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Gravitational vacuum polarization. I. Energy conditions in the Hartle-Hawking vacuum
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When a quantum field theory is constructed on a curved background spacetime, the gravitationally induced
vacuum polarization typically induces a nonzero vacuum expectation value for the quantum stress-energy
tensor. It is well known that this gravitational vacuum polarization often violates the pointwise energy condi-
tions and sometimes violates the averaged energy conditions. In this paper | begin a systematic attack on the
question of where and by how much the various energy conditions are violated. To keep the discussion
manageable, | work in the test-field limit, and focus on conformally coupled massless scalar fields in Schwarzs-
child spacetime, using the Hartle-Hawking vacuum. The discussion invokes a mixture of analytical and nu-
merical techniques, and critically compares the qualitative behavior to be expected from the Page approxima-
tion with that adduced from the numerical calculations of Anderson, Hiscock, and Samuel. | show that the
various pointwise energy conditions are violated in a series of onionlike layers located between the unstable
photon orbit and the event horizon, the sequence of violations being DEC, WEGQN&@-SEQ. Further-
more, the ANEC is violated fosomeof the null geodesics trapped in this region. Having established the basic
machinery in this paper, the Boulware vacuum will be treated in a companion paper, while studies of the Unruh
vacuum should be straightforward, as should extensions to nonconformal couplings, massive scalars, and
Reissner-Nordstim geometries[S0556-282(96)04518-3

PACS numbeps): 04.70.Dy, 04.20.Gz, 04.62v

I. INTRODUCTION paper | shall explore these issues in a little more detail. |
shall continue to work in the test-field limit: | discuss the
When a quantum field theory is constructed on a curvedffect of the gravitational vacuum polarization on various
background spacetime, the gravitationally induced vacuungnergy conditions. In particular, | discuss the pointwise null,
polarization typically induces a nonzero vacuum expectatioveak, strong, and dominant energy conditiéNEC, WEC,
value for the stress-energy tengar6]. It should be pointed SEC, and DEC and the averaged null energy condition
out that fully self-consistent calculations are horrendousifANEC), and shall furthermore introduce and discuss several
difficult; consequently, most calculations in the literature areneéw, potentially interesting, energy conditiofPNEC, Scri-
carried out in the test-field limitwherein the vacuum polar- NEC, and Scri-ANEQ.
ization isnot permitted to back react on the geometry via the For the purposes of this paper, | restrict attention to the
Einstein field equations Even in the test-field limit, most Mmost well-studied curved-space quantum field theory: the
known results are obtained by numericedther than ana- conformally coupled massless scalar field on Schwarzschild
lytic) computations. spacetime, in the Hartle-Hawking vacuum. For this geometry
In a somewhat different veimerturbativeself-consistent ~and vacuum state one has béth a useful analytic approxi-
solutions around flat spacetime have recently been investmation to the gravitational polarization, Page’s approxima-
gated by Flanagan and Wdld], building on earlier work of tion [12], and (2) numerical estimates of the vacuum
Horowitz [8], and Horowitz and Wald]. polarization—see the numerical calculations of How[drgl,
Further afield, another type of energy condition, based offoward and Candelagl4], and Anderson, Hiscock, and
“gquantum inequalities,” is investigated for a Schwarzschild Samuel[15-17.
background in recent papers by Ford and Rorfian11. Having established the basic machinery in this paper, a
Ford and Roman have also discussed the averaged nififudy of the Boulware vacuum will be presented in a com-
energy Conditior(ANEC) and averaged weak energy condi- panion paper, while further studies of the Unruh vacua
tion (AWEC) in (1+1)-dimensional and3+1)-dimensional  should be straightforward, although tediotSor the current
evaporating black holegUnruh vacuum [11] and for the state of affairs in the Unruh vacuum, sgEL].) Similarly,
(1+1)-dimensional Boulware vacuum. In contrast, the extensions to npnconformal couplings, massive scalars, and
present paper works Strict|y i3l dimensions and treats the Reissner-Nordstra geometries should be straightforward.
equilibrium Hartle-Hawking vacuum state.
Now we know, on rather general grountthe existence
of the Hawking radiation effect and the concomitant viola- IIl. NULL ENERGY CONDITIONS
tion of theclassicalarea increase theorem of black hole dy- 14 set the stage, recall some basic definitions.

namics, that at least some of the energy conditions must be pefinition (NEC). The null energy condition is said to
violated at or near the event horizon of a black hole. In this,g|q at a point p if, for all null vectors &,
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Definition (ANEC). The averaged null energy condition Now, if one does not place any further constraints on the
is said to hold on a null curve if setP(p), the resulting definition, while general, is not par-
ticularly useful.(It is best used as a diagnostic tool to probe
interesting regions of the tangent bungl&.suitable restric-
fT;wkMkV dr=0. (20 tion is the following.

7 Definition [Scri-NEC]. The asymptotic null energy con-

dition will be said to hold on an asymptotically flat space-
time if, for every point p of the spacetime and all null tan-

derllloted Eyk“ | I licat it suffi id gent vectors K such that the associated null geodesic
ote that in almost all applications it suffices to consi ®through p either (1) escapes to future null infinggcri®)

null geodesics, rather than generic null curves. However, iso- . s —
X > . ' 2=0r (2) arrives from past null infinitf{Scri™), one has
lated discussions of the ANEC on nongeodesic null curves @) P A )

Here\ is a generalized affine parameteee[18, pp. 259,
278, and 29)) for the null curve, the tangent vector being

do occur in the literatur€19]—the extended definition pre- T,k k"=0. (5)
sented here allows one to compare and contrast the present
results with other calculations. (This definition basically says that one should not worry too

As a practical matter | shall often replace the word “in- much if violations of the NEC occur only when one looks
extendible” by the phrase “inextendible past the event hori-along null geodesics that never make it out to null infinity.
zon.” This is a purely pragmatic decision based on a lack of We shall soon see that, in the Hartle-Hawking vacuum,
numerical data inside the event horizon, coupled with thghe gravitational vacuum polarization of a conformally
general feeling in the community that Page’s analytic ap-coupled massless scalar field residing on the Schwarzschild
proximation will become progressively worse as one ap-background geometry everywhere satisfies this Scri-NEC en-
proaches the central singularityThus my studies of the ergy condition, though it does not everywhere satisfy the
ANEC can more precisely be referred to as studies of &NEC. We shall also use the PNEC to investigate the regions
“Truncated-ANEC.") in phase spacéhe tangent bundjenvhere suitable positivity

