of the corresponding PT Green'’s functions, which one
can obtain directly from th& matrix. Also, both real and
imaginary parts are related via a DR, as has been discussed
in Sec. Il.

For the rest of this section, we focus on the particular
processlv,—W™H, corresponding to the virtual process N H € H
W—WH. We choose this process since it captures all the w- G- -
crucial field-theoretical features involved, without being ex- R
cessively cumbersome from the calculational point of view. Ny Ny
In addition, by treating a process other than the technically ; o 5 -
more involvede™ v—e™ v of the previous section, we want
to emphasize the general validity of our method. A lengthier (b)
but straightforward calculation can convince the reader that
one arrives at precisely the same physical conclusions alsoin . H e H
the case of the virtudaV— Wy process, or any other process
for that matter. e e

For the processy—W™ (p)H(py), we have in an arbi-
trary £ gauge 7 W~ u

U
§
%

P —o _to. 19w () (@)
W\/T(a)“:T<b)+ ZM SR- (71)

o » FIG. 6. Graphs contributing to the amplitudags),, T{d,
ST =TE- g 72 To andle.
w w

~ NG — 2_ap2
We will carry out an explicit calculation of the W, of the Agu(P)=2m Q,,(P) 0. (P°—My)

processev,— ev, at the one-loop electroweak order, work-

ing on the LHS of the OT. To simplify the algebra, we will _ PuPy Pubr s (02— em2)
assume that only th&/ andH particles can come kinemati- M2 Ot p* w
cally on the mass shell, as shown in Fig. 6. In what follows,
we omit the common integration measure of the loop, = PuPy~
J P =0, (p-25DP(mp), (79

1[2(2m)*]fd*pd*py 8 (py+p—pe—p,). Then, the ab- M &
sorptive amplitude I for the aforementioned process
may be written agsuppressing contraction over Lorentz iN- \where theW-boson polar|zat|on tensa@,,,(p) is given in

dices, and using the on-shell conditionp?=M 3 Eq. (6.8 and 8, (p?>—M?) = 5(p?— M2)0(p°) After identi-

p’=M{) fying the PT pieceTp= —ig9,,Sg/(2My), which is obtained
B B N from Eq. (7.2) each time thep*p’-dependent part oA {),
IMM=Aon(P[T AL (TG +TEDE(p) T gets contracted witlT (J, we observe that the imaginary

propagatorlike part may be decomposed as

+TE§;A §)(p)T(§)* (a)A(f)(p)T(‘f)*
(phys
+TEDPPTE +TED LT ImM, = ImM P + 5, (7.7
FTEAPETE+TEDE@TE L 73 where
where the tilde acting on the tree-level propagators simply ImM (1phyS>:ZOH(pH)(27T) 5, (p?—M2)

projects out the corresponding absorptive parts. Such a pro-

jection can effectively be obtained by applying the Cutkosky , © p”
rules. More explicitly, we have <a uQ“ (p)T(a)t +Tp My

~ o

Aou(Pr) =278, (PG—MB), (7.4 S TR VO 79

(a)\ M

D O (p)=2m78,(p?—EM2Z), (7.9 and
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p p - 1 (o0 (o0 o0 o0
SMy=—Rou(pu)D £(p)| T (), T(a)u T T 'lizzf dXups(— T Ty + Tl T o)
(7.12
py (&) p)\ * * . . . .
+Tp My av T Tany My Te+TpTE|. (7.9  where the indexa; (b;) denotes the first graph in Fig(#

6(b), and the superscript” means that the internal tree-
level W propagators are in the unitary gauge.

This is precisely what one would obtain from the straight-
forward computation of the imaginary part of the one-loop
PT WW self-energy, presented [8]. The expression for the
GFP-independent propagatorlike part/ef, My, in terms of
the PTWW self-energy 1,,(q), is given by

In the first term Init P we have collected all contribu—
tions originating from the physical poles ptﬁ' M 2 5 and
p?=M§,, whereas all those occurring pf=¢M § and are
proportional toD §)(p) are included iNSM.

