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Green-Schwarz superstring in extended configuration space and the infinitely reducible
first class constraints problem
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The Green-Schwarz superstring action is modified to include some set of addi{tiorsihell trivia) vari-
ables. A complete constraint system of the theory turns out to be reducible both in the original and in additional
variable sectors. The initialBfirst class constraints andc&econd class ones are shown to be unified with
8c first class and 8 second class constraints from the additional variables sector, resulting (th 950
covariant and linearly independent constraint sets. Residual reducibility proves to fall on second class con-
straints only[S0556-282(96)02218-7

PACS numbes): 11.25.Hf, 04.60.Ds, 11.30.Pb

[. INTRODUCTION of the original Green-Schwarz theory turns out to be broken
in the modified version14].

The general recipe of covariant quantization of dynamical Reformulation of the Batalin-Fradkin-Vilkovisk{BFV)
systems subject to reducible first and second class constrairpisocedure that does not involve explicit separation of con-
was developed in Refd1-3]. The “ghosts for ghosts” straints was presented in Refd5-17. However, as was
mechanisnj1,2] was proposed to balance the correct dynamshown in Ref.[11], application of the scheme for concrete
ics on the one hand and manifest covariance on the anothanodels may conflict with manifest Poincarevariance.

The application of the scheme turned out to be remarkably In this paper we propose an alternative approach to the
successful for certain cases. The antisymmetric tensor fielahfinitely reducible constraints problem dd=10, N=1

[1], chiral superparticl¢4], and high superspin theori¢S]  Green-Schwarz superstriiGSS. The basic idea is to intro-
seem to be the most interesting examples. duce additional pure gauge fermionic degrees of freedom

However, in the general case there may arise an infinitsubject toreducible constraints like those of the GSS. We
tower of extra ghost variables, which makes the expressionhoose these constraints to be a pair of Majorana-Weyl
for the effective action formal. The superparti€] and su-  spinors with the following structufe(i) The first of them is
perstring[7] models appeared to be the fifsind, actually, a mixture of eight first class and eight second class con-
the most importantexamples of such a type. A complete straints, which are required to lie inc8&nd & irreducible
constraint system of the theories in the Hamiltonian formalrepresentations of S8) group, respectivelyii) The second
ism includes fermionic constrairtshat, being a mixture of spinor contains only eight linearly-independent components
eight first class and eight second class d@ssand & rep-  that are second class constraints.
resentations of S@)-little group, respectivelly lie in the Splitting further all the fermionic constraints of the prob-
minimal spinor representation of the Lorentz group. The latdem in covariant and reducible mann@sy making use of
ter fact means that the covariant irreducible separation of theovariant projector$11,12) one can combine the original
constraints is impossible in the original phase spg@l  fermionic first class constraints of the GSS with the first
However, one can realize the reducible split by making us&lass ones from the additional variables sector into one irre-
of covariant projectors known for the superpartic]®s-11]  ducible set [which corresponds to the s®&8c
and superstring12]. The introduction of 16 covariant pri- representation of S@) or Majorana-Weyl spinor of
mary ghosts to théreducible first class constraints implies SQ(1,9)]. Analogously, the second class constraints from the
16 secondary ones, etc. There arises an infinite tower of extradditional variables sector can be unified with the original
ghost variables. The Lagrangian analogue of the situation isecond class ones resulting in covariant and irreducible con-
infinitely reducible Siegel symmetr{13], with spinor pa- straint. For the model concerned, the resulting constraint sys-
rameters from which only half are essential on shell. Noteem turns out to be completely equivalent to the initial one.
that within the framework of the alternative twistor-harmonic Thus, the reducible fermionic first class constraints of the
approach14], the fermionic constraints can be separated in &GSS become irreducible in the modified theory. The infinite
covariant and irreducible manner due to the “bridge nature”tower of extra ghost variables, which corresponds to the first
of the harmonic variables. This formalism, however, is es<class constraints in the original formulation of the super-
sentially Hamiltonian and the reparametrization invariancestring, will not appear in the new version. The Lagrangian

