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Enhanced photon production rate on the light cone
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Recent studies of the high temperature soft photon production rate on the light cone using Braaten-Pisarski
resummation techniques have found the presence of collinear divergences. We show that there exists a class of
terms outside the Braaten-Pisarski framework which, although also divergent, dominates over these previously
considered terms. The divergences in these new terms may be alleviated by application of a recently developed
resummation scheme for processes sensitive to the light cone.@S0556-2821~96!02220-5#
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I. INTRODUCTION

The development by Braaten and Pisarski of the effect
expansion of hot gauge theories@1,2#, given in terms of hard
thermal loops@3–6#, has resolved some long-standing par
doxes in the field@7–9#. However, it is also realized that
these techniques are useful down to scales of the exte
momenta of the order ofgT, the ‘‘soft’’ scale; infrared prob-
lems still remain if one goes below this scale, such as
calculations involving the fast fermion damping rate@10–
14#, the calculation of corrections to the Debye mass@15–
17#, and calculations of the QCD pressure@18–20#. As well,
problems also arise for processes sensitive to the behavio
the theory near the light cone, such as in the soft pho
production rate@21–23#, photon bremsstrahlung from a QED
or QCD plasma@24,25#, including the effect of Landau-
Pomeranchuk suppression@26#, or scalar QED and QCD dis-
persion relations@27–29#. All of these problems warrant ex-
tensions of the hard thermal loop resummation techniqu
although it is not obvious whether or not such extensio
will be perturbative in nature.

In this paper we consider the production of a real phot
with momentum ofO(gT). Concerning the calculation of
this rate the following paradox appears: a straightforwa
application of the hard thermal loop~HTL! effective expan-
sion leads to a rate ofO(e2g3T2) ~neglecting logarithmic
divergences! and the production process is dominated by di
grams involving soft fermions; on the other hand, the brem
strahlung emission of photons by hard@momentum of
O(T)# fermions has been estimated using semiclassi
methods@24,25# and it was found to be ofO(e2gT2) ~ignor-
ing the Landau-Pomeranchuk effect!. In the framework of
the hard thermal loop expansion such bremsstrahlung d
grams, involving a hard fermion loop, should be suppress
rather than enhanced.

We reexamine below the problem of the hard fermio
loop contribution to the production of soft real photons in th
framework of thermal field theory, going beyond the ha
loop expansion. We find that the sensitive behavior of the
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terms to the light cone enhances their order by a factor of
1/g2 relative to the soft terms. As with the soft loop contri-
butions, these enhanced terms also exhibit a collinear diver
gence, which, however, is alleviated by including thermal
mass effects on the hard fermion propagators as required fo
a consistent calculation and also in agreement with a recently
developed extension to the hard thermal loop resummation
scheme for processes near the light cone@28#. Although a
rigorous proof that this extension is complete is still forth-
coming, it is clear that these terms dominate those of the
hard thermal loop effective expansion, and as such a new
effective expansion in cases such as this should be investi
gated.

II. PRODUCTION RATE

In order to calculate the photon production rate, we must
evaluate the imaginary part of the trace of the~retarded!
polarization tensor:

q0
ds

d3q
52

1

~2p!3
n
B
~q0!ImPm

m~Q!;
1

g
ImPm

m~Q!,

~1!

where the approximate equality holds for a photon of energy
q0;gT. According to the Braaten-Pisarski theory, the four
diagrams displayed in Fig. 1 could,a priori, contribute to
soft photon production at leading order. However, the dia-
gram of Fig. 1~b! is zero thanks to an extension of the Fur-
ry’s theorem to the effective vertex with one photon and two
gluons. Moreover, in the HTL approximation, the contribu-
tion of the diagrams of Figs. 1~c! and 1~d! are known to
vanish: indeed, the trace of the four-point function with two
photons and two fermions vanishes while the four-gauge-
boson effective vertex of Fig. 1~c! has no HTL contribution.
There remains only the diagram of Fig. 1~a! which is ex-
pected to contribute a term ofO(e2g2T2) to ImPm

m(Q)
since the loop momentum is soft and ‘‘effective propagators
and vertices are of the same order as their bare counterparts
@1,2#. The contribution from this soft internal quark loop
using the effective propagators and vertices has been calcu
lated in Refs.@21,22#, with a result that, to leading order,
exhibits a collinear divergence:
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ImPm
m~Q!524Nce

