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Is an effective Lagrangian a convergent series?

Ariel R. Zhitnitsky*
Physics Department, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia, Canada V6T

~Received 14 February 1996!

We present some generic arguments demonstrating that an effective LagrangianLeff which, by definition,
contains operatorsOn of arbitrary dimensionality in general is not convergent, but rather an asymptotic series.
It means that the behavior of the far distant terms has a specific factorial dependence
Leff;(n(cnO

n/Mn), cn;n!, n@1. We explain the main ideas by using QED as a toy model. However we
expect that the obtained results have a much more general origin. We speculate on possible applications of
these results to various physical problems with typical energies from 1 GeV to the Planck scale.
@S0556-2821~96!05220-4#
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I. INTRODUCTION

Today it is widely believed that all of our present realist
field theories are actually not fundamental, but effecti
theories. The standard model is presumably what we
when we integrate out modes of very high energy from so
unknown theory, and like any other effective field theory, i
Lagrangian density contains terms of arbitrary dimension
ity, though the terms in the Lagrangian density with dime
sionality greater than four are suppressed by negative pow
of a very large massM . Even in QCD, for the calculation of
processes at a few GeV we would use an effective fie
theory with heavier quarks integrated out, and such an eff
tive theory necessarily involves terms in the Lagrangian
unlimited dimensionality.

The basic idea behind effective field theories is that
physical process at energyE!M can be described in terms
of an expansion inE/M , see recent reviews@1–3#. In this
case we can limit ourselves by considering only a few fir
leading terms and neglect the rest. In this paper we disc
not this standard formulation of the problems, but rather, w
are interested in the behavior of the coefficients of the ve
high dimensional operators in the expansion. We shall de
onstrate that these coefficientscn grow as fast as a factorial
n! for sufficiently largen. Thus the series under discussion
not a convergent, but an asymptotic one. Such a beha
raises problems both of a fundamental nature, concerning
status of the expansion and of practical importance, as
whether divergences can be associated with new phys
phenomena. It means, first of all, that in order to make sen
such a theory should be defined by some specific presc
tion, for example, by Borel transformation.

Let us note, that our remarks about the factorial depe
dence of the series for largen@1 is an absolutely irrelevant
issue for the analysis of standard problems when we are
terested only in the low-energy limit. We have nothing ne
to say about these issues.

However, sometimes we need to know the behavior o
whole series when the distant terms in the series might
important. In this case the analysis of the large order terms
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the expansion has some physical meaning.
Such a situation may occur in a variety of different pro

lems as will be discussed in more detail later in the text. N
let us mention that, in general, it occurs when the ene
scaleE is close toM and/or when two or more intermediate
not well-separated scales, come into the game@4#.

This paper is organized in the following way. In the ne
section we consider our basic QED example, where the
torial behavior of the coefficients in front of the high
dimensional operators is explicitly calculated. After that w
argue that this property is a very general phenomenon of
effective field theories.1

In conclusion, we make some speculations regarding p
sible applications of the obtained results to different fie
theories with very different scales~from QCD problems to
the cosmological constant problem!.

II. BASIC EXAMPLE: QED

We begin our analysis with the following remark. An e
fective field theory can be considered as a particular cas
the more general idea of the Wilson operator product exp
sion ~OPE!. It has been demonstrated recently@6#, that the
OPE for some specific correlation functions~heavy-light
quark systemQ̄q) in QCD is anasymptotic, and not a con-
vergent series. The general arguments of the paper@6# have
been explicitly tested in two-dimensional QCD~QCD2)
~where the vacuum structure as well as the spectrum of
theory is known! with the same conclusion concerning th
asymptotic nature of OPE@7#. In both cases the argument

1The generality of this phenomenon can be compared with
well-known property of the large-order behavior in a perturbati
series@5#. As is known, a variety of different field theories~gauge
theories, in particular! exhibits a factorial growth of the coefficient
in the perturbative expansion with respect to a coupling const
This growth in perturbative expansion is very different from th
phenomenon we are discussing, where the factorial behavior is
lated to high-dimensional operators, and not to coupling cons
expansion. However, in spite of the apparent difference of th
phenomena, they actually have some common general origin.
shall discuss this connection later.
5148 © 1996 The American Physical Society
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54 5149IS AN EFFECTIVE LAGRANGIAN A CONVERGENT SERIES?
were based on the dispersion relations and the general p
erties of the spectrum of the theory. However, the experien
with large-order behavior in a perturbative series@5# teaches
us that the factorial growth of the coefficients is of a ve
general nature and it is not a specific property of some Gre
functions.