that reproduces the scheme described above is our main re-
sult.
*Electronic address: deriglaz@phys.tsu.tomsk.su
"Electronic address: galajin@phys.tsu.tomsk.su
We discuss mostly th&l=1, D=10 case for which covariant ~ 2The total number of constraints is sufficient to suppress just one
quantization is the principal problem. canonical pair of variables.
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The paper is organized as follows. In Sec. Il the Greentions, include a modification of the Siegel transformatfons
Schwarz action is modified to include some set of additional

variables. The local symmetries of the model are investi- 80 =2ill,, ™k~ ¢,

gated. A complete canonical analysis of the theory is carried

out in Sec. lll A. Classical equivalence of the modified and SX"=iOI'M5,0,

original superstrings is established in Sec. Il B. We do this

by imposing gauge conditions for all first class constraints in S\ —gg*P) = 16\/—_gP‘“7(ay® k™A,

the problem. Dynamics in the physical variables sector

proves to coincide with that of the GSS. Note that all the OkXa=04(60),

gauge conditions can be imposed in covariant manner, ex-

cepting the standard light-cone gauge conditions correspond- SA™,=i0I'M9,(60), 2

ing to the super-Virasoro constraints. In Sec. IV explicitly
covariant separation of the constraints is realized. The infiwhere

nitely reducible first class constraints problem is resolved.

Concluding remarks are presented in Sec. V. Appendix A caf_ " e o
contains our conventions and a brief description of the P =319 i\/_—g . kT=Pk,
SQ(8)-formalism used in the work. Appendix B includes es-
sential Poisson brackets of the constraints involved.

and a set of new symmetries acting on the additional vari-
ables subspace. Here we list them with brief comments.
There is a pair of bosonic symmetries wiih= 10 vector

II. ACTION AND LOCAL SYMMETRIES gm andD=2 VeCtOl’,lLa parameters
The action functional to be examined is of the form SAT = 3, £, 3)
m _Am
S=Sgs Sada: () o= A e (4)

5,d= 1“ﬁa
where wET T Q€ Caktps

which mean that the field&™, and® may be gauged away.
1 Note that the syster(8), (4) is reducible. This can easily be
Seszf deU[ v —gg* ", Mg seen by taking™=A"v, uz=dzv, wherev is an arbitrary
function. With such a choice &—5,)|onshe=0, Which
B N means functional dependence of generators of the transfor-
mal € I XMOT g0 mations. In addition to transformatiofi®) and(4), the action
(1) possesses the fermionic symmetries

1 5S+Xa:An‘l:ns+av
Sadd™ f deO‘: — 5 € PAN(3A" = AT,

2 8y D= eBi(3,0 — xo)S* 4, ()
—9,0T My +19,0T My, + iXaFmXﬁ)—(I)AZ] , 5s*Xa:AnFn57a ,
8y D=1€P(3,0—x)S ;. ©6)

and [1™,=9,X"—i®I'3,0, —g=\—dey,,. The first

term in Eq.(1) is the Green-Schwarz actidif], while the ~ The symmetrieg5) and(6) are reducible. The transformation

second term is the action of additional variables. All theOf parameters, under which Eq&) and (6) are invariant

variables are treated on equal footing. The latin indices arémodulo equations of motionis of the form

designed for target manifold tensors, the greek ones are set

for worldsheet tensoréfor instance,x*, is D=10 Lorentz Se=Sat Anl'"x%,

spinor andD =2 worldsheet vect9r Statistics of the fields

corresponds to their tensor structure, iXM, g®f, A™

A™, @ are bosons, whil®”, x*, are fermions. The matrix  3To check thek invariance of the action it is necessary to use to

