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Supersymmetry,p-brane duality, and hidden spacetime dimensions
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A global superalgebra with 32 supercharges and all possible central extensions is studied in order to ex
some general properties of duality and hidden dimensions in a theory that treatsp-branes democratically. The
maximal number of dimensions is 12, with signature~10,2!, containing one space and one time dimension that
are hidden from the point of view of perturbative ten-dimensional string theory or its compactifications. Wh
the theory is compactified onRd21,1

^Tc11,1 with d1c12512, there are isometry groups that relate to the
hidden dimensions as well as to duality. Their combined intersecting classification schemes provide s
properties of nonperturbative states and their couplings.@S0556-2821~96!00818-1#

PACS number~s!: 11.25.Mj, 11.25.Hf, 11.30.Pb
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I. INTRODUCTION

The discovery of string dualities has led to the idea th
there is a more fundamental theory than string theory th
manifests itself in different forms in certain regimes of it
moduli space. The several familiar string theories~type-I,
type-II, heterotic! may be regarded as different startin
points for perturbative expansions around some vacua of
fundamental theory, in analogy with perturbative expansio
around different vacua of spontaneously broken gauge th
ries. A lot of evidence has accumulated by now to convin
oneself that the different versions ofD510 superstrings and
their compactifications are related to each other nonpertur
tively by duality transformations@1#. Furthermore, there is
evidence that the nonperturbative theory is hiding higher
mensions@2–4# ~in the form of ‘‘M theory’’ @4–6#! and that
it is related to variousp-branes@7# andD-branes@8#.

In order to explore the fundamental theory, it is desirab
to find a common ground that is valid for the many versio
of the theory and that is independent of the details of t
language used to describe the theory. In search of suc
common ground in various dimensions, I will explore a s
persymmetry algebra that has 32 fermionic generators and
possible central extensions@7#. The supersymmetry is not
necessarily exact; it may be broken by central extensions t
are included in the algebra. The spirit is similar to charge
current algebras used in the 1960s for weak and strong in
actions, avoiding complexities due to the details of th
theory. The basic assumption that we make is that the su
ralgebra is valid in the sense of a~broken! dynamical sym-
metry that applies to the full theory at the level of matri
elements for~broken! supermultiplets. By studying the isom
etries of the superalgebra, including the central extensio
many of the features of duality may be displayed while som
new features become apparent, including the following.

~1! The central extensions~as well as supercharges! have
a structure consistent with 12 dimensions, with a signature
~10,2!. The extra two dimensions beyond ten are hidden fro
the point of view of string theory. One of them is spacelik
and the other is timelike.

~2! As a consequence of central extensions of the sup
algebra,p-branes naturally become part of the fundamen
theory, and their interaction withp11 forms in supergravity
5421/96/54~8!/5203~8!/$10.00
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are deduced. Thesep-branes contribute to the nonperturba
tive multiplets demanded byU duality and hidden higher
dimensions.

~3! The structure of~broken! symmetries associated with
hidden dimensions orU duality, the groups, and a classifi-
cation scheme for the nonperturbative states emerge na
rally from the structure of the superalgebra. The relatio
between the hidden symmetries may be described schem
cally as

SO~c11,1!
c compact12 hidden dims

↓

^SO~d21,1!
spacetime

→
multiplets of
charges, states,

~1.1!

SO~c11!1 hidden dim

SO~c!L^SO~c!R
J

↑
SO~c,c!

~T duality!

→ K
~duality!

↑
maximal compactJ → U

~duality!

.

~4! Furthermore, one may start with perturbative strin
states, but then add nonperturbative states that are neede
order to provide a basis for the underlying superalgebra a
its isometriesK and SO~c11,1!. This is a method of classi-
fying a priori the unknown nonperturbative states.

It has been known since the 1970s that the structure of
superalgebra of type IIA in ten dimensions is intimately con
nected to 11 dimensions. In the context of string duality, th
led to a possible ‘‘M theory’’ with signature~10,1! @4–6#.
Actually, there seems to be room for~10,2! according to the
general properties of the superalgebra discussed below
other more specific arguments given elsewhere,1 and the fact
that type IIB in~9,1! can be related to type IIA in~9,1! by a
T-duality transformation in~10,2!.

