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Field theory entropy, the H theorem, and the renormalization group

JoseGaite
Instituto de Matemiicas y Feica Fundamental, Consejo Superior de Investigaciones @igast) Serrano 123, 28006 Madrid, Spain

Denjoe O’Connor
School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Rd., Dublin 4, Ireland
(Received 21 November 1995

We consider entropy and relative entropy in field theory and establish relevant monotonicity properties with
respect to the couplings. The relative entropy in a field theory with a hierarchy of renormalization-group fixed
points ranks the fixed points, the lowest relative entropy being assigned to the highest multicritical point. We
argue that as a consequence of a generatizéteorem Wilsonian RG flows induce an increase in entropy and
propose the relative entropy as the natural quantity which increases from one fixed point to another in more
than two dimensiong.S0556-282(196)04620-9
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I. INTRODUCTION C function has the desired property. The monotonicity of the
flow of the C function under scale transformations is remi-
The concept of entropy was introduced by Clausiusniscent of Boltzmann'$d function and this result has been
through the study of thermodynamical systems. However iaccordingly called the&C theorem. Boltzmann'$d function
was Boltzmann'’s essential discovery that entropy is the natuwas the generalization of entropy to nonequilibrium situa-
ral quantity that bridges the microscopic and macroscopidions, in particular, to a gas with an arbitrary particle distri-
descriptions of a system which gave it its modern interpretabution in phase space. He proved thhaincreases whenever
tion. A more general definition, proposed by Gibbs allowedthe gas evolves to its Maxwell-Boltzmann equilibrium distri-
its extension to any system where probability theory plays dution [3], effectively making this evolution an irreversible
role. It is a variant of this entropy which we discuss in a field process. We will argue that an analogue “nonequilibrium”
theoretic context. Boltzmann also defined, in kinetic theory probabilistic entropy for a field theory provides a natural
a quantityH, that decreases with time and for a noninteract-function that must increase under a Wilsonian RG flow. We
ing gas coincides with the entropy at equilibriuiid theo-  shall consider a version of thé theorem suited to our needs,
rem). These ideas also admit generalization and in our conto see how the increase occurs. A differential increase along
text we will see that analogous “nonequilibrium” ideas can the RG trajectories demands detailed knowledge of the flow
be associated with Wilsonian renormalization in our fieldlines; however, statements about the ends of the flows are
theory entropic setting. more robust and thus more easily established. It is such state-
Probabilistic entropy can be defined for a field theory andments that we shall establish.
in terms of appropriate variables is either a monotonic or Among other attempts to apply the methods of entropy
convex function of those variables. A variant of it, the rela-and irreversibility to quantum field theory, it was shown in
tive entropy, is suited to the study of systems where there if4] that an entropy defined from the quantum particle den-
a distinguished point as in the case of critical phenomenasity, understood as a probability density, should increase as
where a critical point is distinguished. the field theory reaches its classical limit. If we regard this
We shall see that monotonicity of the relative entropylimit as a crossover between different theories, that result
along lines that depart from the distinguished point in coushould be directly connected to ours. Regarding the connec-
pling space entails its increase in the crossover from the critiion with two-dimensional conformal field theories and
cal behavior associated with one domain of scale invariancéamolodchikov'sC theorem it is noteworthy that calcula-
or fixed point to that associated with a “lower” fixed point, tions of the geometrical or entanglement entrépse[5] for
thus providing a quantity that naturally “ranks” the fixed backgroungl give a quantity proportional to the central
points. This property is a consequence of convexity of thechargec [6]. We will not however pursue possible connec-
appropriate thermodynamic surface, which in turn is re-tions with the entanglement entropy here.
flected in the general structure of the phase diadrBmThe The structure of the paper is as follows: In Sec. Il we
phase diagrams of lower critical points emerge as projectioneeview the definitions of entropy and relative entropy and
of the larger phase diagram. We shall see that the naturaldapt them to field theory. We study some of their proper-
geometrical setting for these phase diagrams is projectivies, especially the property of monotonicity with respect to
geometry. couplings, related with convexity. Section Il discusses the
There have been many attempts to capture the irreversibkrossover of the relative entropy between field theories. We
nature of a Wilson renormalization grodRG) flow in some  provide some examples, ranging from the trivial crossover,
function which is intended to be monotonic under the itera-in the Gaussian model as a function of mass, to the tricritical
tion of a Wilson RG transformatiof2]. These attempts have to critical crossover, which illustrates the generic features of
been successful in two dimensions where the Zamolodchikothis phenomenon. This section ends with a brief study of the
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geometric structure of phase diagrams relevant to crossoveuitablea priori distribution P, and therefore violates the
phenomena. Although Sec. Il heavily relies on RG con-assumptions guaranteeing the positivity of the relative en-
structs, the picture of the RG used is somewhat simpldéropy. More generally for a continuously distributed random
minded. In Sec. IV we improve on that picture, introducing variable a more suitable distribution, with respect to which
Wilson’s RG ideas. We see how these ideas naturally leadne can define tha priori probabilities, is one that resides in
one to interpret crossover fromutoff-dependent to cutoff- the same function space.