Thus we expect that the asymptotic nature of the OPE h
a much more general origin and it is not related to the sp
cific correlation functions, for which it was found for the firs
time @6#.

To be more specific and in order to explain what is goin
on with the effective theory when we integrate out the hea
degrees of freedom, let us consider QED with one hea
electron of massM . The effective field theory for photons
can be obtained by integrating out the fermion degrees
freedom. The most general solution of this problem is n
known, however, in the case of a specific~constant! external
electric field E the corresponding expression forLeff is
known ~see, e.g., the textbook@8#!. In order to find the OPE
coefficients for the high-dimensional operatorsEn, one can
expandLeff in power ofE:

Leff5M4(
n

cnS E

M2D n. ~1!

Of course, the Eq.~1! is not the most general form, be
cause it does not contain all possible operators, in particu
those operators which would contain some terms with d
rivatives;]mE. Our goal now is to demonstrate that we d
have already a factorial behavior in this simple case whe
we select only some specific class of operators, namely th
;En.

Our next step is as follows. First of all we shall find a
exact formula for then dependence of the coefficientscn ;
secondly, we give a qualitative explanation of why such
factorial behavior takes place. Our argumentation will be
general in form that it will be perfectly clear that this phe
nomenon is very universal in nature.

The effective Lagrangian for the problem can be writte
in the following way@8#:

Leff5
1

8p2E
0

`ds

s2 FEcoth~Es!2
1

sGe2 isM2
, ~2!

where we denote the external fieldE together with its cou-
pling constante. We expand this expression inE using the
formula

1

ex21
5 (

k50

`

Bk

xk21

k!
, ~3!

whereBk are Bernoulli numbers. For largek these numbers
as is known exhibit factorial growth:

B2n52~21!n11~2n!!(
r51

`
1

~2pr !2n

;2~21!n11~2n!!
1

~2p!2n
, n@1. ~4!
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Thus the coefficientscn in the OPE~1! are factorially diver-
gent for largen:

c2n5
1

8p22
2nB2n

~2n23!!

~2n!!
;~2n!!. ~5!

In particular, for n52 this formula reproduces the well
known Euler-Heisenberg effective LagrangianLEH, which is
nothing but the first nontrivial term in the series~1!:

LEH5
2

45M4 S e24p D 2E4. ~6!

We have redefined the coupling constante in this expression
to present the formula in a standard way.

Now, how one can understand this factorial behavior~5!
in simple terms? We suggest the following almost trivi
explanation which, however, is very universal in nature.

Let us look at the functionLeff(z)~1! as an analytical
function of the complex variablez5E/M2 for which the
standard dispersion relations hold. The factorial growth
the coefficients in the real part ofLeff(z) implies that the
corresponding imaginary part has a very specific behav
ImLeff(z);e21/z, which follows from the dispersion rela
tions:

f ~z!;(
n

f nz
nf n;~a!nn!;E dz8

~z8!n12Imf ~z8!↔Imf ~z8!

;e2a/z8. ~7!

Here we have introduced an arbitrary analytical functi
f (z) to be more general.
At the same time, an imaginary part of the amplitude,

is known, is related to to a real physical process: the p
creation in the strong external field. We have fairly goo
physical intuition of what kind of dependence on the fie
one could expect for such a physical process. Namely, as
shall discuss later, this process can be thought as a pen
tion through a potential barrier in the quasiclassical appro
mation. So, from a physical point of view we would expe
that the E dependence should have the following for
ImLeff(E);e21/E. As we shall see, this is exactly the cas
for our QED example~1! and in a full agreement with wha
the dispersion relations~7! tell us.

Now we would like to present the explicit formula for th
probability of pair creation in the constant electric fieldE. It
is given by~see, e.g.,@8#!:

w52
1

4p2E
0

`ds

s2 FEcoth~Es!2
1

sG Im~e2 isM2
!. ~8!

