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How to create a two-dimensional black hole
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The interaction of a cosmic string with a four-dimensional stationary black hole is considered. If a part of an
infinitely long string passes close to a black hole it can be captured. The final stationary configurations of such
captured strings are investigated. It is shown that the minimal 2D suladescribing a captured stationary
string coincides with grincipal Killing surface i.e., a surface formed by Killing trajectories passing through
a principal null ray of the Kerr-Newman geometry. A uniqueness theorem is proved, namely, it is shown that
the principal Killing surfaces are the only stationary solutions of the string equations which enter the ergo-
sphere and remain timelike and regular at the static limit surface. Geometrical properties of principal Killing
surfaces are investigated and it is shown that the internal geomelycofncides with the geometry of a 2D
black or white hole(string hole. The equations for propagation of string perturbations are shown to be
identical with the equations for a coupled pair of scalar fields “living” in the spacetime of a 2D string hole.
Some interesting features of the physics of 2D string holes are described. In particular, it is shown that the
existence of the extra dimensions of the surrounding spacetime makes interaction possible between the interior
and exterior of a string black hole; from the point of view of the 2D geometry this interaction is acausal.
Possible application of this result to the information loss puzzle is briefly discUs&@556-282(196)00920-4

PACS numbdss): 04.70.Dy, 11.27A-d

I. INTRODUCTION ing black hole can essentially change its angular momentum.
In what follows we do not discuss these interesting effects.
Black hole solutions in a spacetime of lower than fourWe assume that* <1, so that a cosmic string can be con-
dimensions have been discussed for a long tisee, e.g., sidered as a test body and its gravitational field and action on
Ref.[1] and references thergirSuch solutions are of inter- the black hole can be neglected. Certainly, this approxima-
est mainly because they provide toy models which allow oneion is valid for time intervals less thah.
to investigate unsolved problems in four-dimensiof¥D) In this paper we study stationary final states of a captured
black hole physics. The interest in 2D black holes greatlyinfinite test string, with end points fixed at infinity. We show
increased after Wittef2] and Mandal, Sengupta, and Wadia that there is only a very special family of solutions describ-
[3] showed that 2D black hole solutions naturally arise ining a stationary test string which enters the ergosphere,
superstring-motivated 2D dilaton gravity. Many aspects ofnamely, the strings lying on cones of a given angle
2D black hole physics and its relation to 4D gravity were §=const. We demonstrate that the induced 2D geometry of a
discussed in a number of recent publicati¢see, e.g., Ref. stationary string crossing the static limit surface and entering
[4]). The main purpose of this paper is to show that therehe ergosphere of a rotating black hole has the metric of a 2D
might exist physical objects which behave as 2D black holeshlack or white hole. The horizon of such a 2D string hole
Namely, we consider a cosmic string interacting with a usuatoincides with the intersection of the string world sheet with
4D stationary black hole. If an infinitely long string passesthe static limit surface. We shall also demonstrate that the 2D
close enough to the black hole it can be captlfgd]. Fur-  string hole geometry can be tested by studying the propaga-
ther evolution of the systenfa black hole and a trapped tion of string perturbations. The perturbations propagating
cosmic string can be quite complicated. One can expect thatlong thecone strings(6#=cons} are shown to obey the
the action of the string on the black hole accelerates theelativistic equations for a coupled system of two scalar
latter, so that after characteristic time of order offields. These results generalize the results of R&fwhere
T=Ry/(cu™) the black hole will have the velocity compa- the corresponding equations were obtained and investigated
rable with the velocity of the string.Ry=2G M/c? is the  for strings lying in the equatorial plane. The quantum radia-
gravitational radius of a black hole, and* =Gu/c? is the  tion of string excitations(stringong and thermodynamical
dimensionless tension of the strin@ne can also expect that properties of string holes are discussed. The remarkable
during the same tim& the action of the string on the rotat- property of 2D string holes as physical objects is that besides
guanta(stringons living and propagating only on the 2D
world sheet there exist other field quafgaavitons, photons,

“Electronic address: frolov@phys.ualberta.ca etc), living and propagating in the surrounding physical 4D
"Electronic address: hendy@phys.ualberta.ca spacetime. Such quanta can enter the ergosphere as well as
*Electronic address: alarsen@phys.ualberta.ca leave it and return back to the exterior. For this reason the
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presence of extra physical dimensions makes dynamical in- The Kerr-Newman metri¢2.1) is of typeD and possesses

teraction possible between the interior and exterior of a 20wo principal null directiond” and|* Each of these null

string black hole, which appears acausal from the perspectivgectors obeys the relation

of the internal 2D geometry. The possible application of this

effect to the information loss puzzle is briefly discussed. C(Jg)y&lﬂl °=Cl,l,, (2.5
The paper is organized as follows. In Sec. Il we collect

results concerning the Kerr-Newman geometry which arevhere

necessary for the following sections. In Sec. 1l we introduce +) . . L

the notion of aprincipal Killing surfaceand we prove that a Copys=CapystiChsys:  Chpye™2€apurCh’ys-

principal Killing surface is a minimal two-surface embedded (2.9

in the four-dimensional spacetime. In Sec. IV we prove the . . .

