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We present topological and nontopological self-dual soliton solutions in an O(2) gaugedr@(8jlel on
R, with Chern-Simons rather than Maxwell dynamics. These solutions are not vortices in the usual sense in
that themagnetic fluxs irrelevant to the stability of the topological solitons, which are stabilized by the degree
N, but it plays a crucial role in the stabilization of the nontopological solitons. It turns outdpalogicaland
nontopologicalsolitons of arbitrary vorticityN exist. We have studied both types of vortices witk-1 and
N=2, and the nontopological soliton withi=0 numerically. We present analytic proofs for the existence of
these topological and nontopological solitons. The qualitative features of the gauged O(3) solitons are con-
trasted with those of the gauged E€Bolitons.[S0556-282(96)00120-9

PACS numbsgps): 11.10.Lm, 02.20.Qs, 03.50.Kk, 11.10.Kk

[. INTRODUCTION acterized by the magnetic flux, these vortices are similar to
the Maxwell[11] and Chern-Simons Higgs moddls1,12.

The problem of gaugingr models is a pertinent one in They differ, however, from the lattdi10-12, in that they
both (2+1)- and (3+1)-dimensional physics, and was in- arenot self-dual This lack of self-duality can present itself
vestigated by Fadded\t] a while ago. In 2-1 dimensions, as a disadvantage, at least technically. One reason is that
it is relevant to the planar physics of superconductivity theoself-dual vortices, such as, for example, those of the Abelian
ries especially at higir, when nonstandard statistics is ex- Higgs model[10], do not interact by virtue of the stress
hibited [2] in the CP* model. In 3+ 1 dimensions it features tensor vanishing identically, and hence multivortex configu-
in the gauging'3,4] of the O(4) o model, namely, of the rations arbitrarily distributed on the plane can be studliei
Skyrme model5]. The work of Ref.[4], in particular, ad- systematically.
dresses the problem of the topological stability of the soliton In complete contrast to the above, the gauged O(3) model
in the gauged Skyrme model. In this work we shall requireproposed by Schroer9] can supportself-dual solutions
that the gaugedr model support topologically stable soli- whose topological charge, however, is unrelated tontlag-
tons. netic flux It appears therefore that the static solitons of

Recently, there have been several works dealing with thgaugedo models onR, are either non-self-dual and stabi-
problem of gauging o models defined onR, in lized by the magnetic fluor they can be self-dual, but are
such a way that the gauged model can support solitonstabilized by a topological charge which is unrelated to the
These were reported in the Ref6—9] chronologically. magnetic flux. This in turn can also be regarded as a disad-

In [6,7] the solitons in question were the static solutionsvantage since stabilization by magnetic flux was the original
to a Chern-Simons theory in (21)-dimensional Minkowski motivation for the introduction of gauge fields in soliton
space featuring a CPfield. Implicit in this work[6,7] was  theory. In the background of these contrasting features, it is
the analysis of a gauged €GP model on R,  worthwhile making a comparative study of the gauged' CP
with Maxwell dynamics, in exact analogy with the role and O(3) models. This is one of the aims of the present
played by the usual Abelian Higgs modé&D] with Maxwell ~ work.
dynamics in the analysis of the Chern-Simons Higgs solitons It follows from the descriptions given above that the
introduced by Honget al. [11] and Jackiw and Weinberg gauged O(3)s model[9] which supportsself-dualsolitons
[12]. This aspect was highlighted if8], where both the can be adapted to the construction of self-dual static solitons
Chern-Simons and Maxwell CAmodels were augmented by in a (2+ 1)-dimensional Chern-Simons gauged O(3) model
a Skyrme term, respectively, on +{2l)-dimensional devised in exact analogy with the work §11,12 in the
Minkowski space andR.. analogous case of the Higgs models. Furthermore, static non-

The solitons of the gauged GAnodels of[6—8] arenot  topological solutions can also be constructed in this case, in
self-dual solutions and their stability is characterized by aexact analogy with the work ¢fL3]. This is the other aim of
topological charge which coincides with the magnetic fluxthe present work. The task is undertaken below in the fol-
taking on discrete values related to the vorticity of the soli-lowing manner. Section Il is devoted to the stability analysis,
ton. Insofar as the stability of the topological solitons is char-which is indirectly employed as a means of constructing
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models that support stable solitons. In Sec. 1l A we reanalyzenodel does not lead to a model that supports self-dual soli-
the CP* model[8], gauged with a U(1) Maxwell term, and tons. We shall arrive at this result by studying a Maxwell
show that the model which can support self-dual solutiongjauged model, but since this is a negative result, it implies
has only the trivial solution. That implies also that the modelthat the corresponding Chern-Simons term will also not sup-
obtained by replacing the Maxwell term with a Chern- port self-dual solitons and hence it is sufficient to consider
Simons term also cannot have nontrivial self-dual solutionsthe Maxwell case only.

In Sec. Il B we introduce the Chern-Simons gauged O(3) As in previous examplgd.4,8|, we shall first establish the
model and establish the topological inequalities and henctopological inequalities and then find the model whose dy-
the Bogomol'nyi equations. This is followed in Sec. lll by namics is stabilized by these inequalities. We start from the
the construction of the soliton solutions of this last model.inequalities

Since we restrict to radially symmetric solutions only, we

: 2
give our radially symmetric ansatz and state the asymptotic IDiz—izijo3D;z|*=0, @
values of our solutions. In the subsequent Secs. Il A and

Il B, we give the asymptotic behaviors of the topological (3 Fij—eij\\V)2=0, 2

and nontopological solitons, respectively, and discuss the nu-

merical integrations of each case. The analytic proofs of exin which z=(z;,z,) is the CP field subject to the constraint
istence of both topological and nontopological solutions inz'z=1 and the U(1) curvaturg;; = —iD;D; is defined in
the gauged (B) model are given, respectively, in Secs. IV A terms of the covariant derivativie;=d; +iA;, with i=1,2.
and IV B, and a summary of the results is presented in Sec. Developing the inequalitie€l) and(2), and adding them,
V. we find the topological inequality

[(:Fj+2V)+ 3 Diz'Diz]= 40, 3
Il. STABILITY ANALYSIS AND MODELS

When gauginge models such that the ensuing gauged
model supports topologically stable lump solutions, say, in
two static dimensions, the qualitative results strongly depend
on whether thes model in question is a complex or real provided that the function\/v in Eg. (2) is chosen to be
model. Specifically, consider the gauging of the!QRodel V= i(v—2z'o52). Herev is a dimensionless constant. Then
according to the prescriptions given in R¢8] and the the topological charge, which is the “surface” integral of the
O(3) model according to the prescriptions given in R8f.  density();, Eq.(4), is the magnetic flux arising from the first
In the first case, it turns out that the U(1) gauged'@®del  term in Eq.(4), while the integral of the second term in Eq.
does not possess self-dual solutions, but the non-self-du@) vanishes as a result of the usual finite-energy decay con-
solitons are stabilized by the magnetic flux which is physi-ditions. The energy integral which is bounded from below by
cally a useful feature of the model. In the second case, on thiis topologicallmagnetig charge is the integral of the static
other hand, the solitons armet stabilized by the magnetic Hamiltonian density
flux, but they are self-dual, which is technically a very useful