The first important observation is thﬁt/\/l1=0, which
can be shown with the help of the EWI in E@..1). So, the
fullexploitation of this WI gives rise to a propagatorlike /\A/lleLoU”“(Q)ﬁW(Q)UVP(Q)VLP- (7.13
imaginary part where all unphysical thresholds have been
canceled. In addition, with the help of the same WI, weThe Higgs-dependent partﬁf

. call itf[ELHVW) is given by
obtain, for ImM P9, [29]

n

~ ~ 1 ~
|mM1:|mM<lphyS>=§f dXups(—TETE +TETE"). H;1W>(q)=wawfwl(q,k)
(7.10

X[(2k+0),(2k+0),—4M §g,., ],
We must now demonstrate that the final dependencé& on (7.14
cancels in the above equation. Note that even though we use ’
the on-shell conditionp®=M §, andpf=M 7, the ampli-  where a,,=g2/(4) is the SU(2) fine structure constant
tudesT in the last equation araot really “on shell,” be-  and
cause they araot contracted by the corresponding polariza-
tion vectors; therefore, thé cancellation is not immediate. 1(q,k) = 1
To verify the cancellation, we must employ the identity of 9 (K2—M[(k+g)2-M3]
Eq. (6.9 to decompose the internal tree-leVElpropagators,
and the WI's, which relate the tree-level vertices involved:It is now easy to see that the imaginary partH)fLHW) is

(7.15

ie., indeed equal to Eq7.12). This can be verified by an explicit
application of the Cutkosky rules on the expression in the
b HWIW _ FHW ¢ 9w 9w M RHS of Eq.(7.14. Actually, this amounts to determining
a4 o 2 MwPy, where the logarithmic terms, which are obtained after the
integration over the virtual momenta, turn negative. One
e HG W hete- 19w, o could then compare that result with the result we will obtain
q'To, =—Mul'g T M- (7.1 after integrating Eq(7.1) over the phase-space integral given
above. To that end, we must make use of the fact that the
Thus, the final expression can be cast into the form typical integral over the Feynman parameter

d"k
Im[fl(z ) ml(q, )} 167 zlm{f dxIn[M Zx+M 3,(1—x)—g?x(1— x)]}

0la°— (My+My)?] 1
= 87?2 AN2A2RME MG = Ef dXps. (7.19

The above relation gives an explicit connection between Cutene-loop PTW self-energy, obtained by the ususmatrix
kosky rules and the two-body LIPS given in E®.5. As  PT rules. The two analytic results have turned out to be
has been discussed in Sec. Il, the analytic continuation of thielentical. We can, therefore, conclude that the PT Green’s
logarithmic function in the RHS of Eq(7.16) is uniquely  functions, contrary to their conventional counterparts,
determined via the prescripti®-s+ie. satisfy individually the OT. We consider that a crucial point

It is important to emphasize the conclusions of thisfor the success of our resummation algorithm. In addition,
section: We have proceeded in two different ways.the above analysis demonstrates that one can work freely on
First, we have calculated the propagatorlike imaginary pareither side of the OT and arrive at a unique result, just by
by applying the Cutkosky rule, and exploiting the tree-levelfollowing the same rules, i.e., by fully exploiting the EWI's
EWI's. Then, we have computed the imaginary part of theof the theory.
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W+ a+
N }{_ - N }1‘ -
(a) (b)

Lol ¢l
e.f e e e
'\ / 5 S
- }{_ . ~. }{_ -

(e) (d)

FIG. 7. WH contributions toIl %’:XW [(@,(b)] and HE‘:b+
[(©),(d)].