independentlegrees of freedom as an irreversible process in In the case of a field theory Tr will be a path integral over
the sense of thermodynamics and therefore to consider the field configurations and just as when defining the parti-

nonequilibrium field theoretiti-theorem-type entropy. tion function of a field theory an ultraviolet and an infrared
regulator are, in general, necessary. Convenient infrared

Il. ENTROPY IN FIELD THEORY, DEFINITION AND regulators will be to consider a massive field theory in a

PROPERTIES finite box. It is then convenient to deal with the entropy per

) N o unit volume or specific entrop$=S/V whereV is the vol-
For a normalized probability distributio®, we take as  yme of the manifold,M, on which the field theory is de-
our definition of probabilistic entropy, fined. One would generally expect th@twould contain di-
__ vergent contributions as the regulators are removed.
Sa=—TrPInp @D However, these contributions disappear in an appropriately

and will refer to this as “absolute probabilistic entropy.” For defined relative entropy.
example, for a single random variabie governed by the For a field theory consider

normalized Gaussian probability distribution 0
P=exp(— 1" [N =2zl {1} ]+ W[ {\}{I}]),
P=exp—3 m2¢p2—j+W[j,m?]), (2.2) (2.9
where W[j,m?] = —j?/2m?+1 In(m?/27) and Tr is under- whereW[z,{\},{I}]=—In Z[z,{\}{I}], with
stood to mean integration oveér. The absolute probabilistic
entropy is given by

22 {0,011 [ Dlgle o0, (27

Sa=37z N5 23 i.e., the total action for the random field variakpeis given

by 1=1°]¢,{\}] +zI ¢,{1}]. We have divided the param-
A natural generalization of this entropy known as the relativeeters of the theory into two sets: The $&} is the set of

entropy[7] is given by coupling constants associated with the fixed distributign
B and{l} are those associated with the additional, or crossover,
SIP.Pol=Tr P In(PIPo)], (24 contribution to the actiom|®. The two sets are assumed to be

whereP, specifies the priori probabilities. The sign change distinct, the se{l} may, however, incorporate changes to the

: : . . lings of the sef\}.
relative to Eq.(2.1) is conventional. Relative entropy plays coup : . L
an important role in statistics and the theory of large devia- We have mtrodt_Jced the v_arlabi_qorlmarll}‘/ for later (,:,O”'
tions[8,9]. It is a convex function of” with S=0 and equal- venience. F_or a given funct|0n_al mtegra] measure, - asso-
ity applying if and only if P=P,. It measures the statistical ciated with Integration over a fixed function spa(dmg may
distance between the probability distributioRsand P, in _be made well defined by fixing, for exampl\il,oultrawolet and
the sense that the smallgrP,P,] the harder it is to discrimi- 'Znirgr?;\j/itﬁutﬁ)ffi' :Nt[iz’r?‘}’{l}] reduces toWT{r}] when
nate betweerP and P,. The infinitesimal form of this dis- “ ™ € hotatio
tance provides a metric known as the Fisher information ma-
trix [10] and provides a curved metric on the space of (x)= D[¢]x[d,]eflO[cb,{x}]*zl°[¢,{l}]+W[z,{x},{l}], (2.9
parametrized probability distributions and the space of cou-

lings in field theory[11]. For example, if we consider the _ o .

ping M 11] P assuming analyticity irz in the neighborhood of=1, the

probability distribution(2.2), with j=0 for simplicity, the ST
entropy of the Gaussian distribution with standard deviatior’@/ué of principal interest to us, we have

m? relative to the Gaussian distribution with standard devia-

. 2. dWz,{\}{l
tion m§ is given by wz(ﬂ, (2.9
, m2  m3
SIm*,mg]=7 In m_§+ > 2 (2.9 and more generally
and can be easily seen to have the desired properties. By d(x) = — ((XI%)—(X)(I°))
taking thea priori probabilities to be given by the uniform dz |

distribution we recover Eq2.1), modulo a sign. However,

we see that Eq(2.5 approaches Eq(2.3) but modulo a We can therefore express the relative entropy as
divergent constant as,—0. This reflects the fact that the

uniform distribution is not normalizable. The uniform distri- ~ S[z,{\},{l}]=W[z,{A},{I}]—W[{A}]—z{1[ &,{I}]).
bution in this setting does not strictly fit the criteria of a (2.10
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It is the Legendre transform with respect t» of  could interpret composite operator renormalization factors
We=WwW-W° Zs, (or in the exampleZ 42) as integrating factors.
Again for the cas€2.14), since

STz L= WLz, (1), 1] -2 e
’ o dz Z((1°= (1)) =t{(fa= (Fa)) (Fo=(f))t* (2.1
(2.1
a . .
Next consider the derivative with respectzof S: ]‘?Onr?neaCh of thé™ are arbitrary, we see that the quadratic
dS[z,{\},{I d®W[z,{\},{I
Az WO, o
dz d Quv={(fa=(f)) (o= (o)) =~ Zazs (218
Reexpressing this in terms of expectation values we have
is a positive definite matrix. This establishes the key property
dSz{AH{1}] ) thatW is a convex function of the couplings.is similarly a
z dz =zX(1°=(1%)%) (213 convex function of thef,), since
implying that S is a monotonic increasing function ¢| b 1 S
which is zero az=0. We also deduce from Eq&.12) and Q™= Qap IEAAY Y (2.19

(2.13 that W is a convex function of.