In an earlier publicatiof20] (see alsd6]), | derived a  conditions hold.
no-go theorem for the ANEC: | showed that the ANEC is  Finally, for completeness, | enunciate the following.
violated (in the test-field limif whenever the background Definition (Scri-ANEC). The asymptotic averaged null
spacetime has a nonzesoale anomaly energy condition will be said to hold on an asymptotically

ANEC no-go theorem: In (3+1)-dimensional space- flat spacetime if every inextendible null curve which either
time, (M, qg), for any conformally coupled massless quantum(1) escapes to future null infinigScri®) or (2) arrives from
field, in any conformal quantum state, if past null infinity(Scri™) satisfies the ANEC:

Z#,=[V, VP+ 3 R*]C 5, #0, &) f T,k dA=0. ©®
Y

then, holding the renormalization scajefixed, it is possible (This definition basically says that one should not worry too

to find a rescaled metric §Q°g such that the ANEC is ych if violations of the ANEC occur only along null geo-

violated on the spacetimeM,g). _ desics that never make it out to null infinity. After all, null
This no-go theorem, since it depends on a special case @ity is where you want to work to establish results such as

the quantum field theoreticconforma) anomaly, is known e penrose-Sorkin-Woolgar positive mass theof@ or

to be independent of the choice of vacuum stane can o Friedman-Schieich-Witt topological censorship theorem

easily generalize this argument to include nonconformally[zz]')

coupled fields; seg].) , , From the previous comment regarding Scri-NEC it auto-
Unfortunately, a brief calculation suffices to show that thefmatically follows that, in the Hartle-Hawking vacuum, the

tensorZ*, vanishes on Schwarzschild spacetime. Indeed ify5yitational vacuum polarization of a conformally coupled

vanishes on any Ricci flat spacetinfer indeed on any  gqa|ar field residing on the Schwarzschild background geom-

spacetime conformal to an Einstein spacelim@hus oy saisfies this Scri-ANEC. We shall also see that not all
Schwarzschild spacetime avoids the no-go theorem enunciy, geodesics satisfy the ANEC itself.

ated above, and it becomes a matter of explicit checking to
see whether or not the ANEC is satisfied or violated on this
geometry. Note that in doing this explicit checking we will
have to be cognizant of our particular choice of vacuum
state, and indeed our results will also depend on the particu- In the particular case of conformally coupled scalar fields
lar class of null geodesics under consideration. residing on Schwarzschild spacetime one has a lot of infor-
In performing the explicit checks alluded to above, | havemation about the vacuum polarization. By spherical symme-
found it useful to define several new energy conditions thatry one knows that
are in some sense intermediate between the NEC and ANEC.

Ill. VACUUM POLARIZATION IN SCHWARZSCHILD
SPACETIME: HARTLE-HAWKING VACUUM

Definition (PNEC). The partial null energy condition will -p 0 0 O
be said to hold at a point p for a set of null tangent vectors i 0 - 0 O

P(p)CT, if, for all null vectors k*e P(p), (H|T#;|H)y= 0 o p ol (7)
T,.k*k"=0. (4) 0 0 O0p
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wherep, 7, andp are functions of, M, and#. Note that | 2M\ 2 2M\ 3 2M\ 4
setG=1, and choose to work in a local Lorentz basis at- ~ P(r)=1+2| ——|+3|——| +4 —) +5|
tached to the fiducial static observéFdDQO’s).
Page’s analytic approximation givEs2,13 a polynomial 2M\°> [2M\®
approximation to the stress-energy tensor: +6| | —9 (14)
2M 2M\2  [2M\® [2M\*  and
p(r)=—l—3pm 1+2 T +3—| +4 T +5 T
2Mm\®
+6 T) —33(7) }, (8)
The trace of the stress-energy tensor is given by
B o[ 2M 32|\/|2 2mM\®  (2m\* ) oM\ 6
AR Bt B A Bt o B (H|T#;]H)=96p. 7) : (16
5 2M 6 i . .
+6|=—| +15 _) } (99  This result, because it is simply a restatement of the confor-
r mal anomaly, is known to be exact.
At the event horizon, Page’s analytic approximation gives
2M 2M\2  [2M\3  [2Mm\4 [12,13
p(r)=+px 1+2 T +3 T +4|—| +5 T
+36 0 0 0
2M | ° (2'\")6} 0 +3 0 0
+6|—| =9 —| |, (10 PRI
=+p|1+2| —|+3|— o ] ]
r r The explicit numerical calculations of Howarfl3],
oM\ 3 oM\ 4 Howard and Candelafl4], and Anderson, Hiscock, and
X|1+4| —| — (—> } (11) Samuel[15-17 show that Page’s analytic approximation is
r r reasonably good—the worst deviations occur in the immedi-

i . ate vicinity of the event horizon where the Anderson-
Here | have defined a constditd be interpreted as the pres- niscock-Samuel numerical analysis gives

sure at spatial infinityby

. (H|TH;|H)
P== 90(16m)2(2M)* (12) +37.7403 0 0
- . . . 0 +37.7403 0
Note that | have explicitly expanded the functions given in ~Ps
Refs.[12,13 as polynomials in ®1/r to exhibit the fact that 0 0 +10.259 0
all components of the stress energy are well behaved at the 0 0 0 +10.259
horizon. It is perhaps somewhat surprising that the rather
messy rationafjuotientsof polynomials exhibited in12,13 (18)

reduce to such relatively nice compact expressions. These
formulas have also been checked for consistency with thé convenient table of numerical results, covering the range
Brown-Ottewill extensions of the original Page approxima-r=2M to r=6.8M, may be found on p. 2541 of Rf13].
tion [23, see especially p. 251 ee also Elstd?4]. If one  (Near the event horizon, the Howard-Candelas data are be-
prefers, an alternative form for the Page approximation is lieved to be accurate to two significant digits. The accuracy
is expected to improve with increasimg as the numerical
-3 0 0 0 results converge upon the Page approximation.
) 0 +1 Additionally, I _have obtai_ned via private communipation
(H|T#;|H)=p.{ P(r) the more intensive numerical data of Anderson-Hiscock-
0o +1 O Samue[15-17, which cover the range=2M tor=5M at
+1 much higher resolution.(Near the event horizon, the
Anderson-Hiscock-Samuel data are believed to be accurate
to three significant digits.| have collated the data and used
them to construct suitable interpolating functions to be used
, (13)  for the numerical aspects of the following discussion.

