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Gauge-invariant resummation formalism for two-point correlation functions
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The consistent description of unstable particles, renormalons, or other Schwinger-Dyson-type solutions
within the framework of perturbative gauge field theories necessitates the definition and resummation of
off-shell Green’s functions, which must respect several crucial physical requirements. A formalism is presented
for resummation of off-shell two-point correlation functions, which is mainly based on arguments of analyt-
icity, unitarity, gauge invariance, and renormalizability. The analytic results obtained with various methods,
including the background field gauges and the pinch technique, are confronted with the physical requirements
imposed; to one-loop order the pinch technique approach satisfies all of them. Using renormalization group
arguments, we discuss the issues of the uniqueness of the resummation procedure related to the latter method.
@S0556-2821~96!02120-0#
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I. INTRODUCTION

It is well known that in non-Abelian gauge theories ind
vidual off-shell Green’s functions are, in general, plagu
with various pathologies, such as gauge dependences,
high-energy behavior, or lack of renormalizability, which
strictly speaking, render them void of any physical meanin
To the extend that the physical issues at hand can be d
with within the confines of conventional perturbation theor
the aforementioned pathologies pose no real problem.
deed, when combined together to form observables, the
dividually pathological Green’s functions conspire in such
way as to give a physically meaningful answer, order
order, in perturbation theory. A classic example of the sub
cancellation mechanisms in effect is the computation of ele
troweakS-matrix elements in the unitary gauge; there, ev
though the conventional two-, three-, and four-point fun
tions are not even renormalizable, the finalS-matrix element
turns out to be well defined.

There is, however, a plethora of physically importa
questions, which cannot be treated in the framework of co
ventional perturbation theory. In quantum chromodynam
~QCD! for example, the only known way to study in th
continuum phenomena, such as chiral symmetry breaking
gluon mass generation, is by means of the Schwinger-Dy
equations@1#. Here, the pathologies of the Green’s function
start playing a role. Indeed, the Schwinger-Dyson equatio
are built up by off-shell Green’s functions; if one could solv
these equations exactly, the Green’s functions obtain
would again conspire to yield physically meaningful an
swers. However, since the Schwinger-Dyson series con
tutes an infinite set of coupled nonlinear integral equations
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truncation is necessary, which, if carried out casually, m
give rise to physically meaningless answers, such as gau
dependent expressions for ostensibly gauge-independ
physical quantities.

Even though the need for a self-consistent scheme
constructing off-shell Green’s functions is more or less e
pected when dealing with a strongly coupled theory such
QCD, perhaps the most compelling physical circumstanc
advocating its necessity have been encountered in the c
text of a ‘‘weakly’’ coupled theory, namely, the electrowea
SU(2)L^U(1)Y model @2–4#. Indeed, the presence of un-
stable particles makes it impossible to compute physical a
plitudes for arbitrary values of the kinematic parameters, u
less a resummation has first taken place. Simply stat
perturbation theory breaks down in the vicinity of reso
nances, and information about the dynamics to ‘‘all orders
needs be encoded already at the level of Born amplitudes.
was already pointed out in@2#, if one attempts to naively
promote Veltman’s formalism for scalar theories@5# to the
case of gauge theories, one is invariably led to gross vio
tions of gauge invariance and unitarity. As explained in@4#,
resumming the conventional two-point function of a gaug
boson in order to construct a Breit-Wigner-type propagato
takes into account higher order corrections for only certa
parts of the Born amplitude, whereas crucial contribution
originating from box and vertex graphs are not include
properly. As a result, the subtle cancellation mechanism
luded to before, even though in reality is still in effect, ge
distorted by the casual resummation, resulting in artifac
which thwart the predictive power ofS-matrix perturbation
theory.

Given the subtle nature of the problem, the question na
rally arises, what set of physical criteria must be satisfied
a resummation algorithm, in order for it to qualify as ‘‘physi
cal.’’ In other words, what are the guiding principles, whic
will allow one to determine whether or not the resumme
quantity carries any physically meaningful information, an

:
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to what extent it captures the essential underlying dynami
To address these questions in this paper, we postulate a s
field-theoretical requirements that we consider crucial wh
attempting to define a proper resummed propagator. O
considerations propose an answer to the question of how
analytically continue the Lehmann–Symanzik-Zimmerma
~LSZ! formalism@6# in the off-shell region of Green’s func-
tions in a way which is manifestly gauge invariant and co
sistent with unitarity. In addition, we demonstrate that th
off-shell Green’s functions obtained by the pinch techniq
~PT! @7–10# satisfy all these requirements. In fact, these r
quirements are, in a way, inherent within the PT approach,
we will see in detail in what follows.

In particular, the following is required from an off-shell
one-particle irreducible~1PI!, effective two-point function.

~i! Resummability. The effective two-point functions mus
be resummable. For the conventionally defined two-po
functions, the resummability can be formally derived fro
the path integral. In theSmatrix PT approach, the resumma
bility of the effective two-point functions is more involved
and must be based on a careful analysis of the structure
theS-matrix to higher orders in perturbation theory@4#.

~ii ! Analyticity of the off-shell Green’s function. An ana-
lytic two-point function has the property that its real an
imaginary parts are related by a dispersion relation~DR!, up
to a maximum number of two subtractions. The latter is
necessary condition when considering renormalizab
Green’s functions, as we will discuss in Sec. II.

~iii ! Unitarity and the optical relation. In the conventional
framework, unitarity is defined only for on-shellS-matrix
elements, leading to the familiar optical theorem~OT! for the
forward scattering. Here, we postulate the validity of the o
tical relation for the off-shell Green’s function, when embe
ded in anS-matrix element, in a way which will become
clear in what follows. An important consequence of this r
quirement is that the imaginary part of the off-shell Green
function should not contain any unphysical thresholds. As
counterexample, in Sec. VII, it will be shown that this pa
thology is, in fact, induced by the quantum fields in th
background-field-gauge~BFG! method@11# for jQÞ1.

~iv! Gauge invariance. As has been mentioned above, on
has to require that the effective Green’s functions are gau
fixing parameter~GFP! independent and satisfy Ward iden
tities ~WI’s! in compliance with the classical action. For in
stance, the latter is guaranteed in the BFG method but not
former. This condition also guarantees that gauge invaria
does not get spoiled after Dyson summation of the GF
independent self-energies. In some of the recent literatu
the terms of gauge invariance and gauge independence h
been used for two different aspects. For example, in the B
the classical background fields respect gauge invariance
the classical action. However, this fact does not ensure t
the quantum fields respect some form of quantum gauge
variance, neither does imply that some kind of a Becc
Rouet-Stora~BRS! symmetry@12# is present for the fields
inside the quantum loops after fixing the gauge of the theo
@13,14#. In our discussion, when referring to gauge invar
ance, we will encompass both meanings, i.e., gauge inv
ance of the tree-level classical particles as well as BRS
variance of the quantum fields. A direct but nontrivia
consequence of the gauge invariance and of the Abelian-t
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WI’s that the effective off-shell Green’s functions satisfy is
that for large asymptotic momenta transfers (s→`) the self-
energy under construction must capture the running of th
gauge coupling, as it happens in quantum electrodynamic
~QED!. Because of the Abelian-type WI’s and on account of
resummation, the above argument can be generalized
n-point functions. In addition, the off-shelln-point transition
amplitudes should display the correct high-energy limit as is
dictated by the equivalence theorem@15#.

~v! Multiplicative renormalization. Since we are inter-
ested in renormalizable theories, i.e., theories containing op
erators of dimension no higher than four, the off-shell
Green’s functions calculated within an approach should ad
mit renormalization. However, this requirement alone is not
sufficient when resummation is considered. The appearanc
of a two-point function in the denominator of a resummed
propagator makes it unavoidable to demand that renorma
ization bemultiplicative; otherwise, the analytic expressions
will suffer from spurious ultraviolet~UV! divergences. Par-
ticular examples of the kind are some ghost-free gauges
such as the light cone or planar gauge@16#.

~vi! Position of the pole. Since the position of the pole is
the only gauge-invariant quantity that one can extract from
conventional self-energies, any acceptable resummation pr
cedure should give rise to an effective self-energies which d
not shift the position of the pole. This requirement drastically
reduces the arbitrariness in constructing an effective two
point correlation function.

A closer look at these requirements reveals that they are
in fact, very tightly interwoven; relaxing even one of them
could give rise to unphysical results, sometimes in rathe
subtle ways. As an example of the subtleties involved, we
investigate the BFG@11,17# in Sec. VIII. Despite the fact
that the background fields of the BFG obey the WI’s of the
classical Lagrangian, even after quantizing the theory, th
BFG expressions for the self-energies depend explicitly on
the quantum gauge parameterjQ ; in turn, in theories with
spontaneous symmetry breaking~SSB!, this dependence on
jQ gives rise tounphysicalthreshold channels forjQÞ1.
Obviously, such unphysical absorptive contributions should
not be resummed to all orders. In fact, we find that the sub
amplitudes containing physical Landau singularities, and
those which do not, satisfy the same BFG WI’s. Only the
case of BFG withjQ51 is free from unphysical poles, and
the results of the Green’s functions collapse to these of th
PT. Evidently, relaxing the requirement of GFP indepen-
dence, by allowingjQ to survive, interferes with unitarity in
a nontrivial way.

We now present a roadmap of our paper: In Sec. II, we
review the crucial properties of analyticity of two-point cor-
relation functions. We then derive some important conse
quences arising from dispersion relations~DR’s!, which
should be satisfied by a consistent analytic approach. Th
results of this analysis may also be applied to eliminate a
large degree of arbitrariness in defining off-shell transition
amplitudes. Issues of renormalization are also discussed.

In Sec. III, we discuss the roˆle of unitarity and OT and
elucidate their connection with gauge invariance. In Sec. IV
we show how to employ unitarity, analyticity, and elemen-
tary tree-level WI’s ~EWI’s!, in order to obtain a self-
consistent picture in the context of QCD. In particular, we
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work with the right-hand side~RHS! of the OT, where only
physical particles~no ghosts! appear as intermediate state
In Sec. V, we focus again on the same process as in
previous section and present a different~equivalent but non-
trivial! point of view. In particular, we start again from the
RHS of the OT and show how the unitarity of an on-she
transition amplitude and the BRS symmetry@12# of the quan-
tum action can be exploited to reinforce gauge invarian
and GFP independence for off-shell Green’s functions. In t
context of one-loop QCD, these properties rigorously pro
the independence of the PT on the gauge-fixing procedu

In Sec. VI, the analysis of Sec. V is extended to the ca
of the minimal standard model~SM!. We concentrate on a
charged process withnonconservedexternal currents and re-
sort again to the~slightly more involved! EWI’s. The propa-
gatorlike expression obtained by working with the RHS
the OT is then fed into a twice subtracted DR. The res
obtained is identical to the real part of the PTW-boson self-
energy, already known from previous considerations. Th
example convincingly demonstrates the combined power
unitarity and analyticity. In Sec. VII, we take a differen
point of view and work directly with the left-hand-side
~LHS! of the OT, where ‘‘unphysical’’ degrees of freedom
such as ghosts and would-be Goldstone bosons, appear
as intermediate states. Using the usual Cutkosky rules,
exploiting again the EWI’s of the theory to the fullest, w
arrive at the imaginary part of the PTW-boson self-energy.
This constitutes a highly nontrivial self-consistency chec
demonstrating that as long as one fully exploits the eleme
tary symmetries of the theory, one can work freely with e
ther side of the optical relation, arriving at the same phy
cally consistent results.

