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Topological and nontopological self-dual Chern-Simons solitons in a gauged O„3… s model
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We present topological and nontopological self-dual soliton solutions in an O(2) gauged O(3)s model on
R2 with Chern-Simons rather than Maxwell dynamics. These solutions are not vortices in the usual sense in
that themagnetic fluxis irrelevant to the stability of the topological solitons, which are stabilized by the degree
N, but it plays a crucial role in the stabilization of the nontopological solitons. It turns out thattopologicaland
nontopologicalsolitons of arbitrary vorticityN exist. We have studied both types of vortices withN51 and
N52, and the nontopological soliton withN50 numerically. We present analytic proofs for the existence of
these topological and nontopological solitons. The qualitative features of the gauged O(3) solitons are con-
trasted with those of the gauged CP1 solitons.@S0556-2821~96!00120-8#

PACS number~s!: 11.10.Lm, 02.20.Qs, 03.50.Kk, 11.10.Kk
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I. INTRODUCTION

The problem of gaugings models is a pertinent one in
both (211)- and (311)-dimensional physics, and was in
vestigated by Faddeev@1# a while ago. In 211 dimensions,
it is relevant to the planar physics of superconductivity the
ries especially at highTc when nonstandard statistics is ex
hibited @2# in the CP1 model. In 311 dimensions it features
in the gauging@3,4# of the O(4) s model, namely, of the
Skyrme model@5#. The work of Ref.@4#, in particular, ad-
dresses the problem of the topological stability of the solit
in the gauged Skyrme model. In this work we shall requi
that the gaugeds model support topologically stable soli
tons.

Recently, there have been several works dealing with
problem of gauging s models defined onR2 in
such a way that the gauged model can support solito
These were reported in the Refs.@6–9# chronologically.

In @6,7# the solitons in question were the static solution
to a Chern-Simons theory in (211)-dimensional Minkowski
space featuring a CP1 field. Implicit in this work @6,7# was
the analysis of a gauged CP1 model on R2
with Maxwell dynamics, in exact analogy with the rol
played by the usual Abelian Higgs model@10# with Maxwell
dynamics in the analysis of the Chern-Simons Higgs solito
introduced by Honget al. @11# and Jackiw and Weinberg
@12#. This aspect was highlighted in@8#, where both the
Chern-Simons and Maxwell CP1 models were augmented by
a Skyrme term, respectively, on (211)-dimensional
Minkowski space andR2.

The solitons of the gauged CP1 models of@6–8# arenot
self-dual solutions and their stability is characterized by
topological charge which coincides with the magnetic flu
taking on discrete values related to the vorticity of the so
ton. Insofar as the stability of the topological solitons is cha
5456-2821/96/54~8!/5245~14!/$10.00
-

o-
-

on
re
-

the

ns.

s

e

ns

a
x
li-
r-

acterized by the magnetic flux, these vortices are similar
the Maxwell @11# and Chern-Simons Higgs models@11,12#.
They differ, however, from the latter@10–12#, in that they
arenot self-dual. This lack of self-duality can present itself
as a disadvantage, at least technically. One reason is t
self-dual vortices, such as, for example, those of the Abelia
Higgs model@10#, do not interact by virtue of the stress
tensor vanishing identically, and hence multivortex configu
rations arbitrarily distributed on the plane can be studied@10#
systematically.

In complete contrast to the above, the gauged O(3) mod
proposed by Schroers@9# can supportself-dual solutions
whose topological charge, however, is unrelated to themag-
netic flux. It appears therefore that the static solitons o
gaugeds models onR2 areeither non-self-dual and stabi-
lized by the magnetic fluxor they can be self-dual, but are
stabilized by a topological charge which is unrelated to th
magnetic flux. This in turn can also be regarded as a disa
vantage since stabilization by magnetic flux was the origin
motivation for the introduction of gauge fields in soliton
theory. In the background of these contrasting features, it
worthwhile making a comparative study of the gauged CP1

and O(3) models. This is one of the aims of the prese
work.

It follows from the descriptions given above that the
gauged O(3)s model @9# which supportsself-dualsolitons
can be adapted to the construction of self-dual static solito
in a (211)-dimensional Chern-Simons gauged O(3) mode
devised in exact analogy with the work of@11,12# in the
analogous case of the Higgs models. Furthermore, static no
topological solutions can also be constructed in this case,
exact analogy with the work of@13#. This is the other aim of
the present work. The task is undertaken below in the fo
lowing manner. Section II is devoted to the stability analysis
which is indirectly employed as a means of constructin
5245 © 1996 The American Physical Society
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models that support stable solitons. In Sec. II A we reanaly
the CP1 model @8#, gauged with a U(1) Maxwell term, and
show that the model which can support self-dual solutio
has only the trivial solution. That implies also that the mod
obtained by replacing the Maxwell term with a Chern
Simons term also cannot have nontrivial self-dual solution
In Sec. II B we introduce the Chern-Simons gauged O(
model and establish the topological inequalities and hen
the Bogomol’nyi equations. This is followed in Sec. III by
the construction of the soliton solutions of this last mode
Since we restrict to radially symmetric solutions only, w
give our radially symmetric ansatz and state the asympto
values of our solutions. In the subsequent Secs. III A a
III B, we give the asymptotic behaviors of the topologica
and nontopological solitons, respectively, and discuss the
merical integrations of each case. The analytic proofs of e
istence of both topological and nontopological solutions
the gauged O~3! model are given, respectively, in Secs. IV A
and IV B, and a summary of the results is presented in S
V.

II. STABILITY ANALYSIS AND MODELS

When gaugings models such that the ensuing gauge
model supports topologically stable lump solutions, say,
two static dimensions, the qualitative results strongly depe
on whether thes model in question is a complex or rea
model. Specifically, consider the gauging of the CP1 model
according to the prescriptions given in Ref.@8# and the
O(3) model according to the prescriptions given in Ref.@9#.
In the first case, it turns out that the U(1) gauged CP1 model
does not possess self-dual solutions, but the non-self-d
solitons are stabilized by the magnetic flux which is phys
cally a useful feature of the model. In the second case, on
other hand, the solitons arenot stabilized by the magnetic
flux, but they are self-dual, which is technically a very usef
feature of the model. Note that in the case of the gaug
Higgs models@10,14,15#, the vortices are both self-dual an
are stabilized by the magnetic flux. Here, for thes models,
the situation is that either the topological charge coincid
with the magnetic charge or the solitons are self-dual, but
both. It is therefore interesting to consider both cases and
compare them. This is the aim of the present section.

A. U„1… gauged CP1 model

Here we restrict ourselves to U(1) Maxwell, rather tha
Chern-Simons dynamics. This is because the topological
equalities which establish the lower bound on the energy
the soliton for the Chern-Simons gauged model are ess
tially the same as those which occur in the stabilization
the Maxwell gauged model. This is true for the Maxwell@10#
and Chern-Simons@11,12# Higgs models, the Maxwell@14#
and Chern-Simons@15# generalizedHiggs models, and the
Maxwell @8# and Chern-Simons@7# CP1 models.

