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How to create a two-dimensional black hole
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The interaction of a cosmic string with a four-dimensional stationary black hole is considered. If a part of an
infinitely long string passes close to a black hole it can be captured. The final stationary configurations of such
captured strings are investigated. It is shown that the minimal 2D surfaceS describing a captured stationary
string coincides with aprincipal Killing surface, i.e., a surface formed by Killing trajectories passing through
a principal null ray of the Kerr-Newman geometry. A uniqueness theorem is proved, namely, it is shown that
the principal Killing surfaces are the only stationary solutions of the string equations which enter the ergo-
sphere and remain timelike and regular at the static limit surface. Geometrical properties of principal Killing
surfaces are investigated and it is shown that the internal geometry ofS coincides with the geometry of a 2D
black or white hole~string hole!. The equations for propagation of string perturbations are shown to be
identical with the equations for a coupled pair of scalar fields ‘‘living’’ in the spacetime of a 2D string hole.
Some interesting features of the physics of 2D string holes are described. In particular, it is shown that the
existence of the extra dimensions of the surrounding spacetime makes interaction possible between the interior
and exterior of a string black hole; from the point of view of the 2D geometry this interaction is acausal.
Possible application of this result to the information loss puzzle is briefly discussed.@S0556-2821~96!00920-4#

PACS number~s!: 04.70.Dy, 11.27.1d
m.
s.
-
on
a-

d

-
e,
e
f a
g
D

h
D
a-
g

r

ted
-

le
es

ll as
e

I. INTRODUCTION

Black hole solutions in a spacetime of lower than fou
dimensions have been discussed for a long time~see, e.g.,
Ref. @1# and references therein!. Such solutions are of inter-
est mainly because they provide toy models which allow o
to investigate unsolved problems in four-dimensional~4D!
black hole physics. The interest in 2D black holes grea
increased after Witten@2# and Mandal, Sengupta, and Wadi
@3# showed that 2D black hole solutions naturally arise
superstring-motivated 2D dilaton gravity. Many aspects
2D black hole physics and its relation to 4D gravity wer
discussed in a number of recent publications~see, e.g., Ref.
@4#!. The main purpose of this paper is to show that the
might exist physical objects which behave as 2D black hol
Namely, we consider a cosmic string interacting with a usu
4D stationary black hole. If an infinitely long string passe
close enough to the black hole it can be captured@5,6#. Fur-
ther evolution of the system~a black hole and a trapped
cosmic string! can be quite complicated. One can expect th
the action of the string on the black hole accelerates
latter, so that after characteristic time of order o
T5Rg /(cm* ) the black hole will have the velocity compa
rable with the velocity of the string. (Rg52GM/c2 is the
gravitational radius of a black hole, andm*5Gm/c2 is the
dimensionless tension of the string.! One can also expect tha
during the same timeT the action of the string on the rotat
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ing black hole can essentially change its angular momentu
In what follows we do not discuss these interesting effect
We assume thatm*!1, so that a cosmic string can be con
sidered as a test body and its gravitational field and action
the black hole can be neglected. Certainly, this approxim
tion is valid for time intervals less thanT.

In this paper we study stationary final states of a capture
infinite test string, with end points fixed at infinity. We show
that there is only a very special family of solutions describ
ing a stationary test string which enters the ergospher
namely, the strings lying on cones of a given angl
u5const. We demonstrate that the induced 2D geometry o
stationary string crossing the static limit surface and enterin
the ergosphere of a rotating black hole has the metric of a 2
black or white hole. The horizon of such a 2D string hole
coincides with the intersection of the string world sheet wit
the static limit surface. We shall also demonstrate that the 2
string hole geometry can be tested by studying the propag
tion of string perturbations. The perturbations propagatin
along thecone strings(u5const! are shown to obey the
relativistic equations for a coupled system of two scala
fields. These results generalize the results of Ref.@7# where
the corresponding equations were obtained and investiga
for strings lying in the equatorial plane. The quantum radia
tion of string excitations~stringons! and thermodynamical
properties of string holes are discussed. The remarkab
property of 2D string holes as physical objects is that besid
quanta~stringons! living and propagating only on the 2D
world sheet there exist other field quanta~gravitons, photons,
etc.!, living and propagating in the surrounding physical 4D
spacetime. Such quanta can enter the ergosphere as we
leave it and return back to the exterior. For this reason th
5093 © 1996 The American Physical Society
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presence of extra physical dimensions makes dynamical
teraction possible between the interior and exterior of a
string black hole, which appears acausal from the perspec
of the internal 2D geometry. The possible application of th
effect to the information loss puzzle is briefly discussed.

