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Enhanced photon production rate on the light cone
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Recent studies of the high temperature soft photon production rate on the light cone using Braaten-Pisarski
resummation techniques have found the presence of collinear divergences. We show that there exists a class of
terms outside the Braaten-Pisarski framework which, although also divergent, dominates over these previously
considered terms. The divergences in these new terms may be alleviated by application of a recently developed
resummation scheme for processes sensitive to the light {80856-282(196)02220-5

PACS numbgs): 11.10.Wx, 11.15.Bt, 12.38.Mh

[. INTRODUCTION terms to the light cone enhances their order by a factor of
1/g? relative to the soft terms. As with the soft loop contri-
The development by Braaten and Pisarski of the effectivdutions, these enhanced terms also exhibit a collinear diver-
expansion of hot gauge theorigl2], given in terms of hard gence, which, however, is alleviated by including thermal
thermal loopg3-6], has resolved some long-standing para-mass effects on the hard fermion propagators as required for
doxes in the field 7—9]. However, it is also realized that a consistent calculation and also in agreement with a recently
these techniques are useful down to scales of the externdkeveloped extension to the hard thermal loop resummation
momenta of the order afT, the “soft” scale; infrared prob- scheme for processes near the light c§28]. Although a
lems still remain if one goes below this scale, such as irrigorous proof that this extension is complete is still forth-

calculations involving the fast fermion damping rdte0—  coming, it is clear that these terms dominate those of the
14], the calculation of corrections to the Debye mgss—  hard thermal loop effective expansion, and as such a new
17], and calculations of the QCD pressiii&8—20. As well,  effective expansion in cases such as this should be investi-

problems also arise for processes sensitive to the behavior ghted.
the theory near the light cone, such as in the soft photon

production rat¢21—23, photon bremsstrahlung from a QED Il. PRODUCTION RATE
or QCD plasma[24,25, including the effect of Landau-
Pomeranchuk suppressif6], or scalar QED and QCD dis- In order to calculate the photon production rate, we must

persion relation§27-29. All of these problems warrant ex- evaluate the imaginary part of the trace of tiretarded
tensions of the hard thermal loop resummation techniquegolarization tensor:
although it is not obvious whether or not such extensions

will be perturbative in nature. do 1
In this paper we consider the production of a real photon qoﬁ_ B (ZW)3nB(QO)|mHMM(Q)~ aImHMM(Q)’
with momentum ofO(gT). Concerning the calculation of 1)

this rate the following paradox appears: a straightforward

application of the hard thermal lodpiTL) effective expan- where the approximate equality holds for a photon of energy
sion leads to a rate dD(e?g>T?) (neglecting logarithmic qo~gT. According to the Braaten-Pisarski theory, the four
divergencesand the production process is dominated by dia-diagrams displayed in Fig. 1 could, priori, contribute to
grams involving soft fermions; on the other hand, the bremssoft photon production at leading order. However, the dia-
strahlung emission of photons by hafthomentum of gram of Fig. 1b) is zero thanks to an extension of the Fur-
O(T)] fermions has been estimated using semiclassicaly’s theorem to the effective vertex with one photon and two
methodg 24,25 and it was found to be db(e?gT?) (ignor-  gluons. Moreover, in the HTL approximation, the contribu-
ing the Landau-Pomeranchuk effecin the framework of tion of the diagrams of Figs.(&) and Xd) are known to
the hard thermal loop expansion such bremsstrahlung diasanish: indeed, the trace of the four-point function with two
grams, involving a hard fermion loop, should be suppresseghotons and two fermions vanishes while the four-gauge-
rather than enhanced. boson effective vertex of Fig.(@) has no HTL contribution.

We reexamine below the problem of the hard fermionThere remains only the diagram of Fig(@l which is ex-
loop contribution to the production of soft real photons in thepected to contribute a term dd(e?g®T?) to ImIT#,(Q)
framework of thermal field theory, going beyond the hardsince the loop momentum is soft and “effective propagators
loop expansion. We find that the sensitive behavior of thesand vertices are of the same order as their bare counterparts”

[1,2]. The contribution from this soft internal quark loop
using the effective propagators and vertices has been calcu-
*On leave of absence from ENSLAPP, B.P. 110, F-74941lated in Refs.[21,22, with a result that, to leading order,
Annecy-le-Vieux Cedex, France. exhibits a collinear divergence:
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(a)

N (b)