uniqueness theorem, i.e., the statement that the principglere.’cﬂﬁws is the Weyl tensoreaﬁw IS the totally antisym-

Killing surfaces are the only stationary minimal two-surfacesTelric tensor, and.. are nonvanishing complex numbers.

that are timelike and regular in the vicinity of the static limit 1 ¢ Goldberg-Sachs theoref3] implies that the integral

surface of the Kerr-Newman black hole. In Sec. IV we also/"€SXx*()) of principal null directions

relate the principal Killing surfaces with the world sheets of dx
a particular class of stationary cosmic strings, the cone =F|# 2.7
strings. In Sec. V we show that the internal geometry of dh- -

these world sheets is that of a two-dimensional black or . ) )

white hole and we discuss the geometry of such string hole@'® Null geodesics {1, =0, 1#1;,=0) and their congruence

In Section 6 we consider the propagation of perturbationdS Shear free. We denote by, andy_ ingoing and outgoing
along a stationary string using a covariant approach deveprincipal null geodes_lcs, respectively, and choose the_param—
oped in Ref[8] (see also Refd9—11]), and we show that eter.)\.i to be an a_lffln_e parameter along the geodesic. The
the corresponding equations coincide with a system ofXplicit form ofl. is given by

coupled equations for a pair of scalar fields on the two-

dimgnsiongl string hole ba?:kground. Finally, in Sec. VII, we 1% =((r?+a%/A,+1,0a/A),

discuss the physics of string holes and give our conclusions. (2.9
phy g g . ,=(—1,7 p?/A,0sir0).

Il. KERR-NEWMAN GEOMETRY The normalization has been chosen so thaare future di-

: . . ._rected and such that
In Boyer-Lindquist coordinates the Kerr-Newman metric

is given by[lZ] |’i| = _ZPZ/A. (29)
A sin“é The Killing equation implies that the tensgy,., is anti-
_ ; 2 2, .2 2 v
ds’=— ;z[dt—asmzeddﬂ + P2 [(r*+a%)d¢—adt] symmetric and its eigenvectors with nonvanishing eigenval-
ues are null. In the Kerr-Newman geometfy., is of the

2
form

4 %dr2+p2d02, 2.1)
£, = (AF'12p7)| ), +[2ia(1~F)coss/ p?Imp,m,;

where A=r?—2Mr+Q?+a? and p?=r?+a’cog6. The .19
corresponding electromagnetic field tensor is given by where we have made use of the complex null vectorsnd

m, that complete the Kinnersley null tetrad. In the normal-

Q(r?—a%cog6) ization wherem*m, =1, they take the form

F= Tdr/\[o|t—asinz(9d¢>]

1
2Qar m*=——(iasing,0,1,/sinh),
+ (34 cosfsingd0/\[(r’+a%)d¢—adt]. (2.2 \/Ep( )

The spacetime (2.1) possesses a Killing vector mﬂ:i(
&#=(1,0,0,0) which is timelike at infinity. The norm of the \/ZD
Killing vector is

—iasing,0,p%,i(a%+r?)sing). (2.11)

The remarkable property of the Kerr-Newman geometry is
2Mr — 02 that the principal null vectors. are eigenvectors of,., .
g2 Q '
F=—§2=1— P (2.3 Namely, one has

A surfaceS;, where& becomes null E=0), is known as
the static limit surface. It is defined by 1 1 Mr2—rQ?—MaZcos 6
K:iili(gz);vzzl:,r: 7 .

p
r=rq=M+M?—Q?—a’cos¥ . (2.9 (2.12
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These equation§2.10 and (2.12], will play an important  which does not coincide witl§ on the static limit surface

role later in our analysis. Sii. In this case the metri¢3.1) is regular atS;;. Now,
Notice also that the electromagnetic field tenBdras the introduce two vectoraf (R=2,3) normal to the 2D surface
form: S
2_ /2 v v
F =— A m | g,anIRLnS: 6RS’ g;LVX:uAnR:o' (32)
% p2 p4 +u' =]
_ which satisfy the completeness relation
4iQarcoy — 21
Tt (213 g"'=GPBX X'+ SRTNS. (3.3
so that These two normal vectors span the vector space normal to
_ the surface at a given point, and they are uniquely defined up
Eor— IQ(r —a C°52‘9)| 214 local rotations in ther(,,n3) plane.
pyE p? pE ' The second fundamental form is defined as
— M P v
lIl. PRINCIPAL KILLING SURFACES Qrae=0uMRXAV X g - 3.4

