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Using the Fujikawa and the heat-kernel methods we make a complete and detailed computation o
global, gauge, and gravitational anomalies in the standard model defined on a curved space-time with to
We find new contributions coming from the curvature and the torsion to the leptonic number anomaly~so that
B-L is not conserved anymore! to the U~1!Y gauge and to the mixed U~1!Y-gravitational anomalies. However,
neither gauge nor gravitational new anomaly cancellation conditions for the hypercharges a
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I. INTRODUCTION

Our knowledge of fundamental interactions confirmed e
perimentally can be summarized roughly in the standa
model ~SM! and classical gravitation. In other words, an
phenomenon ever observed can, in principle, be accomm
dated in the SM formulated in a curved space-time bac
ground. Of course there are many reasons to think that thi
not the final theory~provided such a thing exists at all!, but
at least it is the minimal one compatible with all the exper
mental data.

For the above reason the proper formulation of the SM
curved space-time has become an important matter. T
problem of defining a quantum field theory in curved spac
time has been considered in detail in the literature some ti
ago ~see@1# for a review!. Concerning the SM in particular,
the most important property is that it is a chiral gauge theo
based on the gauge group SU~3!C3SU~2!L3U~1!Y . Then,
the matter~i.e., quarks and leptons! being described by fer-
mionic fields, one is forced to introduce vierbeins and co
nections on the space-time manifold. As is well known, on
a metric is given, there is a unique connection which is m
ric compatible and torsion-free, namely, the Levi-Civita co
nection defined by the Christoffel symbols. In fact this wa
the connection considered by Einstein in his original form
lation of general relativity~GR!. However, one can also con
sider the vierbein and the connection as independent str
tures. In this case, if one starts from the standard Einste
Hilbert action, one may find again the Christoffel symbo
for the connection as a solution of an equation of moti
together with the Einstein field equations for the metric~Pa-
latini formalism!. However, quantum effects or modifica
tions of the action obtained for example by adding high
derivatives terms to the Einstein-Hilbert action could pr
duce torsion. In addition, fermions give a nonzero contrib
tion to the torsion~see, for example,@2#!. Finally, most of the
extensions of GR introduce the vierbein and the connect
as independent entities and this will be our approach in
following. Nevertheless, we will keep the metric compatibi
ity condition in order to have a geometrical meaning for th
connection. This condition is equivalent to consider the co
nection as a SO~4! or SO~3,1! Lie-algebra-valued one-form
~for Euclidean or Lorentzian signature, respectively!.

Thus, in this paper we will address the problem of defi
54/96/54~8!/5185~10!/$10.00
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ing properly the SM as a quantum field theory in the pre
ence of a classical space-time with torsion. As is well know
theories with chiral fermions such as the SM are potentia
plagued with gauge and gravitational anomalies which c
ruin the consistency of the quantum theory even though it
well defined at the classical level. Fortunately, the curre
assignment of hypercharges for the different SM fermions
done in such a subtle way that all those anomalies exac
cancel, at least when there is no torsion. In addition, there
global classical symmetries which also turn out to be anom
lous, giving rise to interesting physical effects such as t
nonconservation of the baryonic or leptonic numbers. In th
work we will compute all those anomalies in the SM define
on a curved space-time with torsion.

The plan of the paper goes as follows. In Sec. II we in
troduce the SM in a curved background space-time with to
sion. In Sec. III we discuss some technical aspects conce
ing the computation of different anomalies, including th
appropriate versions of the Fujikawa and heat-kernel me
ods. In Sec. IV we consider the baryon and lepton numb
anomalies in the presence of torsion. In Sec. V we compu
the anomalies in the gauge SU~3!C3SU~2!L3U~1!Y symme-
try. In Sec. VI we study the gravitational anomalies a
anomalies in the local Lorentz symmetries. In Sec. VII w
discuss some of the consequences of our anomaly comp
tions and in particular those concerning the quantization
the electric charge in the framework of the SM. Finally, i
Sec. VIII we briefly list the main results of our work.

II. THE STANDARD MODEL IN CURVED SPACE-TIME
WITH TORSION

Let us start by introducing some notation@3#. We will use
the following conventions for the indices:m,n, . . . will la-
bel objects referred to the locally inertial system where
m,n, . . . will denote world indices. The metric tensor is ex
pressed in terms of the vierbeinem

m(x) as

gmn~x!5em
m~x!en

n~x!hmn, ~1!

wherehmn5~-,-,-,-,! is the Euclidean flat metric. Notice that
we work in Euclidean space-time, assuming that the Wi
rotation has been performed:x0→2 i x̂4, xi→ x̂i , ]0→i ]̂4,
] i→ ]̂ i , where the carets denote Euclidean space-time o
5185 © 1996 The American Physical Society
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5186 54ANTONIO DOBADO AND ANTONIO L. MAROTO
jects. The Euclideang matrices are defined byg0→ĝ4,
g i→ i ĝ i , and ĝ552ĝ1ĝ2ĝ3ĝ4 . ~In the following we will
work in Euclidean space-time and the carets will be omitt
for simplicity!.