The paper is organized as follows. In Sec. II we colle
results concerning the Kerr-Newman geometry which a
necessary for the following sections. In Sec. III we introdu
the notion of aprincipal Killing surfaceand we prove that a
principal Killing surface is a minimal two-surface embedde
in the four-dimensional spacetime. In Sec. IV we prove t
uniqueness theorem, i.e., the statement that the princ
Killing surfaces are the only stationary minimal two-surface
that are timelike and regular in the vicinity of the static lim
surface of the Kerr-Newman black hole. In Sec. IV we al
relate the principal Killing surfaces with the world sheets
a particular class of stationary cosmic strings, the co
strings. In Sec. V we show that the internal geometry
these world sheets is that of a two-dimensional black
white hole and we discuss the geometry of such string ho
In Section 6 we consider the propagation of perturbatio
along a stationary string using a covariant approach dev
oped in Ref.@8# ~see also Refs.@9–11#!, and we show that
the corresponding equations coincide with a system
coupled equations for a pair of scalar fields on the tw
dimensional string hole background. Finally, in Sec. VII, w
discuss the physics of string holes and give our conclusio

II. KERR-NEWMAN GEOMETRY

In Boyer-Lindquist coordinates the Kerr-Newman metr
is given by@12#

ds252
D

r2
@dt2asin2udf#21

sin2u

r2
@~r 21a2!df2a dt#2

1
r2

D
dr21r2du2, ~2.1!

where D5r 222Mr1Q21a2 and r25r 21a2cos2u. The
corresponding electromagnetic field tensor is given by

F5
Q~r 22a2cos2u!

r4
dr`@dt2asin2udf#

1
2Qar

r4
cosusinudu`@~r 21a2!df2adt#. ~2.2!

The spacetime ~2.1! possesses a Killing vector
jm5(1,0,0,0) which is timelike at infinity. The norm of the
Killing vector is

F[2j2512
2Mr2Q2

r2
. ~2.3!

A surfaceSst, wherej becomes null (F50), is known as
the static limit surface. It is defined by

r5r st[M1AM22Q22a2cos2u . ~2.4!
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The Kerr-Newman metric~2.1! is of typeD and possesses
two principal null directionsl1

m and l2
m Each of these null

vectors obeys the relation

Cabgd
~1 ! l bl d5Clal g , ~2.5!

where

Cabgd
~1 ! 5Cabgd1 iCabgd* , Cabgd* 5 1

2eabmnC
mn

gd .
~2.6!

Here,Cabgd is the Weyl tensor,eabmn is the totally antisym-
metric tensor, andC6 are nonvanishing complex numbers
The Goldberg-Sachs theorem@13# implies that the integral
lines xm(l) of principal null directions

dxm

dl6
57 l6

m ~2.7!

are null geodesics (lmlm50, lml ;m
n 50) and their congruence

is shear free. We denote byg1 andg2 ingoing and outgoing
principal null geodesics, respectively, and choose the para
eter l6 to be an affine parameter along the geodesic. Th
explicit form of l6 is given by

l6
m 5„~r 21a2!/D,71,0,a/D…,

~2.8!
l6m5~21,7r2/D,0,asin2u!.

The normalization has been chosen so thatl6 are future di-
rected and such that

l1
m l2m522r2/D. ~2.9!

The Killing equation implies that the tensorjm;n is anti-
symmetric and its eigenvectors with nonvanishing eigenva
ues are null. In the Kerr-Newman geometryjm;n is of the
form

jm;n5~DF8/2r2!l1[ml2n]1@2ia~12F !cosu/r2#m[mm̄n] ,
~2.10!

where we have made use of the complex null vectorsm and
m̄, that complete the Kinnersley null tetrad. In the norma
ization wheremmm̄m51, they take the form

mm5
1

A2r
~ iasinu,0,1,i /sinu!,

mm5
1

A2r
„2 iasinu,0,r2,i ~a21r 2!sinu…. ~2.11!

The remarkable property of the Kerr-Newman geometry
that the principal null vectorsl6 are eigenvectors ofjm;n .
Namely, one has

jm;nl6
n 57k l6m ,

k56
1

2
l6
n ~j2! ;n5

1

2
F ,r5

Mr 22rQ22Ma2cos2u

r4
.

~2.12!
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These equations@~2.10! and ~2.12!#, will play an important
role later in our analysis.

Notice also that the electromagnetic field tensorF has the
form:

Fmn52
D

r2 SQ~r 22a2cos2u!

r4 D l1[ml2n]

1
4iQarcosu

r4
m[mm̄n] , ~2.13!

so that

Fmnl6
n 57

Q~r 22a2cos2u!

r4
lm6 . ~2.14!

III. PRINCIPAL KILLING SURFACES

Our aim is to consider stationary configurations of cosm
strings in the gravitational field of a charged rotating blac
hole. In particular, we are interested in the situation when
string is trapped by a black hole; that is when the strin
crosses the black holes static limit surface and enters
ergosphere. We neglect the thickness of the string and
own gravitational field. In this approximation the string evo
lution is described by a timelike 2D world sheet~for general
properties of cosmic strings, see, for instance, Refs.@14,15#!.
The dynamical equations obtained by variation of th
Nambu-Goto action for a string imply that this world sheet
a minimal surface. So, the mathematical problem we are t
ing to solve is to find stationary timelike minimal surface
which intersect the static limit surface of a rotating blac
hole. For this purpose we begin by considering the gene
properties of stationary timelike surfaces.

Let S be a two-dimensional timelike surface embedded
a stationary spacetime, and letj be the corresponding Killing
vector which is timelike at infinity.S is said to bestationary
if it is everywhere tangent to the Killing vector fieldj. For
any such surfaceS there exists two linearly independent nu
vector fieldsl , tangent toS. We assume that the integra
curves ofl form a congruence and coverS ~i.e., each point
pPS lies on exactly one of these integral curves!.

