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Noncommutative geometric regularization

Achim Kempf*

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 9EW, United Kingd
~Received 22 February 1996!

Studies in string theory and in quantum gravity suggest the existence of a finite lower bound to the possible
resolution of lengths which, quantum theoretically, takes the form of a minimal uncertainty in positions
Dx0. A finite minimal uncertainty in momentaDp0 has been motivated from the absence of plane waves on
generic curved spaces. Both effects can be described as small noncommutative geometric features of space-
time. In a path integral approach to the formulation of field theories on noncommutative geometries, we can
now generally prove IR regularization for the case of noncommutative geometries which imply minimal
uncertaintiesDp0 in momenta.@S0556-2821~96!02420-4#

PACS number~s!: 11.10.Gh, 04.60.2m, 11.25.2w
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I. INTRODUCTION

As has long been known, the resolution of very sma
scales requires high energetic test particles which, throu
their gravitational effect, will eventually significantly disturb
the space-time structure which was probed. This problem
been approached from several directions and studies in st
theory and quantum gravity suggest that, quantum theor
cally, a lower bound to the resolution of distances could ta
the form of a finite minimal position uncertaintyDx0 of the
order of the Planck length of'10235m, see@1–4#. On the
other hand, on large scales, there is no notion of plane wa
or momentum eigenvectors on generic curved spaces. It h
therefore, been suggested that quantum theoretically th
could then exist lower boundsDp0 to the possible determi-
nation of momentum@7–9#.

Independent of the suggested mechanisms for the orig
of minimal uncertainties both types of effects, i.e., aDx0 or
aDp0, can be described as small noncommutative geome
corrections to space-time and/or energy-momentum sp
@5–12#.

Intuitively, the presence of finite minimal uncertaintie
Dx0 ,Dp0 should have UV and IR regularizing effect in field
theory. This would imply that minimal uncertainties ma
also formally be used as UV and/or IR regulators. The e
ample of Euclideanf4 theory on a restricted class of suc
noncommutative geometries has been studied in detail
both UV and IR regularizations have been shown for th
case@7–10#.

Our aim here is to prove the IR regularity of Euclidea
propagators 1/(p21m2c2) for all noncommutative geom-
etries with a minimal uncertainty in momentumDp0, both
for m.0 and form50.

II. NONCOMMUTATIVE GEOMETRIES
WITH MINIMAL UNCERTAINTIES

We consider the possibility of small ‘‘noncommutativ
geometric’’ corrections to the canonical commutation rel
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tions in the associative Heisenberg algebraA generated by
the xi ,pj , see@5–10#:

@xi ,pj #5 i\~d i j1a i jklxkxl1b i jklpkpl1••• !, ~1!

and also

@xi ,xj #Þ0, @pi ,pj #Þ0 ~2!

with the involutionxi*5xi ,pi*5pi .
A priori, we formulate field theories on generic noncom

mutative background ‘‘geometries’’A which may or may
not have certain symmetries, similar to the case of curv
background geometries. Nontrivial examples of non-Loren
symmetric noncommutative background geometries ha
been studied in@5–10#. Lorentz symmetric examples of suit-
able noncommutative background geometries were found
@11#.

The correction terms necessarily imply new physical fe
tures, since unitary transformations generally preserve
commutation relations. Here, for appropriate smalla,b one
obtains ordinary quantum-mechanical behavior at mediu
scales while the presence of smalla andb imply modified
IR and UV behavior, respectively.

The uncertainty relations, holding in all * representa
tions of the commutation relations on some dense dom
D,H in a Hilbert space H, are of the form
DADB>(1/2)u^@A,B#&u so that @xi ,xj #Þ0, yields
DxiDxj>0. The noncommutativity implies that thexi ~as
well as thepi) can no longer be simultaneously diagonalize
Because of Eq.~1! and the corresponding uncertainty rela
tions, there can appear the even more drastic effect that
xi ~as well as thepi) may also not be separately diagonaliz
able.