In Sec. VIII, we turn our attention to the BFG and sho
that the dependence of the resummed BFG two-point fu
tions on the ‘‘quantum’’ GFPjQ is far from innocuous, lead-
ing to the violation of unitarity, because of the appearance
unphysical thresholds. Furthermore, the physical and u
physical expressions are found to satisfy exactly the sa
tree-level WI’s. This fact demonstrates beyond any dou
that a combination of requirements need be imposed in or
to arrive at a physically reliable result. Indeed, satisfyin
external tree-level WI’s is a necessary but not sufficient r
quirement in this context.

In Sec. IX, we show under mild assumptions that the P
resummation gives rise to ‘‘unique’’ results. By ‘‘unique’
we mean that at the end of the PT rearrangement, and a
renormalization has been completed, no further pieces m
be moved around without leading to a violation of some
the physical properties characterizing the PT Green’s fu
tions. Here, we should mention that in the framework of th
S-matrix perturbation theory, the evaluation of anS-matrix
element or a gauge-invariant operator at a given order
loop expansion is not unique in general, in the sense that
analytic result depends on the renormalization prescript
used to remove the UV divergences. Of course, the summ
tion of all infinite perturbative contributions should formally
yield a unique result independent of the choice of renorm
ization. Furthermore, to a given order of perturbation theo
one can invoke the renormalization group equation~RGE! in
order to show that this uniqueness of the final express
gets spoiled by terms which are of higher order in the co
s.
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pling constants. The latter notion of RGE invariance is to b
adopted throughout this paper.

Finally, we present our conclusions in Sec. X.

II. ANALYTICITY AND RENORMALIZATION

Analyticity is one of the most important properties tha
govern physical transition amplitudes. Correlation function
are considered to be analytic in their kinematic variable
which is expressed by means of the so-called DR’s@18–20#.
In this section, we briefly review some important facts abo
DR’s and renormalization and discuss the subtleties enco
tered in non-Abelian gauge theories.

If a complex functionf (z) is analytic in the interior of
and upon a closed curveC↑ , say in Fig. 1, andx1 i« ~with
x,«P R and«.0) is a point within the closed curveC↑ , we
then have the Cauchy’s integral form

f ~x1 i«!5
1

2p i RC↑dz
f ~z!

z2x2 i«
, ~2.1!

where r denotes that the pathC↑ is singly wound. Using
Schwartz’s reflection principle, one also obtains

f ~x2 i«!52
1

2p i RC↓dz
f ~z!

z2x1 i«
. ~2.2!

Note thatC↑*5C↓ . Sometimes, an analytic function is called
holomorphic; both terms are equivalent for complex fun
tions.

Of significant importance in the discussion of physica
processes is a DR, which relates the imaginary part of
analytic function f (x) to its real part, and vice versa. We
assume for the moment that the analytic functionf (z) has
the asymptotic behavior,u f (z)u<C/Rk, for large radiiR as
shown in Fig. 1, whereC is a real non-negative constant an
k.0; this assumption will be relaxed later on, giving rise t
more involved DR. Taking now the limit«→0, it is easy to
evaluate Ref (x) through

FIG. 1. Contours of complex integration.
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2Ref ~x!5 ‘ ‘ lim
«→0

’’ @ f ~x1 i«!1 f * ~x2 i«!#

5 ‘ ‘ lim
«→0

’’
1

pE2`

1`

dx8ImS f ~x8!

x82x2 i« D1G` .

~2.3!

Here, ‘ ‘ lim«→0’’ means that the limit should be takenafter
the integration has been performed, and

G`5
1

p
lim
R→`

ReE
0

p

du f ~Reiu!. ~2.4!

Because of the assumed asymptotic behavior off (z) at in-
finity, the integral over the upper infinite semicircle in Fig. 1
G` , can be easily shown to vanish. Employing the we
known identity for distributions,

‘ ‘ lim
«→0

’’
1

x82x2 i«
5P

1

x82x
1 ipd~x82x!,

we arrive at the unsubtracted DR,

Ref ~x!5
1

p
PE

2`

1`

dx8
Imf ~x8!

x82x
. ~2.5!

In Eq. ~2.5! the symbol P in front of the integral stands fo
principle value integration. Following a similar line of argu
ments, one can express the imaginary part off (x) as an
integral over Ref (x).

In the previous derivation, the assumption thatu f (z)u ap-
proaches zero sufficiently fast at infinity has been cruci
since it guarantees thatG`→0. However, if we were to relax
this assumption, additional subtractions need be included
order to arrive at a finite expression. For instance, f
u f (z)u<CRk with k,1, it is sufficient to carry out a single
subtraction at a pointx5a. In this way, one has

Ref ~x!5Ref ~a!1
~x2a!

p
PE

2`

1`

dx8
Imf ~x8!

~x82a!~x82x!
.

~2.6!

From Eq. ~2.6! it is obvious that Ref (x) can entirely be
obtained from Imf (x), up to a unknown, real constan
Ref (a). Usually, the pointa is chosen in a way such tha
Ref (a) takes a specific value on account of some physic
requirement. For example, if Imf (q2) is the imaginary part
of the magnetic form factor of an electron with photon vi
tuality q2, one can prescribe that the physical conditio
Ref (0)50 should hold true in the Thomson limit.

We next focus on the study of some crucial analytic pro
erties of off-shell transition amplitudes within the context o
renormalizable field theories. In such theories, one is allow
to have at most two subtractions for a two-point correlatio
function. If P(s) is the self-energy function of a scalar par
ticle with massm and off-shell momentumq (s5q2), the
fermionic or vector case is analogous, then the real~or dis-
persive! part of this amplitude can be fully determined by it
imaginary~or absorptive! part via the expression
,
ll-

r
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in
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al

r-
n

p-
f
ed
n
-

s

ReP~s!5ReP~m2!1~s2m2!ReP8~m2!

1
~s2m2!2

p
PE

0

1`

ds8
ImP~s8!

~s82m2!2~s82s!
.

~2.7!

From Eq.~2.7! one can readily see that the two subtraction
ReP(m2) and the derivative ReP8(m2), correspond to the
mass and wave-function renormalization constants, resp
tively, in the on-mass shell~OS! scheme. At higher orders,
internal renormalizations of ImP(s), due to counterterms
~CT’s! coming from lower orders, should also be taken int
account. Then, Eq.~2.7! is still valid, i.e., it holds to order
n provided ImP(s) is renormalized to ordern21. In gen-
eral, the function ImP(s) has its support in the non-negative
real axis, i.e., fors>0. This can be attributed to the semi
boundness of the spectrum of the Hamiltonian, SpecH>0
@21#. Note that for spectrally represented two-point correl
tion functions, we have the additional condition
ImP(m2)>0 @22,23#.

As has been mentioned above, in renormalizable fie
theories it is required thatP(s) should be finite after two
subtractions have been performed. This implies that

uP~s!u<Csk, with k,2, ~2.8!

as s→`. Obviously, the same inequality holds true for th
real as well as the imaginary part ofP(s). In pure non-
Abelian Yang-Mills theories, such as quarkless QCD, th
transverse partPT(s) of the gluon vacuum polarization be-
haves asymptotically as

PT~s!→CsS ln s

m2D n.
This result is consistent with Eq.~2.8! for any n,`. Fur-
thermore, we mention that the Froissart–Martin bound@24#,

uP~s!u<Cs3S ln ss0D
2

, ~2.9!

at s→`, which may be derived from axiomatic methods o
field theory, is weaker than Eq.~2.8!. In fact, the Froissart-
Martin bound @24# refers to the asymptotic behavior of a
total cross sections(s) in the limit s→`. This is expressed
as s(s)<C@ ln(s/s0)#

2. Furthermore, the OT gives the rela
tion ss(s)5ImT(s), whereT(s) is the forward-scattering
amplitude. If one assumes the absence of accidental can
lations between the two-point functionP(s), and higher
n-point functions within the expression ImT(s), one can de-
rive that

uImP~s!u<Cs2ImT~s!<Cs3@ ln~s/s0!#
2.

Because of analyticity, thes dependence of ImP(s) will
affect the high-s behavior ofuP(s)u. Even if we assume that
thes dependence thus induced onuP(s)u is the most modest
possible, i.e.,uP(s)u;ImP(s) ass→`, still the tightest up-
per bound one could obtain from these considerations is t
of Eq. ~2.9!. The analytic expression of gluon vacuum pola
ization satisfies Eq.~2.9!. As a counterexample to this situa
tion, we may consider the Higgs self-energy in the unita
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gauge; the absorptive part of the Higgs self-energy has
s2 dependence at high energies, and its resummation@25# is,
therefore, not justified.

We will now illustrate how DR’s work in practice in the
context of a scalar field theory. As an example, we consid
a toy model with interaction Lagrangian,

Lint5
l

2
f2F, ~2.10!

wherel is a nonvanishing coupling constant of dimension
of mass. We denote the mass of the scalarf by m and the
one of theF by M and assume thatM>m.

One can calculate the imaginary part of the one-loop se
energy PF(s) by using Cutkosky rules. The self-energ
PF(s) develops a branch cut fors5p2.4m2, which arises
from the on-shellf-pair contribution shown in Fig. 2. Thus
it is not difficult to obtain

ImPF~s!5
l2

32p S 12
4m2

s D 1/2u~s24m2!. ~2.11!

On the other hand, adopting dimensional regularization
dimensionsD5422e, we have

PF~s!5
l2

32p2 H 1

e
2gE1 ln

4pm2

m2 12

2S 12
4m2

s D 1/2lnF S 12
4m2

s D 1/211

S 12
4m2

s D 1/221
G J ,

~2.12!

wheres should be analytically continued tos1 i«. In fact,
for s.4m2, the logarithmic function in Eq.~2.12! assumes
the form

lnF 11S 12
4m2

s D 1/2
12S 12

4m2

s D 1/2G2 ipu~s24m2!.

FIG. 2. Two-point correlation functionPF(s) at one loop.
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s
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Evidently, the absorptive part ofPF(s) obtained from Eq.
~2.12! is equal to ImPF(s) in Eq. ~2.11!. Furthermore, one
can verify the validity of a DR of Eq.~2.6!, singly subtracted
at s50. Since

RePF~0!5
l2

32p2 F1e 2gE1 ln
4pm2

m2 G , ~2.13!

one can check that indeed,

s

p
PE

4m2

`

ds8
ImPF~s8!

s8~s82s!
5RePF~s!2RePF~0!.

This simple example explicitly demonstrates the analytic n
ture of a two-point correlation function.

In the context of gauge field theories, one should antic
pate a similar analytic structure for two-point correlation
functions. However, an extra complication appears in suc
theories when off-shell transition amplitudes are considere
In a theory with SSB, such as the SM for example, thi
complication originates from the fact that, in addition to th
physical particles of the spectrum of the Hamiltonian, un
physical, gauge-dependent degrees of freedom, such
would-be Goldstone bosons and ghost fields, make their a
pearance. Although, on-shell transition amplitudes conta
only the physical degrees of freedom of the particles in
volved on account of unitarity, their continuation to the off
shell region is ambiguous, because of the presence unphy
cal Landau poles, introduced by the aforementione
unphysical particles. A reasonable prescription for accom
plishing such an off-shell continuation, which is very close
in spirit to the previous example of the scalar theory, woul
be to continue analytically an off-shell amplitude by taking
only physicalLandau singularities into account.

Consider for example the off-shell propagator of a gaug
particle in the conventionalRj gauges or BFG’s, which runs
inside a quantum loop, viz.,

D0mn
~jQ!