€P is chosen in the forng*#= — ef®, "= —1. the Fierz identityl'§ ;') =0 and the property of the™ projec-
Since theS,yq contains only derivatives of th@®, the tors:P=*"P=A7=p=BYp=as Note as well that th& symmetry is

modified superstring is invariant under standard global sureducible. The following transformation of parameters

persymmetry transformations. kp=Kg+ I, I'""P~ "%, 5, with the x,5 being an arbitrary func-
Local symmetries of the theory, except the standard retion, does not change E¢R) (modulo equations of motionwhich

parametrizations of worldsheet and the Weyl transformameans linear dependence of generators of the transformations.
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with an arbitraryx,, . It is interesting to note that the reduc- will prove this fact in the next section by moving to the
ible symmetrieg2) and (6) can be replaced by one irreduc- Hamiltonian formalism and imposing all gauge conditions.
ible symmetry if one supposes thahIl,)?#0. Actually,

consider the transformation Ill. CANONICAL FORMALISM
6,0=2i Hmafmw*a, A. Dirac procedure

Denoting momenta conjugate to the variable§™, @8,

5, X"=i0I'"s5,0, N, Ni, g* A™ A™,, xB,, ®) as (., Pyg, Py, Py,

5(0( /_ggaﬁ)zle /_gP—ay(ay(aw—ﬁ)’ Pg, TAmM ’7TAma, P)(B 77(1;) one gets
~m 1 /1 N, i
0uXa=0a(6,0) T AplMo™,, Tm=5 NHmO_WHml'H@Fm‘?l@ ,
5,A",=i0OI'9,(5,0), 1
LEP9+|®Fm 7Tm+ —/Hml) _iX]_I‘mAm%O,
. _ 27«
5,0=i€¥(9,0—x,)w B (7
~ 0% 1_ ~
which is a formal sum of Egs.(2) and (6) with Tam~0, Tam ~0,  7am —An~0,
k“=s =w . Two remarks concerning this symmetry are
relevant. First, it is straightforward to check that there is no PX°~0, lewo, 79~0,
transformation of parameters that leaves Ef).invariant,
i.e., all 16 parameters are effective on shell. Secondly, the P.~0. Pu~0. P.~0 10
original k™ ands™ transformationgeach of them has eight N N Te (10

essential parameters on shealhn be extracted from Edq7)
by taking where 9,=4d/do. The first equation in Eq(10) determines
doX™ as a function of the other canonical variables. The
1 _ remaining equations are primary constraints.
w1B=MT)Z(AH(,)P*"VAnF”FmHmka, The canonical Hamiltonian is given by

8

R 1 R 1
1 iy = HZJ dU(Nl(ﬂ'Hl)-l—NE(Zﬂ'a'ﬂ'z-f——z ,le)
a)ZBZ(AT)z(AHU)P ¢ yHnyF r Amsﬁ- T
—Ads A +i(x1—310)T™A xo+ PAZ+LN g+ Pk

Equations of motion for the theor§l) are of the form + Py, + Pghgt mahg+ 72O,

1
HmaHmB:EgaﬁgylsHmyng, +(7TA1_A))\3+ PXO)\4+ le)\5+ 77(1))\6]1 (11)
where
dp(V=99P*9,X"+2\-gP A4 0I'9,0)=0,
. 1
M, I™P~*9,0 =0, (9a) m=7"— mu@ﬂ%@
A2=0, and\ 5,\y AN, Mg, A1~ \g are Lagrange multipliers corre-
sponding to the primary constraints. The preservation in time
eaﬁ(aaAmB_ﬂBAma_iaa®rmxﬁ+mﬁ®rmxa of the primary constraints implies the secondary ones
Tix oMy ) +4PAT=0, N 1 T
a ~ — =+ ~
TllM~0, 5 2wa’ W S’ 11, 0,
I Am=0,
. “Within the framework of canonical formalism it is useful to make
i(Xa—3,0)MA,=0. (9b) an invertible change of variabl¢&3]

Note that Eqs(9a) are just the Green-Schwarz superstring .