VIIl. THE BACKGROUND FIELD GAUGE

The formulation of non-Abelian gauge field theories in
the framework of the BFG endows timepoint functions ob-
tained from the generating functional with a number of char-

acteristic properties. Most remarkably, the BRGpoint

functions satisfy theéree-levelW!'s, to all orders in pertur-
bation theory. This fact is to be contrasted with the Slavnov-
Taylor identities of the conventional covariant formulation,

where the tree-level WI are spoiled by the appearance of

5329

1(g,k)—

(@=giM 5{ “Gutyz w2, o k)}

(b)—g—w<2k+q>ﬂ<2k+q> lo(a.K),

(8.3
from which follows that

(@ =giM§

- [adiid
gw+—2—MW)I(q,k)+—T4MW

X[(2k+q) .(2k+ Q)V—4kﬂku]|o(q,k)}

(8.9

IL,,(q)+1I15,(9),
where 11

v cCONtains only physical thresholds, at
2—(MW+ My)?, Whereai'l , contains unphysical thresh-
olds atg?= \/%M wtMp?2. S|m|larly, from Figs. Tc) and
7(d), we calculate

“ghost” Green’s function, as soon as quantum corrections

are introduced. On the other hand, the Bi~@oint functions

display, in general, a residual dependence on the quantum
GFP &5, which is used to “gauge fix” the gauge fields
inside the quantum loops. As we will show in this section,

k K,
(©)=950°q” (—gw Mz )I(q k) — |Q(q,k) ,
(8.5
g2
(d)=7 <Ma EqM 32 o(a,k), (8.6
and so
2
Q<HW>(q)=gﬁv{(,?,,kz) —g?|1(q,k)
w
(Mi—EM 32 (gk)?
S v s v GRS
=Q(q) +Q(q). 8.7)

the functional dependence of the BFG two-point functions

on &g is such that it leads to the appearanceunphysical
thresholds at g%= £oM2.

What is rather strlklng in this context is the following
observation. Consider a BFG two-point function computed at
. Let us then separate it into

one loop at some arbitrarg,
two parts: the part that has only physical thresholds
=M?) and the part that has unphysical thresholds

q°=£oM?). Interestingly enough, one finds that each part

satisfiesseparatelythe correct tree-level WI.
Defining I as

1
Wk+9)2—M 7]

lo(a.k) = (8.)

(K= &M
and using the identity

1-& 1 1 1
(K=M{KP—EMG) MG K-MG K2—gM G|’
(8.2

we have, for the Feynman diagrant® and (b) in Fig. 7
(loop integration,fd"k/i (2)", implied),

It is elementary to check that up to irrelevant tadpole terms,
the following WI's hold:

9*q"I1,,(q) — M 2.0(q)=0 (8.9

an

a“q"TL 2,(0) —M {Q%(q) =0. 8.9
It is worth noticing that the tree-level WI's, Eq§3.8) and

(8.9, areindividually satisfied by the contributions having
physical and gauge-dependent unphysical thresholds, respec-
tively. This property is not an accidental feature of the spe-
cific example considered above, but, as we will argue in a
moment, it must be valid for any individual contribution to

an analytic two-point correlation function. On the other
hand, it is obvious that neithdd nor II° can be obtained
from a specific choice of thég value. An exception to this

is the valueéo=1. In this gauge, the physical and unphysi-
cal sectors are not distinguishable. If we impose the con-
straint of the absence of unphysical thresholds in the BFG, a
property which is always preserved within the PT framework
[4], then the two-point correlation functions of the PT and
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the BFG foréy=1 have to coincide at one loop. This feature veniencg, captures the running of the coupling, exactly as

should also hold true for ali-point functions at one loop.  happens in QED. To be specific, setting

__In the following, we argue that the reason which forces R R

I1,.,(q) andII $,(q) to satisfy individually the same treelike di(9?)=[g*+ 11 (g%)] 71, 9.1