Our aim in this subsection is to constructanotherU(1)
gauged CP1 model, different from the one introduced in Re
@8#, whose energy functional can be absolutely minimized
a set of Bogomol’nyi equations. It will turn out, however
that these Bogomol’nyi equations do not support soliton s
lutions and hence we must conclude that gauging the C1
ze
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model does not lead to a model that supports self-dual so
tons. We shall arrive at this result by studying a Maxwe
gauged model, but since this is a negative result, it implie
that the corresponding Chern-Simons term will also not su
port self-dual solitons and hence it is sufficient to conside
the Maxwell case only.

As in previous examples@14,8#, we shall first establish the
topological inequalities and then find the model whose dy
namics is stabilized by these inequalities. We start from th
inequalities

uDiz2 i« i js3Djzu2>0, ~1!

~ 1
2 Fi j2« i jAV!2>0, ~2!

in which z5(z1 ,z2) is the CP
1 field subject to the constraint

z†z51 and the U(1) curvatureFi j52 iD [ iD j ] is defined in
terms of the covariant derivativeDi5] i1 iAi , with i51,2.

Developing the inequalities~1! and~2!, and adding them,
we find the topological inequality

@~ 1
4 Fi j

212V!1 1
2 Diz

†Diz#>] iV i , ~3!

V i5
i

2
« i j @yAj1z†~s3Djz!#, ~4!

provided that the functionAV in Eq. ~2! is chosen to be
AV5 1

4(y2z†s3z). Herey is a dimensionless constant. Then
the topological charge, which is the ‘‘surface’’ integral of the
densityV i , Eq.~4!, is the magnetic flux arising from the first
term in Eq.~4!, while the integral of the second term in Eq.
~4! vanishes as a result of the usual finite-energy decay co
ditions. The energy integral which is bounded from below b
this topological~magnetic! charge is the integral of the static
Hamiltonian density

H05
1
4 Fi j

21 1
2 Diz

†Diz1 1
8 ~y2z†s3z!2. ~5!

The static Hamiltonian density~5! pertains to a U(1)
gauged CP1 model which differs from the one considered in
Ref. @8# in that it is described by a different potential, even
wheny is set equal to 1. While in the model proposed in Re
@8# the topological inequalities could not be saturated by co
struction, here the energy integral of Eq.~5! can be mini-
mized absolutely by saturating the topological inequalitie
~1! and~2!. This leads to the pair of Bogomol’nyi equations

Diz5 i« i js3Djz, ~6!

Fi j5
1
2 « i j ~y2z†s3z!, ~7!

whose radially symmetric restriction, obtained by using th
radially symmetric ansatz for the fields with vorticityn,

z15cos
f ~r !

2
e2 inu, z25sin

f ~r !

2
,

Ai5
a~r !2n

r
« i j x̂ j , ~8!

yields thethreeequations
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1

2
f 8sinf1

a

r
~11cosf !50, ~9!

1

2
f 8sinf1

a2n

r
~12cosf !50, ~10!

a852
r

2
~y2cosf !. ~11!

There are three equations~9!, ~10!, and~11! for two func-
tions f (r ) anda(r ), and hence the system is overdetermine
The three equations~9!, ~10!, and~11! reduce to the pair of
algebraic equations

r 2cos3f ~y2cosf !5n2~12cos2f !, ~12!

2a cosf5n~cosf21!, ~13!

to which we havenot found solutions satisfyingfinite-energy
asymptotic conditions. We must conclude therefore th
when the CP1 model is gauged with a U(1) field so as t
support soliton solutions, the field configuration correspon
ing to these solutionscannotsaturate the topological lower
bound on the energy. The same conclusion follows when
replace the Maxwell dynamics in Eq.~5! by Chern-Simons
dynamics. There exist, of course, non-self-dual solutions
the model~5!, which is closely related to the U(1) gauge
CP1 model given in Ref.@8#. The radially symmetric restric-
tion of Eq.~5! is readily calculated by use of Eq.~8!, and the
corresponding one-dimensional static energy functional is

H05
1

2r
a821

r

4
f 821

1

r Fa21 1

2
n~n22a!~12cosf !G

1l~12cosf !2, ~14!

in which the coupling constantl multiplying the symmetry
breaking potential is introduced by way of emphasizing th
the solutions we seek are non-self-dual, withl51, in which
case the topological lower bound can actually be saturat
but only for a trivial field configuaration as the solution. Th
system~13! differs from the one studied in Ref.@8# only in
the potential function and the fact that in the present mod
we have not included any Skyrme terms. We do not integr
the Euler-Lagrange equations pertaining to Eq.~14! numeri-
cally since that was done in detail Ref.@8#.

It is because of the absence of self-dual solutions in
gauged CP1 model that it is interesting to study the U(1
Maxwell gauged O(3) model introduced in Ref.@9#, since
the latter does support self-dual solutions saturating the
pological lower bound. The next natural step then is to fi
and study the corresponding U(1) Chern-Simons gaug
O(3) model. The corresponding analysis for the latter
given in the next subsection.

B. Chern-Simons O„3… model

We start this subsection with the identification of the to
pological charge of the putative soliton and the correspon
ing topological current. This applies both to the Maxwe
gauged @9# and the Chern-Simons gauged O(3) mode
Since the topological charge density of the ungauged O(
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model is not a total divergence like that of the ungauged
CP1 model and, instead, it is only locally a total divergence,
we expect@9# that it will be essentially the density for the
degree of the map

%05« i j«
abc] if

a] jf
bfc. ~15!

Now the volume integral of Eq.~15! is a gauge-variantquan-
tity so that it cannot as it stands supply a lower bound on the
volume integral of the energy density or the static Hamil-
tonian, since the latter is by construction a gauge-invariant
quantity. To modify Eq.~15! suitably, we consider its gauge-
covariant extension

%15« i j«
abcDif

aD jf
bfc, ~16!

in which the covariant derivativeDif
a5(Dif

a,Dif
3), with

a51,2, is defined by

Dmfa5]mfa1Am«abfb, Dmf35]mf3, ~17!

resulting in the U(1) curvatureD [mDn]f
a5«abfbFmn .

It can now be verified that%0 and%1 are related as

%5%11« i jf
3Fi j5%012« i j ] i~f3Aj !, ~18!

which is a definition of thegauge-invariant topological
charge density%. The topological charge then will be the
degree of the mapN, namely, the volume integral of%0, Eq.
~15!, provided that the volume integral of the gauge-variant
total divergence term on the right-hand side of Eq.~18! van-
ishes. This requirement will have to be verified to hold true
for any solution which is a candidate to be a soliton.

Having defined the topological charge density%, Eq.~18!,
we identify it with the zero-component of the topological
current j m, given by

j m5«mrs~«abcDrfaDsfbfc1f3Frs!. ~19!

The divergence of this current is readily calculated to be

]m j
m53«mrs«abDrfaDsfb]mf3, ~20!

which in turn can easily be shown to be a locally total diver-
gence. Thus the volume integral of the divergence of the
topological current~20! vanishes as required. We note in
passing that the definition~19! for the topological current is
arbitrary up to the addition of a divergeless density and in the
case where the gauge group is Abelian; then, this means w
can add the density«mrsFrs since the divergence of the
latter happens to be the Abelian Bianchi identity. One can
then redefine Eq.~19! as

j̃ m5 j m1z«mrsFrs5«mrs@«abcDrfaDsfbfc

1~f31z!Frs#. ~21!

