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Supersymmetry, p-brane duality, and hidden spacetime dimensions
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A global superalgebra with 32 supercharges and all possible central extensions is studied in order to extract
some general properties of duality and hidden dimensions in a theory thatgrbedses democratically. The
maximal number of dimensions is 12, with signat(8,2, containing one space and one time dimension that
are hidden from the point of view of perturbative ten-dimensional string theory or its compactifications. When
the theory is compactified oRY™ '@ T¢* 1 with d+c+2=12, there are isometry groups that relate to the
hidden dimensions as well as to duality. Their combined intersecting classification schemes provide some
properties of nonperturbative states and their couplif§8556-282196)00818-1

PACS numbgs): 11.25.Mj, 11.25.Hf, 11.30.Pb

[. INTRODUCTION are deduced. Thege-branes contribute to the nonperturba-
tive multiplets demanded by duality and hidden higher

The discovery of string dualities has led to the idea thagdimensions. _ _ .
there is a more fundamental theory than string theory that (3) The structure ofbroken symmetries associated with
manifests itself in different forms in certain regimes of its Nidden dimensions dd duality, the groups, and a classifi-
moduli space. The several familiar string theoriegpe-| cation scheme for the nonperturbative states emerge natu-

type-Il, heterotit may be regarded as different starting rally from the structure of the superalgebra. The relations

. . . between the hidden symmetries may be described schemati-
points for perturbative expansions around some vacua of thg

fundamental theory, in analogy with perturbative expansions ally as

around different vacua of spontaneously broken gauge theo- multiplets of
ries. A lot of evidence has accumulated by now to convince SQctll)  @SAd=11)= . hes states
oneself that the different versions Bf=10 superstrings and ¢ compact2 hidden dims  spacetime ' ’
their compactifications are related to each other nonperturba- (1.2
tively by duality transformation$l]. Furthermore, there is 1
evidence that the nonperturbative theory is hiding higher di- SO(c+1)1 hidden di maximal compac
mensiong2—4] (in the form of “M theory” [4—6]) and that SQ(c), ®SO(C)k ’1 . - U -
it is related to varioup-braneq 7] and D-braneg8]. | (duality) (duality

In order to explore the fundamental theory, it is desirable (TS%(Séﬁgy)

to find a common ground that is valid for the many versions
of the theory and that is independent of the details of the (4) Furthermore, one may start with perturbative string
language used to describe the theory. In search of such fiates, but then add nonperturbative states that are needed in
common ground in various dimensions, | will explore a su-order to provide a basis for the underlying superalgebra and
persymmetry algebra that has 32 fermionic generators and dfs isometriesK and SQc+1,1). This is a method of classi-
possible central extension§]. The supersymmetry is not fying a priori the unknown nonperturbative states.
necessarily exact; it may be broken by central extensions that It has been known since the 1970s that the structure of the
are included in the algebra. The spirit is similar to charge osuperalgebra of type IlA in ten dimensions is intimately con-
current algebras used in the 1960s for weak and strong intepected to 11 dimensions. In the context of string duality, this
actions, avoiding complexities due to the details of theled to a possible M theory” with signature(10,1) [4-6].
theory. The basic assumption that we make is that the supéctually, there seems to be room f(#0,2) according to the
ralgebra is valid in the sense of(aroken dynamical sym- general properties of the superalgebra discussed below and
metry that applies to the full theory at the level of matrix other more specific arguments given elsewHeard the fact
elements forbroken supermultiplets. By studying the isom- that type 1IB in(9,1) can be related to type IIA if9,1) by a
etries of the superalgebra, including the central extensiond,-duality transformation ir(10,2.
many of the features of duality may be displayed while some The above points will be the main topics of this paper.
new features become apparent, including the following. ~ The last point is supported by previous wdi¥ 13,14, in

(1) The central extension@s well as superchargelsave
a structure consistent with 12 dimensions, with a signature of
(10,2. The extra two dimensions beyond ten are hidden from i1he possibility of(10,2 emerged sometime agé]. In connec-
the point of view of string theory. One of them is spaceliketion with duality, it was discussed in a conference fdlR], where
and the other is timelike. the (10,2 behavior of the central extensions and the relation to