The Hermitian form of the Dirac Lagrangian in curve
space-time, with fermions considered as anticommuting va
ables reads

L5 1
2 ~c†gmDmc2Dmc†gmc!, ~2!

wheregm5em
mgm and these matrices satisfy$gm,gn%522gmn.

The gauge and Lorentz covariant derivative is defined
usual by

Dmc5~]m1Vm1Am!c5~¹̂m1Am!c, ~3!

where Vm52( i /2)Ĝ m
abSab is the spin connection with

Smn5( i /4)[gm ,gn] the Hermitian generators of the SO~4!
group in the spinor representation andAm denotes the gauge
connection. Notice that$Ĝ m

ab% does not have to be a torsion
free Levi-Civita connection, which we will denote$G m

ab%. In
general, if we take a metric connection, i.e.,¹̂ngab50, then
it can be written as

Ĝm
ab5Gm

ab1en
aelbKml

n , ~4!

whereKml
n is known as the contorsion tensor related to th

torsion tensor by@4#

Knml5 1
2 ~Tnml1Tmnl1Tlnm!. ~5!

Using the decomposition in Eq.~4! we can write the Dirac
Lagrangian in Eq.~2! ~without gauge fields! in terms of the
usual Levi-Civita connection plus an additional term depen
ing on the torsion@5#:

L5
1

2 Fc†gmS ]m2
i

2
Ĝm
abSabDc

2S ]mc†1
i

2
Ĝm
abc†SabDgmc G

5c†gmS ]m2
i

2
Ĝm
abSab1

1

2
TmDc

5c†gmS ]m2
i

2
Gm
abSab2

1

8
Smg5Dc, ~6!

whereSa5emnlaT
mnl andTm5T lm

l 5K lm
l . Note that, with

this definition,Sm is the axial part of the torsion tensor. In
conclusion, the Lagrangian for Dirac fermions in a curve
space-time with torsion is that of a fermion in a curve
space-time without torsion plus an axial interaction withSm .
This similarity with axial gauge couplings will simplify the
computation of anomalies when using the well-known he
kernel expansion in curved space-time. However, there i
difference between the axial coupling of torsion and the ax
couplings of gauge fields. While the latter breaks the Herm
ticity of the Dirac operator, the former does not.

Let us use Eq.~6! for the particular case of the SM matte
sector with one family of massless fermions and witho
considering the Yukawa couplings to the Higgs field:
ed
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Lm5Q†D” QQ1L†D” LL, ~7!

where the Dirac operators for quarks and leptons are define
as

iD” Q5 igm~]m1Vm
Q1Gm1Wm

QPL1Bm
Q1Sm

Qg5!,

iD” L5 igm~]m1Vm
L1Wm

L PL1Bm
L1Sm

Lg5!. ~8!

Here we have organized the matter fields in doublets, s
that for the first family we have

Q5FudG , L5FneG . ~9!

Their left-handed componentsQL andLL are SU~2!L dou-
blets, whereas each right-handed component,QR andLR , is
an SU~2!L singlet. In addition, theu andd quarks are SU~3!C
triplets. The gauge fields appearing in the operators are gl
ons, corresponding to the SU~3!C group, that we will denote
by Gm52igSG m

aLa with La the Gell-Mann matrices,W
bosons, corresponding to the SU~2!L symmetry, that we will
write asW m

Q,L52 igWm
aTa with the Ta generators in the

appropriate representation; finally there is also the hype
charge boson

Bm
Q,L5 ig8Bm~PLyL

Q,L1PRyR
Q,L! ~10!

with the hypercharge matrices defined as

yL
Q,L5S yLu,n

yL
d,eD , yR

Q,L5S yRu,n
yR
d,eD . ~11!

We should stress that the (iD” Q) and (iD” L) operators are not
Hermitian, due to the chiral couplings of SU~2!L and hyper-
charge fields. Thus the adjoint operators are

~ iD” Q!†5 igm~]m1Vm
Q1Gm1Wm

QPR1B̄m
Q1Sm

Qg5!,

~ iD” L!†5 igm~]m1V̄m
L1Wm

L PR1B̄m
L1S̄m

Lg5!, ~12!

where

B̄m
Q,L5 ig8Bm~PRyL

Q,L1PLyR
Q,L!. ~13!

Notice that, since there is no right neutrino, the spin connec
tion is written as follows for leptonic operators:

Vm
L52

i

2
Gm
abS PLSab

Sab
D ,

V̄m
L52

i

2
Gm
abS PRSab

Sab
D ~14!

for the same reason, the torsion terms are

Sm
Lg552

1

8
SmS PLg5

g5
D ,

S̄m
Lg552

1

8
SmS PRg5

g5
D . ~15!
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Finally, it is also important to note that in Eq.~6! we have
written the minimal Lagrangian for fermions on a curve
space-time with torsion. As we will see later, the introdu
tion of nonminimal terms could yield new contributions t
the SM anomalies.