Choosing the constantz52y, and withy51, then leads to
the topological current stated in Ref.@9#, involving the factor
(y2f3) which features in the symmetry-breaking potential.
This seems to be a coincidence arising from the Abelian
nature of the gauge group.

We now turn to the dynamics and propose the Lagrangia
on (211)-dimensional Minkowski space:
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L5
k

2A2
«mnrFmnAr1~Dmfa!224V~f3!, ~22!

wherek is a constant with the dimensions of length and th
three-component fieldfa5(fa,f3), with a51,2, is con-
strained byfafa51. The Lagrangian~22! is U(1) gauge
invariant by virtue of Eq.~17!, since the potential function
not yet specified is nevertheless allowed to depend only
the U(1)-invariant componentf3 of fa.

The Hamiltonian density and the Gauss law equation
motion are given, respectively, by

H5 1
2 @~D0f

a!21~]0f
3!21~Dif

a!214V#, ~23!

k

2A2
« i j Fi j5«abfaD0f

b. ~24!

In the static limitH reduces to

H05~fa!2A0
22 1

2 ~Dif
a!212V ~25!

and the Gauss law equation yields

A052
k

2A2~fa!2
« i j Fi j , ~26!

so that substituting forA0 from Eq. ~26! into Eq. ~25!, we
end up with the static Hamiltonian density defined onR2:

H05
k2

4~fa!2
Fi j
21

1

2
~Dif

a!212V. ~27!

The choice of the potential function in Eq.~27! is dictated by
the requirement that the volume integral of Eq.~27! be
bounded from below by a topological charge and be fix
uniquely by that criterion. The lower bound on the volum
integral of the density~27! follows from the inequalities

S k

2ufau
Fi j2« i j ufauU D 2>0, ~28!

~« i j Dif
a2«abcD jf

bfc!2>0, ~29!

whereufau5A(fa)2. The sum of Eqs.~28! and~29! implies
the ~topological! inequality

k2

4ufau2
Fi j
212ufau2U21

1

2
~Dif

a!2>
1

2
%01« i j ] i~f3Aj !

2
1

2
« i j ~f322kU !Fi j . ~30!

The left-hand side of Eq.~30! can now be identified asH0 in
Eq. ~27! if ufau2U2 in Eq. ~30! is identified as the potential
function V in Eq. ~27!. What we choose forV then deter-
mines the lower bound onH0. This fixes the potential func-
tion uniquely, subject to our requirement that the volum
integral of the right-hand side of Eq.~30! reduce to the vol-
ume integral of the winding number density%0. This means
that the right-hand side of Eq.~30! must reduce to%0 plus at
e

on

of

ed
e

e

most a total divergence term such that the surface integ
corresponding to the latter vanishes. This situation obta
when we choose

U5
1

2k
~f32y!. ~31!

Here the constanty is related to the constantz in Eq. ~21!
and is analogous to the synonymous constanty of the gauged
CP1 model in Eq.~4!. In the present work, we shall restrict
the value of the constanty in Eq. ~31! equal tounity, whence
the topological inequality~30! leads to

E d2xH0>
1

2E d2x%5
1

2E d2x%01E dSi « i j Aj~f321!,

~32!

with H0 now given by

H05
k2

2ufau2
Fi j
21~Dif

a!21
1

k2 ~12f3!3~11f3!. ~33!

Had we not restricted toy51 already in Eq.~32!, the poten-
tial featured in Eq.~33! would have had the more genera
form

2ufau2U25
1

k2 @12~f3!2#~y2f3!2. ~34!

The required topological inequality is Eq.~32!, provided
that the surface integral on its right-hand side vanishes. T
last requirement is easily satisfied, in the case of topolo
cally stable solutions, by the asymptotic conditions

lim
uxW u→0

f3521, lim
uxW u→`

f351, ~35!

which guarantee that the volume integral of% yields a non-
zero integer winding number. This statement assumes t
Ai does not grow too fast at infinity, an assumption which
amply justified as will be seen below when we specialize
the radial field configuration. The conditions~35! pertain to
the topologically stablesolutions of nonzero winding num-
ber and also guarantee that the volume integral of Eq.~33!,
namely, that the energy, be finite. With the particular pote
tial in Eq. ~33!, however, there is a second set of asymptot
conditions for which the energy integral is also guaranteed
be finite. These are stated as

lim
uxW u→0

f3521, lim
uxW u→`

f3521. ~36!

The winding number for a field configuration satisfying Eq
~36! vanishesand then the lower bound onH0 follows from
Eqs. ~32! and ~36! to be the magnetic flux. Such solutions
which we expect to find, are the static nontopological sol
tions analogous to those found in@13# for the Chern-Simons
Higgs model.

The topological inequality~32! is saturated when the in-
equalities ~28! and ~29! are saturated, yielding the
Bogomol’nyi equations

Fi j57« i j ~12f3!2~11f3!, ~37!
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« i j Dif
a56«abcD jf

bfc, ~38!

where we have setk51 and, the lower and upper sign
pertain to anti-self-duality and self-duality, respectively.

In terms of the complex-valued functionsw5 lnu of the
coordinatesxW onR2, defined byu5(f11 if2)/(11f3), the
Bogomol’nyi equations~38! reduce to the partial differential
equation

D~w1w̄ !5
16e2~w1 w̄ !

~11e2~w1 w̄ !!3
, ~39!

which we do not study further here but proceed in the ne
sections to subject Eqs.~37! and~38! to radial symmetry and
subsequently to integrate them numerically.

III. SOLITONS

Since we shall be concerned with radially symmetric fie
configurations only, we proceed to state our radially symm
ric ansatz for the fieldsAi andfa:

Ai5
a~r !2N

r
« i j x̂ j , ~40!

fa5sinf ~r !na, f35cosf ~r !, ~41!

where x̂i5xi /r and na5(cosNu, sinNu) are unit vectors,
with N defined to be an integer.

The Hamiltonian density of the corresponding on
dimensional subsystem arising from the imposition of rad
symmetry on the system~33! is defined by

E d2xH054pE H0dr,

which as a function off (r ) anda(r ) is expressed as

H05
a82

r sin2f
1r f 821

a2sin2f

r
1~12cosf !2sin2f . ~42!

We have setk51 in Eq. ~33!. The one-dimensional Hamil-
tonian density ~42!, which gives the energy density
E5rH 0, will be needed below in the numerical computatio
of the total energies.

The Bogomol’nyi equations~37! and ~38! now reduce to
the following pair of coupled nonlinear ordinary differentia
equations:

a8

r
56~12cosf !2~11cosf !, f 856

a sin f

r
. ~43!

We notice that the second member of Eqs.~43! coincides
with the Bogomol’nyi equation for the ungauged O(3)s
model whena(r ) in it is replaced by the integerN. Thus at
the origin this equation is the same for both the gauged a
the ungauged O(3) models, witha(0)5N. This is not sur-
prising since the topological charge, namely, the volume
tegral of%0 in Eq. ~15!, depends on the asymptotic values o
the functionf (r ).