. . _ . g
equiafons. Inile light cone gauge this system reduces to g®g°L gl N=— — Ni=— 5.0
OX'=0, ¢_0®2=0, wherei anda are, respectively, vector v—gg g
and spinor indices of S@) group. It turns out that there are where\—g=\—def,. In terms of the new variables the discov-
no more dynamical degrees of freedom in the question. Wery of secondary constraints becomes evident.

01
11
’
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A?~0, (x1—39,0)I"A,~0,0;AM~=0, (12 To separate the original constraints of the theory into first
and second class, consider the equivalent constraints system
and conditions on the Lagrange multipliers

A,"=0 (139 7An~0, An_7TAnl%oa (163
Nam=—ix1TmN g+ 1Am ot i(x1—910) T xo+ 2P man', Tanl~0, mp=0,
(13b
0 ~
Tam T\ = X0) =0, 13¢ Py=0. Pn=0,
Am (Ng—Xo) (139 (16b
D Pn,~0, Pg=0,
2|F ’7Tm+ mﬂml ()\0_(N+N1)0-'10)
—iT™7 A (s — 91 x0) =O. (130) (mah)?=0, d1mant=0,

Equations(13¢) and (13d are sufficient to determing . 1 1
Actually, multiplying Eq. (139 by I"(7,+1/2ma’)Il, )  mall"+ La1~0,§(2m¥'%2+FH12

= +L3,0~0, (160
and Eq.(13d) by Mra,! and then taking the sum one gets

. 1 _
= ! o5y 2 L=P,+iOI" 7Tm+mHm)—Iﬁl@meAml—alle
Ao . | 7+ 11, ,
2w\ 7+ U2ma' )] 2ma
=0, (169
X FmWAle0+ rmWAmlrn
- 1 P.'=0, (x1—910)I"mp,'~0. (160
X 7Tn+—2ﬂ_a,1'[nl (N+N1)(71®], (14)

The constraintg16a are second class. The constraints
A system(16b), (169 is first class. Among 16 fermionic con-
provided thatm,'(7r+ 1/(2ma’)I1,)#0 on shell. The latter straints(16d) half are first class and another half are second
condition can always be realized by choosing appropriatelass(see Sec. IY. Analogously, the first equation in Eq.
gauge-fixing conditions and initial data to the equations of(16e contains eight first class and eight second class con-
motion? Inserting further Eq(14) into Eq.(13d) one finds  straints while the latter implies eight linearly independent
second class constraintsee Sec. IY. The essential Poisson
AT (N5 — d1x0) =0. (15) lérackets of the constraint46) are gathered in the Appendix
_ . . Note that among 410 constraints 4,)?~0,
Equation(15) determines half of thas, that can easily be 5, 7, 1~0 only 10 are functionally independent as a conse-
seen by moving to the S8)-formalism. In S@8) notation quence of the identity;(mal)2— 27 \"d,ma,1=0. Inde-

the condition(15) reads(see Appendix A pendent constraints can be extracted in the light-cone basis
as follows:
(Ns; —ﬁl)(o')—;‘yi' At (Nsa— d1X0a) =0 1
a a | a a ) i
\/§7TA+1 aa 7TA71_ 27T 1 WAllwAilmoy (917TA+1~01 a1’77-Ai1%0'
A

It is straightforward to check further that the secondary con-

straints are identically conserved in time if EqE2) and(13) ~ AS was mentioned above, it is impossible to separate eight
hold. Thus, there are no more constraints in the problem. flrst class and eight second class constraints, being combined

in the L, in a covariant and irreducible manner. For the
model concerned, covariant projectors into first and second
class constraints are constructed in Sec. IV.

