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Is an effective Lagrangian a convergent series?
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(Received 14 February 1996

We present some generic arguments demonstrating that an effective Lagrapgiahich, by definition,
contains operator®" of arbitrary dimensionality in general is not convergent, but rather an asymptotic series.
It means that the behavior of the far distant terms has a specific factorial dependence
Leg~2,(c,O"M"™), c,~n!, n>1. We explain the main ideas by using QED as a toy model. However we
expect that the obtained results have a much more general origin. We speculate on possible applications of
these results to various physical problems with typical energies from 1 GeV to the Planck scale.
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I. INTRODUCTION the expansion has some physical meaning.
Such a situation may occur in a variety of different prob-

Today it is widely believed that all of our present realistic lems as will be discussed in more detail later in the text. Now
field theories are actually not fundamental, but effectivelet us mention that, in general, it occurs when the energy
theories. The standard model is presumably what we gescaleE is close toM and/or when two or more intermediate,
when we integrate out modes of very high energy from someiot well-separated scales, come into the gé#ie
unknown theory, and like any other effective field theory, its  This paper is organized in the following way. In the next
Lagrangian density contains terms of arbitrary dimensionalsection we consider our basic QED example, where the fac-
ity, though the terms in the Lagrangian density with dimen-torial behavior of the coefficients in front of the high-
sionality greater than four are suppressed by negative powegimensional operators is explicitly calculated. After that we
of a very large maskl. Even in QCD, for the calculation of argue that this property is a very general phenomenon of the
processes at a few GeV we would use an effective fiel@ffective field theories.
theory with heavier quarks integrated out, and such an effec- In conclusion, we make some speculations regarding pos-
tive theory necessarily involves terms in the Lagrangian ofible applications of the obtained results to different field
unlimited dimensionality. theories with very different scalgérom QCD problems to

The basic idea behind effective field theories is that &he cosmological constant problgm
physical process at ener@<M can be described in terms
of an expansion irE/M, see recent reviewsl—3]. In this II. BASIC EXAMPLE: QED
case we can limit ourselves by considering only a few first
leading terms and neglect the rest. In this paper we discuss We begin our analysis with the following remark. An ef-
not this standard formulation of the problems, but rather, wéective field theory can be considered as a particular case of
are interested in the behavior of the coefficients of the verjhe more general idea of the Wilson operator product expan-
high dimensional operators in the expansion. We shall demsion (OPE). It has been demonstrated recerfi, that the
onstrate that these coefficients grow as fast as a factorial OPE for some specific correlation functiortseavy-light
n! for sufficiently largen. Thus the series under discussion is quark systenQq) in QCD is anasymptoti¢c and not a con-
not a convergent, but an asymptotic one. Such a behaviorergent series. The general arguments of the pgfjdnave
raises problems both of a fundamental nature, concerning theeen explicitly tested in two-dimensional QCCD,)
status of the expansion and of practical importance, as towhere the vacuum structure as well as the spectrum of the
whether divergences can be associated with new physicéheory is known with the same conclusion concerning the
phenomena. It means, first of all, that in order to make sensesymptotic nature of OPE/]. In both cases the arguments
such a theory should be defined by some specific prescrip-
tion, for example, by Borel transformation.

Let us note, that our remarks about the factorial depen- 1The generality of this phenomenon can be compared with the
dence of the series for large>1 is an absolutely irrelevant well-known property of the large-order behavior in a perturbative
issue for the analysis of standard problems when we are irseries[5]. As is known, a variety of different field theoriggauge
terested only in the low-energy limit. We have nothing newtheories, in particularexhibits a factorial growth of the coefficients
to say about these issues. in the perturbative expansion with respect to a coupling constant.

However, sometimes we need to know the behavior of ahis growth in perturbative expansion is very different from the
whole series when the distant terms in the series might bghenomenon we are discussing, where the factorial behavior is re-
important. In this case the analysis of the large order terms irated to high-dimensional operators, and not to coupling constant

expansion. However, in spite of the apparent difference of these
phenomena, they actually have some common general origin. We
*Electronic address: arz@physics.ubc.ca shall discuss this connection later.

