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Green-Schwarz superstring in extended configuration space and the infinitely reducible
first class constraints problem

A. A. Deriglazov* and A. V. Galajinsky†

Department of Theoretical Physics, Tomsk State University, 634050 Tomsk, Russia
~Received 29 March 1996!

The Green-Schwarz superstring action is modified to include some set of additional~on-shell trivial! vari-
ables. A complete constraint system of the theory turns out to be reducible both in the original and in additional
variable sectors. The initial 8s first class constraints and 8c second class ones are shown to be unified with
8c first class and 8s second class constraints from the additional variables sector, resulting in SO~1,9!-
covariant and linearly independent constraint sets. Residual reducibility proves to fall on second class con-
straints only.@S0556-2821~96!02218-7#

PACS number~s!: 11.25.Hf, 04.60.Ds, 11.30.Pb
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I. INTRODUCTION

The general recipe of covariant quantization of dynamic
systems subject to reducible first and second class constra
was developed in Refs.@1–3#. The ‘‘ghosts for ghosts’’
mechanism@1,2# was proposed to balance the correct dynam
ics on the one hand and manifest covariance on the anot
The application of the scheme turned out to be remarka
successful for certain cases. The antisymmetric tensor fi
@1#, chiral superparticle@4#, and high superspin theories@5#
seem to be the most interesting examples.

However, in the general case there may arise an infin
tower of extra ghost variables, which makes the express
for the effective action formal. The superparticle@6# and su-
perstring@7# models appeared to be the first~and, actually,
the most important! examples of such a type. A complet
constraint system of the theories in the Hamiltonian forma
ism includes fermionic constraints1 that, being a mixture of
eight first class and eight second class ones@8s and 8c rep-
resentations of SO~8!-little group, respectively#, lie in the
minimal spinor representation of the Lorentz group. The la
ter fact means that the covariant irreducible separation of
constraints is impossible in the original phase space@8#.
However, one can realize the reducible split by making u
of covariant projectors known for the superparticles@9–11#
and superstring@12#. The introduction of 16 covariant pri-
mary ghosts to the~reducible! first class constraints implies
16 secondary ones, etc. There arises an infinite tower of e
ghost variables. The Lagrangian analogue of the situation
infinitely reducible Siegel symmetry@13#, with spinor pa-
rameters from which only half are essential on shell. No
that within the framework of the alternative twistor-harmon
approach@14#, the fermionic constraints can be separated in
covariant and irreducible manner due to the ‘‘bridge nature
of the harmonic variables. This formalism, however, is e
sentially Hamiltonian and the reparametrization invarian

*Electronic address: deriglaz@phys.tsu.tomsk.su
†
Electronic address: galajin@phys.tsu.tomsk.su
1We discuss mostly theN51, D510 case for which covariant

quantization is the principal problem.
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of the original Green-Schwarz theory turns out to be brok
in the modified version@14#.

Reformulation of the Batalin-Fradkin-Vilkovisky~BFV!
procedure that does not involve explicit separation of co
straints was presented in Refs.@15–17#. However, as was
shown in Ref.@11#, application of the scheme for concrete
models may conflict with manifest Poincare´ covariance.

In this paper we propose an alternative approach to t
infinitely reducible constraints problem ofD510, N51
Green-Schwarz superstring~GSS!. The basic idea is to intro-
duce additional pure gauge fermionic degrees of freedo
subject toreducibleconstraints like those of the GSS. We
choose these constraints to be a pair of Majorana-We
spinors with the following structure2: ~i! The first of them is
a mixture of eight first class and eight second class co
straints, which are required to lie in 8c and 8s irreducible
representations of SO~8! group, respectively;~ii ! The second
spinor contains only eight linearly-independent componen
that are second class constraints.