FIG. 1. Contributions to the soft photon production rate with  FIG. 2. Contributions to the soft photon production rate with

soft internal lines. hard internal fermion linesi@) vertex insertionyb) self-energy in-
sertion.
m, dL q .
ImII*,(Q)= —4Ne*— PPRVErE . compared to Fig. (t), by a factor 1g, due to the Bose factor
q (2m) Q-L+ie associated to the soft gluon propagator.
We work in the retarded or advanced formalism of finite

d"P -

}—n (po)> temperature field theor}22,31-33, which has the advan-
2 F tages of real time method84—34 but still maintains close
Sr ties with the imaginary time techniqugk5,37]. For the con-
0 - . :
1- —) ,BS(R)} tribution of the graph with the self-energy correctiome
r must keep in mind that there is another graph with a self-
1 energy correction on the other fermionic propagatee find
=0(e?g’T?)—, (2)  the following result for the retarded self-energy up to color
& and group factors, which will be re-established in the final
results[31,27:

22

s=x1

wherem?2 =Crg?T?/8, P=(po.p), P=|p|, ¢ is the regulat-
ing parameter of dimensional regularizatior=4+2¢,6>0), —i H”M(Q)|R
and the effective quark propagator has been split as

__e2[ 4P []2 AR(P)—AA(P
| |§>S =—g 2m)" E_np(po)[ rR(P)—=AA(P)]
*SR(P)E| 2 . . o0 (3)
s==1 DR(po+ie€,p) S 1
X[AR(R)*TrEg+ E‘nF(rO)
where P, is the lightlike vector P.=(1sp=sp/p) and
1/D¢=ay(P) —imBs(P). ; Y- A > ]
R X[ARR)TrEg—AR(R)TrSAlAA(P) |, 4
One should note that the above result is suppressed by a BRI SARITEAIAAR) “

factor g compared to the expected ordeig®T? [30]. This _

fact warrants a reexamination of the diagrams which hadvhere the retarded and advanced propagators are defined by
been found to vanish in the HTL approximation since they

may well contribute at the suppressed ord&g>T?. Consid- Ag A(P)=
ering Fig. 1d), a blown-up view of the effective four-gauge- RA
boson vertex reveals that the diagram is, in fact, equivalent ~
to the two-loop diagrams of Fig. 2 with a hard fermion loop (here we useM =0), and the notation B, with a=R,A
and a soft gluon insertion: Fig. 2 corresponds to the lowesstands for

order bremsstrahlung diagrams studied24,25. The same A

reasoning can be made for Figcland leads to the diagram T2, =Tr(y, R —i2 (R JRY*P). (6)
with a self-energy insertion of Fig.(B) where the gluon is

now hard and the fermion of momentuR®-L soft. In the  The one-loop fermion self-energy ,(R) is calculated with
following we calculate only the diagrams of Fig(d]l, be- the following decomposition of the soft gluon propagator
yond the hard loop approximation, because it is enhancednto its transverse, longitudinal, and gauge componghg:

I
PZ—MZ~iep, ©
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Pr(L)  PE(L) P
S v )=
iD#¥(L) I_2_HT~I—L2_HL+gaugeterms. (7)
Q
. . —>
We introduce the spectral functions TL
(Ilg)= | L )
pT,L\lo L2_HT,L|R L2_HT,L|A. R
FIG. 3. The three-point vertex function.
We find that the imaginary part of the photon self-energy,
dezfined by 2Imll*, =Il*, —11*, , can be written at V,g5P,Q,—R)
Q=0 as - zf n 1+ |
- g (27T)n 2 nB( O)
ImII*,(Q)
2o AP 2 o ] A (P+L)AS(R+L)
=—2e9° | 5 —n=1€(Po)S(P?)[N_(ro)—n_(po)] L2-TI|, L°-T1I @ d
(27) F F R A
d"L )
XJEE;TFTdUﬁ4&5UR+L)] +| 5~ Ne(ro+lo) |[AR(R+L)
X[Nne(ro+1lo) +ngllo)]pr,.L(l,10) i
v —AA(R+L)]JAG(P+L) 5
4R, Q,PTL(L) 2Q-L A B L°—T1
X ——i—ﬁf—————P¢¢ﬂuq +——|, @ s
+ E_nF(pO—HO))[AR(P"_L)
with appropriate spectral functigyny | and projection matrix
Pt . This expression corresponds to cut’ of Fig. 2(b). i
Cuts “a” and " ¢” vanish in dimensional regularization or, —AA(P+L)JA4(R+L) J (12)
if one uses a regulating mass for the fermion, by kinematical L=

arguments. At that point, we drop the gauge-dependent part

of the gluon propagator since it is possible to verify that it

Plugging this expression in E¢L0), one obtains the imagi-

does not contribute at the order we are interested in, thugary part of the self-energy:

leaving a gauge-independent result.
The contribution of the vertex diagram to the retarded
self-energy can be written 481,27

. ) d"P 1
_|H“,L(Q)|R:_e I(ZT)nTRT,L §_nF(po)

X{[VRRA(PIQ! - R)AR(P)
—Vara(P,Q,—R)AA(P)JAR(R)}

X

2 nF(rO)

{[Vara(P.Q,—R)AR(R)

—Varr(P,Q,—R)AA(R)JAA(P)}{, (10)

where all the Dirac algebra factors are included in

TRy =[PTLLITr(y, Ry, (R+ L) y*(P+L) %P)( )
11

and the function®/ ,z,(P,Q,—R) contain the scalar part of
the diagram of Fig. 3. They are defined [81,22:

ImIT# _1 2 ZJdn—P _

mIT#,(Q) 29 g (zw)n—l[nF(rO) Ne(Po)]
d"L

XJWPT,L(lyIO)TRT,L

X1 €(po) 8(P?)e(ro+10) S[(R+L)?]