Qi:IESij[UAj"'ZT(%DiZ)]' @

feature of the model. Note that in the case of the gauged H0=%Fﬁ+ $D,;z'Diz+ 3 (v—2"032)% 5
Higgs modeld10,14,13, the vortices are both self-dual and
are stabilized by the magnetic flux. Here, for ihemodels, The static Hamiltonian density5) pertains to a U(1)

the situation is that either the topological charge coincidegiauged CP model which differs from the one considered in
with the magnetic charge or the solitons are self-dual, but noRef. [8] in that it is described by a different potential, even
both. It is therefore interesting to consider both cases and twhenw is set equal to 1. While in the model proposed in Ref.
compare them. This is the aim of the present section. [8] the topological inequalities could not be saturated by con-
struction, here the energy integral of E&) can be mini-
mized absolutely by saturating the topological inequalities

A-U(D) gauged CP* model (1) and(2). This leads to the pair of Bogomol'nyi equations

Here we restrict ourselves to U(1) Maxwell, rather than

Chern-Simons dynamics. This is because the topological in- Diz=igjjo3Djz, (6)
equalities which establish the lower bound on the energy of
the soliton for the Chern-Simons gauged model are essen- Fij=3eij(v— Z'032), (7)

tially the same as those which occur in the stabilization of ) . o . )

the Maxwell gauged model. This is true for the Maxwa0] whose radially symmetric restriction, obtained by using the
and Chern-Simongl1,17 Higgs models, the Maxwe[114] radially symmetric ansatz for the fields with vorticity

and Chern-Simon§l5] generalizedHiggs models, and the

Maxwell [8] and Chern-Simong7] CP' models. . :Cosmefino . :sinm
Our aim in this subsection is to construaother U(1) ! 2 v 2
gauged CP model, different from the one introduced in Ref.
[8], whose energy functional can be absolutely minimized by a(r)—-n
a set of Bogomol'nyi equations. It will turn out, however, Ai= o SiXi (8)

that these Bogomol'nyi equations do not support soliton so-
lutions and hence we must conclude that gauging thé CPyields thethree equations
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1 a model is not a total divergence like that of the ungauged
5 f'sinf+ —(1+cosf)=0, (9)  CP! model and, instead, it is only locally a total divergence,
we expect[9] that it will be essentially the density for the
degree of the map

1 a—n
=f'sinf + ——(1—cod)=0, 10
2 ! : (10 00=¢ije2"%0; 23" ¢°. (19
, T Now the volume integral of Eq15) is a gaugerariantquan-
a’'=— 5 (v—cod). (1D ity so that it cannot as it stands supply a lower bound on the

volume integral of the energy density or the static Hamil-
There are three equatiof8), (10), and(11) for two func-  tonian, since the latter is by construction a gaumgeriant
tionsf(r) anda(r), and hence the system is overdetermined quantity. To modify Eq(15) suitably, we consider its gauge-
The three equation®), (10), and(11) reduce to the pair of covariant extension
algebraic equations

01=8i;e*"D;$D;$"¢", (16)
rcosf(v—cos)=n?(1—cogf), (12 ! A
in which the covariant derivativ®; 2= (D; $*,D;¢>), with
2acod=n(cos—1), (13 a=1,2, is defined by
to which we havenot found solutions satisfyin{jnite-energy D,¢*=0d,¢"+A,e*¢P, D, p3=0d,¢° (17

asymptotic conditions. We must conclude therefore that o

when the CP model is gauged with a U(1) field so as to resulting in the U(1) curvatur®(,D, ¢ =e"PPPF,, .
support soliton solutions, the field configuration correspond- |t can now be verified thag, and e, are related as
ing to these solutionsannotsaturate the topological lower

bound on the energy. The same conclusion follows when we 0=01+8ij¢°Fij= 0ot 2ejdi(HA)), (18)
replace the Maxwell dynamics in E¢5) by Chern-Simons
dynamics. There exist, of course, non-self-dual solutions t
the model(5), which is closely related to the U(1) gauged
CP! model given in Ref[8]. The radially symmetric restric-
tion of Eq. (5) is readily calculated by use of E), and the
corresponding one-dimensional static energy functional is

which is a definition of thegauge-invarianttopological
Q:harge densityo. The topological charge then will be the
degree of the mapl, namely, the volume integral @f,, EqQ.
(15), provided that the volume integral of the gaugeiant
total divergence term on the right-hand side of BE) van-
ishes. This requirement will have to be verified to hold true
1 r 1 1 for any solution which is a candidate to be a soliton.
Ho==—a’'?+ —f'?+ —|a?+ =n(n—2a)(1—cos) Having defined the topological charge densityEq. (18),
2r 4 r 2 we identify it with the zero-component of the topological
+\(1-cos)?, (14) currentj#, given by
in which the coupling constant multiplying the symmetry j#=8"""(2"D ,¢°D ;" $°+ $°F ). (19)
breaking potential is introduced by way of emphasizing thaLI.
the solutions we seek are non-self-dual, witk 1, in which
case the topological lower bound can actually be saturated, 3,j*=3e"7c*PD _$°D ,pPd P, (20)
but only for a trivial field configuaration as the solution. The a prToTeTmE
system(13) differs from the one studied in Reff8] only in which in turn can easily be shown to be a locally total diver-
the potential function and the fact that in the present mOde@ence_ Thus the volume integral of the divergence of the
we have not included any Skyrme terms. We do not integrat€opological current(20) vanishes as required. We note in
the Euler-Lagrange equations pertaining to Bal) numeri-  passing that the definitiofl9) for the topological current is
cally since that was done in detail R¢8]. arbitrary up to the addition of a divergeless density and in the
It is because of the absence of self-dual solutions in thease where the gauge group is Abelian; then, this means we
gauged CP model that it is interesting to study the U(1) can add the densitg“*°F ,, since the divergence of the

Maxwell gauged O(3) model introduced in R®], since |atter happens to be the Abelian Bianchi identity. One can
the latter does support self-dual solutions saturating the tathen redefine Eq(19) as
pological lower bound. The next natural step then is to find

he divergence of this current is readily calculated to be

and study the corresponding U(1) Chern-Simons gauged Tr=jret {e"PF ,,=e"*[£2PD 2D, p° ¢°
O(3) model. The corresponding analysis for the latter is 3
given in the next subsection. (P +F 0] (21

B. Chern-Simons Q(3) model Choosing the constarit= — v, gnd with_uzl, _then leads to
: the topological current stated in Rg8], involving the factor
We start this subsection with the identification of the to-(v— ¢%) which features in the symmetry-breaking potential.
pological charge of the putative soliton and the correspondThis seems to be a coincidence arising from the Abelian
ing topological current. This applies both to the Maxwell nature of the gauge group.
gauged[9] and the Chern-Simons gauged O(3) models. We now turn to the dynamics and propose the Lagrangian
Since the topological charge density of the ungauged O(3pn (2+ 1)-dimensional Minkowski space:
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,czZ—'JEWPFWAPJF(D#¢a)2—4V(¢3), 22)

wherex is a constant with the dimensions of length and the

three-component field?= (4%, ¢°), with a=1,2, is con-
strained by¢?¢$?=1. The Lagrangiar(22) is U(1) gauge
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most a total divergence term such that the surface integral
corresponding to the latter vanishes. This situation obtains
when we choose

_ 1 3
U=5-(¢*~0). (31)

invariant by virtue of Eq(17), since the potential function Here the constant is related to the constartin Eq. (21)
not yet specified is nevertheless allowed to depend only o8 is analogous to the synonymous constesftthe gauged

the U(1)-invariant component® of ¢2.