~q!5tmn~q!
1

q22M22l mn~q!
jQ

q22jQM
2 ,

~2.14!

with

tmn~q!52gmn1
qmqn

q2
, l mn~q!5

qmqn

q2
.

One can write two separate DR’s for the transverse se
energyPT of a massive gauge boson, which crucially de
pend on the pole structure of Eq.~2.14!: namely,

ReP̄T~s!5ReP̄T~M
2!1~s2M2!ReP̄T8~M2!

1
~s2M2!2

p
PE

$Mphys
2 %

1`

ds8
ImP̄T~s8!

~s82M2!2~s82s!
,

~2.15!
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ReP̄T
~jQ!

~s!5~s2M2!ReP̄8T
~jQ!

~M2!

1
~s2M2!2

p
PE

$Munphys
2 %

1`

ds8
ImP̄T

~jQ!
~s8!

~s82M2!2~s82s!
.

~2.16!

In the first DR given in Eq.~2.15!, the real part ofPT ,
ReP̄T , is determined from branch cuts induced by physic
poles, where the masses of the real on-shell particles in
loop are collectively denoted by$Mphys

2 %. In what follows we
refer to such a DR asphysicalDR. Note that ReP̄T depends
only implicitly on the gauge choice. In fact, ReP̄T can be
viewed as the truncated part of the self-energy that will su
vive if RePT is embedded in aS-matrix element. In Eq.
~2.16!, the dispersive part of the two-point function depen
explicitly on jQ-dependent unphysical thresholds, colle
tively denoted by$Munphys

2 %, which are induced by the longi-
tudinal parts of the gauge propagators contained
ImP̄T

(jQ) Evidently, one has the decomposition

ImPT~s!5ImP̄T~s!1ImP̄T
~jQ!

~s!,

RePT~s!5ReP̄T~s!1ReP̄T
~jQ!

~s!. ~2.17!

From Eq.~2.14! one can now isolate that part of the propa
gator that should be used in a physical DR. ForjQÞ1, one
has

D0mn
~jQ!→Umn~q![D0mn

~`! ~q!. ~2.18!

It is, therefore, obvious that the ‘‘physical’’ sector of an off
shell transition amplitude in BFG~for jQÞ1), or equiva-
lently, the part of the off-shell matrix element that satisfies
physicalDR, is effectively obtained by considering all th
internal propagators in the unitary gauge (jQ→`), but leav-
ing the Feynman rules for the vertices in the generaljQ
gauge.

In view of a physical DR, the gaugejQ51 is very spe-
cific, since the physical and unphysical poles coincide
such a case, making them indistinguishable. At one-loop
der, the results of this gauge are found to collapse to th
obtained via the PT@17#. Finally, we remark in passing that
if P̄T in jQÞ1 is used for a definition of a ‘‘physical’’ self-
energy, one encounters problems with the high-energy u
tarity behavior, even though the fullP(jQ) is asymptotically
well behaved. In the case of the one-loopZ self-energy for
example, forjQÞ1 @17#, P̄T contains terms proportional to
q4; all such terms eventually cancel in the entireP(jQ)
against the part that contains the unphysical poles. Incid
tally, it is interesting to note that the recovery of the corre
asymptotic behavior is the more delayed~i.e., it happens for
larger values ofq2! the larger the value ofjQ . However, if
one was to resum only theP̄T part, the terms proportional to
q4 would survive, leading to bad high-energy behavior. If, o
the other hand, one had resummed the fullP(jQ), then one
would have introduced unphysical poles, as explained abo
al
the
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III. UNITARITY AND GAUGE INVARIANCE
In this section, we will briefly discuss the basic field-

theoretical consequences resulting from the unitarity of th
S-matrix theory, and establish its connection with gauge in
variance. In addition to the requirement of explicit gaug
invariance, the necessary conditions derived from unitari
will constitute our guiding principle to analytically continue
n-point correlation functions in the off-shell region. Further
more, we arrive at the important conclusion that the re
summed self-energies, in addition to being GFP independe
must also be ‘‘unitary,’’ in the sense that they do not spo
unitarity when embedded in anS-matrix element.

TheT-matrix element of a reactioni→ f is defined via the
relation

^ f uSu i &5d f i1 i ~2p!4d~4!~Pf2Pi !^ f uTu i &, ~3.1!

wherePi (Pf) is the sum of all initial~final! momenta of the
u i & (u f &) state. Furthermore, imposing the unitarity relation
S†S51 leads to the OT:

^ f uTu i &2^ i uTu f &*5 i(
i 8

~2p!4d~4!~Pi 82Pi !

3^ i 8uTu f &* ^ i 8uTu i &. ~3.2!

In Eq. ~3.2!, the sum( i 8 should be understood to be over the
entire phase space and spins of all possible on-shell interm
diate particlesi 8. A corollary of this theorem is obtained if
i5 f . In this particular case, we have

Im^ i uTu i &5
1

2(f ~2p!4d~4!~Pf2Pi !u^ f uTu i &u2. ~3.3!

In the conventionalS-matrix theory with stable particles,
Eqs.~3.2! and~3.3! hold also perturbatively. To be precise, if
one expands the transitionT5T(1)1T(2)1•••1T(n)1•••,
to a given ordern, one has

Tf i
~n!2Ti f

~n!*5 i(
i 8

~2p!4d~4!~Pi 82Pi ! (
k51

n21

Ti 8 f
~k!*Ti 8 i

~n2k! .

~3.4!

There are two important conclusions that can be drawn fro
Eq. ~3.4!. First, the anti-Hermitian part of the LHS of Eq.
~3.4! contains, in general, would-be Goldstone bosons
ghost fields@26#. Such contributions manifest themselves a
Landau singularities at unphysical points, e.g.,q25jQMW

2

for a W propagator in a general BFG. However, unitarity
requires that these unphysical contributions should vanish,
can be read off from the RHS of Eq.~3.4!. Second, the RHS
explicitly shows the connection between gauge invarianc
and unitarity at the quantum loop level. To lowest order fo
example, the RHS consists of the product of GFP
independent on-shell tree amplitudes, thus enforcing th
gauge invariance of the imaginary part of the one-loop am
plitude on the LHS.

The above powerful constraints imposed by unitarity wil
be in effect as long as one computesfull amplitudes to a
finite order in perturbation theory. However, for resumma
tion purposes, a certain subamplitude, i.e., a part of the fu
amplitude, must be singled out and subsequently undergo
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Dyson summation, while the rest of theSmatrix is computed
to a finite ordern. Therefore, if the resummed amplitud
contains gauge artifacts and/or unphysical thresholds,
cancellations imposed by Eq.~3.4! will only operate up to
ordern, introducing unphysical contributions of ordern11
or higher. To avoid the contamination of the physical amp
tudes by such unphysical artifacts, we impose the followi
two requirements on the effective Green’s functions, wh
we attempt to continue them analytically in the off-shell re
gion for the purpose of resummation.

~i! The off-shelln-point correlation functions ought to be
derivable from or embeddable intoS-matrix elements.

~ii ! The off-shell Green’s functions should not display un
physical thresholds induced by unphysical Landau singula
ties, as has been described above.

Even though property~i! is automatic for Green’s func-
tions generated by the functional differentiation of the co
ventional path-integral functional, in general the off-she
amplitudes so obtained fail to satisfy property~ii !. In the PT
framework instead, both conditions are satisfied: effecti
Green’s functions are directly derived from theS-matrix am-
plitudes @so condition~i! is satisfied by construction# and
contain only physical thresholds, so that unitarity is not e
plicitly violated @4#.

In our discussion of unitarity at one loop, we will mak
extensive use of the following two-body Lorentz-invarian
phase-space~LIPS! integrals: The scalar integral

E dXLIPS5
1

~2p!2
E d4k1E d4k2d1~k1

22m1
2!

3d1~k2
22m2

2!d~4!~q2k12k2!

5u~q0!u@q22~m11m2!
2#

3
1

8pq2
l1/2~q2,m1

2 ,m2
2!, ~3.5!

where l(x,y,z)5(x2y2z)224yz and d1(k
22m2)

[u(k0)d(k22m2), and the tensor integral:

E dXLIPS~k12k2!m~k12k2!n

5H l~q2,m1
2 ,m2

2!

3q2
tmn~q!1Fl~q2,m1

2 ,m2
2!

q2
2q2

12~m1
21m2

2!G l mn~q!J E dXLIPS. ~3.6!

The Lorentz projection tensors,tmn(q) and l mn(q), have
been defined after Eq.~2.14!.

IV. THE CASE OF QCD
In this section, we show that a self-consistent picture m

be obtained by resorting to such fundamental properties
theS matrix as unitarity and analyticity, using as addition
input only EWI’s for tree-level, on-shell processes, and tre
level vertices and propagators. It is important to emphas
that the GFP independence of the results emergesautomati-
cally from the previous considerations.

We begin from the RHS of the optical relation given i
e
the
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Eq. ~3.3!. The RHS involves on-shell physical processe
which satisfy the EWI’s. It turns out that the full exploitation
of those EWI’s leads unambiguously to a decomposition
the tree-level amplitude into propagator-, vertex-, and bo
like structures. The propagatorlike structure corresponds
the imaginary part of the effective propagator under co
struction. By imposing the additional requirement that th
effective propagator be an analytic function ofq2, one ar-
rives at a DR, which, up to renormalization-scheme choice
leads to a unique result for the real part.

Consider the forward-scattering processqq̄→qq̄. From
the OT, we then have

Im^qq̄uTuqq̄&5
1

2S 12D E dXLIPŜ qq̄uTugg&^gguTuqq̄&* .

~4.1!

In Eq. ~4.1!, the statistical factor 1/2 in parentheses aris
from the fact that the final on-shell gluons should be consi
ered as identical particles in the total rate. We now s
M5^qq̄uTuqq̄& and T5^qq̄uTugg&, and focus on the RHS
of Eq. ~4.1!. Diagrammatically, the amplitudeT consists of
two distinct parts:t- and u-channel graphs that contain an
internal quark propagatorTtmn

ab as shown in Figs. 3~a! and
3~b!, and ans-channel amplitudeTsmn

ab which is given in Fig.
3~c!. The subscripts ‘‘s’’ and ‘‘ t ’’ refer to the corresponding
Mandelstam variables, i.e.,s5q25(p11p2)

25(k11k2)
2,

and t5(p12k1)
25(p22k2)

2. Defining

Vr
c5gv̄~p2!

lc

2
gru~p1!, ~4.2!

we have that

T mn
ab5Tsmn

ab~j!1Ttmn
ab , ~4.3!

with

FIG. 3. Diagrams~a!–~c! contribute toT mn
ab and diagram~d! to

Sab.
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Tsmn
ab~j!52g fabcD0

~j!,rl~q!Glmn~q,2k1 ,2k2!Vr
c ,

~4.4!

Ttmn
ab52 ig2v̄~p2!S lb

2
gn

1

p” 12k” 12m

la

2
gm

1
la

2
gm

1

p” 12k” 22m
gn

lb

2 D u~p1!, ~4.5!

where

Glmn~q,2k1 ,2k2!5~k12k2!lgmn1~q1k2!mgln

2~q1k1!ngln . ~4.6!

Note thatTs depends explicitly on the GFPj, through the
tree-level gluon propagatorD0mn

(j) (q), whereasTt does not.
The explicit expression ofD0mn

(j) (q) depends on the specific
gauge-fixing procedure chosen. In addition, we define t
quantitiesSab andRm

ab as

Sab5g fabc
k1

s

q2
Vs
c52g fabc

k2
s

q2
Vs
c ~4.7!

and

Rm
ab5g fabcVm

c . ~4.8!