To construct the interpolating functions | use the
Anderson-Hiscock-Samuel data in the range2M to
r=5M, and the Howard-Candelas data in the range&5M

the polynomialsP(r) andQ(r) being to r=6.8M, augmented by the fact that we know the exact

+Q(r)

J’_

|_\
o o ©o o
o o o o ©
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result atr = . UsingMATHEMATICA , | have fit the data using B. Inside the horizon

third-order interpolating polynomials in the variable Inside the event horizon, the radial coordinate becomes
z=2M/r. (Note thatz conveniently runs fronz=1 at the timelike, and the roles played by(r) and 7(r) are inter-
horizon toz=0 at spatial infinity;z is alsothe natural vari- changed. The NEC reduces to the pair of constraints

able to use when numerically analyzing the Page approxima-
tion.)

Of course, there are may other papers extant which calcu-
late the stress-energy tensor in somewhat different configu- o ) )
rations. See, for exampl§12,15,16,23—3} More recently, Unfortunately, |n3|de_the 'horlzon | am reduced to rellarjce
in a very interesting development, Matyjag@] has devel- Upon the Page approximation by a total lack of numerical
oped a curve-fitting analysis that fits the numerical data tslata. Now there are some subtleties associated with extrapo-
high accuracy. In this paper I prefer to work directly with the lating the Page approximation inside the event horizon. The
numerical data. In this paper | am on|y presenting the mini_eXiStence of a Kllllng vector that pOintS in thedirection is
mum requirements for the particu|ar JOb at hand and it is&bSOlUtely Critical(even if thet direction is no |Onger time-

clear that with additional effort more information can be ex- like). Thus if you wish to extrapolate the Page approximation
tracted. inside the event horizon, it is necessary to limit attention to

an eternal black hole (that is, the maximally extended
Kruskal-Szekeres manifold
IV. NULL ENERGY CONDITION | should remind the reader that in the Hartle-Hawking
vacuum the stress energy is at least known to be regular at
) . . the horizon, and so the Page approximation should not be too
Outside the event horizon, the NEC reduces to the pair ofy; \rong just inside the event horizon of an eternal black
constraints hole. On the other hand, one does expect the Page approxi-
_ mation to get progressively worse as one moves farther in
p(r)=m(r)=0?, p(r)+p(r)=07. (19 toward the singularity, and so one should probably not take
) ) ) these results too seriously once one is far inside the horizon.
Page’s approximation yields | should especially warn the reader against extrapolating
the Page approximation to the interior of an astrophysical

7(r)—p(r)=0?, =(r)+p(r)=07. (22

A. Outside the horizon

2M 2M 2M\ 2 black hole: We really do not expect the interior of an astro-
p(N)=7(r)=4p,| 1= ——]/1+3| ——|+6 T) physical black hole to have the same Killing vectors as the
exterior, but instead expect the interior to be fully dynamical.
2M)\3 2M\ 4 > (In addition we do not expect an astrophysical black hole to
+1 - +15 e + 21 - I (20) even be in the Hartle-Hawking quantum state.

The present calculations inside the horizon are strictly
limited to eternal black holes and are exhibited merely be-
cause they are doable, and because they may be suggestive
of the actual situation.

5 3 Inspection of Page’s analytic approximation indicates that
ﬂ) +4(ﬂ) 7(r)—p(r)>0 for allr <2M, and so this part of the NEC is
r r satisfied inside the event horizon. On the other hand,

(Note the factorization.Consequently(r) — 7(r) is always
explicitly positive outside the horizon. Furthermore,

2M
1+2| =~

2M\*  [2Mm)\® 2M\
T) +6(T> —27(T> } (22

p(r)+p(r)=4p., +3

+5 L
r<r>+p<r>=—24px(7) , (23
Numerically finding the roots of this sixth-order polynomial
shows that p(r)+p(r) is negative fromr=2M to
r~2.1899M. which is everywhere negativéboth inside and outside the
Thus the Page approximation suggests that the null enerdyorizon. Thus the Page approximation suggests that the null
condition is violated in the ranges[2M,2.1899M ]. energy condition is violated throughout the interior of the
Turning to the numerical data, one easily verifies that outblack hole.
side the horizorp(r) — 7(r)>0, while p= 7 at the horizon. This is enough to inform us thaassuming the reliability
This is in complete agreement with Page’s analytic approxiof the Page approximation in this mait¢he weak, strong,
mation. and dominant energy conditions are also violated throughout

On the other hand, inspection of the numerical data indithe entire interior of the black hole.
cates thatp+p<0 for r=2.298V. (This number was ob-
tained by fitting third-order interpolating polynomials to the
numeric data and then numerically finding the rpdtis is V. WEAK ENERGY CONDITION
gualitatively, though not quantitatively, in agreement with
Page’s analytic approximation.

Thus the numerical data indicate that the null energy con- Outside the horizon, the weak energy condition is equiva-
dition is violated in the rangee[2M,2.298V ]. lent to the three constraints

A. Outside the horizon
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p(r)=07?, 7(r)+p(r)=07?,
p(r)—(r)=07?, 7(r)—p(r)+2p(r)=02?.
p(r)+p(r)=07?. (249  We have already looked at the first two constraints when

discussing the null energy condition, and thereby know that
The last two constraints have already been discussed—théthe Page approximation suggests théite strong energy
are simply the null energy condition. In the Page approximacondition is violated throughout the entire interior of the
tion, finding the roots of the relevant sixth-order polynomial black hole.
shows that the density constraint is violated for For completeness | point out that the first condition is
r<2.3468V1. Therefore the weak energy condition is vio- satisfied throughout the interior and the second of these con-
lated in the range € [2M,2.3468M ]. ditions is violated throughout the interior, while the third