Our aim is to consider stationary configurations of cosmicThe condition that a surfacg is minimal can be written in
strings in the gravitational field of a charged rotating blackterms of the trace of the second fundamental form as
hole. In particular, we are interested in the situation when a
string is trapped by a black hole; that is when the string QR ,=G BOgAs=0. (3.5
crosses the black holes static limit surface and enters the
ergosphere. We neglect the thickness of the string and itg/e find that in the metri¢3.1) the second fundamental form
own gravitational field. In this approximation the string evo-is given by
lution is described by a timelike 2D world shgé&r general
properties of cosmic strings, see, for instance, Hé#%,15). QQA: gWGABn‘FQXVAV X'B
The dynamical equations obtained by variation of the ' '
Nambu-Goto action for a string imply that this world sheet is _ s Sy F V| (3.6
a minimal surface. So, the mathematical problem we are try- ~ 9wk (&1 (g (&-1)2 '
ing to solve is to find stationary timelike minimal surfaces
which intersect the static limit surface of a rotating black Consider a special type of a stationary timelike two-
hole. For this purpose we begin by considering the generaurface in the Kerr-Newman geometry. Namely, a surface for
properties of stationary timelike surfaces. which the null vectod coincides with one of the principal

Let> be a two-dimensional timelike surface embedded innull geodesicd .. of the Kerr-Newman geometry. We call
a stationary spacetime, and febe the corresponding Killing  such surfac& .. aprincipal Killing surfaceandy-. its basic
vector which is timelike at infinity2. is said to bestationary  ray. We shall use indices to distinguish between quantities
if it is everywhere tangent to the Killing vector fiell For  connected with, .. . The fact thatl. are geodesics ensures
any such surfac® there exists two linearly independent null that12V |4 c«1% . In addition, from Eq(2.12, 17V &- el
vector fieldsl, tangent to%. We assume that the integral which, because of the contraction witty, guarantees that
curves ofl form a congruence and cov&r (i.e., each point Qg vanishes for a principal Killing surface, i.e., every

peX lies on exactly one of these integral CQYVGS _ principal Killing surface is minimal. Thus .. are stationary
Thus, we can construct a stationary timelike surfac®  sojutions of the Nambu-Goto equations.
the following way: consider a null ray with tangent vector It should be stressed that the principal Killing surfaces are

field | such thaté-1 is nonvanishing everywhere along  only very special stationary minimal surfaces. A principal
There is precisely one Killing trajectory with tangent vector Kjlling surface is uniquely determined by indicating two co-
& that passes through each pomt y. This set of Killing  ordinates(angles of a point where it crosses the static limit
trajectories passing throughforms a stationary 2D surface surface. Because of the axial symmetry only one of these two
3. We defind overX by Lie propagation along each Killing parameters is nontrivial. A general stationary string solution
trajectory. We cally a basic ray ofx. It is easily verified in the Kerr-Newman spacetime can be obtained by separa-
that! remains null when defined in this manner oer tion of variables(Ref. [6], see also Sec. IVand it depends
We can use the Killing time parametarand the affine  on three parametef$wo of which are nontrivigl
parameten along y as coordinates ol.. In these coordi-
nates/”=(u,\) one hasc/o= £* andx/;=1# and the induced IV. UNIQUENESS THEOREM
metric Gag= gﬁyxfgxfB(A,B, ...=0, 1) is of the form . o o
We prove now that the only stationary timelike minimal
dS=GpdAdB=—Fdu?+2(&-1)dudh. (3.1  two-surfaces that cross the static limit surfa®g and are
regular in its vicinity are the principal Killing surfaces.

In the case of a black hole the Killing vectéibecomes null Consider a stationary timelike surfaBedescribed by the
at the static limit surfaceS;;. In what follows we always line element(3.1). By using the completeness relati¢®3)
choosd to be that of the two possible null vector fields®n  and the metri¢3.1), we obtain
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# 2 17V, &*+ F AN L
Zh= ——

(&) "7 T (ED)?
In other words>, is minimal if and only ifz* is null so that
Q2=0 (clearly, if 3 is a principal Killing surface ther*
«|# and this condition is satisfiedin general, we observe
thatl -z vanishes a$* is null and as{,,., is antisymmetric.
Thus, if z* is null then it must be proportional witht. The
condition that2?=0 in the line element3.1) then becomes

4.1

2(¢-)1PV &+ FIPVPI“+(§-I)IP%(5)I“=O.
(4.2

It is easily verifed that Eq(4.2) is invariant under repara-
metrizations ofl#, i.e., if |* satisfies Eq(4.2) then so does

g(x)1#. Thus, without loss of generality we may normalize

[# so thatl- ¢é&=—1. Then, Eq(4.2) becomes:

dF
— 21V, FIPV 144 1P 51#=0. (4.3

Sincel?V | * is regular onX, this equation at the static limit

surface F=0) reduces to:

LdF g
2dx #)

Epip— (4.4
that is, I” is a real eigenvector of,.,. From Eq.(2.10
follows that the only real eigenvector gf,., must be either
[, orl_. Thus, we havéx|. at the static limit surface.