Clearly,

k1
sRs

ab52k2
sRs

ab5q2Sab. ~4.9!

We then have

ImM5
1

4
T mn
abPms~k1 ,h1!P

nl~k2 ,h2!T sl
ab*

5
1

4
@Tsmn

ab~j!1Ttmn
ab #Pms~k1 ,h1!

3Pnl~k2 ,h2!@Tssl
ab* ~j!1Ttsl

ab* #, ~4.10!

where the polarization tensorPmn(k,h) is given by

Pmn~k,h!52gmn1
hmkn1hnkm

hk
2h2

kmkn

~hk!2
.

~4.11!

Moreover, we have that on shell, i.e., fork250,
kmPmn50. By virtue of this last property, we see immed
ately that if we write the three-gluon vertex of Eq.~4.6! in
the form

Glmn~q,2k1 ,2k2!5@~k12k2!lgmn12qmgln22qnglm#

1~2k1mgln1k2nglm!

5Glmn
F ~q,2k1 ,2k2!

1Glmn
P ~q,2k1 ,2k2!, ~4.12!

the term Grmn
P dies after hitting the polarization vectors

Pms(k1 ,h1) and Pnl(k2 ,h2). Therefore, if we denote by
T s

F(j) the part ofTs which survives, Eq.~4.10! becomes
he

i-

ImM5
1

4
@T sF~j!1Tt#mn

abPms~k1 ,h1!

3Pnl~k2 ,h2!@T sF~j!1Tt#sl
ab* . ~4.13!

The next step is to verify that any dependence on the GF
inside the propagatorD0mn

(j) (q) of the off-shell gluon will
disappear. This is indeed so, because the longitudinal parts
D0mn either vanish because the external quark current is co
served, or because they trigger the following EWI:

qmGmab
F ~q,2k1 ,2k2!5~k1

22k2
2!gab , ~4.14!

which vanishes on shell. This last EWI is crucial, because
general, current conservation alone is not sufficient to gua
antee the GFP independence of the final answer. In the c
variant gauges for example, the gauge-fixing term is propo
tional toqmqn; current conservation kills such a term. But if
we had chosen an axial gauge instead, i.e.,

D0mn
~h̃ ! ~q!5

Pmn~q,h̃ !

q2
, ~4.15!

where h̃Þh in general, then only the termh̃nqm vanishes
because of current conservation, whereas the termh̃nqm can
only disappear if Eq.~4.14! holds. So, Eq.~4.13! becomes

ImM5
1

4
~T s

F1Tt!mn
abPms~k1 ,h1!P

nl~k2 ,h2!~T s
F1Tt!sl

ab* ,

~4.16!

where the GFP-independentquantityT s
F is given by

Tsmn
F,ab52g fabc

grl

q2
Glmn
F ~q,2k1 ,2k2!Vr

c . ~4.17!

Next, we want to show that the dependence onhm andh2

stemming from the polarization vectors disappears. Usin
the on-shell conditionsk1

25k2
250, we can easily verify the

EWI’s

k1
mTsmn

F,ab52k2nSab2Rn
ab , ~4.18!

k2
nTsmn

F,ab52k1mSab1Rm
ab , ~4.19!

k1
mTtmn

ab5Rn
ab, ~4.20!

k2
nTtmn

ab52Rm
ab, ~4.21!

from which we have that

k1
mk2

nTsmn
F,ab5q2Sab, ~4.22!

k1
mk2

nTtmn
ab52q2Sab. ~4.23!

Using the above EWI’s, it is now easy to check that indee
all dependence on bothhm andh2 cancels in Eq.~4.16!, as it
should, and we are finally left with~omitting the fully con-
tracted color and Lorentz indices!
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ImM5
1

4
@~T sFT sF*28SS* !1~T sFTt*1T sF* Tt!1TtTt* #

5ImM̂11ImM̂21ImM̂3 . ~4.24!

The first part is the genuine propagatorlike piece, the seco
is the vertex, and the third the box. Employing the fact th

Grmn
F Gl

F,mn528q2trl~q!14~k12k2!r~k12k2!l

~4.25!

and

SS*5g2cAVr
c
k1

rk1
l

~q2!2
Vl
c5

g2

4
cAVr

c ~k12k2!
r~k12k2!

l

~q2!2
Vl
c ,

~4.26!

where cA is the eigenvalue of the Casimir operator in th
adjoint representation@cA5N for SU(N)#, we obtain, for
ImM̂1,

ImM̂15
g2

2
cAVm

c 1

q2
@24q2tmn~q!

1~k12k2!
m~k12k2!

n#
1

q2
Vn
c. ~4.27!

This last expression must be integrated over the availa
phase space. With the help of Eqs.~3.5! and~3.6!, we arrive
at the final expression

ImM̂15Vm
c 1

q2
ImP̂mn~q!

1

q2
Vn
c , ~4.28!

with

ImP̂mn~q!52
as

4

11cA
3

q2tmn~q!, ~4.29!

andas5g2/(4p).
Before we proceed, we make the following remark. It

well known that the vanishing of the longitudinal part of th
gluon self-energy is an important consequence of gauge
variance. One might naively expect that even if a nonvanis
ing longitudinal part had been induced by some contributio
which do not respect gauge invariance, it would not ha
contributed to physical processes, since the gluon self-ene
couples to conserved fermionic currents, thus projecting
only the transverse degrees of the gluon vacuum polari
tion. However, this expectation is not true in general. Indee
if one uses, for example, the tree-level gluon propagator
the axial gauge, as given in Eq.~4.15!, then there will be
residualh-dependent terms induced by the longitudinal com
ponent of the gluon vacuum polarization, which would n
vanish, despite the fact that the external quark currents
conserved. Such terms are obviously gauge dependent.
dently, projecting out only the transverse parts of Green
functions will not necessarily render them gauge invarian

The vacuum polarization of the gluon within the PT i
given by @7#
nd
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P̂mn~q!5
as

4p

11cA
3

tmn~q!q2F lnS 2
q2

m2D1CUVG .
~4.30!

Here,CUV51/e2gE1 ln4p1C, with C being some constant
andm is a subtraction point. In Eq.~4.30!, it is interesting to
note that a change ofm2→m82 gives rise to a variation of the
constantC by an amountC82C5 lnm82/m2. Thus, a general
m-scheme renormalization yields

P̂T
R~s!5P̂T~s!2~s2m2!ReP̂T8~m2!2ReP̂T~m2!

5
as

4p

11cA
3

sF lnS 2
s

m2D211
m2

s G . ~4.31!

From Eq. ~2.7!, one can readily see that ReP̂T
R(s) can be

calculated by the following double-subtracted DR:

ReP̂T
R~s!5

~s2m2!2

p
PE

0

`

ds8
ImP̂T~s8!

~s82m2!2~s82s!
.

~4.32!

Inserting Eq.~4.29! into Eq.~4.32!, it is not difficult to show
that it leads to the result given in Eq.~4.31!, a fact that
demonstrates the analytic power of the DR.

It is important to emphasize that the above derivation ri
orously proves the GFP independence of the one-loop
effective Green’s functions, forevery gauge-fixing proce-
dure. Indeed, in our derivation, we have solely relied on th
RHS of the OT, which we have rearranged in a well-define
way, after having explicitly demonstrated its GFP indepen
dence. The proof of the GFP independence of the RHS p
sented here is, of course, expected on physical grounds, s
it only relies on the use of EWI’s, triggered by the longitu
dinal parts of the gluon tree-level propagators. Note that t
tree-level tri-gluon couplingGlmn is uniquely given by Eq.
~4.6!. Since the GFP dependence is carried entirely by t
longitudinal parts of the gluon tree-level propagator inany
gauge-fixing scheme whereas thegmn part is GFP-
independent and universal, the proof presented here is g
erally true. Obviously, the final step of reconstructing th
real part from the imaginary one by means of a DR does n
introduce any gauge dependences.

V. THE QCD ANALYSIS FROM BRS CONSIDERATIONS

In this section, we will show how we can obtain the sam
answer by resorting only to the EWI’s that one obtains as
direct consequence of the BRS symmetry of the quantu
Lagrangian.

If we considerT mn
ab as before, it is easy to show that i

satisfies the BRS identities@27#

k1
mT mn

ab5k2nSab, k2
nT mn

ab5k1mS ab, k1
mk2

nT mn
ab50 ,

~5.1!

where Sab is the ghost amplitude shown in Fig. 3~d!; its
closed form is given in Eq.~4.7!.

Note that the BRS identities of Eq.~5.1! are different
from those listed in Eqs.~4.18!–~4.23!, because the term
Gmnr
P had been removed in the latter group. Here, we follo
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a different sequence and do not cancel the termGmnr
P ; in-

stead, we will exploit theexactBRS identities from the very
beginning.

We start again with the expression for ImM given in Eq.
~4.10!. First of all, it is easy to verify again that the depen
dence on the GFP of the off-shell gluon vanishes. This is
because of the tree-level EWI, involving thefull vertex
Gmnr :

qlGlmn~q,2k1 ,2k2!5k2
2tmn~k2!2k1

2tmn~k1!. ~5.2!

The RHS of Eq.~5.2! vanishes after contracting with the
polarization vectors, and employing the on-shell conditio
k1
25k2

250. Again, by virtue of the BRS identities and th
on-shell conditionk1

25k2
250, the dependence of ImM on

the parametershm andh2 cancels, and we eventually obtai

ImM5
1

4
TmnP

mr~k1 ,h1!P
ns~k2 ,h2!T rs*

5
1

4
~TmnT mn* 22SS* !

5
1

4
@~T s

F1T s
P1Tt!mn~T s

F1T s
P1Tt!mn* 22SS* #,

~5.3!

where

Tsmn
P,ab52g fabc

grl

q2
Glmn
P ~q,2k1 ,2k2!Vr

c . ~5.4!

At this point, one must recognize that due to the fou
momenta of the trilinear vertexGP insideT sP one can further
trigger the EWI’s, exactly as one did in order to derive fro
Eq. ~4.9! the last step of Eq.~5.3!. In fact, only the process-
independent terms contained in ImM will be projected out
on account of the BRS identities of Eq.~5.1!. It is important
to emphasize thatT s

F and Tt do not contain any pinching
momenta. This is particular to this example, where we ha
only two gluons as final states, but is not true for more gl
ons. To further exploit the EWI’s derived from BRS symme
tries, we rewrite the RHS of Eq.~5.3! in the following way
~we omit the fully contracted Lorentz indices!:

ImM5
1

4
@~Tt1T s

P1T s
F!~Tt1T sP1T s

F!*22SS* #

5
1

4
@~T s

FT s
F*2T sPT sP*1T sPT*1TT sP*22SS* !

1~TtT s
F*1T s

FT t* !1TtT t* #

5ImM̂11ImM̂21ImM̂3 . ~5.5!

In Eq. ~5.5!, the reader may recognize the rearrangeme
characteristic of the ‘‘intrinsic’’ PT, presented in@28#.

Inserting the explicit form ofT sP given in Eq.~5.4! into
Eq. ~5.5! and using the BRS identities,

T s
PT *522SS* , T sPT sP*52SS* , ~5.6!
-
so

n
e

n

r-

m
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we obtain

ImM̂15
1

4
~T sFT sF*2T sPT sP*1T sPT *1T sP* T22SS* !

5
1

4
~T sFT sF*28SS* !, ~5.7!

which is the same result found in the previous section, i.
Eq. ~4.24!.