(2) As a consequence of central extensions of the supeiuality was emphasized. In more recent developméhis1d,
algebra,p-branes naturally become part of the fundamentabther aspects 0f10,2 in more detailed theories, such ag *
theory, and their interaction with+1 forms in supergravity theory,” have been discussed.
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which consistency between nonperturbativenultiplets and  the same index will be reclassified later under the maximal
11D (broken multiplets was analyzed. In this paper we point compact subgroufk of U duality, thus providing a bridge
out the possibility of 1D (broken multiplets. between duality and higher hidden dimensions. The super-
charges labeled in this way are listed in Table | in various
dimensiong(at this stage of the discussion tKecontent of
Il. 32 SUPERCHARGES AND (10,2 Table | should be ignor@dThe fact that the same indexis
classified inirreducible representations of the hidden sym-
&1etr|es of two types is a significant point for the arguments
n the rest of the paper.
Consider the maximally extended algebra of the 32 super-
charges in various dimensions in the form

It is well known that the maximum number of super-
charges in a physical theory is 32. This constraint is obtaine
in four dimensions by requiring that supermultiplets of mass-
less particles should not contain spins that exceed two. As-
suming that the four-dimensional theory is related to a
higher-dimensional one, then the higher theory can have at
most 32 real supercharges. Denote the 32 supercharges by

& wherea=1,2,...N, and « is the spinor index ird di- {Qa.Qpt= 5ab75,8pu+p:021 VZ}J ﬂpzab g
mensions. For example, id=11, there is a single 32- 2.1)
component Majorana spingN=1), in D=10 there are two
16-component Majorana-Weyl spinofd=2), etc. down to

D=4 where there are eight 4-component Majorana splnor Eharges, the right side can have at mb82x33=528 inde-

(N=8). It is important to note that 32 corresponds to count- ab
ing real components of spinors. pendent generators. The indicab on ZM...Mp are either

In 12 dimensions, the Weyl spinor also has 32 compo-Symmetrized or antisymmetrized and have the same permu-
nents sincg1/2)2'%2=32, but when the signature {€1,1),  tation symmetry asy8 in 'y v The central extensions

the spinor is complex and has 64 real components. Therqab g are assumedo commute withQ @ , but they are

fore, as long as we consider a single time coordinate]1 tensors of the Lorentz group and hence do not commute with
is the highest allowed dimension. However, if the S|gnaturqt According to a theorem of Haaet al. [15], there can be

Ise(rln?"t? ’altrleZIpsc’) Zsséglni tgr:;nnaosse %Tmajsorgnar_ggr:gltlgn :gatonly Lorentz scalar central charges in a unitary theory in four
perm P P! us, apri bay dimensions, for interactions gbointlike particles (p=0).

go beyond 11 dimensions is to consider a second time“kﬁowever as will become clear below, in the presence of

forgrd'r}a:\i Itt|:rs1 not Crlg,%r :hatnt]radl';:o?%l unlfhyrﬂsa:]tpré’t:np branes, new interactions that permit Lorentz tensors
€ms of wo time coordinates may not be circumvente are present in theories with a unit8Bymatrix (e.g.,

some unknown, sufficiently constrained theory. Hence, we #1 " #p
may entertain the possibility ¢.0,2) if there are some ben- String theory indicating that the theorerfi5] does not ap-

efits for doing so, provided physical inconsistencies areply / o extended objects. 110,29 dimensions, we will use
eliminated. Beyond 12 dimensions, the spinor is too largeM =0',0,1,2,+-,10 for the space index instead af In the
and therefore, we cannot considir12. 32x32 representatlorﬁequwalent tochirally projected 64
We need to discuss the theory and analyze its content ok64), only the 2- and 6-index gamma mat“C?gl ? and
hidden dimensions. For example, type llA string theory with y’\"l Ms are symmetric in3, and furthermorey Me ig

signature(9,1) will appear to be a toroidal compactification self-dual (one gamma matrix index has been lowered by
from (10,2 on R™®T™" where the extra dimensions with myltiplying with the charge conjugation matyixThe re-
signature(1,1) are both considered hidden, one of themmainingyMﬁl"'Mp do not have definite symmetry or antisym-

spacelike and the other timelike. More generally, we W|IImetry in a3, Therefore, in 12 dimensions, on the right-hand