In contrast, the numerical data indicate that violations ofcondition also fails throughout the interior.

the weak energy condition extend to the region

€[2M,2.438]. VIl. DOMINANT ENERGY CONDITION

B. Inside the horizon A. Outside the horizon

Inside the horizon, the weak energy condition is equiva- Qut3|de the horizon, the dpmlnant energy condition is
lent to the three constraints equivalent to the three constraints

#(r)=02, p(r)=0?,
7(r)—p(r)=07?, 7(r)e[—p(r),+p(r)]?,
7(r)+p(r)=0?. (25) p(r)el—p(r),+p(r)]?. (28)

The last two constraints have already been discuésbdn We can rephrase this as

dealing with the NEQ The violation of the NEC is already

=07 * =07? * =07.
sufficient to tell us that the WEC is violated everywhere p(1=07?, p(=r(1=0?, p(r)=p(r)=0

inside the horizon, but we can add in passing that the Page @9
approximation additionally implies that(r) is everywhere Using the Page approximation and restricting attention to
negative insiddand outsidgthe horizon. the rangg 2M, ], one has
The Page approximation suggests that the weak energy
condition is violated throughout the interior of the black p(r)<0, re[2M,2.3468M],
hole.
p(r)—=(r)<0, red,
VI. STRONG ENERGY CONDITION
_ , p(r)+7(r)<0, re[2M,2.772561],
A. Outside the horizon
Outside the horizon, the strong energy condition is p(r)—p(r)<0, re[2M,2.5851M],
equivalent to the three constraints
p(r)+p(r)<0, re[2M,2.1899M]. (30

p(r)—(r)=07?,
Pulling this all together, the Page approximation suggests

p(r)+p(r)=07, that the dominant energy condition fails in the region
c[2M,2.772561].
p(r)—7(r)+2p(r)=07. (26) The numerical data imply quantitative though not qualita-

' . tive modifications. In the range2M,~] one finds
We have already looked at the first two constraints when o ]

discussing the_null energy condition. The third condition is p(r)<0, re[2M,2.438M],
always satisfied outside the horizor{since both

p(r)— 7(r)>0 andp(_r)>.0 in this region. This is true both_ p(r)—7(r)<0, red,

in the Page approximation and by appeal to the numerical

data. Thus the strong energy condition is violated in the same p(N+7(N<0,re[2M, 2.99M],

region as the null energy condition.

p(r)—p(r)<0, re[2M,2.628V],
B. Inside the horizon
Inside the horizon, the strong energy condition is equiva- p(r)+p(r)<0, re[2M,2.298(]. (39

lent to the three constraints ) ) ) L
Pulling this all together, the numerical data indicate that the

7(r)—p(r)=07?, (27) dominant energy condition fails in the region
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€[2M,2.992M]. Note that this is suspiciously close to
r=3M—the unstable circular photon orbit—amdight be
trying to tell us something.

If one actually calculatesp( 7)/(|p|+]|7|) at r=3M,
one gets 6.02 10 3—given the expected three-significant-
digit numerical reliability of the data this iquestionably
compatible with zero. If one takes this suggestion seriously,
it would imply a hidden(accidental? symmetry in the stress
tensor atr =3M:

0.86 0.88 0.9 0.92 0.94 0.96 0.98

?.

o o o
o 9 O

(HITEHY| gy (32

o T O o
o O o o

0 0

FIG. 1. PNEC: Outside the horizon. This graph shows(tiee-
malized critical angle ¢(z)/[ w/2] above which the partial null
It is quite possible, however, that this is purely a numericalenergy condition fails(The solid line represents the numerical data;
accident. the dotted line represents the Page approximation.

Finally, | point out that this conjectured property certainly
does not survive the introduction of nonconformal coupling;\We have already seen that 7 is positive outside the event

nor is there any particular reason to expect it to survive théyorizon. On the other hand, the Page approximation gives
introduction of nonzero rest mass. This conjecture also most

definitely does not hold in the Boulware or Unruh vacuum
stateq33,34,11.

2 6
m(r)+p(r)=—24p. (37)

r

B. Inside the horizon which is everywhere negative. A glance at Howard’'s numeri-
cal data confirms that the numerical data also satisfy
7+ p<O0.

Thus the partial null energy conditidails for those radii

Inside the horizon, the dominant energy condition is
equivalent to the three constraints

(r)=07?, r and those angleg such that
p(r)e[—(r),+7(r)]?, in > Sin ()] = p(r)—(r) 39
TN+ p(nf
p(r)e[—7(r),+7(r)]?. (33
_ That is, the partial null energy conditioffiails for
We can rephrase this as e[ Yei(r),m/2]. Definingz=2M/r this critical angle ig(in
the Page approximatidmiven by
7(r)=07?, 7xp(r)=07?, 7xp(r)=0?. (39

L . . 'pcrit(z)
We already know that(r)<<0 inside the horizon(in fact

everywherg So provided the Page approximation is not mis-
leading in this regard, the dominant energy condition is vio-
lated throughout the interior of the black hole. No additional

=arcsif \(1—z)(1+ 3z+ 62+ 102°+ 152*+ 212°)/62°].

information comes from the other conditions.

VIII. PARTIAL NULL ENERGY CONDITION
A. Outside the horizon

(39

Forr>2.189 9M (z<0.913 267) there are no real solutions
to this equation. At =2.189 9M one hasy.;= w/2, while
Yeir(r) moves monotonically to zero as—2M. [See Fig. 1

] o where i(z) is plotted as a function f.]

To analyze the partial null energy condition introduced  Thys, sufficiently near the horizon, almost all directions
earlier in this paper, consider a generic null vector inclined agjp|ate the partial null energy condition. As one moves fur-
an angle) away from the radial direction. Then, without 10ss ther away from the horizon the violations of the partial en-
of generality, in an orthonormal frame attached to thegrgy condition are confined to null vectors that are progres-
(t,r,0,¢) coordinate system, sively more and more transverse, and finally at
r=2.189 9M the violations of the partial null energy con-
dition disappear completely.