An interesting by-product of the above analysis is that o
is able to show the independence of the PT results of t
number of the external fermionic currents. An explicit proo
of the process independence of the PT self-energy at o
loop has already been presented in@10#, through the detailed
study of all possible combinations of on-shell states one c
consider, including fermions, gluons, and scalars. In th
analysis, the number and type of incoming~outgoing! par-
ticles is such that they can all merge to produce an off-sh
gluon through onlyoneelementary interaction vertex. Here
instead, we pay more attention to the independence of
results on the number of fermionic currents used to produ
the intermediate two-gluon state. In such a case, several
ementary vertices are needed in general. The main ingred
of the proof is the observation that the BRS identities in Eq
~5.1!, as well as those given in Eq.~5.6!, will still hold for
any transition amplitude ofn-fermionic currents to two glu-
ons. By analogy, one can decompose the transition amplitu
into Tt andTs structures. Similarly, the forms of the substruc
turesT sF and T sP will then change accordingly. In fact, the
only modification will be that the vector currentVr

c, con-
tained in Eqs.~4.17! and ~5.4!, will now represent the tran-
sition of one gluon ton-fermionic currents. Making use of
the ‘‘intrinsic’’ PT, one then obtains the result given in Eq
~5.7!. Hence, we can conclude that the PT does not depe
on the number of the external fermionic currents attached
gluons.

VI. THE ELECTROWEAK CASE
In this section, we will show how the same consideration

apply directly to the case of the electroweak sector of t
SM. We consider the charged current processe2n→e2n
and assume that the electron massme is nonzero, so that the
external current is not conserved. We focus on the part of t
amplitude which has a threshold atq25M W

2 This corre-
sponds the virtual processW2→W2g, whereg is the pho-
ton. From the OT, we have

Im^e2nuTue2n&5
1

2E dXLIPŜ e
2nuTuW2g&

3^W2guTue2n&* . ~6.1!

We set againM5^e2nuTue2n& andT5^e2nuTuW2g&.
As in the case of QCD, the amplitude consists of two distin
parts, a part that contains an electron propagator@Fig. 4~a!#
and a part that does not, which is shown in Figs. 4~b! and
4~c!. As before, we denote them byTt andTs(jw), respec-
tively. We first define

V L
m5

gw

2A2
v̄~p2!g

m~12g5!u~p1! ~6.2!



it
r-

d

e

54 5325GAUGE-INVARIANT RESUMMATION FORMALISM FOR . . .
and

SR5
gw

2A2
me

MW
v̄~p2!~11g5!u~p1!. ~6.3!

Clearly, one has the EWI

qmV L
m5MWSR . ~6.4!

The amplitudeTs can then be written down in the close
form

Tsmn~jw!5 iV L
lD 0l

~jw!,r
~q!G nrm

gW2W1
1 iSRD 0

~jw!
~q!G nm

gG2W1
,

~6.5!

where D 0
(jw)(q)51/(q22jwM W

2 ), G nrm
gW2W1

5eGnrm(2k2 ,q,2k1) is the tree-levelgW
2W1 vertex, and

G nm
gG2W1

5eMWgmn is the tree-levelgG2W1 vertex. In the
expression~6.5!, we explicitly display the dependence on th
GFPjw . In addition, the amplitudeTt is given by

T tmn5
iegw

2A2
v̄~p2!g

m~12g5!
1

p” 12k” 22me

gnu~p1!.

~6.6!

Note thatT tmn does not depend onjw . Denoting byk1 the
four-momentum of theW and byk2 that of the photon, Eq.
~6.1! becomes

ImM5TmnQ
mr~k1!P

ns~k2 ,h!T rs* , ~6.7!

where Pmn is the photon polarization tensor given in Eq
~4.11!, and

Qmn~k!52gmn1
kmkn

M W
2 ~6.8!

is the W polarization tensor. The polarization tenso
Qmn(k) shares the property that, on shell, i.e., fork25M W

2

kmQmn(k)50. Furthermore, in Eq.~6.7!, we omit the inte-
gration measure 1/2*dXLIPS.

First, we will show how the dependence on the GFPjw
cancels. To that end, we employ the usual decomposition

D 0mn
~jw!

~q!5Umn~q!2
qmqn

M W
2 D 0

~jw!
~q2!, ~6.9!

the EWI

FIG. 4. Amplitudes contributing to the reactione2n̄→W2g.
d

e

.

r

qrG nrm
gW2W1

~2k2 ,q,2k1!Q
ml~k1!P

ns~k2 ,h!

5MWG mn
gG2W1

Qml~k1!P
ns~k2 ,h!, ~6.10!

and the EWI of Eq.~6.4!, and we obtain the following
jw-independent expression forT smn :

T smn5 ieVL
lUlr~q!Gnrm~2k2 ,q,2k1!

5 ieVL
lUlr~q!GF,nrm~2k2 ,q,2k1!5TsF,mn,

~6.11!

where contraction over the polarization tensorsQmn and
Pmn is implied. In the last step of Eq.~6.11!, we have used
the fact that theGP part of the vertex, defined in Eq.~4.12!,
vanishes when contracted with the polarization tensors.

Next, following arguments analogous to the QCD case,
is straightforward to show that any dependence on the fou
vector hm and the parameterh2 vanishes, and that finally
ImM takes on the form

ImM52~T sF1Tt!mnQ
mr~k1!~T sF1Tt! r*

n

5~T sF1Tt!mn~T sF1Tt! mn*

2~T sF1Tt!mn
k1mk 1

r

M W
2 ~T sF1Tt! rn*

5ImMa1ImMb. ~6.12!

The absorptive subamplitude ImMa consists of three terms:

ImMa5T sFT sF*1~T sFT t*1TtT sF* !1TtT t*

5ImM̂ 1
a1ImM̂ 2

a1ImM̂ 3
a . ~6.13!

The first term ImM̂ 1
a can easily be identified with a propa-

gatorlike contribution. In particular, using Eq.~4.25!, we find

ImM̂ 1
a5e2V L

rUrm~q!@28q2tmn~q!

14~k12k2!
m~k12k2!

n#Unl~q!V L
l. ~6.14!

The amplitudes ImM̂ 2
a and ImM̂ 3

a are vertex- and boxlike
contributions, respectively, and they will not be considere
any further here.

We must now isolate the corresponding propagatorlik
piece from ImMb. It is easy to find the relation

k 1
mTsmn

F 52 ieVLn2 ieVLlU
lr~q!@~k12k2!rk2n

22M W
2 grn#. ~6.15!

In addition, we evaluate the EWI

k 1
mTtmn5 ieVLn1MW

iegwme

2A2MW

v̄~p2!~11g5!

3
1

p” 12k” 22me

gnu~p1!

5 ieVLn1MWLn , ~6.16!
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which is shown diagrammatically in Fig. 5. Adding Eqs
~6.15! and ~6.16! by parts, we obtain

k 1
m~T sF1Tt!mn52 ieVLlU

lr~q!@~k12k2!rk2n22M W
2 grn#

1MWLn ~6.17!

and after a straightforward calculation, we eventually arri
at

ImMb52e2VLrU
rm~q!

3@4M W
2 gmn12~k12k2!m~k12k2!n#Unl~q!VLl

22ieMW@VLrU
rn~q!L n*2LnU

nl~q!VLl#2LnL n*

5ImM̂ 1
b1ImM̂ 2

b1ImM̂ 3
b . ~6.18!

Adding the two propagatorlike parts ImM̂ 1
a and ImM̂ 1

b

from Eqs.~6.14! and ~6.18!, respectively, we find

ImM̂15ImM̂ 1
a1ImM̂ 1

b

5e2V L
rUrm~q!@28q2tmn~q!24M W

2 gmn

12~k12k2!
m~k12k2!

n#Unl~q!V L
l . ~6.19!

Next, we carry out the phase-space integration ov
1/2*dXLIPS, using the formulas given in Eqs.~3.5! and~3.6!,
and the fact thatl1/2(q2,M W

2 ,0)5q22M W
2 .0. In this way,

we have

ImM̂15VLrU
rm~q!ImP̂ mn

W Unl~q!VLl , ~6.20!

with

ImP̂ mn
W ~q!5ImP̂ T

W~q2!tmn~q!1ImP̂ L
W~q2!l mn~q!,

ImP̂ T
W~q2!5

aem

2
~q22M W

2 !

3S 2
11

3
1
4M W

2

3q2
1
M W

4

3q4 D ,
ImP̂ L

W~q2!5
aem

2
~q22M W

2 !S 2
2M W

2

q2
1
M W

4

q4 D .
~6.21!

Here, aem5e2/(4p) is the electromagnetic fine structur
constant. The real part of the transverse, on-shell renorm
ized,W-boson self-energy, ReP̂ T

W,R(s), can be determined

FIG. 5. Elementary BRS identity for thee-dependent amplitude
T tmn
.

ve

er

e
al-

by means of a doubly subtracted DR given in Eq.~2.7!.
Furthermore, we have to assume a fictitious photon ma
mg in order to regulate the infrared~IR! divergences. More
explicitly, the DR of our interest reads

ReP̂ T
W,R~s!5ReP̂ T

W~s!

2~s2M W
2 !ReP̂ T

W8~M W
2 !2ReP̂ T

W~M W
2 !

5 lim
L→`

lim
mg→0

~s2M W
2 !2

p
P

3E
~MW1mg!2

L ds8ImP̂ T
W~s8!

~s82M W
2 !2~s82s!

. ~6.22!

To obtain the analytic form of ReP̂ T
W,R(s), we first evaluate

the integrals

F0~s!5~s2M W
2 !PE

~MW1mg!2

`

ds8
1

~s82M W
2 !~s82s!

52 lnS us2M W
2 u

2MWmg
D , ~6.23!

F1~s!5~s2M W
2 !PE

~MW1mg!2

`

ds8
1

~s82M W
2 !~s82s!

M W
2

s8

52
M W

2

s
lnS us2M W

2 u
2MWmg

D 2S 12
M W

2

s D lnS MW

2mg
D ,

~6.24!

F2~s!5~s2M W
2 !PE

~MW1mg!2

`

ds8
1

~s82M W
2 !~s82s!

M W
4

s82

52
M W

4

s2
lnS us2M W

2 u
2MWmg

D 2 lnS MW

2mg
D 112

M W
2

s
,

~6.25!

Armed with the integrals defined in Eqs.~6.23!–~6.25!, one
then obtains

ReP̂ T
W~s!5

aem

2
~s2M W

2 !S 2
11

3
F01

4

3
F11

1

3
F2D .

~6.26!

Equation~6.26! coincides with the PTW-boson self-energy
@8# or equivalently, with theW-boson self-energy computed
in the BFG forjQ51 @17#.

VII. CUTKOSKY CONSIDERATIONS

In this section, we focus on the LHS of the OT an
present a different point of view and a self-consistenc
check. In particular, we consider the one-loopS-matrix ele-
ment for a given process and compute its imaginary part
direct application of the Cutkosky rules. The expressions
obtained consist of the product of the tree-level amplitude
with the important difference that now ‘‘unphysical’’ de-
grees of freedom appear as intermediate states, giving,
turn, rise to ‘‘unphysical’’ thresholds. These tree-level am
plitudes are related by EWI’s. We show that, when full
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exploited, these EWI’s give rise to propagator-, vertex-, a
boxlike expressions, which contain physical thresholds on
whereas all the unphysical thresholds disappear comple
The expressions so derived are identical to the imagin
parts of the corresponding PT Green’s functions, which o
can obtain directly from theS matrix. Also, both real and
imaginary parts are related via a DR, as has been discu
in Sec. II.