CP! model in Eq.(4). In the present work, we shall restrict

The Hamiltonian density and the Gauss law equation Otnhe value of the constanmtin Eg. (31) equal tounity, whence

motion are given, respectively, by

H=5[(Dop*)*+(dg*)>+(Di¢p*)*+4V], (23
K aBgapy 4B
ﬁsijFijzs $“Dog”. (24)
In the static limitH reduces to
Ho=($")?A5— 7 (Di*)*+2V (25
and the Gauss law equation yields
A “ F (26)
= ¢.F.,
T2z

so that substituting foA, from Eqg. (26) into Eqg. (25), we
end up with the static Hamiltonian density definedIdn

K2

1
o gt S0

The choice of the potential function in E@7) is dictated by
the requirement that the volume integral of BEQ7) be

bounded from below by a topological charge and be fixed
uniquely by that criterion. The lower bound on the volume

integral of the density27) follows from the inequalities

2

_8ij|¢a|U =0, (28)

_K e
2[¢] !
(ijDi¢?— "D " ¢%)2=0, (29

where| ¢ = (#*)?. The sum of Eqs(28) and(29) implies
the (topologica) inequality

K’ 2 w212, L az>1 3
4|¢a|2Fij+2|¢ 12U +§(Di¢) /EQO+8ij‘9i(¢ Aj)
1 3

The left-hand side of E30) can now be identified X, in

Eq. (27) if |¢%|?U? in Eq. (30) is identified as the potential

function V in Eq. (27). What we choose fo¥ then deter-
mines the lower bound ok,. This fixes the potential func-

the topological inequality30) leads to

d? -2 d? L d? dSe;Ai(¢3-1
XHO/Z XQ 2 XQO+ SSIJ ](¢ )u
(32

with Hg now given by

H—K—2F2+D a2+i1— 3)3(1+ ¢° 33
0= 22 i (Di¢*)"+ 2 (1= ¢%)°(1+ ¢7). (33
Had we not restricted to=1 already in Eq(32), the poten-
tial featured in Eq.(33) would have had the more general
form

1
2|20 =—[1=(6)1(v—¢%)%. (34)

The required topological inequality is EB2), provided
that the surface integral on its right-hand side vanishes. This
last requirement is easily satisfied, in the case of topologi-
cally stable solutions, by the asymptotic conditions

lim ¢3=—1,

x| —0

lim ¢3=1,

Ix|—o

(39

which guarantee that the volume integral@fyields a non-
zero integer winding number. This statement assumes that
A; does not grow too fast at infinity, an assumption which is
amply justified as will be seen below when we specialize to
the radial field configuration. The conditiof35) pertain to

the topologically stablesolutions of nonzero winding num-
ber and also guarantee that the volume integral of(E§),
namely, that the energy, be finite. With the particular poten-
tial in Eq. (33), however, there is a second set of asymptotic
conditions for which the energy integral is also guaranteed to
be finite. These are stated as

lim ¢3=-1, lim ¢3=—1.

|X|—0

(36)

X e

The winding number for a field configuration satisfying Eq.
(36) vanishesand then the lower bound dH, follows from
Egs. (32 and (36) to be the magnetic flux. Such solutions,
which we expect to find, are the static nontopological solu-
tions analogous to those found|ib3] for the Chern-Simons
Higgs model.

The topological inequality32) is saturated when the in-

tion uniquely, subject to our requirement that the volumeequalities (28) and (29) are saturated, vyielding the

integral of the right-hand side of EB0) reduce to the vol-
ume integral of the winding number densiy. This means
that the right-hand side of E¢B0) must reduce t@ plus at

Bogomol'nyi equations

Fij=Feij(1-¢32(1+¢°), (37
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&jDip?= isabCqugb(ﬁc, (39 Ipws bglow to the anti-se_lf—dual case, namely, to the equa-
tions with thelower signs in Eqs(43).

where we have sek=1 and, the lower and upper signs  The topological asymptotic conditiong35), which were
pertain to anti-self-duality and self-duality, respectively. chosen in anticipation of our restriction to the anti-self-dual

In terms of the complex-valued functiogs=Inu of the  case, now read
coordinates on R,, defined byu= (¢t +i¢2)/(1+ ¢3), the
Bogomol'nyi equation$38) reduce to the partial differential
equation

lim f(r)=a,lim f(r)=0, (44)

r—0 r—o

which for the field configuration(41) imply vorticity
=—N. This is the same as in the usuaingaugell O(3)
model where the radially symmetric anti-self-dual vortices
satisfy the asymptotic condition&4), while the self-dual
which we do not study further here but proceed in the nexwortices satisfy instead

sections to subject Eq&37) and(38) to radial symmetry and _ )

subsequently to integrate them numerically. limf(r)=0, lim f(r)=.

r—0 r—oo

166_(‘”5

(1+e—(¢+¢))3’ (39

Alp+o)=

1. SOLITONS We shall henceforth restrict ourselves to the anti-self-dual
case only and will denote the vortex number [y on the
understanding that this is read|&§. This applies in particu-
lar to Eq.(41).