III. THE HEAT KERNEL FOR THE STANDARD
MODEL OPERATORS

There are several techniques proposed for the compu
tion of anomalies in the literature. For our purposes here
most appropriate is to use the functional methods that w
first introduced by Fujikawa@6# in a flat space-time and later
extended to curved space-time by Yajima@7#. According to
these methods, anomalies arise as Jacobian determinan
the functional integral. These Jacobians are divergent obje
and have to be regularized using one of the existing a
proaches. One possibility is to use the Fujikawa meth
regularizing the Jacobian by means of a Gaussian cut
Thus, for instance, for an axial transformation we wou
write

@dcdc†#→@dcdc†#expS 22E d4xAgia~x!A~x! D ,
~16!

where the anomalyA(x) appearing in the~regularized! Jaco-
bian reads

Areg5 lim
t→`

(
n

fn
†g5 expS 2

ln
2

t Dfn

5 lim
t→`

(
n

fn
†g5 expS 2

~ iD” !2

t Dfn

5 lim
t→`

tr
t2

~4p!2
g5(

n50

`
an~x!

tn
, ~17!

whereln are the eigenvalues of the Hermitian operator of t
theory (iD” ), fn are its eigenvectors, and in the last step w
have performed the Seeley–De Witt expansion for the h
kernel. In general, the above expression is divergent in
t→` limit, due to the first two terms, and a certain reno
malization prescription will be needed to obtain a finite r
sult. However, it may happen, as in the case of theories w
only vector gauge couplings, that those potentially diverge
terms vanish yielding a finite value forAreg.

An alternative point of view which provides a finite resu
for the anomaly without introducing anyad hocregularizing
operator is thez-function regularization prescription@8#. In
this case the transformation Jacobian is defined as the q
tient between the effective action and the transformed eff
tive action, both regularized usingz-function regularization.
Thus, for instance, for the case of the axial transformatio
considered before,

detD” 5J det~eg5a~x!D” eg5a~x!!, ~18!

where J is the Jacobian of the symmetry transformatio
With this definition the Jacobian is finite since it is the quo
tient of two regularized objects. In the case of Hermitia
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Dirac operators this prescription gives the same result as t
Fujikawa method~once the divergent pieces have been re
moved!. However, this is not so for non-Hermitian operators
for which several regularization operators can be chosen
the Fujikawa approach@9# leading in general to different
results. Thus, for instance, one can split the Lagrangian a
the integration measure in their left and right components:

@dcdc†#→@dcR
†dcL

†dcRdcL#,

c†D” c5cR
†D” LcL1cL

†D” RcR . ~19!

For the non-Hermitian SM Dirac operators in Eq.~8!
without torsion~the torsion term is written between brackets!
the left and right Dirac quark operators

iD” L
Q5 igm@]m1Vm

Q1Gm1Wm
Q1BLm

Q ~2Sm
Q!#,

iD” R
Q5 igm@]m1Vm

Q1Gm1BRm
Q ~1Sm

Q!# ~20!

are Hermitian~the same is true for leptons!. Thus, it is pos-
sible to regularize separately each piece of the anoma
However, the torsion term breaks the Hermiticity of thes
operators and therefore this method does not seem to be s
able in presence of torsion. In spite of this fact, one ca
always rotateSm→ iSm @10#. This makes the operators Her-
mitian and then, at the end of the calculation, one can un
the rotation. Such a procedure has proved to be useful
theories with axial gauge couplings and yields the so calle
consistent anomaly. However for torsion it can be seen th
calculating in this way, one finds inconsistent results sinc
there would not be any choice of hypercharges in the SM
cancel all the gauge anomalies.

Another regularization method@9#, also in the Fujikawa
approach, which does not suffer from these inconsistencies
to regularize separately the pieces in the anomaly comi
from the transformation ofc andc†. For that purpose, our
first step will be to build the following two Hermitian opera-
tors which preserve all the gauge symmetries:

Hc5~ iD” !†~ iD” !,

Hc†5~ iD” !~ iD” !†. ~21!

Then the Hermiticity ensures that their correspondin
eigenfunctions form a complete set:

Hcfn5ln
2fn ,

Hc†jn5ln
2jn . ~22!

Now we expandc andc† in terms of eigenfunctions of
Hc and Hc†, respectively, that is,c5(nanfn , c†

5(nb̄njn
† . Under an infinitesimal transformation such as

c→c2 iaa~x!Tac,

c†→c†1 ic†aa~x!Ta, ~23!

whereTa are the generators of the given group~eventually
including some chiral projector!, the integration measure
changes as
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@dcdc†#}@dandb̄n#→@dan8db̄n8#

5@dandb̄n#expS E d4xAgiaa~x!Aa~x! D , ~24!

whereAa(x) is the anomaly

Aa~x!5(
n

fn
†Tafn2(

n
jn
†Tajn . ~25!

As it has already been mentioned, we regularize ea
piece of the anomaly with the corresponding operator:

Aa~x!5 lim
M→`

S (
n

fn
†Tae2Hc /M2

fn2(
n

jn
†Tae2Hc† /M2

jnD .
~26!