WI's as those of the fullll,,(q), is the analyticity of

I1,,(q). In fact, it is sufficient to show that atone loop, then the combination

ImII,,,(q)=ImIl,,(q)#0 for a finite domain ofg® (for . o

éo#1). Then, Eq(8.8) will be valid for the finite kinematic D1(9%)=g°d1(q°) (9.2

region and will also hold true for ang?, since Inil,, is

analytic. That RHEl,, will also satisfy Eq(8.8) is guaranteed

through a DR. Finally, it is evident that J J

I1 Sv(q)zﬂw(q)—ﬂw(q) will obey the same WI8.9). (,u—+g,31—
To give a specific example, let us consider the absorptive Ip 99

part of theWW self-energy in the BFG at one loop, in which

only theWy contributions are considered. It is clear that, for

the finite domainM §,<g<min[&oM &, (Mw+M)?] (&

#1)JmHM,,(q)=ImHE]VW)(q). The latter leads to the fact

that'HE]VV")(q) satisfies Eq(8.8) independently, for ang®. T, =S(p+q)-3(p) 9.4

Similar arguments can carry over to the other distinct thresh-

old contributions.

obeys the renormalization group equati®GE)

D1(q)=0, 9.3

where 8,=—bjas/(47). The reason for this is exactly the
same as in QED, namely, the fact that the PT vertex and
quark self-energy satisfy an Abelian, tree-level-type WI, i.e.,

or equivalently Zy=Z > whereZ, Z, are the gluon-field
and strong-coupling-constant renormalizations, respectively.
IX. ISSUES OF UNIQUENESS Let us now assume that the PT rearrangement, as de-
In this section, we will address issues related to thescribed in[4], works to higher orders in perturbation theory.
uniqueness of the PT rearrangement. We know that the P particular, let us assume that E§.3) holds to all orders

rearrangement gives rise to effective self-energld}, (er- of perturbation, i.e., for

tices (I'), and box graphsR), endowed with several char- n

acteristic properties. The question naturally arises whether B=— bl(ﬁ)+b2(ﬁ ﬁ) +}
these effective Green’s functions are unique. By “unique” Am Am Am

we mean, whether after the PT rearrangement has been com- 9.9
pleted, one could still define new Green’s functions, by mov-

ing GFP-independent terms around, in such a wagi)ake and

new Green'’s functions have the same properties with the old - - - ~

ones, and(ii) the above reshuffling does not change the 11(q?%) =113(q?) +1I5(g*) + - - - + 1 (g?) + -+, (9.6)
unique value of thé& matrix, order by order, in perturbation .

theory. wherell,, are one particle irreducible af-loop order and

In what follows, we will show a “mild” version of independent of the GFP. Note that the coefficidnisn Eq.
uniqueness, namely, that the one-loop PT effective Green’.5) are renormalization prescription dependent, fior2.

2
+.-+b,

functions are unique, provided the following is true. The first three coefficients for quarkless QCD are
(i) The PT procedure can be generalized to higher orders
in perturbation theory, as described[#. In particular, we 11 34 , 2857 ,
assume that effective GFP-independent Green’s functions b1=§CA’ b2=§CA’ by= 54 CA 9.7

can be constructed, satisfying the simple QED-like WI

known from the one-loop explicit constructions, and that the;nq have been evaluated in RéB4], [32], and[33], respec-
effective self-energies so constructed can be Dyson réyely. The values ob, andb, quoted above are renormal-

summed. Regarding the last point, the resummation algqation scheme independent, wheréashas been evaluated
rithm proposed if4] not only is inextricably connected to within the minimal subtractioiMS) schemd 34].

the fact that the PT self-energies do not shift the position of Substituting Eqs(9.5) and(9.6) into Eq.(9.3), and equat-
the pole[4], but has already passed another nontrivial CONjng powers ofg?, it is easy to obtain ’

sistency check30]; still, one has not conclusively shown its
validity for the most general of cases. J (6?)
(ii) The renormalization has been successfully carried out, Ua(97)
giving rise to UV-finite effective PT Green’s functions. This I
assumption is crucial, and is the main reason why we char-
acterize the uniqueness proved here as “mild.” Things maywith B,= —b,(as/4m)". Note that Eq.(9.8) is identical to
be different if one attempts the aforementioned reshufflinghe one obtained for the photon vacuum polarization in QED
before renormalization, but this will not concern us in the [35]. As happens in the QED case, for=1,2, the depen-
present work. R dence ofll, on the renormalization point is logarithmic,
It is known [7] that the PT self-energy in QCOJ(q?) whereas for n>2, higher powers of logarithms start
(the lower and upper indiceb andR are dropped for con- appearing.