0556-2821/96/5)/51485)/$10.00 54 5148 © 1996 The American Physical Society



54 IS AN EFFECTIVE LAGRANGIAN A CONVERGENT SERIES? 5149

were based on the dispersion relations and the general prophus the coefficients, in the OPE(1) are factorially diver-
erties of the spectrum of the theory. However, the experiencgent for largen:
with large-order behavior in a perturbative selfiBsteaches
us that the factorial growth of the coefficients is of a very 1 .. (2n=3)!
general nature and it is not a specific property of some Green CZ“_WZ Ban (2n)!
functions.

Thus we expect that the asymptotic nature of the OPE halh particular, forn=2 this formula reproduces the well-
a much more general origin and it is not related to the speknown Euler-Heisenberg effective Lagrangiag,, which is
cific correlation functions, for which it was found for the first nothing but the first nontrivial term in the seri€b:

time [6]. o2 )2 ,
E* (6)

~(2n)!. (5)

To be more specific and in order to explain what is going 2

on with the effective theory when we integrate out the heavy LEH_45M4 A

degrees of freedom, let us consider QED with one heavy

electron of masdM. The effective field theory for photons We have redefined the coupling constarih this expression
can be obtained by integrating out the fermion degrees ofo present the formula in a standard way.

freedom. The most general solution of this problem is not Now, how one can understand this factorial behay&r
known, however, in the case of a specifionstantexternal in simple terms? We suggest the following almost trivial
electric field E the corresponding expression fors is  explanation which, however, is very universal in nature.

known (see, e.g., the textbod]). In order to find the OPE Let us look at the functiorLe4(2)(1) as an analytical
coefficients for the high-dimensional operat@$, one can function of the complex variablge=E/M? for which the
expandL . in power of E: standard dispersion relations hold. The factorial growth of

the coefficients in the real part df.4(z) implies that the

4 n corresponding imaginary part has a very specific behavior
Ler=M ; Cnl M2/ - (D ImLet(2)~e 2, which follows from the dispersion rela-
tions:

Of course, the Eq(l) is not the most general form, be- dz'
cause it does not contain all possible operators, in particularf(z)~ >, f,z"f,~(a)"n! ~f —mzIimf(z')—Imf(z")
those operators which would contain some terms with de- n (')
rivatives ~ g, E. Our goal now is to demonstrate that we do e a7
have already a factorial behavior in this simple case where '
we select only some specific class of operators, namely tho
~E".

Our next step is as follows. First of all we shall find an

@)

S§ere we have introduced an arbitrary analytical function
f(z) to be more general.
e At the same time, an imaginary part of the amplitude, as
exact formula for then dependence of the coefficients; i ynown, is related to to a real physical process: the pair
secondly, We give a qualitative explanation Of. why.such &reation in the strong external field. We have fairly good
factorial behavior takes place. Our argumentation will be Sophysical intuition of what kind of dependence on the field
general in.form that_ it will pe perfectly clear that this phe- one could expect for such a physical process. Namely, as we
homenon IS very unlversgl In nature. __shall discuss later, this process can be thought as a penetra-
. The effec_tlve Lagrangian for the problem can be writtengjo through a potential barrier in the quasiclassical approxi-
in the following way[8]: mation. So, from a physical point of view we would expect
that the E dependence should have the following form
Leﬁ:iszd_zs o isM2, @) ImL(E)~e Y&, As we shall see, this is exactly the case
87 Jo S for our QED exampl€l) and in a full agreement with what
the dispersion relation&) tell us.

1
Ecoth(Es)— S

where we denote the external fieidtogether with its cou- Now we would like to present the explicit formula for the
pling constant. We expand this expression i using the  probability of pair creation in the constant electric fié@dIt
formula is given by(see, e.g.[8]):
o _ 1 [~ds 1 .
1 Xk 1 - _ _ —isM?
- Z B, 3) w 4772fo 2 EcothEs) S Im(e ). (8
e*—1 k=0 k!

The “only” difference with the formula(2) is the replace-

ment Reg M*)=Im(e~sM*). However, this replacement
modifies completely the analytical structure. Indeed, the ex-

whereB, are Bernoulli numbers. For lardethese numbers
as is known exhibit factorial growth:

" plicit calculation of the coefficients in the power expansion
B,.=2(—1)"(2n)! 2 1 for imaginary part in the formulé8) leads to the following
2n & (27r)en integrals, which are zerddzsin@z" *~sin(n—1)x]=0.