The ‘‘only’’ difference with the formula~2! is the replace-
ment Re(e2 isM2

)⇒Im(e2 isM2
). However, this replacemen

modifies completely the analytical structure. Indeed, the
plicit calculation of the coefficients in the power expansio
for imaginary part in the formula~8! leads to the following
integrals, which are zero*dzsin(z)z2n23;sin@(n21)p#50.
Thus the imaginary part is not expandable atE50 in agree-
ment with our arguments about a singular behavior at t
point ;e21/E.
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5150 54ARIEL R. ZHITNITSKY
Fortunately, a direct calculation,2 without using an expan-
sion in power ofE can be performed easily with the follow-
ing final result, explicitly demonstrating thee21/z structure
~see, e.g.,@8#!:

w5
E2

4p3(
n51

n5`
1

n2
expS 2

nM2p

E D . ~9!

A few comments are in order. First, the behavio
w(z);e21/z is exactly what we expected. It can be inte
preted as penetration through a potential barrier in the q
siclassical approximation. Indeed, the standard formula
the ionization of a state with bound energy2V;2M and
external fieldE is proportional to

;expS 22E dxA2M ~V2Ex! D;expS 2
constM2

E D ,
which qualitatively explains the exact result~9!.

We are not pretending here to have derived a new res
in QED. All these classical formulas have been well know
for many years. Rather, we wanted to explain, by analyzi
this QED example, the main source of then! dependence in
the effective Lagrangian.

The effective Lagrangian, by definition, is a series of o
erators of arbitrary dimensions constructed from the lig
fieldsE. Presumably, this is obtained from some underlyin
field theory by integrating out the heavy fields of massM . It
is perfectly clear that the probability of the physical creatio
of the heavy particles with massM in external fieldE is
strongly suppressed;exp(21/E). The dispersion relations,
thus, imply unambiguously that the coefficients in the re
part of the effective Lagrangian are factorially large.

We believe that this simple explanation of formula~5! is
so universal in form that it can be applied to almost arbitra
nontrivial effective field theories leading to the same concl
sion about factorial behavior. We shall consider another e
planation of the same phenomenon later in the text, but n
we would like to note that the relation between imagina
and real parts of the amplitudes of course is well known, a
heavily used in particle physics.

We would like to come back to formula~5! to explain this
factorial behavior in the OPE one more time from an abs
lutely independent point of view. Again, we use QED as a
example to demonstrate an idea, however, as we shall
the arguments which follow are much more general and u
versal in nature.

III. SPECULATIONS

As is known, almost all nontrivial field theories exhibi
factorial growth of coefficients in the perturbative expansio
with respect to a coupling constant3 @5#. This factorial depen-

2This integral can be reduced, according to Cauchy’s theore
tthe calculation of the contributions from the poles of the cotz
function.
3Do not confuse this perturbative expansion with OPE and effe

tive Lagrangian we are dealing with. These series are very differ
in nature, but they both exhibit a factorial growth.
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dence can be understood as the rapid growth of the num
of Feynman graphs.4

Now, how one can understand the nature of the Wilso
OPE in terms of the Feynman graphs? As is known, t
computational recipe of the coefficients in the OPE is simp
it is necessary to separate large and small distance phys
Large distance physics is presented by operators of lig
fields; the small distance contribution is explicitly calculate
from the underlying field theory. Technically, in order to
carry out this program, we cut the perturbative graphs in
possible ways over the photon lines~in a general case, a
photon field will be replaced by some light degrees of fre
dom!. These lines present the external light fields. They a
combined together in a specific way to organize all possib
operators. The coefficients in front of these operators can
explicitly calculated and they are determined by the sm
distance physics.

From this technical explanation of the calculation of th
coefficients in the Wilson OPE it should be clear, that if th
underlying theory possesses factorial growth in the perturb
tive expansion, the effective Lagrangian constructed fro
this theory exhibits the same factorial behavior for the hig
dimensional operators. The moral of this argument is ve
simple: the factorial growth of the perturbative expansion
the underlying theory can not disappear without a trace.
will show up in the coefficients of the high-dimensional op
erators in the effective Lagrangian obtained from the unde
lying theory.