An explicit counting of the degrees of freedom shows that
there are 16 bosonic and eight fermionic phase-space degrees
of freedom in the model, which coincides with the number of
degrees of freedom in the Green-Schwarz theory. Note as
well that, after use of the Dirac algorithm, there remained
1+2+10+1 bosonic and 168 fermionic undefined
Lagrange multipliers. Since the local symmetries, considered

in Sec. Il, have just this number of parameters being inde-
1 , 2 endent on shell, we conclude that they exhaust all the es-
w7+ 1U(2ma’ ) 1;]=— =——n*|p — —i6l " 9,6|#0. pena l, _ Yy
2m o sential Lagrangian symmetries of the model.

SThe constraints); ma,'~0, (m4})?~0 together with the equa-
tion of motiondgma,t=0 imply 7am= Ny, Wheren,, is a constant
null vector (initial datg. Choosing the initial data to be
n"=(n%0,..., 0on%, n%#0, and imposing standard light-cone
gauge conditiongsee Sec. lll B X =a'7p~, # =1/(27)p~,
wherep™ #0 is a complete momentum of the superstring, one get
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B. Gauge-fixing and physical dynamics or in the S@8)-formalism [we write out only the linearly

In imposing gauge-fixing conditions two criteria should Ndependent part of Eq22)]
be satisfied 18]. First, the Poisson bracket of original first
class constraints and gauges must be an invertible matrix 0. — ,yi.
when restricted to constraints and gauges surface. Second, a \/EWA“ aa
gauge conditions are to be consistent with equations of mo-
tion; i.e., there must not appear new constraints from thdecausd "ma,'\ ,~0 [see Eq(14)] the gaugeg22) is con-
condition of preservation in time of the gaudewvith this  sistent with the equations of motion. It is straightforward to
remark, consider first gauge conditions fixing all the undecheck as well that the Poisson bracket of the first class con-
fined Lagrange multipliers in the theory. The equations straints being contained in tHe with the gauge(23) is an
invertible matrix.
N=~1, N;~0, g'=1, A"~0, ®=1/2, After gauge fixing, the only dynamical variables in the
(178 sector ared,. Taking into account that in the gauge chosen
Eq. (14) takes the form

. 1
’Tn*ﬁ“nl)*o (17D No=10, (24

0O, mail~0. (23

x0=0, (x1—9,0)I'"

prove to be suitable for this goal. Preservation in time of the®N€ concludes that physical dynamics of the superstiing
gauges(17) yields in the odd-variables sector is described by

An=0, Ay, =0, \g=0, 900,=010,
(18 or
7\2m=0, )\620, )\4:0,
J_0,=0, a=1,...,8, (25
and . .
just as in the Green-Schwarz model.
(i) (AMy,maml) sector The constraints to be discussed
+(x1—9,0)I" are of the form

! I1
27a’ ™

(Ns— i\ )T+

(mah)?~0, 97 \™~0. (26)
X

2 R 1
W|a1®rn)\0+ dq| Tt mnnl) )

The equations of motion in the sector read

=0. 19 ~ -
( ) &OAm]_:O, &OWAml:O, (27)
Takin into account that the constraint . .
(X1—31)FH7TA 10 together with the gauge where canonical transformatideee as well Ref[24])
n
_ nrz ’ ~0 i —_ -
(x1=10)"[ 7+ 1/(2ma’)IT,,]~0 imply AM AN = AT — 1_71_Am1, 7_[_Aml_) 7TAm1= 71_Aml

X1~ 910~0, (20 has been made. Imposing then the following gauge condition

while Egs.(130), (15), (16b), and(19) mean to Eq.(26),
~m
Ns—d1N =0, (21) AT~0,
. one concludes that there are no physical degrees of freedom
one concludes that all the Lagrange multipliers have beeg, the sector.

fixed. In the gauge chosen, theo canon|calovar|ablé33(\l|), (i ) (X™,7r,,,) sector There are super-Virasoro constraints
(N1,Py ). (97Pg), (Ao, mam ), (X0.Py), (x1.Py). (160 and equations of motion
(P,m4) are unphysical and may be dropped after introduc-
ing the corresponding Dirac brackets.