Now, suppose there exists a timelike minimal surface
different from2, ... At the static limit surface® must have
lecl, (orlecl ). In the vicinity of the static limit surfacd,
can have only small deviations frolm . From the conditions
[-1=0 andl - ¢{&=—1, we then get the following general form
of | in the vicinity of the static limit surface:

(B B)|l,+Bm+Bm+O(B?), (4.5

ias
\/— 2p
up to first order in B, B) We then insert this expression into

Eqg. (4.2), contract bym , and keep only terms linear in
(B,B):

_ —2ia(l1- F)cosﬂ B?
—2m, |V g+= P O(B?), (4.6
_IPdFI“—I dF B+O(B?)=—F'B+0O(B?
Ml e =10 5 +0(B“) +0(B9),
4.7
m,FIPV I~
dB ,
=Flﬂd——2FI m? m B+Fm"mﬂlf+‘pB+O(B)
dB +2|acosﬁF
- (p P e o), 4.8

- B
dr p
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FdE— =rdF dF 2|acose F +O(B? 4G
dr - dl’ ,02 P ( ) ( . )
It is convenient to rewrite this equation in the form
B — dF 2iacos¥ F
=-0B, =—4 —> (4.10

+_
dr* dr p’

and we have introduced the tortoise-coordindtelefined by

(4.11

Near the static limit surface the complex frequerQyis
given by:

2(rSt M +iacosd)
ré+a’coso

O(r—rg)=Q4+0O(r—rg).
(4.12

The solution of equatiof4.10 near the static limit surface is
then given by:
B=ce ", c=const.

(4.13
Notice thatRe({)g) >0, thusB is oscillating with infinitely
growing amplitude near the static limit surface. A solution
regular near the static limit surface*(— —o) can, there-
fore, only be obtained forc=0, which implies that
B=B=0, thus we have shown thatis minimal if and only

if l<l. . This proves the uniqueness theorem: The only sta-
tionary timelike minimal two-surfaces that cross the static
limit surfaceS; and are regular in its vicinity are the princi-
pal Killing surfaces.

We now discuss the physical meaning of this result. For
that purpose it is convenient to introduce the ingoing) (
and outgoing ) Eddington-Finkelstein coordinates
(Us @)t

du.=dtxA " Yr?2+a%dr, de.=d¢+A tadr,

(4.19

and to rewrite the Boyer-Lindquist metri2.1) as

A Sirf 6
ds?=— ;Z[dui—asin26d<pi]2+ —pz—[(r2+ a®)de.

—adu. ]2+ p2de?+2dr[du. —asirféde. .
(4.1
The electromagnetic field tens.2) is

Q(erS?a)d /A[du. —asirféde- ]

2arQcosysing
Q—d¢9/\[(r2+ az)d(p+ —adu.].

where the last equality was obtained by direct calculation

using Eqgs(2.8) and(2.11). Thus, altogether:

(4.16
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We have shown that any stationary minimal two-surface V. GEOMETRY OF 2D STRING HOLES
that crosses the static limit must haxg=1% (up to a con-

stant facto). Using the explcit form of; in Boyer-Lindquist The metric(4.18 for 2., describes a black hole, while for

> _ it describes a white hole. F@a=0, X . are geodesic
%urfaces in the 4D spacetime and they describe two branches
of a geodesically complete 2D manifold. However, it should
be stressed that for the generic Kerr-Newman geometry (
#0), only one of two null basic lines of the principal Killing
0'=0, ¢'*alA=0. (4.17) surface, namely, the ray.. with tangent vectot +, is geo-
desic in the four-dimensional embedding space. The other
In the Eddington-Finkelstein coordinates the induced metridasic null ray is geodesic i . but not in the embedding
on 3. is then space. This implies that, in genefathena+0), the princi-
M1 -2 pal Killing surface is not geodesic. Furthermore, it can be
o 2 _ r— shown that¥ .. considered as a 2D manifold is geodesically
dS’=-Fduix2drdu., F=1 z incomplete with respect to its null geodesit.
(4.18 As a consequence df. not being geodesi¢when a
. o ) #0), it is possible, as we shall now demonstrate, to send
The induced electromagnetic field tensor is causal signals from the inside of the 2D black hole to the
Q outside of the 2D black hole by exploiting the two extra
F=—(r?—a%cog6)dr/\du. , (4.19 dimensions of the 4D spacetime.