Concerning the asymptotic conditio36) of the nonto-

Since we shall be concerned with radially symmetric field
configurations only, we proceed to state our radially symmet
ric ansatz for the fieldg,, and ¢2:

a(r)-N pological solitons, there is a further refinement to be taken
A= &ijX}, (40 into account. The condition at the origin in E@6) is de-
signed to ensure that the field? is single valued at the
Be=sinf(r)n®, ¢3=cos(r), (41) origin. This is true foN>0, but is too strong a condition for

the nontopological soliton wittN=0. In that case, it is pos-
where X;=x;/r and n®=(coN#, sinNg) are unit vectors, sible to relax this condition, so that th@ntopologicalas-

with N defined to be an integer. ymptotic conditions now read, fa¥>0,
The Hamiltonian density of the corresponding one- ) .
dimensional subsystem arising from the imposition of radial lim f(r)=a, lim f(r)=m (45)

r—0 r—o

symmetry on the syster{83) is defined by

and, forN=0,
d’x Hy=4 fH dr,

f o= | Ho lim f(r)="fy, lim f(r)=m, (46)

r—0 r—ow

which as a function of (r) anda(r) is expressed as
ar2 2sir?f with (fo ():onstlant. For(‘jthe fieldeﬁlfl()jzof all v(())rticities N>0,
- ’2 _ 2ai Egs.(45) imply zero degregi.e., [d“xX 0o=0.
Ho_r Si f+rf * r +(1-cod)*sirf. (42 The asymptotic behavior of the functia{r) in Eq. (40)
is of no consequence to the topological stability of the soli-
We have sek=1 in Eq.(33). The one-dimensional Hamil- ton, unlike in the cases of the Higgs mod8s12,13 and of
tonian density (42), which gives the energy density the gauged CPmodels[7,8]. This is because in the latter
£=rH, will be needed below in the numerical computation systems the topological charge, which is again related to the
of the total energies. vorticity, is also proportional to theagnetic fluxin the case
The Bogomol'nyi equation$37) and(38) now reduce to  of the gauged O(3) models, given|[i] and here, the mag-
the following pair of coupled nonlinear ordinary differential netic flux of the solution is not restricted by the requirement
equations: of the stability of the soliton. The only constraint on the
large+ behavior ofa(r) here is the requirement that the
. (43  surface integral on the right-hand side of E§2) vanish.
r This means thaa(r) should not grow faster than the quan-
tity (cosf—1) in that region. Since the magnetic flux is pro-
portional to the quantity

!

a asinf
Tzi(l—cosf)z(1+cosf), fl=x

We notice that the second member of E¢$3) coincides

with the Bogomol'nyi equation for the ungauged O(3)

model whena(r) in it is replaced by the integeéM. Thus at —a(*)+a(0),

the origin this equation is the same for both the gauged and

the ungauged O(3) models, wih{0)=N. This is not sur- we shall seek solutions for which bo#{(=) anda(0) are

prising since the topological charge, namely, the volume infinite, since it is reasonable that the solutions we seek corre-

tegral ofg in Eq. (15), depends on the asymptotic values of spond to finite magnetic flux field configurations. As ex-

the functionf(r). plained above, we shall take(0)=N, but will take
Since it is sufficient to studither the self-dualor the  a(«)=«a, where @ is a nonzero constant whose sign will

anti-self-dual case, we shall restrict ourselves in what fol-depend on whether we are considering the topological or the
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FIG. 2. Profiles off (r) anda(r) of for the topological Chern-
FIG. 1. Profiles off(r) and a(r) of the topological Chern-  Simons vortices oN=2 with «=0.75 and 1.75, wheré()=0
Simons vortices witiN=1 anda=0.75. The curves are identified anda(=)=a. The curves are identified by their asymptotic values
by their asymptotic valuesf(0)==, f(«)=0 and a(0)=1,  with f(r) as in Fig. 1, and(0)=2, a() = a. The faster decaying
a()=0.75. profile of f(r) corresponds to the larger value @f1.75.

nontopological solutions. We shall see in the following sub-ihe (1) gauge field. Thus the relevant conditions in the case
sections why it is not possible to choase-0, in which case 4t the topological solitons are EqE85) and (44) for the full
the magnetic flux would have been proportional to the degrege|q and its restriction to the radially symmetric configura-
N. Corresponding to the asymptotic conditiofds} for the  ions, respectively. The asymptotic properties of the U(1)
funct!on f(r), we state the asymptotic conditions on thegauge field, on the other hand, are given by Ed8), both
functiona(r) as for the topological and nontopological cases.
. _ . _ The topological solitons of vorticitiN have have degree
r“—IT(l) a(r=N, rlm alr)=a. @n N given by the two-dimensional “volume” integral of the
densityp,, Eq.(15). The topological charge, however, is the
In the following two subsections, respectively, we will integral of the gauge-invariant densigy, Eq. (18), which,
study the topological and nontopological solitons. This in-however, in this case reduces to the integraposince the
volves the numerical integration of the two Bogomol'nyi one-dimensional “surface” integral vanishes by virtue of the
equations(43), preceded by the asymptotic solutions in theasymptotic limit(44).
r>1 region from which we will learn the restrictions on the ~ Since we have already solved the Bogomol'nyi equations
possible values of the constamt Concerning the solutions (43) in ther<1 region, there remains only to solve for these
of Egs.(43) in ther <1 region, it is clear from Eqg44) and  in ther>1 region, where we find the power behavior
(45) that there is no distinction between the topological and
the N>0 nontopological cases so that we give this solution f(r)= E (50)
for both these types of solitons forthwith: re

2

A
f(ry=m—ArN, a(r)=N—mr2<N”>- (48) a(r)=a+

C4
4(2a—1)ra@e=

(51)

For the nontopological soliton witN=0, however, we have
the asymptotic valud(0)=f,, wheref, does not have to
vanish for the field¢® in Egs. (41) to be single valued.
Indeed, in our numerical integrations below, we have foun
nontrivial solutions for values of,>0 and only trivial so-
lutions for f;=0 and fy=. This leads to the following
behavior forN=0, corresponding to Eq$48) of N>0, of
the functionf(r) in ther<1 region:

We see from Eq(51) that the positive constant must sat-
isfy the conditiona> 3, and since the largest value @fr) is
Gequal toN=a(0), it follows that all integer values of the
degreeN satisfy this restriction. The value of the constant
A in Egs.(48) is fixed in the numerical integration. We have
integrated Eqs(43) with the lower sign for fields of vortici-
ties N=1 and N=2. In the N=1 case, we have used
a=0.75, and in theN=2 case,«=0.75 and 1.75. For the
pairs{N,a}, our numerical integrations yielded the follow-

—f _ 1l 2
f(r)=Tfo— 3simfo(1+cosfo)r?, ing values of the constam in Egs.(48) to be

1l 2
a(r)= - zsiffo(1+cosfo)r®. (49 A{1,0.73=6.7800, A{2,0.73=2.3933,

A. Topological solitons A{2,1.7%=7.0360.
The topological properties of the solitons of our Chern-

Simons gauged O(3) model are determined by the asympFrhe profiles of the function§(r) anda(r) are exhibited in
totic conditions pertaining to the O(3) field only, and not  Figs. 1 and 2, respectively, fad=1 and N=2, and the
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with r<1, however, the asymptotic value of the>0 vor-

100 tices is given by Eq945), while that of theN= 0 soliton by
80 Egs.(46).
Before we proceed to integrate the self-duality equations
(43), it is important to consider the question of the stability
60 of the nontopological solitons, since their stability is not
gauarnteed by the topological criteria as for the topological
40 solitons of the previous subsection. Here we notice that the
degree of the soliton given by the two-dimensional “vol-
20 ume” integral of the density ob in Eq. (32) vanishes for
all vorticitiesN>0. The second, one-dimensional “surface”
integral in Eq.(32) however doesot vanish in this case, but