consider toroidal compactifications & 1o T¢* 11 where
d is the number of ordinary Minkowski spacetime dimen- side .Of Eq.2.D) the_re can be. n@y , and the 528 geinerators
consist of the antisymmetric tensofsy, m, and ZMl"'MG

sions anc: is the number of compactifiestring dimensions,
while the two hidden dimensions are counted as extra, so thathich is self-dual. The number of components in each is
d+c+2=12. The 32 spinorQ 2 may then be classified as

the spinor for S@—1,1)®S0O(c+1,1). The indexa corre- 12X 11 112X 11X10X9X8X7

sponds to the spinor of ©+1,1). This group is not neces- T=66, 3 1X2X3X4%X5X6 =462, (2.2
sarily a symmetry, but it helps to keep track of the compac-

tified dimensions, including the hidden ones. Furthermore,

respectively. Upon compactification (@0,1), we rewrite the
12D indexM =(0’,u) where u=0,1,2,--- ,10 is an 1D in-
dex. Then, we havésuppressing the’dndex

§|nce the left side is the symmetric product of 32 super-

2A quick way to see this is to use Bott periodicity to relate the
properties of the spinors with signatur@s2)~(10,2. For SQ2,2),
the Weyl spinor is real since $292)~SL(2,R)XSL(2,R). Hence, it
is also real for signaturél0,?. Another quick remark is that the  3For simplicity, we assume commuting central extensions. There
Lorentz group SM,1) and the conformal group S©,2) for n are more involved versions of the extended superalgebra in which
spacelike dimensions have the same spinor representations. Henseme of the central extensions do not commute \@th or with
the 32-dimensional spinor is a basis for both (8@1) and each other, et¢16]. We might expect that the noncommuting cases
SO(10,2. Since it is real for 11D, it must also be real for 12D with may arise for curved backgrounds and nontoroidal compactifica-
signature(10,2. tions that are not discussed here.
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TABLE I. Classification ofQ?2 andszi_, , under 11D(or 12D) andK.

B

c+1.1 32Q2 p=0 p=1 p=2 p=3 p=4 p=5 u
d-11 SO (c+1,1) p™m, zmn p,.2"0 Z, X Xy X oo g K
(orK) ® wmnlar x nlar Xﬁ]r
SO (d—1,1) g w
A (+,16) 1+0 1+1 1 0 1 1 S0(1,1)
7 +0 +0 +0 +1° Z,
B + 0+0 1+2 0 1 0 1" SL(2.R)
51 (+,16) +0 +0 +0 +2* “S0(2)
& (2,16 2+1 1+2 1+0 1 [1] ) SL(2)®
+0 +0 = +2 move SO(1,1)
=3 =3 ~1 = S0O(2)
~2+1 ~2+1 ~2 ®Z,
+1
34 ((2,0,8" 3+3 1+3 1+1 3+[1] 3* (1) SL(3)
(0,2,8)) +0 +0 =1+1 =(2,2 +3" move ®SL(2)
= =(2,2 ~1+1 ~3+1 = SO(3)
~3* ~3+1 ~3* oU(1)
+3” +3”
& (4,9 4+6 1+4 1+4 6 (4) (1) SL(5)
+0 +1 +[1] +[4] move move SO(5)
=10 =5+1 =5+1 =10
~10 ~5+1 ~5+1 ~10
4 (4,49 5+10 1+5+ 1+10 10" (5) ) SO(5,5)
(4*,4) +1 5+[1] +[5] +10° move move SO(5)
=1+15 =2%6 =1+15 =10" ®SO(5)
~(4,4) ~(0,5 =(4,4 +10”
+(5,0) ~(10,)
+2(0,0) +(1,10
i (8.9 6+15 1+6 1+20 (15 (6) 1) Es(e)
+6 +15+([6] +[15] move move move usp(8)
+[1] =7+21 =1+435
=7+21 ~27+1 ~36
~27+1
%ﬁ (8",(2,0) 7+21 1+7 1* (21) 7 0 Ez)
(87,(0,2) +21 +35 +35* move move SuU(8)
+[7] +[21] =1*
=28+28 =8+56 +35*
~28, ~63+1 ~36,
Xl (16,2 8+28 1+8+70 (1+56) (28 0 0 Es(s)
+56 +[1+56] move move SO(16)
+[28] =1+9
=36+84 +126
~120 ~135+1
Zy,m,—P.®Z, ,, 66=11+55, P,—~P,®P, 11=d+(c+1),
Zyt o= Xyopg 462=462, (2.3 2,2, 0Z,0Z™,

which are the momenta and central charges in 11 dimensionSy, s Xu, - us® X,Ti..w@ XZ;TZZMS X:;Z‘:"b@ X,Ti s
pointed out in[7].