The above points will be the main topics of this pape
The last point is supported by previous work@3,13,14#, in

1The possibility of~10,2! emerged sometime ago@9#. In connec-
tion with duality, it was discussed in a conference talk@10#, where
the ~10,2! behavior of the central extensions and the relation
duality was emphasized. In more recent developments@11,12#,
other aspects of~10,2! in more detailed theories, such as ‘‘F
theory,’’ have been discussed.
5203 © 1996 The American Physical Society
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5204 54ITZHAK BARS
which consistency between nonperturbativeU multiplets and
11D ~broken! multiplets was analyzed. In this paper we poin
out the possibility of 12D ~broken! multiplets.

II. 32 SUPERCHARGES AND „10,2…

It is well known that the maximum number of super
charges in a physical theory is 32. This constraint is obtain
in four dimensions by requiring that supermultiplets of mas
less particles should not contain spins that exceed two.
suming that the four-dimensional theory is related to
higher-dimensional one, then the higher theory can have
most 32 real supercharges. Denote the 32 supercharge
Q a

a , wherea51,2,...,N, anda is the spinor index ind di-
mensions. For example, ind511, there is a single 32-
component Majorana spinor~N51!, in D510 there are two
16-component Majorana-Weyl spinors~N52!, etc. down to
D54 where there are eight 4-component Majorana spin
~N58!. It is important to note that 32 corresponds to coun
ing real components of spinors.

In 12 dimensions, the Weyl spinor also has 32 comp
nents since~1/2!212/2532, but when the signature is~11,1!,
the spinor is complex and has 64 real components. The
fore, as long as we consider a single time coordinate,d511
is the highest allowed dimension. However, if the signatu
is ~10,2!, it is possible to impose a Majorana condition th
permits a real 32-component spinor.2 Thus, a price to pay to
go beyond 11 dimensions is to consider a second timel
coordinate. It is not clear that traditional unphysical pro
lems of two time coordinates may not be circumvented
some unknown, sufficiently constrained theory. Hence,
may entertain the possibility of~10,2! if there are some ben-
efits for doing so, provided physical inconsistencies a
eliminated. Beyond 12 dimensions, the spinor is too larg
and therefore, we cannot considerd.12.

We need to discuss the theory and analyze its conten
hidden dimensions. For example, type IIA string theory wi
signature~9,1! will appear to be a toroidal compactification
from ~10,2! on R9,1

^T1,1 where the extra dimensions with
signature ~1,1! are both considered hidden, one of the
spacelike and the other timelike. More generally, we w
consider toroidal compactifications onRd21,1

^Tc11,1 where
d is the number of ordinary Minkowski spacetime dimen
sions andc is the number of compactifiedstringdimensions,
while the two hidden dimensions are counted as extra, so
d1c12512. The 32 spinorsQ a

a may then be classified as
the spinor for SO~d21,1!^SO~c11,1!. The indexa corre-
sponds to the spinor of SO~c11,1!. This group is not neces-
sarily a symmetry, but it helps to keep track of the compa
tified dimensions, including the hidden ones. Furthermo

2A quick way to see this is to use Bott periodicity to relate th
properties of the spinors with signatures~2,2!;~10,2!. For SO~2,2!,
the Weyl spinor is real since SO~2,2!;SL~2,R!3SL~2,R!. Hence, it
is also real for signature~10,2!. Another quick remark is that the
Lorentz group SO~n,1! and the conformal group SO~n,2! for n
spacelike dimensions have the same spinor representations. He
the 32-dimensional spinor is a basis for both SO~10,1! and
SO~10,2!. Since it is real for 11D, it must also be real for 12D wit
signature~10,2!.
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the samea index will be reclassified later under the maxima
compact subgroupK of U duality, thus providing a bridge
between duality and higher hidden dimensions. The supe
charges labeled in this way are listed in Table I in variou
dimensions~at this stage of the discussion theK content of
Table I should be ignored!. The fact that the same indexa is
classified inirreducible representations of the hidden sym-
metries of two types is a significant point for the argumen
in the rest of the paper.

Consider the maximally extended algebra of the 32 supe
charges in various dimensions in the form

$Qa
a ,Qb

b%5dabgab
m Pm1 (

p50,1,...
gab

m1•••mpZm1•••mp

ab .

~2.1!