0 1 2 3 4 > 6 in fact becomes identical with the magnetic flux of the field
configurations. This is because according to E@)
cod()=—1, which causes this second integrand to become

FIG. 3. Profile of the energy density corresponding to theequal to the U(1) magnetic flux density. Since this field con-
N=1 topologicalsoliton depicted in Fig. 1. figuration is a(anti-)self-dual solution, the energy of this
i . ) . .solution is equal to the magnetic flux. Of course, the value of
proflles of the energy QenS|t|es of these solitons are given ig,;q magnetic flux is not quantized, but is determined by the
Figs. 3 and 4, respectively. _ arbitrary value of the parameter=a(~) used in Eqs(47).
_ The total energie€£{N,a} corresponding to these solu- \ye are now in exactly the same situation as that of the non-
tions, labeled again by the paifii, a}, were calculated from  {qnojogical vortices of the Chern-Simons Higgs model dis-

the numerical solutions to be cussed in Ref[13]. As in any Chern-Simons theory, the
E{1,0.79=3.9951, E{2,0.7§=7.9992, soliton carrying magnetic flu® must carry electric charge
Q=— Kk, (52)

E{2,1.79=7.9999,
which means that the energy of the nontopological soliton

from which we can confirm that the energy of Wi 2 soli-  with a given charge is

ton is twice as large as the energy of i 1 soliton. This is

expected since the solutions in question @meti-)self-dual E=|d|= E|Q| = 10 (53)
Not surprisingly, the numerical accuracy of this statement is K Hhe

better when theamevalue for the parameter is employed _ _ _
in the numerical integrations of both tié=1 andN=2  Whereu is the scalar mass in the symmetric vacuum. Thus

solutions. the argument for the stability of nontopological vortices in
this Chern-Simons gauged O(3) model is identical to the
corresponding stability analysis for the Chern-Simons
gauged Higgs model given RdfL3], to which we refer the
There are two types of nontopological solutions to thereader for further details. Briefly, the nontopological vortices
(anti-)self-duality equationg43). The nontopological soli- with N>0 are marginally stable, being at the threshold of
tons withN=0 and the nontopological vortices with>0, decay into e|ementary excitations.
just as in the case of the Chern-Simons Higgs model ana- The situation with the\=0 nontopological soliton is dif-
lyzed in Ref.[13]. In both these cases, the functidfr)  ferent. In this case the energy is equal to the magnetic flux
tends tor according to Eqs(45) at larger. In the region  coming from the second term of E(R2), plusthe contribu-
tion of the integral of the first term. In this case, however,
40 ' this last integral does not vanish by virtue of the asymptotic

B. Nontopological solitons

35 condition(46) and contributes a positive amount, resulting in
the inequality
30
25 1
E=|d[=—|Q[=rQ, (54)
20 K
15 from which we must conclude that tiN= 0 topological soli-
10 ton is unstable. In this connection, it would be interesting to
consider the solitons of ungauged3P models in 2+1 di-
3 . mensions and to study their stability, in the same spirit as the
corresponding works using O(2) mod¢ls,17. We intend
0 1 2 3 4 5 6 to return to this question elsewhere.

As in the above subsection, the behaviors of the functions
FIG. 4. Profiles of the energy densities corresponding to thea(r) andf(r) in ther<1 region are already known to be

N=2 topological solitons witha=0.75 anda=1.75, depicted in EQs. (48), which hold also for the nonzero vorticith>0
Fig. 2. The higher peak pertains to the larget 1.75 soliton. nontopologicalcase at hand, while for the=0 these are
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FIG. 6. Profiles of the energy densities corresponding to the
N=0 nontopologicalsolitons. The higher peak pertains to the soli-
ton with fo=7/4.

FIG. 5. Profiles off (r) anda(r) of the nontopologicalChern-
Simons solitons oN= 0, with = —8.2480 for whichf ;= #/4 and
with a= —5.2447 for whichf = 7r/3. The maximum of (r) occurs

wherea(r) crosses the axis. The higherf(r) curve pertains to o )
fo=m/3. value at the origin, and since we shall choose the latter value

a(0)=N to be positive, the required value afis negative
given by Egs.(49). There remains, therefore, to solve Egs.in this case. _
(43), with the lower signs, in the>1 region subject to the ~ We have integrated Eqe#3) for N=1 andN=2 numeri-
asymptotic conditiong36) or (45), which are the same for cally with two values of the parameter in each case. The
the N>0 andN=0 cases. We find the following solutions Value of the parameték in Eqs.(48), for each paifN, a}, is

with power behavior: then fixed by the numerical integration to be
c A{1;-3.0849=-0.2, A{1;—-3.0343=-0.01,
f(r):77-+r—m, (55) {1 9 { 3
- A{2;—4.2243=-0.1, A{2;-4.044=-0.01.
a(r):a+(|a|_1)r2(a—l)' (56)

The profiles of the function§(r) anda(r) for the solutions
) with N=1 andN=2 are exhibited, respectively, in Figs. 7
We see from Eq(56) that the negative constarmt must  and 8 and the corresponding energy densities in Figs. 9 and

satisfy the conditiorja|>1. For a given choice of the pa- 10. Again, the total energies corresponding to each of these
rameterea, the value of the parametéy, or equivalently the  sojutions were calculated numerically to be

parameterf, in Egs. (46) and (49) whenN=0, is fixed by
the numerical integration.

For the N=0 soliton, we have integrated Eqg&l3) nu-
merically with two values of the parametar The value of
the parametef, for each paifN, a} is fixed by the numeri- E{2;-4.2245=24.8978, E{2;—4.043§=24.1754.
cal integration to be

E{1;-4.2245=16.3396, E{1;—4.043§=16.1371,

fo{0,—8.2480=,, fo{0,—5.2447= % |

au
Zi
The profiles of the function$§(r) anda(r) for these solu-
tions are given in Fig. 5, and the profiles of the energy den- 1

sities of these solutions in Fig. 6. The total energies corre- \

sponding to these solutions were calculated numerically to 10 15 20 55
be -1

E{0,—8.2480=32.9921, E{0,—3.707%=20.9788. 21
-3

For theN>0 case, we seek a solution for which the func-
tion f(r) increases from its value at the origin, rises, and
then descends asymptotically to its vakteat infinity. This FIG. 7. Profiles off (r) anda(r) of the nontopologicalChern-
implies that the gradient of(r) changes its sign in this in-  Simons vortices oN=1 with o= —3.0849 and—3.0343, where
terval, as a consequence of which we see that the valiee  f(x)= 7 anda(®)=«. The maximum off (r) occurs wherea(r)
which f(r) tends at infinity must have the opposite sign of itscrosses the axis.
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FIG. 8. Profiles off (r) anda(r) of the nontopologicalChern-
Simons vortices oN=2 with a=—4.2244 and—4.0438, where
f(0) =7 anda(«)=a. The maximum off (r) occurs wherea(r)
crosses the axis.