Thus, we can construct a stationary timelike surfaceS in
the following way: consider a null rayg with tangent vector
field l such thatj• l is nonvanishing everywhere alongg.
There is precisely one Killing trajectory with tangent vecto
j that passes through each pointpPg. This set of Killing
trajectories passing throughg forms a stationary 2D surface
S. We definel overS by Lie propagation along each Killing
trajectory. We callg a basic ray ofS. It is easily verified
that l remains null when defined in this manner overS.

We can use the Killing time parameteru and the affine
parameterl alongg as coordinates onS. In these coordi-
nateszA5(u,l) one hasx,0

m5jm andx,1
m5 lm and the induced

metricGAB5gmnx,A
m x,B

n (A,B, . . .50,1) is of the form

dS25GABdzAdzB52Fdu212~j• l !du dl. ~3.1!

In the case of a black hole the Killing vectorj becomes null
at the static limit surfaceSst. In what follows we always
choosel to be that of the two possible null vector fields onS
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which does not coincide withj on the static limit surface
Sst. In this case the metric~3.1! is regular atSst. Now,
introduce two vectorsnR

m ~R52,3! normal to the 2D surface
S:

gmnnR
mnS

n5dRS, gmnx,A
m nR

n 50, ~3.2!

which satisfy the completeness relation

gmn5GABx,A
m x,B

n 1dRSnR
mnS

n . ~3.3!

These two normal vectors span the vector space normal
the surface at a given point, and they are uniquely defined
to local rotations in the (n2 ,n3) plane.

The second fundamental form is defined as

VRAB5gmnnR
mx,A

r ¹rx,B
n . ~3.4!

The condition that a surfaceS is minimal can be written in
terms of the trace of the second fundamental form as

VRA
A [GABVRAB50. ~3.5!

We find that in the metric~3.1! the second fundamental form
is given by

VRA
A 5gmnG

ABnR
mx,A

g ¹gx,B
n

5gmnnR
mS 2

~j• l !
l g¹gjn1

F

~j• l !2
l g¹gl

nD . ~3.6!

Consider a special type of a stationary timelike two
surface in the Kerr-Newman geometry. Namely, a surface f
which the null vectorl coincides with one of the principal
null geodesicsl6 of the Kerr-Newman geometry. We call
such surfaceS6 a principal Killing surfaceandg6 its basic
ray. We shall use indices6 to distinguish between quantities
connected withS6 . The fact thatl6 are geodesics ensures
that l6

g ¹gl6
m } l6

m . In addition, from Eq.~2.12!, l6
g ¹gjm} l6

m

which, because of the contraction withnR
n , guarantees that

VRA
A vanishes for a principal Killing surface, i.e., every

principal Killing surface is minimal. Thus,S6 are stationary
solutions of the Nambu-Goto equations.

It should be stressed that the principal Killing surfaces a
only very special stationary minimal surfaces. A principa
Killing surface is uniquely determined by indicating two co-
ordinates~angles! of a point where it crosses the static limit
surface. Because of the axial symmetry only one of these tw
parameters is nontrivial. A general stationary string solutio
in the Kerr-Newman spacetime can be obtained by sepa
tion of variables~Ref. @6#, see also Sec. IV! and it depends
on three parameters~two of which are nontrivial!.

IV. UNIQUENESS THEOREM

We prove now that the only stationary timelike minima
two-surfaces that cross the static limit surfaceSst and are
regular in its vicinity are the principal Killing surfaces.

Consider a stationary timelike surfaceS described by the
line element~3.1!. By using the completeness relation~3.3!
and the metric~3.1!, we obtain
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V2[VRA
AVR

B
B5zmzm ,

zm[
2

~j• l !
l g¹gjm1

F

~j• l !2
l g¹gl

m. ~4.1!

In other wordsS is minimal if and only ifzm is null so that
V250 ~clearly, if S is a principal Killing surface thenzm

} l6
m and this condition is satisfied!. In general, we observe

that l •z vanishes aslm is null and asjm;n is antisymmetric.
Thus, if zm is null then it must be proportional withlm. The
condition thatV250 in the line element~3.1! then becomes

2~j• l !l r¹rjm1Fl r¹rl
m1~j• l !l r

d

dxr S F

j• l D lm50.

~4.2!

It is easily verifed that Eq.~4.2! is invariant under repara-
metrizations oflm, i.e., if lm satisfies Eq.~4.2! then so does
g(x) lm. Thus, without loss of generality we may normaliz
lm so thatl •j521. Then, Eq.~4.2! becomes:

22l r¹rjm1Fl r¹rl
m1 l r

dF

dxr l
m50. ~4.3!

Sincel r¹rl
m is regular onS, this equation at the static limit

surface (F50) reduces to:

S jm;r2
1

2

dF

dxr lmD l r50, ~4.4!

that is, l r is a real eigenvector ofjm;r . From Eq. ~2.10!
follows that the only real eigenvector ofjm;r must be either
l1 or l2 . Thus, we havel} l6 at the static limit surface.

