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Standard model anomalies in curved space-time with torsion
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Using the Fujikawa and the heat-kernel methods we make a complete and detailed computation of the
global, gauge, and gravitational anomalies in the standard model defined on a curved space-time with torsion.
We find new contributions coming from the curvature and the torsion to the leptonic number arfsantigt
B-L is not conserved anymoréo the U1)y gauge and to the mixed(W)y-gravitational anomalies. However,
neither gauge nor gravitational new anomaly cancellation conditions for the hypercharges arise.
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I. INTRODUCTION ing properly the SM as a quantum field theory in the pres-
ence of a classical space-time with torsion. As is well known,
Our knowledge of fundamental interactions confirmed ex-theories with chiral fermions such as the SM are potentially
perimentally can be summarized roughly in the standarglagued with gauge and gravitational anomalies which can
model (SM) and classical gravitation. In other words, any ruin the consistency of the quantum theory even though it is
phenomenon ever observed can, in princip|e’ be accommdye” defined at the classical level. Fortunat6|y, the current
dated in the SM formulated in a curved space-time backassignment of hypercharges for the different SM fermions is
ground. Of course there are many reasons to think that this @one in such a subtle way that all those anomalies exactly
not the final theory(provided such a thing exists at)albut ~ cancel, at least when there is no torsion. In addition, there are
at least it is the minimal one compatible with all the experi-global classical symmetries which also turn out to be anoma-
mental data. lous, giving rise to interesting physical effects such as the
For the above reason the proper formulation of the SM irﬂonconservation of the bal’yonic or |ept0niC numbers. In this
curved space-time has become an important matter. Theork we will compute all those anomalies in the SM defined
problem of defining a quantum field theory in curved space®©n & curved space-time with torsion.
time has been considered in detail in the literature some time The plan of the paper goes as follows. In Sec. Il we in-
ago(see[1] for a review. Concerning the SM in particular, troduce the SM in a curved background space-time with tor-
the most important property is that it is a chiral gauge theor)ﬁion- In Sec. Il we discus_s some technical aspects concern-
based on the gauge group @:XxSU(2), XU(1)y. Then, ing the_computqtlon of dn‘fere_nt anomalies, including the
the matter(i.e., quarks and leptohdeing described by fer- appropriate versions of the Fujikawa and heat-kernel meth-
mionic fields, one is forced to introduce vierbeins and con0ds. In Sec. IV we consider the baryon and lepton number
nections on the space-time manifold. As is well known, onceahomalies in the presence of torsion. In Sec. V we compute
a metric is given, there is a unique connection which is metthe anomalies in the gauge 8} xSU(2)_ XU(1)y symme-
ric compatible and torsion-free, namely, the Levi-Civita con-try- In Sec. VI we study the gravitational anomalies as
nection defined by the Christoffel symbols. In fact this wasanomalies in the local Lorentz symmetries. In Sec. VII we
the connection considered by Einstein in his original formu-discuss some of the consequences of our anomaly computa-
lation of general relativityGR). However, one can also con- tions and in particular those concerning the quantization of
sider the vierbein and the connection as independent struéd€ electric charge in the framework of the SM. Finally, in
tures. In this case, if one starts from the standard EinsteinS€c- VIII we briefly list the main results of our work.
Hilbert action, one may find again the Christoffel symbols
for the connection as a solution of an equation of motion ||, THE STANDARD MODEL IN CURVED SPACE-TIME
together with the Einstein field equations for the metRa- WITH TORSION
latini formalism). However, quantum effects or modifica- ] ] ) )
tions of the action obtained for example by adding higher Let us start by lntro_ducmg some n(_)tatlﬁﬂj. We W|_|| use
derivatives terms to the Einstein-Hilbert action could pro-the following conventions for the indices,n, ... will la-
duce torsion. In addition, fermions give a nonzero contribu2€l objects referred to the locally inertial system whereas
tion to the torsior(see, for exampld?2]). Finally, most of the % - - - WI|| denote world. |nd|qes. The metric tensor is ex-
extensions of GR introduce the vierbein and the connectioRressed in terms of the vierbegrf(x) as
as independent entities and this will be our approach in the
following. Nevertheless, we will keep the metric compatibil- g’ (x) =em(x)eq(x) ™, 1)
ity condition in order to have a geometrical meaning for the
connection. This condition is equivalent to consider the conwhere ""=(-,-,-,-) is the Euclidean flat metric. Notice that
nection as a S@) or SO3,1) Lie-algebra-valued one-form we work in Euclidean space-time, assuming that the Wick
(for Euclidean or Lorentzian signature, respectiyely rotation has been performea®— —ix*, x'—X', dy—id,,
Thus, in this paper we will address the problem of defin-9,— g;, where the carets denote Euclidean space-time ob-
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jects. The Euclideany matrices are defined by’— 7, L,=Q'DRQ+LTDL, @
¥ —i9', and ys=—y,y,y3y4. (In the following we will
work in Euclidean space-time and the carets will be omittedvhere the Dirac operators for quarks and leptons are defined

for simplicity). as
The Hermitian form of the Dirac Lagrangian in curved
space-time, with fermions considered as anticommuting vari- 1D 9=i7*(d,+ QJ+G,+WJP +BZ+S]ys),
ables reads
iD-=iy"(9,+ QL +W,P +B+S,ys). (8)
L=3 ($"y"D,y—D "y y), 2

Here we have organized the matter fields in doublets, so

wherey*=e*,™ and these matrices satisfy*,y"}=—2g+. ~ that for the first family we have
The gauge and Lorentz covariant derivative is defined as

usual by Q= u

d

14

, L=e.