Already in one dimension the uncertainty relation~assum-
ing small positivea,b with ab,1/\2 and neglecting higher
order corrections!

DxDp>
\

2
@11a~Dx!21a^x&21b~Dp!21b^p&2# ~3!

implies nonzero minimal uncertainties inx as well as
in p measurements:Dx05(1/b\22a)21/2, Dp05(1/a\2
5174 © 1996 The American Physical Society
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54 5175NONCOMMUTATIVE GEOMETRIC REGULARIZATION
2b!21/2. Fora50 and a smallb we cover the example of an
ultraviolet-modified uncertainty relation that has been d
cussed in string theory and quantum gravity, for a review s
@4#. For all physical domainsD, i.e., for all * representations
of the commutation relations, there are now no physic
states in the minimal uncertainty ‘‘gap’’

'” uc&PD: 0<~Dx! uc&,Dx0 , ~4!

'” uc&PD: 0<~Dp! uc&,Dp0 , ~5!

where uc& generally stands for a normalized element ofD.
Thus, unlike on ordinary geometry, there now do not ex
sequences$ucn&% of physical states which would approxi
mate point localizations in position or momentum spac
i.e., for which the uncertainty would decrease to zer
'” ucn&PD: limn→`(Dx) ucn&50.

Technically, the new infrared and ultraviolet behavior h
important consequences for the representation theory.
example, a finite minimal uncertaintyDx0 in positions im-
plies that the commutation relations do no longer find a sp
tral representation ofx, so that one has to resort to othe
Hilbert space representations.

The interplay between the functional analysis of the po
tion and the momentum operators was first studied in@5,6#.
In fact, we are giving up~essential! self-adjointness of the
x andp operators, to retain only their symmetry. While giv
ing up essential self-adjointness is necessary for the desc
tion of the new short distance behavior, the symmetry
sufficient to guarantee that all physical expectation valu
are real and also that uncertainties can be calculated appl
the usual definition of the standard deviation
Dx5^cu(x2^cuxuc&)2uc&1/2. Nevertheless, this is a non
trivial step which goes beyond the conventional quantu
mechanical treatment, and it also goes beyond Connes’ ‘‘d
tionary’’ @14# of how to treat ‘‘real variables’’ on
noncommutative geometries.

The key observation is that although self-adjoint exte
sions and~discrete! diagonalizations ofx or p exist in H,
under the circumstances described, these diagonalizations
not in any common domain, i.e., not in any physical doma
of x andp @5,6#. Instead, there is now the finite uncertaint
‘‘gap’’ separating the physical states from formalx or p
eigenstates. For details and proofs, see@5,6,10–12#.

The physical states of maximal localization in the pre
ence of minimal uncertainties have, in the meanwhile, be
extensively studied, first in the special casea50, b.0, see
@11# and recently also in the general~though one-
dimensional! casea,b.0, see@12#. Explicitly, the physical
statesufj

mlx&, ufp
mlp& which realize the maximal localization

in positions or momenta obey

Dxuf
j
mlx&5Dx0, ^fj

mlxuxufj
mlx&5j,

^fj
mlxupufj

mlx&50, ~6!

and similarly forufp
mlp&. The projection̂ fj

mlxuc& is then the
probability amplitude for finding the particle maximally lo
calized aroundj. Fora,b→0, one recovers the position an
the momentum eigenvectors. Studies inn dimensions are in
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progress. We here only state one key result, the mutual p
jection of maximal localization states:

^cj8
mlxucj

mlx&5
1

p F j2j8

2\Ab
2S j2j8

2\Ab
D 3G21

sinS j2j8

2\Ab
p D .

~7!