2
mth
2

q2 E dL̂

~2p!122«

q

Q•L̂1 i e

3E dnP

~2p!n212pd~P•Q̂!S 122n
F
~p0! D

3 (
s561

F S 12
sp0
p Dbs~P!1S 12

sr0
r Dbs~R!G

5O~e2g3T2!
1

«
, ~2!

wheremth
25CFg

2T2/8, P5(p0 ,pW ), p5upW u, « is the regulat-
ing parameter of dimensional regularization~n5412«,«.0!,
and the effective quark propagator has been split as

*SR~P![ i (
s561

P”̂ s

DR
s ~p01 i e,pW !

, ~3!

where P̂s is the lightlike vector P̂s[(1,sp̂5spW /p) and
1/D

R

s[as(P)2 ipbs(P).
One should note that the above result is suppressed b

factor g compared to the expected ordere2g2T2 @30#. This
fact warrants a reexamination of the diagrams which h
been found to vanish in the HTL approximation since the
may well contribute at the suppressed ordere2g3T2. Consid-
ering Fig. 1~d!, a blown-up view of the effective four-gauge
boson vertex reveals that the diagram is, in fact, equival
to the two-loop diagrams of Fig. 2 with a hard fermion loo
and a soft gluon insertion: Fig. 2 corresponds to the low
order bremsstrahlung diagrams studied in@24,25#. The same
reasoning can be made for Fig. 1~c! and leads to the diagram
with a self-energy insertion of Fig. 2~b! where the gluon is
now hard and the fermion of momentumR1L soft. In the
following we calculate only the diagrams of Fig. 1~d!, be-
yond the hard loop approximation, because it is enhanc

FIG. 1. Contributions to the soft photon production rate wi
soft internal lines.
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compared to Fig. 1~c!, by a factor 1/g, due to the Bose factor
associated to the soft gluon propagator.

We work in the retarded or advanced formalism of finit
temperature field theory@22,31–33#, which has the advan-
tages of real time methods@34–36# but still maintains close
ties with the imaginary time techniques@15,37#. For the con-
tribution of the graph with the self-energy correction~we
must keep in mind that there is another graph with a se
energy correction on the other fermionic propagator!, we find
the following result for the retarded self-energy up to colo
and group factors, which will be re-established in the fin
results@31,22#:

2 iPm
m~Q!uR

52e2E dnP

~2p!nH F122nF~p0!G@DR~P!2DA~P!#

3@DR~R!#2TrŜR1F122nF~r 0!G
3@DR

2~R!TrŜR2DA
2~R!TrŜA#DA~P!J , ~4!

where the retarded and advanced propagators are define

DR,A~P![
i

P22M26 i ep0
~5!

~here we useM50), and the notation TrŜa with a5R,A
stands for

TrŜa[Tr~gmR” @2 iSa~R!#R” gmP” !. ~6!

The one-loop fermion self-energySa(R) is calculated with
the following decomposition of the soft gluon propagato
into its transverse, longitudinal, and gauge components@1,2#:

th FIG. 2. Contributions to the soft photon production rate wit
hard internal fermion lines:~a! vertex insertion;~b! self-energy in-
sertion.
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iDmn~L ![
PT

mn~L !

L22PT
1
PL

mn~L !

L22PL
1gauge terms. ~7!

We introduce the spectral functions

rT,L~ l ,l 0!5
i

L22PT,L
U
R

2
i

L22PT,L
U
A

. ~8!

We find that the imaginary part of the photon self-energ
defined by 2i ImPm

m5Pm
muR

2Pm
muA
, can be written at

Q250 as

ImPm
m~Q!

522e2g2E dnP

~2p!n21 e~p0!d~P2!@n
F
~r 0!2n

F
~p0!#

3E dnL

~2p!n21 e~r 01 l 0!d@~R1L !2#

3@nF~r 01 l 0!1nB~ l 0!#rT,L~ l ,l 0!