(€)

Duth= (0, Qu+ A Y=Vt A Y, ©) Their left-handed componeng®_andL, are SU2), dou-

blets, whereas each right-handed compon®@atandLy, is

an SU?2), singlet. In addition, thel andd quarks are S(B).
triplets. The gauge fields appearing in the operators are glu-
ons, corresponding to the $8) group, that we will denote

by G,=—-igsG5A? with A® the Gell-Mann matricesW\V
bosons, corresponding to the &) symmetry, that we will
write asW,?*Lz—igWiTa with the T generators in the
appropriate representation; finally there is also the hyper-

where Q,=—(i/2)['2"S,, is the spin connection with
S on= ({18 [¥m,v,] the Hermitian generators of the $4)
group in the spinor representation afg denotes the gauge
connection. Notice thatl" jb} does not have to be a torsion-
free Levi-Civita connection, which we wiIIAdeno{Ej‘Lb}. In
general, if we take a metric connection, i.€,g,,=0, then

it can be written as

rab b v charge boson
raP=ra+eferK’, 4 g
QL _inr QL Q.L
whereK?, is known as the contorsion tensor related to the BM 19"BL(PLyr + PryR ) (10

M\

torsion tensor by4] with the hypercharge matrices defined as

KVeh=3 (TV#A 4 TR L TAM), (5) yir yi

. .. . . . yS’L: de/?’ yS'L: de|" (11)
Using the decomposition in E€4) we can write the Dirac Yo YR

Lagrangian in Eq(2) (without gauge fieldsin terms of the 0 L

usual Levi-Civita connection plus an additional term depend Ve should stress that thel{~) and (") operators are not

ing on the torsiorf5]: Hermitian, due to the chiral couplings of &), and hyper-

charge fields. Thus the adjoint operators are

1 i~ —
L=3 Py 9,— P rj‘}’zab> W (ID)T=iy"(d,+ Q3+ G, +WIPe+B2+SYys),
i (iIDYHT=iy%(d,+ Q- +WEPR+BL+ S ye),  (12)
—(ww 2 F,ib«/ﬁzab) YU oo
where
i~ 1 —
_ b P
=Ty 9, > IaPS pt > T#) W BYt=ig'B,(Pry2"+PLyR"). (13
i b 1 Notice that, since there is no right neutrino, the spin connec-
=y'y* 9~ 5 | e 3 S,u75> b, (6) tion is written as follows for leptonic operators:
whereS,=¢€,,,, T andT,=T},=K},. Note that, with QL=— ' Fab( Pi2ap ) ,
this definition,S,, is the axial part of the torsion tensor. In K’ 2 " 2ab
conclusion, the Lagrangian for Dirac fermions in a curved
space-time with torsion is that of a fermion in a curved — I b Prab
space-time without torsion plus an axial interaction wa{h Q,=- 2 Iy Sab (14)

This similarity with axial gauge couplings will simplify the
computation of anomalies when using the well-known heatfor the same reason, the torsion terms are
kernel expansion in curved space-time. However, there is a
difference between the axial coupling of torsion and the axial . 1 PLvs
couplings of gauge fields. While the latter breaks the Hermi- S.Ys=— g o» )
ticity of the Dirac operator, the former does not. s

Let us use Eq(6) for the particular case of the SM matter

. . . . — 1 PR')’5

sector with one family of massless fermions and without Sys=—=S ( ) (15)
considering the Yukawa couplings to the Higgs field: * 8 Vs
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Finally, it is also important to note that in E() we have  Dirac operators this prescription gives the same result as the
written the minimal Lagrangian for fermions on a curved Fujikawa methodonce the divergent pieces have been re-
space-time with torsion. As we will see later, the introduc-moved. However, this is not so for non-Hermitian operators,
tion of nonminimal terms could yield new contributions to for which several regularization operators can be chosen in

the SM anomalies. the Fujikawa approaclh9] leading in general to different
results. Thus, for instance, one can split the Lagrangian and
Il. THE HEAT KERNEL FOR THE STANDARD the integration measure in their left and right components:

MODEL OPERATORS + Tt
[dydy’ ] —[dyrdy dgrdi ],

There are several techniques proposed for the computa-
tion of anomqhes in the literature. qu our purposes here the S Dy= l!/gzDLlﬁLJr (//IIDRl;bR- (19
most appropriate is to use the functional methods that were
first introduced by Fujikaw§6] in a flat space-time and later For the non-Hermitian SM Dirac operators in E®)
extended to curved space-time by Yajifi¥d. According to  without torsion(the torsion term is written between brackets
these methods, anomalies arise as Jacobian determinantstfie left and right Dirac quark operators
the functional integral. These Jacobians are divergent objects

and have to be regularized using one of the existing ap- iD8=i7“[&M+QS+GM+WS+ B&(—Sg)],
proaches. One possibility is to use the Fujikawa method

regularizing the Jacobian by means of a Gaussian cutoff. iD3=iy"d,+QI+G,+Bg,(+S))] (20)
Thus, for instance, for an axial transformation we would

write are Hermitian(the same is true for leptonsThus, it is pos-

sible to regularize separately each piece of the anomaly.
. However, the torsion term breaks the Hermiticity of these
t T _ 4 '
[dydy ] —[dydy JEXF< 2[ d X@'Q(X)A(X))' operators and therefore this method does not seem to be suit-
(16) able in presence of torsion. In spite of this fact, one can
o _ always rotateS,—iS, [10]. This makes the operators Her-
where the anomalj(x) appearing in théregularized Jaco-  mitian and then, at the end of the calculation, one can undo

bian reads the rotation. Such a procedure has proved to be useful in
5 theories with axial gauge couplings and yields the so called

A —lim 2 oy ex;{ _ h)(b consistent a}nomaly. Howevern for torsion it can be seen _that,
Al 5 t /" calculating in this way, one finds inconsistent results since

there would not be any choice of hypercharges in the SM to
) . (iD)? cancel all the gauge anomalies.
im >, $nYs €xXp — . én Another regularization methof®], also in the Fujikawa
- " approach, which does not suffer from these inconsistencies is
{2 “a(x) to regularize separately the pieces in the anomaly coming
=limtr —— 752 ”_n (17 from the transformation ofy and 4. For that purpose, our
e (4) n= t first step will be to build the following two Hermitian opera-
tors which preserve all the gauge symmetries:
where\,, are the eigenvalues of the Hermitian operator of the

=
t

theory (D), ¢, are its eigenvectors, and in the last step we Hl,,=(iD)T(iD),
have performed the Seeley—De Witt expansion for the heat
kernel. In general, the above expression is divergent in the H¢r=(iD)(iD)T. (21

t—oo limit, due to the first two terms, and a certain renor-

malization prescription will be needed to obtain a finite re- Then the Hermiticity ensures that their corresponding
sult. However, it may happen, as in the case of theories witigigenfunctions form a complete set:

only vector gauge couplings, that those potentially divergent

2
terms vanish yielding a finite value fdx,. Hydn=N\¢n,
An alternative point of view which provides a finite result 5
for the anomaly without introducing arad hocregularizing Hytén=Nén - (22)

operator is the-function regularization prescriptiof8]. In .. ) )
this case the transformation Jacobian is defined as the quo- NOW we expandy and ¢ in terms of eigenfunctions of
tient between the effective action and the transformed effect, and H,, respectively, that is,y=2.a,¢,, ¢

tive action, both regularized usingfunction regularization. =3,b,&!. Under an infinitesimal transformation such as
Thus, for instance, for the case of the axial transformations _
considered before, p—g—1a%(X) T,

detD=J defe’s*®perseX)), (18 Syt +igTad(x)T?, (23)

where J is the Jacobian of the symmetry transformation.whereT? are the generators of the given gro(gventually
With this definition the Jacobian is finite since it is the quo-including some chiral projectpr the integration measure
tient of two regularized objects. In the case of Hermitianchanges as
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[dydyt][da,db,]—[da,db,]

=[dandb_n]exp( J d*x\gia®()AYX) |, (24
whereA?(x) is the anomaly
AR =2 $iThn— 2 £1T%,. (25)

As it has already been mentioned, we regularize each

piece of the anomaly with the corresponding operator:

A%(x)= lim | X, ¢IT?

M—o n

—H,IM? trag—H,t/M?
M= 2 TR M |

(26)

In order to obtain a finite result, we have to perform the

heat-kernel expansion for th¢, andH ,+ operators and sub-
stract the divergent terms. However, a new difficulty still

ANTONIO DOBADO AND ANTONIO L. MAROTO

a(H,,x)= 1; [D,,D,][D#D"]+ § [D,,[D*X]]
+3 X?— § RX— 35 Rl + %R?
+ 155 (RuupeRHP7 =R, R*) (32
and
ay(Hy1x)= % [D,,,D,]J[DD"]+ § [D,,,[D*X]]
+1 X?— IRX— % RL+ AR?
+ 1 (RupeR*P7—R,,RE), (33
where, according to Eq28),
X= s, +28,8~ 3 [v*,¥"1[d,.d,],
X=7ys,+25,5—  [y*,y'][d,.d,]. (39

appears. Although _the heat-kernel expansion _has been The explicit expression for the commutators in E(2)
worked out for a wide class of operators even in curved,q (33) can be written as

space-time, the coefficients become unmanaggdilefor
operators which do not cast the general form

(27)

whereX does not contain derivatives. At first glance, this is
not the case of,, andH ,+. However, with some algebra we
can write them in the desired forp2]:

H=D,D*+X,

H,=(iD)"(iD)=D, D"+ ysS,+2S,9"
—7 [»*»"1d,.d,],

Hy1=(iD)(iD)'=D D"+ ysS, +25,5"

_% [‘y#!‘yv][dﬂ!dv]’ (28)
where
QL_ QL QL QL
d2t=0,+ Q7"+ (G,)+W2tP +BY",
d3t=0,+ Q2"+ (G,) + W2 Pe+BYt, (29
and
DRt =d2 =5 sl v, ¥ ISP",
DYt =d~3 yslv.. v ISP (30)

QL pQLj_pQL QL QL
[D,u D3 ]_R,uv +(G#,,)+W#V PL+B;,
_SQQ‘LSS‘L[’YV!’Y#]_[’YVI’)/&]

X(%VSSS;';LL_ SS'LSS'L) Hvus vl

X(3 ¥sSa,— SPSeh) (35
and
(D" DS I=RE!+(G,,) + WE Pret BES
I a E A P
X (3 75525~ SN +[ 7, v
X(3ysS2s— SO (36)

Notice that for quarks, the torsion and curvature terms are
the same either with or without a bar. The gluonic term in
brackets is absent in the leptonic case and we have defined

i F)Lzab
L __ b
R,,=—5R® (

i PR3,
l (R b 37

pL __ _ pab
RMV— R

The gluonic terms written in_parentheses are absent in the

leptonic operators anB 2, Q%' andSP" have been de-
fined in Egs.(13), (14), and (15). Therefore, removing the
divergenta,(x) coefficient we obtain, for the anomaly,

A3(X)= t{T% ay(H, ., x)—ax(H,nx)1}, (31

1
(4)

Once we have a consistent method for computing anoma-
lies in a curved space-time with torsion, let us apply it to the
SM anomalies.

IV. ANOMALIES IN THE LEPTONIC
AND BARYONIC CURRENTS

where the second coefficient in the heat-kernel expansion in In this section we will calculate the anomalies in the glo-
curved space-time has been worked out in different referbal vector current® andL. Their differenceB—L is con-
enceq7,11,17 using different methods and in our case readsserved in flat space-time although separately they are not.
(for quarks or leptons However, we will show that in curved space-times the ab-
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sence of right neutrinos implies that, in some sense, gravity 1 g°
h . . Hy 73— nvaf a a
couples chirally and thus the anomaly in the leptonic current V. B=35.2 € = WWap

acquires a gravitational contribution. Nevertheless, these

gravitational terms are not present in the baryonic sector,

thus yielding the above comment&d- L nonconservation. +9'?B,,B s> (VE_VZR)>, (44)
In order to obtain the anomalous Ward identities related u.d

to the leptonic and baryonic numbers, we will consider the h the b . tis defined in th | §

following local transformations of quarks and leptons: where Ihe baryonic current I defined in the usual form

I t+ia(X) i, j‘B‘=Ni Q'yQ. (45

Tttt
=i X). 38
Yoy igal) 38 We see that the result agrees with that of the flat space-

Note that the classical action would be invariant underf[ir:net case. There is no contribution from the curvature nor
e torsion.

these transformations if they were global. The SM fermionic

action for a general spin connection reads Following the same steps for leptons, we obtain the

anomaly in thdeptonic currentwhich reads

1
J d*%\gLn= f d*%Vg 5 (YD uih= (D) 'y ), I L €7
o 73202 T 2a RuasRet g S6Se
2
where we denote by/ the leptons and quarks. Under the 1 eaBYd 9" A +q’? 2_\2
above transformations, the classical action changes as fol- € 7 WysWapt 9 BV&B“BVE,Q (YL YR
lows:
1 1
+5 OSL+ 55 (S"S'S,).,
| dtaLn [ dxlLa-ia0ov vl
(40) I
5 | RS, ZRSVl , (46)

where we have used integration by parts with the Levi-Civita
covariant derivativé/,. On the contrary, the eff_ectlvg action | bore we have defined the leptonic current as
does not change under the transformation since it only af-
fects to fermion fields which are integration variables: cu_y tou

JC=Ly L. (47

We see that, in this case, due to the absence of right
neutrinos, some terms depending on the curvalg and
the torsion appear in the anomaly as total divergences. It is
=f [dlﬂ'dlﬂ'T]GX% —j d4X\/§£m(¢’,lﬂ'T))- possible to absorb all the dependence on the torsion by de-
fining the following new current whose divergence gives the
(41) same result as in a curved space-time without torsion:

e*W[A,r,eJ:f [dz//dt,bf]exp(—f d*x\gLm( ¥, ")

Now using Eq.(24) (for an Abelian groupand Eq.(40), 1

_ 1 . 1
we obtain for the effective action the expression jr=it- 2205 S+ % S*S#S,

6

1 Bys
+Z86M 4 Sﬁ;ysb‘ . (48)

e—W[A,F,e]:J [dt//diﬂT]eXl{_J d*xv/gia(x)A(X)

! R#S 1RS“
5 RS 3

xex;{ f d*x gia(x)VMjl‘) It explicitly depends on the torsion and this fact could
have some relevance in the problem of the matter-antimatter
asymmetry in the Universe.
. (42 Had we assumed the existence of right neutrinos, such
terms depending on the curvature and the torsion would have
not appeared an— L would be conserveas it happens in
flat space-timgprovided the following relation is satisfied:

><exp(— f d*x\g L, v

Identifying the exponents in Eq&41) and(42) we find

AX)=V ,j" (43

y23
2 2\ _ 2 2

Let us recall now the regularized expression for the anomaly uEt:i (Yi=yR) ;a (Yi=YR) 49

derived in the previous section in E(1). Hence, if the

transformations in Eq38) are applied to quarks, we obtain which is indeed the case with the usual SM hypercharge

the anomaly in thdoaryonic current assignment.
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V. GAUGE ANOMALIES

e—W[G’,F,e]:J [d(pdlpT]exy{—J d4X\/§£m)

In this section we will study whether the presence of the
curvature and the torsion may introduce new constraints to
the hypercharge assignments in the SM. ><exp< f d4x\/§0a(x)Aa(x)). (56)

The matter Lagrangian given in E(Y) is invariant under

the SU3)cxSU2) xU(1)y gauge transformations, which g,nanding to first order irg and identifying with Eq.(54)
are given, respectively, by

we obtain
Q—Q—-i#(x)A%Q, = (D (J#N*=A%(x). (57)
+ L oa tra This anomalous Ward identity implies that the nonconserva-
Q' —=Q +ie"(X)Q A%, (50 tion of the gauge current expectation value is given by the

anomaly coefficient. Finally the expression for the anomaly
for the SU3). transformations for quarks; we also have in the SU2), and U1)y currents are given by

Y= =1 (X) TP, A (X)syz= 2 (SiPLTRn— EIPRTRE,),

PT— YT +i0?(x) Y PRT?, (51)
A(X)y)= En) (H(YLPL+YRPR) ¢n— &Ny Prt+YrPL) &)
for the SU2), transformations of quarks and leptons and, (58)
finally, the hypercharge transformation reads
We will use the operatord , andH ,+ defined in Eq(28)
Y— p—10(X)(y_PL+YrPRr) ¥, to regularize each piece of t_he anomaly sepa_rately. The re-
sults for the different anomalies are the following.

_ Anomaly in the SU3). gauge current:
¢'— T +100) ¢ (YL Pr+YRPL), (52)

1

a — a —
wherey, andyr are the hypercharge matrices defined in Eq.ASU<3>(X) (4)? LA (@a(H %) = ap(Hyt,x))] (59
(12).
In the following we will obtain the expression for the and for the divergence of the current we have

anomalous variation of the effective action for the case of
SU(3)c transformations, being the computation analogous (D (j#))2=
for the other groups. Let us first introduce the notation s

1
3072 gsg’e’”“ﬁGZ,,BaﬁuZd (YL—YR)-

6=—i6°A®, D ,6=0,0+[G,,0]. We will also use the defi- (60)
nition of the gauge current vacuum expectation value in the . ) . .
presence of the background fields: This result agrees with that found in flat space-time. There

are no new contributions from curvature or torsion. The can-

cellation condition for this anomaly is given by
—==—i95(QTy*A%Q) = —ig«(j?). (53
oG,

2 (yL=yr)=0. (61)

We also defingj#)=(j**A?). Under the previously men- _ _
tioned SU3). transformations the gauge fields change as Anomaly in the SW2), gauge current. Following the
follows: G,—G,—D 6 and the anomalous change in the Same steps as before for the @) transformations, we find
effective action is given by

1
Aasu(z)(x): W tr[ T4(@ay(H . X) P —a,(H 1, x) PR) ].
W[G—DG,F,e]—W[G,F,e]z—f d*x\/gi 6°(D ,(j*))®, (62)
(54) The expression for the divergence of the gauge current

can be obtained after some algebra and it yields
where we have denotedD,(j*)=V (j*)+[G,j")]

=(D,(j*))2A® The change in the integration measure is a1 ) uva
giveﬁin Eq(24) (D/J,<JM>)3_32W2 g9 e BW?LVBQB uz]d NCyL_*—VE’e Y-
(63)
Aa(x)su(3)=2 (qSEAa(bn—grﬁAagn). (55 We observe that the result is again the same as in flat
n

space-time. All the contributions coming from the curvature
or the torsion vanish. The cancellation condition reads in this
Therefore we can write the transformed effective action asase
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1
Ay(p)(X) = (@) tr (y_PL+YrPr)22(H %)
> Neyi+2 v =0. (64)
ud e = (YLPrtYrPL@2(H y1,X) ]. (65

Anomaly in the Wl), gauge current. Finally, the ex- The final expression for the divergence of the gauge current
pression for the anomaly in the(Jy current can be written is now more involved than the non-Abelian cases. The result
as is

1 aByd wv 1 L 1 a QY
—ﬁe R,uva,BR w%——DSH—%(S SSQ);V

1
DM(J.M):_W{ u§:'1 NC(yL_yR)_I'% (YL—Yr) 6

2

1 1 1 g
+ Z8 Gaﬁyasﬂ;yS&a_ = ( Rvasa_ - RS}) + 75 GMVQ'BGZVGiﬁUZd (yL_yR)