Since the left side is the symmetric product of 32 supe
charges, the right side can have at most1

2 323335528 inde-
pendent generators. The indicesab on Zm1•••mp

ab are either

symmetrized or antisymmetrized and have the same perm
tation symmetry asab in gab

m1•••mp. The central extensions
Zm1•••mp

ab are assumed3 to commute withQ a
a ,Pm , but they are

tensors of the Lorentz group and hence do not commute w
it. According to a theorem of Haaget al. @15#, there can be
only Lorentz scalar central charges in a unitary theory in fou
dimensions, for interactions ofpointlike particles ~p50!.
However, as will become clear below, in the presence
p-branes, new interactions that permit Lorentz tenso
Zm1•••mp

ab are present in theories with a unitarySmatrix ~e.g.,

string theory!, indicating that the theorem@15# does not ap-
ply to extended objects. In~10,2! dimensions, we will use
M508,0,1,2,••• ,10 for the space index instead ofm. In the
32332 representation~equivalent tochirally projected64
364!, only the 2- and 6-index gamma matricesgab

M1M2 and

gab
M1•••M6 are symmetric inab, and furthermore,gab

M1•••M6 is
self-dual ~one gamma matrix index has been lowered b
multiplying with the charge conjugation matrix!. The re-
maininggab

M1•••Mp do not have definite symmetry or antisym-
metry inab. Therefore, in 12 dimensions, on the right-hand
side of Eq.~2.1! there can be noPM , and the 528 generators
consist of the antisymmetric tensorsZM1M2

and ZM1•••M6

1

which is self-dual. The number of components in each is

12311

2
566,

1

2

12311310393837

13233343536
5462, ~2.2!

respectively. Upon compactification to~10,1!, we rewrite the
12D indexM5~08,m! wherem50,1,2,••• ,10 is an 11D in-
dex. Then, we have~suppressing the 08 index!

e

nce,

h

3For simplicity, we assume commuting central extensions. The
are more involved versions of the extended superalgebra in whi
some of the central extensions do not commute withQ a

a , or with
each other, etc.@16#. We might expect that the noncommuting case
may arise for curved backgrounds and nontoroidal compactific
tions that are not discussed here.
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TABLE I. Classification ofQa
a andZm1•••mp

ab under 11D~or 12D! andK.

c11.1
d21.1

32Qa
a

SO ~c11,1!
~or K! ^

SO ~d21,1!

p50

pm,Zmn

Xmnlqr

p51

pm ,Zm
n

Xm
nlqr

p52

Zmv
Xmn
lqr

p53
Xmnl
qr

p54
Xm1•••m4

r
p55

Xm1 •••m5

U

K

A
1,1
9,1

~6,16! 110
10

111
10

1
10

0 1 11

112
SO(1,1)

Z2

B
1,1
9,1

S11,16D 010
10

112
10

0
10

1 0 11

121
SL(2,R)
SO(2)

2,1
8,1 ~2,16! 211

10
53

'211

112
10
53

'211

110
51
'1

1 @1#
12
53
'2
11

~1!
move

SL~2!^

SO(1,1)
SO(2)

^Z2

3,1
7,1 „~2,0!,81

…

„~0,2!,82
…

313
10
56

'31

132

113
10

5„2,2…
'311

111
5111
'111

31@1#
5„2,2…
'311

31

132

56
'31

132

~1!
move

SL~3!
^SL(2)
SO(3)
^U~1!

4,1
6,1 ~4,8! 416

10
510
'10

114
11

5511
'511

114
1@1#

5511
'511

6
1@4#
510
'10

~4!
move

~1!
move

SL(5)
SO(5)

5,1
5,1 ~4,4* !

~4* ,4!
5110

11
51115
'„4,4…

1151
51@1#
5236
'„0,5…
1„5,0…
12„0,0…

1110
1@5#

51115
5„4,4…

101

1102

5101

1102

'„10,1…
1„1,10…

~5!
move

~1!
move

SO(5,5)
SO(5)

^SO~5!

6,1
4,1 ~8,4! 6115

16
1@1#

57121
'2711

116
1151@6#
57121
'2711

1120
1@15#

51135
'36

~15!
move

~6!
move

~1!
move

E6(6)
USp(8)

7,1
3,1 „81,~2,0!…

„82,~0,2!…
7121
121
1@7#

528128
'28c

117
135

1@21#
58156
'6311

16

1356

516

1356

'36c

~21!
move

~7!
move

0 E7(7)
SU(8)

8,1
2,1 ~16,2! 8128

156
1@28#

536184
'120

118170
1@1156#

5119
1126

'13511

~1156!
move

~28!
move

0 0 E8(8)
SO(16)
ZM1M2
→Pm %Zm1m2

66511155,

ZM1•••M6

1 →Xm1•••m5
4625462, ~2.3!

which are the momenta and central charges in 11 dimensi
pointed out in@7#.