P It is evident that there exist causal lines leaving the ergo-
sphere and entering the black hole exterior. It means that
“interior” and “exterior” of a 2D black hole can be con-

Q nected by 4D causal lines. We now show ttatleast for the

E,=—z(r’—a%cog6). (4.20  points lying close to the static limit surfagehe causal line

p can be chosen as a null geodesic. Consider for simplicity the
Equations(4.17) imply that a principal Killing string is ~ Stationary string corresponding ta< /2, ¢.=0) and
located at the cone surfage=const. These so-called cone Crossing the static limit surface in the equatorial plane of a
strings are thus the only stationary world sheets that caffe'T black hole. We will demonstrate that there exists an
cross the static limit surface and are timelike and regular iPutgoing null geodesic in the 4D spacetime connecting the
its vicinity. It was shown, on the other hand, that the generaPoint (r,¢.)=(2M—¢,0) of the cosmic string inside the
stationary string solution in the Kerr-Newman spacetime car¢'gosphere with the point {¢ ) =(2M + €,0) of the cosmic

v. to coincide withr such thatx’==1.., where the prime
denotes derivative with respect to We can then read off
0’ and ¢’ for these surfaces .. :

that is, the induced electric field is

be obtained by separation of variab[€s: string outside the ergosphere, for smallAn outgoing null
geodesic, corresponding to positive energy at infistgnd
dr\?2 a%® ¢ angular momentum at infinityz, in the equatorial plane of
Her dn] T Az T X”L 1, the Kerr black hole background, is determined[&$]
dg\? b? dr
U a2  a2ai 2 _
(Hagd)\) 9~ giFg @ sirfo, (4.21) =P (5.1
dqﬁ)z 2, 42
H,,—| =p? du, re+a
(2 ! 2 =
( dn i all+ ——[P+Q], (5.2
whereb andq are arbitrary constants, while
. do, a
A—a’sird 2 =—-U+—[P+Q], 5.3
He=—F73—" Hyp=A—a%sir?0, H,z4=Asir?o. da A[ Q] ©3
4.22 where
In this general three-parameter family of solutions, param-
etrized byb,q and some initial anglep,, the stationary U=aE-L,, Q=Er?+ald, P’=Q*-AU? (5.4
strings crossing the static limit surface are determined by
Egs.(4.17, that is and we consider the case whete/d\>0. Inside the ergo-

sphere the 4D geodesic must follow the rotation of the black
4.23 hole because of the dragging effect, thatig,, /d\>0 (for _

a>0). However, after leaving the ergosphere the geodesic
i.e., a two-parameter family of solutiorgotice, however, can reach a turning point ing, and then return
that due to the axial symmetry only one of these parameter@¢ .. /dA<0) towards the cosmic string outside the static
b is nontrivial). Physically, it means that a stationary cosmic limit surface. To be more precise: provided.,>aE, there
string can only enter the ergosphere in very special waysyill be a turning point ing, outside the static limit surface
corresponding to the angl€4.23. atr=ry;

p.=const, g?=2ab, sirf#=constb/a,
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_2M(aE-L,)

= >2M.
ro S 2M

(5.9

Obviously the turning point iro, can be put at any value o
r outside the static limit surface. If we chodseandL, such
that:

M
ro=2M+e— =—¢€2, (5.6

2a

then, after reaching the turning point in, , the geodesic

will continue in the direction opposite to the rotation of the

4D black hole with constant=2M + € (to first order ine)
and eventually reach the point,fp.)=(2M +€,0) of the
cosmic string outside the ergosphere.

We close this section with the following remarks.

Notice that thglouten horizon of the 2D black hole coin-
cides with the static limit of the 4D rotating black hole. The
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VI. STRING PERTURBATION PROPAGATION

A general transverse perturbation about a background
¢ Nambu-Goto string world sheet can be written(ssmming
over theR indiceg

OxH=dRnk 6.1
where the normal vectors are defined by E@&2). The
equations of motion for the perturbationbg follow from
the following effective action for stringor$,9]:

Sur= [ QL= CONGASLT t ) (rVo s

+Vra @S, (6.2
whereVgs=V(rg are scalar potentials antkss= irga are
vector potentials which coincide with the normal fundamen-
tal form

2D surface gravity, which is proportional to the 2D tempera-

ture, is given by

2 1dF JVM?—Q?-a’cos 9
K = ——— = .
2drf_ 2M?-Q%*+2MM?-Q*-a’cosh
(5.7)
The surface gravity of the 4D Kerr-Newman black hole is
IMZ=Q7=a2
kA= Q , (5.8
2M2-Q%+2M M2 -Q2-a?
and then it can be easily shown that
k= k@, (5.9

That is to say, the 2D temperature is higher than the
temperaturgexcept at the poles where they coingidad it

is always positive. Even if the 4D black hole is extreme, the

2D temperature is nonzero.

As we show in Appendix A, the solutions of the form

(4.18 can also be obtained in 2D dilaton gravity:

S

1
EJ dtdxy—ge 2[R+2(V)2+V(e)],

MRsA=,,NRXAV Ng. 6.3
The scalar potentials are defined as
Ves= Qrapls B— GAPAxX R, prNRNS . (6.9)

The equations describing the propagation of perturbations on
the world-sheet background are then found to be