Continuing the compactification process to lower dimen- XM s, (2.4
sions onRY" 11 T¢*11 each 11-dimensional indey de-
composes intpw®m wherew is in d dimensions angnisin ~ For example, fokd=10,c=0), the type 11A superalgebra is
c+1=11-d dimensions. Then, each 11-dimensional tensorecovered, with the 528 operatorsP (,Py,Z,,.Z,,

decomposes as XM...M,X;...#S) where the= indicate self-antiself dual,
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respectively. In Table | in each row labeled by—<1,1)/(c , .

+1,1), the numbers of each central extensioPa, X type ~ S~ f dTAéLb(X'(T))&X',L(T)Z?b:f doxALL(X) I22(x),

with p Lorentz indices is indicate¢hese are the numbers '

that are not in bold charactersSince each of the,Z,X are

antisymmetric tensors it+1 dimensions, these numbers I IMALL(X) = Ik (%), (3.3

correspond to representations of @®@1) (which includes

rotations into one of the extra dimensioné\s we go to  Therefore, there are as many gauge fields as there are central

lower dimensions, we must use the duality betwpendices  extensions of typ@=0. These gauge fields occur as mass-

andd—p indices to reclassify and count the central exten-less particles in the Neveu-Schwarz—Neveu-Schwai3-

sionsZZ?...M;Zi‘i,,,de. In the table a number in paren- NS) and Ramond-Ramon(R-R) sectors of the superstring.

theses means that it should be omitted from there and insteddie chargesz*° associated with the NS-NS sector occur

moved in the same row to the location where the same nurRerturbatively in string theoryKaluza-Klein momenta and

ber appears in brackets. This corresponds to the equivalen¥dnding numberk but the charges associated with the R-R

of p indices andd—p indices. Whenp=d—p, there are S€ctor are nonperturbative from the point of view of string

self-dual or antiself-dual tensors. Their numbers are indifheory (topological solitonic chargesOn the other hand,

cated with additional superscripts in the form I, 2%, 3*,  from the point of view of the superalgebra, they occur at an

10*, 35" wherever they occur. equal footing, and will be treated on an equal basis from the
The total number of central extensioBsZ,X found ac-  Point of view of the (broken symmetries that we discuss

cording to this compactification procedure for each value ofater- _ o

p are indicated in Table I in bold characters. These totals are Central charges witp=1 have been usually omitted in

the same numbers found by counting the number of possPast discussions due to the theorem[1%]. The theorem
bilities ab on Z&P The bold numbers following the allows onlyp=0 central extensions. This was derived under
g

the assumption of a unitar matrix based on pointlike in-
teractions in four dimensions. However, let us now discuss
the implications of central charges in the presence of ex-
tended objects and in any dimension. Forl, the central
extension is a vecthf:, which requires a local current that

is an antisymmetric tenso}izﬂl(x) in the Lorentz indices.

lll. CENTRAL CHARGES AND p-BRANES An antisymmetric current cannot be constructed from par-
ticles but it can be constructed from strings as

=sign correspond to representations of(§©1,1) (making
a connection to 12Ppand those following the= sign corre-
spond to representations Kf (to be discussed later in con-
nection to duality.

What is the meaning of the-form central extension
ZZZ"'#p? Since this is a charge in a global algebra there

ought to exist a(p+1)-form local currentJing,..Mp(x) Jizﬂl(x)=f drdaEi 222 8%(x,,— X.,(7,0))
whose integral over a spacelike surface embedded! dti
mensions gives X aTX'[ﬂo(r, o) ‘9<rxlul](7"’)' (3.9

ab js the charge of theéth string. Just like the particles

z
b _ - b ! .
Z‘Zl...ﬂp—J d¢ 12”‘)‘]30#1---%()()- 3.9 discussed above, the charged strings also are expected to
form a multiplet of the(broken symmetries, and they inter-
act with the low energy supergravity fields through antisym-