Continuing the compactification process to lower dime
sions onRd21,1

^Tc11,1, each 11-dimensional indexm de-
composes intom%m wherem is in d dimensions andm is in
c115112d dimensions. Then, each 11-dimensional tens
decomposes as
ons

n-

or

Pm→Pm %Pm 115d1~c11!,

Zmn→Zmn %Zm
n

%Zmn,

Xm1•••m5
→Xm1•••m5

%Xm1•••m4

m1 %Xm1m2m3

m1m2 %Xm1m2

m1m2m3%Xm1

m1•••m4

%Xm1•••m5. ~2.4!

For example, for~d510,c50!, the type 11A superalgebra is
recovered, with the 528 operators (Pm ,P10,Zmn ,Zm ,
Xm1•••m4

,Xm1•••m5

6 ) where the6 indicate self-antiself dual,
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respectively. In Table I in each row labeled by (d21,1)/(c
11,1), the numbers of each central extension ofP,Z,X type
with p Lorentz indices is indicated~these are the numbers
that are not in bold characters!. Since each of theP,Z,X are
antisymmetric tensors inc11 dimensions, these number
correspond to representations of SO~c11! ~which includes
rotations into one of the extra dimensions!. As we go to
lower dimensions, we must use the duality betweenp indices
andd2p indices to reclassify and count the central exte
sionsZm1•••mp

ab ;Zm1•••md2p

ab . In the table a number in paren

theses means that it should be omitted from there and inst
moved in the same row to the location where the same nu
ber appears in brackets. This corresponds to the equivale
of p indices andd2p indices. Whenp5d2p, there are
self-dual or antiself-dual tensors. Their numbers are in
cated with additional superscripts6 in the form 16, 26, 36,
106, 356 wherever they occur.

The total number of central extensionsP,Z,X found ac-
cording to this compactification procedure for each value
p are indicated in Table I in bold characters. These totals
the same numbers found by counting the number of pos
bilities ab on Zm1•••mp

ab . The bold numbers following the

5sign correspond to representations of SO~c11,1! ~making
a connection to 12D! and those following the' sign corre-
spond to representations ofK ~to be discussed later in con
nection to duality!.

III. CENTRAL CHARGES AND p-BRANES

What is the meaning of thep-form central extension
Zm1•••mp

ab ? Since this is a charge in a global algebra the

ought to exist a~p11!-form local current Jm0m1•••mp

ab (x)

whose integral over a spacelike surface embedded ind di-
mensions gives

Zm1•••mp

ab 5E dd21Sm0Jm0m1•••mp

ab ~x!. ~3.1!

The current couples to the fields of low energy physics~i.e.,
supergravity!. In the case of usual central charges that a
Lorentz singletsZab ~i.e., p50!, the current is associated
with charged particles. Such a current may be constructed
usual from world lines~or equivalently, from local fields! as

Jm0

ab~x!5E dt(
i
zi
abdd„x2Xi~t!…]tXm0

i ~t!. ~3.2!

The z i
ab are the charges of the particles labeled byi . This

current couples in the action to a gauge fieldAab
m0, and it

appears as the source in the equation of motion of
Abelian4 gauge field

4The gauge fields are Abelian since we assumed commuting c
tral charges. As noted in a previous footnote, a non-Abelian vers
is expected if the background is curved rather than flat.
s
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S;(
i
E dtAab

m
„Xi~t!…]tXm

i ~t!zi
ab5E ddxAab

m ~x!Jm
ab~x!,

]l] [lAab
m]~x!5Jab

m ~x!. ~3.3!

Therefore, there are as many gauge fields as there are cen
extensions of typep50. These gauge fields occur as mass
less particles in the Neveu-Schwarz–Neveu-Schwarz~NS-
NS! and Ramond-Ramond~R-R! sectors of the superstring.
The chargesZab associated with the NS-NS sector occu
perturbatively in string theory~Kaluza-Klein momenta and
winding numbers!, but the charges associated with the R-R
sector are nonperturbative from the point of view of strin
theory ~topological solitonic charges!. On the other hand,
from the point of view of the superalgebra, they occur at a
equal footing, and will be treated on an equal basis from th
point of view of the ~broken! symmetries that we discuss
later.