Since it is sufficient to studyeither the self-dualor the
anti-self-dual case, we shall restrict ourselves in what f
s
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lows below to the anti-self-dual case, namely, to the equ
tions with thelower signs in Eqs.~43!.

The topological asymptotic conditions~35!, which were
chosen in anticipation of our restriction to the anti-self-dua
case, now read

lim
r→0

f ~r !5p, lim
r→`

f ~r !50, ~44!

which for the field configuration~41! imply vorticity
52N. This is the same as in the usual~ungauged! O(3)
model where the radially symmetric anti-self-dual vortice
satisfy the asymptotic conditions~44!, while the self-dual
vortices satisfy instead

lim
r→0

f ~r !50, lim
r→`

f ~r !5p.

We shall henceforth restrict ourselves to the anti-self-du
case only and will denote the vortex number byN, on the
understanding that this is read asuNu. This applies in particu-
lar to Eq.~41!.

Concerning the asymptotic conditions~36! of the nonto-
pological solitons, there is a further refinement to be take
into account. The condition at the origin in Eq.~36! is de-
signed to ensure that the fieldfa is single valued at the
origin. This is true forN.0, but is too strong a condition for
the nontopological soliton withN50. In that case, it is pos-
sible to relax this condition, so that thenontopologicalas-
ymptotic conditions now read, forN.0,

lim
r→0

f ~r !5p, lim
r→`

f ~r !5p ~45!

and, forN50,

lim
r→0

f ~r !5 f 0 , lim
r→`

f ~r !5p, ~46!

with f 0 constant. For the fields~41! of all vorticitiesN.0,
Eqs.~45! imply zero degree, i.e., *d2x%050.

The asymptotic behavior of the functiona(r ) in Eq. ~40!
is of no consequence to the topological stability of the sol
ton, unlike in the cases of the Higgs models@8,12,13# and of
the gauged CP1 models@7,8#. This is because in the latter
systems the topological charge, which is again related to t
vorticity, is also proportional to themagnetic flux. In the case
of the gauged O(3) models, given in@9# and here, the mag-
netic flux of the solution is not restricted by the requiremen
of the stability of the soliton. The only constraint on the
large-r behavior ofa(r ) here is the requirement that the
surface integral on the right-hand side of Eq.~32! vanish.
This means thata(r ) should not grow faster than the quan-
tity (cosf21) in that region. Since the magnetic flux is pro-
portional to the quantity

2a~`!1a~0!,

we shall seek solutions for which botha(`) and a(0) are
finite, since it is reasonable that the solutions we seek corr
spond to finite magnetic flux field configurations. As ex
plained above, we shall takea(0)5N, but will take
a(`)5a, wherea is a nonzero constant whose sign will
depend on whether we are considering the topological or t
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nontopological solutions. We shall see in the following su
sections why it is not possible to choosea50, in which case
the magnetic flux would have been proportional to the deg
N. Corresponding to the asymptotic conditions~44! for the
function f (r ), we state the asymptotic conditions on th
functiona(r ) as

lim
r→0

a~r !5N, lim
r→`

a~r !5a. ~47!

In the following two subsections, respectively, we wi
study the topological and nontopological solitons. This i
volves the numerical integration of the two Bogomol’ny
equations~43!, preceded by the asymptotic solutions in th
r@1 region from which we will learn the restrictions on th
possible values of the constanta. Concerning the solutions
of Eqs.~43! in the r!1 region, it is clear from Eqs.~44! and
~45! that there is no distinction between the topological a
theN.0 nontopological cases so that we give this solutio
for both these types of solitons forthwith:

f ~r !5p2ArN, a~r !5N2
A2

N11
r 2~N11!. ~48!

For the nontopological soliton withN50, however, we have
the asymptotic valuef (0)5 f 0, where f 0 does not have to
vanish for the fieldfa in Eqs. ~41! to be single valued.
Indeed, in our numerical integrations below, we have fou
nontrivial solutions for values off 0.0 and only trivial so-
lutions for f 050 and f 05p. This leads to the following
behavior forN50, corresponding to Eqs.~48! of N.0, of
the functionf (r ) in the r!1 region:

f ~r !5 f 02
1
4 sin

3f 0~11cosf 0!r
2,

a~r !52 1
2 sin

2f 0~11cosf 0!r
2. ~49!

A. Topological solitons

The topological properties of the solitons of our Cher
Simons gauged O(3) model are determined by the asym
totic conditions pertaining to the O(3) fieldf only, and not

FIG. 1. Profiles of f (r ) and a(r ) of the topological Chern-
Simons vortices withN51 anda50.75. The curves are identified
by their asymptotic valuesf (0)5p, f (`)50 and a(0)51,
a(`)50.75.
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the U(1) gauge field. Thus the relevant conditions in the ca
of the topological solitons are Eqs.~35! and~44! for the full
field and its restriction to the radially symmetric configura
tions, respectively. The asymptotic properties of the U(1
gauge field, on the other hand, are given by Eqs.~48!, both
for the topological and nontopological cases.

The topological solitons of vorticityN have have degree
N given by the two-dimensional ‘‘volume’’ integral of the
density%0, Eq. ~15!. The topological charge, however, is the
integral of the gauge-invariant density%, Eq. ~18!, which,
however, in this case reduces to the integral of% since the
one-dimensional ‘‘surface’’ integral vanishes by virtue of th
asymptotic limit~44!.

Since we have already solved the Bogomol’nyi equatio
~43! in the r!1 region, there remains only to solve for thes
in the r@1 region, where we find the power behavior

f ~r !5
C

r a , ~50!

a~r !5a1
C4

4~2a21!r 2~2a21! . ~51!

We see from Eq.~51! that the positive constanta must sat-
isfy the conditiona. 1

2, and since the largest value ofa(r ) is
equal toN5a(0), it follows that all integer values of the
degreeN satisfy this restriction. The value of the constan
A in Eqs.~48! is fixed in the numerical integration. We have
integrated Eqs.~43! with the lower sign for fields of vortici-
ties N51 and N52. In the N51 case, we have used
a50.75, and in theN52 case,a50.75 and 1.75. For the
pairs $N,a%, our numerical integrations yielded the follow-
ing values of the constantA in Eqs.~48! to be

A$1,0.75%56.7800, A$2,0.75%52.3933,

A$2,1.75%57.0360.

The profiles of the functionsf (r ) anda(r ) are exhibited in
Figs. 1 and 2, respectively, forN51 andN52, and the

FIG. 2. Profiles off (r ) anda(r ) of for the topologicalChern-
Simons vortices ofN52 with a50.75 and 1.75, wheref (`)50
anda(`)5a. The curves are identified by their asymptotic value
with f (r ) as in Fig. 1, anda(0)52, a(`)5a. The faster decaying
profile of f (r ) corresponds to the larger value ofa51.75.
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profiles of the energy densities of these solitons are given
Figs. 3 and 4, respectively.

