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Gravitational vacuum polarization. I. Energy conditions in the Hartle-Hawking vacuum

Matt Visser*

Physics Department, Washington University, St. Louis, Missouri 63130-4899
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When a quantum field theory is constructed on a curved background spacetime, the gravitationally induced
vacuum polarization typically induces a nonzero vacuum expectation value for the quantum stress-energy
tensor. It is well known that this gravitational vacuum polarization often violates the pointwise energy condi-
tions and sometimes violates the averaged energy conditions. In this paper I begin a systematic attack on the
question of where and by how much the various energy conditions are violated. To keep the discussion
manageable, I work in the test-field limit, and focus on conformally coupled massless scalar fields in Schwarzs-
child spacetime, using the Hartle-Hawking vacuum. The discussion invokes a mixture of analytical and nu-
merical techniques, and critically compares the qualitative behavior to be expected from the Page approxima-
tion with that adduced from the numerical calculations of Anderson, Hiscock, and Samuel. I show that the
various pointwise energy conditions are violated in a series of onionlike layers located between the unstable
photon orbit and the event horizon, the sequence of violations being DEC, WEC, and~NEC1SEC!. Further-
more, the ANEC is violated forsomeof the null geodesics trapped in this region. Having established the basic
machinery in this paper, the Boulware vacuum will be treated in a companion paper, while studies of the Unruh
vacuum should be straightforward, as should extensions to nonconformal couplings, massive scalars, and
Reissner-Nordstro¨m geometries.@S0556-2821~96!04518-3#

PACS number~s!: 04.70.Dy, 04.20.Gz, 04.62.1v
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I. INTRODUCTION

When a quantum field theory is constructed on a curv
background spacetime, the gravitationally induced vacu
polarization typically induces a nonzero vacuum expectati
value for the stress-energy tensor@1–6#. It should be pointed
out that fully self-consistent calculations are horrendous
difficult; consequently, most calculations in the literature a
carried out in the test-field limit~wherein the vacuum polar-
ization isnotpermitted to back react on the geometry via th
Einstein field equations!. Even in the test-field limit, most
known results are obtained by numerical~rather than ana-
lytic! computations.

In a somewhat different vein,perturbativeself-consistent
solutions around flat spacetime have recently been inve
gated by Flanagan and Wald@7#, building on earlier work of
Horowitz @8#, and Horowitz and Wald@9#.

Further afield, another type of energy condition, based
‘‘quantum inequalities,’’ is investigated for a Schwarzschi
background in recent papers by Ford and Roman@10,11#.

Ford and Roman have also discussed the averaged
energy condition~ANEC! and averaged weak energy cond
tion ~AWEC! in ~111!-dimensional and~311!-dimensional
evaporating black holes~Unruh vacuum! @11# and for the
~111!-dimensional Boulware vacuum. In contrast, th
present paper works strictly in 311 dimensions and treats the
equilibrium Hartle-Hawking vacuum state.

Now we know, on rather general grounds~the existence
of the Hawking radiation effect and the concomitant viola
tion of theclassicalarea increase theorem of black hole dy
namics!, that at least some of the energy conditions must
violated at or near the event horizon of a black hole. In th
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paper I shall explore these issues in a little more detail.
shall continue to work in the test-field limit: I discuss the
effect of the gravitational vacuum polarization on variou
energy conditions. In particular, I discuss the pointwise nul
weak, strong, and dominant energy conditions~NEC, WEC,
SEC, and DEC! and the averaged null energy condition
~ANEC!, and shall furthermore introduce and discuss sever
new, potentially interesting, energy conditions~PNEC, Scri-
NEC, and Scri-ANEC!.

For the purposes of this paper, I restrict attention to th
most well-studied curved-space quantum field theory: th
conformally coupled massless scalar field on Schwarzsch
spacetime, in the Hartle-Hawking vacuum. For this geomet
and vacuum state one has both~1! a useful analytic approxi-
mation to the gravitational polarization, Page’s approxima
tion @12#, and ~2! numerical estimates of the vacuum
polarization—see the numerical calculations of Howard@13#,
Howard and Candelas@14#, and Anderson, Hiscock, and
Samuel@15–17#.

Having established the basic machinery in this paper,
study of the Boulware vacuum will be presented in a com
panion paper, while further studies of the Unruh vacu
should be straightforward, although tedious.~For the current
state of affairs in the Unruh vacuum, see@11#.! Similarly,
extensions to nonconformal couplings, massive scalars, a
Reissner-Nordstro¨m geometries should be straightforward.

II. NULL ENERGY CONDITIONS

To set the stage, recall some basic definitions.
Definition (NEC). The null energy condition is said to

hold at a point p if, for all null vectors km,

Tmnk
mkn>0. ~1!
5103 © 1996 The American Physical Society



e
-
e

-
-
c

o
s
.
,

y
hild
n-
e
ns

y
er

o
-
l
as

m

-

d
m-
all

s
r-
e-

5104 54MATT VISSER
Definition (ANEC). The averaged null energy condition
is said to hold on a null curveg if

E
g
Tmnk

mkn dl>0. ~2!

Herel is a generalized affine parameter~see@18, pp. 259,
278, and 291#! for the null curve, the tangent vector bein
denoted bykm.

Note that in almost all applications it suffices to consid
null geodesics, rather than generic null curves. However, i
lated discussions of the ANEC on nongeodesic null curv
do occur in the literature@19#—the extended definition pre-
sented here allows one to compare and contrast the pre
results with other calculations.

As a practical matter I shall often replace the word ‘‘in
extendible’’ by the phrase ‘‘inextendible past the event ho
zon.’’ This is a purely pragmatic decision based on a lack
numerical data inside the event horizon, coupled with t
general feeling in the community that Page’s analytic a
proximation will become progressively worse as one a
proaches the central singularity.~Thus my studies of the
ANEC can more precisely be referred to as studies of
‘‘Truncated-ANEC.’’!

In an earlier publication@20# ~see also@6#!, I derived a
no-go theorem for the ANEC: I showed that the ANEC
violated ~in the test-field limit! whenever the background
spacetime has a nonzeroscale anomaly.