Note that the expressiof2.1]) is amenable to standard The matrixQ,, is the Fisher information matrix and plays
treatment by field theoretic means. In perturbation theory, ithe role of a natural metric on the space of couplifigs
is diagrammatically a sum of connected vacuum graphs. FUiyeasyring the infinitesimal distance between probability dis-
thermore, if the action is a linear combination of terms tributions.

We end this section by emphasizing that in the above we
1T A1} =1"Fl 4] (2.14 have established th&Y is a convex function of th&* andS
is a convex function of théf ,). Note thatthe usual effective
action can be viewed as the relative entropyith
_ _ _+a zI9¢,{1}1=J J¢ and is therefore a convex function of
SN = WA {tH = W0t ﬂaw[{)\}’{t}](’z 15 (@ Tr{le} relatﬂif/e entropy is equivalently a generalization of
the effective action to a more general setting. A final obser-
whered, = d/dt?. Thus for this situation the relative entropy Vation is that the relations
of the field theory is the complete Legendre transform of the .
generating functiol with respect to all the couplingg. fa=(fa)=dW(t) (2.20
The negative of the “absolute” entropy or entropy relative
to the uniform distributiorfequivalent td [ ¢,{\}]=0) would  are our field equationéon-shell conditionsand can be as-
be the complete Legendre transform with respect to all th@ociated with equilibrium. If one releases these constraints
couplings in such a field theory. In terms of its natural vari-by, for example, leaving the equilibrium setting, one can
ables(f,)=d,W the relative entropy itself is a convex func- considers as a function of both thé, and|?. The equilib-
tion (see below. It proves useful in what follows to regard it rium conditions are then specified by E3.20.
as a function of the couplings through,)(t).

Let us consider the change in relative entropy due to an
infinitesimal change in the couplings of the theory. This can
be expressed as a one-form on the space of couplings. A little The concept of crossover arises in the physics of phase
rearrangement shows that such a change can be expressedrihsitions, where it means the change from one type of criti-
the form cal behavior to another. This implies a change of critical

exponents or any other quantity associated with critical be-
dS=1z(d(1°)—(dI%)) (2.16  navior. In our context, a field theor§FT) is defined by a
L 1 . ) Lagrangian with a number of coupling constants. We will
which implies thatz"~ performs the role of an integrating yesrict our considerations to the case of superrenormalizable
factor for the difference of infinitesimal(1°) —(dI%), just  heories, in which case the theories can be taken to provide
as temperature does for the absolute entropy. We could Moife)|.gefined microscopic theories. The Lagrangian captures
generally consider different’s for each of the composite o \niversality class of a particular phase transition when
operatorsf,[¢] and obtain the generalization (2.16: the relevant couplings are tuned to appropriate values; these
relevant couplings constitute a parametrization of the space
= — ) of fields and couplings close to the associated fixed point
a5 ; Zfﬁ(d(fa[d)p (L #1) (FP) of the RG. The functional integral provides global in-
formation, which can be depicted in a phase diagram, with
In renormalization theory th&;_play the role of composite yariablesw, {I}. The most unstable FP will therefore have
operator renormalizationge.g., 12f [ ] =3ft¢? the com- the largest dimensional phase diagram and far from this FP
posite operator¢® gets renormalized by ,2). Thus one may exist another where orter more of the maximal set of

then withzI?=1t? (z is an overall factorwe have

Ill. CROSSOVER BETWEEN FIELD THEORIES
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couplings becomes irrelevanand drops out. This implies and nonsymmetry breaking fields. For illustration, we will
the change to a universality class with fewer relevant coudiscuss some exact results pertaining to solvable statistical
plings, hence a reduced phase diagram corresponding to prorodels, which illuminate the behavior of the field theories in
jecting out the couplings which became irrelevant. The secthe same universality classes.
ond FP and the reduced phase diagram define a new field
theory.
It is fairly easy to see that in the region where homoge-
neous scaling holds and the RG trajectories satisfy linear RG ) )
equations there can be no more fixed points. One can define Consider the action
new coordinates called nonlinear scaling fie][dg] where
homogeneous scaling applies throughout the phase diagram. |8[¢’{)\(0)}]:J [E (9)%+ fe ¢z]_ (3.)
This possibility is also well known in the theory of ordinary M| 2 2
differential equation§ODE’s), where it is called Poincaie
theorem 13, p. 179. In these coordinates, then, any other FPThe action associated with, is then
must be placed at infinity in a coordinate system adapted to
the first FP. To study the crossover, when a FP is at infinity, t
we need to perform some kind of compactification of the Io[¢,{>\(0)},t]=I8[¢,{)\(0)}]+f > $*. (3.2
phase diagram. Thus, we shall think of the total phase dia- M
gram as a compact manifold containing the maximum num-
ber of generic RG FP’s. This point of view is especially The crossover here is that associated witft. The model is
sensible regarding the topological nature of RG flows. Furfathological in that it is not well defined for<0 where there
thermore, thinking of the RG as just an ODE indicates whaiS no ground state, but our interest istir0. The crossover
type of compactification of phase diagrams is adequate: It i§f interest here is then frorh=0 to large values of. To
known in the theory of ODE’s that the analysis of the flow atmake the model completely well defined we place it on a
infinity and its possible singularities can be done by complet!attice and take the continuum limit.
ing the affine space to projective spddd]. This as we shall For the Gaussian model on a square lattice with lattice
see is also appropriate for phase diagrams. spacing, taken for simplicity to ba\/«, and with periodic
We will restrict our considerations in what follows to sca- boundary conditions and sides of lendtk Ka/a, in d di-
lar Z, symmetric field theories with polynomial potentials mensions, we have, in the thermodynamic litdit>co [15],