Ne(ro+1o) +ng(lo)
R2(P+L)?

Ne(Po+1o) +ng(lo)
PAR+L)*

+€(ro) S(R?) e(Po+1o)

X 8[(P+L)?]

(13

Two classes of terms appear which can be interpreted in
terms of cut diagrams: the first term in the curly brackets
above coresponds to cutb” in Fig. 2(a) and it is to be
combined with Eq.(9) while the second term is associated
with the other self-energy correction mentioned above. Both
classes of terms give an identical contribution to the photon
production rate. Keeping only the dominant terms RaR
hard andQ,L soft, we find the total contribution to the
imaginary part of the self-energy to be
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d"p d"L loop” integral overp, a soft gluonic integral ovelr and|,
|mH“M(Q):—29292f (Zw)nflf (Zw)nflqn;:(po) and an integral over the angular variahleleading to the
logarithmic collinear divergence. It is possible to show by
Xng(lg)pr L (I,1g)e(po)e(ro+!o) 85(P?) kinematical considerations that only the Landau damping
) part of the spectral functiop_t contributes to the divergent

2 po piece; this is the reason why the integration domain has been
X OL(RFL) ]4RPP"PTYLR2(P+ L)% (14 limited to L?<0. The occurrence of a collinear divergence,
as in Eq.(17), was noticed in the dispersion relations for
The presence of the? factor in the numerator clearly indi- scalar QED near the light cong7].
cates that our calculation is carried out beyond the HTL ap- To proceed, sum rules may then be used to reduce the
proximation where such terms are neglected. Estimating nantegrations of Eq(17) down to a single one; for example,
ively the order of magnitude of our resuilisingL?~g?T?  for the transverse contribution we can use
andR?>~ (P+L)?~gT?] we find it to beO(e?g>T?), i.e., of
the same order as the supposedly dominant soft fermion loop 1 [+ 2
contribution of Eq. (2). However, the denominator ;J dzzp7(zl1) =1z,
R2(P+L)? is responsible for collinear divergences which o
drastically modify this naive estimate. Using thefunction

. . ; 1 (+>dz
constraints one easily rewrites = 7pT(Z|.|)= 7
i —4 - 1 1 (18)
R(P+L)> P-QP-Q+Q-L
1(+1 2
1 1 1 _ 2 1 ;f dZZpT(Z|,|)=|—2[1—ZT(|)],
"QLIP-Q PQFQL) QLPQ o
(15 1f+1dz 2l)=2 1 Z+(1)
—| . prizhl)= 2 T 2
The first equality shows the presence of two very close col- ml-1 2 12+ Minag ~ @7(1)
linear singularities P- Q=0) since the two poles differ only
by the softQ- L term. The last equality holds true to leading Where
order only after the integration over the whole phase space in 2 2 2
Eq. (14) is performed. Introducing the angular variable 7 = 20T (wT—19) (19
u=1-coy between the lightlike moment® and Q the T 3miei—(0f-19)%’

above expression becomes, naar0,
wherew_(l) is the energy of the solution to the dispersion

(16) relation andm, is the gluon Debye mass. Note that we have

introduced a phenomenological “magnetic mass”
_mmag~ng by hand to regulate potential infrared divergence
for the transverse contribution. We find that the divergent
piece of the transverse term can be written as

1 p 1
R%(P+L)? qL? pqu’

This form shows the presence of a logarithmic collinear di
vergence and the order of the residue at the pol@ iis
1/g*T* instead of the naively expecteddfT*. Concentrat-

ing then on this collinear limit, and leaving details of the 22N C; T3 1

calculations to a future paper, we find the dominant diver- ImII*,(Q)~
gent term to be 120 q e
2,2 11 Xfwﬂ m'?”ag _ wr-1?
M, (Q)=(~1).4e°g"NcCr 5705 o I [1P4mhy, 7T of
% dl _ — 1
Xfp*dppznp(p)[l—np(p)]fo T O(e"gT") . (20
I dlg idu Similar sum rules can be used to evaluate the longitudinal
2
X f—IKL PL,T“Ov')LTv contribution which is found to be

wherep* and|* are some intermediate momenta between ImIT* (Q)~ — e’9°NcCq T_31
the hard and soft scale. We have reintroduced at that point w