ANEC no-go theorem: In (311)-dimensional space-
time,(M,g), for any conformally coupled massless quantu
field, in any conformal quantum state, if

Zm
n[@¹a¹b1 1

2 R
a

b#Cam
bnÞ0, ~3!

then, holding the renormalization scalem fixed, it is possible
to find a rescaled metric ḡ5V2g such that the ANEC is
violated on the spacetime(M,ḡ).

This no-go theorem, since it depends on a special case
the quantum field theoretic~conformal! anomaly, is known
to be independent of the choice of vacuum state.~One can
easily generalize this argument to include nonconforma
coupled fields; see@7#.!

Unfortunately, a brief calculation suffices to show that th
tensorZm

n vanishes on Schwarzschild spacetime. Indeed
vanishes on any Ricci flat spacetime~or indeed on any
spacetime conformal to an Einstein spacetime!. Thus
Schwarzschild spacetime avoids the no-go theorem enu
ated above, and it becomes a matter of explicit checking
see whether or not the ANEC is satisfied or violated on th
geometry. Note that in doing this explicit checking we wi
have to be cognizant of our particular choice of vacuu
state, and indeed our results will also depend on the parti
lar class of null geodesics under consideration.

In performing the explicit checks alluded to above, I hav
found it useful to define several new energy conditions th
are in some sense intermediate between the NEC and AN

Definition (PNEC). The partial null energy condition will
be said to hold at a point p for a set of null tangent vecto
P(p),Tp if, for all null vectors k

mPP(p),

Tmnk
mkn>0. ~4!
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Now, if one does not place any further constraints on th
setP(p), the resulting definition, while general, is not par
ticularly useful.~It is best used as a diagnostic tool to prob
interesting regions of the tangent bundle.! A suitable restric-
tion is the following.

Definition [Scri-NEC]. The asymptotic null energy con-
dition will be said to hold on an asymptotically flat space
time if, for every point p of the spacetime and all null tan
gent vectors km such that the associated null geodesi
through p either (1) escapes to future null infinity(Scri1)
or (2) arrives from past null infinity(Scri2), one has

Tmnk
mkn>0. ~5!

~This definition basically says that one should not worry to
much if violations of the NEC occur only when one look
along null geodesics that never make it out to null infinity!

We shall soon see that, in the Hartle-Hawking vacuum
the gravitational vacuum polarization of a conformall
coupled massless scalar field residing on the Schwarzsc
background geometry everywhere satisfies this Scri-NEC e
ergy condition, though it does not everywhere satisfy th
NEC. We shall also use the PNEC to investigate the regio
in phase space~the tangent bundle! where suitable positivity
conditions hold.

Finally, for completeness, I enunciate the following.
Definition (Scri-ANEC). The asymptotic averaged null

energy condition will be said to hold on an asymptoticall
flat spacetime if every inextendible null curve which eith
(1) escapes to future null infinity(Scri1) or (2) arrives from
past null infinity(Scri2) satisfies the ANEC:

E
g
Tmnk

mkn dl>0. ~6!

~This definition basically says that one should not worry to
much if violations of the ANEC occur only along null geo
desics that never make it out to null infinity. After all, nul
infinity is where you want to work to establish results such
the Penrose-Sorkin-Woolgar positive mass theorem@21# or
the Friedman-Schleich-Witt topological censorship theore
@22#.!

From the previous comment regarding Scri-NEC it auto
matically follows that, in the Hartle-Hawking vacuum, the
gravitational vacuum polarization of a conformally couple
scalar field residing on the Schwarzschild background geo
etry satisfies this Scri-ANEC. We shall also see that not
null geodesics satisfy the ANEC itself.

III. VACUUM POLARIZATION IN SCHWARZSCHILD
SPACETIME: HARTLE-HAWKING VACUUM

In the particular case of conformally coupled scalar field
residing on Schwarzschild spacetime one has a lot of info
mation about the vacuum polarization. By spherical symm
try one knows that

^HuTm̂
n̂uH&[F2r 0 0 0

0 2t 0 0

0 0 p 0

0 0 0 p

G , ~7!
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54 5105GRAVITATIONAL VACUUM POLARIZATION. I. . . .
wherer, t, andp are functions ofr , M , and\. Note that I
setG[1, and choose to work in a local Lorentz basis a
tached to the fiducial static observers~FIDO’s!.

Page’s analytic approximation gives@12,13# a polynomial
approximation to the stress-energy tensor:

r~r !513p`F112S 2Mr D13S 2Mr D 214S 2Mr D 315S 2Mr D 4
16S 2Mr D 5233S 2Mr D 6G , ~8!

t~r !52p`F112S 2Mr D13S 2Mr D 214S 2Mr D 315S 2Mr D 4
16S 2Mr D 5115S 2Mr D 6G , ~9!

p~r !51p`F112S 2Mr D13S 2Mr D 214S 2Mr D 315S 2Mr D 4
16S 2Mr D 529S 2Mr D 6G , ~10!

51p`F112S 2Mr D13S 2Mr D 2G
3F114S 2Mr D 323S 2Mr D 4G . ~11!

Here I have defined a constant~to be interpreted as the pres
sure at spatial infinity! by

p`[
\

90~16p!2~2M !4
. ~12!

Note that I have explicitly expanded the functions given
Refs.@12,13# as polynomials in 2M /r to exhibit the fact that
all components of the stress energy are well behaved at
horizon. It is perhaps somewhat surprising that the rath
messy rationalquotientsof polynomials exhibited in@12,13#
reduce to such relatively nice compact expressions. Th
formulas have also been checked for consistency with
Brown-Ottewill extensions of the original Page approxim
tion @23, see especially p. 2517#. See also Elster@24#. If one
prefers, an alternative form for the Page approximation is

^HuTm̂
n̂uH&[p`5 P~r !F23 0 0 0

0 11 0 0

0 0 11 0

0 0 0 11

G
1Q~r !F13 0 0 0

0 11 0 0

0 0 0 0

0 0 0 0

G 6 , ~13!

the polynomialsP(r ) andQ(r ) being
t-

-

in
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P~r !5112S 2Mr D13S 2Mr D 214S 2Mr D 315S 2Mr D 4
16S 2Mr D 529S 2Mr D 6 ~14!

and

Q~r !524S 2Mr D 6. ~15!

The trace of the stress-energy tensor is given by

^HuTm̂
m̂uH&[96p`S 2Mr D 6. ~16!

This result, because it is simply a restatement of the confo
mal anomaly, is known to be exact.