A. Case(0): The Gaussian model and the zero to infinite mass
crossover

K¢ (7 do 7 do 4/a2)sirP(w,/2) + -+ - + (4/a2)sirP(wy/2) + r o+t
W[a'r]:_f_lj dog [ (41a%)sirf(w,/2) (482)sir(0g/2) trett] 53
2 J_. 2@ g 2T 21
|
With the critical point of the model at=0 we haver.=0. For d>2 and sufficiently smalt, in the neighborhood of
The relative entropy is the critical point, the relative entropy of both the continuum

model and the lattice model agree. This can be seen by not-
dWa,t] ing that the second derivative W\_Ni_th respect td diverges
S[a,t]=W[a,t]-Wa,0] -t ——— (3.4y  for smallt and, ford<4, the coefficient of divergence is the
dt same for both the lattice and continuum expressions. Thus
integrating back to obtailV[t] will give expressions which
so if W[a,t] took the formW[a,t] =\7V[a,t] +c+btthe lin-  differ by only a_linear term irt for smallt but th_is does not
ear termc+ bt would not contribute to the relative entropy. affect the relative entropy. From E¢3.5 the increase in
In the thermodynamic limit, if we restrict our considerations relative entropy witht is manifest.
to a dimensionally regularized continuum model then for
d<4 the divergences that require subtraction are indeed of
the linear form and we find that the relative entropy per unit Let us next consider the two-dimensional Ising model on

B. Case(i): The Ising universality class

volume is given by a rectangular lattice. For simplicity we will restrict our con-
siderations to equal couplings in the different directions.
(d—2) Since the random variables hefthe Ising spins take dis-
S t9%2, (3.5  crete values it is natural to consider the absolute entropy

= ; ar
2sin(m(d+2)/I'[(d+2)/2](4) which corresponds to choosing entropy relative to the dis-

crete counting measure and a sign change. This is the stan-
dard absolute entropy in this case. This model, as is well
'Here relevant and irrelevant have both their intuitive and RGknown, admits an exact solutigi6] for the partition func-
meaning. tion with
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W[k]=—1% In[2 sink(2k)]— jow g—: arccoskicosh 2k)cosh 2K (k)] —coq w)} (3.6

for a rectangular lattice wherek(k)=3In coth(k) and zero at the critical point. In Fig.(B) we plot this entropy as

k=J/kgT. The entropy is then a function of the relevant expectation value, the internal en-
ergy U=dW/dk, and set the origin at*, the internal en-
dWI(k) ergy at the critical point. Naturally, the graph is convex.

Sa= _(W(k)_ kW) (3.7 In more than two dimensions the Ising model has not been

solved exactly. Its critical behavior is in the universality
and plotted against in Fig. 1(a). The monotonicity property ~class of ag* field theory, so we expect the general features
of the entropy becomes one of convexity when the entropy i&f the two models to merge near the critical point. We will

expressed in terms of the internal enelgyas can be seen in Next consider thes* theory. R
Fig. 1(b). We will choose the fixed probability distributioR, for

Now, of course, we can also consider relative entropy irfh€ ¢* theory to be that associated with the critical point, or
this setting. Since near its critical point the two-dimensionalmassless theory, which is described by the action
Ising model is in the universality class o/ field theory, to

facilitate comparison with the field theory it is natural to 0 a s e o, N,
choose an entropy relative to the critical point lattice Ising Il {N(1)}]= fM S (@) + 5 o™+ 1 d
model. This is also natural since the critical point is a pre- ' 3.9
ferred point in the model. This relative entropy is given by '
dW(k) with A some arbitrary but fixed value of the bare coupling
S=W(k)—W(k*)—(k—k* —dKk (3.8  constant. We restrict our considerationsdei4 where the

theory is superrenormalizable. The parametedepends on
the cutoff (UV regulato) needed to render the theory at a

*_ 1 " . " .
V\;htirer._z ln(‘ﬁ% 0h'440 6|8ft8d'thh‘? Cé!t'cal \(/:Voupllng path-integral level well defined, and is chosen such that the
ofthe Ising model. Vve have piotted this in 'gaE €SE€  correlation length is infinite. The complete action associated
that it is a monotonic increasing function §—k*| and is | - D is

z

S
S
0.7
0.6 0.2
0.5
0.4 0.15
0.3 01
0.2
0.1 0.05
k k
(a) 0.2 0.4 0.6 0.8 ! (@) 0.2 0.4 06 08 1
S
U U
(b).2 15 ] 0.5 b)-08 -06 -04 -02 02 04 06 038
FIG. 1. (8 The entropyS,(k) for the two-dimensional2D) FIG. 2. (a) The relative entrop(k,k*) for the 2D Ising model.