Now, suppose there exists a timelike minimal surfaceS
different fromS6 . At the static limit surfaceS must have
l} l1 ~or l} l2). In the vicinity of the static limit surface,l
can have only small deviations froml1 . From the conditions
l • l50 andl •j521, we then get the following general form
of l in the vicinity of the static limit surface:

l5F11
iasinu

A2r
~B2B̄!G l11B̄m1Bm̄1O~B2!, ~4.5!

up to first order in (B,B̄). We then insert this expression into
Eq. ~4.2!, contract bym̄m , and keep only terms linear in
(B,B̄):

22m̄ml
r¹rjm5

22ia~12F !cosu

r2
B̄1O~B2!, ~4.6!

m̄ml
r
dF

dxr l
m5 l1

r
dF

dxr B̄1O~B2!52F8B̄1O~B2!,

~4.7!

m̄mFl
r¹rl

m

5Fl1
r
dB̄

dxr 22Fl1
mmrm̄~r;m!B̄1Fm̄rm̄ml1;r

m B1O~B2!

52F
dB̄

dr
2

~r12iacosu!F

r2
B̄1O~B2!, ~4.8!

where the last equality was obtained by direct calculati
using Eqs.~2.8! and ~2.11!. Thus, altogether:
e

on

F
dB̄

dr
52B̄FdFdr 1

2iacosu

r2
1
F

r G1O~B2!. ~4.9!

It is convenient to rewrite this equation in the form

dB̄

dr*
52VB̄, V[

dF

dr
1
2iacosu

r2
1
F

r
, ~4.10!

and we have introduced the tortoise-coordinater * defined by

dr

dr*
5F~r !. ~4.11!

Near the static limit surface the complex frequencyV is
given by:

V5
2~r st2M1 iacosu!

r st
21a2cos2u

1O~r2r st![Vst1O~r2r st!.

~4.12!

The solution of equation~4.10! near the static limit surface is
then given by:

B̄5ce2Vstr* , c5const. ~4.13!

Notice thatRe(Vst).0, thusB̄ is oscillating with infinitely
growing amplitude near the static limit surface. A solutio
regular near the static limit surface (r *→2`) can, there-
fore, only be obtained forc50, which implies that
B5B̄50, thus we have shown thatS is minimal if and only
if l} l6 . This proves the uniqueness theorem: The only s
tionary timelike minimal two-surfaces that cross the stat
limit surfaceSst and are regular in its vicinity are the princi-
pal Killing surfaces.

We now discuss the physical meaning of this result. F
that purpose it is convenient to introduce the ingoing (1)
and outgoing (2) Eddington-Finkelstein coordinates
(u6 ,w6):

du65dt6D21~r 21a2!dr, dw65df6D21a dr,
~4.14!

and to rewrite the Boyer-Lindquist metric~2.1! as

ds252
D

r2
@du62asin2u dw6#21

sin2u

r2
@~r 21a2!dw6

2adu6#21r2du262dr@du62asin2u dw6#.

~4.15!

The electromagnetic field tensor~2.2! is

F5
Q~r 22a2cos2u!

r4
dr`@du62asin2udw6#

1
2arQcosusinu

r4
du`@~r 21a2!dw62adu6#.

~4.16!
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We have shown that any stationary minimal two-surfa
that crosses the static limit must havex,1

m5 l6
m ~up to a con-

stant factor!. Using the explcit form ofl6 in Boyer-Lindquist
coordinates~2.8!, we can choose the affine parameter alo
g6 to coincide withr such thatx857 l6 , where the prime
denotes derivative with respect tor . We can then read off
u8 andf8 for these surfacesS6 :

u850, f86a/D50. ~4.17!

In the Eddington-Finkelstein coordinates the induced met
on S6 is then

dS252Fdu6
2 62dr du6 , F512

2Mr2Q2

r2
.

~4.18!

The induced electromagnetic field tensor is

F5
Q

r4
~r 22a2cos2u!dr`du6 , ~4.19!

that is, the induced electric field is

Er5
Q

r4
~r 22a2cos2u!. ~4.20!

Equations~4.17! imply that a principal Killing string is
located at the cone surfaceu5const. These so-called con
strings are thus the only stationary world sheets that c
cross the static limit surface and are timelike and regular
its vicinity. It was shown, on the other hand, that the gene
stationary string solution in the Kerr-Newman spacetime c
be obtained by separation of variables@6#:

SHrr

dr

dl D 25a2b2

D2 2
q2

D
11,

SHuu

du

dl D 25q22
b2

sin2u
2a2sin2u, ~4.21!

SHff

df

dl D 25b2,

whereb andq are arbitrary constants, while

Hrr5
D2a2sin2u

D
, Huu5D2a2sin2u, Hff5Dsin2u.

~4.22!

In this general three-parameter family of solutions, para
etrized by b,q and some initial anglef0, the stationary
strings crossing the static limit surface are determined
Eqs.~4.17!, that is

w65const, q252ab, sin2u5const5b/a,
~4.23!

i.e., a two-parameter family of solutions~notice, however,
that due to the axial symmetry only one of these paramet
b is nontrivial!. Physically, it means that a stationary cosm
string can only enter the ergosphere in very special wa
corresponding to the angles~4.23!.
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V. GEOMETRY OF 2D STRING HOLES

The metric~4.18! for S1 describes a black hole, while for
S2 it describes a white hole. Fora50, S6 are geodesic
surfaces in the 4D spacetime and they describe two branch
of a geodesically complete 2D manifold. However, it should
be stressed that for the generic Kerr-Newman geometry (a
Þ0), only one of two null basic lines of the principal Killing
surface, namely, the rayg6 with tangent vectorl6, is geo-
desic in the four-dimensional embedding space. The othe
basic null ray is geodesic inS6 but not in the embedding
space. This implies that, in general~whenaÞ0), the princi-
pal Killing surface is not geodesic. Furthermore, it can be
shown thatS6 considered as a 2D manifold is geodesically
incomplete with respect to its null geodesicg8.