In order to obtain a finite result, we have to perform th
heat-kernel expansion for theHc andHc† operators and sub-
stract the divergent terms. However, a new difficulty st
appears. Although the heat-kernel expansion has b
worked out for a wide class of operators even in curv
space-time, the coefficients become unmanageable@11# for
operators which do not cast the general form

H5DmD
m1X, ~27!

whereX does not contain derivatives. At first glance, this
not the case ofHc andHc†. However, with some algebra we
can write them in the desired form@12#:

Hc5~ iD” !†~ iD” !5DmD
m1g5S;m

m 12SmS
m

2 1
4 @gm,gn#@dm ,dn#,

Hc†5~ iD” !~ iD” !†5D̄mD̄
m1g5S̄;m

m 12S̄mS̄
m

2 1
4 @gm,gn#@ d̄m ,d̄n#, ~28!

where

dm
Q,L5]m1Vm

Q,L1~Gm!1Wm
Q,LPL1Bm

Q,L ,

d̄m
Q,L5]m1V̄m

Q,L1~Gm!1Wm
Q,LPR1B̄m

Q,L , ~29!

and

Dm
Q,L5dm

Q,L2 1
2 g5@gm ,g

n#Sn
Q,L ,

D̄m
Q,L5d̄m

Q,L2 1
2 g5@gm ,g

n#S̄n
Q,L . ~30!

The gluonic terms written in parentheses are absent in
leptonic operators andB̄m

Q,L, V̄ m
Q,L, andS̄n

Q,L have been de-
fined in Eqs.~13!, ~14!, and ~15!. Therefore, removing the
divergenta1(x) coefficient we obtain, for the anomaly,

Aa~x!5
1

~4p!2
tr$Ta@a2~Hc ,x!2a2~Hc†,x!#%, ~31!

where the second coefficient in the heat-kernel expansion
curved space-time has been worked out in different ref
ences@7,11,12# using different methods and in our case rea
~for quarks or leptons!
ch
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a2~Hc ,x!5 1
12 @Dm ,Dn#@Dm,Dn#1 1

6 @Dm ,@D
m,X##

1 1
2 X

22 1
6 RX2 1

30 R;m
m 1 1

72R
2

1 1
180 ~RmnrsR

mnrs2RmnR
mn! ~32!

and

a2~Hc†,x!5 1
12 @D̄m ,D̄n#@D̄m,D̄n#1 1

6 @D̄m ,@D̄
m,X̄##

1 1
2 X̄

22 1
6RX2 1

30 R̄;m
m 1 1

72 R̄
2

1 1
180 ~R̄mnrsR̄

mnrs2R̄mnR̄
mn!, ~33!

where, according to Eq.~28!,

X5g5S;m
m 12SmS

m2 1
4 @gm,gn#@dm ,dn#,

X̄5g5S̄;m
m 12S̄mS̄

m2 1
4 @gm,gn#@ d̄m ,d̄n#. ~34!

The explicit expression for the commutators in Eqs.~32!
and ~33! can be written as

@Dm
Q,L ,Dn

Q,L#5Rmn
Q,L1~Gmn!1Wmn

Q,LPL1Bmn
Q,L

2SaQ,LSa
Q,L@gn ,gm#2@gn ,g

a#

3~ 1
2g5Sa;m

Q,L2Sm
Q,LSa

Q,L!1@gm ,g
a#

3~ 1
2 g5Sa;n

Q,L2Sn
Q,LSa

Q,L! ~35!

and

@D̄m
Q,L ,D̄n

Q,L#5R̄mn
Q,L1~Gmn!1Wmn

Q,LPR1B̄mn
Q,L

2S̄aQ,LS̄a
Q,L@gn ,gm#2@gn ,g

a#

3~ 1
2 g5S̄a;m

Q,L2S̄m
Q,LS̄a

Q,L!1@gm ,g
a#

3~ 1
2g5S̄a;n

Q,L2S̄n
Q,LS̄a

Q,L!. ~36!

Notice that for quarks, the torsion and curvature terms
the same either with or without a bar. The gluonic term
brackets is absent in the leptonic case and we have defi

Rmn
L 52

i

2
Rab

mnS PLSab

Sab
D ,

R̄mn
L 52

i

2
Rab

mnS PRSab

Sab
D . ~37!

Once we have a consistent method for computing anom
lies in a curved space-time with torsion, let us apply it to t
SM anomalies.

IV. ANOMALIES IN THE LEPTONIC
AND BARYONIC CURRENTS

In this section we will calculate the anomalies in the gl
bal vector currentsB andL. Their differenceB2L is con-
served in flat space-time although separately they are
However, we will show that in curved space-times the a
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sence of right neutrinos implies that, in some sense, grav
couples chirally and thus the anomaly in the leptonic curre
acquires a gravitational contribution. Nevertheless, the
gravitational terms are not present in the baryonic sect
thus yielding the above commentedB2L nonconservation.

In order to obtain the anomalous Ward identities relat
to the leptonic and baryonic numbers, we will consider t
following local transformations of quarks and leptons:

c→c1 ia~x!c,

c†→c†2 ic†a~x!. ~38!

Note that the classical action would be invariant und
these transformations if they were global. The SM fermion
action for a general spin connection reads

E d4xAgLm5E d4xAg
1

2
~c†gmDmc2~Dmc!†gmc!,

~39!

where we denote byc the leptons and quarks. Under th
above transformations, the classical action changes as
lows:

E d4xAgLm→E d4xAg@Lm2 ia~x!¹m~c†gmc!#,

~40!

where we have used integration by parts with the Levi-Civ
covariant derivative¹m . On the contrary, the effective action
does not change under the transformation since it only
fects to fermion fields which are integration variables:

e2W@A,G,e#5E @dcdc†#expS 2E d4xAgLm~c,c†! D
5E @dc8dc8†#expS 2E d4xAgLm~c8,c8†! D .