Ising model.(b) The entropyS,(U) for the 2D Ising model. (b) The relative entropys(U,U*) for the 2D Ising model.
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t It is interesting to consider the reduction of the two-
|1[¢>-{)\(1)},t]=|(1)[¢>,{)\(1)}]+f > #*. (3.10  dimensional phase diagram associated with the neighbor-
M hood of the tricritical point to the one-dimensional phase
. . . . diagram of the critical point. This latter fixed point is asso-
The crossover of interest here is that associated tht|.  ¢jated withl =c and the crossover from it to the infinite mass
There are clearly two branches to the crossover, that for Gaygssian fixed point at=x lies completely at infinity in the
positive and negative, respectively. We will restrict our con-ricritical phase diagram. In the previous setting the cross-
siderations to the positive branch, correspondingdip=0,  qyer started from a finite location because we did not include
and the range dfis from O to=. The identification oz with  the tricritical point. The reduction can be achieved as a pro-
t allows us to use the arguments of the previous sectiofection from the tricritical phase diagram as follows: For any
From Eq.(2.13 we conclude that the relative entropy is a yajye of ¢,1) we can let both go to infinity while keeping
monotonic function along this crossover line. This is theneijr ratio constant. The value off parametrizes points on
crossover line from the Wilson Fisher fixed point to the in- e |ine at infinity. Moreover, that projection is realized by
finite mass Gaussian fIXQd point. _letting z run to infinity, thus ensuring that the relative en-
In the presence of a fixed UV cutoff one could conS|dertr0py increases in the process.
the reference probability distribution to be that for which  one can further appreciate the structure of the phase dia-
)§:0 anq then placa into_the crossover portion of thg ac- gram commented on above in terms of the shape of RG
tion. This provides us with another crossover and in thisyajectories, identified with scaling the nonlinear scaling
more complicated phase diagram there are in fact two GaUSﬁ-e|d, where the phase diagram is presented in these coordi-
ian fixed points; a massless and infinite mass one, both assgates. In the present case, the family of scaling curves is
ciated withh=0 (see[17] for a description of the total phase t—¢|¢ for variousc, with only one parameter given by the
diagram. The crossover between them is that associategqiip  of scaling dimensions of the relevant fields
with “case (0)” described above. If one further restricts to ¢=AJA,>1, called the crossover exponent. These curves
A=, this is equivalent to restricting to the fixed point cou- pave the property that they are all tangent tottlasis at the
pling and is believed to be equivalent to the Ising model i”origin and any straight liné=al intersects them at some
the _scaling region. The par_ameterandk then should play  fipite point,|; = (a/c)¥¢~ 1) andt;=al; . For any giverc the
equivalent roles, and descnb_e the same crossover. Ipthe ‘values ofl; andt; increase as decreases and go to infinity
model one can further consider crossovers associated Withsa_.0. This clearly shows that the stable fixed point of the
varying\ at fixedt, by including a term/ ,(1/4)¢* in I°.In fiow is on the line at infinity and, in particular, its projective
this family there will be a crossover curve at infinity which ~oordinate isa=0. The pointa=c on the line at infinity is
varies from one infinite mass Gaussian fixed point to anygg fixed but unstable. In general, as the overall faztisr
other. Such crossovers can be viewed as a special case of th&en to infinity we shall hit some point on the separatrix

next example. connecting these two points at infinity.
The tricritical flow diagram that includes the separatrix
C. Case(ii): Models with two crossover parameters can be obtained by a projective transformati@ee Sec.

Il E). It is essentially of the same form as that considered by
Nicoll, Chang, and Stanlejl7], with the axes such that the
tricritical point is at the origin(Fig. 3. The critical line is
o a e M g the vertical line(the| axis), and the crossover to the Gauss-
I2[¢,{)\(2)}]:f [ > (9h)?+ > P>+ an o+ 51 d)G} ian fixed point which is the most stable fixed point is the line
M ' : at infinity, in the positive quadrant of the,[) plane. The
(3.19 Gaussian fixed point is at the end of the horizontalxis.
i . ) Our variablez will parametrize radial lines in thist(l)
(g fixed) and the action of the model is plane. As far as the parameteris concerned, one could
introduce another axis in the phase diagram, corresponding
L to this variable. This can be done for every crossover, and
2 o+ m ME corresponds to crossover as the momentum is varied.