n—1

=2p,q*+22, (1-K)Bn_iI1(a?), (9.8
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@ ment has already been completed. So, now all bubbles and
vertices in these graphs refer to the PT objects. The relevant
equations are

ﬁlﬁlz(ﬁl+ fl)(ﬁl+ fl):ﬁlﬁl+ 2].:.[1fl+f i,

(9.11
@ M,y = (M3 + £3) (T uy)
:ﬁlf‘1+f1f‘1+ U1ﬁ1+flul, (912
FIG. 8. PT resummation at two loops in QCD. T, = (T +uy)(Fy+uy) =41y + 2u, Ty + U2,
(9.13

Let us now assume that we were to change by hand the

value ofTl;, I'y, andBy, in such a way as to not change the Hereafter, the explicig? dependence of the functiorid,
value of theS matrix at one loop. So, we make the replace-H’ T, etc., will not be displayed for brevity. Omitting a com-

ments mon factor of (1¢%)3, we obtain, for the aforementioned
R A= A diagrams,
H1—>H15H1+f1, Fl—>FlEF1+U1, g
U, T.1L + 20211 T + g*T. T
By—B;=B+hy, (09 hihrzathliraiuly
wheref;, u;, andh; are, in principle, arbitraryunctionsof =ﬁ1ﬁ1+ 2q2ﬁ1f1+ q4f1f1—R, (9.19
g, subject to the constraint
with

f;+2q9%u;+q*h;=0, (9.10
— 2 2
which guarantees that the value of tBematrix does not R=(fitqiuylelly+2l+ (fatafuy]. (919
change at one loop, after the substitution given in @).
The functionsf 1, u;, andh; do not depend on the gauge-
fixing parameter, and are UV and IR finite. Therefore, the
do not depend on the renormalization pointviz.,

At one loop, the new effective char@bl satisfies the correct
yRGE. In particular, sincéf/du=0 by assumption, we have
that

of, aup dhy o, a(TI,+fy) ,
PRI Kop M op A (018

In the case of QCD, the only physical choice forwould be  \yhich is what Eq(9.9) yields forn=1.

f1=Cq? whereC is a numerical constant, since the only  According to the method ifi4], the propagatorlike parts
available mass scale &. In other_ words, sincé doezs not  of R must be allotted tdI,. The second term in EG9.19 is
depend oru, we cannot have ratios of momertd/ u%. At process dependent, since it is proportional'{o This term
the same time, one does not want to use the mass of thg 4 be given to the two-loop vertex or box graphs. In any
external fermions, since that would convélf to a process- case, as we will see, this will make no difference in our
dependent quantity. Moreover, the RGE in £§.8) would analysis. Butll, has already been converted inﬁ%, be-

then be modified by thg: dependence of the running quark case we assumed that the PT procedure has been completed.
masses. For the sake of argument, let us, however, assume . tore Il must be defined as
w12