Thus the imaginary part is not expandabléeat 0 in agree-
ment with our arguments about a singular behavior at this

1
_o(_a\n+1 - s
2(—1)""H(2n)! n>1. (4) point ~ e~ UE.

(2m)°"
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Fortunately, a direct calculatidnwithout using an expan- dence can be understood as the rapid growth of the number
sion in power ofE can be performed easily with the follow- of Feynman graph.

ing final result, explicitly demonstrating the ' structure Now, how one can understand the nature of the Wilson
(see, e.g.[8]): OPE in terms of the Feynman graphs? As is known, the
R ) computational recipe of the coefficients in the OPE is simple:
We E_E iexp( B nM 77) ) it is necessary to separate large and small distance physics.
473 n? E /) Large distance physics is presented by operators of light

fields; the small distance contribution is explicitly calculated
A few comments are in order. First, the behaviorfrom the underlying field theory. Technically, in order to
w(z)~e 7 is exactly what we expected. It can be inter- carry out this program, we cut the perturbative graphs in all
preted as penetration through a potential barrier in the qugpossible ways over the photon liné® a general case, a
siclassical approximation. Indeed, the standard formula fophoton field will be replaced by some light degrees of free-
the ionization of a state with bound energpyV~2M and  dom). These lines present the external light fields. They are

external fieldE is proportional to combined together in a specific way to organize all possible
operators. The coefficients in front of these operators can be
consi? explicitly calculated and they are determined by the small

NGXF’( —2f dxyZM(V—-EX) ~exp< - T) distance physics.

From this technical explanation of the calculation of the

which qualitatively explains the exact res(®). coefficients in the Wilson OPE it should be clear, that if the

We are not pretending here to have derived a new resultnderlying theory possesses factorial growth in the perturba-
in QED. All these classical formulas have been well knowntive expansion, the effective Lagrangian constructed from
for many years. Rather, we wanted to explain, by analyzinghis theory exhibits the same factorial behavior for the high-
this QED example, the main source of thiedependence in dimensional operators. The moral of this argument is very
the effective Lagrangian. simple: the factorial growth of the perturbative expansion in

The effective Lagrangian, by definition, is a series of op-the underlying theory can not disappear without a trace. It
erators of arbitrary dimensions constructed from the lightwill show up in the coefficients of the high-dimensional op-
fields E. Presumably, this is obtained from some underlyingerators in the effective Lagrangian obtained from the under-
field theory by integrating out the heavy fields of magslt  lying theory.
is perfectly clear that the probability of the physical creation Having demonstrated the main result on factorial growth
of the heavy particles with madd in external fieldE is of the coefficientgin an effective Lagrangigras a universal
strongly suppressed exp(—1/E). The dispersion relations, Phenomenon as a consequence of the factorial growth in per-
thus, imply unambiguously that the coefficients in the reafturbative series, we would like to discuss some possible ap-
part of the effective Lagrangian are factorially large. plications of this phenomenon.

We believe that this simple explanation of form8 is We start from the QCOas underlying theopy which is
so universal in form that it can be applied to almost arbitraryvery similar to QED discussed above. The problem in this
nontrivial effective field theories leading to the same conclu-ase can be formulated in the following wésee recent pa-
sion about factorial behavior. We shall consider another exPer [9] on this subject and refences thedeiRlow one can
planation of the same phenomenon later in the text, but nowntegrate over small distance physics in order to extract the
we would like to note that the relation between imaginarylong-distance dynamics? An appropriate way to implement
and real parts of the amplitudes of course is well known, andhis program isi(a) introduce the collective degrees of free-
heavily used in particle physics. dom, colorless mesons, as the external sources into the un-

