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Noncommutative geometric regularization
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Studies in string theory and in quantum gravity suggest the existence of a finite lower bound to the possible
resolution of lengths which, quantum theoretically, takes the form of a minimal uncertainty in positions
AXg. A finite minimal uncertainty in momentAp, has been motivated from the absence of plane waves on
generic curved spaces. Both effects can be described as small noncommutative geometric features of space-
time. In a path integral approach to the formulation of field theories on honcommutative geometries, we can
now generally prove IR regularization for the case of noncommutative geometries which imply minimal
uncertaintiesA pg in momenta[S0556-282(196)02420-4

PACS numbsd(s): 11.10.Gh, 04.66-m, 11.25-w

. INTRODUCTION tions in the associative Heisenberg algebtayenerated by
the x;,p;, see[5-10Q:

As has long been known, the resolution of very small
scales requires high energetic test particles which, through [Xi,pj1=1A(8j + aij XX + Bijki PP + -+ +), 1)
their gravitational effect, will eventually significantly disturb
the space-time structure which was probed. This problem ha&hd also
been approached from several directions and studies in string
theory and quantum gravity suggest that, quantum theoreti- [xi.x1#0, [pi,pj]#0 @)
cally, a lower bound to the resolution of distances could take , . N
the form of a finite minimal position uncertaintyx, of the ~ With the involutionx” =x; ,pi =p;. _
order of the Planck length of 10~ ¥m, see[1-4]. On the A priori, we formulate field theorles on generic noncom-
other hand, on large scales, there is no notion of plane waveButative background “geometriesA which may or may
or momentum eigenvectors on generic curved spaces. It ha0t have certain symmetries, similar to the case of curved

therefore, been suggested that quantum theoretically thefAckground geometries. Nontrivial examples of non-Lorentz
could then exist lower boundsp, to the possible determi- SYmmetric noncommutative background geometries have
nation of momentuni7—9l. been studied if5—-10. Lorentz symmetric examples of suit-

Independent of the suggested mechanisms for the origirF'bIe noncommutative background geometries were found in
of minimal uncertainties both types of effects, i.eAg, or 11]. . I .
aApy, can be described as small noncommutative geometric | N€ correction terms necessarily imply new physical fea-

corrections to space-time and/or energy-momentum Spaégres, singe unita.ry transformations gen.erally preserve the
[5-17. commutation relations. Here, for appropriate smaglB one

Intuitively, the presence of finite minimal uncertainties ©Pt@ins ordinary quantum-mechanical behavior at medium

AXq,App should have UV and IR regularizing effect in field scales while the presence Of, smalland 5 imply modified
theory. This would imply that minimal uncertainties may 'R @and UV behavior, respectively. .
also formally be used as UV and/or IR regulators. The ex-, 1he uncertainty relations, holding in all * representa-
ample of Euclideans? theory on a restricted class of such tions of the commutation relations on some dense domain
noncommutative geometries has been studied in detail afdcH in @ Hilbert space H, are of the form
both UV and IR regularizations have been shown for thisSsAAB=(12)([AB])| so that [x,x]#0, yields
case[7-10. Ax;Ax;=0. The noncommutativity implies that the (as
Our aim here is to prove the IR regularity of Euclidean well as thep;) can no longer be S|multan_eously dlagonallzed.
propagators 1f2+m?c?) for all noncommutative geom- Because of Eq(1) and the corresponding uncertainty rela-

etries with a minimal uncertainty in momentuirp,, both tions, there can appear the even more drastic effect that the
for m>0 and form=0. X; (as well as thep;) may also not be separately diagonaliz-

able.
Already in one dimension the uncertainty relati@ssum-
ing small positiver, 8 with a8<1/42 and neglecting higher

II. NONCOMMUTATIVE GEOMETRIES .
order corrections

WITH MINIMAL UNCERTAINTIES

We consider the possibility of small “noncommutative

h
- 2 2 2 2
geometric” corrections to the canonical commutation rela- AxAp= 2[1+“(AX) +a() "+ BAP) T+ AP (3)

implies nonzero minimal uncertainties iR as well as
*Electronic address: a.kempf@amtp.cam.ac.uk in p measurementsAxo=(1/B#%—a) 2 Apy=(1/ah?