Central charges withp>1 have been usually omitted in
past discussions due to the theorem in@15#. The theorem
allows onlyp50 central extensions. This was derived unde
the assumption of a unitaryS matrix based on pointlike in-
teractions in four dimensions. However, let us now discus
the implications of central charges in the presence of e
tended objects and in any dimension. Forp51, the central
extension is a vectorZm1

ab , which requires a local current that

is an antisymmetric tensorJm0m1

ab (x) in the Lorentz indices.5

An antisymmetric current cannot be constructed from pa
ticles but it can be constructed from strings as

Jm0m1

ab ~x!5E dtds(
i
zi
abdd„xm2Xm

i ~t,s!…

3]tX[m0

i ~t,s!]sXm1]
i ~t,s!. ~3.4!

z i
ab is the charge of thei th string. Just like the particles

discussed above, the charged strings also are expected
form a multiplet of the~broken! symmetries, and they inter-
act with the low energy supergravity fields through antisym
metric gauge potentialsBab

m0m1(x), with an action

S;(
i
E dtdsBab

nm
„Xi~t,s!…]tX[n

i ~t,s!]sXm]
i ~t,s!zi

ab

5E ddxBab
nm~x!Jnm

ab~x!. ~3.5!

In this expression one can recognize the familiar string co
pling to an antisymmetric tensor in the world sheet formula
tion. The equation of motion forBab

nm(x) involves the~Abe-
lian! gauge-invariant field strengthHab

lnm5] [lBab
nm] (x) and

the above current as a source

en-
ion

5New symmetric tensors, other than the symmetric stress tens
dabTm0m1

(x) associated with the momentumdabPm1
(;Zm1

ab), are
not allowed in the superalgebra, since they would couple to ne
‘‘gravitons.’’
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]l] [lBab
nm]~x!5Jab

nm~x!. ~3.6!

A well-known example is type IIB superstring with its two
antisymmetric tensors. In this case theab indices onBab

nm(x)
correspond to a symmetric traceless 232 matrix. More anti-
symmetric tensors are found in compactifications to lowe
dimensional string theories.

This example also shows that central extensions that
not Lorentz singlets are present in a unitary theory with no
trivial scattering. Therefore, the theorem in@15#, while valid
for point-particle interactions, should not be applicable in t
presence ofp-branes and their interactions.

The generalization to the higher values ofp is straightfor-
ward: In order to have a charge that is ap-form we need a
currentJm0m1•••mp

ab (x) that is a~p11!-form. This in turn re-

quires ap-brane to construct the current

Jm0m1•••mp

ab ~x!5E dtds1 ...dsp(
i
zi
abdd„x2Xi~t,sW !…

3] rX[m0

i •••]sp
Xmp]
i ~t,s1 ,...,sp!, ~3.7!

and its coupling to supergravity fields requires a~p11!-form
gauge potentialAm0m1•••mp

ab (x) such that

S;E ddxAab
m0m1•••mp~x!Jm0m1•••mp

ab ~x!

5(
i
E dtds1 ...dspAab

m0m1•••mp~Xi !]tX[m0

i •••]sp
Xmp]
i zi

ab

~3.8!

and

]l] [lAab
m0m1•••mp~x!5Jab

m0m1•••mp~x!. ~3.9!

As is well known by now, there are perturbative as well
nonperturbative couplings ofp-branes to supergravity in
various dimensions. Hence, theZm1•••mp

ab are present in the

superalgebra and they correspond simply to the charges
p-branes. The classification of theirab indices under duality
groups is the subject of the next section, but here we alre
see that there is a one-to-one correspondence between
p-forms Zm1•••mp

ab and the ~p11!-form gauge potentials

Aab
m0m1•••mp that appear as massless states in string theory

the NS-NS or R-R sectors.
The main message is that from the point of view of th

superalgebra, allp-branes appear to be at an equal footin
Isometries of the superalgebra that will be discussed bel
treat them equally and may mix them with each other
various compactifications. The theory ind dimensions has
~p11!-forms Aab

m0m1•••mp which appear as massless particle
in the string version of the fundamental theory. These act
gauge potentials and couple at low energies to charg
p-branes. This generates a nontrivial central extens
Zm1•••mp

ab in the superalgebra. The number of such cent

extensions~ab indices! is in one-to-one correspondence wit
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the number of the~p11!-forms Aab
m0m1•••mp, and these num-

bers can be obtained by counting the possible combination
~symmetric-antisymmetric! indices ab associated with the
supercharges.