Having demonstrated the main result on factorial grow
of the coefficients~in an effective Lagrangian! as a universal
phenomenon as a consequence of the factorial growth in p
turbative series, we would like to discuss some possible a
plications of this phenomenon.

We start from the QCD~as underlying theory!, which is
very similar to QED discussed above. The problem in th
case can be formulated in the following way~see recent pa-
per @9# on this subject and refences therein!. How one can
integrate over small distance physics in order to extract t
long-distance dynamics? An appropriate way to impleme
this program is:~a! introduce the collective degrees of free
dom, colorless mesons, as the external sources into the
derlying lagrangian;~b! integrate over the quarks and gluon
with high frequencies by introducing the normalization poin
m. The obtained effective Lagrangian is the 1/m expansion,
where operators are expressed in terms of the external fie
as well as low-energetic quarks and gluons. Our remark
the coefficients in this expansion grow factorially with th
increasing number of meson fields. Let us note that the p
cedure of obtaining the effective Lagrangian in this case
not much different from the case we discussed previous
The only new element is the introduction of the collectiv
fields, which were not present in our original Lagrangia
However, this does not effect the general arguments on
n! behavior.

Indeed, one can consider the quark-antiquark extern
lines ~instead of the collective meson fields! for the calcula-
tion of the OPE coefficients, as discussed in the previo

m,
h

c-
ent 4Here we do not discuss the so-called renormalons, which give
same factorial dependence, but have a very different origin.
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54 5151IS AN EFFECTIVE LAGRANGIAN A CONVERGENT SERIES?
section. In this case, all arguments onn! behavior can be
applied in a straightforward way. In fact, each extra quar
antiquark external pair raises the dimension of the opera
and at the same time it comes with the extra factoras . As
we learned earlier, the coefficient in front ofas

n contains
n! dependence. Thus the high-dimensional operator w
;n external fields will be accompanied by the factoras

n as
well as the factor;n!.

One more way to understand the same phenomenon is
following. We introduce the collective variables~Goldstone
fields! in the course of Ref.@9#, where we use the standar
form for the interaction:

L int;c̄gm~ i ]m1Gm1Amg51••• !c. ~10!

In this formulaGm is the usual gluon field andAm is external
axial source related toU†]mU with unitary matrixU describ-
ing the Goldstone fields. Bearing in mind that the photo
fermion interaction and gluon-fermion interaction are ve
similar, one can conclude that the effective Lagrangian
the gluon fields derived from Eq.~10! ~by integrating over
c fields! possesses the factorial growth in coefficients
close analogy with QED~1, 5!. Moreover, from the similar-
ity of the interaction of gluon fieldGm and axial fieldAm
with a fermionc, one can conclude that the same factori
growth also is present for the operators constructed fro
Am fields.

In principle, one could imagine that some high
dimensional operators do not contain a factorial dependen
The number of such operators is small~by combinatoric rea-
sons! and they certainly cannot play a dominating role.

Thus, in general, we expect a factorial behavior of t
coefficients for the effective QCD Lagrangian, as well as f
the chiral Lagrangian, as its particular case. An exact f
mula for the coefficients depends on the operator under c
sideration. This is because the different fields~gluons,
quarks, mesons!, which are constituents of the operator a
not equally weighted. However, the precise expression
the coefficients in terms of constituents of these operator
not a relevant issue at the moment.

One more interesting example we would like to mentio
is the effective field theory of gravity. We refer to the rece
review @10# on this subject for a general introduction an
references. The only remark we would like to make here
the following. Nowdays it is generally accepted that the Ei
stein Lagrangian

Sgrav5E d4xAg
2

k2R ~11!

is only the first local term of the expansion of a more com
plicated theory~string?!. Thus general relativity should be
considered as an effective field theory with infinitely man
terms allowed by general coordinate invariance. As usual
the effective theory description, only the first term in th
expansion plays a role at low energyE!MPlanck. If we were
not interested in quantum effects at the Planck scale w
E.MPlanck, Eq. ~11! would be the end of the story. How-
ever, we intend to discuss physics at the Planck scale; t
we would like to write down the effective Lagrangian in th
most general form:
k-
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Seff5E d4xAgFL1
2

k2R1c1R
21c2RmnR

mn1(
n

cnQ
n
•••

1Lmatter1Ldilaton1L inflaton•••1G , ~12!

where the operatorsQn are high-dimensional operators con
structed from the relevant fields (Rmn , dilaton, inflatonf,
gauge fieldsFmn , etc.!. Our remark here is that we believ
that the coefficients in the effective Lagrangian, even
pure gravity, exhibit factorial growth. The arguments whic
support this statement are the same as before: if the un
lying theory @in our case it is given by Lagrangian~11!#
possesses factorial growth in the perturbative expansion,
effective Lagrangian constructed from this theory exhib
the same factorial behavior for the high-dimensional ope
tors.