Splitting further all the fermionic constraints of the prob
lem in covariant and reducible manner~by making use of
covariant projectors@11,12#! one can combine the original
fermionic first class constraints of the GSS with the firs
class ones from the additional variables sector into one ir
ducible set @which corresponds to the 8s̄%8c
representation of SO~8! or Majorana-Weyl spinor of
SO~1,9!#. Analogously, the second class constraints from t
additional variables sector can be unified with the origin
second class ones resulting in covariant and irreducible c
straint. For the model concerned, the resulting constraint s
tem turns out to be completely equivalent to the initial on
Thus, the reducible fermionic first class constraints of th
GSS become irreducible in the modified theory. The infini
tower of extra ghost variables, which corresponds to the fi
class constraints in the original formulation of the supe
string, will not appear in the new version. The Lagrangia
that reproduces the scheme described above is our main
sult.

2The total number of constraints is sufficient to suppress just o
canonical pair of variables.
5195 © 1996 The American Physical Society
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The paper is organized as follows. In Sec. II the Gree
Schwarz action is modified to include some set of addition
variables. The local symmetries of the model are inves
gated. A complete canonical analysis of the theory is carr
out in Sec. III A. Classical equivalence of the modified an
original superstrings is established in Sec. III B. We do th
by imposing gauge conditions for all first class constraints
the problem. Dynamics in the physical variables sec
proves to coincide with that of the GSS. Note that all th
gauge conditions can be imposed in covariant manner,
cepting the standard light-cone gauge conditions correspo
ing to the super-Virasoro constraints. In Sec. IV explicit
covariant separation of the constraints is realized. The in
nitely reducible first class constraints problem is resolve
Concluding remarks are presented in Sec. V. Appendix
contains our conventions and a brief description of t
SO~8!-formalism used in the work. Appendix B includes es
sential Poisson brackets of the constraints involved.

II. ACTION AND LOCAL SYMMETRIES

The action functional to be examined is of the form

S5SGS1Sadd, ~1!

where

SGS5E dtdsH 2
1

4pa8
A2ggabPm

aPmb

2
1

2pa8
eab]aX

miQGm]bQJ ,

Sadd5E dtdsH 2
1

2
eabLm~]aA

m
b2]bA

m
a

2]aQGmxb1 i ]bQGmxa1 ixaGmxb!2FL2J ,
and Pm

a[]aX
m2 iQGm]aQ, A2g[A2detgab. The first

term in Eq.~1! is the Green-Schwarz action@7#, while the
second term is the action of additional variables. All th
variables are treated on equal footing. The latin indices
designed for target manifold tensors, the greek ones are
for worldsheet tensors~for instance,xA

a is D510 Lorentz
spinor andD52 worldsheet vector!. Statistics of the fields
corresponds to their tensor structure, i.e.,Xm, gab, Am

a ,
Lm, F are bosons, whileQA, xA

a are fermions. The matrix
eab is chosen in the formeab52eba, e01521.

Since theSadd contains only derivatives of theQ, the
modified superstring is invariant under standard global s
persymmetry transformations.

Local symmetries of the theory, except the standard
parametrizations of worldsheet and the Weyl transform
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tions, include a modification of the Siegel transformations3

dkQ52iPmaG̃mk2a,

dkX
m5 iQGmdkQ,

dk~A2ggab!516A2gP2ag~]gQk2b!,

dkxa5]a~dkQ!,

dkA
m

a5 iQGm]a~dkQ!, ~2!

where

P6ab[
1

2 S gab6
eab

A2g
D , k2[P2k,

and a set of new symmetries acting on the additional var
ables subspace. Here we list them with brief comments.

There is a pair of bosonic symmetries withD510 vector
jm andD52 vectorma parameters

djA
m

a5]ajm, ~3!

dmA
m

a5Lmma ,
~4!

dmF52
1

2
eab]amb ,

which mean that the fieldsAm
a andF may be gauged away.