At the event horizon, Page’s analytic approximation give
@12,13#

^HuTm̂
n̂uH&[p`F136 0 0 0

0 136 0 0

0 0 112 0

0 0 0 112

G . ~17!

The explicit numerical calculations of Howard@13#,
Howard and Candelas@14#, and Anderson, Hiscock, and
Samuel@15–17# show that Page’s analytic approximation is
reasonably good—the worst deviations occur in the immed
ate vicinity of the event horizon where the Anderson
Hiscock-Samuel numerical analysis gives

^HuTm̂
n̂uH&

'p`F137.7403 0 0 0

0 137.7403 0 0

0 0 110.259 0

0 0 0 110.259

G .
~18!

A convenient table of numerical results, covering the rang
r52M to r56.8M , may be found on p. 2541 of Ref.@13#.
~Near the event horizon, the Howard-Candelas data are b
lieved to be accurate to two significant digits. The accurac
is expected to improve with increasingr , as the numerical
results converge upon the Page approximation.!

Additionally, I have obtained via private communication
the more intensive numerical data of Anderson-Hiscock
Samuel@15–17#, which cover the ranger52M to r55M at
much higher resolution.~Near the event horizon, the
Anderson-Hiscock-Samuel data are believed to be accur
to three significant digits.! I have collated the data and used
them to construct suitable interpolating functions to be use
for the numerical aspects of the following discussion.

To construct the interpolating functions I use the
Anderson-Hiscock-Samuel data in the ranger52M to
r55M , and the Howard-Candelas data in the ranger55M
to r56.8M , augmented by the fact that we know the exac
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5106 54MATT VISSER
result atr5`. UsingMATHEMATICA , I have fit the data using
third-order interpolating polynomials in the variabl
z52M /r . ~Note thatz conveniently runs fromz51 at the
horizon toz50 at spatial infinity;z is alsothenatural vari-
able to use when numerically analyzing the Page approxim
tion.!

Of course, there are may other papers extant which cal
late the stress-energy tensor in somewhat different confi
rations. See, for example,@12,15,16,23–34#. More recently,
in a very interesting development, Matyjasek@35# has devel-
oped a curve-fitting analysis that fits the numerical data
high accuracy. In this paper I prefer to work directly with th
numerical data. In this paper I am only presenting the mi
mum requirements for the particular job at hand and it
clear that with additional effort more information can be e
tracted.

IV. NULL ENERGY CONDITION

A. Outside the horizon

Outside the event horizon, the NEC reduces to the pair
constraints

r~r !2t~r !>0?, r~r !1p~r !>0?. ~19!

Page’s approximation yields

r~r !2t~r !54p`S 12
2M

r D F113S 2Mr D16S 2Mr D 2
110S 2Mr D 3115S 2Mr D 4121S 2Mr D 5G . ~20!

~Note the factorization.! Consequentlyr(r )2t(r ) is always
explicitly positive outside the horizon. Furthermore,

r~r !1p~r !54p`F112S 2Mr D13S 2Mr D 214S 2Mr D 3
15S 2Mr D 416S 2Mr D 5227S 2Mr D 6G . ~21!

Numerically finding the roots of this sixth-order polynomia
shows that r(r )1p(r ) is negative from r52M to
r'2.18994M .

Thus the Page approximation suggests that the null ene
condition is violated in the rangerP@2M ,2.18994M #.

Turning to the numerical data, one easily verifies that o
side the horizonr(r )2t(r ).0, while r5t at the horizon.
This is in complete agreement with Page’s analytic appro
mation.

On the other hand, inspection of the numerical data in
cates thatr1p,0 for r&2.298M . ~This number was ob-
tained by fitting third-order interpolating polynomials to th
numeric data and then numerically finding the root.! This is
qualitatively, though not quantitatively, in agreement wit
Page’s analytic approximation.

Thus the numerical data indicate that the null energy co
dition is violated in the rangerP@2M ,2.298M #.
e
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B. Inside the horizon

Inside the event horizon, the radial coordinate become
timelike, and the roles played byr(r ) and t(r ) are inter-
changed. The NEC reduces to the pair of constraints

t~r !2r~r !>0?, t~r !1p~r !>0?. ~22!

Unfortunately, inside the horizon I am reduced to reliance
upon the Page approximation by a total lack of numerica
data. Now there are some subtleties associated with extrap
lating the Page approximation inside the event horizon. Th
existence of a Killing vector that points in thet direction is
absolutely critical~even if thet direction is no longer time-
like!. Thus if you wish to extrapolate the Page approximation
inside the event horizon, it is necessary to limit attention to
an eternal black hole ~that is, the maximally extended
Kruskal-Szekeres manifold!.

I should remind the reader that in the Hartle-Hawking
vacuum the stress energy is at least known to be regular
the horizon, and so the Page approximation should not be to
far wrong just inside the event horizon of an eternal black
hole. On the other hand, one does expect the Page appro
mation to get progressively worse as one moves farther
toward the singularity, and so one should probably not tak
these results too seriously once one is far inside the horizo

I should especially warn the reader against extrapolatin
the Page approximation to the interior of an astrophysica
black hole: We really do not expect the interior of an astro
physical black hole to have the same Killing vectors as th
exterior, but instead expect the interior to be fully dynamical
~In addition we do not expect an astrophysical black hole t
even be in the Hartle-Hawking quantum state.!

The present calculations inside the horizon are strictl
limited to eternal black holes and are exhibited merely be
cause they are doable, and because they may be sugges
of the actual situation.

Inspection of Page’s analytic approximation indicates tha
t(r )2r(r ).0 for all r,2M , and so this part of the NEC is
satisfied inside the event horizon. On the other hand,

t~r !1p~r !5224p`S 2Mr D 6, ~23!

which is everywhere negative~both inside and outside the
horizon!. Thus the Page approximation suggests that the nu
energy condition is violated throughout the interior of the
black hole.

This is enough to inform us that~assuming the reliability
of the Page approximation in this matter! the weak, strong,
and dominant energy conditions are also violated througho
the entire interior of the black hole.

V. WEAK ENERGY CONDITION

A. Outside the horizon

Outside the horizon, the weak energy condition is equiva
lent to the three constraints
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r~r !>0?,

r~r !2t~r !>0?,

r~r !1p~r !>0?. ~24!