FIG. 10. Profiles of the energy densities corresponding to the
N=2 nontopological solitons with a=-4.2244 and
a=—4.0438, depicted in Fig. 8. The higher peak pertains to the
a=—4.2244 soliton.

IV. RIGOROUS EXISTENCE RESULTS 16 1612 32
W : . : i —+ \/(— +==N(N+2)
e establish now the existence of topological and nonto 27 27 27
pological solitons in the two-dimensional Chern—Simons
0(3) o model. 27
Theorem 1. The self-dual equations (37) and (38) have <B<4+ \/16+N 7N+16 ,
two classes of radially symmetric solutions which satisfy the
topological and nontopological boundary conditions (35) N=0

and (36), respectively. For each intege=N the topologi-
cal solutions have the flux Remark:This theorem reveals an interesting feature which
distinguishes our model from the self-dual Chern-Simons
model of [11,12: In the Chern-Simons case the exponent
d=27N, B, which labels the fractional electric charge and magnetic
flux, is shown to be allowed to assume any given value in an
explicitly determined intervdlin [18] we established the ex-
whereas for each 0 the nontopological solutions have act resultge (2N+4.)]. In the model here, however, the
the flux exponentB is confinedfrom the above.
With the substitution

d=27N+ 7B, e b1 e b
gy’ TP 1+ ¢p”

u=u;+ius,,

where 8 takes its value in the interval we see thath(p) = (0,0,— 1) [or bs(p)=—1] implies that

p is a pole of integer degree for the complex functioand

that ¢(q) =(0,0,1)[or ¢5(q) =1] implies thatq is a zero of
integer multiplicity foru. Suppose that the origin 6% is the
1.2 only pole ofu and that the corresponding degreeNiz=1.

Then the new variablev=Injuf’=¢+¢ transforms the
Bogomol'nyi equations into the elliptic equation

0.8
0.6 Av= 16e - 47N & in R2 5
U_(1+e—v)3 T (X) in k= ( 7)
0.4
0.2 , The corresponding boundary conditions to be imposed on
v are as follows.
0 5 10 15 20 25 (@) v(x)— — as|x|—c: topological solutions.

(b) v(x)— as|x|—: nontopological solutions.
For a person not interested in a rigorous mathematical
FIG. 9. Profiles of the energy densities corresponding to thednalysis, the rest of this section may be skipped.
N=1 nontopological solitons with «=-3.0343 and Here are our basic existence results for E&y), which
a=—3.0849, depicted in Fig. 7. The higher peak pertains to thegive rise to the solutions stated in theorem 1 via standard
a=—3.0849 soliton. realizations.
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Theorem 2. For any integer M1, Eq. (55) has a family c<2N. For this purpose, we set=|x| and introduce the
of topological solutions satisfying the property that for any new variables=Inr and{= — 5. Then, with{’ =d{/dt, Eq.
0<e<1 there is a solution to fulfill the asymptotic estimate (57) is turned into

eu(x):O(|X|—(2N—a)) as |)(|_>oc_ . 1&2tef4Nt+2§
¢ =m—€m5f(t,§)- (60)
These solutions are all radially symmetric about the origin of
R? and are strictly increasing with respect to the radial vari- It is important to record the partial derivative
able r=|x|. Further, there also holds the sharp decay esti-
mate| Vv (x)|=O(|x| %) as|x|—c for the solutions. at(t,{)
Theorem 3. For given integer #0, Eq. (55) has a non- al
topological solutiorv satisfying the asymptotic property

1%2t—4Nt+2§
= (1+672Nt+§)4(2_672NHg)- (61

Consequently, there holds the bound

ev(x)=O(|X|/3) as |x|_>oo, ot

and that in the radial variable x| there holds Sl;p((t’g): 27 62

lim ro.(r)=-2, and

r—o

o . . f(t,-) is increasing for{ inthe regionf<In2+2Nt.

where the constarng lies in the interval stated in theorem 1. (63)
The solution is radially symmetric about the origin, and
there is exactly one pointy>>0 so that with the radial vari- We now supplement Eq58) with the initial data
able r=|x| the solution is increasing in the regiondr , but ,
decreasing in Br, and the maximum {(==)==a, {(==)=0. (64)

— S As a preparation we establisfemma 1. For any & R, Eq.
v(ro) r:gx{v(r)}—e (58) subject to the initial condition (62) has a unique global
solution in the entire intervat-co<t<<o,
can be arbitrarily prescribed for the number a in the range  Proof. It is standard to consider the equivalent form of the
a=In2. In other words, we again have a continuous family of problem in the form of the integral equation
distinct solutions to realize the same prescribed “vortex” .
charge and location. Besides, there also holds the decay es- - J _
timate for the derivativegVu (x)|=0O(|x| 1) as|x|—= for {y=-a+ 7w(t Sf(s.L(9)ds, tek. (69
all the solutions.
These results will be established in the next two sections-et T be such that
We only remark here that it is sometimes convenient to use

w=—v. Then w satisfies the following usual *“vortex” JT (T—9s)f(s,(s))ds<1 (66)
equation —w
6eW and that, with(s) satisfying |Z(s)|<|a|+1 (say, there
Aw=— (].‘"T)S +47NS(X). (58 holds
. . T d 1
Remark.Theorem 2 says that even in the radial case to- f (T—s) (—f(s,g)) ds<-. (67)
pological solitons are not unique for given topological - 9 [=1(s) 2

chargeN which is in contrast to the uniqueness result proven . .
in [18] for the self-dual Chern-Simons vortices. This clearly!" View of Egs.(59) and(60), the existence of such a number

indicates that the model here possesses some new charactbrl® €nsure Eqs64) and(65) is clearly guaranteed. There-

istics. In fact such a conclusion is already further evidenced®r® We can use EG63) to define a convergent Picard suc-

in theorem 3 abovésee also the remark following theorem CESSIVe iteration scheme for functions over<,T]. The
1). limit function solves Eq.(63) on (—<,T]. Using Eq.(60)

again we can extend the solution to the entire line

A. Topological solitons: Proof of theorem 2 (=22,%). In fact, we can set

We shall first study topological solutions. Let _ v
w=2N In|x|+ 7. Then Eq.(56) becomes {n()=—a+t f_w(t s)f(s,{n-1(s))ds, t<T,
2Na7
16x|"e (59 fo(t)=—a,

An= (1+|X|2Nen)3-
n=12,... .
Remember that we want to achieve the asymptotic behav-
ior w(x)— o at infinity. Thus it is sufficient to find a solution For anyn, there holds by virtue of Eqg64) and (65) the
of Eq. (57) so thaty(x)=—c In|x| asymptotically for some uniform bound ||{,|.<|a|+1 and the recursive bound
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| Zns1—alle<(1/2"). Thus {Z,} is convergent uniformly
over (—,T] to a solution{ of Eq. (63), —<t<T. Local
uniqueness also follows from the inequal{b).

Thus the lemma is proved.