(3.12

Here the action for the fixed distribution from which we
calculate the relative entropy is taken to be

o0 @h=1T s 0@ |

o ) ) D. The general case of many crossovers
The tricritical point corresponds to botlandl zero. There is

now a plane to be considered. First consider the line formed 1he dquestion arises as to thaturalnessof the choice of
settingl =0 and ranging from zero to infinity. This is a line & Priori distributionP,. In the case o¥, models in dimen-
leaving the tricritical point and going to an infinite mass Sion 4>d>2 there is a natural choice fdF,. It is that field
Gaussian model. Again we see from the arguments of thiheory with the maximum polynomial potential that is super-
previous section that the relative entropy is a monotonid€normalizable in this dimension. This theory admits the
function along this line. Similarly we can consider the line MaXimum number of nontrivial universal crossovers in this
t=0 and! ranging through different values. Again for posi- dimension. For this range of dimensions we, therefore,
tive | the relative entropy is a monotonic function of this Choose

variable. The critical line is a curve in this plane, since the N SR

critical temperaturd ;. should depend oh and one needs to 0 :f el 2 22 ,a

changet as a function of to track it. 'L M) M[ 3 (997 21 (2a)! ¥ @13
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cal point to a lower critical point, e.g., the tricritical to criti-

; cal crossover, the phase diagram for the latter is realized as
the codimension-onehypepplane at infinity, which is
equivalent to\,,.,=0. Thus\,.,, effectively disappears
from the action of the next critical point, which hgg as the

10.8 highest coupling in the sequence. The set of couplings
l5,....l5 then constitute a system of homogeneous coordi-
nates in the reduced phase diagram. One can reach a point of
this phase diagram by makirggo to infinity for different
(fixed) values ofl,/l,. This realization ensures that the
relative entropy of points in this second phase diagram is
lower than that of points of the first via monotonicity zras
discussed earlier.

One might, however, think that both phase diagrams can-
not be incorporated in the same picture. This is not so: One
can perform a projective change of coordinates so as to bring
02 \ the (hypenplane at infinity to a finite distance. This can be
achieved by first rescaling to,, . ,=1. For example, in the
tricritical to critical crossover of Sec. 1l B, the condition that
g be fixed(e.g.,g=1 where we now use dimensionless cou-
plings, the originalg, which we now labelgg, setting the
scalg places the phase diagram of the critical fixed paint at
FIG. 3. Tricritical flow diagram showing the tricritical, critical, Infinity. However, new homogeneous coordinatesind A

0.6

0.4

and Gaussian FRvith the mean-field crossover exponest2). andg, defined so that the projective space is realized as the
planer+\+g=1 rather than byg=1 can be specified by
and the full action is then defining
Ik[(ﬁa{)\}!|21--'7l2k] r_:r1
k o
I A=N\,
=|E[¢,{x}]+f [ > (2?)1 ¢>2“]. (3.1 B
Min=t ) g=r+a+g. (3.19

The different crossover lines from the multicritical point can
then be arranged to correspond to flows from the origi
along straight linegin particular, the coordinate axe$rom

the general arguments of the previous section the relative —

In these coordinates our previous ratios, that is, the affine
Tcoordinates, take the form

entropy increases along those trajectories. f_ B _
The crossovers in the above system can be organized in a g 1-r/ig—MNg
natural hierarchical sequence, descending from any one mul- _ (3.1
ticritical fixed point to the one just below in order of criti- A Ng
cality. In this way one loses one irrelevant coupling at each 52 ﬁ

step. The reduced phase diagram at each step is the hyper-
plane at infinity of the previous diagram. Thus with our COM-The phase diagram in the new coordinates, drawn in Fig. 3,
pactification _they constitute a sequence of nested projectivg patently compact. Transformations of the this type have
spaces, ending in a point. This structure deserves more d§aen used before in global studies of the R@]. Another

tailed treatment. possible realization of the phase diagram would be to project

onto the plane.+g=1. The new coordinates are given by
E. The geometrical structure of the phase diagram

The phase diagrams for the critical models corresponding r_ r’g
to different RG fixed points are nested in a natural way as g 1-Ng
projective spaces, (3.17)
RP.ORP,_,;D-:-DRP,DORP,, N_Ng
g 1-MNg

with RP, being just a point that represents the infinite mass

Gaussian fixed point. In the acti@¢8.14) the set of couplings The resulting projective coordinate change converts the line
I, together with the coupling,., lend themselves to an at infinity into the linex=1. The critical fixed point is on this
interpretation as homogeneous coordinates for the projectivine atr =0 but the infinite mass Gaussian point remains at
spaceR P, . The value of\, ., is to be held fixed along any r=«. Hence we can identify the resulting phase diagram as
crossover so that the ratias,,=|,./A5+, become affine that of the critical model. Similar considerations apply quite
coordinates. Moreover, in the crossover from an upper critigenerally to the entire hierarchy.
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We see that the new ratios in E¢.17) resemble the is finite whenA goes to infinity, agreeing with E¢3.5), and
solution of typical one-loop RG equations. This is not nec-vanishes fot=0. The Wilson RG is implemented by letting
essarily accidental. In practice when one goes from bare ta run to lower values. Let us see ttats monotonic withA.
renormalized coordinates one defines the new coordinates in We have that
terms of normalization conditiorf4.8], which can be chosen
so that the range of these renormalized coordinates ranges S Ad-1 A24r t
over a finite domain, e.g.,_from zero to the fi.xed point value A 20921 (d/2) In A2+rc_ AZir)
of the renormalized coupling. For example, in #&model

the relation between bare and renormalized couplings at one ) 5
loop is given by With the change of variable=A“, we have to show that the

corresponding function of is of the same sign everywhere.
A Then we want
M= a(d)n RO