{SrdI+ 2R Int Vaurd — ur "psTat VRS}(I)S:(OG- 5

We note that the perturbatiori6.1) and the effective ac-
tion (6.2) are invariant under rotations of the normal vectors,

i.e.,, invariant under the transformationsng—ng

=Ag%ng, ®R— dR= ARDS, where
4D ALS cosv  —sin¥P 6.6
L ©.8

for some arbitrary real function¥. Thus, we have a
“gauge” freedom in our choice of normal vectors.
Consider the scalar potential Ves=Qrass B
—GBXMXGR ,,0,NRNE . It is easily verified that the first
term Qs <2 vanishes for the principal Killing surface
%, . independently of any choice of normal vectors It is

5.1 ; :
(.19 also possible to show that the second term on the right-hand
with the dilaton potential side is invariant under rotations of the vectags, i.e., gauge
invariant, in the Kerr-Newman spacetinsee Appendix B
2 The symmetry and gauge invarianceliafs show that it must
V(¢)=[r—2(f|:),r} : (5.1)  be proportional todgs, i.e., Vrs=Vdrs. Now, using the
[r=e=¢i\ completeness relatiof8.3) we find
if the dilaton field has the form V=16"%rg
¢=—In(Ar), A=const. (5.12 =-1 GABxfj\x”’BRWU,,éRSn’F’Qng

It should be stressed that this observation does not mean that
we can use the dilaton-gravity equations in order to describe (6.7)
the dynamics of 2D string holes, or to determine the back

reaction of the string excitations on the geometry of string Making use of a representation of the Ricci tenBgy, in
holes. terms of the Kinnersley null tetrad, namely,

_1~AB v CD o
=3 XAXB(R,, T G X X DR pow) -
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2Q? _ ) M.=m+El., (6.17)
whereE=¢&-m. Thus,
we are able to calculate the first term of Ef.7) as
MRD= — MERS; (6.1
AByu v — Moy 2Q2 M 2Q
G ™XXR,, = 2(F R, 15E") = 7' LEu=— i where u=—a(1-F)coslp?. If we let /. x=x4]., then
(6.9 Wecan write the normal fundamental form in this gauge as
To calculate the second term of E§.7) we use the Gauss- MRrsA= U7+ A€RS: (6.19
Codazzi equationgl7] for a two-surface®, embedded in a )
four-dimensional spacetime: namely, so that herqua=p/ +a. _ _
However, a more convenient choice of gauge pasa
ng(;D:(QRAOQBDR—QRADQBCR)JrRM,,,,,xfgxf’BxfEx’”D. xegsna Where pa=x/,&, is a Killing vector onX ., see

(6.10 Ref.[7]. This corresponds to a choice of the functiémon

3 such thatya=ua=u/ « o+ x49,V. If we let U=W(r),
Contracting Eq.(6.10 over A andC and then oveB and  han it foIIovT/]é tr;(;? olrLE AT AT, )

D, one finds that the scalar curvature Bnis just the sec-
tional curvature in the tangent plane »f i.e., X430,V =%V (F/ . p— ). (6.20
R?=GACGEPR,,,,, XX EXCX' (6.11)

Clearly, if ¥/ == u/F, then wa=(u/F)ns. With this

which is identically the second term in E(.7), except for choice of gauge we find that the equations of motion reduce

the sign. Finally, o

1 ? (O+V+ u?F) Bt 25 eperaa®S=0,  (6.21)

V:_i R(2)+2F M RT £ €RST 7A ' .
( Q?(r2—a%cog ) — Mr(r?—3a’cos6) where
- . ,
p a(l-F)cow
(6.12 P (6.22
where we have used the fact tHRi)=—F". 212 22002 2 3a200
It remains to determine the normal fundamental form V=2 Q*(r"—~a“cos ) —Mr(r°—3a“cos )

MRSA- NOW, as MRSA— IU’[RSA y we can Wl’lte pe '
Ursa= ma€rs. It is then straightforward to verify that under (6.23

the gauge transformatioi.6), transforms as ) ) )
gaug HRSA Equation(6.21) can also be written in the form:

MURsA RsA= MRroaT €reXAd, Y, (6.13 AB ~
o . o [G™(6rTV At €rTAA) (S7sVE T €75AB) + IrsV]P7=0,
or, in light of the previous definition, (6.24)
A= A= patXApd, W, (6.149  whereAp=puna/F=(—u,=u/F) and we used the identity

G"BV A(u7mg/F)=0. Here, A, plays the role of a vector
We defineng overX . by parallel transport along a prin- potential whileV is the scalar potential. Notice that the time
cipal null trajectory and then by Lie transport along trajecto-component of4, as well as) are finite everywhere, while
ries of the Killing vector, effectively fixing a gauge. That is, the space component of, diverges at the static limit sur-
onX.: face. But this divergence can be removed by a simple world-
1505, =0, &Nk, =nké, . 6.15 sheet coordinate transformation:

With this covariantly constant definition ofg, using Eq.
(B1) of Appendix B, we find that

dt=du. ¥F~(r)dr, dr=dr. (6.25

The perturbation equation still takes the fo(@24) but now
v the potentials are given b
Mra=Ngl%Ng,;,=0, (6.16 P g Y