As a consequence ofS6 not being geodesic~when a
Þ0), it is possible, as we shall now demonstrate, to sen
causal signals from the inside of the 2D black hole to the
outside of the 2D black hole by exploiting the two extra
dimensions of the 4D spacetime.

It is evident that there exist causal lines leaving the ergo
sphere and entering the black hole exterior. It means th
‘‘interior’’ and ‘‘exterior’’ of a 2D black hole can be con-
nected by 4D causal lines. We now show that~at least for the
points lying close to the static limit surface!, the causal line
can be chosen as a null geodesic. Consider for simplicity th
stationary string corresponding to (u5p/2, w150) and
crossing the static limit surface in the equatorial plane of
Kerr black hole. We will demonstrate that there exists an
outgoing null geodesic in the 4D spacetime connecting th
point (r ,w1)5(2M2e,0) of the cosmic string inside the
ergosphere with the point (r ,w1)5(2M1e,0) of the cosmic
string outside the ergosphere, for smalle. An outgoing null
geodesic, corresponding to positive energy at infinityE and
angular momentum at infinityLz in the equatorial plane of
the Kerr black hole background, is determined by@16#

r 2
dr

dl
5P, ~5.1!

r 2
du1

dl
52aU1

r 21a2

D
@P1Q#, ~5.2!

r 2
dw1

dl
52U1

a

D
@P1Q#, ~5.3!

where

U[aE2Lz , Q[Er21aU, P2[Q22DU 2, ~5.4!

and we consider the case wheredr/dl.0. Inside the ergo-
sphere the 4D geodesic must follow the rotation of the blac
hole because of the dragging effect, that is,dw1 /dl.0 ~for
a.0). However, after leaving the ergosphere the geodes
can reach a turning point inw1 and then return
(dw1 /dl,0) towards the cosmic string outside the static
limit surface. To be more precise: provided2Lz.aE, there
will be a turning point inw1 outside the static limit surface
at r5r 0:
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r 05
2M ~aE2Lz!

2Lz2aE
.2M . ~5.5!

Obviously the turning point inw1 can be put at any value of
r outside the static limit surface. If we chooseE andLz such
that:

r 052M1e2
M

2a2
e2, ~5.6!

then, after reaching the turning point inw1 , the geodesic
will continue in the direction opposite to the rotation of th
4D black hole with constantr52M1e ~to first order ine)
and eventually reach the point (r ,w1)5(2M1e,0) of the
cosmic string outside the ergosphere.

We close this section with the following remarks.
Notice that the~outer! horizon of the 2D black hole coin-

cides with the static limit of the 4D rotating black hole. Th
2D surface gravity, which is proportional to the 2D temper
ture, is given by

k~2!5
1

2

dF

dr U
r5r st

5
AM22Q22a2cos2u

2M22Q212MAM22Q22a2cos2u
.

~5.7!

The surface gravity of the 4D Kerr-Newman black hole is

k~4!5
AM22Q22a2

2M22Q212MAM22Q22a2
, ~5.8!

and then it can be easily shown that

k~2!>k~4!. ~5.9!

That is to say, the 2D temperature is higher than the
temperature~except at the poles where they coincide! and it
is always positive. Even if the 4D black hole is extreme, th
2D temperature is nonzero.

As we show in Appendix A, the solutions of the form
~4.18! can also be obtained in 2D dilaton gravity:

S5
1

2pE dt dxA2ge22f@R12~¹f!21V~f!#,

~5.10!

with the dilaton potential

V~f!5F 2r 2 ~rF ! ,r G
ur5e2f/l

, ~5.11!

if the dilaton field has the form

f52 ln~lr !, l5const. ~5.12!

It should be stressed that this observation does not mean
we can use the dilaton-gravity equations in order to descr
the dynamics of 2D string holes, or to determine the ba
reaction of the string excitations on the geometry of strin
holes.
e

e
a-

4D

e
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ck
g

VI. STRING PERTURBATION PROPAGATION

A general transverse perturbation about a backgroun
Nambu-Goto string world sheet can be written as~summing
over theR indices!

dxm5FRnR
m , ~6.1!

where the normal vectors are defined by Eqs.~3.2!. The
equations of motion for the perturbations,FR follow from
the following effective action for stringons@8,9#:

Seff5E d2zA2GFR$GAB~dR
T¹A1mR

T
A!~dTS¹B1mTSB!

1VRS%FS, ~6.2!

whereVRS5V(RS) are scalar potentials andmRSA5m [RS]A are
vector potentials which coincide with the normal fundamen
tal form

mRSA5gmnnR
mx,A

r ¹rnS
n . ~6.3!

The scalar potentials are defined as

VRS[VRABVS
AB2GABx,A

m x,B
n RmrsnnR

rnS
s . ~6.4!

The equations describing the propagation of perturbations o
the world-sheet background are then found to be

$dRSh12mRS
A]A1¹AmRS

A2mR
TAmSTA1VRS%FS50.

~6.5!