For the rest of this section, we focus on the particu
processln l→W2H, corresponding to the virtual proces
W→WH. We choose this process since it captures all
crucial field-theoretical features involved, without being e
cessively cumbersome from the calculational point of vie
In addition, by treating a process other than the technic
more involvede2n→e2n of the previous section, we wan
to emphasize the general validity of our method. A length
but straightforward calculation can convince the reader t
one arrives at precisely the same physical conclusions als
the case of the virtualW→Wg process, or any other proces
for that matter.

For the processln l→W2(p)H(pH), we have in an arbi-
trary j gauge

pm

MW
T ~a!m

~j! 5T ~b!
~j!1

igw
2MW

SR , ~7.1!

pm

MW
T ~c!m

~j! 5T ~d!
~j!2

igw
2MW

SR . ~7.2!

We will carry out an explicit calculation of the ImM̂1 of the
processen̄e→en̄e at the one-loop electroweak order, work
ing on the LHS of the OT. To simplify the algebra, we wi
assume that only theW andH particles can come kinemati
cally on the mass shell, as shown in Fig. 6. In what follow
we omit the common integration measure of the loo
1/@2(2p)4#*d4pd4pHd (4)(pH1p2pe2pn). Then, the ab-
sorptive amplitude ImM for the aforementioned proces
may be written as~suppressing contraction over Lorentz in
dices, and using the on-shell conditionsp H

2 5M H
2

p25M W
2 )

ImM5D̃0H~pH!@T ~a!
~j!D̃ 0

~j!~p!T ~a!
~j!*1T ~b!

~j!D̃ 0
~j!~p!T ~b!

~j!*

1T ~c!
~j!D̃ 0

~j!~p!T ~a!
~j!*1T ~a!

~j!D̃ 0
~j!~p!T ~c!

~j!*

1T ~d!
~j!D̃ 0

~j!~p!T ~b!
~j!*1T ~b!

~j!D̃ 0
~j!~p!T ~d!

~j!*

1T ~c!
~j!D̃ 0

~j!~p!T ~c!
~j!*1T ~d!

~j!D̃ 0
~j!~p!T ~d!

~j!* #, ~7.3!

where the tilde acting on the tree-level propagators sim
projects out the corresponding absorptive parts. Such a
jection can effectively be obtained by applying the Cutkos
rules. More explicitly, we have

D̃0H~pH!52pd1~p H
2 2M H

2 !, ~7.4!

D̃ 0
~j!~p!52pd1~p22jM W

2 !, ~7.5!
nd
ly,
tely.
ary
ne

ssed
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s
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x-
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p,

s
-
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ky

D̃ 0mn
~j! (p)52pFQmn~p!d1~p22M W

2 !

2
pmpn

M W
2 d1~p22jM W

2 !G
5Ũmn~p!2

pmpn

M W
2 D̃ 0

~j!~p!, ~7.6!

where theW-boson polarization tensorQmn(p) is given in
Eq. ~6.8! andd1(p

22M2)5d(p22M2)u(p0). After identi-
fying the PT piece,TP52 igwSR /(2MW), which is obtained
from Eq. ~7.2! each time thepmpn-dependent part ofD̃ 0mn

(j)

gets contracted withT (c)
(j) , we observe that the imaginary

propagatorlike part may be decomposed as

ImM̂15ImM̂ 1
~phys!1dM̂1 , ~7.7!

where

ImM̂ 1
~phys!5D̃0H~pH!~2p!d1~p22M W

2 !

3S T ~a!m
~j! Qmn~p!T ~a!n

~j!*1TP
pn

MW
T ~a!n

~j!*

1T ~a!l
~j!

pl

MW
T P*1TPT P* D ~7.8!

and

FIG. 6. Graphs contributing to the amplitudesT (a)m
(j) , T (b)

(j) ,
T(c) , andT(d) .
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dM̂152D̃0H~pH!D̃ 0
~j!~p!S T ~a!l

~j!
plpn

M W
2 T ~a!n

~j!*2T ~b!
~j!T ~b!

~j!*

1TP
pn

MW
T ~a!n

~j!*1T ~a!l
~j!

pl

MW
T P*1TPT P* D . ~7.9!

In the first term ImM̂ 1
(phys) we have collected all contribu

tions originating from the physical poles atp H
2 5M H

2 and
p25M W

2 , whereas all those occurring atp25jM W
2 and are

proportional toD̃ 0
(j)(p) are included indM̂1.

The first important observation is thatdM̂150, which
can be shown with the help of the EWI in Eq.~7.1!. So, the
full exploitation of this WI gives rise to a propagatorlik
imaginary part where all unphysical thresholds have be
canceled. In addition, with the help of the same WI, w
obtain, for ImM̂ 1

(phys),

ImM̂15ImM̂ 1
~phys!5

1

2E dXLIPS~2T ~a!
~j!T ~a!

~j!*1T ~b!
~j!T ~b!

~j!* !.

~7.10!

We must now demonstrate that the final dependence oj
cancels in the above equation. Note that even though we
the on-shell conditionsp25M W

2 and p H
2 5M H

2 , the ampli-
tudesT in the last equation arenot really ‘‘on shell,’’ be-
cause they arenot contracted by the corresponding polariz
tion vectors; therefore, thej cancellation is not immediate
To verify the cancellation, we must employ the identity
Eq. ~6.9! to decompose the internal tree-levelW propagators,
and the WI’s, which relate the tree-level vertices involve
i.e.,

qnG 0mn
HW1W2

52MWG 0m
HW1G2

1
igw
2

MWpm ,

qnG 0n
HG1W2

52MWG 0
HG1G2

2
igw
2

M W
2 . ~7.11!

Thus, the final expression can be cast into the form
-

e
en
e

n
use

a-
.
of

d:

ImM̂15
1

2E dXLIPS~2T ~a1!
~`! T ~a1!

~`!*1T ~b1!
~`! T ~b1!

~`!* !,

~7.12!

where the indexa1 (b1) denotes the first graph in Fig. 6~a!
6~b!, and the superscript ‘‘̀’’ means that the internal tree-
levelW propagators are in the unitary gauge.

This is precisely what one would obtain from the straigh
forward computation of the imaginary part of the one-loo
PTWWself-energy, presented in@8#. The expression for the
GFP-independent propagatorlike part ofM̂, M̂1, in terms of
the PTWW self-energy,P̂mn(q), is given by

M̂15VLsU
sm~q!P̂mn~q!Unr~q!VLr . ~7.13!

The Higgs-dependent part ofP̂mn , call it P̂ mn
(HW) is given by

@29#

P̂ mn
~HW!~q!5pawE dnk

i ~2p!n
I ~q,k!

3@~2k1q!m~2k1q!n24M W
2 gmn#,

~7.14!

whereaw5g w
2 /(4p) is the SU(2)L fine structure constant

and

I ~q,k!5
1

~k22M W
2 !@~k1q!22M H

2 #
. ~7.15!

It is now easy to see that the imaginary part ofP̂ mn
(HW) is

indeed equal to Eq.~7.12!. This can be verified by an explicit
application of the Cutkosky rules on the expression in th
RHS of Eq. ~7.14!. Actually, this amounts to determining
where the logarithmic terms, which are obtained after th
integration over the virtual momenta, turn negative. On
could then compare that result with the result we will obta
after integrating Eq.~7.1! over the phase-space integral give
above. To that end, we must make use of the fact that
typical integral over the Feynman parameterx
ImF E dnk

i ~2p!n
I ~q,k!G52

1

16p2ImH E
0

1

dx ln@M H
2 x1M W

2 ~12x!2q2x~12x!#J
5

u@q22~MW1MH!2#

8pq2
l1/2~q2,M H

2 ,M W
2 !5

1

2E dXLIPS. ~7.16!
e
’s
s,
t
n,
on
y

The above relation gives an explicit connection between C
kosky rules and the two-body LIPS given in Eq.~3.5!. As
has been discussed in Sec. II, the analytic continuation of
logarithmic function in the RHS of Eq.~7.16! is uniquely
determined via the prescriptions→s1 i«.

It is important to emphasize the conclusions of th
section: We have proceeded in two different way
First, we have calculated the propagatorlike imaginary p
by applying the Cutkosky rule, and exploiting the tree-lev
EWI’s. Then, we have computed the imaginary part of th
ut-

the

is
s.
art
el
e

one-loop PTW self-energy, obtained by the usualS-matrix
PT rules. The two analytic results have turned out to b
identical. We can, therefore, conclude that the PT Green
functions, contrary to their conventional counterpart
satisfy individually the OT. We consider that a crucial poin
for the success of our resummation algorithm. In additio
the above analysis demonstrates that one can work freely
either side of the OT and arrive at a unique result, just b
following the same rules, i.e., by fully exploiting the EWI’s
of the theory.
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VIII. THE BACKGROUND FIELD GAUGE
The formulation of non-Abelian gauge field theories i

the framework of the BFG endows then-point functions ob-
tained from the generating functional with a number of cha
acteristic properties. Most remarkably, the BFGn-point
functions satisfy thetree-levelWI’s, to all orders in pertur-
bation theory. This fact is to be contrasted with the Slavno
Taylor identities of the conventional covariant formulation
where the tree-level WI are spoiled by the appearance
‘‘ghost’’ Green’s function, as soon as quantum correctio
are introduced. On the other hand, the BFGn-point functions
display, in general, a residual dependence on the quan
GFP jQ , which is used to ‘‘gauge fix’’ the gauge fields
inside the quantum loops. As we will show in this sectio
the functional dependence of the BFG two-point functio
on jQ is such that it leads to the appearance ofunphysical
thresholds, at q25jQM

2.
What is rather striking in this context is the following

observation. Consider a BFG two-point function computed
one loop at some arbitraryjQ . Let us then separate it into
two parts: the part that has only physical thresholds~at
q25M2) and the part that has unphysical thresholds~at
q25jQM

2). Interestingly enough, one finds that each pa
satisfiesseparatelythe correct tree-level WI.

Defining I Q as

I Q~q,k!5
1

~k22jQM W
2 !@~k1q!22M H

2 #
~8.1!

and using the identity

12jQ
~k22M W

2 !~k22jQM W
2 !

5
1

M W
2 F 1

k22M W
2 2

1

k22jQM W
2 G ,
~8.2!

we have, for the Feynman diagrams~a! and ~b! in Fig. 7
~loop integration,*dnk/ i (2p)n, implied!,

FIG. 7. WH contributions toP mn
Ŵ1xŴ1

@~a!,~b!# and P mn
Ĝ1Ĝ1

@~c!,~d!#.
n

r-

v-
,
of
ns

tum

n,
ns

at

rt

~a!5g w
2M W

2 F S 2gmn1
kmkn

M W
2 D I ~q,k!2

kmkn

M W
2 I Q~q,k!G ,

~b!5
g w
2

4
~2k1q!m~2k1q!nI Q~q,k!, ~8.3!

from which follows that

P mn
~HW!~q!5g w

2M W
2 F S 2gmn1

kmkn

M W
2 D I ~q,k!1

1

4M W
2

3@~2k1q!m~2k1q!n24kmkn#I Q~q,k!G
5P̄mn~q!1P mn

Q ~q!, ~8.4!

where P̄mn contains only physical thresholds, at
q25(MW1MH)

2, whereasP mn
Q contains unphysical thresh-

olds atq25(AjQMW1MH)
2. Similarly, from Figs. 7~c! and

7~d!, we calculate

~c!5g w
2qrqsF S 2grs1

krks

M W
2 D I ~q,k!2

krks

M W
2 I Q~q,k!G ,

~8.5!