The last two constraints have already been discussed—t
are simply the null energy condition. In the Page approxim
tion, finding the roots of the relevant sixth-order polynomi
shows that the density constraint is violated fo
r,2.3468M . Therefore the weak energy condition is vio
lated in the rangerP@2M ,2.3468M #.

In contrast, the numerical data indicate that violations
the weak energy condition extend to the regionr
P@2M ,2.438M #.

B. Inside the horizon

Inside the horizon, the weak energy condition is equiv
lent to the three constraints

t~r !>0?,

t~r !2r~r !>0?,

t~r !1p~r !>0?. ~25!

The last two constraints have already been discussed~when
dealing with the NEC!. The violation of the NEC is already
sufficient to tell us that the WEC is violated everywher
inside the horizon, but we can add in passing that the P
approximation additionally implies thatt(r ) is everywhere
negative inside~and outside! the horizon.

The Page approximation suggests that the weak ene
condition is violated throughout the interior of the blac
hole.

VI. STRONG ENERGY CONDITION

A. Outside the horizon

Outside the horizon, the strong energy condition
equivalent to the three constraints

r~r !2t~r !>0?,

r~r !1p~r !>0?,

r~r !2t~r !12p~r !>0?. ~26!

We have already looked at the first two constraints wh
discussing the null energy condition. The third condition
always satisfied outside the horizon@since both
r(r )2t(r ).0 andp(r ).0 in this region#. This is true both
in the Page approximation and by appeal to the numeri
data. Thus the strong energy condition is violated in the sa
region as the null energy condition.

B. Inside the horizon

Inside the horizon, the strong energy condition is equiv
lent to the three constraints

t~r !2r~r !>0?, ~27!
hey
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t~r !1p~r !>0?,

t~r !2r~r !12p~r !>0?.

We have already looked at the first two constraints whe
discussing the null energy condition, and thereby know tha
~the Page approximation suggests that! the strong energy
condition is violated throughout the entire interior of the
black hole.

For completeness I point out that the first condition is
satisfied throughout the interior and the second of these co
ditions is violated throughout the interior, while the third
condition also fails throughout the interior.

VII. DOMINANT ENERGY CONDITION

A. Outside the horizon

Outside the horizon, the dominant energy condition is
equivalent to the three constraints

r~r !>0?,

t~r !P@2r~r !,1r~r !#?,

p~r !P@2r~r !,1r~r !#?. ~28!

We can rephrase this as

r~r !>0?, r~r !6t~r !>0?, r~r !6p~r !>0?.
~29!

Using the Page approximation and restricting attention t
the range@2M ,`#, one has

r~r !,0, rP@2M ,2.3468M #,

r~r !2t~r !,0, rPB,

r~r !1t~r !,0, rP@2M ,2.77256M #,

r~r !2p~r !,0, rP@2M ,2.58512M #,

r~r !1p~r !,0, rP@2M ,2.18994M #. ~30!

Pulling this all together, the Page approximation sugges
that the dominant energy condition fails in the regionr
P@2M ,2.77256M #.

The numerical data imply quantitative though not qualita
tive modifications. In the range@2M ,`# one finds

r~r !,0, rP@2M ,2.438M #,

r~r !2t~r !,0, rPB,

r~r !1t~r !,0,rP@2M , 2.992M #,

r~r !2p~r !,0, rP@2M ,2.628M #,

r~r !1p~r !,0, rP@2M ,2.298M #. ~31!

Pulling this all together, the numerical data indicate that th
dominant energy condition fails in the regionr
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P@2M,2.992M #. Note that this is suspiciously close to
r53M—the unstable circular photon orbit—andmight be
trying to tell us something.

If one actually calculates (r1t)/(uru1utu) at r53M ,
one gets 6.0231023—given the expected three-significant
digit numerical reliability of the data this is~questionably!
compatible with zero. If one takes this suggestion serious
it would imply a hidden~accidental?! symmetry in the stress
tensor atr53M :

^HuTm̂n̂uH&ur53M}F a 0 0 0

0 a 0 0

0 0 b 0

0 0 0 b

G?. ~32!

It is quite possible, however, that this is purely a numeric
accident.

Finally, I point out that this conjectured property certain
does not survive the introduction of nonconformal couplin
nor is there any particular reason to expect it to survive t
introduction of nonzero rest mass. This conjecture also m
definitely does not hold in the Boulware or Unruh vacuu
states@33,34,11#.

B. Inside the horizon

Inside the horizon, the dominant energy condition
equivalent to the three constraints

t~r !>0?,

r~r !P@2t~r !,1t~r !#?,

p~r !P@2t~r !,1t~r !#?. ~33!

We can rephrase this as

t~r !>0?, t6r~r !>0?, t6p~r !>0?. ~34!

We already know thatt(r ),0 inside the horizon~in fact
everywhere!. So provided the Page approximation is not mi
leading in this regard, the dominant energy condition is vi
lated throughout the interior of the black hole. No addition
information comes from the other conditions.

VIII. PARTIAL NULL ENERGY CONDITION

A. Outside the horizon

To analyze the partial null energy condition introduce
earlier in this paper, consider a generic null vector inclined
an anglec away from the radial direction. Then, without los
of generality, in an orthonormal frame attached to th
(t,r ,u,f) coordinate system,

km̂}~61,cosc,0,sinc!. ~35!

Ignoring the~presently irrelevant! overall normalization of
the null vector, one has

Tmnk
mkn}~r2t cos2c1p sin2c!

5~@r2t#1@t1p#sin2c!. ~36!
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We have already seen thatr2t is positive outside the event
horizon. On the other hand, the Page approximation gives

t~r !1p~r !5224p`S 2Mr D 6, ~37!

which is everywhere negative. A glance at Howard’s numeri
cal data confirms that the numerical data also satisf
t1p,0.

Thus the partial null energy conditionfails for those radii
r and those anglesc such that

sin c.sin@ccrit~r !#[A r~r !2t~r !

ut~r !1p~r !u
. ~38!

That is, the partial null energy conditionfails for c
P@ccrit(r ),p/2#. Definingz52M /r this critical angle is~in
the Page approximation! given by

ccrit~z!

5arcsin@A~12z!~113z16z2110z3115z4121z5!/6z6#.

~39!