It is the generalization of the Diracd function which, on
ordinary geometry, would be obtained from projecting max
mal localization states, i.e., then from projecting positio
eigenstates onto another:^xux8&5d(x2x8). The nonmulti-
plicativity of d distributions is related to the appearance o
ultraviolet divergencies, whereas the behavior of Eq.~7!
~note that the singularities of its first factor are canceled
zeros of the sine! suggests UV regularity in field theory.

Concerning the infrared we remark that because of t
correction terms, the momentapi no longer generate transla-
tions on flat space. Under certain conditions, thepi do gen-
erate translations of normal coordinate frames on curv
spaces. As was shown in@9#, translations on curved space
and therefore the momenta defined to generate these tran
tions, generally do not commute and lead to commutati
relations of the type of Eqs.~1! and ~2! ~with @xi ,xj #50).
This then allows us to explicitly investigate the relation be
tween the absence of plane waves~i.e., ofp eigenstates! and
the presence of a minimal uncertainty in momentum.

While the possible origins of minimal uncertainties nee
further investigation we will in the following focus only on
the field theoretical consequences of minimal uncertaintie

III. PATH INTEGRATION

We adopt the ansatz for the formulation of field theorie
on noncommutative geometries given in@6–10#. The parti-
tion function of charged Euclideanf4 theory in natural units
c515\ ~with m the mass andN a constant!,

Z@J#[NE Df expS E d4xf* ~] i] i2m2!f

2
l

4!
~ff!*ff1f* J1J*f D , ~8!

we write in the form

Z@J#5NE
D
Df expF2trS l 2\2 ~p21m2c2!•uf&^fu

2
l l 4

4!
uf*f&^f*fu1uf&^Ju1uJ&^fu D G . ~9!

In order to make the units transparent, we reintroducedc and
\, and we introduced an arbitrary positive lengthl to render
the fields unitless (l could trivially be reabsorbed in the
fields!.

Equation~8! is recovered from Eq.~9! by assuming the
ordinary relations@xi ,pj #5 i\d i j in A and by choosing the
spectral representation of thexi . We then have as usual
f(x):5^xuf& with the scalar product ^fuc&5
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*d4xf* (x)c(x). The trace reads tr(q)5*d4x^xuqux&,
and the operators act as xi•f(x)5xif(x),
pi•f(x)52 i\]xif(x).

The pointwise multiplication ‘‘* ,’’

~f1* f2!~x!5f1~x!f2~x!,

i.e.,

^xuf1* f2&5^xuf1&^xuf2& ~10!

which expresses point interaction, is~and can also on non
commutative geometries be kept! commutative for bosons
Since fields are in a representation ofA, similar to quantum-
mechanical states, we here formally extended Dirac’s bra
notation for states to fields. In Eq.~9! this yields a conve-
nient notation for the functional analytic structure of the a
tion functional, but of course the quantum-mechanical int
pretation does not simply extend, see@15#. The spaceD of
fields that is formally to be summed over can be taken to
the dense domainS` in the Hilbert spaceH of square inte-
grable fields.

Generally, the unitary transformations that map from o
Hilbert basis to another have trivial determinant, so that
anomalies are introduced into the field theory and change
basis can be performed arbitrarily, in the action functional,
the Feynman rules or in the end results of the calculation
n-point functions.

Let us now assume that the commutation relations, i
A are represented on a dense domainD spanned by a Hilbert
basis of vectors$un&%, wheren may be discrete, as in the
case of a Bargmann Fock representation, or continuous a
the case of position or momentum representations, or ge
ally, a mixture of both. For simplicity we use the notation f
n discrete. The identity operator onH can then be written
15(nun&^nu and fields and operators are expanded as

fn5^nuf&

and

~p21m2c2!nn85^nup21m2c2un8&. ~11!

The pointwise multiplication, which expresses local intera
tion, has the general form for arbitrary choice of Hilbe
basisun&:

*5(
ni

Ln1 ,n2 ,n3un1& ^ ^n2u ^ ^n3u. ~12!