IV. RECLASSIFICATION AND DUALITY

In the discussion above we concentrated on the 11D~or
12D! content of the supercharges and the central extensio
We now turn to duality. In string theory theT-duality group
is directly related to the number of compactified left-righ
string dimensions. In our notation, the number of compact
fied string dimensions isc. Therefore, for a string of type II,
it is

T5SO~c,c!. ~4.1!

Its maximal compact subgroup is

k5SO~c!L^SO~c!R , ~4.2!

whereL,R denote left-right movers respectively.6 The super-
chargesQ a

a naturally know about this group, since they too
can be split into left-right movers in evend dimensions: then
the indexa on left-right chiral chargesQ a

a corresponds pre-
cisely to the spinor index of SO(c)L^SO(c)R . For oddd
dimensions the same is true, but the L/R split is defined b
going to the next smaller value ofc.

For example, in four dimensions theN58 real Majorana
spinors are rewritten as 8 pseudo-real Weyl spinors of left
right type that are each other’s complex conjugates. In Tab
I these were classified as pseudo-real representations

„81,~2,0!…, „82,~0,2!…
~4.3!

SO~7,1!hidden̂ SO~3,1!space.

Now we reclassify them as

„@~4,0!1~0,4* !#,~2,0!…, „@~4* ,0!1~0,4!#,~0,2!…

„SO~6!L3SO~6!R…k,T^SO~3,1!space. ~4.4!

6The notation for duality groups, such as SO(c,c), is used some-
what loosely in this paper, for brevity. TheT,U duality groups
mentioned in this paper are supposed to be interpreted as disc
groups, such as SO(c,c,Z), etc. This is not apparent from the su-
peralgebra point of view, but is true in string theory. Unde
T-duality transformations the quantized Kaluza-Klein and windin
numbers of string states transform into each other under SO(c,c,Z).
In addition there is an induced transformation on the oscillators
the internal dimensions under the subgroupk5SO(c)L^SO(c)R ,
where the effective parameters of the induced transformation d
pend on the discrete SO(c,c,Z) as well as the torus parameters
Gi j ,Bi j , and hence, it is equivalent to being continuous. Therefor
because ofT duality, all perturbative string states must fall into
linear representations ofk5SO(c)L^SO(c)R , which is larger than
the SO(c) expected naively. In a similar sense, the transformation
underK are also equivalent to being continuous, even though tho
of U are discrete. For a clarification of these points see@13#.
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The common internal group in SO~7,1!hidden and
SO~6!L3SO~6!R is SO~6!, but besides this common sub
group these two groups are not related to each other
group-subgroup relationships. Thus, their transformations
the physical states of the theory must act on rather differ
modules that have intersections with each other.

More generally, for any dimension, investigating the s
percharges listed in Table I shows that the indexa that was
classified there under the hidden noncompact gro
SO~c11,1!hidden can be reclassified under the perturbative
explicit maximal compact subgroupk,T of T duality,
k5SO(c)L^SO(c)R ~see Table III in Ref.@13#!. These two
groups are not subgroups of each other, but they do hav
common subgroup SO(c). Recall thatc is the number of
compactified string dimensions~other than the two hidden
dimensions!, and SO(c) is the ~broken! rotation group in
these internal dimensions.

In each case one may notice that theN superchargesQ a
a

transform irreducibly under SO~c11,1!hidden, but reducibly
underk5SO(c)L3SO(c)R . However, we can obtain an ir-
reducible representationQ a

a by defining a largercompact
groupK that containsk, as well as the maximal compact pa
of SO~c11,1!hidden. That is

K.SO~c!L^SO~c!R and K.SO~c11!. ~4.5!

Thus, we look for thecompact group K that contains
SO(c)L3SO(c)R , SO~c11! and that has anirreducible rep-
resentation for the indexa ~total dimensionN!. Note that the
groupK must mix one extra dimension with others. Furthe
more, the central extensions of typeP,Z,X, that already dis-
play the extra dimension, have to fall into representations
K that contain them. Theminimal compactK that we find
through this reasoning is listed in the last column of Table
By virtue of containingk,T, the groupK.k must be re-
lated to a larger group of dualityU that containsT. After
findingK as described,U is determined uniquely by looking
for the smallest noncompact group that contains SO(c,c)
and for whichK is the maximal compact subgroup. The su
group hierarchy that emerges is given in Eq.~1.1!. For ex-
ample, in four dimensions~with d54, c56!, it is

SO~7,1!hidden
↓

^SO~3,1!→a:
„81,~2,0!…

1„82,~0,2!…

SO~7!hidden
SO~6!L^SO~6!R

J→SU~8!
↑

T5SO~6,6!
↑ J →E7~7! . ~4.6!