We would like to come back to formul®) to explain this ~ derlying lagrangian(b) integrate over the quarks and gluons
factorial behavior in the OPE one more time from an absoWith high frequencies by introducing the normalization point
lutely independent point of view. Again, we use QED as ant. The obtained effective Lagrangian is the.léxpansion,
example to demonstrate an idea, however, as we shall se&here operators are expressed in terms of the external fields

the arguments which follow are much more general and unias well as low-energetic quarks and gluons. Our remark is
versal in nature. the coefficients in this expansion grow factorially with the

increasing number of meson fields. Let us note that the pro-
cedure of obtaining the effective Lagrangian in this case is
not much different from the case we discussed previously.
As is known, almost all nontrivial field theories exhibit The only new element is the introduction of the collective
factorial growth of coefficients in the perturbative expansionfields, which were not present in our original Lagrangian.
with respect to a coupling constaf§]. This factorial depen- However, this does not effect the general arguments on the
n! behavior.
Indeed, one can consider the quark-antiquark external
2This integral can be reduced, according to Cauchy’s theoremljnes (instead of the collective meson fieJdsr the calcula-
tthe calculation of the contributions from the poles of the zoth tion of the OPE coefficients, as discussed in the previous
function.
3Do not confuse this perturbative expansion with OPE and effec-
tive Lagrangian we are dealing with. These series are very different “Here we do not discuss the so-called renormalons, which give the
in nature, but they both exhibit a factorial growth. same factorial dependence, but have a very different origin.

Ill. SPECULATIONS
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section. In this case, all arguments ph behavior can be

applied in a straightforward way. In fact, each extra quark-Ser= d4X\/§
antiquark external pair raises the dimension of the operator

and at the same time it comes with the extra faetgr As

we learned earlier, the coefficient in front of contains + Lmattert Lditaton Linftaton” - = ¥ |» (12)
n! dependence. Thus the high-dimensional operator with

~n external fields will be accompanied by the factdras  \where the operator@" are high-dimensional operators con-
well as the factor-n!. structed from the relevant fieldR(,,, dilaton, inflatoné,
One more way to understand the same phenomenon is thyuge fields,,, etc). Our remark here is that we believe
fO”OWing. We introduce the collective Val’iab|é@0|dst0ne that the coefficients in the effective Lagrangian’ even for
fields in the course of Refl9], where we use the standard pyre gravity, exhibit factorial growth. The arguments which

2 2 A% n
A+ R+CR*+CR,,R +; c, Q" -

form for the interaction: support this statement are the same as before: if the under-
— lying theory [in our case it is given by Lagrangiafil)]
Line~ ¢y, (i9,+G +A, ys+ ). (100 possesses factorial growth in the perturbative expansion, the

effective Lagrangian constructed from this theory exhibits

In this formulaG, is th‘?r usual gluon field and, is external  he same factorial behavior for the high-dimensional opera-
axial source related t0'9,U with unitary matrixU describ- o,

s.
ing the Goldstone fields. Bearing in mind that the photon-  Ag e already mentioned, the factorial behavior of coef-
fermion interaction and gluon-fermion interaction are Veryficients in the perturbative expansion can be understood as
similar, one can conclude that the effective Lagrangian fofne fast increase in the number of Feynman diagrams. In pure
the gluon fields derived from Eq10) (by integrating over Yang Mills theory we know well that such a growth does
¢ fields) possesses the factorial growth in coefficients ingake place5]. We can interpret this growth as a manifesta-
close analogy with QERL, 5. Moreover, from the similar-  tjon of the three- and four-gluon vertices, which lead to the
ity of the interaction of gluon field5, and axial fieldA,  factorially divergent number of diagrams. In the case of
with a fermion ¢, one can conclude that the same factorialgrayity (11) we expect the same factorial behavior because
growth also is present for the operators constructed fronys the nonlinear nature of the interactighl) similar to a

A, fields. o _ gauge theory.
In principle, one could imagine that some high-

dimensional operators do not contain a factorial dependence.
The number of such operators is sm@ly combinatoric rea-
song and they certainly cannot play a dominating role. In this paper we have presented two independent sets of