Equation ~10! is recovered for the choice of Hilbert bas
un&5ux& with Lx,x8,x95d(x2x8)d(x2x9).

We remark that in presence of a minimal uncertain
Dx0 in positions, * can naturally be generalized to includ
slightly nonlocal ultraviolet regularizing corrections. Stri
observational locality is preserved as long as the general
* is chosen not more nonlocal than the intrinsic positi
uncertaintyDx0 of the underlying geometry. While this ul
traviolet structure is studied in@10,13#, we will in the follow-
ing focus on the propagator and the infrared structure.

In the Hilbert basis$un&% the partition function reads
summing over repeated indices,
-
.
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Z@J#5NE
D
Df expS 2

l 2

\2fn1
* ~p21m2c2!n1n2fn2

2
l l 4

4!
Ln1n2n3
* Ln1n4n5fn2

* fn3
* fn4

fn5
1fn* Jn1Jn*fnD .

~13!

Pulling the interaction term in front of the path integral, com
pleting the squares, and carrying out the Gaussian integr
yields

Z@J#5N8expS 2
l l 4

4!
Ln1n2n3
* Ln1n4n5

]

]Jn2

]

]Jn3

]

]Jn4
*

]

]Jn5
* D

3expF2
\2

l 2
Jn* ~p21m2c2!nn8

21Jn8G . ~14!

The inversion of (p21m2c2) is nontrivial and involves a
self-adjoint extension in which it can be diagonalized an
inverted. This will be investigated below. We obtain the
Feynman rules:

Dn1n2
5S 2\2

l 2~p21m2c2! D
n1n2

and

Gn1n2n3n4
52

l l 4

4!
Ln8n1n2
* Ln8n3n4. ~15!

Note that since each vertex attaches to four propagatorsl
drops out of the Feynman rules, as it should.

Recall that the usual formulation of the partition function
in Eq. ~8! implies thatp2 can be represented as the Laplacia
on a spectral representation of thexi . In this case, thepi are
represented as2 i\] i , which implies that@xi ,pj #5 i\d i j . It
is crucial that in our formulation of partition functions in
abstract form, such as in Eq.~9!, the commutation relations
of the underlying algebraA are not implicitly fixed and can
be generalized to the form of Eqs.~1! and ~2!.

The generalizedA can be represented on an arbitrary
dense domain in a Hilbert spaceH with a Hilbert basis
$un&%. The Feynman rules are then obtained straightfo
wardly through Eqs.~9! and ~11!–~15!. Therefore, the for-
malism allows us to explicitly check noncommutative geom
etriesA on UV and IR regularization.

IV. IR REGULARIZATION

On ordinary geometry, a finite mass term in the propag
tor (p21m2c2)21 ensures that, as an operator, it is bounde
However, form50 the operator 1/p2 is unbounded, causing
infrared divergencies. Indeed, on geometries that imply
minimal uncertaintyDp0, even the massless propagato
1/p2 is as well behaved as if it contained a mass term.

To be precise, we intend to show that for all noncommu
tative geometric algebrasA of the type of Eqs.~1! and ~2!,
which imply a minimal uncertaintyDp0, the following
propositions hold form.0 and for m50.
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~A! The operator (p21m2c2):5(( ipipi1m2c2) has ex-
actly one self-adjoint extension (p21m2c2)F , which is con-
tained in its form domain.

~B! The operator (p21m2c2)F has a unique inverse~the
free propagator! which is self-adjoint and defined on the en
tire Hilbert spaceH.

~C! The propagator (p21m2c2)F
21 is infrared regular, i.e.,

it is a bounded operator~implying also that its matrix ele-
ments are bounded! with bound uu(p21m2c2)F

21uu
<@n(Dp0)

21m2c2#21.
~D! Also propagators that are the inverse to arbitrary oth

self-adjoint extensions of (p21m2c2) ~for finite deficiency
indices! are IR regular; i.e., they are bounded self-adjoi
operators onH. To see this, letA be represented on a dens
domainD,H in a Hilbert spaceH. By assumption, the mo-
mentapi exhibit a minimal uncertaintyDp0.0, i.e, for all
normalizedvectorsuf&PD there holdsDpi uf&>Dp0 ~with
i51, . . . ,n), so that

^fupi
2uf&5^fupi uf&21~Dpi uf&)2>~Dp0!