The total energiesE$N,a% corresponding to these solu
tions, labeled again by the pairs$N,a%, were calculated from
the numerical solutions to be

E$1,0.75%53.9951, E$2,0.75%57.9992,

E$2,1.75%57.9999,

from which we can confirm that the energy of anN52 soli-
ton is twice as large as the energy of anN51 soliton. This is
expected since the solutions in question are(anti-)self-dual.
Not surprisingly, the numerical accuracy of this statement
better when thesamevalue for the parametera is employed
in the numerical integrations of both theN51 andN52
solutions.

B. Nontopological solitons

There are two types of nontopological solutions to th
~anti-!self-duality equations~43!. The nontopological soli-
tons withN50 and the nontopological vortices withN.0,
just as in the case of the Chern-Simons Higgs model a
lyzed in Ref. @13#. In both these cases, the functionf (r )
tends top according to Eqs.~45! at larger . In the region

FIG. 3. Profile of the energy density corresponding to th
N51 topologicalsoliton depicted in Fig. 1.

FIG. 4. Profiles of the energy densities corresponding to t
N52 topological solitons witha50.75 anda51.75, depicted in
Fig. 2. The higher peak pertains to the largera51.75 soliton.
in
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with r!1, however, the asymptotic value of theN.0 vor-
tices is given by Eqs.~45!, while that of theN50 soliton by
Eqs.~46!.

Before we proceed to integrate the self-duality equation
~43!, it is important to consider the question of the stability
of the nontopological solitons, since their stability is not
gauarnteed by the topological criteria as for the topologica
solitons of the previous subsection. Here we notice that th
degree of the soliton given by the two-dimensional ‘‘vol-
ume’’ integral of the density of%0 in Eq. ~32! vanishes for
all vorticitiesN.0. The second, one-dimensional ‘‘surface’’
integral in Eq.~32! however doesnot vanish in this case, but
in fact becomes identical with the magnetic flux of the field
configurations. This is because according to Eqs.~44!
cosf(`)521, which causes this second integrand to becom
equal to the U(1) magnetic flux density. Since this field con
figuration is a~anti-!self-dual solution, the energy of this
solution is equal to the magnetic flux. Of course, the value o
this magnetic flux is not quantized, but is determined by th
arbitrary value of the parametera5a(`) used in Eqs.~47!.
We are now in exactly the same situation as that of the non
topological vortices of the Chern-Simons Higgs model dis
cussed in Ref.@13#. As in any Chern-Simons theory, the
soliton carrying magnetic fluxF must carry electric charge

Q52kF, ~52!

which means that the energy of the nontopological solito
with a given chargeQ is

E5uFu5
1

k
uQu5mQ, ~53!

wherem is the scalar mass in the symmetric vacuum. Thu
the argument for the stability of nontopological vortices in
this Chern-Simons gauged O(3) model is identical to the
corresponding stability analysis for the Chern-Simons
gauged Higgs model given Ref.@13#, to which we refer the
reader for further details. Briefly, the nontopological vortices
with N.0 are marginally stable, being at the threshold o
decay into elementary excitations.

The situation with theN50 nontopological soliton is dif-
ferent. In this case the energy is equal to the magnetic flu
coming from the second term of Eq.~32!, plus the contribu-
tion of the integral of the first term%0. In this case, however,
this last integral does not vanish by virtue of the asymptoti
condition~46! and contributes a positive amount, resulting in
the inequality

E>uFu5
1

k
uQu5mQ, ~54!

from which we must conclude that theN50 topological soli-
ton is unstable. In this connection, it would be interesting to
consider the solitons of ungauged O~3! models in 211 di-
mensions and to study their stability, in the same spirit as th
corresponding works using O(2) models@16,17#. We intend
to return to this question elsewhere.

As in the above subsection, the behaviors of the function
a(r ) and f (r ) in the r!1 region are already known to be
Eqs. ~48!, which hold also for the nonzero vorticityN.0
nontopologicalcase at hand, while for theN50 these are

e
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given by Eqs.~49!. There remains, therefore, to solve Eq
~43!, with the lower signs, in ther@1 region subject to the
asymptotic conditions~36! or ~45!, which are the same for
theN.0 andN50 cases. We find the following solutions
with power behavior:

f ~r !5p1
C

r uau , ~55!

a~r !5a1
C2

~ uau21!r 2~ uau21! . ~56!

We see from Eq.~56! that the negative constanta must
satisfy the conditionuau.1. For a given choice of the pa-
rametera, the value of the parameterA, or equivalently the
parameterf 0 in Eqs. ~46! and ~49! whenN50, is fixed by
the numerical integration.

For theN50 soliton, we have integrated Eqs.~43! nu-
merically with two values of the parametera. The value of
the parameterf 0 for each pair$N,a% is fixed by the numeri-
cal integration to be

f 0$0,28.2480%5
p

4
, f 0$0,25.2447%5

p

3
.

The profiles of the functionsf (r ) and a(r ) for these solu-
tions are given in Fig. 5, and the profiles of the energy de
sities of these solutions in Fig. 6. The total energies cor
sponding to these solutions were calculated numerically
be

E$0,28.2480%532.9921, E$0,23.707%520.9788.

For theN.0 case, we seek a solution for which the fun
tion f (r ) increases from its valuep at the origin, rises, and
then descends asymptotically to its valuep at infinity. This
implies that the gradient off (r ) changes its sign in this in-
terval, as a consequence of which we see that the valuea to
which f (r ) tends at infinity must have the opposite sign of i

FIG. 5. Profiles off (r ) anda(r ) of the nontopologicalChern-
Simons solitons ofN50, with a528.2480 for whichf 05p/4 and
with a525.2447 for whichf 05p/3. The maximum off (r ) occurs
wherea(r ) crosses ther axis. The higherf (r ) curve pertains to
f 05p/3.
s.
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value at the origin, and since we shall choose the latter valu
a(0)5N to be positive, the required value ofa is negative
in this case.

We have integrated Eqs.~43! for N51 andN52 numeri-
cally with two values of the parametera in each case. The
value of the parameterA in Eqs.~48!, for each pair$N,a%, is
then fixed by the numerical integration to be

A$1;23.0849%520.2, A$1;23.0343%520.01,

A$2;24.2245%520.1, A$2;24.044%520.01.

The profiles of the functionsf (r ) anda(r ) for the solutions
with N51 andN52 are exhibited, respectively, in Figs. 7
and 8 and the corresponding energy densities in Figs. 9 an
10. Again, the total energies corresponding to each of thes
solutions were calculated numerically to be

E$1;24.2245%516.3396, E$1;24.0438%516.1371,

E$2;24.2245%524.8978, E$2;24.0438%524.1754.

FIG. 6. Profiles of the energy densities corresponding to th
N50 nontopologicalsolitons. The higher peak pertains to the soli-
ton with f 05p/4.

FIG. 7. Profiles off (r ) anda(r ) of the nontopologicalChern-
Simons vortices ofN51 with a523.0849 and23.0343, where
f (`)5p anda(`)5a. The maximum off (r ) occurs wherea(r )
crosses ther axis.
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IV. RIGOROUS EXISTENCE RESULTS

We establish now the existence of topological and non
pological solitons in the two-dimensional Chern–Simon
O~3! s model.