Using the numerical data will modify the precise location
where this behavior manifests itself, but will not qualitatively
modify this picture. The violations of the partial null energy
condition vanish outside=2.298M (z=0.8703), and the
numerically determined values @f.;(z) are superimposed
on Fig. 1.

kﬁoc(t 1,cos¢,0,sin ). (395

Ignoring the(presently irrelevantoverall normalization of
the null vector, one has

T KK o (p— 7 cogyr+p Sirfy)

=([p—7]+[7+plsirty). (36)
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B. Inside the horizon tion in Schwarzschild spacetime: the energy and angular mo-
Inside the event horizon, one should consider a generi@ent“m' Using these conservation laws the affine parameter

null vector inclined at an angIE away from thet direction can be chosen in such a way that

(which is now spaceliKe Then, without loss of generality, in dt 1
an orthonormal frame attached to thier(6,¢) coordinate FTREEIYITE (45)
system,
ko (cos i, = 1,0,sin ). (40) d¢ _a 46)
dv - r%

One should now consider the quantity
The parametea is the angular momentum per unit energy. If

T,.kKKk (17— p coSy+p siny) the null geodesic reaches asymptotic spatial infinity, then this
_ 77 parameter can also be interpreted as the “impact param-
=([7=pl+[p+plsimTy). (4D eter.” However, there is a large class of null geodesics that

never reaches spatial infinity; for these null geodesics, the

Note that inside the horizon—p is strictly positive, while . . .
P yp notion of “impact parameter” is at best an abuse of lan-

p+p is strictly negative. In fact, the Page approximation

yields guage. . -
The angle between the null geodesic and the radial direc-
2M 2M\ 2 oM\ 3 tion is given by
p(r)+p(r)=4p. 1+2<T +3 T) +4(T)
) a
oM\ 4 oM\ 5 oM\ 6 sing= \/1—2M/r(r). (47)
+5(—| +6 —) —27(—) . (42
r r We are ultimately interested in the quantity
One deduces that violations of the partial null energy condi- v _ ;
tion occur whenever Tk ([p= ]+ L7+ plsir? )
GErG ={[p—7]+[7+pl(1—2M/r)a?r?, (49
L~ L~ (1) —p(r
sing=>sin reri(r) 1= FGET Ik (43 put will need to go through a few preliminaries.

The radial motion of null geodesics is governed by
Consequently, violations of the partial null energy condition

~ 2
are confined to the rangge[ ¥ (r),7/2]. Again defining

2

a
—| =(1-2M/r)} 1—-(1-2M/ : 49
z=2M/r this critical angle is(in the Page approximatipn dt ( 2 [ ( r)r_z (49)
given by . _ . .
_ So the turning pointslr/dt=0 are given by the cubic
(/fcrit(z)

r2=a%(1—2M/r). (50)

If the impact parameter is sma#i<3+/3M, then it is a stan-
dard result that there are no turning points: The null geodesic
either plunges into the future singularity or emerges from the
past singularity of the maximally extended Schwarzschild
spacetime (For a<3./3M the geodesic may make a large
number of “orbits” before crossing the event horizpn.

= arcsi \/(1—2)(1+3z+ 622+ 102°+ 152%+ 212°)
—arcs (1+2z+32°+42°+ 57+ 62°— 272°)

(44

One has, at=0, ’Jcrit(rZO):arcsin/7/9~ 62°, whilelZmt
falls to zero asr approaches . Qualitatively, neanbut If the impact parameter is marginal=33M, then it is

inside the horizon almost all null directions suffer violations .
of the partial energy condition, while near the central singu-a standard result that=3M, corresponding to thenstablg

larity somewhat fewer directions violate the partial null en-CIrCUIar photon orbit. . i
ergy condition. If the impact parameter is large;>3/3M, then it is a

Again, | remind the reader to not take the Page appmxi_standard result that there a@o turning points at physical

mation too seriously as one approaches the singularity. ~ v&lues ofr. One of these turning points lies in the range
€ (3M,), while the other lies in the ranges (2M,3M).

Note that, ifa>2M, then the three mathematical roots
of the cubic are approximatelyr~+*a—M and

| now turn attention to the asymptotic null energy condi-r~2M[1+(2M/a)?]. The two physical roots are approxi-
tion (Scri-NEQ that | introduced earlier in this paper. Dis- matelyr~a—M andr~2M[1+(2M/a)?].
cussing this energy condition will require some standard re- The first of these turning pointsc (3M,«), corresponds
sults concerning the null geodesics of the Schwarzschiléio the obvious class of null geodesics with high impact
spacetime.(See, for instance, such standard textbooks aparameter—those geodesics that come in from spatial infin-
those by Misner, Thorne, and Whee[&6], Wald [37], or ity, bounce off the angular momentum barrier, and return to
Weinberg[38].) spatial infinity. (For a=3.3M the geodesic may make a

There are two conserved quantities for null geodesic molarge number of “orbits” before returning to spatial infinity.

IX. ASYMPTOTIC NULL ENERGY CONDITION
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The second of these turning pointss (2M,3M), corre- 17.5
sponds to a completely separate class of null geodesics with ;¢
high “impact parameter’—these geodesics emerge from the
event horizon att=—o, with high angular momentum, 12.5
make a large number of “orbits” before reaching their maxi-
mum height above the event horizon, and then make an
equally large number of “orbits” before returning to recross 7.5
the event horizon at= +. For these geodesics the use of
the phrase “impact parameter” to describe the paramater
is most definitely an abuse of language. 2.5

To analyze the asymptotic null energy condition, start by
first considering the quantity

10

II(r,a)=(p— 7 cOS i+ p Sirty), 51
(ra)=(p=r Yt p sinty) (52) FIG. 2. L(2): A bound on NEC violations. For all impact pa-

which | shall refer to as the NEC densifjfRemember that rametersa<3y3M, the NEC densitylI(r,a) is bounded below by
#(r,a) is an explicitly known function of anda.] _the _quanntyL(r), WhICh is |tself pounded b_elovv_ by zero. TI_1|s
Those null geodesics that come in from infinity and return|mpI|es that_the Scrl-NEC is satisfied on all infalling or outfalling
to infinity never get closer to the origin thar 3M . See, for null geqdesms(The solid line represen'Fs th_e numerical data; the
instance,[36, pp. 672—-67B Inspection of either the Page dotted line represents the Page approximaion.
approximation or of the numerical data indicates that
— 7, andp are all positive for=3M. Thus the asymptotic
null energy condition is satisfied along all null geodesics thal
come from, and return to, infinity.
For other classes of null geodesics it proves convenient t
rewrite the quantitfI(r,a) as

proximation and the numerical data, both curves are seen to
Pe strictly positive outside the horizon.