As we already mentioned, the factorial behavior of coe
ficients in the perturbative expansion can be understood
the fast increase in the number of Feynman diagrams. In p
Yang Mills theory we know well that such a growth doe
take place@5#. We can interpret this growth as a manifest
tion of the three- and four-gluon vertices, which lead to t
factorially divergent number of diagrams. In the case
gravity ~11! we expect the same factorial behavior becau
of the nonlinear nature of the interaction~11! similar to a
gauge theory.5

IV. CONCLUSION

In this paper we have presented two independent set
arguments, which support the idea that almost any nontriv
effective Lagrangian obtained by integrating out some hea
fields and/or fast degrees of freedom, is nonconvergent,
an asymptotic series.

The first set of arguments is based on the idea that
imaginary part of the amplitude related to the probability
the physical creation of a heavy particle, is exponentia
small;exp(21/E). The dispersion relations in this case im
ply unambiguously that the coefficients of the expansion
the real part of the corresponding amplitude exhibit a fac
rial dependence. Once these coefficients are found to be
torially large, we can forget about the way the result w
derived and we can forget about the external auxiliary fie
E, which we used heavily in our arguments. Coefficients
the OPE do not depend on the applied fieldE, no matter how
small it is.

The second line of reasoning is based on the analysi
the large-order behavior of the perturbative series. As
have argued, if the underlying theory possesses facto
growth of the coefficients of the perturbative series, then
corresponding effective Lagrangian constructed from t
theory will exhibit the same factorial behavior for the high
dimensional operators.

We believe that both of these lines of arguments are
general in form that almost all nontrivial effective Lagran
ian will demonstraten! behavior. We believe that this phe

5An explicit calculations based on a simplified version of grav
also support this expectation@11#.
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nomenon is universal in nature.
Now we would like to discuss some physical cons

quences, which might result from this phenomenon. As
mentioned in the Introduction, we have nothing new to say
the case of analysis of low-energy phenomena for which
small expansion parameter isl[E/M!1. In such a case
the exact formula is approximated perfectly well by the fi
term of the asymptotic expansion and we can safely for
about all the rest. However, very often the situation is not
fortunate and the expansion parameterl;1 ~let us say 1/3
or 1/2), like in chiral perturbation theory. In this even
people try to improve the situation by considering the ne
to-leading terms or even next to next to-leading order. If
series were convergent, these efforts would be worthwh
However, as we argued in this letter, an effective Lagra
ian, in general, is represented by an asymptotic, not a c
vergent series. Thus one may ask the following general qu
tions: ~a! How many terms one should keep in the effecti
Lagrangian for the best approximation of an exact form
for the given parameterl? ~b! What is the fundamental un
certainty ~related to our lack of knowledge of the highe
dimensional operators! one should expect for an effectiv
Lagrangian represented as an asymptotic series?
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The effective description of QCD, which has been dis-
cussed in the previous section is one example where tho
problems might be a relevant issue.

The factorial behavior in the effective Lagrangian~12! for
gravity also might be an interesting observation, which could
have some important consequences. Let us recall that t
natural scale of the cosmological termL is the Planck scale.
Indeed, the most popular cosmology today, the inflationar
scenario~for a review see@12# and @13#! assumes that our
universe passed through an era in which the cosmologic
term dominated, and it is a total mystery why we should be
left in a universe with an almost vanishing vacuum energy
Of course we do not know the answer to this question, bu
one can argue that the asymptotic nature of the effectiv
Lagrangian of the gravity could have some influence on th
vanishing of the vacuum energy provided that the univers
has a graceful exit from an inflation epoch@14#.
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