For r.2.189 94M (z,0.913 267) there are no real solutions
to this equation. Atr52.189 94M one hasccrit5p/2, while
ccrit(r ) moves monotonically to zero asr→2M . @See Fig. 1
whereccrit(z) is plotted as a function ofz.#

Thus, sufficiently near the horizon, almost all directions
violate the partial null energy condition. As one moves fur-
ther away from the horizon the violations of the partial en-
ergy condition are confined to null vectors that are progres
sively more and more transverse, and finally a
r52.189 94M the violations of the partial null energy con-
dition disappear completely.

Using the numerical data will modify the precise location
where this behavior manifests itself, but will not qualitatively
modify this picture. The violations of the partial null energy
condition vanish outsider52.298M (z50.8703), and the
numerically determined values ofccrit(z) are superimposed
on Fig. 1.

FIG. 1. PNEC: Outside the horizon. This graph shows the~nor-
malized! critical angleccrit(z)/@p/2# above which the partial null
energy condition fails.~The solid line represents the numerical data;
the dotted line represents the Page approximation.!
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B. Inside the horizon

Inside the event horizon, one should consider a gen
null vector inclined at an anglec̃ away from thet direction
~which is now spacelike!. Then, without loss of generality, in
an orthonormal frame attached to the (t,r ,u,f) coordinate
system,

km̂}~cos c̃,61,0,sinc̃ !. ~40!

One should now consider the quantity

Tmnk
mkn}~t2r cos2c̃1p sin2c̃ !

5~@t2r#1@r1p#sin2c̃ !. ~41!

Note that inside the horizont2r is strictly positive, while
r1p is strictly negative. In fact, the Page approximatio
yields

r~r !1p~r !54p`F112S 2Mr D13S 2Mr D 214S 2Mr D 3
15S 2Mr D 416S 2Mr D 5227S 2Mr D 6G . ~42!

One deduces that violations of the partial null energy con
tion occur whenever

sinc̃.sin@c̃crit~r !#[A t~r !2r~r !

ur~r !1p~r !u
. ~43!

Consequently, violations of the partial null energy conditi
are confined to the rangecP@c̃crit(r ),p/2#. Again defining
z52M /r this critical angle is~in the Page approximation!
given by

c̃crit~z!

5arcsinFA~12z!~113z16z2110z3115z4121z5!

~112z13z214z315z416z5227z6! G .
~44!

One has, atr50, c̃crit(r50)5arcsinA7/9'62°, while c̃crit
falls to zero asr approaches 2M . Qualitatively, near~but
inside! the horizon almost all null directions suffer violation
of the partial energy condition, while near the central sing
larity somewhat fewer directions violate the partial null e
ergy condition.

Again, I remind the reader to not take the Page appro
mation too seriously as one approaches the singularity.

IX. ASYMPTOTIC NULL ENERGY CONDITION

I now turn attention to the asymptotic null energy cond
tion ~Scri-NEC! that I introduced earlier in this paper. Dis
cussing this energy condition will require some standard
sults concerning the null geodesics of the Schwarzsc
spacetime.~See, for instance, such standard textbooks
those by Misner, Thorne, and Wheeler@36#, Wald @37#, or
Weinberg@38#.!

There are two conserved quantities for null geodesic m
eric

n

di-

on

s
u-
n-

xi-

i-
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re-
hild
as

o-

tion in Schwarzschild spacetime: the energy and angular m
mentum. Using these conservation laws the affine paramet
can be chosen in such a way that

dt

dl
5

1

122M /r
, ~45!

df

dl
5

a

r 2
. ~46!

The parametera is the angular momentum per unit energy. If
the null geodesic reaches asymptotic spatial infinity, then th
parameter can also be interpreted as the ‘‘impact param
eter.’’ However, there is a large class of null geodesics tha
never reaches spatial infinity; for these null geodesics, th
notion of ‘‘impact parameter’’ is at best an abuse of lan-
guage.

The angle between the null geodesic and the radial dire
tion is given by

sinc5A122M /r S ar D . ~47!

We are ultimately interested in the quantity

Tmnk
mkn}~@r2t#1@t1p#sin2c!

5$@r2t#1@t1p#~122M /r !a2/r 2%, ~48!

but will need to go through a few preliminaries.
The radial motion of null geodesics is governed by

S drdt D
2

5~122M /r !2F12~122M /r !
a2

r 2G . ~49!

So the turning pointsdr/dt50 are given by the cubic

r 25a2~122M /r !. ~50!

If the impact parameter is small,a,3A3M , then it is a stan-
dard result that there are no turning points: The null geodes
either plunges into the future singularity or emerges from th
past singularity of the maximally extended Schwarzschild
spacetime.~For a&3A3M the geodesic may make a large
number of ‘‘orbits’’ before crossing the event horizon.!

If the impact parameter is marginal,a53A3M , then it is
a standard result thatr53M , corresponding to the~unstable!
circular photon orbit.

If the impact parameter is large,a.3A3M , then it is a
standard result that there aretwo turning points at physical
values ofr . One of these turning points lies in the ranger
P(3M ,`), while the other lies in the rangerP(2M ,3M ).

Note that, if a@2M , then the three mathematical roots
of the cubic are approximately r'6a2M and
r'2M @11(2M /a)2#. The two physical roots are approxi-
mately r'a2M and r'2M @11(2M /a)2#.

The first of these turning points,rP(3M ,`), corresponds
to the obvious class of null geodesics with high impac
parameter—those geodesics that come in from spatial infin
ity, bounce off the angular momentum barrier, and return to
spatial infinity. ~For a*3A3M the geodesic may make a
large number of ‘‘orbits’’ before returning to spatial infinity.!
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The second of these turning points,rP(2M ,3M ), corre-
sponds to a completely separate class of null geodesics
high ‘‘impact parameter’’—these geodesics emerge from
event horizon att52`, with high angular momentum
make a large number of ‘‘orbits’’ before reaching their max
mum height above the event horizon, and then make
equally large number of ‘‘orbits’’ before returning to recros
the event horizon att51`. For these geodesics the use
the phrase ‘‘impact parameter’’ to describe the parametea
is most definitely an abuse of language.