3F4RmQnPT,L
mn ~L !

R2 2PT,Lm
m ~L !S 11

2Q•L

R2 D G , ~9!

with appropriate spectral functionrT,L and projection matrix
PT,L . This expression corresponds to cut ‘‘b’’ of Fig. 2~b!.
Cuts ‘‘a’’ and ‘‘ c’’ vanish in dimensional regularization or
if one uses a regulating mass for the fermion, by kinemat
arguments. At that point, we drop the gauge-dependent
of the gluon propagator since it is possible to verify that
does not contribute at the order we are interested in, t
leaving a gauge-independent result.

The contribution of the vertex diagram to the retard
self-energy can be written as@31,22#

2 iPm
m~Q!uR52e2E dnP

~2p!n
TRT,LH F122nF~p0!G

3$@VRRA~P,Q,2R!DR~P!

2VARA~P,Q,2R!DA~P!#DR~R!%

3F122nF~r 0!G$@VARA~P,Q,2R!DR~R!

2VARR~P,Q,2R!DA~R!#DA~P!%J , ~10!

where all the Dirac algebra factors are included in

TRT,L[@PT,L
rs ~L !#Tr~gmR” gr~R”1L” !gm~P” 1L” !gsP” !

~11!

and the functionsVabg(P,Q,2R) contain the scalar part o
the diagram of Fig. 3. They are defined by@31,22#:
y,

,
ical
part
it
hus

ed

f

Vabd~P,Q,2R!

[2g2E dnL

~2p!nH S 121nB~ l 0!D
3F i

L22PU
R

2
i

L22PU
A

GDa~P1L !D d̄ ~R1L !

1S 122nF~r 01 l 0!D @DR~R1L !

2DA~R1L !#Db̄~P1L !
i

L22PU
d

1S 122nF~p01 l 0!D @DR~P1L !

2DA~P1L !#Db~R1L !
i

L22PU
ā
J . ~12!

Plugging this expression in Eq.~10!, one obtains the imagi-
nary part of the self-energy:

ImPm
m~Q!52

1

2
e2g2E dnP

~2p!n21 @nF~r 0!2nF~p0!#

3E dnL

~2p!n21 rT,L~ l ,l 0!TRT,L

3H e~p0!d~P2!e~r 01 l 0!d@~R1L !2#

3
nF~r 01 l 0!1nB~ l 0!

R2~P1L !2
1e~r 0!d~R2!e~p01 l 0!

3d@~P1L !2#
nF~p01 l 0!1nB~ l 0!

P2~R1L !2 J . ~13!

Two classes of terms appear which can be interpreted
terms of cut diagrams: the first term in the curly bracke
above coresponds to cut ‘‘b’’ in Fig. 2~a! and it is to be
combined with Eq.~9! while the second term is associate
with the other self-energy correction mentioned above. Bo
classes of terms give an identical contribution to the phot
production rate. Keeping only the dominant terms forP,R
hard andQ,L soft, we find the total contribution to the
imaginary part of the self-energy to be

FIG. 3. The three-point vertex function.
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ImPm
m~Q!522e2g2E dnP

~2p!n21E dnL

~2p!n21qnF8 ~p0!

3nB~ l 0!rT,L~ l ,l 0!e~p0!e~r 01 l 0!d~P2!

3d@~R1L !2#4RrPsPT,L
rs

L2

R2~P1L !2
. ~14!

The presence of theL2 factor in the numerator clearly indi-
cates that our calculation is carried out beyond the HTL a
proximation where such terms are neglected. Estimating
ively the order of magnitude of our result@usingL2;g2T2

andR2;(P1L)2;gT2# we find it to beO(e2g3T2), i.e., of
the same order as the supposedly dominant soft fermion lo
contribution of Eq. ~2!. However, the denominator
R2(P1L)2 is responsible for collinear divergences whic
drastically modify this naive estimate. Using thed function
constraints one easily rewrites

24

R2~P1L !2
5

1

P•Q

1

P•Q1Q•L

5
1

Q•L S 1

P•Q
2

1

P•Q1Q•L D'
2

Q•L

1

P•Q
.

~15!