0556-2821/96/5)/51745)/$10.00 54 5174 © 1996 The American Physical Society



54 NONCOMMUTATIVE GEOMETRIC REGULARIZATION 5175

—B) Y2 Fora=0 and a smalB we cover the example of an progress. We here only state one key result, the mutual pro-
ultraviolet-modified uncertainty relation that has been dis{ection of maximal localization states:

cussed in string theory and quantum gravity, for a review see

[4]. For all physical domainB, i.e., for all * representations 1
of the commutation relations, there are now no physical <¢?'X| wg”'x>=;
states in the minimal uncertainty “gap”

’ ’ -1 !
§—¢ §&—¢ [ €—¢
—— | —= sinl ——|.
2hB \20\B 2B
)
| D: 0<(AX),<AXq, 4
e (&)1 0 @ It is the generalization of the Diraé function which, on
. ordinary geometry, would be obtained from projecting maxi-
: < < AN : o "
Aly)eD:  0=<(Ap)j,<Apo, ® mal localization states, i.e., then from projecting position
eigenstates onto anothex|x’)= 5(x—x"). The nonmulti-

Thus, unlike on ordinary geometry, there now do not existplicativity of & distributions is related to the appearance of
) ' ultraviolet divergencies, whereas the behavior of Ef.

f physical stat hich I i- A > o
sequenceg|yn)} of physical states which would approxi (note that the singularities of its first factor are canceled by

mate point localizations in position or momentum space, _ D
P P P .zeros of the sinesuggests UV regularity in field theory.

i.e., for which the uncertainty would decrease to zero: i >
y Concerning the infrared we remark that because of the

A D:lim,_.(AX =0. )
) < n—=( )W’ﬂ> correction terms, the momengpa no longer generate transla-

Technically, the new infrared and ultraviolet behavior has;o < o, flat space. Under certain conditions, helo gen-
. , I

Important consequences for the representation the‘?ry- Frate translations of normal coordinate frames on curved
example, a finite minimal uncertaint{x, in positions im-

) . . . spaces. As was shown [®], translations on curved space,
plies that the commutation relations do no longer find a Specj therefore the momenta defined to generate these transla-
trql representation ox, SO that one has to resort to other tions, generally do not commute and lead to commutation
H"tT";” P e Ao, s of the nog,C131ONS Of the type of Eqsl) and (2) (with [x x]=0).
_The Interplay between the functional analysis of the posi~ryig then allows us to explicitly investigate the relation be-
tion and the momentum operators was f'r_St_ studiefbifl.  yyeen the absence of plane wayes., of p eigenstatesand

In fact, we are giving ufiessential self-adjointness of the o yresence of a minimal uncertainty in momentum.

x andp operators, to retain only their symmetry. While giv- ~\yhjje the possible origins of minimal uncertainties need

ing up essential self-adjointness is necessary for the descr_irﬂ]rther investigation we will in the following focus only on

tion of the new short distance behavior, the symmetry iSyg fig|q theoretical consequences of minimal uncertainties.
sufficient to guarantee that all physical expectation values

are real and also that uncertainties can be calculated applying
the usual definiton of the standard deviation: lll. PATH INTEGRATION
Ax= (| (x—(¢|x|¢))?| )2 Nevertheless, this is a non-

trivial st hich b d th tonal " We adopt the ansatz for the formulation of field theories
rivial step which goes beyon e conventiona quar'1 Hm'on noncommutative geometries given[#+~10. The parti-
mechanical treatment, and it also goes beyond Connes’ “di

. X Cfion function of charged Euclideap* theory in natural units
tionary [14]. of how t'o treat “real variables” on c=1=# (with u the mass anti a constant
noncommutative geometries.

The key observation is that although self-adjoint exten-
sions and(discrete} diagonaliza.tions ofk or p exist jn H Z[J]ENJ D¢exp(f d*xB* (9,0, — u?) b
under the circumstances described, these diagonalizations are
not in any common domain, i.e., not in any physical domain, N
of x andp [5,6]. Instead, there is now the finite uncertainty ——(pP)* pp+ p* I+ I* ¢,), (8)
“gap” separating the physical states from formalor p 4!
eigenstates. For details and proofs, f&é,10—-12.
The physical states of maximal localization in the pres-we write in the form
ence of minimal uncertainties have, in the meanwhile, been
extensively studied, first in the special case 0, 8>0, see |2
[11] and recently also in the generathough one- Z[J]= Nf Dd)ex;{ —tf(ﬁ(szr m*c?) - | )( ¢|
dimensional casea, 8>0, se€[12]. Explicitly, the physical b
states| o{"™), | ¢7'P) which realize the maximal localization NE
in positions or momenta obey 7| 8% O 8* Bl +[h) (I +|J><¢|)

where|#) generally stands for a normalized elementDof

.09

AX Ix = AX meX mixy _ . ]
657 o (4 ||¢§ )=, In order to make the units transparent, we reintroducadd