To analyze the asymptotic null energy condition, start
first considering the quantity

P~r ,a![~r2t cos2c1p sin2c!, ~51!

which I shall refer to as the NEC density.@Remember that
c(r ,a) is an explicitly known function ofr anda.#

Those null geodesics that come in from infinity and retu
to infinity never get closer to the origin thanr53M . See, for
instance,@36, pp. 672–678#. Inspection of either the Pag
approximation or of the numerical data indicates thatr,
2t, andp are all positive forr>3M . Thus the asymptotic
null energy condition is satisfied along all null geodesics t
come from, and return to, infinity.

For other classes of null geodesics it proves convenien
rewrite the quantityP(r ,a) as

P~r ,a![$@r2t#1@t1p#~122M /r !a2/r 2%. ~52!

Now, for incoming null geodesics with smaller than critic
impact parameter, the null geodesic may circle the black h
a large number of times, but is guaranteed to ultimat
plunge into the event horizon@36, pp. 672–678#. This makes
the analysis a little more subtle. Inspection of either the P
approximation or the numerical data shows that~outside the
horizon! r2t is always positive, whilet1p is always nega-
tive. Now use the fact that for an infalling null geodes
a,3A3M . Since t1p is negative, this implies~for this
class of null geodesics! a lower bound

P~r ,a!.L~r ![$@r2t#1@t1p#~122M /r !27M2/r 2%.
~53!

Inspection of Page’s approximation indicates that this low
bound is strictly positive~zero at the horizon!. In fact,

L~r !54p`S 12
2M

r D F113S 2Mr D16S 2Mr D 2110S 2Mr D 3
115S 2Mr D 4121S 2Mr D 52 81

2 S 2Mr D 8G . ~54!

~Note the factorization.! Thus the Page approximation sug
gests that the asymptotic null energy condition holds on
infalling null geodesics~at least until one crosses the hor
zon!. This lower boundL(r ) is plotted in Fig. 2.

By time reversal, this suggests that the asymptotic n
energy condition also holds on all outgoing null geodes
that reach infinity.

With respect to the numerical data, one can easily eva
ateL(r ) numerically. The results are superimposed in Fig.
While there are marked differences between the analytic
with
the
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proximation and the numerical data, both curves are seen
be strictly positive outside the horizon.

We conclude that the Scri-NEC is satisfied. Forall null
geodesics that reach spatial infinity the NEC densit
P(r ,a) is strictly positive everywhere outside the event ho
rizon.

For completeness, and future reference, I point out th
the Page approximation yields

P~r ,a!54p`S 12
2M

r D F113S 2Mr D16S 2Mr D 2
110S 2Mr D 3115S 2Mr D 4121S 2Mr D 5
2
3a2

2 S 2Mr D 8G . ~55!

Again, note the factorization.

X. TRAPPED NULL GEODESICS

Now turn attention to the trapped null geodesics.~These
are null geodesics with high ‘‘impact parameter’’
a.3A3M , trapped in the regionrP@2M ,3M #.! While these
trapped null geodesics are, by definition, not directly releva
to the Scri-NEC, the tools developed above permit us to ga
additional insight into the PNEC on trapped null geodesics

Pick some value ofr in the range (2M ,3M ). Then
P(r ,a) is guaranteed to be negative if one chooses

a.acrit~r ![A r 2~r2t!

~122M /r !ut1pu
~56!

52MA ~r2t!

z2~12z!ut1pu
. ~57!

~Settingz52M /r is again a convenient choice of variables
for both analytic and numeric work. In this section we will
only be interested in the regionzP@2/3,1#.! Note that what

FIG. 2. L(z): A bound on NEC violations. For all impact pa-
rametersa,3A3M , the NEC densityP(r ,a) is bounded below by
the quantityL(r ), which is itself bounded below by zero. This
implies that the Scri-NEC is satisfied on all infalling or outfalling
null geodesics.~The solid line represents the numerical data; th
dotted line represents the Page approximation.!
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we are doing is guaranteeing that with these definitions
PNEC is violated for the region of the (a,z) plane above the
curveacrit(z).

Using Page’s approximation, this critical impact param
eter is given by

acrit~z!52MA~113z16z2110z3115z4121z5!/~6z8!.
~58!

The critical impact parameter implied by the numerical da
was also determined and both curves are plotted in Fig. 3

It should be noted that, for a given value ofr
P(2M ,3M ), one cannot choosea arbitrarily: In order for a
trapped null geodesic with impact parametera to ever reach
radiusr it is necessary thata be small enough. Indeed one
must have

a,amax~r ![A r 2

122M /r
5

2M

Az2~12z!
. ~59!

This may be thought of as a kinematic bound on trapped n
geodesics: The region of the (a,z) plane above the curve
amax(z) is kinematically inaccessible to trapped null geod
sics.~Note that the region belowa53A3M is also kinemati-
cally inaccessible.! The relevant curve is plotted in Figs. 4
and 5, where it is overlain withacrit(z) as obtained from Fig.
3. By looking at where these curves cross one another we
draw some general conclusions.

In the Page approximation, now restricting attention to t
region outside the event horizon, the following occur:

~1! Some trapped null geodesics~those with a
P@3A3M ,2A7/3M #5@5.19615M ,6.1101M #) neverexperi-
ence NEC density violations. That is,P(r ,a).0 is satisfied
along the entire portion of the null geodesic that lies outsi
the event horizon.@And therefore the~truncated! ANEC
must be satisfied on this entire class of null geodesics.#

~2! Some trapped null geodesics~those with
a.7.436M ) always experience NEC density violations
That is,P(r ,a),0 along the entire~truncated! null geode-
sic. @And therefore the~truncated! ANEC must be violated
on this entire class of null geodesics.#

FIG. 3. acrit(z)/M : The critical impact parameter above whic
the NEC is violated on trapped null geodesics.~The solid line rep-
resents the numerical data; the dotted line represents the Page
proximation.!
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~3! All other trapped null geodesics~those with a
P@6.1101M ,7.436M #) will experience some NEC violations
when they get sufficiently close to the event horizon.~And
therefore investigating ANEC violations on this class of nu
geodesics requires more work.!

~4! Note thata56.1101M corresponds to a null geodesic
that reaches a maximum radiusrmax52.18994M , a number
that we have seen before~when discussing the NEC and
PNEC!.