The current couples to the fields of low energy physies,  metric gauge potentiaB“%“(x), with an action
supergravity. In the case of usual central charges that are

Lorentz singletsz®® (i.e., p=0), the current is associated

with charged particles. Such a current may be constructed ass~ > f deUB;g(xi(T,U))aTxi[V( 7,0)d, X! ](r,o)z;”‘b
usual from world linegor equivalently, from local fieldsas i a

= f dIXBLE(X)I30(X). (3.5
32(x)= f dr 6% (x=X!(7)d. X, (7). (3.2
I
In this expression one can recognize the familiar string cou-
pling to an antisymmetric tensor in the world sheet formula-
The z2" are the charges of the particles labeledibyhis  tion. The equation of motion foB ap(x) involves the(Abe-
current couples in the action to a gauge fi@lgg, and it  lian) gauge-invariant field strengtHggﬂza[*Bgﬁl(x) and
appears as the source in the equation of motion of th&e above current as a source
Abeliarf gauge field

SNew symmetric tensors, other than the symmetric stress tensor
“The gauge fields are Abelian since we assumed commuting cers™’T,, ., (X) associated with the momentuﬂi’bPﬂl(~ZZtl’), are
tral charges. As noted in a previous footnote, a non-Abelian versiomot allowed in the superalgebra, since they would couple to new
is expected if the background is curved rather than flat. “gravitons.”
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NAPMBL (x) = J2(x). (3.6)  the number of thép+1)-forms AZ2“*""*?, and these num-
bers can be obtained by counting the possible combination of
A well-known example is type IIB superstring with its two (Symmetric-antisymmetrjcindices ab associated with the
antisymmetric tensors. In this case theindices onB 2f(x) ~ supercharges.
correspond to a symmetric traceless2matrix. More anti-
symmetric tensors are found in compactifications to lower- IV. RECLASSIFICATION AND DUALITY
dimensional string theories.
This example also shows that central extensions that are !n the discussion above we concentrated on the {dD
not Lorentz singlets are present in a unitary theory with non-12D) content of the supercharges and the central extensions.
trivial scattering. Therefore, the theorem[itb], while valid ~ We now turn to duality. In string theory thE-duality group
for point-particle interactions, should not be applicable in thelS directly related to the number of compactified left-right
presence op-branes and their interactions. string dimensions. In our notation, the number of compacti-
The generalization to the higher valuespois straightfor- ~ fied string dimensions is. Therefore, for a string of type I,
ward: In order to have a charge that ipdorm we need a 1S
currentJf‘Lz#l...Mp(x) that is a(p+1)-form. This in turn re-

quires ap-brane to construct the current T=Sc,c). .

Its maximal compact subgroup is

ab _ ab i d
Jﬂoﬂl"'ﬂp(x) f deUl...dapZ z Sx—X(71,0)) k=SO(C), ®SO(C)r, 2
X Xy avpxlup](“’l veaTp), (37 whereL,R denote left-right movers respectivélfthe super-
chargesQ 2 naturally know about this group, since they too
and its coupling to supergravity fields requirea-1)-form  can be split into left-right movers in evehdimensions: then
gauge potentiaAng#l.,,M (x) such that the indexa on left-right chiral charge® 2 corresponds pre-
P cisely to the spinor index of S@f, ®SO(c)g. For oddd
dimensions the same is true, but the L/R split is defined by
SNJ ddxAg‘g“l""‘P(x)JZbﬂ oy (X) going to the next smaller value of
om1 T For example, in four dimensions tiN=8 real Majorana
_ _ _ spinors are rewritten as 8 pseudo-real Weyl spinors of left or
=> J drdoy...dop AL le(X')(LX'[MO- --a(,px'ﬂp] Z*  right type that are each other's complex conjugates. In Table
: | these were classified as pseudo-real representations
(3.8
(87,(2,0), (87,(0,2)
and 4.3
Sq 711) hidder® SqBvl)space