that one uses a “universal” mass scdlg,, such as the
Planck mass, or some combination involving the sum of all
quark masses. Sé; may contain ratios 0f%/M 5.2 For ex-
ample, f, could be of the formf,=qg%exp(—g¥M ). How- _ _
ever, it is important to emphasize thdt, shouldnot depend whereRg is the prgpagatorllke part d&,. g\fter .aII appro-
on u, i.e., dM,/au=0. priate powers of J“ have been restore® is given by
Returning to the uniqueness issue, since the PT self-
energies can be Dyson summie, one should impose the
same property on their new counterparts. Therefore, follow-
ing the method developed ip4], a string of the form
I1,(1/9)I1; must be converted tbl;(1/g%)I1;. To accom- where the ellipses denote the optional inclusion of the third
plish this, one must provide the appropriate combinationgerm in Eq.(9.15, which is irrelevant for what follows, be-
involving the functionsf,, u;, and h;, just as we had to cause it isu independent.
provide the missing pinch parts in going frokhy (1/g%)11, It is now clear thatll, fails to satisfy the correct RGE,
to I1,(1/g?) 11, (see[4]). To see this in detail, we return to since itsu dependence is not in compliance with the result
the diagrams of Fig. 8, and assume that the PT rearrangeleduced from Eq(9.8) for n=2. In particular, we have

I,=11,+RY, (9.17

2 “
Rg:?(f1+q2U1)H1+"', (9.18
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Again, in order to be as general as possible, we assume
that one can reshuffle the second order PT Green’s functions,

without affecting the value of th& matrix to that order. In
other words, we allow the additional substitutions

Q

H2—>H2 H2+ f2,

f‘zﬁ’fzzf‘z'i‘ uo,

¢ B,—B,=B,+h,, (9.22
(2) (b) (© () _
with

f,+29%u,+q*h,=0. (9.23
Of course, the proof becomes easier if we assume
f,=u,=h,=0, but we do not have to. We will need the
following algebraic relations:

3= (11, + f,)3=113+3112f,+ 311, 2+ 3, (9.29

H—(H+f)(H+f)HH+Hf+Hf+ff,
1412 1 1 2 1412 2 2l1 2
(e) () (g) (923

FIG. 9. PT resummation at three loops in QCD. ~ ~ ~ ~ ~ A ~ ~
p Q H1F2:(Hl+fl)(rz+ u2)2H1F2+Hlu2+le2+flu21

0l (9.26
all, J H+ (f +q )H
p—— = u ~~ - . L. .
T T = (1T £2) (P ) = Flfy + oy + £+ Faus
9.2
=2B,0%+4B1(f1+0%u;) #28,0%  (9.19 (9.27

So, in order to reconcile Dyson summation and the correct 113T1= (113 + )3T +up) =TI5T; +ug 115+ 2f 0y
RGE behavior to the next order, we must impose the addi- ~ o -
tional constraint that + 263y + £ 0+ F fuy, (9.28

f1+q2U1:O. (92@ ﬁl’fi:(ﬂl'f'fl)(fl'f'ul)z
Combining this together with Eq(9.10, we find that

h,=—u,/q* Thus, the entire expression fBrin Eq. (9.15
vanishes, and Eq9.14) becomes

— LT 2+ u M1, + 2u, [T,T + £,12

+2fu, 0y + fu?, (9.29
ﬁlﬁl+ 2q21:[1f‘1+ q4flfl:ﬁlﬁl+ 2q2ﬁlfl+ q4f1fl. —_ N ~ ~ A N N
(92:0 1—‘1F2: (F1+ Ul)(F2+ Uz) = F1F2+ U2F1+ U1F2+ U1U2 .
(9.30

It appears at this point that we have succeeded in imple-
menting the substitution given in ER.9), without compro- Using the above formulas, the crucial constraint of Eg.
mising any of the PT properties, at the seemingly modes(9.20, and remembering that the graphs of the Figs)9
expense of imposing ofy andu; the additional constraint 9(e) and 9g) must be multiplied by a factor of 2, which takes
given in EQ.(9.20. However, as we will see in a moment, account of the symmetri¢émirror-image graphs, we have
Eq. (9.20 is very crucial, because it actually guarantees thehat the original set of graphs, cal [we factor out a factor
unigueness of our gauge-invariant resummation mefdgd  (1/9%)* ]
at one loop.