Use of the numerical data implies quantitative though n
qualitative changes. We observe the following:

~1! The set of trapped null geodesics whichneverexperi-
ence NEC density violations is much smaller, those witha
P@3A3M ,5.276M #5@5.19615M ,5.276M #. @The~truncated!
ANEC must be satisfied on this entire class of null geod
sics.#

~2! Some trapped null geodesics~those with
a.6.383M ) always experience NEC density violations.
@Therefore the~truncated! ANEC must be violated on this
entire class of null geodesics.#

~3! All other trapped null geodesics~those with a

h

ap-

FIG. 4. Page approximation: The critical impact paramet
above which the NEC is violated@acrit(z)/M # is superimposed on
the kinematic bound@amax(z)/M #. ~The dotted line represents the
Page approximation; the dashed lines represent the kinem
bounds.!

FIG. 5. Numerical approximation: The critical impact paramete
above which the NEC is violated@acrit(z)/M # is superimposed on
the kinematic bound@amax(z)/M #. ~The solid line represents the
numerical data; the dashed lines represent the kinematic bound!
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P@5.276M ,6.383M #) will experience some NEC violations
when they get sufficiently close to the event horizon.~And
therefore investigating ANEC violations on this class of n
geodesics requires more work.!

~4! Note thata56.383M corresponds to null geodesi
that reaches a maximum radiusrmax52.298M , a number that
we have seen before~when discussing the PNEC!.

The message to be extracted is this: The numeric data
analytic approximations are in good qualitative agreem
with each other. Null geodesics that reach null infinity a
well behaved~Scri-NEC is satisfied!, butsomeof the trapped
null geodesics encounter NEC violations~and ANEC viola-
tions!.

XI. AVERAGED NULL ENERGY CONDITION

We are finally in a position to pin down precisely viola
tions of the ANEC itself. Although significant informatio
can already be extracted by using the pointwise energy c
ditions already discussed, beyond a certain stage explicit
of the affine parametrization must be invoked. Write t
ANEC integral as@6, p. 117#

I g[E
g
Tmnk

mkndl ~60!

5E
g
~r2t cos2c1p sin2c!j2dl ~61!

5E
g
~@r2t#1@t1p#sin2c!j2dl ~62!

5E
g
P~r ,a!j2dl. ~63!

Note that theintegrand is proportional to the quantity
P(r ,a) which has already been extensively discussed in
context of the Scri-NEC.

A. Scri-ANEC

The arguments previously adduced for the Scri-NEC c
be carried over wholesale to the Scri-ANEC. In particul
we note the following.

For null geodesics that come in from spatial infinity an
return to spatial infinity (a.3A3M ;r.3M ) the integrandis
everywhere positive and so the ANEC holds in this ent
class of geodesics.~Note that satisfaction of the ANEC doe
not arise from the trivial observation that the heat bath c
tributes an asymptotically constant and positive energy d
sity far from the black hole—rather one has the strong
statement that the integrand itself is positive along the en
geodesic.!

The fact that the integrand is positive implies that t
ANEC will also be satisfied for curves with transvers
smearing @7# or curves with arbitrary positive weighting
functions@11#.

For infalling or outfalling null geodesics that reach a
ymptotic spatial infinity@a,3A3M , rP(2M ,`)# the inte-
grand is everywhere positive and the ANEC is satisfied.~Ca-
veat: I stop the ANEC integral once it reaches the horizo!
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This may be interpreted as follows: Because the Scri-NEC
is satisfied, it automatically follows that the Scri-ANEC is
satisfied.

For the unstable circular photon orbit
(a53A3M , r53M ) the integrand is everywhere positive
and the ANEC is satisfied.

However, for trapped null geodesics (a.3A3M ,
rP@2M ,3M #) the integrand is no longer necessarily posi-
tive, and this is the only case for which we will explicitly
need to look at the ‘‘weighting function’’j2dl appearing in
the ANEC integral.

B. ANEC on trapped null geodesics?

Observe that the ‘‘weighting function’’ appearing in the
ANEC satisfies@6, p. 133, Eqs.~12.60!–~12.63!#

j2dl5g00S dtdl D 2dl5~122M /r !S 1

122M /r D
2

3~122M /r !dt

5dt. ~64!

Although this calculation was carried out for the Schwarzs
child geometry, the result remains true for an arbitrary stati
spacetime—the ANEC integral is simply the time average
along a null geodesic of the local-Lorentz NEC integrand
where the time average is to be taken with respect to th
natural static time coordinate.

For actual calculations it is much more practical to reex
press this as an integral with respect to the radial variabler
by using

dr

A122M /r
5cosc dtA122M /r , ~65!

so that

dt5
dr

cosc~122M /r !
5

dr

~122M /r !A12~122M /r !a2/r 2
.

~66!

Now this observation appears to weight the region near th
event horizon very heavily because of the explicit pole a
r52M . However, the integrandP(r ,a) has a zero at the
event horizon—in the Page approximation one discovers a
explicit factor of (122M /r ) @cf. Eq. ~55!#, while the nu-
merical data also exhibit a first-order zero inP(r ,a) at the
horizon. Thus for trapped null geodesics one may write

I g~a!52E
2M

rmax~a! P~r ,a!

~122M /r !

dr

A12~122M /r !a2/r 2
,

~67!

and have some confidence that the integral actually con
verges at the lower boundr52M . As a penultimate step,
recall that calculatingrmax(a) involves solving a cubic. It is
more convenient to parametrize the trapped geodesic by ca
culating the impact parameter in terms of the maximum
height attained by the null geodesic:
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a~rmax!5
rmax

A122M /rmax
. ~68!

So for these trapped null geodesics one finds that the AN
integral is

I g~rmax!52E
2M

rmax P~r ,rmax!

~122M /r !

3
dr

A12@~122M /r !rmax
2 #/@~122M /rmax!r

2#
.

~69!

To actually evaluate this integral numerically it is useful t
change variables toz52M /r and z052M /rmax, with the
result that

I g~z0!54ME
z0

1 P~z,z0!

z2~12z!

dz

A12@z2~12z!#/@z0
2~12z0!#

.

~70!

With a little work, the square root can be seen to factori
explicitly

I g~z0!54Mz0A12z0

3E
z0

1 P~z,z0!

z2~12z!

1

Az21z0
21zz02z2z0

dz

Az2z0
.

~71!