Note that the system~3!, ~4! is reducible. This can easily be
seen by takingjm5Lmn, mb5]bn, wheren is an arbitrary
function. With such a choice (dj2dm)uon shell[0, which
means functional dependence of generators of the transfo
mations. In addition to transformations~3! and~4!, the action
~1! possesses the fermionic symmetries

ds1xa5LnG̃
ns1

a ,

ds1F5eabi ~]aQ2xa!s1
b , ~5!

ds2xa5LnG̃
ns2

a ,

ds2F5 i eab~]aQ2xa!s2
b . ~6!

The symmetries~5! and~6! are reducible. The transformation
of parameters, under which Eqs.~5! and ~6! are invariant
~modulo equations of motion!, is of the form

sa85sa1LnG
n¸a

3To check thek invariance of the action it is necessary to use to
the Fierz identityGA(B

m GCD)
m 50 and the property of theP6 projec-

tors:P6agP6bs5P6bgP6as. Note as well that thek symmetry is
reducible. The following transformation of parameters
kb85kb1PngGnP2gs¸sb , with the ¸sb being an arbitrary func-
tion, does not change Eq.~2! ~modulo equations of motion!, which
means linear dependence of generators of the transformations.
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with an arbitrary¸a . It is interesting to note that the reduc
ible symmetries~2! and ~6! can be replaced by one irreduc
ible symmetry if one supposes that (LPa)

2Þ0. Actually,
consider the transformation

dvQ52iPmaG̃mv2a,

dvX
m5 iQGmdvQ,

dv~A2ggab!516A2gP2ag~]gQv2b!,

dvxa5]a~dvQ!1LmG̃mv2
a ,

dvA
m

a5 iQGm]a~dvQ!,

dvF5 i eab~]aQ2xa!v2
b , ~7!

which is a formal sum of Eqs.~2! and ~6! with
k25s2[v2. Two remarks concerning this symmetry ar
relevant. First, it is straightforward to check that there is n
transformation of parameters that leaves Eq.~7! invariant,
i.e., all 16 parameters are effective on shell. Secondly,
original k2 ands2 transformations~each of them has eight
essential parameters on shell! can be extracted from Eq.~7!
by taking

v1b5
1

~LP!2
~LPs!P1sgLnG

nG̃mPmgkb ,

~8!

v2b5
1

~LP!2
~LPs!P1sgPngGnG̃mLmsb .

Equations of motion for the theory~1! are of the form

Pm
aPmb5

1

2
gabg

gdPm
gPmd ,

]b~A2ggba]aX
m12A2gP2baiQGm]aQ!50,

PmaGmP2ab]bQ50, ~9a!

L250,

eab~]aA
m

b2]bA
m

a2 i ]aQGmxb1 i ]bQGmxa

1 ixaGmxb!14FLm50,

]aLm50,

i ~xa2]aQ!GmLm50. ~9b!

Note that Eqs.~9a! are just the Green-Schwarz superstrin
equations. In the light-cone gauge this system reduces
hXi50, ]2Qa50, wherei anda are, respectively, vector
and spinor indices of SO~8! group. It turns out that there are
no more dynamical degrees of freedom in the question. W
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will prove this fact in the next section by moving to the
Hamiltonian formalism and imposing all gauge conditions.

III. CANONICAL FORMALISM

A. Dirac procedure

Denoting momenta conjugate to the variables4 (Xm, QB,
N, N1, g

11, Lm, Am
a , xB

a , F) as (pm , PuB , PN , PN1
,

Pg , pLm , pAm
a, PxB

a pF) one gets

pm5
1

2pa8 S 1NPm02
N1

N
Pm11 iQGm]1Q D ,

L̃[Pu1 iQGmS pm1
1

2pa8
Pm1D2 ix1G

mLm'0,

pLm'0, pAm
0'0, pAm

12Lm'0,

Px
0'0, Px

1'0, pF'0,

PN'0, PN1
'0, Pg'0, ~10!

where]1[]/]s. The first equation in Eq.~10! determines
]0X

m as a function of the other canonical variables. Th
remaining equations are primary constraints.