MRS):n/éngg,u;V:%eRingn;_ngng)g,u;v AA ( /-L'O)’ v V, (626)
=iegM MW{:M;V that is, the potentials4,V) are finite everywhere. There is,
however, a divergence at the static limit surface in the time
In order to take advantage of the decompositior f, in component of4”, but such situations are well known from
terms of the Kinnersley null tetra®.10), we note tha .. ordinary electromagnetism; this divergence does not destroy
andm are related by the null rotation the regularity of the solution.
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VII. STRING-HOLE PHYSICS ingoing principal null ray crossing, and passing through
R It was shown that there exists a future-directed 4D null
t . - .

kgeodesm which begins atand crossey,. In other words, a
%ausal signal fromp propagating in the 4D embedding

| . ; : Y
Spacetime can connect points of the 2D string hole interior
ith its exterior. For this reason stringons propagating inside
e 2D string hole can interact via extra dimensions with the
tringons in the 2D string hole exterior. Such an interaction

In conclusion, we discuss some problems connected wi
the proposed string-hole model of two-dimensional blac
and white holes. The basic observation made in this paper
that the interaction of a cosmic string with a 4D black hole in
which the string is trapped by the 4D black hole opens neV\n']
channels for the interaction of the black hole with the sur-

rounding matter. The corresponding new degrees of freedo Jom the 2D point of view is acausalCertainly, this inter-

re rel xcitations of th mi ricggringons. : : T . . .
are related to excitations of the cosmic striteringon3 chUon becomes impossible in case when the inner stringon is

These degrees of freedom can be identified with physic e L
fields propagating in the geometry of the 2D string holejggsvtﬁgszgeﬁgri?;de the 2D hole that it is under the Kerr-

There are two types of string holes corresponding to two This interaction of Hawking stringons with their quantum

zﬂiser?]f ;ges %,r]'g(Sgilmgltlr';gofsgr?sei;cinﬁje*W;]riTee t?}t’tsecporrelated partners, created inside the string hole horizon,

ond has the geomety of a 2:D white fole. The physicall S0 A T EEI I L e R B e e an
properties of “black” and “white” string holes are differ- 9 : 9

ent. For a regular initial state a “black” string hole at late interesting application for study of the information loss

time is a source of a steady flux of thermal “stringons.” This puzzle. . : .
effect is an analogue of the Hawking radiatii8]. In the In conclusion, we have shown that in the case of interac-

simplest case when a stationary cosmic string is trapped bytz'aon of a cosmic string with a black hole a 2D string hole can

Schwarzschild black hole, so that the string hole has Zd)e formed. It opens an interesting possibility of testing some

Schwarzschild metric, the Hawking radiation of stringonsOf the pred|ct|ons_ 9f 2D gravity. We“do not ,Ifnow at the
was investigated in Ref19]. For such string holes their moment whether it is also possible to “destroy” a 2D string

event horizon coincides with the event horizon of the 4Dhole by applying ph_ysica_l forces which change its motion
black hole, and the temperature of the “stringon” radiation and allow the cosmic string to be ex;racted back from Fhe
coincides with the Hawking temperature of the 4D blackergosphere. We hope to return to this and other questions

hole. For this reason the thermal excitations of the Cosmigonnected with the unusual physics of string holes else-

string will be in the state of thermal equilibrium with the Where.
thermal radiation of the 4D black hole.
The situation is different in the general case when a sta- ACKNOWLEDGMENTS

tionary string is trapped by a rotating charged black hole. For  The authors benefitted from helpful discussions with J.
the Kerr-Newman black hole the static limit surface is 10- jartle and W. Israel. The work of V.F. and A.L.L. was sup-

cated outside the event horizon. The event horizon of the 2[3orted by NSERC, while the work by S.H. was supported by

hole horizon, except for the case where the cosmic string
goes along the symmetry axis. For this reason the surface
gravity, and hence the temperature of the 2D black hole dif-
fer from the corresponding quantities calculated for the Kerr-
Newman black hole. The surface gravity of the 2D black In this appendix we show that the 2D string holes can also

APPENDIX A: STRING BLACK HOLES
AND DILATON GRAVITY

hole is be obtained as solutions of 2D dilaton gravity with a suitably
chosen dilaton potential. To be more specific, we consider
2 1dE JYM?—Q?—a’cos 0 the action of 2D dilaton gravity
K =5 I = )
dri_,_ 2M?-Q?+2MM?-Q°-a’cos ¥ 1
(7.0) S= gf dtdx/—ge *[R+2(V¢)*+V(4)], (A1)

and it is always larger than the surface gravity of the four-where the dilaton potential(¢) will be specified later. In

dimensional Kerr-Newman black hole, E&.7). The reason two dimensions we can choose the conformal gauge

why the temperature of a 2D black hole differs from the

temperature of the four-dimensional Kerr-Newman black 9., =e€”xdiag(—1,1), p=p(tXx), (A2)

hole can be qualitatively explained if we note that for quanta

located on the string surfadstringons the angular momen- SO that

tum and energy are related. P
In the general casea: 0 ), a principal Killing surface in R=2e""(pu=p.x)- (A3)

the Kerr-Newman spacetime is not geodesic. This propertyhe action(Al) then takes the form

might have some interesting physical applications. Consider

a black string hole and choose a pomtinside its event 1 24 5 2 10
horizon but outside the event horizan=r, of the four-  S= ;f dt  dxe “[pu—pxxt P P+ 3267V(P)].
dimensional Kerr-Newman black hole. Consider a timelike (A4)

line yq representing a static observer located outside the ho-
rizon of the 2D black hole at=r. There evidently exists an The corresponding field equations read