This integral, though singular at the lower limit (z5z0, cor-
responding tor5rmax), is now certainly finite. WhileMATH-
EMATICA has resources to deal with 1/Az singularities at the
end points of the integration range, it reacts badly to su
singularities when the location is chosen dynamically. Th
is, *z0

1 1/Az2z0 is handled badly. For this reason the chan

of variablesz5z01w, while being a formal mathematica
identity, leads to much better numerical behavior for the i
tegral:

I g~z0!54Mz0A12z0E
0

12z0 P~z01w,z0!

~z01w!2~12w2z0!

3
1

A~z01w!21z0
21~z01w!z02~z01w!2z0

3
dw

Aw
. ~72!

This integral was determined numerically both for th
Page approximation and for the Anderson-Hiscock-Sam
numeric data. The results are plotted in Fig. 6. Remem
that it is meaningless to force this particular integral out
the rangermaxP@2M ,3M #, corresponding toz0P@2/3,1#.

Thus we have~finally! managed to characterize the pre
cise class of null geodesics on which the~truncated! ANEC
is violated.
EC
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The critical values ofz0, rmax, anda are, for the Page
approximation,

z050.90083,

rmax52.2202M ,

a57.0501M . ~73!

For the numerical data, one obtains

z050.8497,

rmax52.354M ,

a56.071M . ~74!

Note that these numbers are qualitatively reasonable and
agreement with the violations of the pointwise energy con
ditions and the numerical investigation of the PNEC. Fur
thermore, the ANEC violations in the numerical data ar
seen to extend out to larger distances than the ANEC viol
tions in the Page approximation, in agreement with the ge
eral trend.

Though I have quoted four-significant-digit accuracy fo
the numerical data, one should probably not take anythin
past the second significant digit too seriously. In fact, give
the vagaries of numerical analysis on singular integrals~and
the inherent uncertainties in the Anderson-Hiscock-Samu
data! it is conceivable that the exact critical impact param
eters might bea57M anda56M , respectively.

C. ANEC on nongeodesic curves?

If one considers arbitrary nongeodesic curves, the ANE
loses much~though not quite all! of its power: By a judicious
choice of nongeodesic null curves one could try to remain
a region where the NEC is violated and thereby ‘‘trivially’’
violate the ANEC@19#.

For instance, along any circular null curve at fixedr ~not
a geodesic except in the case ofr53M ) the ANEC integral
is still proportional tor1p. Inspection of the numeric data
indicates thatr1p,0 for r&2.298M ~Page’s analytic ap-
proximation giving a slightly different result,r1p,0 for

FIG. 6. ANEC integral on trapped null geodesics: The ANEC
integral has been evaluated numerically as a function
z052M /rmax. ~The solid line represents the numerical data; th
dotted line represents the Page approximation.!
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r,2.18994M ). Thus the ANEC isnot satisfied for this par-
ticular class of nongeodesic null curves.

XII. DISCUSSION

Investigation of the properties of the averaged null ener
condition is of considerable interest to diverse applications
semiclassical quantum gravity. It is now abundantly cle
that, in the test-field limit, semiclassical quantum fields d
notgenerally satisfy the ANEC: Indeed ANEC violations ar
related to the existence of a nonzero scale anomaly@6,20#.
Even if the scale anomaly vanishes, this does not necessa
imply that the ANEC is satisfied: One has to do a case-b
case analysis. As an example, this paper investigates the
ation in Schwarzschild spacetime.

The analysis presented herein is somewhat of an atte
to crack a walnut with a sledgehammer in the sense that i
a collection of rather general techniques applied to a rat
particular problem—it is certainly true that this type o
analysis can now be carried forward to other geometri
other quantum fields, and other vacuum states by straight
ward but tedious computation.

For the Schwarzschild geometry~with a conformally
coupled scalar field in the Hartle-Hawking vacuum! the re-
sults may be expressed thusly:~i! Pointwise energy condi-
tions; ~a! inside the event horizon, with suitable caveats r
garding the applicability of the Page approximation, almo
any energy condition you can think of will be violated;~b!
between the event horizon (r52M ) and the unstable photon
orbit (r53M ) many of the energy conditions are violated, i
a series of onionlike layers;~c! outside the unstable photon
orbit (r53M ) all energy conditions are satisfied;~d! all null
geodesics that reach asymptotic infinity are well behaved
you look along the null geodesic you never see NEC viola
tions. ~ii ! Averaged null energy condition:~a! If your null
geodesic ever reaches infinity, the~truncated! ANEC is defi-
nitely satisfied, and is satisfied for a nontrivial reason: T
integrand is strictly positive all the way from the event ho
rizon to null infinity; ~b! between the event horizon
(r52M ) and the unstable photon orbit (r53M ) some of the
trapped null geodesics violate the~truncated! ANEC; ~c! if
you are willing to look at nongeodesic null curves, eve
more violations of the ANEC can be found.
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It should be possible to generalize the observations of th
paper. For instance, we note the following.

~1! It would be very nice to have an analytic understand
ing of the precise role played by the unstable photon orbit—
the numerical evidence is suggestive but not definitive.

~2! For that matter it would be nice to know if the rel-
evance of the unstable photon orbit generalizes to other g
ometries.

~3! It would be nice to go beyond the numerics; to de-
velop some exact analytic arguments that go beyond th
Page approximation.

~4! Generalizations to the Boulware vacuum will be pre-
sented in a companion paper.

~5! Generalizations to the Unruh vacuum, other quantum
fields, nonconformal couplings, particle masses, and th
Reissner-Nordstro¨m geometry will be straightforward if te-
dious.

~6! The new energy conditions I introduce, Scri-NEC and
Scri-ANEC, are interesting in that they focus attention on
null infinity. And null infinity is where all the interesting
details arise in the Friedman-Schleich-Witt@22# topological
censorship theorem and the Penrose-Sorkin-Woolgar versi
of the positive mass theorem@21#. I suspect that with a little
more work suitable generalizations of these theorems can
constructed in terms of the Scri-ANEC.

~7! Finally I should point out that even though the various
energy conditions are violated in many regions, this does no
give one a completely free hand to design spacetime geom
etries to taste: It seems quite likely that the ‘‘quantum in-
equality’’ approach of Ford and Roman@39,40# will allow us
to place constraints on spacetime geometries even if all th
usual types of energy condition fail.
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