To make this explicit, we proceed to the next order in j— H3+2q2(H1H2+H1F1)+q4(2H1F2+ 2H2F1+H1 2)
perturbation theory. The situation may be slightly more cum-

bersome calculationally, but the conceptual issues are the +2q61“1l“2 (9.3)
same. By converting the old strings into new strings, we pick
up additional terms, which, when aIIotted]ftg will invali- and the new one, sayl which is obtained by replacing all

date the RGE thdil; is expected to satisfy, i.e., E(.8) for ~ quantities with carets in Eq9.31) by “tilded” ones, are
n=3, unless a further constraint is imposedfgnTo deter-  related by

mine that constraint, we focus on the three-loop diagrams o

shown in Fig. 9. A=A—Rg, 9.32
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whereR; is given by the explicit one-loop analysis. We further assume that the

N . A . renormalization program has been carried out to all orders.

Ra=f1I15+202(f,+ q?up) I +29%f 11,1y + g*f, T Thus, all Green’s functions with carets appearing here are

4 B UV finite. So far, the renormalization scheme chosen has
+2q°(fo+a%up)ly. (933 peen left unspecified. Because of H§.9), the effect of

: : adopting different renormalization-scheme choices will be to
Clearly, the first two terms in E¢9.33 must be allotted to modify the values ob, , for n>2. However, within a spe-

115, thus corlyertlpg ittdls. The res'F (?f the terms cannot be cific renormalization scheme, the valueshgfare fixed, and
absorbed by, since they are explicitly process dependent s is what we have implicitly assumed.

because they contaili;. Therefore, the remaining terms  The resummation formalism discussed for the case of
must be distributed among the two-loop vertex and/or boxyang-Mills theories such as QCD can equally carry over to
graphs. So, after all powers ofqf/ are restored, the propa- SSB models such as the SM. In the SM,andZ bosons are

gatorlike partR§ of R; reads considered to be unstable gauge particles. In the case of the
W boson, a RGE similar to E¢9.8) will hold for the leading
Rp:f_lﬁ 2, E(f +q2u )ﬁ (9.34) logarithmic part of the transversg/-boson self-energy.
STgttt g2 27 Again, one can form the RGE-invariant combination involv-

ing the W-boson Green'’s function
and so

i - 2r~2_ a2 TW, 2v7—1
I3=TI;3+R3. (9.35 9wla° =M+ (g%)]

It is now important to observe that, because of the parAnalogously with Eq(9.4), one can derive a similar relation

ticular structure ofR2, the RGE satisfied byl will be ~ Petween the weak-coupling-constant renormalizatiy),

modified. Indeed, from E¢(9.8), we derive, fom=3, and the wave-function renormalization of tié bosonZy,
. i.e.,Zy =Z"* Hence, one can show the uniqueness of this
oll, . W, . . -
3 _98.02—28.11 9.3 expression by following a line o_f arguments _S|m|lar to the
" A Aallz (0-39 case of QCD. Furthermore, possible modifications of the lon-

A o~ gitudinal part of théN-boson self-energ;lj[‘,f", will result in
and after the substitutioll;—1I;, we must have direct violations of the tree-level WI's, which govern the