The canonical Hamiltonian is given by

H5E dsHN1~p̂P1!1N
1

2 S 2pa8p̂21
1

2pa8
P1

2D
2A0]1L1 i ~x12]1Q!GmLmx01FL21L̃lu1PNlN

1PN1
lN1

1Pglg1pLl11pA
0l2

1~pA
12L!l31Px

0l41Px
1l51pFl6J , ~11!

where

p̂n[pn2
1

2pa8
iQGn]1Q

andlu ,lN ,lN1
,lg ,l12l6 are Lagrange multipliers corre-

sponding to the primary constraints. The preservation in tim
of the primary constraints implies the secondary ones

p̂mPm
1'0,

1

2 S 2pa8p̂21
1

2pa8
P1

2D'0,

4Within the framework of canonical formalism it is useful to make
an invertible change of variables@23#

g00,g01,g11→N52
1

A2gg00
, N152

g01

g00
,g11,

whereA2g5A2detgab. In terms of the new variables the discov-
ery of secondary constraints becomes evident.
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L2'0, ~x12]1Q!GnLn'0,]1L
m'0, ~12!

and conditions on the Lagrange multipliers

l1
m50, ~13a!

l3m52 ix1Gmlu1]1Am 01 i ~x12]1Q!Gmx012FpAm
1,

~13b!

pAm
1Gm~lu2x0!50, ~13c!

2iGmS p̂m1
1

2pa8
Pm 1D ~lu2~N1N1!]1u!

2 iGmpAm
1~l52]1x0!50. ~13d!

Equations~13c! and ~13d! are sufficient to determinelu .
Actually, multiplying Eq. ~13c! by G̃n

„p̂n11/(2pa8)Pn 1…

and Eq.~13d! by G̃npAn
1 and then taking the sum one gets

lu5
1

2pA
1@p̂11/~2pa8!P1#

H G̃nS p̂n1
1

2pa8
Pn 1D

3GmpAm
1x01G̃mpAm

1Gn

3S p̂n1
1

2pa8
Pn1D ~N1N1!]1QJ , ~14!

provided thatpA
1
„p̂11/(2pa8)P1…Þ0 on shell. The latter

condition can always be realized by choosing appropri
gauge-fixing conditions and initial data to the equations
motion.5 Inserting further Eq.~14! into Eq. ~13d! one finds

pAn
1Gn~l52]1x0!50. ~15!

Equation~15! determines half of thel5, that can easily be
seen by moving to the SO~8!-formalism. In SO~8! notation
the condition~15! reads~see Appendix A!

~l5ȧ2]1x0ȧ!2
1

A2pA
11

g ȧa
i pAi

1~l5a2]1x0a!50.

It is straightforward to check further that the secondary co
straints are identically conserved in time if Eqs.~12! and~13!
hold. Thus, there are no more constraints in the problem.

5The constraints]1pAn
1'0, (pA

1)2'0 together with the equa-
tion of motion]0pAn

150 imply pAm
15nm , wherenm is a constant

null vector ~initial data!. Choosing the initial data to be
nm5(n0,0, . . . ,0,n0), n0Þ0, and imposing standard light-cone
gauge conditions~see Sec. III B! X25a8tp2, p251/(2p)p2,
wherep2Þ0 is a complete momentum of the superstring, one g

pA
1@p̂11/~2pa8!P1#52

1

2p
n1S p22

2

a8
iuG2]1u DÞ0.
ate
of

n-

To separate the original constraints of the theory into firs
and second class, consider the equivalent constraints syst

pLn'0, Ln2pAn
1'0, ~16a!

pAn
0'0, pF'0,

Px
0'0, PN'0,

~16b!

PN1
'0, Pg'0,

~pA
1!2'0, ]1pAn

1'0,

p̂nP
n
11L]1Q'0,

1

2 S2pa8p̂21
1

2pa8
P1

2D1L]1Q'0, ~16c!