We consider now gauge conditions to the remaining first
class constraints.

(i) (®,P,) sector There are eight first class constraints In this case one can impose the standard light-cone gauges
being nontrivially combined with eight second class ones if19]
Eqg. (16d. In this case one can adopt the condition

1
IpX"=2ma’ 7", aowm=malalxm. (28

_ , 1
IMra,l®~0, (22) X =a'7p”, w =5-P", (29)

wherep™ is the complete momentum of the superstring. It is
8In the general case one can admit new constraints if they willeasy to check that the conditiof9) are consistent with Eq.
later be treated as gauge conditions for some of the original first28). Making use of Eq(160) to express the variable$™
class constraints. and 7" as functions of other variables and taking into ac-
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count the gauge$29) one can conclude that the physical AA=1,
dynamics in the sector is described by
. . . 1 . Kab:—;l 5éb_——H7TAilyi' ,ylb ,
dX'=2ma’ ', r9077'=—2 - 0101 X', (30 2(bp™) 2b™ mp ac 7cb™
or, eliminating ther', one concludes that the constrainy is first class, whilep;

and i, are second class. Analogous calculations can be per-
formed for the constraint§32¢) and (32d). Thus, the con-
straint system(16a-(166 can be covariantly split into first
and second class.

Let us now discuss Eg$32). The remarkable observation
is that the reducible first class constrait82a), (320 [reduc-
ible second class constraint32d) and the first equation in
Eqg. (32b] can be combined to form an irreducible con-
straints set. Actually, consider the constraint system

Ooxi=0, i=1,...,8. (31)

Thus, physical dynamics of the superstrig is determined
by Egs. (25 and (31), which coincides with the Green-
Schwarz superstring dynamics.

IV. COVARIANT SEPARATION OF CONSTRAINTS.
RESOLVING THE INFINITELY REDUCIBLE
FIRST CLASS CONSTRAINTS PROBLEM

In the previous sections we have modified the GSS so as WAananlernrnL%O’ (363
to include a set of additional pure gauge variables. In the = 1 =
extended phase space covariant separation of constraints ba"P, 4 man I"L~0, (36b)
present no special problem. Actually, consider the constraint -
system (X1=910)Mmp,"~0, (360
WAnl'fnPleo' (323 which is completely equivalent to the original ofEgs.

(16d) and (16@] due to the constrainte®~0, (m')2~0.
The constraint$36a are first class and linearly independent.
Analogously, the constraint86b) are second class and irre-
ducible. The remaining constraint86¢ are second class
and reducible.

= Thus, in the modified versiofil) of the superstring, the
man 1'L~0, (32d  fermionic first class constraints form an irreducible set. They
will require only 16 covariant ghost variabléand 16 con-
jugate momentain constructing the BRST charge. The infi-
nite tower of extra ghost variables, which appeared for the
. : X GSS, will not arise in the modified modélhe remaining
straightforward to check now that E¢823 includes eight o4y cible first class constraints{1)2~0, 3, mx,1~0 are of

linearly independent first class constraints; E82b con- st stage of reducibility and can be taken into account along
tains 8+8 independent second class ones; HG2CO and  ihe standard linef1—3]].

(3200 imply eight first class and eight second class con-
straints, respectively. For instance, rewriting E@29 and
(32b) into SO8) formalism one getg$see Appendix A

bal"P,1~0, (x1=0)Mmat~0, (32

b, I"L~0, (320

whereb"= 7"+ 1/(2ma’) I1";, which is completely equiva-
lent to Eqgs.(168 and (16d) due to the condition l{mAt)
#0 (see Sec. lll A. Moving to the S@8)-formalism it is

Note that the operators extracting the first and second
class constraints from the initial mixed constraint system are
not strict projectors. For instanc&"b,I™b,,=b?~0. In

1.0 (333 ce_rtain c_ase$11], however, it is more convenient to deal
xa ' with the first and second class constraints that were extracted
by means of strict projectors. For the case at hand the suit-
able projectors are of the form