i gauge invariance of the classical action.
3

Mﬂ =239~ 2pB411,. (9.37
X. CONCLUSIONS
Subtracting the last two equations by parts, we obtain We have presented a formalism for resummation of off-
shell two-point correlation functions, which relies entirely on
d ~ A ~ - arguments of analyticity, unitarity, gauge invariance, and
M@(Hs—ﬂs)z—ZEl(Hz—Hz)=—2,31f2- multiplicative renormalization. In addition, several crucial
(9.3  aspects of the GFP-independent resummation approach pre-
sented in[4] have been clarified. Specifically, we have
Instead, from Eqs(9.34 and(9.35, we find shown that unitarity requires the absence of unphysical
) thresholds for the resummed Green’s functions at the quan-
Jd ~ =~ JR3 1 = tum loop level. Within the PT resummation approach this
“@mfn@:ﬂﬂ: ?31H1+4B1(f2+q2u2). property is satisfied, since the effective gauge-invariant
(9.39 Green's functions are directly derived fro@rmatrix ele-
R ments, with the only additional inputs being the use of el-
Given the fact thall, depends explicitly o, in order to  ementary tree-level WI's and analyticity.
reconcile Eqs(9.38 and(9.39 one must necessarily choose  This is, however, not true in other approaches. For in-
f;=0. Thus, the only possible solution for the set of substi-stance, we have explicitly shown thég-dependent unphysi-
tutions described in Eq(9.9) is the trivial one, i.e., cal thresholds appear in the BFG, even though the Green’s
f1=u,;=h;=0, which proves the uniqueness of the PT re-functions obey the same tree-level WI's as the PT Green’s
summation approach to one loop, after renormalization.  functions. For the very specific value =1, the results of
After settingf,=0, we must impose the additional con- BFG and PT coincide to one loop, as this is the only gauge
straint 3,+2qg%u,=0, in order that Eqs(9.38 and(9.39 that avoids unphysical propagator poles. The situation may
become equal. Evidently, the same arguments presentathange in higher orders. Furthermore, we have found that the
above must be repeated to the next order, which will finallyBFG Green’s functions can be decomposed into two parts,
determine the value df,; we will not pursue this issue any one containing only physical poles and the other containing
further here. Instead, we add some further clarifications re¢y-dependent unphysical thresholds, whisgparatelysat-
garding the assumptions made in the previous proof of thésfy the same WI's as the total BFG Green’s functions.
one-loop uniqueness of the PT resummation formalism. As Furthermore, we have addressed issues of gauge invari-
emphasized at the beginning of this section, we assume thance by resorting to the BRS symmetries at the one-loop
the PT can be extended to higher orders, giving rise to effecquantum level. We have explicitly demonstrated that the PT
tive Green's function with all the characteristics known from two-point correlation function may be obtained from its ab-
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sorptive part through a DR. The absorptive part of the PTto argue that some deeper underlying principle is in effect,
Green’s functions can equally well be calculated from thewhich has yet to be discovered. Here, we wish to point out
optical relation of the anti-Hermitian part of the transition two possibly relevant directions in such a quest. First, there
amplitude. As a result of this, we have also been able tgs a interesting recent result of “stringy” origif86], which
identify the pinching parts of the PT algorithm, as thoseseems to single out the one-loop BFG Green'’s functions for
terms that quantify the deviation from the intrinsic BRS sym-ihe special value of=1, which are, of course, identical to
metries. Most importantly, we have been able to show howhe PT Green’s functions. This observation makes the ques-
gauge invariance is restored, within the PT framework, bytion of whether the correspondence between the PT and the
reinforcing BRS symmetries inside the quantum loops.  BFG at£,=1 persists beyond one loop even more pressing.
In Sec. IX, we have examined the issue of “uniqueness”second, one should investigate possible connections between
of the gauge-invariant resummation approach proposed ithe PT and the Vilkovisky-DeWitt formalisri37]. In par-
[4]. In the context of QCD, we have focused on the mostjcular, the gauge-invariant and GFP-independent Green’s
basic RGE-invariant quantity involving the PT two-point functions obtained from the Vilkovisky-DeWitt effective ac-
correlation function, namely, the effectieunning strong  tion must be compared with their PT counterparts, establish-

coupling. By means of a three-loop analysis, we have showihg the origin and the physical significance of any possible
that, at one loop, the PT resummation method gives rise t@ifference between them.

unique results. We have also briefly outlined how these con-
siderations can be naturally extended to spontaneously bro-
ken gauge theories.

Considering the fact that all the basic field-theoretical re-
quirements imposed thus far are preserved within the PT The authors thank J. D. Bjorken, H.-M. Chan, J. M. Corn-
resummation approach that was introduced4hand was wall, G. Gounaris, E. Kiritsis, C. Kounnas, E. de Rafael, G.
further analyzed in the present paper, one might be temptédeneziano, and N. J. Watson for several useful discussions.
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