L[Pu1 iQGmS pm1
1

2pa8
Pm1D2 i ]1QGmpAm

12]1Px
1

'0, ~16d!

Px
1'0, ~x12]1Q!GnpAn

1'0. ~16e!

The constraints~16a! are second class. The constraints
system~16b!, ~16c! is first class. Among 16 fermionic con-
straints~16d! half are first class and another half are secon
class ~see Sec. IV!. Analogously, the first equation in Eq.
~16e! contains eight first class and eight second class con
straints while the latter implies eight linearly independen
second class constraints~see Sec. IV!. The essential Poisson
brackets of the constraints~16! are gathered in the Appendix
B.

Note that among 1110 constraints (pA
1)2'0,

]1pAn
1'0 only 10 are functionally independent as a conse

quence of the identity]1(pA
1)222pA

n1]1pAn
1[0. Inde-

pendent constraints can be extracted in the light-cone bas
as follows:

pA
212

1

2pA
11pA

i1pAi
1'0, ]1pA

11'0, ]1pAi
1'0.

As was mentioned above, it is impossible to separate eig
first class and eight second class constraints, being combin
in the L, in a covariant and irreducible manner. For the
model concerned, covariant projectors into first and secon
class constraints are constructed in Sec. IV.

An explicit counting of the degrees of freedom shows tha
there are 16 bosonic and eight fermionic phase-space degre
of freedom in the model, which coincides with the number o
degrees of freedom in the Green-Schwarz theory. Note a
well that, after use of the Dirac algorithm, there remained
11211011 bosonic and 1618 fermionic undefined
Lagrange multipliers. Since the local symmetries, considere
in Sec. II, have just this number of parameters being inde
pendent on shell, we conclude that they exhaust all the e
sential Lagrangian symmetries of the model.

ets
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B. Gauge-fixing and physical dynamics

In imposing gauge-fixing conditions two criteria shoul
be satisfied@18#. First, the Poisson bracket of original firs
class constraints and gauges must be an invertible ma
when restricted to constraints and gauges surface. Sec
gauge conditions are to be consistent with equations of m
tion; i.e., there must not appear new constraints from t
condition of preservation in time of the gauges.6 With this
remark, consider first gauge conditions fixing all the und
fined Lagrange multipliers in the theory. The equations

N'1, N1'0, g11'1, Am
0'0, F'1/2,

~17a!

x0'0, ~x12]1Q!GnS p̂n1
1

2pa8
Pn1D'0 ~17b!

prove to be suitable for this goal. Preservation in time of t
gauges~17! yields

lN50, lN1
50, lg50,

~18!
l2

m50, l650, l450,

and

~l52]1lu!GnS p̂n1
1

2pa8
Pn1D1~x12]1Q!Gn

3S 2

pa8
i ]1QGnlu1]1S p̂n1

1

2pa8
Pn1D D

50. ~19!

Taking into account that the constrain
(x12]1Q)GnpAn

1'0 together with the gauge
(x12]1Q)Gn@p̂n11/(2pa8)Pn1#'0 imply

x12]1Q'0, ~20!

while Eqs.~13c!, ~15!, ~16b!, and~19! mean

l52]1lu50, ~21!

one concludes that all the Lagrange multipliers have be
fixed. In the gauge chosen, the canonical variables (N,PN),
(N1 ,PN1

), (g11,Pg), (Am
0 ,pAm

0), (x0 ,Px
0), (x1 ,Px

1),

(F,pF) are unphysical and may be dropped after introdu
ing the corresponding Dirac brackets.

We consider now gauge conditions to the remaining fi
class constraints.

~i! (Q,Pu) sector. There are eight first class constrain
being nontrivially combined with eight second class ones
Eq. ~16d!. In this case one can adopt the condition

GnpAn
1Q'0, ~22!