~41!

Now using Eq.~24! ~for an Abelian group! and Eq.~40!,
we obtain for the effective action the expression

e2W@A,G,e#5E @dcdc†#expS 2E d4xAgia~x!A~x! D
3expS E d4xAgia~x!¹m j

m D
3expS 2E d4xAgLm~c,c†! D . ~42!

Identifying the exponents in Eqs.~41! and ~42! we find

A~x!5¹m j
m. ~43!

Let us recall now the regularized expression for the anom
derived in the previous section in Eq.~31!. Hence, if the
transformations in Eq.~38! are applied to quarks, we obtain
the anomaly in thebaryonic current:
ity
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ed
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¹m j B
m5

1

32p2 emnabS g22 Wmn
a Wab

a

1g82BmnBab(
u,d

~yL
22yR

2 ! D , ~44!

where the baryonic current is defined in the usual form

j B
m5

1

Nc
Q†gmQ. ~45!

We see that the result agrees with that of the flat spa
time case. There is no contribution from the curvature n
the torsion.

Following the same steps for leptons, we obtain th
anomaly in theleptonic currentwhich reads

¹m j L
m5

1

32p2 H 2
eabgd

24
RmnabR

mn
gd1

eabgd

48
Sb;gSd;a

1eabgdS g22 Wgd
a Wab

a 1g82BgdBab(
n,e

~yL
22yR

2 ! D
1
1

6
hS;a

a 1
1

96
~SaSnSa! ;n

2
1

6 SRnaSa2
1

2
RSnD

;n
J , ~46!

where we have defined the leptonic current as

j L
m5L†gmL. ~47!

We see that, in this case, due to the absence of rig
neutrinos, some terms depending on the curvature@13# and
the torsion appear in the anomaly as total divergences. I
possible to absorb all the dependence on the torsion by
fining the following new current whose divergence gives th
same result as in a curved space-time without torsion:

j̃ L
m5 j L

m2
1

32p2 F16 Sa
;am1

1

96
SaSmSa

2
1

6 SRmaSa2
1

2
RSmD1

1

48
embgdSb;gSdG . ~48!

It explicitly depends on the torsion and this fact coul
have some relevance in the problem of the matter-antima
asymmetry in the Universe.

Had we assumed the existence of right neutrinos, su
terms depending on the curvature and the torsion would ha
not appeared andB2L would be conserved~as it happens in
flat space-time! provided the following relation is satisfied:

(
u,d

~yL
22yR

2 !5(
n,e

~yL
22yR

2 ! ~49!

which is indeed the case with the usual SM hyperchar
assignment.
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V. GAUGE ANOMALIES

In this section we will study whether the presence of th
curvature and the torsion may introduce new constraints
the hypercharge assignments in the SM.

The matter Lagrangian given in Eq.~7! is invariant under
the SU~3!C3SU~2!L3U~1!Y gauge transformations, which
are given, respectively, by

Q→Q2 iua~x!LaQ,

Q†→Q†1 iua~x!Q†La, ~50!

for the SU~3!C transformations for quarks; we also have

c→c2 iua~x!TaPLc,

c†→c†1 iua~x!c†PRT
a, ~51!

for the SU~2!L transformations of quarks and leptons an
finally, the hypercharge transformation reads

c→c2 iu~x!~yLPL1yRPR!c,

c†→c†1 iu~x!c†~yLPR1yRPL!, ~52!

whereyL andyR are the hypercharge matrices defined in E
~11!.

In the following we will obtain the expression for the
anomalous variation of the effective action for the case
SU~3!C transformations, being the computation analogo
for the other groups. Let us first introduce the notatio
u52iuaLa, Dmu5]mu1@Gm ,u#. We will also use the defi-
nition of the gauge current vacuum expectation value in t
presence of the background fields:

dW

dGm
a 52 igS^Q

†gmLaQ&52 igS^ j
ma&. ~53!

We also definê j m&5^ j maLa&. Under the previously men-
tioned SU~3!C transformations the gauge fields change
follows: Gm→Gm2Dmu and the anomalous change in th
effective action is given by

W@G2Du,G,e#2W@G,G,e#52E d4xAgiub~Dm^ j m&!b,

~54!

where we have denotedDm^ j m&5¹m^ j m&1@Gm ,^j
m&#

5(Dm^ j m&)aLa. The change in the integration measure
given in Eq.~24!:

Aa~x!SU~3!5(
n

~fn
†Lafn2jn

†Lajn!. ~55!

Therefore we can write the transformed effective action
e
to

d,

q.

of
us
n

he

as
e

is

as

e2W@G8,G,e#5E @dcdc†#expS 2E d4xAgLmD
3expS E d4xAgua~x!Aa~x! D . ~56!

Expanding to first order inu and identifying with Eq.~54!
we obtain

2~Dm^ j m&!a5Aa~x!. ~57!