I\ IINALDHL () = JHOKL Fp(x) (3.9 _
Now we reclassify them as

As is well known by now, there are perturbative as well as
nonperturbative couplings op-branes to supergravity in
various dimensions. Hence, tlﬁi’,,,#p are present in the

superalgebra and they correspond simply to the charges of
p-branes. The classification of theib indices under duality
groups is the subject of the next section, but here we already
see that there is a one-to-one correspondence between th&rhe notation for duality groups, such as $Q), is used some-
p-forms Zf‘fj---ﬂ and the (p+1)-form gauge potentials What loosely in this paper, for brevity. The,U duality groups
oty 1 P . . _mentioned in this paper are supposed to be interpreted as discrete
Aab P that appear as massless states in string theory igroups, such as S@(c,Z), etc. This is not apparent from the su-
the NS-NS or R-R sectors. peralgebra point of view, but is true in string theory. Under
The main message is that from the point of view of theT-duality transformations the quantized Kaluza-Klein and winding
superalgebra, alp-branes appear to be at an equal footing.numbers of string states transform into each other undec S(X).
Isometries of the superalgebra that will be discussed belown addition there is an induced transformation on the oscillators in
treat them equally and may mix them with each other inthe internal dimensions under the subgrdupSO(c), ®SO(C)R,
various compactifications. The theory thdimensions has where the effective parameters of the induced transformation de-
(p+1)-forms Aggﬂl“'up which appear as massless particlespe”d on the discrete S©(,Z) as well as the torus parameters

in the string version of the fundamental theory. These act ag’l ,Bij , and hence, it is equivalent to being continuous. Therefore,

. f cause ofT duality, all perturbative string states must fall into
gauge potentials and couple at low energies to charge : o g

. L 2 “linear representations &=S0O(c), ®SO(c)r, Which is larger than
p-branes. This generates a nontrivial central extensio

ab . e SO¢) expected naively. In a similar sense, the transformations
Z,,--u, In the superalgebra. The number of such centra;nyerk are also equivalent to being continuous, even though those
extensiongab indices is in one-to-one correspondence with of U are discrete. For a clarification of these points [SE8}.

([((4,0+(0,4)]1,(2,0), ([(4*,0+(0.4].(0,2)

(SA(6) X SA6)RIkcT® SA(3,1) space (4.9
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The common internal group in SB1pggeen and  tions in maximally irreducible representations as described
SO6), XSQB) is SAB), but besides this common sub- above. We emphasize that the scheme takes advantage of the
group these two groups are not related to each other blidden dimensions.
group-subgroup relationships. Thus, their transformations on Since the sam&l-dimensional basis of supercharges la-
the physical states of the theory must act on rather differerbeled bya knows about both duality and the hidden dimen-
modules that have intersections with each other. sions, this must provide a bridge for relating properties of the
More generally, for any dimension, investigating the su-states of the theory under both qualities. The first conse-
percharges listed in Table | shows that the indethat was  quence of this is the reclassification of the central extensions
classified there under the hidden noncompact groupZ‘;?,,,M . Previously, they were classified under 11Br
SOC+1, Dyiggen CaN be reclassified under the perturbatively 5 as in Table I(the numbers following the= sign). But
explicit maximal compact subgrougCT of T duality, oW the combinatiorab corresponds to the symmetric or
k=SO(c)_ ®SO(C)r (see Table Il in Ref[13]). These tWo  4ntisymmetric product of thél-dimensional representation
groups are not subgroups of each other, but they do have & k “Therefore the central extensions are now also classi-
common subgroup S@J. Recall thatc is the number of  fieq under K The result is the total dimension listed in Table
compactified string dimension®ther than the two hidden (the numbers following the= sign). These numbers are
dimension, and SO() is the (broken) rotation group in  jydeed dimensions of irreducible multiplets undier
these internal dimensions. For example, in four dimensions the central extensions
In each case one may notice that tdesupercharge® 2 whose (rea) numbers are 56, 63, 72 f@=0,1,2, respec-
transform irreducibly under S©+1,1)jggen, but reducibly tiyely, are reclassified as the compl28, , real63, and com-
underk=S0(c)_ X SO(c)r- However, we can obtain an ir- pjex'36 of K=SU(8). These correspond to the following