6In the general case one can admit new constraints if they w
later be treated as gauge conditions for some of the original fi
class constraints.
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or in the SO~8!-formalism @we write out only the linearly
independent part of Eq.~22!#

Q ȧ2
1

A2pA
11

g ȧa
i QapAi

1'0. ~23!

BecauseGnpAn
1lu'0 @see Eq.~14!# the gauge~22! is con-

sistent with the equations of motion. It is straightforward to
check as well that the Poisson bracket of the first class co
straints being contained in theL with the gauge~23! is an
invertible matrix.

After gauge fixing, the only dynamical variables in the
sector areQa . Taking into account that in the gauge chose
Eq. ~14! takes the form

lu5]1Q, ~24!

one concludes that physical dynamics of the superstring~1!
in the odd-variables sector is described by

]0Qa5]1Qa

or

]2Qa50, a51, . . . ,8, ~25!

just as in the Green-Schwarz model.
~ii ! (Am

1 ,pAm
1) sector. The constraints to be discussed

are of the form

~pA
1!2'0, ]1pA

m1'0. ~26!

The equations of motion in the sector read

]0Ã
m
150, ]0p̃A

m150, ~27!

where canonical transformation~see as well Ref.@24#!

Am
1→Ãm

15Am
12tpA

m1, pA
m1→p̃A

m15pA
m1

has been made. Imposing then the following gauge conditio
to Eq. ~26!,

Ãm
1'0,

one concludes that there are no physical degrees of freed
in the sector.

~iii ! (Xm,pm) sector. There are super-Virasoro constraints
~16c! and equations of motion

]0X
m52pa8pm, ]0p

m5
1

2pa8
]1]1X

m. ~28!

In this case one can impose the standard light-cone gaug
@19#

X25a8tp2, p25
1

2p
p2, ~29!

wherep2 is the complete momentum of the superstring. It i
easy to check that the conditions~29! are consistent with Eq.
~28!. Making use of Eq.~16c! to express the variablesX1

andp1 as functions of other variables and taking into ac

ill
rst
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count the gauges~29! one can conclude that the physica
dynamics in the sector is described by

]0X
i52pa8p i , ]0p

i5
1

2pa8
]1]1X

i , ~30!

or, eliminating thep i ,

hXi50, i51, . . . ,8. ~31!

Thus, physical dynamics of the superstring~1! is determined
by Eqs. ~25! and ~31!, which coincides with the Green-
Schwarz superstring dynamics.

IV. COVARIANT SEPARATION OF CONSTRAINTS.
RESOLVING THE INFINITELY REDUCIBLE
FIRST CLASS CONSTRAINTS PROBLEM

In the previous sections we have modified the GSS so
to include a set of additional pure gauge variables. In t
extended phase space covariant separation of constra
present no special problem. Actually, consider the constra
system

pAn
1G̃nPx

1'0, ~32a!

bnG̃
nPx

1'0, ~x12]1Q!GnpAn
1'0, ~32b!

bnG̃
nL'0, ~32c!

pAn
1G̃nL'0, ~32d!

wherebn[p̂n1 1/(2pa8) Pn
1, which is completely equiva-

lent to Eqs.~16e! and ~16d! due to the condition (bpA
1)

Þ0 ~see Sec. III A!. Moving to the SO~8!-formalism it is
straightforward to check now that Eq.~32a! includes eight
linearly independent first class constraints; Eq.~32b! con-
tains 818 independent second class ones; Eqs.~32c! and
~32d! imply eight first class and eight second class co
straints, respectively. For instance, rewriting Eqs.~32a! and
~32b! into SO~8! formalism one gets~see Appendix A!

na[A2pA
11Pxa

11pAi
1g i

aȧPxȧ
1'0, ~33a!

w ȧ[A2b2Pxȧ
11big

i
ȧaPxa

1'0, ~33b!

c ȧ[A2pA
11~x1ȧ2]1Q ȧ!2~x1a2]1Qa!g

i
aȧpAi

1'0.
~33c!