The a index which was classified as the spinors 86 under
SO~7,1! or as @~4,0!1~0,4* !# or @~4* ,0!1~0,4!# under
k5SO~6!L^SO~6!R is now reclassified as the 8 or 8* of
SU~8!. This group is the minimal compact group containin
both SO~7! and SO~6!L^SO~6!R5SU~4!L^SU~4!R . Further-
more, the smallest noncompact group containing both SU~8!
and SO~6,6! is E7~7!. This way of describingK or U does not
use the details of supergravity or string theory. It mere
hinges on the number of supercharges and their reclassifi
-
by
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ent
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I.
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tions in maximally irreducible representations as describ
above. We emphasize that the scheme takes advantage o
hidden dimensions.

Since the sameN-dimensional basis of supercharges la
beled bya knows about both duality and the hidden dimen
sions, this must provide a bridge for relating properties of th
states of the theory under both qualities. The first cons
quence of this is the reclassification of the central extensio
Zm1•••mp

ab . Previously, they were classified under 11D~or

12D! as in Table I~the numbers following the5 sign!. But
now the combinationab corresponds to the symmetric or
antisymmetric product of theN-dimensional representation
of K. Therefore,the central extensions are now also class
fied under K. The result is the total dimension listed in Tabl
I ~the numbers following the' sign!. These numbers are
indeed dimensions of irreducible multiplets underK.

For example, in four dimensions the central extensio
whose ~real! numbers are 56, 63, 72 forp50,1,2, respec-
tively, are reclassified as the complex28c , real63, and com-
plex 36c of K5SU~8!. These correspond to the following
combinations of the SU~8! ab indices onZm1•••mp

ab , recalling

thata→8 or 8* :

p50: ~838!antisymm528c ,

p51: ~838* !56311,

p52: ~838!symmetric536c . ~4.7!

The p51 singlet1 corresponds to the momentumPm. The
complex conjugates 28c* ,36c* contain the same real compo-
nents as 28c,36c . On the other hand, these same total dime
sions correspond to the irreducible representations
SO~7,1!hiddenas follows. Using the fact that the supercharge
can be viewed as the spinors 81

%82, their products give the
following SO~7,1!hidden representations for the indicesab on
Zm1•••mp

ab :

p50: ~86386!antisymm5286,

p51: ~81382!58v156v , ~4.8!

p52: ~86386!symmetric5161356.

Note that the momentumPm is now part of the 8v . By de-
composing the representations for eachp with respect to the
common subgroup,

SU~8!.SO~7!,SO~7,1!hidden, ~4.9!

the same sets of SO~7! representations are recovered from
either Eq.~4.7! or Eq.~4.8!. This SO~7! already contains one
of the hidden dimensions and classifies the central extensi
of typesP,Z,X separately as listed in Table I.

The main point is that the supercharges as well as t
central extensions are now classified under hidden~broken!
symmetries of two different types. The first one
SO~c11,1!hidden relates to 11 or perhaps 12 hidden dimen
sions, and the second oneK,U relates toU duality. The
common compact subgroup SO~c11! already contains non-
perturbative information about the spacelike hidden dime
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sion, but more information about the hidden timelike dime
sion and aboutU duality is contained in the larger group
structuresK, SO~c11,1!.

V. NONPERTURBATIVE STATES

Under the assumption that the superalgebra is valid a
dynamical~broken! symmetry in the entire theory, all state
would belong to multiplets of the~broken! superalgebra, in-
cluding the central extensions and thep-branes associated
with them. One would then expect to be able to classify t
physical states of the theory according to the~broken! isom-
etriesK, SO~c11,1!. However, since these groups are n
contained in each other, we should have different modules
SO~c11,1!hiddenandK,U that have intersections with each
other in the form of~broken! SO~c11! multiplets, since this
is the largest common subgroup:

K.SO~c11!,SO~c11,1!hidden. ~5.1!

It seems reasonable to make the hypothesis that the comp
set of states of the theory could be classified with eith
group, but that each such classification would contain t
same set of SO~c11! representations. One of our aims is t
test this hypothesis. Each one of these classifications c
tains nonperturbative states related to either duality or hidd
dimensions. By finding them and studying their coupling
consistent with the superalgebra, one would be able to le
certain global properties of the underlying theory.