. /R -
reducible representatlo@a by defining a largercompact combinations of the S(8) ab indices onz2° recalling
groupK that containk, as well as the maximal compact part #1p

of SOc+1,Dpiggen- That is thata—8 or 8"
p=0: (8X 8)antisymm: 28;,

p=1: (8X8*)=63+1,

KDSQ(c) ®SQ(c)g and KDSO(c+1). (4.5

Thus, we look for thecompact group K that contains
SO(c) XSO(c)r, SAc+1) and that has amreducible rep- P=2: (8X8)symmetric 36 - 4.7
resentation for the index (total dimensiorN). Note that the

groupK must mix one extra dimension with others. Further-The p=1 singlet1 corresponds to the momentuRt. The
more, the central extensions of tyBeZ, X, that already dis- complex conjugates 2836; contain the same real compo-
play the extra dimension, have to fall into representations ofients as 2836.. On the other hand, these same total dimen-
K that contain them. Theninimal compactK that we find sions correspond to the irreducible representations of
through this reasoning is listed in the last column of Table 1.SO(7,1)iqqen@s follows. Using the fact that the supercharges
By virtue of containingkC T, the groupK Dk must be re- can be viewed as the spinor§@8™, their products give the
lated to a larger group of duality that containsT. After  following SO(7,1)piqqen FEPresentations for the indicad on
finding K as described is determined uniquely by looking fol’

for the smallest noncompact group that contains G&)( e’

and for whichK is the maximal compact subgroup. The sub- p=0: (87 X8") ntisymn=28",

group hierarchy that emerges is given in Et.1). For ex-

ample, in four dimensionéwvith d=4, c=6), it is p=1: (87x87)=8,+56,, (4.8
(8%,(2,0) P=2: (8" X8")symmenic=1" +35".

SA7, Dhidger® SA3,1) —a: +(87,(0,2)
. Note that the momentur®* is now part of the 8. By de-

composing the representations for eactvith respect to the

SQA7)nidden 1 common subgroup,
S06),®SQ6)g| " SU®)

TL " HE?W) ' (4'6) SU(8)D S(X?)CSQ?,:L) hidden: (4-9)
T=5069 the same sets of SO representations are recovered from

either Eq.(4.7) or Eq.(4.8). This SQ7) already contains one
The a index which was classified as the spinors @8nder  of the hidden dimensions and classifies the central extensions
SQ(7,1) or as [(4,0+(0,4)] or [(4*,00+(0,49] under of typesP,Z,X separately as listed in Table I.
k=S0(6), ®SO6)g is now reclassified as the 8 or* &f The main point is that the supercharges as well as the
SU(8). This group is the minimal compact group containing central extensions are now classified under hiddenken
both SQ7) and S@6), ® SO6)g=SU(4), ®SU(4)g . Further- symmetries of two different types. The first one
more, the smallest noncompact group containing bottBgU SO(c+1,1),,44en relates to 11 or perhaps 12 hidden dimen-
and S@6,6) is E. This way of describing< or U does not  sions, and the second oheCU relates toU duality. The
use the details of supergravity or string theory. It merelycommon compact subgroup $3-1) already contains non-
hinges on the number of supercharges and their reclassificaerturbative information about the spacelike hidden dimen-
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sion, but more information about the hidden timelike dimen-in the full theory then thendicesmust also fall into linear
sion and about) duality is contained in the larger group representations oK or SQc+1,1) in order to provide a
structureK, SQc+1,1). basis for its(broker isometries. Thus, both the indices as
well as the base contain information about nonperturbative
states through duality transformations or rotations into the
hidden dimensions. Classifying the states under these groups
Under the assumption that the superalgebra is valid as eglates the properties of nonperturbative states to those of the
dynamical(broken symmetry in the entire theory, all states perturbative string states.
would belong to multiplets of thébroken superalgebra, in- A possible scheme for finding the nonperturbative states
cluding the central extensions and thebranes associated is as follows. First, identify the perturbative string states,
with them. One would then expect to be able to classify theclassify them under supermultiplets, and identify their clas-
physical states of the theory according to theoken isom-  sification under the perturbatively explicit SO ®SO(C)R.
etriesK, SO(c+1,1). However, since these groups are notThen, try to reclassify them under the biggéroken sym-
contained in each other, we should have different modules ohetry) groupK. If additional states are needed to make com-
SQO(c+1,)higgen@nd K C U that have intersections with each plete K multiplets add thenithese extra states are presum-
other in the form of(broken SO(c+1) multiplets, since this ably p-branesD-brane$. There may be nonunique ways of
is the largest common subgroup: completingK multiplets. If so, then try to make it consistent
with the presence of the hidden dimensions by making sure
KSSA(e+1)CSAc+ 1 Dniaden (5.3) that the g(DtH—l) representations embeddedKn)r/nultipIetgs