(4.9

X+r r—rg

with R the IR cutoff anda(d) a dimension-dependent factor. In X+re X+r
If terms of the dimensionless couplingéd)\R*~ % we have

precisely Eq.(3.17. However, at higher order in the loop not to change sign. Interestingly, the properties of this ex-

expansion such normalization . cond|t|_ons may reahze_z th%ression are independentxftomehow for if one substitutes
projective space of the phase diagram in a more compllcategI

In p—(p—1)/p th luep=(x+ + h -
fashion than Eq(3.17). Nevertheless, one can think of the M In p=(p=1)lp the valuep=(x+r)/(x+rc) then one re

. " - . covers the entire function. Now it is easy to show that
change from “bare” to renormalized coordinates as the trany, p=1-1lp. (The equality holds forp=1—the critical

sition from affine coordinates to a realization of the prOjec—point.) This proof resembles the classical proofstbttheo-

tive space. rems
We plot in Fig. 4 the associated relative entropy for this
IV. WILSON'S RG AND ENTROPY GROWTH model as a function oA to show that it is again a monotonic

't]unction. This behavior is actually closely related to the

Field theoretic renormalization groups that are based o tonicity with idered before- Th lati i
reparametrization of the couplings are a powerful tool for thgnonotonicity withr considered betore. 2e relative entropy
s well asW is a function of the ratia /A<, which is pre-

study of crossovers and the calculation of crossover scaling; . )
functions, as discussed ifl8]. In essence they can be isely the S°|Ut'0n.0f the RG for this simple model. .
viewed as implementing appropriate projective changes of _There are C’ertam feature§ common to aII_formuIanns_of
coordinates implied by the above discussion. We now WisPWIISOnIan RG’s for a generic model. Even if the theory is
to discuss the relative entropy in a Wilsonian context. AS|mpIe at the scale of the cutoff, as may happen when we use

Wilson RG transformation is such that it eliminates degree Iattu;_e model ‘?S otur r.f%U|arL2eg th_eory, a W|Isop RG _tlfﬁns'
of freedom of short wavelength and hence high energy ormation compiicales it by introducing néw coupiings. Thus

Typical examples are decimation or block spin transformath€ action of Wilson's RG is defined in what is called theory

tions. It is intuitively clear that their action discards informa- space, typically of infinite dimension, comprising all possible

tion on the system and therefore must produce an increase B}eories_generated .by its action. In prac.tice, one is interested
entropy. Indeed, as remarked by NtE9] iterating this type in the critical behavior controlled by a g|ven.f|xed point and

of transformation does not constitute a group but rather het:]heory SPacle reguc?as to Ihe Cor;eSPOSdlgg Stﬁace ?_pannfed
semigroup, since the process cannot be uniquely reversed. € marginal and reievant operators. nder the action o

the language of statistical mechanics we can think of it as a e RG, the |rr_e|evant coupling constants approach values
irreversible process. which are functions of the relevant coupling constants. In the

For concreteness we illustrate our approach by a Verslfangua.ge of differenti_al geometry, the RG flow converges to
simple example, the Gaussian model with action a manlfolq paramgtnzed by the relgyant cogplmgs. There-
fore, the information about the original trajectory or the
1 (A value of the couplings at the scale of the cutoff is lost. In the
| = > J' dopd(p)(p2+1)d(—p), (4.  language of FT, we can say that the nonrenormalizable cou-
0 plings vanish(or, in general, approach predetermined values
when the cutoff is removefR0].

which yields As described above, the action of the Wilson RG is remi-
1 (A dip  p2tr niscent of the course of a typical nonequilibrium process in
W[z]== —— In———. 4.2 statistical physics. The initial state may be set up to be

2 Jo (2m) A simple but if it is not in equilibrium then it evolves, getting

) ) ] increasingly complicated until an equilibrium state is
This model has already been considered in Sec. Ill A buteached, where the system can be described by a small num-
with a lattice cutoff instead of a momentum cutoff. The rel- per of thermodynamic variables. This idea can be formulated
evant coupling that effects the crossoverist=r—r;. The a5 Boltzmann'sH theorem. In the modern version of this
corresponding relative entropy theorem[21] H is a functiorfal) of the probability distribu-

1 (A dip tion of the system defined a$=-S, of Eq. (2.1). It mea-
973 ), Gy

2
n pr (4.3  sures the information available to the system and has to be a
p*+re pr minimum at equilibrium. To be precise, the actual probabil-
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FIG. 4. The Wilsonian relative entropy of the Gaussian model.

ity distribution is such that it does not contain information some composite fields,7, [ #(x)]). The maximum entropy
other than that implied by the constraints or boundary coneondition provides an expression for the probability distribu-
ditions imposed at the outset. tion,