6 2

v
2

9
+ 7 €W W

UE(; NCS/L"‘E;3 i +g’2€MVaBB,uVBa,8

g Nc(yf—y§)+§é (yﬁ—y?o)]. (66)

Notice the appearance of terms depending on the curvature and the torsion. Also note that the torsion appears only in terms
which are four-divergencies and therefore can be removed by adding suitable local counterterms to the Lagrangian which
respect the rest of the gauge symmetfie4§. These counterterms read

AL= L BYS .+ L BeS?’S, + ! b33, S:B lg R"*S L RS N +>
T 327%2|6 ° e 96 T By sPa” g B ) < c(YL=YR) 2 (YL=YR) |
(67)
|
The new terms that were not present in flat space-time l/,(x)_>e(i/2)em”<x)zmnw(x)

impose a new cancellation condition, namely, the vanishing

of the sum of all hypercharges: w*(x)—>z/ﬁ(x)e‘wz)fm”(x)zmn,

;j |\‘c(y|__yR)+;5 (YL—Yr) =0, (68) €, — e, —e(x)e,,

ab ab a cbh_ _b ac__ ab
which is satisfied by the usual SM hypercharges. On the Ly =T+ €0l = e ()T, = 0,e(x). - (70

other hand, we have that the cancellation of the terms already . L
present in flat space-time gives the same conditions as in Under these transformations the matter Lagrangian is in-
Egs.(61) and (64) plus the additional one: variant. However, the effective action changes as

W[A,I'-De,e—e€e]
0=§ NdyE—y%HEe (yi-yd. (69)

=W[A,F,e]—J d4xfg([—eg(x)r;b+ e2)Tac
VI. GRAVITATIONAL ANOMALIES

oW oW
. . . . . . b b
In this section we consider the possible violation of local +9,€(X)] srap+ €p(X)€,, 5ea>- (7D
Lorentz symmetry due to quantum effects when chiral fermi- # #

ons are presentl5]. We will conclude that whenever Abe-
e e e e e e e o ow, using ntegraton by pats and he anisymmety of e
Y . = . a . . .
ever, due to the specific hypercharge assignment in the S@gn?eeg:gz ggmponeniéﬂ in a andb, we can rewrite this
this anomaly is exactly cancelled. The condition for the can- P
cellation of the Lorentz anomaly is the same as that of th
cancellation of terms depending on the curvature and th
torsion in the W1)y, anomaly, Eq(68). )
Under local Lorentz transformations the spinor, vierbein, _ f 4 ! Cu\vab_ Tab
and connection fields present in the matter Lagrangian of the WIA.T.e]+ | d X\/aeab(x) 2 (D (NPT,
SM, Eg.(7) change as (72

Here we have denoted Wy all the gauge fields in the theory.

[A,'—De,e—ee]
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where T,,=e,,6W/de is the expectation value of the . ‘
energy-momentum tensor in presence of the background AT(X) =D (prSMpy— EIS™E). (75
fields and we have used the following definitions: ;

SW i i Finally, expanding Eq(74) to first order ine and identi-
STH- 7 (W (Y*2 bt Sap ¥y )= — > (j&) (73)  fying the terms in Eq(72) we find the anomalous identity
“
with (j“y=(j %,32% andD ,(j*)=V (") + [, .(i*)]. AT(X)= = (D, (j#) "I (TT=TT). (76)
In addition, we can calculate the change in the effective . ]
action due to the change in the integration measure: We use the operatotd , andH ,r to regularize the first
and second terms in E¢5), respectively. The result can be
' expressed as
e WMIAT".e 1:f [dzﬂdzf]exp{—f d4x\/§£m) P
1
i ASGa)(X) = 7 t[E™(@n(H , ,X) —a(H t,x)) .
Xexp{ - J d4x\/§[emn(x)Am“(x)]), Sa9 (4m)* 2 2
2 (77)
(74) : , , .
After a lengthy calculation we find the final expression for
where the Lorentz anomaly:

!

mn g 1 mnabR v 1 nQa;m mga;n 1 mna 2 1 mnabB 1 mn
A (X):32’7T2 gE /AvabB +6(Ba S ' _Ba S ' )_ﬂf b(BaCSCSb+BabS)_gE abR_ES',u,u,B
1 mna 1 amy;n 1 m n N m 1 any;m
— 3 €M DBayt 5 (S,B M) - 5 (STBHM =SB, — 2 (SB[ 2 NelyL—yr)+ 2 (YL—YR) |
(78)
|
Notice that pure gravity terms do not appear. Indeed it has VII. CHARGE QUANTIZATION
been shown that there are no pure gravitational anomalies in IN THE STANDARD MODEL

four dimensiong16]. The cancellation condition agrees with hi . il di h h
that of Eq.(68) which ensures the vanishing of the gravity " this section we will discuss the consequences of the
terms in the W1), anomaly and, as we have already com-equirement of the cancellation of the above computed gauge
mented, is satisfied in the SM. Observe also that all the term@nd gravitational anomalies for one family. First of all, we
depend on th@,, field, which is Abelian, whereas there is should point out that, at the classical level, gauge invariance
no contribution from non-Abelian gauge fields. Some ofof the Yukawa sector of the minimal standard model with a
these terms, such as those being total derivatives, could B@mplex Higgs doublet imposd48] two new constraints:
eliminated by means of (1)y gauge-invariant counterterms. namely,
In principle, the remaining terms could be cancelled by Lyd_Lyu__y
U(1)y gauge-noninvariant counterterms and then trade local 2JR - ZJR ¢