This anomalous Ward identity implies that the nonconserv
tion of the gauge current expectation value is given by th
anomaly coefficient. Finally the expression for the anoma
in the SU~2!L and U~1!Y currents are given by

Aa~x!SU~2!5(
n

~fn
†PLT

afn2jn
†PRT

ajn!,

A~x!U~1!5(
n

~fn
†~yLPL1yRPR!fn2jn

†~yLPR1yRPL!jn!

~58!

We will use the operatorsHc andHc† defined in Eq.~28!
to regularize each piece of the anomaly separately. The
sults for the different anomalies are the following.

Anomaly in the SU~3!C gauge current:

ASU~3!
a ~x!5

1

~4p!2
tr@La~a2~Hc ,x!2a2~Hc†,x!!# ~59!

and for the divergence of the current we have

~Dm^ j m&!a5
1

32p2 gSg8emnabGmn
a Bab(

u,d
~yL2yR!.

~60!

This result agrees with that found in flat space-time. The
are no new contributions from curvature or torsion. The ca
cellation condition for this anomaly is given by

(
u,d

~yL2yR!50. ~61!

Anomaly in the SU~2!L gauge current. Following the
same steps as before for the SU~2!L transformations, we find

ASU~2!
a ~x!5

1

~4p!2
tr@Ta~a2~Hc ,x!PL2a2~Hc†,x!PR!#.

~62!

The expression for the divergence of the gauge curre
can be obtained after some algebra and it yields

~Dm^ j m&!a5
1

32p2 gg8e
mnabWmn

a BabS (
u,d

NCyL1(
n,e

yLD .
~63!

We observe that the result is again the same as in fl
space-time. All the contributions coming from the curvatur
or the torsion vanish. The cancellation condition reads in th
case
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(
u,d

NCyL1(
n,e

yL50. ~64!

Anomaly in the U~1!Y gauge current. Finally, the ex
pression for the anomaly in the U~1!Y current can be written
as
-

AU~1!~x!5
1

~4p!2
tr@~yLPL1yRPR!a2~Hc ,x!

2~yLPR1yRPL!a2~Hc†,x!#. ~65!

The final expression for the divergence of the gauge curren
is now more involved than the non-Abelian cases. The resu
is
terms
which
Dm^ j m&52
1

32p2 H F(
u,d

NC~yL2yR!1(
n,e

~yL2yR!GF2
1

24
eabgdRmnabR

mn
gd1

1

6
hS;m

m 1
1

96
~SaSnSa! ;n

1
1

48
eabgdSb;gSd;a2

1

6 SRnaSa2
1

2
RSnD

;n

G1
gs
2

2
emnabGmn

a Gab
a (

u,d
~yL2yR!

1
g2

4
emnabWmn

a Wab
a S (

u,d
NCyL1(

n,e
yLD 1g82emnabBmnBabS (

u,d
NC~yL

32yR
3 !1(

n,e
~yL

32yR
3 !D J . ~66!

Notice the appearance of terms depending on the curvature and the torsion. Also note that the torsion appears only in
which are four-divergencies and therefore can be removed by adding suitable local counterterms to the Lagrangian
respect the rest of the gauge symmetries@14#. These counterterms read

DL52
1

32p2 F16 BaS;ma
m 1

1

96
BaS2Sa1

1

48
eabgdSb;gSdBa2

1

6
BnSRnaSa2

1

2
RSnD G S (

u,d
NC~yL2yR!1(

n,e
~yL2yR! D .

~67!
-

The new terms that were not present in flat space-tim
impose a new cancellation condition, namely, the vanishi
of the sum of all hypercharges:

(
u,d

NC~yL2yR!1(
n,e

~yL2yR!50, ~68!

which is satisfied by the usual SM hypercharges. On t
other hand, we have that the cancellation of the terms alre
present in flat space-time gives the same conditions as
Eqs.~61! and ~64! plus the additional one:

05(
u,d

NC~yL
32yR

3 !1(
n,e

~yL
32yR

3 !. ~69!

VI. GRAVITATIONAL ANOMALIES

In this section we consider the possible violation of loc
Lorentz symmetry due to quantum effects when chiral ferm
ons are present@15#. We will conclude that whenever Abe-
lian chiral gauge fields are present, as is the case of
hypercharge field, local Lorentz invariance is violated. How
ever, due to the specific hypercharge assignment in the
this anomaly is exactly cancelled. The condition for the ca
cellation of the Lorentz anomaly is the same as that of t
cancellation of terms depending on the curvature and
torsion in the U~1!Y anomaly, Eq.~68!.

Under local Lorentz transformations the spinor, vierbei
and connection fields present in the matter Lagrangian of
SM, Eq. ~7! change as
e
ng

he
ady
in

al
i-

the
-
SM
n-
he
the

n,
the

c~x!→e~ i/2!emn~x!Smnc~x!,

c†~x!→c†~x!e2~ i/2!emn~x!Smn,

eam→eam2eab~x!ebm ,

Gm
ab→Gm

ab1eac~x!Gm
cb2ec

b~x!Gm
ac2]meab~x!. ~70!

Under these transformations the matter Lagrangian is in
variant. However, the effective action changes as

W@A,G2De,e2ee#

5W@A,G,e#2E d4xAgS @2ec
a~x!Gm

cb1ec
b~x!Gm

ac

1]meab~x!#
dW

dGm
ab1eb

a~x!em
b dW

dem
a D . ~71!