f, and we introduced an arbitrary positive lengjtto render

(¢ Ipl 7™ =0, (6)  the fields unitless I( could trivially be reabsorbed in the
fields).
and similarly for| ¢™'P). The projection( ¢2"X| ) is then the Equation(8) is recovered from Eq(9) by assuming the

probability amplitude for finding the particle maximally lo- ordinary relationg x; ,p;]=i# 6;; in A and by choosing the
calized around.. For «,3—0, one recovers the position and spectral representation of the. We then have as usual
the momentum eigenvectors. Studiesnimimensions are in  ¢(x):=(x|¢) with the scalar product (¢|¥)=
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Jd*%¢* (x)(x). The trace reads Mm)=Sd*x(x|q|x), 1z

and the operators act as X ¢(X)=x;p(X), Z[J]=NfDD¢exp( B h_f¢n1(p2+m202)n1“z¢nz
Pi- (X)) = —ifdy H(X).

4
Th intwi I[tiplication %,” Al
€ pointwise multiplication %, - ILzln2n3|-n1n4n5¢:2¢’r§3¢n4¢n5+ ¢:Jn+‘]: ¢n) :
* X) = ¢1(X X),
(1% h2)(X)= P1(X) Pa(X) 13
ie.,

Pulling the interaction term in front of the path integral, com-

(X|p1x ) =(X| 1)(X| $2) (100  pleting the squares, and carrying out the Gaussian integrals
yields

which expresses point interaction, (8nd can also on non-

commutative geometries be k¢mommutative for bosons. , A4 . d d 4 4

Since fields are in a representationf similar to quantum- Z[J]1=N"exp — ﬂLnlnznsLnlnzt“S TN RN BN A o

mechanical states, we here formally extended Dirac’s bra-ket M2 770s TNy TN

notation for states to fields. In E¢9) this yields a conve- r{ %2
X ex

-1
VN AY

nient notation for the functional analytic structure of the ac- - |—23:§(P2+ m’c?) . (14
tion functional, but of course the quantum-mechanical inter-
pretation does not simply extend, deéb]. The spaceD of ) ) ) 9 o o )
fields that is formally to be summed over can be taken to bd "€ inversion of p“+m“c?) is nontrivial and involves a
the dense domais,, in the Hilbert spaced of square inte- _self-adjomt extension in Whl(_:h it can be dlagonallze_d and
grable fields. inverted. This will be investigated below. We obtain the
Generally, the unitary transformations that map from ond-€ynman rules:
Hilbert basis to another have trivial determinant, so that no 9
anomalies are introduced into the field theory and changes of - :( —h )
12
nln

basis can be performed arbitrarily, in the action functional, in 1%(p*+m*c?)
the Feynman rules or in the end results of the calculation of

n-point functions. and
Let us now assume that the commutation relations, i.e.,
A are represented on a dense donfaispanned by a Hilbert A4 .
basis of vectorg|n)}, wheren may be discrete, as in the Unyngngn,= = 27 Lovngn,Longn,: (15

case of a Bargmann Fock representation, or continuous as in
the case of position or momentum representations, or génefjqte that since each vertex attaches to four propagators,
ally, a mixture of both. For simplicity we use the notation for drops out of the Feynman rules, as it should

n discrete. The identity operator dfi can then be written ’

X Recall that the usual formulation of the partition function
1=3,/n)n| and fields and operators are expanded as

in Eq. (8) implies thatp? can be represented as the Laplacian

bo=(n| &) on a spectral representation of the In this case, the; are

n represented as i% d; , which implies thafx; ,p;]=i%4j; . It
and is crucial that in our formulation of partition functions in
abstract form, such as in E¢P), the commutation relations
(p?+m?c?), v =(n|p?+m?c?n’). (11) of the underlying algebral are not implicitly fixed and can

be generalized to the form of Eqd) and (2).
The pointwise multiplication, which expresses local interac- The generalized4d can be represented on an arbitrary
tion, has the general form for arbitrary choice of Hilbert dense domain in a Hilbert spad¢ with a Hilbert basis
basis|n): {In)}. The Feynman rules are then obtained straightfor-
wardly through Egs(9) and (11)—(15). Therefore, the for-

. _ malism allows us to explicitly check noncommutative geom-
%" Ly ny.ng/n2) @ (N2l ©(ng]. (12 etries.4 on UV and IR regularization.
Equation (10) is recovered for the choice of Hilbert basis IV. IR REGULARIZATION

[n)=|x) with Ly x x»=8(x—x") S(X—X").