Evaluating then the Poisson brackets of the constraint

$w ȧ ,c ḃ%'2b2pA
11S d ȧḃ2

1

2b2pA
11big ȧc

i g
cḃ

j
pA j

1D
[D ȧḃ , ~34!

~all other brackets vanish7!, and taking into account that the
matrix in the right-hand side of Eq.~34! is invertible,

7Note that the constraintsna'0 and w ȧ'0 are equivalent to
Pxa

1'0, Pxȧ
1'0 due to Eq.~35!.
l

as
he
ints
int

n-

s

DD̃51,

D̃ȧḃ52
1

2~bpA
1! S d ȧḃ2

1

2b2pA
11pAi

1g ȧc
i g

cḃ

j
bj D ,

~35!

one concludes that the constraintna is first class, whilew ȧ
andc ḃ are second class. Analogous calculations can be p
formed for the constraints~32c! and ~32d!. Thus, the con-
straint system~16a!-~16e! can be covariantly split into first
and second class.

Let us now discuss Eqs.~32!. The remarkable observation
is that the reducible first class constraints~32a!, ~32c! @reduc-
ible second class constraints~32d! and the first equation in
Eq. ~32b!# can be combined to form an irreducible con
straints set. Actually, consider the constraint system

pAn
1G̃nPx

11bnG̃
nL'0, ~36a!

bnG̃
nPx

11pAn
1G̃nL'0, ~36b!

~x12]1Q!GnpAn
1'0, ~36c!

which is completely equivalent to the original one@Eqs.
~16d! and ~16e!# due to the constraintsb2'0, (pA

1)2'0.
The constraints~36a! are first class and linearly independent
Analogously, the constraints~36b! are second class and irre-
ducible. The remaining constraints~36c! are second class
and reducible.

Thus, in the modified version~1! of the superstring, the
fermionic first class constraints form an irreducible set. The
will require only 16 covariant ghost variables~and 16 con-
jugate momenta! in constructing the BRST charge. The infi-
nite tower of extra ghost variables, which appeared for th
GSS, will not arise in the modified model@the remaining
reducible first class constraints (pA

1)2'0, ]1pAn
1'0 are of

first stage of reducibility and can be taken into account alon
the standard lines@1–3##.

Note that the operators extracting the first and secon
class constraints from the initial mixed constraint system a
not strict projectors. For instance,GnbnG̃

mbm5b2'0. In
certain cases@11#, however, it is more convenient to deal
with the first and second class constraints that were extrac
by means of strict projectors. For the case at hand the su
able projectors are of the form

P65
1

2
~16K !,

K5
1

2A~bpA
1!22b2~pA

1!2
G̃@nGm]bnpAm

1. ~37!

In terms of the operators covariant~redundant! split of the
constraints looks like

L2'0, Px
11'0 first class,

L1'0, Px
21'0 second class,

where L6[LP6, Px
61[Px

1P6. Generalization of Eqs.
~36a!–~36c! reads
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L21Px
11'0, L11Px

21'0,
~38!

~x12]1Q!GnpAn
1'0.

V. FINAL REMARKS

In this work the infinitely reducible first class constraint
problem of the original GSS has been resolved. Howev
there still remain~infinitely! reducible second class con
straints in the question. As is known, within the framewo
of the standard BFV formalism first and second class co
straints are treated in a different manner. First class c
straints contribute to the BRST charge while second cla
ones appear in the path integral measure@3,20#. In this sense,
the problem of covariant quantization of the GSS reduces
constructing a correct integral measure for the theory~1!.
The weak Dirac bracket construction@11# appears to be suit-
able for this goal and this work is in progress now.

Note as well that the proposed techniques can be dire
applied to modification of the superparticle~and superstring!
due to Siegel@21,22#. In that case, there are only eight lin
early independent fermionic first class constraints in the i
tial formulation, and use of the scheme will lead to the sy
tem with all fermionic constraints being irreducible. Afte
this, covariant quantization is straightforward and the resu
will be presented elsewhere.