We conclude that the Scri-NEC is satisfied. Fedir null
eodesics that reach spatial infinity the NEC density
(r,a) is strictly positive everywhere outside the event ho-

rizon.
— [ _ 27,2 For completeness, and future reference, | point out that
(r.a)={lp—7]+[7+p](1-2M/r)a%/r7}. (52 the Page approximation yields

Now, for incoming null geodesics with smaller than critical

impact parameter, the null geodesic may circle the black hole TI(r,a)=4p (1_ ﬂ 1+3 ﬂ) i 6(@) 2
a large number of times, but is guaranteed to ultimately ' ” r r
plunge into the event horizdi36, pp. 672—-67B This makes 3 oM\ A oM\ 5
the analysis a little more subtle. Inspection of either the Page +10 2] 415 25 +21 _)
approximation or the numerical data shows tfmttside the r r r
horizon p— 7 is always positive, while-+ p is always nega- 322 (2M 8
tive. Now use the fact that for an infalling null geodesic _ == (55)
a<3.3M. Since r+p is negative, this impliegfor this 2 \r
class of null geodesi¢s lower bound i o
Again, note the factorization.
I(r,a)>L(r)={[p—7]+[ 7+ pl(1—2M/r)27M?/r%}.
(53 X. TRAPPED NULL GEODESICS
Inspection of Page’s approximation indicates that this lower Now turn attention to the trapped null geodesiCEhese
bound is strictly positivézero at the horizon In fact, are null geodesics with high “impact parameter”
o o 2 . a>3\/§M,|tlrapp§d in the regtj)ioro1lef[2M,C%M].)(;INhileI thelse
trapped null geodesics are, by definition, not directly relevant
L(r):4pw( 1- T 1+3 T +6 T) +10 _) to the Scri-NEC, the tools developed above permit us to gain
4 5 8 additional insight into the PNEC on trapped null geodesics.
+15(ﬂ 401 ﬂ) _8if2mMm } 54) Pick some value ofr in the range (®1,3M). Then
r 2\ r II(r,a) is guaranteed to be negative if one chooses

(Note the factorization.Thus the Page approximation sug- r2(p—r)
a>acri'[(r)E

gests that the asymptotic null energy condition holds on all — (56)
: X . ; . (1-2M/r)|r+p|
infalling null geodesicqat least until one crosses the hori-
zon). This lower bound_(r) is plotted in Fig. 2.
By time reversal, this suggests that the asymptotic null —2M (p—7) (57)

energy condition also holds on all outgoing null geodesics Z2(1-z)|7+p|
that reach infinity.

With respect to the numerical data, one can easily evalutSettingz=2M/r is again a convenient choice of variables
ateL(r) numerically. The results are superimposed in Fig. 2for both analytic and numeric work. In this section we will
While there are marked differences between the analytic apnly be interested in the regiane [ 2/3,1].) Note that what
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FIG. 3. a.i(2)/M: The critical impact parameter above which FIG. 4. Page approximation: The critical impact parameter
the NEC is violated on trapped null geodesi¢Ehe solid line rep-  above which the NEC is violatefth(z)/M] is superimposed on
resents the numerical data; the dotted line represents the Page dpe kinematic bounda,(z)/M]. (The dotted line represents the
proximation) Page approximation; the dashed lines represent the kinematic

bounds)

we are doing is guaranteeing that with these definitions the . _
PNEC is violated for the region of tha(z) plane above the ~ (3) All other trapped null geodesicéthose with a

curve ag(z). €[6.110M,7.436M ]) will experience some NEC violations
Using Page’s approximation, this critical impact param-when they get sufficiently close to the event horizohnd
eter is given by therefore investigating ANEC violations on this class of null
geodesics requires more work.
agi(2) =2M (1 + 32+ 622+ 1025+ 1527+ 2125)/(62°). (4) Note thata=6.110M corresponds to a null geodesic

(59 that reaches a maximum radiug,=2.1899M, a number
that we have seen beforgvhen discussing the NEC and
NEO.

The critical impact parameter implied by the numerical datd” . L o
Use of the numerical data implies quantitative though not

was also determined and both curves are plotted in Fig. 3. o _—
It should be noted that, for a given value of gualitative changes. We observe the following:

e (2M,3M), one cannot choose arbitrarily: In order for a (1) The set of_trap_ped_null QEOdGSiCS whimhverexperi_—
trapped null geodesic with impact paramedeto ever reach ence NEC density violations is much smaller, those with

radiusr it is necessary thaa be small enough. Indeed one €[3Y3M,5.276\]=[5.19618,5.276V]. [The (truncated
ANEC must be satisfied on this entire class of null geode-

must have X
sics]
> (2) Some trapped null geodesicsithose with
a<a . (r)= [T _ 2M _ (59) a>6.38M) always experience NEC density violations.
ma 1-2MIr [Z2(1-2) [Therefore the(truncatedd ANEC must be violated on this

entire class of null geodesigs.

This may be thought of as a kinematic bound on trapped null (3 All other trapped null geodesicgthose with a
geodesics: The region of the,@) plane above the curve
ama{(2) is kinematically inaccessible to trapped null geode-
sics.(Note that the region beloa=3+/3M is also kinemati-
cally inaccessiblg.The relevant curve is plotted in Figs. 4 | 12
and 5, where it is overlain with.;(z) as obtained from Fig. /

3. By looking at where these curves cross one another we can
draw some general conclusions.

In the Page approximation, now restricting attention to the
region outside the event horizon, the following occur:

(1) Some trapped null geodesicéthose with a
e[33M,2\7/3M]=[5.19618,6.110M]) neverexperi-
ence NEC density violations. That H,(r,a) >0 is satisfied
along the entire portion of the null geodesic that lies outside
the event horizon[And therefore the(truncated ANEC
must be satisfied on this entire class of null geodekics.