We remark that in presence of a minimal uncertainty On ordinary geometry, a finite mass term in the propaga-
AXg in positions, * can naturally be generalized to includetor (p?+m?c?) ! ensures that, as an operator, it is bounded.
slightly nonlocal ultraviolet regularizing corrections. Strict However, form=0 the operator p? is unbounded, causing
observational locality is preserved as long as the generalizdédfrared divergencies. Indeed, on geometries that imply a
* is chosen not more nonlocal than the intrinsic positionminimal uncertainty Apy, even the massless propagator
uncertaintyAx, of the underlying geometry. While this ul- 1/p? is as well behaved as if it contained a mass term.
traviolet structure is studied {110,13, we will in the follow- To be precise, we intend to show that for all noncommu-
ing focus on the propagator and the infrared structure. tative geometric algebrad of the type of Eqs(1) and(2),

In the Hilbert basis{|n)} the partition function reads, which imply a minimal uncertaintyAp,y, the following
summing over repeated indices, propositions hold fom>0 and for m=0.
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(A) The operator >+ m?c?): = (Z;p;p;+ m?c?) has ex- So far we have showpA)—(C), i.e., that there exists a ca-
actly one self-adjoint extensiomp{+m?c?)r, which is con-  nonical inverse 2+ m?c?)* and that, as a propagator, it
tained in its form domain. does not lead to infrared problems since it is bounded also in
(B) The operator §°+m?c?)r has a unique inversghe  the casan=0.
free propagatgrwhich is self-adjoint and defined on the en-  To see(D) we consider the bi-adjointp€+ m?c?)** ,
tire Hilbert spaceH. which is symmetric and closed, as is every bi-adjoint of a
(C) The propagatorg®+ m?c?); * is infrared regular, i.e., densely defined symmetric operator. Because of the exist-
it is a bounded operatdimplying also that its matrix ele- ence of one self-adjoint extensiorp?(t+ m?c?)¢, the defi-

ments are boundéd with bound ||(p?+m?c?);Y|  ciency indices K,r) are equal. Note that the deficiency indi-

<[n(Apg)?+m?c?] L. ces are by definition the dimensions of the eigenspaces of
(D) Also propagators that are the inverse to arbitrary othefp®+m?c?)* to the eigenvaluesi.

self-adjoint extensions ofpf+m?c?) (for finite deficiency We recall that in ordinary geometry the deficiency indices

indiceg are IR regular; i.e., they are bounded self-adjointare (0,0), implying thatg§?+m?c?)¢ is the only self-adjoint

operators orH. To see this, letd be represented on a dense extension. The deficiency indices can now be nonzero, ex-

domainDCH in a Hilbert spaceéd. By assumption, the mo- amples of which are known, s¢6,6,11,12. There then ex-

mentap; exhibit a minimal uncertaintAp,>0, i.e, for all ists a whole family of further self-adjoint extensions

normalizedvectors|¢) e D there holdsAp; 4 =Ap, (with  (p*+m?’c?); (labeled byf), and a corresponding family of

i=1,...n), so that “nonstandard propagators” p€+m?c?); * [for invertible
(p?>+m?c?);] which, in explicit representations, differ by

2 4\ 14\2 V) 2= 2 their boundary conditions.

(elpilr=(dlpi| ) +(Ap,|¢>) (4Po) (16 A priori, we do not want to exclude these nonstandard
propagatorgalthough we exclude as unphysical the case of
infinite deficiency indices in which case the propagator
would require an infinite set of boundary conditipns

(%l p)=nl|¢]|*(Apo)?. (17) Indeed, also the nonstandard propagators are IR regular.
To see this, we note first that alsp?d-m2c?)** is semi-
Thus, the operatorp?+m?2c?) is a densely defined symmet- bound from below by [n(Apg)?+m?c?] since
ric positive definiteperatonow even fom=0), and there-  (p?+m?c?)g, which is an extension ofpf+m?c?)** , has
fore has, by a theorem of Friedrich, see for exanip&-22, this property. As seen by the v. Neumann method, the uni-
a unique self-adjoint extension within its form domain. It hastary extension of the isometric Cayley transform only in-
the same lower bound as the original operator. Explicitly, thevolves a finite-dimensional mapping of the deficiency spaces
Friedrich extensionf?+ m2c?)g of (p?>+m?2c?) has the do- and thus all self-adjoint extensions of a closed symmetric
main Dg=D (y24 m2c2)« NH', which is the intersection of the operator have the same essential spectrum, see for example
domain D (24 mzc2y« Of the adjoint p?+m?c?)* with the ~ Thm.8.18 in[18]. Indeed, since 2+m?c?)** is closed,
Hilbert spaceH’ obtained by completion db with respect Symmetric, and bounded from below, the now interesting
to the norm|| ¢||': = ( ¢|p?+ m2c?| $)2induced by the qua- Ppart of the spectrum o((p*+m*c?)()N[—*,n(Apg)?
dratic form which is defined through the positive definite +m?c?] of its self-adjoint extensions consists of isolated
operator p?+m2c?). The range of >+m’c?)g is eigenvalues only, of total multiplicity<r, see Cor.2 of
R[(p?+m?c?):]=H, the inverse >+ m2c2);1 exists, has Thm8.18 in[18]. Thus, for all invertible self-adjoint exten-
the domainD (2, mec2)-1= R[(p2+ mZCZ)F]: H, and is a Sions there exist>0 such that the spectrum is empty in the
F finite interval[ — ¢, €], i.e., in the neighborhood of zero. We
can, therefore, conclude the boundedness of the spectra of
the inverses of arbitrary invertible self-adjoint extensions of
1 (18 (p?>+m?c?). To be precise, for all invertible self-adjoint ex-
n(Apg)?+mc?’ tensions, zero is a regular poine®((p?+m?c?);), since it
is not in the spectrum. For self-adjoint operatdss it is
For a constructive proof of the properties of the Friedrichgenerally true that, see for exampl28] (Thm5.24, [19]
extension, see for exampl21]. To see the invertibility note  (Thms129.1,2 or [20-22:
that, since p?+m?c?)y has the same bound as