Lorentz mvanance.for gauge mvanan@e_e, for Instance, 3 y%+ 3 yg:yd), (79
[17] for the case without torsionhowever in our case it is

not obvious which is the form of the counterterms needed for ) .
that aim. wherey 4 is the hypercharge of the Higgs doublet. Therefore,

Finally, we should stress that the preceding anomaly caliust imposing gauge invariance at the quantum level in flat
culations have been performed with the minimal Lagrangiarspace-time we obtain five equations. E¢s1), (64), (69),
in Eq. (6). The introduction of nonminimal couplings to tor- and those in Eq(79) for six unknowns: y/=y¢, yl'=y¢,
sion or curvature could yield new contributions to theyg, Y. y%, andy,. We can solve this system and obtain all
anomalies. In fact, consider the real teirnzﬁy“Tsz [5]. Itis  the hypercharges in terms of one of them, for instayge,
analogous to an Abelian gauge tefiike the U(1)y] with the  the resultisyf=y/=—y,, yEzyE=y¢/3, yr=4y,/3, and
same couplings to the left- and right-handed spinor compoy &= —2y4/3. Now fixing the electron charge to bel it
nents(except for the neutrino From the above results we gives the usual hypercharge assignment in the SM. Now, the
see that such a term would yield an anomaly in thé¢Z3U cancellation condition in Eq68) for both the gravitational
U(1)y as well as in the local Lorentz symmetry that could notanomalies and the gravitational terms in thél)}y anomaly
be cancelled by hypercharge assignments. does not impose any new constraint on the hypercharges.
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On the other hand, one could have taken a different poin& classical background space-time with torsion using a well-
of view and, without assuming any specific symmetry-defined method to regularize the divergencies.
breaking sector, i.e., discarding Eqg9), try to fix the hy- Concerning the anomalies affecting global currents we ar-
percharges. In this case, gauge invariance in flat space-time to the following results. The baryonic current anomaly is
is not enough to fix them and it is necessary to impose th@ot modified by any curvature or torsion term and then it is
condition in Eq.(68) to obtain a discrete number of solu- the same as in flat space-time. However, due to the absence
tions. Now we have four equations. Eq§1), (64), (69,  of right-handed neutrinos, the leptonic current anomaly gets
coming ffjom gauge invarance %”d E8) for five un- ey contributions coming from curvature and torsion terms.
knownsy [=Y{, YL=YL, YR YR, YR [19]. We note that the  rarefore; the conservation of the total baryonic minus lep-
four equations can be reduced to just one equation for two i« \umber B—L), which is well known in the SM in flat
unknowns: namely, space-time, is violated when curvature and torsion are
present.

The gauge anomalies corresponding to the group8)gU
and SU2), do not get new contributions and then we find
the standard conditions for their cancellation in terms of the
fermion hypercharges. For the(1)y anomaly we obtain the
known contributions from all the SM gauge fields and also
new terms depending on the curvature and the torsion. The
cancellation of these gauge and gravitational terms gives rise

21(yR) e+ 21 yR)2ya+6(yR)+6(yD3=0. (80

This equation, in turn, can be expressed in terms of on
variable ify $+£0:

yY 3 91 yY 2 91 yY to two more conditions in addition to the other two obtained
1+ =] +—= | =3 — —5=0. (81  from the cancellation of the S8); and SU2), anomalies.
y 6 \y 6y o
R R R The gravitational anomaly has been computed as a gauge

anomaly corresponding to the locéEuclidean Lorentz
group S@4). This anomaly has contributions which are
products of the hypercharge gauge field and curvature
(mixed gauge-gravitational anomaliebypercharge and tor-
_yd_(yuyd e_\yv_ _ U\, d e_ _ u sion and hypercharge alone. This is consistent with the well-
=yL=(YrTYRI2, Y(=Y{=—3(YrTYR)I2, Yr=—3(Yr . T )
+y§¢). Therefore, there are three possible sets of hyper'—‘”OW” absence of pure gravitational anomalies in four di-

charges(up to a global normalization factprThe first one mensions. On the other hand, the only condition found on the
readsy Y= —y% andyl=y9=ye=y’=ye=0. This solu- hypercharges in order to cancel these terms is exactly the

tion together with the usual weak isospin assignmenfame that cancels the curvature and the torsion terms appear-