Using Eq.(60) in Eq. (63), we find that for anyt,<0
there holds

0

128
|s| == e®*ds<—a+C,,

27 (68)

§(t0)s—a+f

—o0

whereC, is a constant independent afandt,. On the other
hand, with

t
é’(t)=f mf(s,é(s))ds

and Eq.(60), we have for any >0 the existence of a
to<<O to ensure that

&
{'M=5, tsto, (69)

wheret, is independent oé.
Because of Eq(67), we can lett;>t, be such that
{'(t)<e for te(tp,ty). Then it follows from Eq.66) that

for te (to ,tl).

Lemma 2. We can choose suitable @ so that Eq. (68)
holds for all t>t.

Proof. Consider the right-hand side of E@8) first. It is
seen that we can let>0 be sufficiently large to make

—a+Cote(t—te)<In2+2Nt, t>t,. (71

In the region where E(68) holds, by virtue of Eqs(69)
and(61), we have

t
((t)=§(to)+ft (t—s)f(s,{(s))ds
t
<—a+C0+f (t—s)f(s,—a+Cy+e(s—tgy)ds
fo

t
<—-a+Cy+ 16e2(~atCoeto) [ (t—g)e 22N"1-2)sgg
to

(72

Since the integrand on the right-hand side of E&)) for
t>t, is bounded in view ot <1, we can choosa>0 large
to make Eq(68) valid.

The lemma is proved.

TOPOLOGICAL AND NONTOPOLOGICAL SELF-DUA . ..

5255

we employ a shooting argument starting from somewhere in
the middle and we shoot designated target data at

In this case Eq(56) is most convenient. Again, we use
the variablet=Inr. Then we are to solve the following two-
point boundary value problem:

16e2te"
RENEETUE
(73
W'(—o)=2N, w(w)=—oo,

The property of a solution of Eq71) is transparent from
the equation and the boundary asymptotics. In fact, it is seen
thatw(=*==)=—o and thatw is concave. Hence there is a
unigue maximum in the middle. Our shooting argument will
start from thisunknownmaximum point, sayty. More pre-
cisely, to approach E@71), we choose to consider the initial
value problem

16e%'e"
VT ey
(74)
w(tg)=—a, w’'(ty)=0.

It is easy to show that Eq72) has a unique global solu-
tion for any pair of numbers andt, given. Define a func-
tion h(a,ty) of a,ty by

to
h(a,tg)= lim W’(t):J, g(s,w(s))ds,

t——

16e*'e"
g(S,W)Zm. (75)

As in the last section, we record here some propertigg. of

d _ 1pe?stw 1-2e% 3 64 2s
wasW) = (1+eM? Sv‘;'m(s’w)_ﬂe '

(76)

By the fact thatw depends ora,t, continuously and that
Egs. (74) imply the uniform convergence of the integral in
Egs.(73), we conclude thalh(a,ty) is a continuous function
of the parametera,t.

Lemma 3. For any givenaln2, there exists at least
one {=ty(a) so that the function h defined in Eq. (73)
satisfies

h(a,tg(a))=2N. (77

Recall that Eq(75) is the boundary condition dat= —«

we would like to achieve in Eq.71). To prove Eq.(75), it

Consequently, we have just constructed topological solusuffices to establish the following two lemmas.

tions of arbitrary vortex chargd. Our method is essentially

a shooting argument starting fromoe.

B. Nontopological solitons: Proof of theorem 2

We next prove the existence of nontopological solutions.

Lemma 4. For any & R we can find a suitablegtsuch
that

h(a,to) <2N.

Proof. From Eq. (72), we havew”>—16e*'*". Set

The above method does not seem to work out well. InsteadV=2t+w. Then,
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wW’'>—16eV. (79

Since w’'(tp)=0, we havew’(t)>0 for t<t,. Hence
W' (t)>2 for t<ty. Therefore, multiplying Eqs(76) by
W' and integrating over-c<t<t,, we obtain

4—[W'(1)]*=32(eVV —e?0™?).
Returning to the original functiow, we have the estimate

O<w'(t)<2y1+8e%0 3—2=,

In particular,h(a,t,) <21+ 8e%0~2—2. Consequently, we
may choose, sufficiently negative to maké(a,tg) <2N,
which proves the lemma.

Lemma 5. For any zIn2, there is a suitable ¢ so that

t<tg. (79

h(a,te)>2N.

Proof. First we notice that, in view of Eq$74), the func-
tion g(t,-) is increasing in the interval< <, —In2]. On the
other hand, Eq(77) gives us

—In2=—-a>w(t)>—-a—«k(tp—t), t<tg.
Consequently, we are led to the inequality
16e2’[7a7 k(tg—t)

W”(t)< - (1+ e—a—K(to—t))?) .

(80)
Now integrate Eq.(78) over the interval «,ty]. We
obtain the lower estimate

to 1&2'[— a—k(tg—t)
h(a,tg)=w'(—»)= dt
(a, O) W ( OC) f_oc(1+eaK(t0t))3

t
>2J 0 e2t-a-x(to~ gy

—o0
eZtO—a

(81)

t
:zefafk’[oJ' 0 e(2+K)tdt:

Here the last line is derived using the definitionkofiiven in
Eq. (77). The form of the right-hand side of Eq79) is
crucial for the existence of a sufficiently largg to make
h(a,tg)>2N.

The lemma is established.

Finally, the continuity oh and the conclusions in lemmas

4 and 5 ensure the existence of at least tgety(a) to
satisfy (75). Thus lemma 3 is proved.
In the rest of this section, we always assume &g are

so chosen that Eq.75) is valid. We prove that the other

boundary condition in Eq(71), w(®)=—~, is automati-

cally observed. More precisely, we stdtemma 6. There is a

numberB>2 so that

lim w'(t)=— .

t—o

(82

In particular, w(t)— — as t—oo.
Proof. Integrating Eq{(72) over (—,t], we write
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t 1&ZSeW(S)
w'(t)=2N-— 7Dc(1+e—w(s))3d5. (83
Sincew<0, we have
t t
2N—f 16e25eW<5>ds<w'(t)<2N—f 8e?%e"9)(s.
(84)
Therefore the integral
f e2seV9ds (85)

must be convergent. In fact, if it is not, then by E§2)
w'(t)— —o ast—oo, which leads to the convergence of Eq.
(83), contradicting the original assumption. By virtue of the
convergence of Eq$83) and(81), we see that Eq80) holds
with 8>2 as expected.

Lemma 7. The numbe®# in lemma 6 actually satisfies

16 \/16
277N 27

232NN2
+57N(N+2)

. (86)

27N+ 16
2

<B<4+ \/16+N

Proof. Using the inequalitw=< —In2 in Eq.(72), we have
the crude bounds for the second derivativenof

128
_16e2t+w$wrr$_ eZter,

57 —oo<t<<oo,

(87)

Sincew’(t)>0 for t<ty, multiplying Eq. (85) by w’,
integrating over {-«,ty], and noting that

t t
O<f 0 e2t+WWrdt:eZt07a_2J' 0 eZt+Wdt,

— o0 —0o0

we obtain

12_278(82toa_2ft° eZt+Wdt)

<2NZ2< 16( eZ‘O*"I—ZJto ez”‘”dt).