and by linearity, for vectors of arbitrary norm:

self-adjoint bounded operator:

|[(p?+m2c?)t|<

(pP+mic?), ie., Y|o)eDri(|(p2+mc?)e|d)=m2c? zep(A)=3Ic>0YveD(A):

Tnll¢l1*(Apo)%, its kernel is empty: §*+m’c*)e|¢) l(z=A)-v||=c||v]|(and=||Li(z— A)||<c ™Y
=0=0=(¢|(p*+m*c*)¢|p)=mc*+n||[|*(Apy)°. Be-

cause of the Cauchy-Schwarz inequality the matrix elements ©R(z—A)=H. (20)

of (p?+m?c?)- are also bounded:
Here, therefore, we have:

V).l e H: [(](p?+mPe?)e ] ) Je>0¥v eD;: ||(p2+mPc?);-v||=€l|v]|

<l 1(p?+m?c?)e | and
<1l 11#llIn(Apo)*+m?c?] ™. (19 R((p?+m’c?)p)=H. (21)
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Thus, the corresponding propagators are boundedmples of geometries with a minimal uncertainty in positions
||(p?+m?c?); *||<1/e and are defined on the entire Hilbert and momenta have been carried ouf7l0] and UV regu-
spaceD (24 mzc2)-1= R((p?+m?c?);)=H. The propagators larization has been shown for these cases. We remark that for
f V regularization the structure of the pointwise multiplica-
on “=*,” which describes local interaction, is crucial. Be-
cause of the absence of a position representatios,nonu-
nigue in the case adkxy>0. Crucially, an interaction is now
observationally local if any formal nonlocality of is not
Concerning the structure in the ultraviolet, the same argularger than the scale of the nonlocalifyx, inherent in the
ments prove of course that for example a background Cowdnderlying space. Thus, intuitively, UV regularity and strict
lomb potentiaIAM(x):=[q/m,0,0,q [the square root ©Observational locality become more compatible than on or-
is well defined sinceX;x?)r is positive definitéis bounded d_mar,),/ geometry. There exist *quasiposition representa-
in the presence of a minimal uncertainki, in positions. tions” [10-13, built on maximal chal|zat|on staFes, Wh'Ch.
Given a representation of the algehbrf the propagator can b.e “?ed to e;tgbhgh the Iocallt_y and causality properties
A= [p,+eA(x)]2+m2c?} 1)1 can be calculated straight- of pointwise muItlpllcat|c_)ns. A detailed stud_y on the special
forwardly. Investigations into the “local” gauge principle on caseAx,>0A pO:Q (Wh'Ch aIIows_a convenient momentum
geometries with minimal uncertainties should eventually alSpace representatipis in prepar_at|or[13]. . -
low one to study also dynamical gauge fields and to check We _remark that an alternative a.pproach W'th a S'”?"ar
for UV regularization. We note, however, that in the pres-mOt'Vat.'O”'. but based on the canonical formulation of field
ence of a minimal uncertaintdx, in positions, the very theory is given in(16], see alsq17].
notion of “local” gauging will need to be redefined. In the  A.K. thanks the Corpus Christi College of the University
simpler ¢* theory, explicit loop integrations on certain ex- of Cambridge for financial support.

are also self-adjoint, as the inverses of self-adjoint operatorI
generally are.

V. OUTLOOK
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