~d!5
g w
2

4M W
2 ~M H

2 2jQM W
2 !2I Q~q,k!, ~8.6!

and so

V~HW!~q!5g w
2 F ~qk!2

M W
2 2q2G I ~q,k!

1g w
2 F ~M H

2 2jQM W
2 !2

4M W
2 2

~qk!2

M W
2 G I Q~q,k!

5V̄~q!1VQ~q!. ~8.7!

It is elementary to check that up to irrelevant tadpole terms
the following WI’s hold:

qmqnP̄mn~q!2M W
2 V̄~q!50 ~8.8!

and

qmqnP mn
Q ~q!2M W

2 VQ~q!50. ~8.9!

It is worth noticing that the tree-level WI’s, Eqs.~8.8! and
~8.9!, are individually satisfied by the contributions having
physical and gauge-dependent unphysical thresholds, resp
tively. This property is not an accidental feature of the spe
cific example considered above, but, as we will argue in
moment, it must be valid for any individual contribution to
an analytic two-point correlation function. On the other
hand, it is obvious that neitherP̄ nor PQ can be obtained
from a specific choice of thejQ value. An exception to this
is the valuejQ51. In this gauge, the physical and unphysi-
cal sectors are not distinguishable. If we impose the con
straint of the absence of unphysical thresholds in the BFG,
property which is always preserved within the PT framework
@4#, then the two-point correlation functions of the PT and
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the BFG forjQ51 have to coincide at one loop. This featur
should also hold true for alln-point functions at one loop.

In the following, we argue that the reason which force
P̄mn(q) andP mn

Q (q) to satisfy individually the same treelike
WI’s as those of the fullPmn(q), is the analyticity of
Pmn(q). In fact, it is sufficient to show that
ImPmn(q)5ImP̄mn(q)Þ0 for a finite domain ofq2 ~for
jQÞ1). Then, Eq.~8.8! will be valid for the finite kinematic
region and will also hold true for anyq2, since ImP̄mn is
analytic. That ReP̄mn will also satisfy Eq.~8.8! is guaranteed
through a DR. Finally, it is evident that
P mn

Q (q)5Pmn(q)2P̄mn(q) will obey the same WI~8.9!.
To give a specific example, let us consider the absorpt

part of theWWself-energy in the BFG at one loop, in which
only theWg contributions are considered. It is clear that, fo
the finite domainM W

2 ,q2,min@jQM W
2 ,(MW1MZ)

2# (jQ
Þ1), ImPmn(q)5ImP̄ mn

(gW)(q). The latter leads to the fact
that P̄ mn

(gW)(q) satisfies Eq.~8.8! independently, for anyq2.
Similar arguments can carry over to the other distinct thres
old contributions.

IX. ISSUES OF UNIQUENESS
In this section, we will address issues related to t

uniqueness of the PT rearrangement. We know that the
rearrangement gives rise to effective self-energies (P̂), ver-
tices (Ĝ), and box graphs (B̂), endowed with several char-
acteristic properties. The question naturally arises whet
these effective Green’s functions are unique. By ‘‘unique
we mean, whether after the PT rearrangement has been c
pleted, one could still define new Green’s functions, by mo
ing GFP-independent terms around, in such a way as~i! the
new Green’s functions have the same properties with the
ones, and~ii ! the above reshuffling does not change th
unique value of theSmatrix, order by order, in perturbation
theory.

In what follows, we will show a ‘‘mild’’ version of
uniqueness, namely, that the one-loop PT effective Gree
functions are unique, provided the following is true.

~i! The PT procedure can be generalized to higher ord
in perturbation theory, as described in@4#. In particular, we
assume that effective GFP-independent Green’s functio
can be constructed, satisfying the simple QED-like W
known from the one-loop explicit constructions, and that t
effective self-energies so constructed can be Dyson
summed. Regarding the last point, the resummation al
rithm proposed in@4# not only is inextricably connected to
the fact that the PT self-energies do not shift the position
the pole@4#, but has already passed another nontrivial co
sistency check@30#; still, one has not conclusively shown its
validity for the most general of cases.

~ii ! The renormalization has been successfully carried o
giving rise to UV-finite effective PT Green’s functions. Thi
assumption is crucial, and is the main reason why we ch
acterize the uniqueness proved here as ‘‘mild.’’ Things m
be different if one attempts the aforementioned reshuffli
before renormalization, but this will not concern us in th
present work.

It is known @7# that the PT self-energy in QCD,P̂(q2)
~the lower and upper indicesT andR are dropped for con-
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venience!, captures the running of the coupling, exactly a
happens in QED. To be specific, setting

d̂1~q
2!5@q21P̂1~q

2!#21, ~9.1!

at one loop, then the combination

D̂1~q
2!5g2d̂1~q

2! ~9.2!

obeys the renormalization group equation~RGE!

S m
]

]m
1gb1

]

]gD D̂1~q
2!50 , ~9.3!

whereb152b1as /(4p). The reason for this is exactly the
same as in QED, namely, the fact that the PT vertex a
quark self-energy satisfy an Abelian, tree-level-type WI, i.e

qmĜm5Ŝ~p1q!2Ŝ~p! ~9.4!

or equivalently,Ẑg5Ẑ A
21/2 whereẐg , ẐA are the gluon-field

and strong-coupling-constant renormalizations, respective
Let us now assume that the PT rearrangement, as

scribed in@4#, works to higher orders in perturbation theory
In particular, let us assume that Eq.~9.3! holds to all orders
of perturbation, i.e., for

b52Fb1S as

4p D1b2S as

4p D 21•••1bnS as

4p D n1••• G ,
~9.5!

and

P̂~q2!5P̂1~q
2!1P̂2~q

2!1•••1P̂n~q
2!1•••, ~9.6!

where P̂n are one particle irreducible ofn-loop order and
independent of the GFP. Note that the coefficientsbn in Eq.
~9.5! are renormalization prescription dependent, forn.2.
The first three coefficients for quarkless QCD are

b15
11

3
cA , b25

34

3
c A
2 , b35

2857

54
c A
3 , ~9.7!

and have been evaluated in Refs.@31#, @32#, and@33#, respec-
tively. The values ofb1 andb2 quoted above are renormal-
ization scheme independent, whereasb3 has been evaluated
within the minimal subtraction~MS! scheme@34#.

Substituting Eqs.~9.5! and~9.6! into Eq.~9.3!, and equat-
ing powers ofg2, it is easy to obtain

m
]P̂n~q

2!

]m
52bnq

212(
k51

n21

~12k!bn2kP̂k~q
2!, ~9.8!

with bn52bn(as/4p)n. Note that Eq.~9.8! is identical to
the one obtained for the photon vacuum polarization in QE
@35#. As happens in the QED case, forn51,2, the depen-
dence ofP̂n on the renormalization pointm is logarithmic,
whereas for n.2, higher powers of logarithms start
appearing.
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Let us now assume that we were to change by hand
value ofP̂1, Ĝ1, andB̂1, in such a way as to not change th
value of theSmatrix at one loop. So, we make the replac
ments

P̂1→P̃1[P̂11 f 1 , Ĝ1→G̃1[Ĝ11u1 ,

B̂1→B̃1[B̂11h1 , ~9.9!

where f 1, u1, andh1 are, in principle, arbitraryfunctionsof
q2, subject to the constraint

f 112q2u11q4h150, ~9.10!

which guarantees that the value of theS matrix does not
change at one loop, after the substitution given in Eq.~9.9!.

The functionsf 1, u1, andh1 do not depend on the gauge
fixing parameter, and are UV and IR finite. Therefore, th
do not depend on the renormalization pointm, viz.,

] f 1
]m

5
]u1
]m

5
]h1
]m

50 .

In the case of QCD, the only physical choice forf 1 would be
f 15Cq2, whereC is a numerical constant, since the onl
available mass scale isq2. In other words, sincef does not
depend onm, we cannot have ratios of momentaq2/m2. At
the same time, one does not want to use the mass of
external fermions, since that would convertP̂1 to a process-
dependent quantity. Moreover, the RGE in Eq.~9.8! would
then be modified by them dependence of the running quar
masses. For the sake of argument, let us, however, ass
that one uses a ‘‘universal’’ mass scaleMu , such as the
Planck mass, or some combination involving the sum of
quark masses. So,f 1 may contain ratios ofq2/M u

2 . For ex-
ample, f 1 could be of the formf 15q2exp(2q2/M u

2). How-
ever, it is important to emphasize thatMu shouldnot depend
on m, i.e., ]Mu /]m50.

Returning to the uniqueness issue, since the PT s
energies can be Dyson summed@4#, one should impose the
same property on their new counterparts. Therefore, follo
ing the method developed in@4#, a string of the form
P̂1(1/q

2)P̂1 must be converted toP̃1(1/q
2)P̃1. To accom-

plish this, one must provide the appropriate combinatio
involving the functionsf 1, u1, and h1, just as we had to
provide the missing pinch parts in going fromP1(1/q

2)P1

to P̂1(1/q
2)P̂1 ~see@4#!. To see this in detail, we return to

the diagrams of Fig. 8, and assume that the PT rearran

FIG. 8. PT resummation at two loops in QCD.
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ment has already been completed. So, now all bubbles a
vertices in these graphs refer to the PT objects. The releva
equations are

P̃1P̃15~P̂11 f 1!~P̂11 f 1!5P̂1P̂112P̂1f 11 f 1
2 ,

~9.11!

P̃1G̃15~P̂11 f 1!~ Ĝ11u1!

5P̂1Ĝ11 f 1Ĝ11u1P̂11 f 1u1 , ~9.12!

G̃1G̃15~ Ĝ11u1!~ Ĝ11u1!5Ĝ1Ĝ112u1Ĝ11u 1
2 .

~9.13!

Hereafter, the explicitq2 dependence of the functionsP̃,
P̂, G̃, etc., will not be displayed for brevity. Omitting a com-
mon factor of (1/q2)3, we obtain, for the aforementioned
diagrams,

P̂1P̂112q2P̂1Ĝ11q4Ĝ1Ĝ1

5P̃1P̃112q2P̃1G̃11q4G̃1G̃12R, ~9.14!

with

R5~ f 11q2u1!@2P̂112Ĝ11~ f 11q2u1!#. ~9.15!

At one loop, the new effective chargeD̃1 satisfies the correct
RGE. In particular, since] f /]m50 by assumption, we have
that

m
]P̃1

]m
5m

]~P̂11 f 1!

]m
52b1q

2, ~9.16!

which is what Eq.~9.8! yields forn51.
According to the method in@4#, the propagatorlike parts

of Rmust be allotted toP2. The second term in Eq.~9.15! is
process dependent, since it is proportional toĜ1. This term
should be given to the two-loop vertex or box graphs. In an
case, as we will see, this will make no difference in ou
analysis. ButP2 has already been converted intoP̂2, be-
cause we assumed that the PT procedure has been comple
Therefore,P̃2 must be defined as

P̃25P̂21R 2
p , ~9.17!

whereR 2
p is the propagatorlike part ofR2. After all appro-

priate powers of 1/q2 have been restored,R 2
p is given by

R 2
p5

2

q2
~ f 11q2u1!P̂11•••, ~9.18!

where the ellipses denote the optional inclusion of the thir
term in Eq.~9.15!, which is irrelevant for what follows, be-
cause it ism independent.

It is now clear thatP̃2 fails to satisfy the correct RGE,
since itsm dependence is not in compliance with the resu
deduced from Eq.~9.8! for n52. In particular, we have
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m
]P̃2

]m
5m

]

]m F P̂21
2

q2
~ f 11q2u1!P̂1G

52b2q
214b1~ f 11q2u1!Þ2b2q

2. ~9.19!