— o0

(88)

Similarly, over the intervalty,), multiplying Eq. (85)
by w’ <0, integrating, and noting that lemma 6 implies that
"W 0 ast—oo, we obtain

8 ©
2t07a+ 2t+w
57 (e 2ft e dt)

0

[EnY
N

1 %
s§ﬂ2s16( e?lo-a4 Zf e2‘+‘”dt>. (89)
t

0

By virtue of Egs.(86) and(87), we find
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1 ) 27 ) = ew 27 . topological solitons of degreebl=1 andN=2, and for the
2B —gN $16ﬁme dt<55B°~N% (90 nontopological N=0 soliton. To underpin our results math-
ematically, analytic proofs for the existence of these solu-
However, takingg— in Eq. (82), we have tions were supplied as well.
The qualitative features of our numerical results are ex-
® otiw hibited in Figs. 1-10 The profiles of the functioh@) and
2N+5<16J’%e dt<2(2N+B). 9D a(r), which are of the expected shapes, are given in Figs. 1
and 2 for the topological vortices with= 1,2, Fig. 5 for the
Inserting Eq.(89) into Eqg.(88), we see that the decay expo- nontopological soliton wittiN=0, and Figs. 7 and 8 for the

nent 8 satisfies the two quadratic inequalities nontopological vortices wititN=1,2. The profiles of the en-
27 5 ergy densities of thé&l=1,2 topological vortices are given,
2B8°— B>N"+2N, (92)  respectively, in Figs. 3 and 4, those of tNe=0 solitons in
5 5 Fig. 6, and for theN= 1,2 nontopological vortices respec-
23— 16B<27TN"+32N. (93 tively in Figs. 9 and 10. We note that all these profiles de-

scribe ring-shaped energy densities.

To put our results into context, we note that in
(2+1)-dimensional U(1) gauged models it is possible to
describe the dynamics of the(l) field either by a Maxwell

Solving E@s.(90) and (91), we arrive immediately at the
range(84) and the lemma is proved.
To get nontopological solutions with=0, we study the

problem termor by a Chern-Simons term. In each of these cases, it is
16reV possible to establish topological inequalities which confer
(rw,),=— FETER (topologica) stability on the resulting static soliton solutions,

while in the Chern-Simons gauged model there occur also
(94) nontopological solitons. We ignore here the more general

case where both the Maxwell and Chern-Simons terms are

present in the Lagrangian, because in that case we were not

w(0)=wg, lim,_qorw,=0.

Woe R and that the solution must satisfy(r)— — as The main physical interest of all these models is as soli-
r—oo. In fact, we can show thatw, (r)— — B asr—o, with ~ tons of (2+1)-dimensional theories which may be relevant
>2 lying in the correct interval again. to the theory of superconductivityl0] and especially to

anyonic dynamic$2] in that context. We do not discuss here
the relative merits of these models from a physical view-
point, except to remark that in the case where the solitons are

We have presented above a Chern-Simons gauged O(3&nti-self-dual it is possible to identifgttractiveandrepul-
model in 2+1 dimensions and foun@anti-self-dual soli- sivephases both in the Maxwell Higg40] and the Chern-
tons. The dynamics of the U(1) gauge field in our model isSimons Higgg20] models by allowing the dynamics to de-
controlled by a Chern-Simons term only and excludes th¢/iate from one that allowganti-)self-dual solutions. We
Maxwell term. In this sense it is complementary to the modelexpect that this is the case with the present Chern-Simons
proposed by Schroers in R¢R], which features a Maxwell O(3) model as also it should be for the Maxwell O(3)
term exclusively. The importance of these models is thamodel, both of which suppofanti-)self-dual solutions. This
thay admit(anti-)self-dual solutions, unlike the Maxwd]l8] does not, however, mean that in the absencéanfi-)self-
and Chern-Simori7] U(1) gauged CP models which we dual solutions it is impossible to firattractiveandrepulsive
have shown herdo notadmit (anti-)self-dual solutions. phases, as were shown to exist in the Maxwell@Rdel by

We were able to integrate the relevant Bogomol'nyi equathe addition of a suitable Skyrme terr@].
tions only asymptotically, and the full integrations were per- In addition to the above motivations, these
formed numerically. The solitons found are of two catego-(2+ 1)-dimensional gauged models can serve as the pro-
ries, topological and nontopological We found that totypes of the analogous 31)-dimensional models. Al-
topological and nontopologicalvortices of arbitrary degree ready a four-dimensional gauged Grassmannian miaig!
N exist, as well asiontopologicalsolitons of degreé&N=0. was proposed which supports instanton solutipp8] on
This contrasts with the restriction on the existefit® of the  R4. The latter SU(2) gauged Grassmanian mdddl] on
(topologica) solitons of the Maxwell O(3) model of Ref. R, was motivated by the U(1) gauged Grassmanian' CP
[9], where it was found that the=1 soliton did not exist. models of Refs[8,7], which are the simplest examples of a
Like their purely Maxwell gauged counterpaffy, thetopo- gauged Grassmannian model. In analogy with the U(1)
logical vortices are stabilized by the degriseand not by the gauged O(3) models of Ref9] and the present paper, it
magnetic flux, which takes on an arbitrary value, unlike thewould be interesting to find a gauged O(4)model, namely,
topological vortices of the Maxwell and Chern-Simonsto gauge the usual Skyrme modd], which can support
Higgs modeld10,13. By contrast, thenontopologicalsoli-  stable static solitons oRz. Such an SCB) gauged model is
tons of vorticity N>0, for which the degredd?xg,=0  at present under active investigation and preliminary results
vanishes, are stabilized by the magnetic flux in exactly th¢23] have been already obtained. Moreover, it should be pos-
same way that the correspondingntopologicalsolitons of  sible to gauge an @(+ 1) ¢ model onRy4 with gauge group
the Chern-Simons Higgs modgl3] are. The detailed nu- SO(d) and obtain localized finite action lumps.
merical integrations were performed ftmpologicalandnon- Note added After completing this work, we became

V. SUMMARY
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aware of two works in which similar results to ours are ob-group is the U(1) as opposed to SO(3)[&6] and, also, in
tained. One of these, by Ghosh and Gh#, employs the  that our solution involves a dynamical U(1) field as opposed
same Chern-Simons gauged O(3) models as (@8s The to a composite connection field configuration in R&6].
other, by Kimm, Lee, and Leg25] employs a more general
model including ours, Eq33), featuring the potential34).
Also, we thank R. Jackiw for bringing to our attention the
work of Nardelli[26], which also deals with the problem of D.H.T. was supported in part by the CEC under Grant No.
gauging the O(3)o model with Chern-Simons dynamics. HCM-ERBCHRXCT930362. Y.Y. was supported in part by
Our work differs from that of Ref[26] in that our gauge the NSF under Grant No. DMS-940024BMS-959604 1.
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