The first equality shows the presence of two very close c
linear singularities (P•Q50! since the two poles differ only
by the softQ•L term. The last equality holds true to leadin
order only after the integration over the whole phase space
Eq. ~14! is performed. Introducing the angular variabl
u512cosu between the lightlike momentaP and Q the
above expression becomes, nearu50,

1

R2~P1L !2
;

p

qL2
1

pqu
. ~16!

This form shows the presence of a logarithmic collinear d
vergence and the order of the residue at the pole inu is
1/g4T4 instead of the naively expected 1/g2T4. Concentrat-
ing then on this collinear limit, and leaving details of th
calculations to a future paper, we find the dominant dive
gent term to be

ImPm
m~Q!'~21!L4e

2g2NCCf

1

~2p!4
1

q

3E
p*

`

dpp2nF~p!@12nF~p!#E
0

l* dl

l

3E
2 l

l dl0
l 0

L2rL,T~ l 0 ,l !E
0

1du

u
, ~17!

wherep* and l * are some intermediate momenta betwe
the hard and soft scale. We have reintroduced at that po
the color factorNC and group factorCf in the result. The
symbol (21)L is 11 for the transverse gluon mode an
21 for the longitudinal one. We find in thel integration that
the region betweenl * and` gives a negligible contribution,
so we can takel *→`. Similarly, we can takep*→0. We
notice a nice factorization of Eq.~17! into a ‘‘hard thermal
p-
na-

op

h

ol-

g
in

e

i-

e
r-

en
int

d

loop’’ integral overp, a soft gluonic integral overl and l 0,
and an integral over the angular variableu leading to the
logarithmic collinear divergence. It is possible to show b
kinematical considerations that only the Landau dampi
part of the spectral functionrL,T contributes to the divergent
piece; this is the reason why the integration domain has be
limited to L2,0. The occurrence of a collinear divergence
as in Eq.~17!, was noticed in the dispersion relations fo
scalar QED near the light cone@27#.

To proceed, sum rules may then be used to reduce
integrations of Eq.~17! down to a single one; for example,
for the transverse contribution we can use

1

pE2`

1`

dzzrT~zl,l !5
2

l 2
,

1

pE2`

1`dz

z
rT~zl,l !5

2

l 2
,

~18!

1

pE21

11

dzzrT~zl,l !5
2

l 2
@12ZT~ l !#,

1

pE21

11dz

z
rT~zl,l !52F 1

l 21mmag
2 2

ZT~ l !

vT
2~ l !G ,

where

ZT[
2vT

2~vT
22 l 2!

3mg
2vT

22~vT
22 l 2!2

, ~19!

wherev
T
( l ) is the energy of the solution to the dispersio

relation andmg is the gluon Debye mass. Note that we hav
introduced a phenomenological ‘‘magnetic mass
mmag;g2T by hand to regulate potential infrared divergenc
for the transverse contribution. We find that the diverge
piece of the transverse term can be written as

ImPm
m~Q!'

e2g2NCCf

12p

T3

q

1

«

3E
0

`dl

l H mmag
2

l 21mmag
2 2ZT

vT
22 l 2

vT
2 J

;O~e2gT2!
1

«
. ~20!

Similar sum rules can be used to evaluate the longitudin
contribution which is found to be

ImPm
m~Q!'2

e2g2NCCf

12p

T3

q

1

«

3E
0

`dl

l H 3mg
2

l 213mg
2 2ZL

vL
22 l 2

vL
2 J

5O~e2gT2!
1

«
. ~21!
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We note that the transverse contribution requires the ‘‘m
netic mass’’ introduced earlier in the sum rules in order to
infrared safe but both contributions display a divergen
which is seen to be enhanced by a factor of 1/g2 relative to
the soft fermion loop contribution of Eq.~2!.