Some of the couplings described byZu1•••mp

ab are perturba-

tive while others are nonperturbative in the string languag
but all couplings or states are on an equal footing from t
point of view of the superalgebra and its isometries. O
must include openp-branes in the form ofD-branes since
they couple to closedp-branes. Therefore, we expect tha
various excitations of open or closed chargedp-branes
X m

i (t,s1 ,••• ,sp) ~and their supersymmetric partners! occur
on an equal footing in supermultiplets that contain the~bro-
ken! group structures revealed above. String theory state
various excitation levels by themselves may not necessa
form the needed multiplets in higher dimensions~10,1! or
~10,2! or in U duality. However, some combination of ope
or closedp-brane states are expected to fill complete multi
lets of the isometries or broken symmetries of the glob
superalgebra. By starting from the known superstring stat
the supermultiplets connected to them can be found, and
nonperturbative states can be identified.

Following the arguments in@13#, the states of the full
theory may be classified as

f indices~base!, ~5.2!

where the base consists of the commuting 528 bosonic g
erators of the superalgebra. These include the continu
momentum and the quantized central extensionsZm1•••mp

ab that

are at an equal footing. These quantum numbers are cla
fied in linear representations of the~broken! isometriesK or
SO~c11,1! as given in Table I.7 If the superalgebra is valid

7According to the dimensions of representations in Table I, t
0-braneZab central extensions seem to correspond to complete
n-
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in the full theory then theindicesmust also fall into linear
representations ofK or SO~c11,1! in order to provide a
basis for its~broken! isometries. Thus, both the indices a
well as the base contain information about nonperturbati
states through duality transformations or rotations into th
hidden dimensions. Classifying the states under these gro
relates the properties of nonperturbative states to those of
perturbative string states.

A possible scheme for finding the nonperturbative stat
is as follows. First, identify the perturbative string state
classify them under supermultiplets, and identify their cla
sification under the perturbatively explicit SO(c)L^SO(c)R .
Then, try to reclassify them under the bigger~broken sym-
metry! groupK. If additional states are needed to make com
pleteK multiplets add them~these extra states are presum
ably p-branes,D-branes!. There may be nonunique ways o
completingK multiplets. If so, then try to make it consisten
with the presence of the hidden dimensions by making su
that the SO~c11! representations embedded inK multiplets
are consistent with the structure of the central charges lis
in the table. When this is achieved, one should also che
that it is all consistent with a compactification of a collectio
of states that starts in 11 dimensions, i.e., consistency w
11-dimensional~broken! multiplets with signature~10,1!.
One may need to add at this stage more nonperturbat
states that are not in the sameK multiplet with some pertur-
bative string state~presumably, morep- or D-brane states!.
So far, one should expect consistency with ‘‘M theory.’’
Finally, check if the structure of the representations th
emerge in this way can also be made consistent with
dimensions, with signature~10,2! ~perhaps by adding more
states!. In this way, many properties of nonperturbativ
states could be deduced. Such a program was initiated
previous papers@3,13,14#. The results obtained there~involv-
ing string states at many excited levels! are in agreement
with the presence of many of the structures outlined here
far as ~10,1! and K structures are concerned. It would b
interesting to extend these ideas to explore~10,2!.

It would also be of interest to analyze ‘‘M theory’’ and
‘‘ F theory’’ from the point of view of the general properties
of the superalgebra, and discriminate between general pr
erties based on the superalgebra versus the properties of
theory that depend on more detailed features. As mention
in the footnotes, non-Abelian versions of the superalgeb
are possible, and in fact, expected when thep-branes propa-
gate on curved backgrounds. It would be of interest to rela
them to properties of various compactifications of ‘‘M
theory’’ and ‘‘F theory’’ in order to learn about some of
their general global properties.

This research was supported by DOE Grant No. DE
FG03-44ER-40168.
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ear representations ofU for all dimensions except ford53 ~120 is
not a representation E8~8!!. Similarly, higherp-branesZm1•••mp

ab do
not generally form linear representations ofU. Furthermore, the
Zm1•••mp

ab seem to form complete representations of SO(c,c) for all
cases except for~d55, p53!, ~d53,4, p52!. We interpret these
observations to mean that the base is not generally a bunch oflinear
representation of eitherT- or U-duality groups, but it is a bunch of
linear representation ofK or SO~c11,1!.
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