the color factorNs and group factotCs in the result. The

symbol (—1), is +1 for the transverse gluon mode and fmﬂ
— 1 for the longitudinal one. We find in tHeintegration that o |

the region betweeh* and« gives a negligible contribution,
so we can také* —o. Similarly, we can take* —0. We

notice a nice factorization of Eq17) into a “hard thermal

wE—l2
2 Z_ZL 2

=0(eng2); (21)
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We note that the transverse contribution requires the “magwith w=— LZIMEC ]iT L(X)=RdlI; L(X)/Mi, and
netic mass” introduced earlier in the sum rules in order to b€ T,L(X)ElmHT,L(X)/Mi- Obviously, the remaining inte-

infrared safe but both contributions display a divergencey s are finite and dimensionless. We note, though, that as in
which is seen to be enhan_ced_ by a factor (gf]r/elatlve 10 the massless case of E@.7), sum rules can be used to re-
the soft fermion loop contribution of Eq2). duce Eq.(23) down to a one-dimensional integral. Details
In our discussion of the collinear divergences care hagi pe given in a future work; we simply describe here some
been taken to keep the exact kinematics in the evaluation Qfeneral features about the result which are evident from this
the denominators: thus, in EGLS), the “soft” term Q-L  form and from Eq.(23). The first is that the order of the
was not neglected compared to the “hard” tefRQ. But  conributions is not changed by inclusion of the asymptotic
there are other soft corrections to hard propagators whicl,5s5 and as such, it is also enhanced by a factorgdf 1/
should also be included, namely, those associated to thermal|aiive to the soft contribution of E¢2). The second one is
mass effects. Taking these into account amounts to applying,at the presence d¥l.. regulates the collinear divergence

a further resummation of hard internal ling87,28. This  aqqaciated with the lower limit on the integration, since
resummation is in addition to the HTL resummation of | 25 The final one is that the former sensitivity on the

Braaten and Pisarski for soft lines, and is important for PrOmagnetic mass scale disappears when one considers specifi-

cesses that are sensitive to the behavior near the light cone.dgny M..~O(gT), but, as noted after Eq23) in taking
also has the virtue of being a gauge-invariant resummatio .—0, would reappear at scales below this. This result is
summarized by a compact effective action. In the present, ;s of,the same order as that of REZ5], neglecting the
case this involves using the dressed fermion propagatqranyay-pomeranchuk effect, but we differ from it since we
given in the limitpy,p>gT by find that both the transverse and the longitudinal modes con-
tribute to the same order while in R¢25] the interaction in

0_ P.y T .
2’07 i w+(p)i’ 72 -~ P , (220  the medium is assumed to be static.
Pe=MZ+O(MZ/p9) P =MZ’

. _— . . Ill. CONCLUSIONS
whereM,, is the fermionic thermal mass in the hard regime

and w_ (p)~y(p>+M?2) is the energy of the “particle Although the resummation of the hard fermion line by
mode” of the fermionic dispersion relation. Furthermore, inclusion of the asymptotic mass regulates the collinear di-
this asymptotic mass is insensitive to a soft modification ofvergence, we should note that it is not rigorously known if
the hard propagator. Carrying through the calculations witlsuch a mass is the only term present at this order in general.
such a propagator, one finds the analogous relation to thi@ particular, terms in an effective propagator which might

final result of Eq.(17) as arise from higher loop diagrams than the hard thermal one-

loop terms giving rise to this asymptotic mass may contrib-

1 ute. Thus, we cannot say with absolute certainty that the

M ~(— 2q2 —_— ’ !

ImII#,(Q)~(~1).4€°g NCCf(zT,)4 q terms discussed here are the only ones which contribute at
dl this order, although arguments exist that this may in fact be

* . =al the case. Indeed, in this regard cancellations may occur: it is

x Jp*dppan(p)[l np(p)]fo I known in some examples that a constant damping term in-

serted in an effective propagator will cancel against the cor-

« ! %L“ o) responding vertex correctionf10,28,38,3% What does

“i g PL1ilo seem clear, though, is that there is an enhancement mecha-

nism present in processes near the light cone which falls

1 du 1 outside of the usual Braaten-Pisarski resummation of soft

<, JT-u L2u—am? (23 internal lines. It is also possible through a similar mechanism

that other processes sensitive to the behavior of the theory

We note that taking thé/..—0 limit of Eq. (23 at the Near the light cone, such as the photon production rate for
collinear point results in Eq17), reproducing the collinear Slightly virtual photong40], may also get contributions from
divergence as well as the dependence on the magnetic mas¥nilar terms with hard internal momenta. Work along these

The angular integration in Eq23) is easily performed and lines, as well as details of the calculations reported here, will
one arrives at be presented elsewhere.
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