(20 Some trapped null geodesicsithose with
a>7.43eM) always experience NEC density violations. FIG. 5. Numerical approximation: The critical impact parameter
That is,I1(r,a) <0 along the entirdtruncated null geode-  above which the NEC is violatefth.(z)/M] is superimposed on
sic. [And therefore thetruncated ANEC must be violated the kinematic boundan,(z)/M]. (The solid line represents the
on this entire class of null geodesiks. numerical data; the dashed lines represent the kinematic bgunds.
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e[5.276M,6.383M]) will experience some NEC violations This may be interpreted as follows: Because the Scri-NEC

when they get sufficiently close to the event horizofnd  is satisfied, it automatically follows that the Scri-ANEC is

therefore investigating ANEC violations on this class of null satisfied.

geodesics requires more work. For the unstable circular photon orbit
(4) Note thata=6.383M corresponds to null geodesic (a=3y3M, r=3M) the integrand is everywhere positive

that reaches a maximum radiys,,=2.298M, a number that and the ANEC is satisfied.

we have seen beforgvhen discussing the PNBC However, for trapped null geodesicsa¥3+3M,
The message to be extracted is this: The numeric data ancs[2M,3M]) the integrand is no longer necessarily posi-

analytic approximations are in good qualitative agreementive, and this is the only case for which we will explicitly

with each other. Null geodesics that reach null infinity areneed to look at the “weighting function#2d\ appearing in

well behavedScri-NEC is satisfield butsomeof the trapped  the ANEC integral.

null geodesics encounter NEC violatiot@d ANEC viola-

tions). B. ANEC on trapped null geodesics?

Observe that the “weighting function” appearing in the
ANEC satisfied6, p. 133, Eqs(12.60—(12.63]
We are finally in a position to pin down precisely viola- )
tions of the ANEC itself. Although significant information £2dr=g (ﬂ) d)\=(1—2M/r)( 1 )
can already be extracted by using the pointwise energy con- Y 1-2M/r
ditions already discussed, beyond a certain stage explicit use
of the affine parametrization must be invoked. Write the

Xl. AVERAGED NULL ENERGY CONDITION

2

X (1—2M/r)dt

ANEC integral ad6, p. 117 =dt. (64)
I Ef T, KAk d\ (60)  Although this calculation was carried out for the Schwarzs-
7 . child geometry, the result remains true for an arbitrary static

spacetime—the ANEC integral is simply the time average

_ _ . 5 along a null geodesic of the local-Lorentz NEC integrand
N L(p 7 COSYrtp sinty) §%d\ (61) where the time average is to be taken with respect to the
natural static time coordinate.
_ ) For actual calculations it is much more practical to reex-
ZJ ([p— 7]+ [ 7+ p]sirty) £2dN (62)  press this as an integral with respect to the radial variable
4 by using
=f I1(r,a)&%dA. (63) dr
———————==c09) dty1—-2M/r, 6
7 i oY (5
Note that theintegrandis proportional to the quantity
II(r,a) which has already been extensively discussed in th&0 that
context of the Scri-NEC.
dte dr B dr
A. Scri-ANEC cos(1—2M/r) (1-2M/r)y1—(1—-2M/r)a%r?’
The arguments previously adduced for the Scri-NEC can (66)

be carried over wholesale to the Scri-ANEC. In particular,

we note the following. Now this observation appears to weight the region near the

gevent horizon very heavily because of the explicit pole at

For null geodesics that come in from spatial infinity an —oM. H he i e h h
return to spatial infinity 4>33M;r >3M) theintegrandis r=2M. However, the Integran (r,'a) 1as a zero at the
event horizon—in the Page approximation one discovers an

everywhere positive and so the ANEC holds in this entire” "~ ", _
class of geodesicg$Note that satisfaction of the ANEC does epr.|C|t facior of (1_2.'\/.'”) .[Cf‘ Eq. (59), while the nu-
not arise from the trivial observation that the heat bath con—merICaI data also exhibit a first-order _zeroIii(r,a) at t_he
tributes an asymptotically constant and positive energy derporlzon. Thus for trapped null geodesics one may write
sity far from the black hole—rather one has the stronger

statement that the integrand itself is positive along the entire | ;) frmm‘a) 1I(r,a) dr
geodesio. Y am (1-2M/r) 1—(1—2M/r)a%/r?’
The fact that the integrand is positive implies that the (67)

ANEC will also be satisfied for curves with transverse

smearing[7] or curves with arbitrary positive weighting and have some confidence that the integral actually con-

functions[11]. verges at the lower bound=2M. As a penultimate step,
For infalling or outfalling null geodesics that reach as-recall that calculating ,,{@) involves solving a cubic. It is

ymptotic spatial infinityfa<3y3M, re(2M,=)] the inte- more convenient to parametrize the trapped geodesic by cal-

grand is everywhere positive and the ANEC is satisfi€é- culating the impact parameter in terms of the maximum

veat: | stop the ANEC integral once it reaches the horizon. height attained by the null geodesic:
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rmax

a(r S
(") VL= 2M/T oy

So for these trapped null geodesics one finds that the ANEC
integral is

(69) ‘.‘ 800

_ rma><1_[(r,rmax)
'V“max)‘zfm (1—2Mr)

dr
x VI-[(1=2M/r)r2 J[(1—2M/rma0r?]
(69)

FIG. 6. ANEC integral on trapped null geodesics: The ANEC
To actually evaluate this integral numerically it is useful tointegral has been evaluated numerically as a function of
change variables ta=2M/r and zo=2M/r 5, With the  Zo=2M/ry,. (The solid line represents the numerical data; the

result that dotted line represents the Page approximation.
111(z,2,) dz The critical values ofz,, r., anda are, for the Page
I(z )=4Mj ’ , approximation,
me 22 (1-2) J1-[2A(1-2))I[Z3(1-2)]
(70) 2,=0.90083,
With a little work, the square root can be seen to factorize I max= 2-2202M,
explicitly
a=7.050M. (73
Iy(ZO):4MZO\1_ZO i .
For the numerical data, one obtains
J'l I1(z,zy) 1 dz 0.8497
) z,=0. ,
202°(1=2) \[Z2+ 22+ 22— 2— 20 \Z2— 20 0
(70 I max=2.354M,
This integral, though singular at the lower limit= z,, cor- a=6.07IM. (74)

responding ta =r,,,), iS now certainly finite. WhilevATH- . _
EMATICA has resources to deal with\iZ singularities at the Note that these numbers are qualitatively reasonable and in
end points of the integration range, it reacts badly to suciRgreement Wr':h the V|c_)Iat||qns of the pom:‘wEe energy con-
singularities when the location is chosen dynamically. Thagditions and the numerical investigation of the PNEC. Fur-

ol : ; thermore, the ANEC violations in the numerical data are
is, [ 1/\/z—z, is handled badly. For this reason the change ’ . !
fZO 0 y g seen to extend out to larger distances than the ANEC viola-

of variablesz=2z,+w, while being a formal mathematical {jons in the Page approximation, in agreement with the gen-
identity, leads to much better numerical behavior for the in-g5 trend.