Theorem 1. The self-dual equations (37) and (38) ha
two classes of radially symmetric solutions which satisfy t
topological and nontopological boundary conditions (35
and (36), respectively. For each integer N>1 the topologi-
cal solutions have the flux

F52pN,

whereas for each N>0 the nontopological solutions have
the flux

F52pN1pb,

whereb takes its value in the interval

FIG. 9. Profiles of the energy densities corresponding to t
N51 nontopological solitons with a523.0343 and
a523.0849, depicted in Fig. 7. The higher peak pertains to t
a523.0849 soliton.

FIG. 8. Profiles off (r ) anda(r ) of the nontopologicalChern-
Simons vortices ofN52 with a524.2244 and24.0438, where
f (`)5p anda(`)5a. The maximum off (r ) occurs wherea(r )
crosses ther axis.
to-
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1AS 1627D
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1
32

27
N~N12!

,b,41A161NS 272 N116D ,
N>0.

Remark.This theorem reveals an interesting feature whic
distinguishes our model from the self-dual Chern-Simon
model of @11,12#: In the Chern-Simons case the exponen
b, which labels the fractional electric charge and magnet
flux, is shown to be allowed to assume any given value in a
explicitly determined interval@in @18# we established the ex-
act resultbP(2N14,̀ )#. In the model here, however, the
exponentb is confinedfrom the above.

With the substitution

u15
f1

11f3
, u25

f2

11f3
, u5u11 iu2 ,

we see thatf(p)5(0,0,21) @or f3(p)521# implies that
p is a pole of integer degree for the complex functionu and
thatf(q)5(0,0,1) @or f3(q)51# implies thatq is a zero of
integer multiplicity foru. Suppose that the origin ofR2 is the
only pole of u and that the corresponding degree isN>1.
Then the new variablev5 lnuuu25w1w̄ transforms the
Bogomol’nyi equations into the elliptic equation

Dv5
16e2v

~11e2v!3
24pNd~x! in R2. ~57!

The corresponding boundary conditions to be imposed o
v are as follows.

~a! v(x)→2` as uxu→`: topological solutions.
~b! v(x)→` as uxu→`: nontopological solutions.
For a person not interested in a rigorous mathematic

analysis, the rest of this section may be skipped.
Here are our basic existence results for Eq.~57!, which

give rise to the solutions stated in theorem 1 via standa
realizations.

he

he

FIG. 10. Profiles of the energy densities corresponding to th
N52 nontopological solitons with a524.2244 and
a524.0438, depicted in Fig. 8. The higher peak pertains to th
a524.2244 soliton.
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Theorem 2. For any integer N>1, Eq. (55) has a family
of topological solutions satisfying the property that for an
0,«,1 there is a solution to fulfill the asymptotic estima

ev~x!5O~ uxu2~2N2«!! as uxu→`.

These solutions are all radially symmetric about the origin
R2 and are strictly increasing with respect to the radial var
able r5uxu. Further, there also holds the sharp decay es
mateu¹v(x)u5O(uxu21) as uxu→` for the solutions.

Theorem 3. For given integer N>0, Eq. (55) has a non-
topological solutionv satisfying the asymptotic property

ev~x!5O~ uxub! as uxu→`,

and that in the radial variable r5uxu there holds

lim
r→`

rv r~r !52b,

where the constantb lies in the interval stated in theorem 1
The solution is radially symmetric about the origin, an
there is exactly one point r0.0 so that with the radial vari-
able r5uxu the solution is increasing in the region r,r 0, but
decreasing in r.r 0, and the maximum

v~r 0!5max
r.0

$v~r !%[e2a

can be arbitrarily prescribed for the number a in the rang
a> ln2. In other words, we again have a continuous family
distinct solutions to realize the same prescribed ‘‘vortex
charge and location. Besides, there also holds the decay
timate for the derivatives,u¹v(x)u5O(uxu21) as uxu→` for
all the solutions.

These results will be established in the next two sectio
We only remark here that it is sometimes convenient to
w52v. Then w satisfies the following usual ‘‘vortex’’
equation

Dw52
16ew

~11ew!3
14pNd~x!. ~58!

Remark.Theorem 2 says that even in the radial case
pological solitons are not unique for given topologic
chargeN which is in contrast to the uniqueness result prov
in @18# for the self-dual Chern-Simons vortices. This clear
indicates that the model here possesses some new chara
istics. In fact such a conclusion is already further evidenc
in theorem 3 above~see also the remark following theorem
1!.

A. Topological solitons: Proof of theorem 2

We shall first study topological solutions. Le
w52N lnuxu1h. Then Eq.~56! becomes

Dh52
16uxu2Neh

~11uxu2Neh!3
. ~59!

Remember that we want to achieve the asymptotic beh
ior w(x)→` at infinity. Thus it is sufficient to find a solution
of Eq. ~57! so thath(x)>2c lnuxu asymptotically for some
y
te
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c,2N. For this purpose, we setr5uxu and introduce the
new variablest5 lnr andz52h. Then, withz85dz/dt, Eq.
~57! is turned into

z95
16e2te24Nt12z

~11e22Nt1z!3
[ f ~ t,z!. ~60!

It is important to record the partial derivative

] f ~ t,z!

]z
5

16e2t24Nt12z

~11e22Nt1z!4
~22e22Nt1z!. ~61!

Consequently, there holds the bound

sup
z

f ~ t,z!5
64e2t

27
~62!

and

f ~ t,• ! is increasing forz in the regionz, ln212Nt.
~63!

We now supplement Eq.~58! with the initial data

z~2`!52a, z8~2`!50. ~64!

As a preparation we establishLemma 1. For any aPR, Eq.
(58) subject to the initial condition (62) has a unique globa
solution in the entire interval2`,t,`.

Proof. It is standard to consider the equivalent form of th
problem in the form of the integral equation

z~ t !52a1E
2`

t

~ t2s! f „s,z~s!…ds, tPR. ~65!

Let T be such that

E
2`

T

~T2s! f „s,z~s!…ds,1 ~66!

and that, withz(s) satisfying uz(s)u,uau11 ~say!, there
holds

E
2`

T

~T2s!US ]

]z
f ~s,z! D

z5z~s!
Uds,1

2
. ~67!

In view of Eqs.~59! and~60!, the existence of such a number
T to ensure Eqs.~64! and ~65! is clearly guaranteed. There-
fore we can use Eq.~63! to define a convergent Picard suc-
cessive iteration scheme for functions over (2`,T#. The
limit function solves Eq.~63! on (2`,T#. Using Eq.~60!
again we can extend the solution to the entire lin
(2`,`). In fact, we can set

zn~ t !52a1E
2`

t

~ t2s! f „s,zn21~s!…ds, t<T,

z0~ t !52a,

n51,2, . . . .

For anyn, there holds by virtue of Eqs.~64! and ~65! the
uniform bound izni`,uau11 and the recursive bound
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izn112zni`<(1/2n). Thus $zn% is convergent uniformly
over (2`,T# to a solutionz of Eq. ~63!, 2`,t<T. Local
uniqueness also follows from the inequality~65!.