We note that the perturbations~6.1! and the effective ac-
tion ~6.2! are invariant under rotations of the normal vectors
i.e., invariant under the transformationsnR°ñR
5LR

SnS ,F
R→F̃R5LR

SF
S, where

@L#R
S5S cosC 2sinC

sinC cosC D , ~6.6!

for some arbitrary real functionC. Thus, we have a
‘‘gauge’’ freedom in our choice of normal vectors.

Consider the scalar potential VRS[VRABVS
AB

2GABx,A
m x,B

n RmrsnnR
rnS

s . It is easily verified that the first
term VRABVS

AB vanishes for the principal Killing surface
S6 independently of any choice of normal vectorsnR

r . It is
also possible to show that the second term on the right-han
side is invariant under rotations of the vectorsnR , i.e., gauge
invariant, in the Kerr-Newman spacetime~see Appendix B!.
The symmetry and gauge invariance ofVRSshow that it must
be proportional todRS, i.e., VRS5VdRS. Now, using the
completeness relation~3.3! we find

V5 1
2dRSVRS

52 1
2 G

ABx,A
m x,B

n RmrsndRSnR
rnS

s

5 1
2G

ABx,A
m x,B

n ~Rmn1GCDx,C
r x,D

s Rmrsn!.
~6.7!

Making use of a representation of the Ricci tensorRmn in
terms of the Kinnersley null tetrad, namely,
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Rmn5
2Q2

r4
@m~mm̄n)1~D/2r2!l1~ml2n)] , ~6.8!

we are able to calculate the first term of Eq.~6.7! as

GABx,A
m x,B

n Rmn562~7Rmnl6
m jn!5

2Q2

r4
l6
m jm52

2Q2

r4
.

~6.9!

To calculate the second term of Eq.~6.7! we use the Gauss
Codazzi equations@17# for a two-surfaceS embedded in a
four-dimensional spacetime: namely,

RABCD
~2! 5~VRACVBD

R2VRADVBC
R!1Rmrsnx,A

m x,B
r x,C

s x,D
n .

~6.10!

Contracting Eq.~6.10! over A andC and then overB and
D, one finds that the scalar curvature onS is just the sec-
tional curvature in the tangent plane ofS: i.e.,

R~2!5GACGBDRmrsnx,A
m x,B

r x,C
s x,D

n ~6.11!

which is identically the second term in Eq.~6.7!, except for
the sign. Finally,

V52
1

2 SR~2!12
Q2

r4 D
52SQ2~r 22a2cos2u!2Mr ~r 223a2cos2u!

r6 D ,
~6.12!

where we have used the fact thatR(2)52F9.
It remains to determine the normal fundamental fo

mRSA. Now, as mRSA5m [RS]A , we can write
mRSA5mAeRS. It is then straightforward to verify that unde
the gauge transformation~6.6!, mRSA transforms as

mRSA°m̃RSA5mRSA1eRSx,A
m ]mC, ~6.13!

or, in light of the previous definition,

mA°m̃A5mA1x,A
m ]mC. ~6.14!

We definenR overS6 by parallel transport along a prin
cipal null trajectory and then by Lie transport along trajec
ries of the Killing vector, effectively fixing a gauge. That i
on S6 :

l6
m nR

n
;m50, j6

m nR
n
;m5nR

mjn;m . ~6.15!

With this covariantly constant definition ofnR , using Eq.
~B1! of Appendix B, we find that

mRS15nR
ml6

n nSm;n50, ~6.16!

mRS05nR
mnS

njm;n5 1
2 eRS~n2

mn3
n2n3

mn2
n!jm;n

5 i eRSM
mM̄ njm;n .

In order to take advantage of the decomposition ofjm;n in
terms of the Kinnersley null tetrad~2.10!, we note thatM6

andm are related by the null rotation
-

rm

r

-
to-
s,

M65m1El6 , ~6.17!

whereE5j•m. Thus,

mRS052meRS, ~6.18!

wherem52a(12F)cosu/r2. If we let l 6A5x,A
m l6m then

we can write the normal fundamental form in this gauge a

mRSA5ml 6AeRS, ~6.19!

so that heremA5ml 6A .
However, a more convenient choice of gauge hasmRSA

}eRShA wherehA5x,A
m jm is a Killing vector onS6 , see

Ref. @7#. This corresponds to a choice of the functionC on
S such thathA}m̃A5ml 6A1x,A

m ]mC. If we let C5C(r ),
then it follows that, onS,

x,A
m ]mC57C8~Fl 6A2hA!. ~6.20!

Clearly, if C856m/F, then m̃A5(m/F)hA . With this
choice of gauge we find that the equations of motion redu
to

~h1V1m2/F !F̃R12
m

F
eRSh

A]AF̃S50, ~6.21!

where

m52
a~12F !cosu

r2
, ~6.22!

V52SQ2~r 22a2cos2u!2Mr ~r 223a2cos2u!

r6 D .
~6.23!

Equation~6.21! can also be written in the form:

@GAB~dRT¹A1eRTAA!~dTS¹B1eTSAB!1dRSV#F̃S50,
~6.24!

whereAA[mhA /F5(2m,6m/F) and we used the identity
GAB¹A(mhB /F)50. Here,AA plays the role of a vector
potential whileV is the scalar potential. Notice that the time
component ofAA as well asV are finite everywhere, while
the space component ofAA diverges at the static limit sur-
face. But this divergence can be removed by a simple worl
sheet coordinate transformation:

dt̃5du67F21~r !dr, dr̃5dr. ~6.25!