The simplest case of thd theorem is when there is no
constraint whereirH is a minimum for a uniform distribu-
tion. This is sometimes called the principle of equiprobabil- P[(ﬁ(x)]:Zlex% -2 NFLo(01],
ity. From a philosophical standpoint, it is based in the more '
general principle of sufficient reason, introduced by Leibnitz.
In our context, it can be quoted as stating that if to our
knowledge no difference can be ascribed to two possible
outcomes of an aleatory process, they must be regarded as 1= \F
equally probable. This is the case for an isolated system in oo
statistical mechanics: all the states of a given energy have the

same probability(microcanonical distribution Another il-  namely, a linear combination of relevant fields with coupling
lustrative example is provided by a system thermally couple@onstants to be determined from the specifi&g).
to a heat reservoir at a given temperature where we want to The formulation of thé4 theorem described above is very
impose that the average energy takes a particular valugeneral. The situation that concerns us here is the crossover
Minimizing H then yields the canonical distribution. from the critical behavior in the vicinity of a multicritical
In general, we may impose constraints on a system witlpoint to another more stable multicritical point under the
statesX; that the average values of a set of functions of itsaction of the RG. As soon as a relevant field takes a nonva-
state,f,(X;), adopt predetermined values: nishing value, the action of the RG drives the system away
from the first fixed point towards the second. In our hierar-
— chical sequence of critical points this was achieved by the
<fr>::§i: Pif (X =T, couplings being sent to infinity relative to one another in a
fashion that descended along this hierarchy. As described
with P,=P(X,). The maximum entropy formalism leads to above, the condition r_epresented by fixing the e_xpectgtion
the probability distributior[22] value of the_relevan_t field can be understood as imposing a
constraint via the introduction of a Lagrange multiplier
which appears as a coupling in the field theory. As in the
Pi=Z‘1exp< - )\rfr(xi)). case of the introduction g8 (inverse temperatufewhen)\;
r is sent to infinity we expect the entropy to decrease and thus
__our relative entropy should increase. Conversely, releasing
The \, are Lagrange multipliers determined in termsfpf the constraint is equivalent to sending the coupling to zero
through the constraints. In field theory a state is defined as and the relative entropy decreases. In the above description
field configurationg(x). One can define functionals of the the underlying theory is held fixed and only one parameter
field F,[ ¢(x)]. These functionals are usually quasilocal andvaried as one moves through a sequence of “quasistatic”
are called composite fields. The physical input of a theorystates.
can be given in two ways, either by specifying the micro- In the Wilson RG picture certain expectation values are
scopic couplings or by specifying the expectation values oheld fixed while the microscopic theory is allowed to evolve.

and therefore for the action,
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This involves the crossover from cutoff-dependent degreeized ones the phase diagram can be rendered compact.

of freedom to cutoff-independent ones and generically falls We discussed the action of the Wilson RG and argued that
into the nonequilibrium situation described above. In thisthe relative entropy increases as more degrees of freedom are
process one expects that the entropy will actually increase astegrated out, when the underlying Hamiltonian is held
the system evolves. This means that our relative entropjixed. However, when the Hamiltonian is allowed to flow, as
should decrease. One can easily see from Fig. 4 in the ext generically is in a Wilson RG, the resulting flow corre-
ample described at the beginning of this section that this isponds to a nonequilibrium process in thermodynamics.
indeed the case. In terms of renormalized couplings for givemNevertheless, the general formulation of tHeheorem pro-
values of the couplings, we can start with any valu@;addnd  vided by Jaynes allows us to conclude that the entropy in-
let the RG act. All the trajectories converge to the criticalcreases in such a process and that the relative entdygyto
manifold where),; is determined by the other couplings, our choice of signsdecreases. In contrast, the field theoretic
\i(\,). The trajectories approach each other in a sort of reerossover wherein one moves from one point in a phase dia-
verse chaotic process. In a chaotic process there is great segram to another by varying one of the underlying parameters
sitivity to the initial conditions, however, in the RG flow (such as temperatyr&orresponds to a sequence of quasi-
there is great insensitivity to the initial values of the irrel- static states and in the case of our hierarchical sequence as
evant couplings which diminish as the flow progresses and iwne descends the sequence by sending various parameters to

fact vanish at the end of the flow. infinity one is gradually placing tighter constraints much as
reducing the temperature does in the canonical ensemble.
V. CONCLUSIONS Thus one expects the entropy should reduce and the relative

. . ] ) entropy increase. This is indeed what we find.
We have established that the field theoretic relative en- one might wonder as to the connection between our en-

tropy provides a natural function which ranks the differentopy function and the Zamolodchika® function. It is un-
critical points in a model. It grows as one descends the hiefjiely that in two dimensions the two are the same. Zamolod-
archy in the crossovers between scalar field theories corrghikoy's C function is built from correlation data and in the

sponding to different multicritical points. This is a conse- case of a free-field theory it is easy to check that the two
quence of general properties of the entropy and, in particulagynctions do not coincide.

of the relative entropy.

We have further established that the phase diagrams of
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