Va= \/EWA+1PXal+ 77'Ai17’i aaP
0a=\2b"P "+ b;7'3aP 0" =0, (33b

Ya= 27" (X1a— 9102) — (X1a— 9102) ¥ aamai ~0. L1
(330 P==3(1%K),

Evaluating then the Poisson brackets of the constraints

1 -
K= rirrmp mal. (37
A\ | 1 o 2\(bm, 2= b2 ()2 nuAm
{oa,Yp}~2b"ma"H 8, _Zb——wA-i-lbi'yIéC'Yi;bWAjl Vibmy') (A7)
In terms of the operators covariatredundant split of the
=4z, (34 constraints looks like

(all other brackets vanigh and taking into account that the L~ =~0, PXH*O first class,
matrix in the right-hand side of Eq34) is invertible,
L*~0, P

=0 second class,

"Note that the constraints,~0 and ¢,~0 are equivalent to where L*=LP*, P, “'=P 'P*. Generalization of Egs.
P.a~0,P,'~0 due to Eq(35). (369 —(360) reads
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L~ +P,"'~0, L"+P,'~0, where theyy,, v5,= (7,2 ' are S@8) y matrices[19]:
O)Mmrpt~0 39
(X1~ 910)TTan =0, yla-ayjab-l— ygayléb=25ij Sap, 1=1,...,8. (A4
V. FINAL REMARKS
Let nowb" be a lightlike vector

In this work the infinitely reducible first class constraints
problem of the original GSS has been resolved. However,
there still remain(infinitely) reducible second class con-
straints in the question. As is known, within the framework
of the standard BFV formalism first and second class conThe useful observation is that under the assumgids) the
straints are treated in a different manner. First class conequation
straints contribute to the BRST charge while second class
ones appear in the path integral meag@&0]. In this sense, b (F”w)A:O (A6)
the problem of covariant quantization of the GSS reduces to n
constructing a correct integral measure for the thedny
The weak Dirac bracket constructifhl] appears to be suit- determines only eight linearly independent conditions.
able for this goal and this work is in progress now. Actually, rewriting Eq.(A6) in the SA8) formalism one

Note as well that the proposed techniques can be directlgets
applied to modification of the superparti¢knd superstring
due to Siege[21,27. In that case, there are only eight lin- + P
early independent fermionic first class constraints in the ini- V2b Vat bi¥aafa=0, (A73)
tial formulation, and use of the scheme will lead to the sys-
tem with all fermionic constraints being irreducible. After \/EbfﬁjL b; ?’;alﬂazo- (A7b)
this, covariant quantization is straightforward and the results
will be presented elsewhere.

—2b*b~ +b'bj=b%=0. (A5)

By virtue of Egs.(A4) and(A5), Eg. (A7b) is a consequence
of Eq. (A7a), provided that the standard light-cone assump-
tion b*#0 has been made.

In this paper we use generalized notations in which two
inequivalent minimal spinor representations of the Lorentz

APPENDIX A

group(right-handed and left-handed Majorana-Weyl spihors APPENDIX B
are distinguished by the position of its indices. We set lower
index for the right-handed spinag,, (A=1,...,16) and In this Appendix we list the essential Poisson brackets of

upper index for the left-handed ong®. The generalized the constraint16a—(16e):
16X 16 Dirac matrices are real and symmetric, obeying the
standard algebra

) R 1
{La,Lg}=2iT | 7+ mHm) do—a'),

I T TM=2,™  p"M—diag —,+,...). (Al)

- . 1
In analyzing the constraint systems of the superparticle, su-{L,,7Il;}=—2i(I'"9,0),| 7+ FHM) Slo—a'),
perstring models it is useful to represent a Majorana-Weyl ma
spinor of S@1,9 group as a Majorana one of $&) group
1 ~2 1 2
La, 5| 27ma’ 7o+ —11;