2 ~16!

and by linearity, for vectors of arbitrary norm:

^fup2uf&>nuufuu2~Dp0!
2. ~17!

Thus, the operator (p21m2c2) is a densely defined symmet
ric positive definiteoperator~now even form50), and there-
fore has, by a theorem of Friedrich, see for example@18–22#,
a unique self-adjoint extension within its form domain. It ha
the same lower bound as the original operator. Explicitly, t
Friedrich extension (p21m2c2)F of (p

21m2c2) has the do-
mainDF5D (p21m2c2)*ùH8, which is the intersection of the
domainD (p21m2c2)* of the adjoint (p21m2c2)* with the
Hilbert spaceH8 obtained by completion ofD with respect
to the normuufuu8:5^fup21m2c2uf&1/2 induced by the qua-
dratic form which is defined through the positive definit
operator (p21m2c2). The range of (p21m2c2)F is
R@(p21m2c2)F#5H, the inverse (p21m2c2)F

21 exists, has
the domainD (p21m2c2)

F
215R@(p21m2c2)F#5H, and is a

self-adjoint bounded operator:

uu~p21m2c2!F
21uu<

1

n~Dp0!
21m2c2

. ~18!

For a constructive proof of the properties of the Friedric
extension, see for example@21#. To see the invertibility note
that, since (p21m2c2)F has the same bound a
(p21m2c2), i.e., ;uf&PDF :^fu(p21m2c2)Fuf&>m2c2

1nuufuu2(Dp0)2, its kernel is empty: (p21m2c2)Fuf&
50⇒05^fu(p21m2c2)Fuf&>m2c21nuufuu2(Dp0)2. Be-
cause of the Cauchy-Schwarz inequality the matrix eleme
of (p21m2c2)F

21 are also bounded:

;uf&,uc&PH: u^fu~p21m2c2!F
21uc&u

<uufuu uucuu uu~p21m2c2!F
21uu

<uufuu uucuu@n~Dp0!
21m2c2#21. ~19!
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So far we have shown~A!–~C!, i.e., that there exists a ca-
nonical inverse (p21m2c2)F

21 and that, as a propagator, it
does not lead to infrared problems since it is bounded also
the casem50.

To see ~D! we consider the bi-adjoint (p21m2c2)** ,
which is symmetric and closed, as is every bi-adjoint of
densely defined symmetric operator. Because of the exi
ence of one self-adjoint extension, (p21m2c2)F , the defi-
ciency indices (r ,r ) are equal. Note that the deficiency indi-
ces are by definition the dimensions of the eigenspaces
(p21m2c2)* to the eigenvalues6 i .

We recall that in ordinary geometry the deficiency indice
are (0,0), implying that (p21m2c2)F is the only self-adjoint
extension. The deficiency indices can now be nonzero, e
amples of which are known, see@5,6,11,12#. There then ex-
ists a whole family of further self-adjoint extensions
(p21m2c2) f ~labeled byf ), and a corresponding family of
‘‘nonstandard propagators’’ (p21m2c2) f

21 @for invertible
(p21m2c2) f# which, in explicit representations, differ by
their boundary conditions.

A priori, we do not want to exclude these nonstandar
propagators~although we exclude as unphysical the case o
infinite deficiency indices in which case the propagato
would require an infinite set of boundary conditions!.