So, in order to reconcile Dyson summation and the corr
RGE behavior to the next order, we must impose the ad
tional constraint that

f 11q2u150 . ~9.20!

Combining this together with Eq.~9.10!, we find that
h152u1 /q

4. Thus, the entire expression forR in Eq. ~9.15!
vanishes, and Eq.~9.14! becomes

P̂1P̂112q2P̂1Ĝ11q4Ĝ1Ĝ15P̃1P̃112q2P̃1G̃11q4G̃1G̃1 .
~9.21!

It appears at this point that we have succeeded in imp
menting the substitution given in Eq.~9.9!, without compro-
mising any of the PT properties, at the seemingly mod
expense of imposing onf 1 andu1 the additional constraint
given in Eq.~9.20!. However, as we will see in a moment
Eq. ~9.20! is very crucial, because it actually guarantees t
uniqueness of our gauge-invariant resummation method@4#,
at one loop.

To make this explicit, we proceed to the next order
perturbation theory. The situation may be slightly more cum
bersome calculationally, but the conceptual issues are
same. By converting the old strings into new strings, we pi
up additional terms, which, when allotted toP̃3, will invali-
date the RGE thatP̃3 is expected to satisfy, i.e., Eq.~9.8! for
n53, unless a further constraint is imposed onf 1. To deter-
mine that constraint, we focus on the three-loop diagra
shown in Fig. 9.

FIG. 9. PT resummation at three loops in QCD.
ect
di-

le-

est

,
he

in
-
the
ck

ms

Again, in order to be as general as possible, we assum
that one can reshuffle the second order PT Green’s function
without affecting the value of theS matrix to that order. In
other words, we allow the additional substitutions

P̂2→P̃2[P̂21 f 2 ,

Ĝ2→G̃2[Ĝ21u2 ,

B̂2→B̃2[B̂21h2 , ~9.22!

with

f 212q2u21q4h250. ~9.23!

Of course, the proof becomes easier if we assum
f 25u25h250, but we do not have to. We will need the
following algebraic relations:

P̃ 1
35~P̂11 f 1!

35P̂ 1
313P̂ 1

2f 113P̂1f 1
21 f 1

3 , ~9.24!

P̃1P̃25~P̂11 f 1!~P̂21 f 2!5P̂1P̂21P̂1f 21P̂2f 11 f 1f 2 ,
~9.25!

P̃1G̃25~P̂11 f 1!~ Ĝ21u2!5P̂1Ĝ21P̂1u21 f 1Ĝ21 f 1u2 ,
~9.26!

P̃2G̃15~P̂21 f 2!~ Ĝ11u1!5P̂2Ĝ11P̂2u11 f 2Ĝ11 f 2u1 ,
~9.27!

P̃ 1
2G̃15~P̂11 f 1!

2~ Ĝ11u1!5P̂ 1
2Ĝ11u1P̂ 1

212 f 1u1P̂1

12 f 1P̂1Ĝ11 f 1
2Ĝ11 f 1

2u1 , ~9.28!

P̃1G̃ 1
25~P̂11 f 1!~ Ĝ11u1!

2

5P̂1Ĝ 1
21u 1

2P̂112u1P̂1Ĝ11 f 1Ĝ 1
2

12 f 1u1Ĝ11 f 1u 1
2 , ~9.29!

G̃1G̃25~ Ĝ11u1!~ Ĝ21u2!5Ĝ1Ĝ21u2Ĝ11u1Ĝ21u1u2 .
~9.30!

Using the above formulas, the crucial constraint of Eq
~9.20!, and remembering that the graphs of the Figs. 9~b!–
9~e! and 9~g! must be multiplied by a factor of 2, which takes
account of the symmetric~mirror-image! graphs, we have
that the original set of graphs, callÂ @we factor out a factor
(1/q2)4 #

Â5P̂ 1
312q2~P̂1P̂21P̂ 1

2Ĝ1!1q4~2P̂1Ĝ212P̂2Ĝ11P̂1Ĝ 1
2!

12q6Ĝ1Ĝ2 ~9.31!

and the new one, sayÃ, which is obtained by replacing all
quantities with carets in Eq.~9.31! by ‘‘tilded’’ ones, are
related by

Â5Ã2R3 , ~9.32!
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whereR3 is given by

R35 f 1P̂ 1
212q2~ f 21q2u2!P̂112q2f 1P̂1Ĝ11q4f 1Ĝ 1

2

12q4~ f 21q2u2!Ĝ1 . ~9.33!

Clearly, the first two terms in Eq.~9.33! must be allotted to
P̂3, thus converting it toP̃3. The rest of the terms cannot b
absorbed byP̃3, since they are explicitly process dependen
because they containĜ1. Therefore, the remaining terms
must be distributed among the two-loop vertex and/or b
graphs. So, after all powers of 1/q2 are restored, the propa
gatorlike partR 3

p of R3 reads

R 3
p5

f 1
q4

P̂ 1
21

2

q2
~ f 21q2u2!P̂1 , ~9.34!

and so

P̃35P̂31R 3
p . ~9.35!

It is now important to observe that, because of the p
ticular structure ofR 3

p , the RGE satisfied byP̃3 will be
modified. Indeed, from Eq.~9.8!, we derive, forn53,

m
]P̂3

]m
52b3q

222b1P̂2 ~9.36!

and after the substitutionP̂i→P̃i , we must have

m
]P̃3

]m
52b3q

222b1P̃2 . ~9.37!

Subtracting the last two equations by parts, we obtain

m
]

]m
~P̃32P̂3!522b1~P̃22P̂2!522b1f 2 .

~9.38!

Instead, from Eqs.~9.34! and ~9.35!, we find

m
]

]m
~P̃32P̂3!5m

]R 3
p

]m
5
4 f 1
q2

b1P̂114b1~ f 21q2u2!.

~9.39!

Given the fact thatP̂1 depends explicitly onm, in order to
reconcile Eqs.~9.38! and~9.39! one must necessarily choos
f 150. Thus, the only possible solution for the set of subs
tutions described in Eq.~9.9! is the trivial one, i.e.,
f 15u15h150, which proves the uniqueness of the PT r
summation approach to one loop, after renormalization.

After setting f 150, we must impose the additional con
straint 3f 212q2u250, in order that Eqs.~9.38! and ~9.39!
become equal. Evidently, the same arguments presen
above must be repeated to the next order, which will fina
determine the value off 2; we will not pursue this issue any
further here. Instead, we add some further clarifications
garding the assumptions made in the previous proof of
one-loop uniqueness of the PT resummation formalism.
emphasized at the beginning of this section, we assume
the PT can be extended to higher orders, giving rise to eff
tive Green’s function with all the characteristics known from
e
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the explicit one-loop analysis. We further assume that the
renormalization program has been carried out to all orders.
Thus, all Green’s functions with carets appearing here are
UV finite. So far, the renormalization scheme chosen has
been left unspecified. Because of Eq.~9.8!, the effect of
adopting different renormalization-scheme choices will be to
modify the values ofbn , for n.2. However, within a spe-
cific renormalization scheme, the values ofbn are fixed, and
this is what we have implicitly assumed.

The resummation formalism discussed for the case of
Yang-Mills theories such as QCD can equally carry over to
SSB models such as the SM. In the SM,W andZ bosons are
considered to be unstable gauge particles. In the case of th
W boson, a RGE similar to Eq.~9.8! will hold for the leading
logarithmic part of the transverseW-boson self-energy.
Again, one can form the RGE-invariant combination involv-
ing theW-boson Green’s function

g w
2 @q22M W

2 1P̂ T
W~q2!#21.

Analogously with Eq.~9.4!, one can derive a similar relation
between the weak-coupling-constant renormalizationẐgw
and the wave-function renormalization of theW bosonẐW ,
i.e., Ẑgw5Ẑ W

21/2 Hence, one can show the uniqueness of this
expression by following a line of arguments similar to the
case of QCD. Furthermore, possible modifications of the lon-
gitudinal part of theW-boson self-energy,P̂ L

W , will result in
direct violations of the tree-level WI’s, which govern the
gauge invariance of the classical action.

X. CONCLUSIONS
We have presented a formalism for resummation of off-

shell two-point correlation functions, which relies entirely on
arguments of analyticity, unitarity, gauge invariance, and
multiplicative renormalization. In addition, several crucial
aspects of the GFP-independent resummation approach pre
sented in @4# have been clarified. Specifically, we have
shown that unitarity requires the absence of unphysical
thresholds for the resummed Green’s functions at the quan-
tum loop level. Within the PT resummation approach this
property is satisfied, since the effective gauge-invariant
Green’s functions are directly derived fromS-matrix ele-
ments, with the only additional inputs being the use of el-
ementary tree-level WI’s and analyticity.

This is, however, not true in other approaches. For in-
stance, we have explicitly shown thatjQ-dependent unphysi-
cal thresholds appear in the BFG, even though the Green’s
functions obey the same tree-level WI’s as the PT Green’s
functions. For the very specific value ofjQ51, the results of
BFG and PT coincide to one loop, as this is the only gauge
that avoids unphysical propagator poles. The situation may
change in higher orders. Furthermore, we have found that the
BFG Green’s functions can be decomposed into two parts,
one containing only physical poles and the other containing
jQ-dependent unphysical thresholds, whichseparatelysat-
isfy the same WI’s as the total BFG Green’s functions.

Furthermore, we have addressed issues of gauge invari
ance by resorting to the BRS symmetries at the one-loop
quantum level. We have explicitly demonstrated that the PT
two-point correlation function may be obtained from its ab-
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sorptive part through a DR. The absorptive part of the P
Green’s functions can equally well be calculated from th
optical relation of the anti-Hermitian part of the transitio
amplitude. As a result of this, we have also been able
identify the pinching parts of the PT algorithm, as thos
terms that quantify the deviation from the intrinsic BRS sym
metries. Most importantly, we have been able to show ho
gauge invariance is restored, within the PT framework,
reinforcing BRS symmetries inside the quantum loops.

In Sec. IX, we have examined the issue of ‘‘uniquenes
of the gauge-invariant resummation approach proposed
@4#. In the context of QCD, we have focused on the mo
basic RGE-invariant quantity involving the PT two-poin
correlation function, namely, the effective~running! strong
coupling. By means of a three-loop analysis, we have sho
that, at one loop, the PT resummation method gives rise
unique results. We have also briefly outlined how these co
siderations can be naturally extended to spontaneously b
ken gauge theories.

Considering the fact that all the basic field-theoretical r
quirements imposed thus far are preserved within the
resummation approach that was introduced in@4# and was
further analyzed in the present paper, one might be temp
T
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to argue that some deeper underlying principle is in effec
which has yet to be discovered. Here, we wish to point o
two possibly relevant directions in such a quest. First, the
is a interesting recent result of ‘‘stringy’’ origin@36#, which
seems to single out the one-loop BFG Green’s functions f
the special value ofjQ51, which are, of course, identical to
the PT Green’s functions. This observation makes the que
tion of whether the correspondence between the PT and
BFG atjQ51 persists beyond one loop even more pressin
Second, one should investigate possible connections betw
the PT and the Vilkovisky-DeWitt formalism@37#. In par-
ticular, the gauge-invariant and GFP-independent Green
functions obtained from the Vilkovisky-DeWitt effective ac-
tion must be compared with their PT counterparts, establis
ing the origin and the physical significance of any possib
difference between them.
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