Here we have denoted byA all the gauge fields in the theory.
Now, using integration by parts and the antisymmetry of the
connection componentsG m

ab in a andb, we can rewrite this
expression as

W@A,G2De,e2ee#

5W@A,G,e#1E d4xAgeab~x!S 2
i

2
~Dm^ j m&!ab2TabD ,

~72!
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where Tab5ebmdW/dem
a is the expectation value of the

energy-momentum tensor in presence of the backgro
fields and we have used the following definitions:

dW

dGm
ab52

i

4
^c†~gmSab1Sabg

m!c&52
i

2
^ j ab

m & ~73!

with ^ j m&5^ j ab
m Sab& andDm^ j m&5¹m^ j m&1[Vm ,^ j

m&].
In addition, we can calculate the change in the effect

action due to the change in the integration measure:

e2W@A,G8,e8#5E @dcdc†#expS 2E d4xAgLmD
3expS 2

i

2 E d4xAg@emn~x!Amn~x!# D ,
~74!

where
und

ive

Amn~x!5(
n

~fn
†Smnfn2jn

†Smnjn!. ~75!

Finally, expanding Eq.~74! to first order ine and identi-
fying the terms in Eq.~72! we find the anomalous identity

Amn~x!52~Dm^ j m&!mn1 i ~Tmn2Tnm!. ~76!

We use the operatorsHc andHc† to regularize the first
and second terms in Eq.~75!, respectively. The result can be
expressed as

ASO~4!
mn ~x!5

1

~4p!2
tr@Smn~a2~Hc ,x!2a2~Hc†,x!!#.

~77!

After a lengthy calculation we find the final expression for
the Lorentz anomaly:
Amn~x!5
g8

32p2 S 16 emnabRmnabB
mn1

1

6
~Ba

nSa;m2Ba
mSa;n!2

1

24
emnab~BacS

cSb1BabS
2!2

1

6
emnabBabR2

1

2
S;m

m Bmn

2
1

3
emnabhBab1

1

3
~SaB

am! ;n2
1

3
~SmBmn2SnBmm! ;m2

1

3
~SaB

an! ;mD S (
u,d

Nc~yL2yR!1(
n,e

~yL2yR! D .
~78!
e
ge

ce
a

,
at

l

he

.

Notice that pure gravity terms do not appear. Indeed it h
been shown that there are no pure gravitational anomalie
four dimensions@16#. The cancellation condition agrees wit
that of Eq.~68! which ensures the vanishing of the gravit
terms in the U~1!Y anomaly and, as we have already com
mented, is satisfied in the SM. Observe also that all the ter
depend on theBab field, which is Abelian, whereas there is
no contribution from non-Abelian gauge fields. Some
these terms, such as those being total derivatives, could
eliminated by means of U~1!Y gauge-invariant counterterms
In principle, the remaining terms could be cancelled b
U~1!Y gauge-noninvariant counterterms and then trade lo
Lorentz invariance for gauge invariance~see, for instance,
@17# for the case without torsion!, however in our case it is
not obvious which is the form of the counterterms needed
that aim.

Finally, we should stress that the preceding anomaly c
culations have been performed with the minimal Lagrangi
in Eq. ~6!. The introduction of nonminimal couplings to tor
sion or curvature could yield new contributions to th
anomalies. In fact, consider the real termic†gmTmc @5#. It is
analogous to an Abelian gauge term@like the U~1!Y# with the
same couplings to the left- and right-handed spinor comp
nents~except for the neutrino!. From the above results we
see that such a term would yield an anomaly in the SU~2!L ,
U~1!Y as well as in the local Lorentz symmetry that could n
be cancelled by hypercharge assignments.
as
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-
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.
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e
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VII. CHARGE QUANTIZATION
IN THE STANDARD MODEL

In this section we will discuss the consequences of th
requirement of the cancellation of the above computed gau
and gravitational anomalies for one family. First of all, we
should point out that, at the classical level, gauge invarian
of the Yukawa sector of the minimal standard model with
complex Higgs doublet imposes@18# two new constraints:
namely,

1
2 yR

d2 1
2 yR

u52yf ,

3
2 yR

d1 3
2 yR

u5yf , ~79!

whereyf is the hypercharge of the Higgs doublet. Therefore
just imposing gauge invariance at the quantum level in fl
space-time we obtain five equations. Eqs.~61!, ~64!, ~69!,
and those in Eq.~79! for six unknowns: y L

n5y L
e, y L

u5y L
d,

y R
e , y R

u , y R
d , andyf . We can solve this system and obtain al

the hypercharges in terms of one of them, for instance,yf ,
the result isy L

e5y L
n52yf , y L

u5y L
d5yf/3, y R

u54yf/3, and
y R
d522yf/3. Now fixing the electron charge to be21 it

gives the usual hypercharge assignment in the SM. Now, t
cancellation condition in Eq.~68! for both the gravitational
anomalies and the gravitational terms in the U~1!Y anomaly
does not impose any new constraint on the hypercharges
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On the other hand, one could have taken a different po
of view and, without assuming any specific symmetr
breaking sector, i.e., discarding Eqs.~79!, try to fix the hy-
percharges. In this case, gauge invariance in flat space-t
is not enough to fix them and it is necessary to impose
condition in Eq.~68! to obtain a discrete number of solu
tions. Now we have four equations. Eqs.~61!, ~64!, ~69!,
coming from gauge invariance and Eq.~68! for five un-
knownsy L

n5y L
e, y L

u5y L
d, y R

e , y R
u , y R

d @19#. We note that the
four equations can be reduced to just one equation for t
unknowns: namely,

21~yR
u !2yR

d121~yR
u !2yR

d16~yR
u !316~yR

d !350. ~80!