The perturbation equation still takes the form~6.24! but now
the potentials are given by

ÃA5~2m,0!, Ṽ5V, ~6.26!

that is, the potentials (ÃA ,V) are finite everywhere. There is,
however, a divergence at the static limit surface in the tim
component ofÃA, but such situations are well known from
ordinary electromagnetism; this divergence does not destr
the regularity of the solution.
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VII. STRING-HOLE PHYSICS

In conclusion, we discuss some problems connected w
the proposed string-hole model of two-dimensional bla
and white holes. The basic observation made in this pape
that the interaction of a cosmic string with a 4D black hole
which the string is trapped by the 4D black hole opens ne
channels for the interaction of the black hole with the su
rounding matter. The corresponding new degrees of freed
are related to excitations of the cosmic string~stringons!.
These degrees of freedom can be identified with physi
fields propagating in the geometry of the 2D string hol
There are two types of string holes corresponding to tw
types of the principal Killing surfacesS1 andS2 . The first
of them has the geometry of a 2D black hole while the se
ond has the geometry of a 2-D white hole. The physic
properties of ‘‘black’’ and ‘‘white’’ string holes are differ-
ent. For a regular initial state a ‘‘black’’ string hole at lat
time is a source of a steady flux of thermal ‘‘stringons.’’ Th
effect is an analogue of the Hawking radiation@18#. In the
simplest case when a stationary cosmic string is trapped b
Schwarzschild black hole, so that the string hole has
Schwarzschild metric, the Hawking radiation of stringon
was investigated in Ref.@19#. For such string holes their
event horizon coincides with the event horizon of the 4
black hole, and the temperature of the ‘‘stringon’’ radiatio
coincides with the Hawking temperature of the 4D blac
hole. For this reason the thermal excitations of the cosm
string will be in the state of thermal equilibrium with the
thermal radiation of the 4D black hole.

The situation is different in the general case when a s
tionary string is trapped by a rotating charged black hole. F
the Kerr-Newman black hole the static limit surface is lo
cated outside the event horizon. The event horizon of the
string hole does not coincide with the Kerr-Newman blac
hole horizon, except for the case where the cosmic str
goes along the symmetry axis. For this reason the surf
gravity, and hence the temperature of the 2D black hole d
fer from the corresponding quantities calculated for the Ke
Newman black hole. The surface gravity of the 2D blac
hole is

k~2!5
1

2

dF

dr U
r5r st

5
AM22Q22a2cos2u

2M22Q212MAM22Q22a2cos2u
,

~7.1!

and it is always larger than the surface gravity of the fou
dimensional Kerr-Newman black hole, Eq.~5.7!. The reason
why the temperature of a 2D black hole differs from th
temperature of the four-dimensional Kerr-Newman bla
hole can be qualitatively explained if we note that for quan
located on the string surface~stringons! the angular momen-
tum and energy are related.

In the general case (aÞ0 ), a principal Killing surface in
the Kerr-Newman spacetime is not geodesic. This prope
might have some interesting physical applications. Consi
a black string hole and choose a pointp inside its event
horizon but outside the event horizonr5r1 of the four-
dimensional Kerr-Newman black hole. Consider a timelik
line g0 representing a static observer located outside the
rizon of the 2D black hole atr5r 0. There evidently exists an
ith
ck
r is
in
w
r-
om

cal
e.
o

c-
al

e
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y a
2D
s

D
n
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ic

ta-
or
-
2D
k
ing
ace
if-
rr-
k

r-

e
ck
ta

rty
der

e
ho-

ingoing principal null ray crossingg0 and passing through
p. It was shown that there exists a future-directed 4D n
geodesic which begins atp and crossesg0. In other words, a
causal signal fromp propagating in the 4D embeddin
spacetime can connect points of the 2D string hole inter
with its exterior. For this reason stringons propagating ins
the 2D string hole can interact via extra dimensions with t
stringons in the 2D string hole exterior. Such an interacti
from the 2D point of view is acausal.~Certainly, this inter-
action becomes impossible in case when the inner stringo
located so deep inside the 2D hole that it is under the Ke
Newman 4D horizon.!

This interaction of Hawking stringons with their quantu
correlated partners, created inside the string hole horiz
might change the spectrum of the Hawking radiation, as w
as its higher correlation functions. This effect might have
interesting application for study of the information los
puzzle.

In conclusion, we have shown that in the case of inter
tion of a cosmic string with a black hole a 2D string hole c
be formed. It opens an interesting possibility of testing so
of the predictions of 2D gravity. We do not know at th
moment whether it is also possible to ‘‘destroy’’ a 2D strin
hole by applying physical forces which change its moti
and allow the cosmic string to be extracted back from t
ergosphere. We hope to return to this and other quest
connected with the unusual physics of string holes el
where.
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APPENDIX A: STRING BLACK HOLES
AND DILATON GRAVITY

In this appendix we show that the 2D string holes can a
be obtained as solutions of 2D dilaton gravity with a suitab
chosen dilaton potential. To be more specific, we consi
the action of 2D dilaton gravity

S5
1

2pE dt dxA2ge22f@R12~¹f!21V~f!#, ~A1!

where the dilaton potentialV(f) will be specified later. In
two dimensions we can choose the conformal gauge

gmn5e2r3diag.~21, 1!, r5r~ t,x!, ~A2!

so that

R52e22r~r ,tt2r ,xx!. ~A3!