Vo= (s ths), a,a=1,....8, (A2) 2 2ma’

where indices, a label two inequivalent minimal spinor rep- =—-2i(T"9;0),
resentations of S@) group (8¢c and & representations, re-
spectively. This correspondence becomes evident in the ba-

- 1
ot mr{m) S(o—0a'),

sis of thel' matrices, {7lly,wll )} =27114(0)d,6+ d,(7Il,) 6,
18 O ~ _18 O 1 1
0_ 0_ - s~
3 ( 0 18)’ r ( 0 _18), |WH1’§<270[ it 27Ta'H12)}
rie| Yaa s © Yan ., ,
= y;a 0/ = y;a 0/’ (A3) =\ 27a' 7w+ e’ I, (0')(905)
lg O ~, (18 O 1 1
o= , = , - 122 2
(0 _18) (0 _18) +&12(27Ta77+2ﬂ_a,1_[1”5,
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1 s 1 ) 1 s 1 ) and the standard properties of thdunction
E 27Ta7T+mHl ,E 27Ta7T+mHl
=2(mlly)(0)d, 6+ o (wIl,) . (B1) 3,0=—03,6, F(o')d,0=0,F(0)6+F(a)d,o
. o (B3)
In obtaining Eq.(B1) the Fierz identity
(TP AT re)g+ (T a(Tre)a=Tag(¢ln) (B2)  have been used.
[1] LA. Batalin and G.A. Vilkovisky, Phys. Lett120B, 166 [13] W. Siegel, Phys. Lett128B, 397 (1983.
(1983. [14] E. Nissimov, S. Pacheva, and S. Solomon, Nucl. PB287,

[2] ILA. Batalin and E.S. Fradkin, Phys. Let22B, 157 (1983; 349(1988; B317, 344(1989.
P.N. Lebedev Institute Report No. 259, 19@@published [15] I.LA. Batalin and I.V. Tyutin, Nucl. PhysB381, 619 (1992.
[3] ILA. Batalin and E.S. Fradkin, P.N. Lebedev Institute Report[16] I.A. Batalin and I.V. Tyutin, Phys. Lett. B17, 354 (1993.

No. 165, 1983unpublished [17] ILA. Batalin and LV. Tyutin, Mod. Phys. Lett. A8, 3757
[4] A.A. Deriglazov, Int. J. Mod. Phys. &8, 1093(1993. (1993.
[5] I.L. Buchbinder, S.M. Kuzenko, and A.G. Sibiryakov, Phys. [18] P.A.M. Dirac,Lectures on Quantum Mechanjcéeshiva Uni-

Lett. B 352 29(1995. versity, Belfer Graduate School of Scien@ecademic Press,
[6] L. Brink and J. Schwarz, Phys. Let00B, 310(1981). New York, 1964.
[7] M. Green and J. Schwarz, Phys. Let86B, 367 (1984). [19] M.B. Green, J.H. Schwarz, and E. WitteBuiperstring Theory
[8] I. Bengtsson and M. Cederwall, @tborg Report No. 84-21 (Cambridge University Press, Cambridge, 1987

1984 (unpublishegl [20] E.S. Fradkin and T.E. Fradkina, Phys. L&%B, 343(1978.
[9] 3.M. Evans, Nucl. Phys3331, 711(1990. [21] W. Siegel, Class. Quantum Gra, 95 (1985.
[10] L. Brink, M. Henneaux, and C. Teitelboim, Nucl. Phy293 [22] W. Siegel, Nucl. PhysB263 93 (1985.

505 (1987). [23] L. Brink and M. HenneauxPrinciples of String TheoryPle-
[11] A.A. Deriglazov, A.V. Galajinsky, and S.L. Lyakhovich, Nucl. num Press, New York and London, 1988

Phys. B(to be published [24] D.M. Gitman and 1.V. Tyutin, Class. Quantum Gra.2131

[12] J.M. Evans, Phys. Lett. B33 307(1989. (1990.