Thus, in general, we expect a factorial behavior of thearguments, which support the idea that almost any nontrivial
coefficients for the effective QCD Lagrangian, as well as foreffective Lagrangian obtained by integrating out some heavy
the chiral Lagrangian, as its particular case. An exact forfields and/or fast degrees of freedom, is nonconvergent, but
mula for the coefficients depends on the operator under coran asymptotic series.
sideration. This is because the different fiel@sluons, The first set of arguments is based on the idea that the
quarks, mesonswhich are constituents of the operator areimaginary part of the amplitude related to the probability of
not equally weighted. However, the precise expression fothe physical creation of a heavy particle, is exponentially
the coefficients in terms of constituents of these operators ismall ~exp(—1/E). The dispersion relations in this case im-
not a relevant issue at the moment. ply unambiguously that the coefficients of the expansion in

One more interesting example we would like to mentionthe real part of the corresponding amplitude exhibit a facto-
is the effective field theory of gravity. We refer to the recentrial dependence. Once these coefficients are found to be fac-
review [10] on this subject for a general introduction and torially large, we can forget about the way the result was
references. The only remark we would like to make here isjerived and we can forget about the external auxiliary field
the following. Nowdays it is generally accepted that the Ein-E, which we used heavily in our arguments. Coefficients in
stein Lagrangian the OPE do not depend on the applied fiElcho matter how
small it is.

The second line of reasoning is based on the analysis of
the large-order behavior of the perturbative series. As we
have argued, if the underlying theory possesses factorial
is only the first local term of the expansion of a more com-growth of the coefficients of the perturbative series, then the
plicated theory(string?. Thus general relativity should be corresponding effective Lagrangian constructed from this
considered as an effective field theory with infinitely manytheory will exhibit the same factorial behavior for the high-
terms allowed by general coordinate invariance. As usual, imimensional operators.
the effective theory description, only the first term in the We believe that both of these lines of arguments are so
expansion plays a role at low enerBy<Mppnek- If we were  general in form that almost all nontrivial effective Lagrang-
not interested in quantum effects at the Planck scale witlian will demonstraten! behavior. We believe that this phe-
E=Mpjance EQ. (11) would be the end of the story. How-
ever, we intend to discuss physics at the Planck scale; thus—
we would like to write down the effective Lagrangian in the SAn explicit calculations based on a simplified version of gravity
most general form: also support this expectatigal].

IV. CONCLUSION

2
Sgrav:f d4X\/§FR (11)
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nomenon is universal in nature. The effective description of QCD, which has been dis-
Now we would like to discuss some physical conse-cussed in the previous section is one example where those
guences, which might result from this phenomenon. As wegroblems might be a relevant issue.
mentioned in the Introduction, we have nothing new to say in  The factorial behavior in the effective Lagrangidre) for
the case of analysis of low-energy phenomena for which th@ravity also might be an interesting observation, which could
small expansion parameter siss=E/M<1. In such a case, have some important consequences. Let us recall that the
the exact formula is approximated perfectly well by the firstnatural scale of the cosmological terinis the Planck scale.
term of the asymptotic expansion and we can safely forgelndeed, the most popular cosmology today, the inflationary
about all the rest. However, very often the situation is not sscenario(for a review sed12] and[13]) assumes that our
fortunate and the expansion parameterl (let us say 1/3 universe passed through an era in which the cosmological
or 1/2), like in chiral perturbation theory. In this event term dominated, and it is a total mystery why we should be
people try to improve the situation by considering the nextleft in a universe with an almost vanishing vacuum energy.
to-leading terms or even next to next to-leading order. If theOf course we do not know the answer to this question, but
series were convergent, these efforts would be worthwhileone can argue that the asymptotic nature of the effective
However, as we argued in this letter, an effective Lagrangtagrangian of the gravity could have some influence on the
ian, in general, is represented by an asymptotic, not a consanishing of the vacuum energy provided that the universe
vergent series. Thus one may ask the following general quedras a graceful exit from an inflation epoftv].
tions: (&) How many terms one should keep in the effective

Lagrangl_an for the best approximation of an exact formula ACKNOWLEDGMENTS
for the given parametex? (b) What is the fundamental un-
certainty (related to our lack of knowledge of the higher- | am grateful to Robert Brandenberger for the extremely
dimensional operatorsone should expect for an effective valuable lunch discussions about gravity problems. | also
Lagrangian represented as an asymptotic series? thank Sasha Polyakov for his useful critical comments.
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