The action~A1! then takes the form

S5
1

pE dt dxe22f@r ,tt2r ,xx1f ,x
2 2f ,t

21 1
2e

2rV~f!#.

~A4!

The corresponding field equations read
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r ,xx2r ,tt1f ,tt2f ,xx1f ,x
2 2f ,t

21
1

4
e2r~V822V!50,

f ,xx2f ,tt12~f ,t
22f ,x

2 !1
1

2
e2rV50, ~A5!

whereV8[dV/df. Now, consider the special solutions

r5r~x!, f5f~x!, ~A6!

and introduce the coordinater :

dr

F~r !
5dx, e2r5F. ~A7!

Then the metric~A2! leads to

dS252F~r !dt21F21~r !dr2 ~A8!

which is precisely the form of our 2D string holes~4.18!, in
the coordinates defined by

dt̃5du67F21~r !dr, dr̃5dr. ~A9!

It still needs to be shown that Eqs.~A6! and~A7! are actually
solutions to Eqs.~A5!. The equations reduce to

f ,rr2f ,r
2 1

F ,r

F
f ,r2

1

4F
~V822V!5

F ,rr

2F
,

f ,rr1
F ,r

F
f ,r22f ,r

2 1
1

2F
V50. ~A10!

It can now be easily verified that both equations are solv
by a ‘‘logaritmic dilaton’’ provided the dilaton potentia
takes the form (b5a sin2u)

V~f!5F 2r 2 ~rF ! ,r G
ur5e2f/l

, ~A11!

f52 ln~lr !, l5const, ~A12!

for an arbitrary functionF(r ). For our 2D string holes,
F(r ) is given by Eq.~2.3!. The dilaton potential~A11! then
takes the explicit form

V~f!52l2e2fF12
4Me2f/l2Q2

e22f/l21a22ab

1
2e2f~2Me22f/l22Q2e2f/l!

l~e22f/l21a22ab!2 G . ~A13!

This result holds for the general cone strings. A somew
simpler expression is obtained for strings in the equato
plane:

V~f!52l2e2f@12Q2l2e2f#, u5p/2. ~A14!

APPENDIX B: GAUGE INVARIANCE
OF THE SCALAR POTENTIAL

In this appendix we show thatVRS, as defined in Eq.
~6.4!, is gauge invariant, i.e., invariant under the transform
ed
l

hat
rial

a-

tion ~6.6! in the Kerr-Newman spacetime. Let
M5(n21 in3)/A2 where$n2 ,n3% span the two-dimensional
vector space normal to the cone string world sheet. Then
under the transformation specified by Eq.~6.6!
Mm°M̃m5eiCMm. We note that the combinationMmM̄ n is
invariant under this transformation.

We will make use of the equalities

MmM̄ n5
1

2
~n2

mn2
n1n3

mn3
n!2

i

2
~n2

mn3
n2n3

mn2
n!, ~B1!

MmM n5
1

2
~n2

mn2
n2n3

mn3
n!1

i

2
~n2

mn3
n1n3

mn2
n!. ~B2!

Now consider

GABx,A
m x,B

n RmrsnnR
rnS

s5~gmn2dTQnT
mnQ

n !RmrsnnR
rnS

s

52RrsnR
rnS

s2dTQRmrsnnT
mnQ

n nR
rnS

s .

~B3!

The second term on the right-hand side can be written as

dTQRmrsnnT
mnQ

n nR
rnS

s5~n2
mn2

n1n3
mn3

n!RmrsnnR
rnS

s

5dRSRmrsnn2
mn2

nn3
rn3

s

52dRSRmrsnM
mM nM̄ rM̄s,

~B4!

making use of Eq.~B1! and the symmetries of the Riemann
tensor only. This form is explicitly gauge invariant in any
spacetime geometry.

It remains to verify that the termRrsnR
rnS

s is also gauge
invariant. We note thatM and the complex null vectorm of
the Kinnersley tetrad are related by the null rotation
M5m1El. We may then use the fact thatm and l6 are
eigenvectors ofRrs @see Eq.~6.8!# to show

RrsM
rMs5Rrs~mrms12Emrl6

s 1E2l6
r l6

s !50.
~B5!

Notice that this holds in any gauge as
M rMs°M̃ rM̃s5e2iCM rMs. Thus, equating real and
imaginary parts ofRrsM

rMs to zero one finds

Rrsn2
rn2

s5Rrsn3
rn3

s , Rrsn2
rn3

s52Rrsn3
rn2

s50.
~B6!

Thus, under a gauge transformation, we find that

Rrsñ2
rñ3

s5Rrs~cosCn2
r2sinCn3

r!~sinCn2
s1cosCn3

s!50.
~B7!

It then follows that

Rrsñ2
rñ2

s5Rrs~cosCn2
r2sinCn3

r!~cosCn2
s2sinCn3

s!

5Rrsn2
rn2

s . ~B8!

Similarly,Rrsn3
rn3

s remains unchanged under rotation. Thus,
we conclude thatVRS is gauge invariant asVRABVS

AB van-
ishes independently of gauge in the Kerr-Newman space
time.
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