In our discussion of the collinear divergences care h
been taken to keep the exact kinematics in the evaluatio
the denominators: thus, in Eq.~15!, the ‘‘soft’’ term Q•L
was not neglected compared to the ‘‘hard’’ termP•Q. But
there are other soft corrections to hard propagators wh
should also be included, namely, those associated to the
mass effects. Taking these into account amounts to apply
a further resummation of hard internal lines@27,28#. This
resummation is in addition to the HTL resummation
Braaten and Pisarski for soft lines, and is important for p
cesses that are sensitive to the behavior near the light con
also has the virtue of being a gauge-invariant resumma
summarized by a compact effective action. In the pres
case this involves using the dressed fermion propag
given in the limitp0 ,p@gT by

P0g
02v1~p!P̂•gW

P22M`
21O~M`

4 /p2!
'

P”

P22M`
2 , ~22!

whereM` is the fermionic thermal mass in the hard regim
and v1(p)'A(p21M`

2 ) is the energy of the ‘‘particle
mode’’ of the fermionic dispersion relation. Furthermor
this asymptotic mass is insensitive to a soft modification
the hard propagator. Carrying through the calculations w
such a propagator, one finds the analogous relation to
final result of Eq.~17! as

ImPm
m~Q!'~21!L4e

2g2NCCf

1

~2p!4
1

q

3E
p*

`

dpp2nF~p!@12nF~p!#E
0

l* dl

l

3E
2 l

l dl0
l 0

L4rL,T~ l 0 ,l !

3E
0

1 du

A12u

1

L2u24M`
2 . ~23!

We note that taking theM`→0 limit of Eq. ~23! at the
collinear point results in Eq.~17!, reproducing the collinear
divergence as well as the dependence on the magnetic m
The angular integration in Eq.~23! is easily performed and
one arrives at

ImPm
m~Q!'~21!L

e2g2NCCf

12p

T3

q

2

p

3E
0

1dx

x
Ĩ T,L~x!E

0

1`

dw

3
Aw/~w14!tanh21Aw/~w14!

@w1R̃T,L~x!#21@ Ĩ T,L~x!#2
, ~24!
ag-
be
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e

e,
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with w52L2/M`
2 R̃T,L(x)[RePT,L(x)/M`

2 , and
Ĩ T,L(x)[ImPT,L(x)/M`

2 . Obviously, the remaining inte-
grals are finite and dimensionless. We note, though, that as
the massless case of Eq.~17!, sum rules can be used to re-
duce Eq.~23! down to a one-dimensional integral. Details
will be given in a future work; we simply describe here som
general features about the result which are evident from th
form and from Eq.~23!. The first is that the order of the
contributions is not changed by inclusion of the asymptot
mass, and as such, it is also enhanced by a factor of 1/g2

relative to the soft contribution of Eq.~2!. The second one is
that the presence ofM` regulates the collinear divergence
associated with the lower limit on theu integration, since
L2,0. The final one is that the former sensitivity on the
magnetic mass scale disappears when one considers spe
cally M`;O(gT), but, as noted after Eq.~23! in taking
M`→0, would reappear at scales below this. This result
thus of the same order as that of Ref.@25#, neglecting the
Landau-Pomeranchuk effect, but we differ from it since w
find that both the transverse and the longitudinal modes co
tribute to the same order while in Ref.@25# the interaction in
the medium is assumed to be static.

III. CONCLUSIONS

Although the resummation of the hard fermion line by
inclusion of the asymptotic mass regulates the collinear d
vergence, we should note that it is not rigorously known
such a mass is the only term present at this order in gener
In particular, terms in an effective propagator which migh
arise from higher loop diagrams than the hard thermal on
loop terms giving rise to this asymptotic mass may contrib
ute. Thus, we cannot say with absolute certainty that th
terms discussed here are the only ones which contribute
this order, although arguments exist that this may in fact b
the case. Indeed, in this regard cancellations may occur: it
known in some examples that a constant damping term i
serted in an effective propagator will cancel against the co
responding vertex corrections@10,28,38,39#. What does
seem clear, though, is that there is an enhancement mec
nism present in processes near the light cone which fa
outside of the usual Braaten-Pisarski resummation of so
internal lines. It is also possible through a similar mechanis
that other processes sensitive to the behavior of the theo
near the light cone, such as the photon production rate f
slightly virtual photons@40#, may also get contributions from
similar terms with hard internal momenta. Work along thes
lines, as well as details of the calculations reported here, w
be presented elsewhere.
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