This equation, in turn, can be expressed in terms of o
variable if y R

dÞ0:

11S yRuyRd D
3

1
21

6 S yRuyRd D
2

1
21

6

yR
u

yR
d 50. ~81!

Now it is not difficult to see that there are three real s
lutions for this equation:y R

u /y R
d521, 22, 21/2. The rest of

hypercharges can be obtained as follows:y L
u

5y L
d5(y R

u1y R
d)/2, y L

e5y L
n523(y R

u1y R
d)/2, y R

e523(y R
u

1y R
d). Therefore, there are three possible sets of hyp

charges~up to a global normalization factor!. The first one
readsy R

u52y R
d and y L

u5y L
d5y L

e5y L
n5y R

e50. This solu-
tion together with the usual weak isospin assignme
Q5T31Y/2 implies a chargeless electron and it is the ‘‘b
zarre’’ hypercharge assignment obtained in@18#.

The second solution, taking the normalization so that t
electric charge of the electron is21, gives the following
values for the hypercharges:y R

u54/3, y R
d522/3,

y L
u5y L

d51/3, y L
e5y L

n521, and y R
e522, which is the

usual hypercharge assignment in the SM.
The third solution, also taking the same normalization

before, reads y R
d54/3, y R

u522/3, y L
u5y L

d51/3,
y L
e5y L

n521, andy R
e522. With the standard weak isospin

assignment, the last set leads to different electric charges
the left and right components of the quark fields and the
fore to chiral electromagnetism.

To summarize, gauge invariance in flat space-time in t
minimal SM with one Higgs doublet is enough to fix all th
hypercharges~up to a normalization factor!. On the other
hand, without assuming any specific symmetry breaking s
tor, but demanding gauge invariance in curved space-ti
~or gauge and local Lorentz invariance!, we cannot fix the
hypercharges, obtaining three possible sets of solutions. F
ther physical requirements as the existence of a charged e
tron or vector electromagnetism can be invoked to remo
the two unusual solutions in this case.

VIII. CONCLUSIONS

In this work we have carefully computed the differen
anomalies that appear in the standard model~SM! defined in
int
y-

ime
the
-

wo

ne

o-

er-

nt
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he

as

for
re-
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e

ec-
me

ur-
lec-
ve

t

a classical background space-time with torsion using a we
defined method to regularize the divergencies.

Concerning the anomalies affecting global currents we a
rive to the following results. The baryonic current anomaly
not modified by any curvature or torsion term and then it
the same as in flat space-time. However, due to the abse
of right-handed neutrinos, the leptonic current anomaly ge
new contributions coming from curvature and torsion term
Therefore, the conservation of the total baryonic minus le
tonic number (B2L), which is well known in the SM in flat
space-time, is violated when curvature and torsion a
present.

The gauge anomalies corresponding to the groups SU~3!C
and SU~2!L do not get new contributions and then we fin
the standard conditions for their cancellation in terms of th
fermion hypercharges. For the U~1!Y anomaly we obtain the
known contributions from all the SM gauge fields and als
new terms depending on the curvature and the torsion. T
cancellation of these gauge and gravitational terms gives r
to two more conditions in addition to the other two obtaine
from the cancellation of the SU~3!C and SU~2!L anomalies.

The gravitational anomaly has been computed as a ga
anomaly corresponding to the local~Euclidean! Lorentz
group SO~4!. This anomaly has contributions which are
products of the hypercharge gauge field and curvatu
~mixed gauge-gravitational anomalies!, hypercharge and tor-
sion and hypercharge alone. This is consistent with the we
known absence of pure gravitational anomalies in four d
mensions. On the other hand, the only condition found on t
hypercharges in order to cancel these terms is exactly
same that cancels the curvature and the torsion terms app
ing in the U~1!Y gauge anomaly.

Finally we have dealt with the problem of charge quant
zation in the SM. It has been shown that including the Higg
sector of the minimal SM and demanding gauge invarian
at the quantum level, the hypercharges are fixed, up to n
malization. On the other hand, without considering any sp
cific symmetry-breaking sector, gauge invariance, i.e., ca
cellation of gauge anomalies in flat space-time, is not enou
to fix the hypercharges. Adding the condition of absence
gravitational anomalies we obtain three possible sets of h
percharges. Physical requirements, such as vector elec
magnetism allow one to discard the nonstandard solution

In summary, the presence of torsion in a curved spac
time background does not change the standard conditions
cancel the gauge and mixed gauge-gravitational anomal
However the torsion gives new contributions to the lepton
current anomaly that in principle could lead to new physic
effects.
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