Thus the lemma is proved.
Using Eq. ~60! in Eq. ~63!, we find that for anyt0<0

there holds

z~ t0!<2a1E
2`

0

usu
128

27
e2sds,2a1C0 , ~68!

whereC0 is a constant independent ofa andt0. On the other
hand, with

z8~ t !5E
2`

t

f „s,z~s!…ds

and Eq.~60!, we have for any 1.«.0 the existence of a
t0,0 to ensure that

z8~ t !<
«

2
, t<t0 , ~69!

wheret0 is independent ofa.
Because of Eq.~67!, we can let t1.t0 be such that

z8(t),« for tP(t0 ,t1). Then it follows from Eq.~66! that

z~ t !,2a1C01«~ t2t0! ~70!

for tP(t0 ,t1).
Lemma 2. We can choose suitable a.0 so that Eq. (68)

holds for all t.t0.
Proof.Consider the right-hand side of Eq.~68! first. It is

seen that we can leta.0 be sufficiently large to make

2a1C01«~ t2t0!, ln212Nt, t.t0 . ~71!

In the region where Eq.~68! holds, by virtue of Eqs.~69!
and ~61!, we have

z~ t !5z~ t0!1E
t0

t

~ t2s! f „s,z~s!…ds

,2a1C01E
t0

t

~ t2s! f „s,2a1C01«~s2t0!…ds

,2a1C0116e2~2a1C02«t0!E
t0

t

~ t2s!e22~2N212«!sds.

~72!

Since the integrand on the right-hand side of Eq.~70! for
t.t0 is bounded in view of«,1, we can choosea.0 large
to make Eq.~68! valid.

The lemma is proved.
Consequently, we have just constructed topological so

tions of arbitrary vortex chargeN. Our method is essentially
a shooting argument starting from2`.

B. Nontopological solitons: Proof of theorem 2

We next prove the existence of nontopological solutio
The above method does not seem to work out well. Inste
lu-

ns.
ad,

we employ a shooting argument starting from somewhere
the middle and we shoot designated target data at6`.

In this case Eq.~56! is most convenient. Again, we use
the variablet5 lnr. Then we are to solve the following two-
point boundary value problem:

w952
16e2tew

~11ew!3
,

~73!

w8~2`!52N, w~`!52`.

The property of a solution of Eq.~71! is transparent from
the equation and the boundary asymptotics. In fact, it is se
thatw(6`)52` and thatw is concave. Hence there is a
unique maximum in the middle. Our shooting argument wi
start from thisunknownmaximum point, say,t0. More pre-
cisely, to approach Eq.~71!, we choose to consider the initial
value problem

w952
16e2tew

~11ew!3
,

~74!

w~ t0!52a, w8~ t0!50.

It is easy to show that Eq.~72! has a unique global solu-
tion for any pair of numbersa and t0 given. Define a func-
tion h(a,t0) of a,t0 by

h~a,t0!5 lim
t→2`

w8~ t !5E
2`

t0
g„s,w~s!…ds,

g~s,w!5
16e2tew

~11ew!3
. ~75!

As in the last section, we record here some properties ofg:

]

]w
g~s,w!516e2s1w

122ew

~11ew!4
, sup

w
g~s,w!5

64

27
e2s.

~76!

By the fact thatw depends ona,t0 continuously and that
Eqs. ~74! imply the uniform convergence of the integral in
Eqs.~73!, we conclude thath(a,t0) is a continuous function
of the parametersa,t0.

Lemma 3. For any given a> ln2, there exists at least
one t05t0(a) so that the function h defined in Eq. (73)
satisfies

h„a,t0~a!…52N. ~77!

Recall that Eq.~75! is the boundary condition att52`
we would like to achieve in Eq.~71!. To prove Eq.~75!, it
suffices to establish the following two lemmas.

Lemma 4. For any aPR we can find a suitable t0 such
that

h~a,t0!,2N.

Proof. From Eq. ~72!, we have w9.216e2t1w. Set
W52t1w. Then,
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W9.216eW. ~78!

Since w8(t0)50, we have w8(t).0 for t,t0. Hence
W8(t).2 for t,t0. Therefore, multiplying Eqs.~76! by
W8 and integrating over2`,t,t0, we obtain

42@W8~ t !#2>32~eW~ t !2e2t02a!.

Returning to the original functionw, we have the estimate

0,w8~ t !,2A118e2t02a22[k, t,t0 . ~79!

In particular,h(a,t0)<2A118e2t02a22. Consequently, we
may chooset0 sufficiently negative to makeh(a,t0),2N,
which proves the lemma.

Lemma 5. For any a> ln2, there is a suitable t0 so that

h~a,t0!.2N.

Proof.First we notice that, in view of Eqs.~74!, the func-
tion g(t,•) is increasing in the interval (2`,2 ln2#. On the
other hand, Eq.~77! gives us

2 ln2>2a.w~ t !.2a2k~ t02t !, t,t0 .

Consequently, we are led to the inequality

w9~ t !,2
16e2t2a2k~ t02t !

~11e2a2k~ t02t !!3
. ~80!

Now integrate Eq.~78! over the interval (2`,t0#. We
obtain the lower estimate

h~a,t0!5w8~2`!>E
2`

t0 16e2t2a2k~ t02t !

~11e2a2k~ t02t !!3
dt

.2E
2`

t0
e2t2a2k~ t02t !dt

52e2a2kt0E
2`

t0
e~21k!tdt5

e2t02a

A118e2t02a
.

~81!

Here the last line is derived using the definition ofk given in
Eq. ~77!. The form of the right-hand side of Eq.~79! is
crucial for the existence of a sufficiently larget0 to make
h(a,t0).2N.

The lemma is established.
Finally, the continuity ofh and the conclusions in lemmas

4 and 5 ensure the existence of at least onet05t0(a) to
satisfy ~75!. Thus lemma 3 is proved.

In the rest of this section, we always assume thata,t0 are
so chosen that Eq.~75! is valid. We prove that the other
boundary condition in Eq.~71!, w(`)52`, is automati-
cally observed. More precisely, we stateLemma 6. There is a
numberb.2 so that

lim
t→`

w8~ t !52b. ~82!

In particular, w(t)→2` as t→`.
Proof. Integrating Eq.~72! over (2`,t#, we write
w8~ t !52N2E
2`

t 16e2sew~s!

~11ew~s!!3
ds. ~83!

Sincew,0, we have

2N2E
2`

t

16e2sew~s!ds,w8~ t !,2N2E
2`

t

8e2sew~s!ds.

~84!

Therefore the integral

E
2`

`

e2sew~s!ds ~85!

must be convergent. In fact, if it is not, then by Eq.~82!
w8(t)→2` ast→`, which leads to the convergence of Eq
~83!, contradicting the original assumption. By virtue of th
convergence of Eqs.~83! and~81!, we see that Eq.~80! holds
with b.2 as expected.

Lemma 7. The numberb in lemma 6 actually satisfies

16

27
1AS 1627D

2

1
32

27
N~N12!

,b,41A161NS 272 N116D . ~86!

Proof. Using the inequalityw<2 ln2 in Eq.~72!, we have
the crude bounds for the second derivative ofw:

216e2t1w<w9<2
128

27
e2t1w, 2`,t,`. ~87!