It seems reasonable to make the hypothesis that the completsS consistent with th? s_tructure of the central charges listed
yp P n the table. When this is achieved, one should also check

set of states of the theory could be classified with eithel! N€ ) . - .
group, but that each such classification would contain théhat itis all conS|sten_t with a compgct|f|gat|on of a coIIchon
same 'set of S@-+1) representations. One of our aims is to of states that starts in 11 dimensions, i.e., consistency with
test this hypothesis. Each one of these classifications coﬁﬁg'r:qzns'gg:é(a?k; dnd r;tu|tt;]F_J|et5tanthc;?gaI§grr]e(i%,])r-bat_ o
tains nonperturbative states related to either duality or hidde y IS stag perturbatty

dimensions. By finding them and studying their COUIOIingSstates that are not in the sademultiplet with some pertur-

consistent with the superalgebra, one would be able to Iealjéat'\f/e string sLaté%resumaF[)ly, mqr(tf)— or D_'?I:/?T; state)f
certain global properties of the underlying theory. 0 far, oné should expect consistency wi eory.

Some of the couplings described Eﬁb...M are perturba- Finally, (_:hecl_< if the structure of the represe_ntations_ that
_ . R . emerge in this way can also be made consistent with 12
tive while others are nonperturbative in the string |an9uagedimensions, with signaturé10,? (perhaps by adding more

but all couplings or states are on an equal footing from th%tate$ In this way, many properties of nonperturbative
point of view of the superalgebra and its isometries. On&states could be deduced. Such a program was initiated in
must include operp-branes in the form oD-branes since previous paperf3,13,14. The results obtained the(@volv-

they couple to closeg-branes. Therefore, we expect that jhg string states at many excited levelre in agreement
various excitations of open or closed chargpebranes \ith the presence of many of the structures outlined here as
Xu(7,01, -+ ,0p) (and their supersymmetric partneeEcur  far as(10,1) and K structures are concerned. It would be
on an equal footing in supermultiplets that contain theo- interesting to extend these ideas to exple,2.

ken) group structures revealed above. String theory states at |t \would also be of interest to analyzeM' theory” and
various excitation levels by themselves may not necessarily £ theory” from the point of view of the general properties
form the needed multiplets in higher dimensidii®,1) or  of the superalgebra, and discriminate between general prop-
(10,2 or in U duality. However, some combination of open grties based on the superalgebra versus the properties of the
or closedp-brane states are expected to fill complete multiptheory that depend on more detailed features. As mentioned
lets of the isometries or broken symmetries of the globaln the footnotes, non-Abelian versions of the superalgebra
superalgebra._By starting from the known superstring stateg,re possible, and in fact, expected when pheranes propa-

the supermultiplets connected to them can be found, and theate on curved backgrounds. It would be of interest to relate

V. NONPERTURBATIVE STATES

nonperturbative states can be identified. them to properties of various compactifications oM *
Following the arguments if13], the states of the full theory” and “F theory” in order to learn about some of
theory may be classified as their general global properties.
Dindiced PaSE, (5.2

This research was supported by DOE Grant No. DE-

where the base consists of the commuting 528 bosonic ger'f—GO3'44ER'40168-
erators of the superalgebra. These include the continuous

momentum and the quantized central extenswis.. o that
are at an equal footing. These quantum numbers are clas
fied in linear representations of tileroker) isometriesK or
SOc+1,1) as given in Table [.If the superalgebra is valid

ear representations &f for all dimensions except fad=3 (120 is
ot a representationgfg). Similarly, higherp-branesZ‘;‘fi...le do
not generally form linear representations Wf Furthermore, the
ZZ?...HP seem to form complete representations of §©) for all
cases except fofd=5, p=3), (d=3,4, p=2). We interpret these
observations to mean that the base is not generally a burlateaf
"According to the dimensions of representations in Table I, therepresentation of eithéf- or U-duality groups, but it is a bunch of

0-branez?® central extensions seem to correspond to complete linfinear representation oK or SQc+1,1).
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