tegral: Though | have quoted four-significant-digit accuracy for

the numerical data, one should probably not take anything

1-2zq II(z5+w,zp) S . . .
|y(Zo):4MZO\/1——Zoj g 0 past the s_econd S|gn|f_|cant digit too ser_lously. !n fact, given
0 (ZgtwW)(1-w—z) the vagaries of numerical analysis on singular integziel
the inherent uncertainties in the Anderson-Hiscock-Samuel
1 data it is conceivable that the exact critical impact param-
X 2.2 eters might be=7M anda=6M, respectively.
\/(zo+w) +25+(Z2g+W)zg— (Zg+ W) — 2 '
dw (72 C. ANEC on nongeodesic curves?
X—=. 7 . . :
Jw ) If one considers arbitrary nongeodesic curves, the ANEC

loses muchk{though not quite allof its power: By a judicious
This integral was determined numerically both for thechoice of nongeodesic null curves one could try to remain in
Page approximation and for the Anderson-Hiscock-Samued region where the NEC is violated and thereby “trivially”
numeric data. The results are plotted in Fig. 6. Remembeyiolate the ANEC[19].
that it is meaningless to force this particular integral out of For instance, along any circular null curve at fixe¢ot
the ranger .4 [2M,3M], corresponding taye[2/3,1]. a geodesic except in the caseref3M) the ANEC integral
Thus we havdfinally) managed to characterize the pre-is still proportional top+ p. Inspection of the numeric data
cise class of null geodesics on which tfteincatedd ANEC  indicates thalp+p<<0 for r=2.298V (Page’s analytic ap-
is violated. proximation giving a slightly different resulfp+p<0 for
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r<2.1899M). Thus the ANEC isot satisfied for this par- It should be possible to generalize the observations of this

ticular class of nongeodesic null curves. paper. For instance, we note the following.
(1) It would be very nice to have an analytic understand-
XII. DISCUSSION ing of the precise role played by the unstable photon orbit—

the numerical evidence is suggestive but not definitive.
Investigation of the properties of the averaged null energy (2) For that matter it would be nice to know if the rel-
condition is of considerable interest to diverse applications irevance of the unstable photon orbit generalizes to other ge-
semiclassical quantum gravity. It is now abundantly clearometries.
that, in the test-field limit, semiclassical quantum fields do (3) It would be nice to go beyond the numerics; to de-
not generally satisfy the ANEC: Indeed ANEC violations are velop some exact analytic arguments that go beyond the
related to the existence of a nonzero scale anoif&RO]. Page approximation.
Even if the scale anomaly vanishes, this does not necessarily (4) Generalizations to the Boulware vacuum will be pre-
imply that the ANEC is satisfied: One has to do a case-bysented in a companion paper.
case analysis. As an example, this paper investigates the situ- (5) Generalizations to the Unruh vacuum, other quantum
ation in Schwarzschild spacetime. fields, nonconformal couplings, particle masses, and the
The analysis presented herein is somewhat of an attemjReissner-Nordstrmn geometry will be straightforward if te-
to crack a walnut with a sledgehammer in the sense that it idious.
a collection of rather general techniques applied to a rather (6) The new energy conditions | introduce, Scri-NEC and
particular problem—it is certainly true that this type of Scri-ANEC, are interesting in that they focus attention on
analysis can now be carried forward to other geometriesnull infinity. And null infinity is where all the interesting
other quantum fields, and other vacuum states by straightfodetails arise in the Friedman-Schleich-Wi22] topological
ward but tedious computation. censorship theorem and the Penrose-Sorkin-Woolgar version
For the Schwarzschild geometrwith a conformally of the positive mass theoref1]. | suspect that with a little
coupled scalar field in the Hartle-Hawking vacuuthe re-  more work suitable generalizations of these theorems can be
sults may be expressed thusly) Pointwise energy condi- constructed in terms of the Scri-ANEC.
tions; (a) inside the event horizon, with suitable caveats re- (7) Finally | should point out that even though the various
garding the applicability of the Page approximation, almostenergy conditions are violated in many regions, this does not
any energy condition you can think of will be violate() give one a completely free hand to design spacetime geom-
between the event horizom£2M) and the unstable photon etries to taste: It seems quite likely that the “quantum in-
orbit (r =3M) many of the energy conditions are violated, in equality” approach of Ford and Rom§89,4Q will allow us
a series of onionlike layergr) outside the unstable photon to place constraints on spacetime geometries even if all the
orbit (r=3M) all energy conditions are satisfie@) all null  usual types of energy condition fail.
geodesics that reach asymptotic infinity are well behaved: If
you look along the null geodesic you never see NEC viola-
tions. (ii) Averaged null energy conditior(a) If your null
geodesic ever reaches infinity, ttteuncated ANEC is defi- | wish to thank Paul Anderson for kindly making avail-
nitely satisfied, and is satisfied for a nontrivial reason: Theable machine-readable tables of the numeric data used in this
integrandis strictly positive all the way from the event ho- analysis. | also wish to thank Nils Andersson, Paul Ander-
rizon to null infinity; (b) between the event horizon son, Eanna Flanagan, Larry Ford, and Tom Roman for their
(r=2M) and the unstable photon orbit€£ 3M) some of the comments and advice. The numerical analysis in this paper
trapped null geodesics violate tifguncated ANEC; (c) if was carried out with the aid of theATHEMATICA symbolic
you are willing to look at nongeodesic null curves, evenmanipulation package. This research was supported by the
more violations of the ANEC can be found. U.S. Department of Energy.
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