Sincew8(t).0 for t,t0, multiplying Eq. ~85! by w8,
integrating over (2`,t0#, and noting that

0,E
2`

t0
e2t1ww8dt5e2t02a22E

2`

t0
e2t1wdt,

we obtain

128

27 S e2t02a22E
2`

t0
e2t1wdtD

<2N2<16S e2t02a22E
2`

t0
e2t1wdtD . ~88!

Similarly, over the interval@ t0 ,`), multiplying Eq. ~85!
by w8,0, integrating, and noting that lemma 6 implies tha
e2t1w(t)→0 ast→`, we obtain

128

27 S e2t02a12E
t0

`

e2t1wdtD
<
1

2
b2<16S e2t02a12E

t0

`

e2t1wdtD . ~89!

By virtue of Eqs.~86! and ~87!, we find
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1

4
b22

27

8
N2<16E

2`

`

e2t1wdt<
27

32
b22N2. ~90!

However, takingt→` in Eq. ~82!, we have

2N1b,16E
2`

`

e2t1wdt,2~2N1b!. ~91!

Inserting Eq.~89! into Eq. ~88!, we see that the decay expo
nentb satisfies the two quadratic inequalities

27
32b22b.N212N, ~92!

2b2216b,27N2132N. ~93!

Solving Eqs.~90! and ~91!, we arrive immediately at the
range~84! and the lemma is proved.

To get nontopological solutions withN50, we study the
problem

~rwr !r52
16rew

~11ew!3
,

~94!

w~0!5w0 , limr→0rwr50.

It is easily seen that Eq.~92! has a global solution for any
w0PR and that the solution must satisfyw(r )→2` as
r→`. In fact, we can show thatrwr(r )→2b asr→`, with
b.2 lying in the correct interval again.

V. SUMMARY

We have presented above a Chern-Simons gauged O
model in 211 dimensions and found~anti-!self-dual soli-
tons. The dynamics of the U(1) gauge field in our model
controlled by a Chern-Simons term only and excludes t
Maxwell term. In this sense it is complementary to the mod
proposed by Schroers in Ref.@9#, which features a Maxwell
term exclusively. The importance of these models is th
thay admit~anti-!self-dual solutions, unlike the Maxwell@8#
and Chern-Simon@7# U(1) gauged CP1 models which we
have shown heredo notadmit ~anti-!self-dual solutions.

We were able to integrate the relevant Bogomol’nyi equ
tions only asymptotically, and the full integrations were pe
formed numerically. The solitons found are of two categ
ries, topological and nontopological. We found that
topological and nontopologicalvortices of arbitrary degree
N exist, as well asnontopologicalsolitons of degreeN50.
This contrasts with the restriction on the existence@19# of the
~topological! solitons of the Maxwell O(3) model of Ref.
@9#, where it was found that theN51 soliton did not exist.
Like their purely Maxwell gauged counterparts@9#, the topo-
logical vortices are stabilized by the degreeN and not by the
magnetic flux, which takes on an arbitrary value, unlike th
topological vortices of the Maxwell and Chern-Simon
Higgs models@10,13#. By contrast, thenontopologicalsoli-
tons of vorticity N.0, for which the degree*d2x%050
vanishes, are stabilized by the magnetic flux in exactly t
same way that the correspondingnontopologicalsolitons of
the Chern-Simons Higgs model@13# are. The detailed nu-
merical integrations were performed fortopologicalandnon-
-

(3)

is
he
el

at

a-
r-
o-

e
s

he

topologicalsolitons of degreesN51 andN52, and for the
nontopological N50 soliton. To underpin our results math
ematically, analytic proofs for the existence of these sol
tions were supplied as well.

The qualitative features of our numerical results are e
hibited in Figs. 1–10 The profiles of the functionsf (r ) and
a(r ), which are of the expected shapes, are given in Figs
and 2 for the topological vortices withN51,2, Fig. 5 for the
nontopological soliton withN50, and Figs. 7 and 8 for the
nontopological vortices withN51,2. The profiles of the en-
ergy densities of theN51,2 topological vortices are given,
respectively, in Figs. 3 and 4, those of theN50 solitons in
Fig. 6, and for theN51,2 nontopological vortices respec
tively in Figs. 9 and 10. We note that all these profiles d
scribe ring-shaped energy densities.

To put our results into context, we note that in
(211)-dimensional U(1) gauged models it is possible t
describe the dynamics of the U~1! field eitherby a Maxwell
termor by a Chern-Simons term. In each of these cases, it
possible to establish topological inequalities which conf
~topological! stability on the resulting static soliton solutions
while in the Chern-Simons gauged model there occur a
nontopological solitons. We ignore here the more gene
case where both the Maxwell and Chern-Simons terms a
present in the Lagrangian, because in that case we were
able to establish the required topological inequalities.

The main physical interest of all these models is as so
tons of (211)-dimensional theories which may be relevan
to the theory of superconductivity@10# and especially to
anyonic dynamics@2# in that context. We do not discuss her
the relative merits of these models from a physical view
point, except to remark that in the case where the solitons
~anti-!self-dual it is possible to identifyattractiveandrepul-
sivephases both in the Maxwell Higgs@10# and the Chern-
Simons Higgs@20# models by allowing the dynamics to de-
viate from one that allows~anti-!self-dual solutions. We
expect that this is the case with the present Chern-Simo
O(3) model as also it should be for the Maxwell O(3
model, both of which support~anti-!self-dual solutions. This
does not, however, mean that in the absence of~anti-!self-
dual solutions it is impossible to findattractiveandrepulsive
phases, as were shown to exist in the Maxwell CP1 model by
the addition of a suitable Skyrme term@8#.

In addition to the above motivations, thes
(211)-dimensional gaugeds models can serve as the pro
totypes of the analogous (311)-dimensional models. Al-
ready a four-dimensional gauged Grassmannian model@21#
was proposed which supports instanton solutions@22# on
R4. The latter SU(2) gauged Grassmanian model@21# on
R4 was motivated by the U(1) gauged Grassmanian C1

models of Refs.@8,7#, which are the simplest examples of a
gauged Grassmannian model. In analogy with the U(
gauged O(3) models of Ref.@9# and the present paper, it
would be interesting to find a gauged O(4)s model, namely,
to gauge the usual Skyrme model@5#, which can support
stable static solitons onR3. Such an SO~3! gauged model is
at present under active investigation and preliminary resu
@23# have been already obtained. Moreover, it should be po
sible to gauge an O(d11) s model onRd with gauge group
SO(d) and obtain localized finite action lumps.

Note added. After completing this work, we became
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aware of two works in which similar results to ours are o
tained. One of these, by Ghosh and Ghosh@24#, employs the
same Chern-Simons gauged O(3) models as ours~33!. The
other, by Kimm, Lee, and Lee@25# employs a more genera
model including ours, Eq.~33!, featuring the potential~34!.
Also, we thank R. Jackiw for bringing to our attention th
work of Nardelli @26#, which also deals with the problem o
gauging the O(3)s model with Chern-Simons dynamics
Our work differs from that of Ref.@26# in that our gauge
b-

l

e
f
.

group is the U(1) as opposed to SO(3) in@26# and, also, in
that our solution involves a dynamical U(1) field as oppose
to a composite connection field configuration in Ref.@26#.
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