54 HOW TO CREATE A TWO-DIMENSIONAL BLACK HOLE

1
Pxx—Put ¢,tt_ ¢,xx+ ¢,2x_ ¢2t+ Zezp(vl —-2V)=0,

1
b~ St 2A PGP+ 5€V=0, (A5

whereV'=dV/d¢. Now, consider the special solutions

p=p(X), ¢=d(x), (A6)
and introduce the coordinate
i—dx e?’=F (A7)
F(ry 7 o
Then the metridA2) leads to
dS?=—F(r)dt?+F~(r)dr? (A8)

which is precisely the form of our 2D string holé$.18), in
the coordinates defined by

dr=dr.

It still needs to be shown that Eq#6) and(A7) are actually
solutions to Egs(A5). The equations reduce to

dt=du. ¥F~(r)dr, (A9)

ba— B2t (VI 2V) =
TR T 4R 2F

b ot ¢>r—2¢ +iv 0. (A10)

5101

tion (6.6 in the Kerr-Newman spacetime. Let
M= (n,+inz)/\2 where{n,,n3} span the two-dimensional
vector space normal to the cone string world sheet. Then,
under the transformation specified by Eq(6.6)
M“—>M#=eYM*, We note that the combinatidd“M" is
invariant under this transformation.

We will make use of the equalities

— 1 i
M“M?= 2 (ngns+ngng) — (ngnj—ngng),  (BL)
14 1 14 14 I 14 14
M#“M =§(n’2‘n2— n§ng) + > (nfnz+ngny). (B2)
Now consider

GABX/TAX BRMPUV p g: (g,uv_ 5TQn#n(V3) Rﬂpavn%ng
=—R,,Ngng—8'°R,, ., nfngngng.
(B3)

The second term on the right-hand side can be written as

§TCR

upavnfl'tnéngng (ngn2+ ngn3) R,upo'v RnS

=R

upov

=- "R

upov

ngnynsng
M“M"MPM?,
(B4)

making use of Eq(B1) and the symmetries of the Riemann
tensor only. This form is explicitly gauge invariant in any

It can now be easily verified that both equations are solvegPacetime geometry.

by a *“logaritmic dilaton” provided the dilaton potential

takes the form lf=a sirf6)

2
V(¢)= [ (rF)} : (A11)

[r=e= ¢/

¢d=—In(Ar), (A12)

N\ =const,

for an arbitrary functionF(r). For our 2D string holes,

F(r) is given by Eq.(2.3). The dilaton potentialA11) then
takes the explicit form

4Me ¢\ —Q?
e ?%/\°+a’—ab

V(¢p) =2\ 1~

2e #(2Me ?¢/\?2— Q% ?¢/\)
Ne ??I\%+a’—ab)?

(A13)

This result holds for the general cone strings. A somewhat

It remains to verify that the terrR,,nng is also gauge
invariant. We note thatl and the complex null vectan of
the Kinnersley tetrad are related by the null rotation
M=m+EIl. We may then use the fact that and|.. are
eigenvectors oR,, [see Eq(6.8)] to show

R,eMPM7=R,,(m’m’+2En¥I% +E?I%17)=0.

(B5)

Notice that this holds in any
MPM7—>MPM7=e?YMPM?. Thus, equating
imaginary parts oR,;M”M? to zero one finds

gauge as
real and

ngng, R,,n4ng=-R,  nin7=0.

(B6)

Rprrn2n2 Rprr po po

Thus, under a gauge transformation, we find that

o __
Rpo'n2n3 -

R,o(cos¥ns—sin¥ nf)(sin® n3 + cos¥ng) =0.
(B7)

simpler expression is obtained for strings in the equatonalt then follows that

plane:

V() =272e29[1-QA%2%], 6=m/2. (Ald)

APPENDIX B: GAUGE INVARIANCE
OF THE SCALAR POTENTIAL

In this appendix we show thatgs, as defined in Eq.

R,,N5n5=R,,(cos¥ ns—sin¥ns)(cos¥ng —sin¥ng)
=R,,n5n3. (B8)
Similarly, R,,n3n3 remains unchanged under rotatlon Thus,

we conclude thalrs is gauge invariant aQgas2 <8 van-
ishes independently of gauge in the Kerr-Newman space-

(6.4), is gauge invariant, i.e., invariant under the transformadtime.
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