Indeed, also the nonstandard propagators are IR regu
To see this, we note first that also (p21m2c2)** is semi-
bound from below by @n(Dp0)

21m2c2# since
(p21m2c2)F , which is an extension of (p21m2c2)** , has
this property. As seen by the v. Neumann method, the un
tary extension of the isometric Cayley transform only in
volves a finite-dimensional mapping of the deficiency spac
and thus all self-adjoint extensions of a closed symmetr
operator have the same essential spectrum, see for exam
Thm.8.18 in @18#. Indeed, since (p21m2c2)** is closed,
symmetric, and bounded from below, the now interestin
part of the spectrums„(p21m2c2) f…ù@2`,n(Dp0)

2

1m2c2] of its self-adjoint extensions consists of isolated
eigenvalues only, of total multiplicity<r , see Cor.2 of
Thm8.18 in@18#. Thus, for all invertible self-adjoint exten-
sions there existe.0 such that the spectrum is empty in the
finite interval@2e,e#, i.e., in the neighborhood of zero. We
can, therefore, conclude the boundedness of the spectra
the inverses of arbitrary invertible self-adjoint extensions o
(p21m2c2). To be precise, for all invertible self-adjoint ex-
tensions, zero is a regular point 0Pr„(p21m2c2) f…, since it
is not in the spectrum. For self-adjoint operatorsA, it is
generally true that, see for example@18# ~Thm5.24!, @19#
~Thms129.1,2!, or @20–22#:

zPr~A!⇔'c.0,;vPD~A!:

uu~z2A!•vuu>cuuvuu~and⇒uu1/~z2A!uu<c21!

⇔R~z2A!5H. ~20!

Here, therefore, we have:

'e.0,;vPDf : uu~p21m2c2! f•vuu>euuvuu

and

R„~p21m2c2! f…5H. ~21!
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Thus, the corresponding propagators are bound
uu(p21m2c2) f

21uu<1/e and are defined on the entire Hilber
spaceD (p21m2c2)

f
215R„(p21m2c2) f…5H. The propagators

are also self-adjoint, as the inverses of self-adjoint operat
generally are.

V. OUTLOOK

Concerning the structure in the ultraviolet, the same arg
ments prove of course that for example a background C
lomb potentialAm(x):5@q/A(( ixi

2)F,0,0,0# @the square root
is well defined since (( ixi

2)F is positive definite# is bounded
in the presence of a minimal uncertaintyDx0 in positions.
Given a representation of the algebraA, the propagator
D5„{ @pi1eAi(x)#

21m2c2} F…
21 can be calculated straight-

forwardly. Investigations into the ‘‘local’’ gauge principle on
geometries with minimal uncertainties should eventually a
low one to study also dynamical gauge fields and to che
for UV regularization. We note, however, that in the pre
ence of a minimal uncertaintyDx0 in positions, the very
notion of ‘‘local’’ gauging will need to be redefined. In the
simplerf4 theory, explicit loop integrations on certain ex
ed
t

ors

u-
ou-

l-
ck
s-

-

amples of geometries with a minimal uncertainty in position
and momenta have been carried out in@7,10# and UV regu-
larization has been shown for these cases. We remark that
UV regularization the structure of the pointwise multiplica
tion ‘‘ * ,’’ which describes local interaction, is crucial. Be-
cause of the absence of a position representation,* is nonu-
nique in the case ofDx0.0. Crucially, an interaction is now
observationally local if any formal nonlocality of* is not
larger than the scale of the nonlocalityDx0 inherent in the
underlying space. Thus, intuitively, UV regularity and stric
observational locality become more compatible than on o
dinary geometry. There exist ‘‘quasiposition representa
tions’’ @10–12#, built on maximal localization states, which
can be used to establish the locality and causality propert
of pointwise multiplications. A detailed study on the specia
caseDx0.0,Dp050 ~which allows a convenient momentum
space representation! is in preparation@13#.

We remark that an alternative approach with a simila
motivation, but based on the canonical formulation of fiel
theory is given in@16#, see also@17#.

A.K. thanks the Corpus Christi College of the University
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