Q=T,+Y/2 implies a chargeless electron and it is the “bi- ing in the U1)y gauge anomaly.
zarre” hypercharge assignment obtained 18]. Finally we have dealt with the problem of charge quanti-
The second solution, taking the normalization so that theation in the SM. It has been shown that including the Higgs
electric charge of the electron is1, gives the following sector of the minimal SM and demanding gauge invariance
values for the hypercharges:y%=4/3, y&=-2/3, atthe quantum level, the hypercharges are fixed, up to nor-
yl!=yl=1/3, yf=y/=-1, and y§=—2, which is the malization. On the other hand, without considering any spe-
usual hypercharge assignment in the SM. cific symmetry-breaking sector, gauge invariance, i.e., can-
The third solution, also taking the same normalization asellation of gauge anomalies in flat space-time, is not enough
before, reads yR=4/3, ykr=-2/3, y{=y{=1/3, 1o fix the hypercharges. Adding the condition of absence of
yt=y{=—1, andyg=—2. With the standard weak isospin gravitational anomalies we obtain three possible sets of hy-
assignment, the last set leads to different electric charges fofarcharges. Physical requirements, such as vector electro-
the left and right components of the quark fields and theremagnetism allow one to discard the nonstandard solutions.

fore to chiral electromagnetism. ; e i th In summary, the presence of torsion in a curved space-
To slug'\r?ar!fr?, gau&e mvgrlalr)llci in flat Spr?c;e-;!melllrtlht %ime background does not change the standard conditions to
minima With one Higgs doublet 1s enough to 1ix all N€ o5 qq) the gauge and mixed gauge-gravitational anomalies.

hyperch_arges{up to a normallzan_o_n factpr On the ther However the torsion gives new contributions to the leptonic
hand, without assuming any specific symmetry breaking sec-

tor, but demanding gauge invariance in curved space-timgu"ent anomaly that in principle could lead to new physical
(or gauge and local Lorentz invarianceve cannot fix the effects.

hypercharges, obtaining three possible sets of solutions. Fur-

ther physical requirements as the existence of a charged elec-

tron or vector electromagnetism can be invoked to remove

the two unusual solutions in this case. ACKNOWLEDGMENTS

Now it is not difficult to see that there are three real so-
lutions for this equationy &y &=—1, —2, —1/2. The rest of
hypercharges can be obtained as followsy}

The authors thank L. Alvarez-Gaunfer useful discus-
sions. We would also like to thank A. Geez Nicola for his
suggestions. This work was partially supported by the Min-

In this work we have carefully computed the different isterio de Educacio y Ciencia (Spain (CICYT AEN95-
anomalies that appear in the standard m@8#l) defined in ~ 1285-B.

VIIl. CONCLUSIONS



5194 ANTONIO DOBADO AND ANTONIO L. MAROTO 54

[1] N. D. Birrell and P. C. W. DaviesQuantum Fields in Curved W. H. Goldthorpe, Nucl. Phy8170, 307 (1980.
Space (Cambridge University Press, Cambridge, England,[12] G. Cognola and P. Giacconi, Phys. Rev3§) 2987(1989; A.
1982. P. Balachandran, G. Marmo, V. P. Nair, and C. G. Trahern,

[2] F. W. Hehl, P. von der Heyde, G. D. Kerlick, and J. M. Nester, ibid. 25, 2713(1982; G. Cognola and S. Zerbini, Phys. Lett. B
Rev. Mod. Phys48, 393(1976. 195, 435(1987.

[3] P. Ramond,Field Theory (Addison-Wesley, Reading, MA, [13] L. Ibanez,Proceedings of the 5th ASI on Techniques and Con-
1989. cepts in High Energy Physid®lenum, New York, 1989

[4] M. Nakahara,Geometry, Topology and Physi¢®OP, Berk-  [14] J. Minn, J. Kim, and C. Lee, Phys. Rev. 33, 1872(1987.
shire, 1990. [15] L. N. Chang and H. T. Nieh, Phys. Rev. L8, 21(1984; H.

[5] L. L. Buchbinder, S. D. Odintsov, and I. L. Shapiféffective T. Nieh,ibid. 53, 2219(1984); S. Yajima and T. Kimura, Prog.
Action in Quantum GravitylOP, Berkshire, 1992 Theor. Phys74, 866 (1985.

[6] K. Fujikawa, Phys. Rev. 21, 2848(1980. [16] L. Alvarez-Gaumeand E. Witten, Nucl. Phys234 269

[7] S. Yajima, Class. Quantum Gray, L207 (1988. (1983; L. Alvarez-Gaumeand P. Ginsparg, Ann. Phy@\.Y.)

[8] R. E. Gamboa Saravi, M. A. Muschietti, F. A. Schaposnik, and 161, 423(1985.
J. E. Solomin, Ann. PhygN.Y.) 157, 360(1984. [17] L. Caneschi and P. Valtancoli, Nucl. Phy&258 540(1985.

[9] K. Fujikawa, Phys. Rev. 29, 285(1984. [18] J. A. Minahan, P. Ramond, and R. C. Wagner, Phys. Rev. D

[10] A. Andrianov and L. Bonora, Nucl. Phy8233 232(1984. 41, 715(1990.

[11] H. T. Nieh and M. L. Yan, Ann. PhygN.Y.) 138 237(1982; [19] C. Q. Geng and R. E. Marshak, Phys. Rev3®) 693(1989.