APPENDIX A

In this paper we use generalized notations in which tw
inequivalent minimal spinor representations of the Loren
group~right-handed and left-handed Majorana-Weyl spinor!
are distinguished by the position of its indices. We set low
index for the right-handed spinorcA , (A51, . . . ,16) and
upper index for the left-handed onecA. The generalized
16316 Dirac matrices are real and symmetric, obeying t
standard algebra

GmG̃n1GnG̃m52hmn, hnm5diag~2,1, . . . !. ~A1!

In analyzing the constraint systems of the superparticle,
perstring models it is useful to represent a Majorana-We
spinor of SO~1,9! group as a Majorana one of SO~8! group

CA5~ca ,c̄ ȧ!, a,ȧ51, . . . ,8, ~A2!

where indicesa,ȧ label two inequivalent minimal spinor rep-
resentations of SO~8! group ~8c and 8s representations, re-
spectively!. This correspondence becomes evident in the b
sis of theG matrices,

G05S 18 0

0 18
D , G̃05S 218 0

0 218
D ,

G i5S 0 gaȧ
i

g ȧa
i 0

D , G̃i5S 0 gaȧ
i

g ȧa
i 0

D ,
G95S 18 0

0 218
D , G̃95S 18 0

0 218
D ,

~A3!
s
er,
-
rk
n-
on-
ss

to

ctly

-
ni-
s-
r
lts

o
tz
s
er

he

su-
yl

a-

where thegaȧ
i ,g ȧa

i [(gaȧ
i )T are SO~8! g matrices@19#:

gaȧ
i g ȧb

j 1gaȧ
j g ȧb

i 52d i jdab , i51, . . . ,8. ~A4!

Let nowbn be a lightlike vector

22b1b21bibi5b250. ~A5!

The useful observation is that under the assumption~A5! the
equation

bn~ G̃nc!A50 ~A6!

determines only eight linearly independent conditions.
Actually, rewriting Eq.~A6! in the SO~8! formalism one

gets

A2b1ca1bigaȧ
i c̄ ȧ50, ~A7a!

A2b2c̄ ȧ1big ȧa
i ca50. ~A7b!

By virtue of Eqs.~A4! and~A5!, Eq. ~A7b! is a consequence
of Eq. ~A7a!, provided that the standard light-cone assump
tion b1Þ0 has been made.

APPENDIX B

In this Appendix we list the essential Poisson brackets o
the constraints~16a!–~16e!:

$LA ,LB%52iGAB
n S p̂n1

1

2pa8
Pn1D d~s2s8!,

$LA ,p̂P1%522i ~Gn]1Q!AS p̂n1
1

2pa8
Pn1D d~s2s8!,

H LA , 12 S 2pa8p̂21
1

2pa8
P1

2D J
522i ~Gn]1Q!AS p̂n1

1

2pa8
Pn1D d~s2s8!,

$p̂P1 ,p̂P1%52p̂P1~s!]sd1]1~p̂P1!d,

H p̂P1 ,
1

2 S 2pa8p̂21
1

2pa8
P1

2D J
5S 2pa8p̂21

1

2pa8
P1

2~s!]sd D
1]1F12 S 2pa8p̂21

1

2pa8
P1

2D Gd,
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H 12 S 2pa8p̂21
1

2pa8
P1

2D , 12 S 2pa8p̂21
1

2pa8
P1

2D J
52~p̂P1!~s!]sd1]1~p̂P1!d. ~B1!

In obtaining Eq.~B1! the Fierz identity

~Gnc!A~Gnw!B1~Gnc!B~Gnw!A5GAB
n ~wGnc! ~B2!
and the standard properties of thed function

]sd52]s8d, F~s8!]sd5]sF~s!d1F~s!]sd
~B3!

have been used.
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