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No hair for spherical black holes: Charged and nonminimally coupled scalar field
with self-interaction

Avraham E. Mayo* and Jacob D. Bekenstein†

The Racah Institute of Physics, Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
~Received 26 February 1996!

We prove three theorems in general relativity which rule out classical scalar hair of static, spherically
symmetric, possibly electrically charged black holes. We first generalize Bekenstein’s no-hair theorem for
multiplet of minimally coupled real scalar fields with not necessarily quadratic action to the case of a charge
black hole. We then use a conformal map of the geometry to convert the problem of a charged~or neutral!
black hole with hair in the form of a neutral self-interacting scalar field nonminimally coupled to gravity to the
preceding problem, thus establishing a no-hair theorem for the cases with a nonminimal coupling paramet
j,0 or j>1/2. The proof also makes use of a causality requirement on the field configuration. Finally, from
the required behavior of the fields at the horizon and infinity we exclude hair of a charged black hole in the
form of a charged self-interacting scalar field nonminimally coupled to gravity for anyj.
@S0556-2821~96!00420-1#

PACS number~s!: 04.70.Bw, 11.15.Ex, 97.60.Lf
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I. INTRODUCTION

‘‘Black holes have no hair’’ was introduced by Wheele
in the early 1970s as a principle predicting the simplicity
the stationary black hole family. The proliferation in th
1990s of stationary black hole solutions with ‘‘hair’’ of vari
ous sorts@1# may give the impression that the principle ha
fallen by the wayside. However, this is emphatically not th
case for scalar field hair, possibly accompanied by Abeli
gauge fields. The only exceptions known to ‘‘black hole
have no hair’’ in this department are the Bronnikov
Melnikov-Bocharova-Bekenstein~BMBB! spherical ex-
tremal black hole with electric charge and a scalar field no
minimally coupled to gravity in conformally invariant
fashion@2,3#, its magnetic monopole extension@4#, and the
Achucarro-Gregory-Kuijken ~AGK! black hole @5#, a
charged black hole transfixed by a Higgs local cosmic strin
Even these examples are not contrary to the spirit of t
no-hair conjecture: the first seems to be unstable@6#, the
second is too similar to the first to escape its fate, while t
third is not asymptotically flat. What is the evidence for ‘‘n
scalar hair’’ for black holes?

The first no-scalar hair theorems applied to the comm
massless scalar field@7,8# and to the neutral Klein-Gordon
field @8,9#. The latter theorem’s proof is also found to wor
for the neutral scalar field with a monotonically increasin
self-interacting potential. Little progress was made in e
tending these theorems during the 1970s and 80s. A nota
exception was the Adler-Pearson theorem@10# which ex-
cludes charged Higgs hair for a charged black hole. T
theorem has, however, occasionally been regarded as fla
@11#. Lately theorems by Heusler@12#, Sudarsky@13#, and
Bekenstein@14# have become available which exclude ele
trically neutral black holes with hair as minimally couple
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scalar fields endowed with positive semidefinite sel
interaction potentials of otherwise arbitrary shape. The la
mentioned theorem applies also to fields whose Lagrangia
are not necessarily quadratic in the gradients of the fields

Whereas simple scalar fields are covered by all the
theorems, various complications such as charge of the fi
and the hole, nonminimal coupling to gravity, etc., are no
Early works in this more challenging direction are the pape
by Xanthopoulos and Zannias@15# and Zannias@16# which
establish the uniqueness of the BMBB black hole among t
asymptotically flat static solutions of the Einstein andcon-
formal scalar field equations, and the recent theorem by S
@17# which excludes, for spherical black holes, a broader, b
still limited, class of nonminimally coupled neutral scala
hair ~see Sec. IVA!.

In the present work we consider whether a charged bla
hole may possess hair in the form of a scalar field with se
interaction and with nonminimal coupling to gravity and
gauge covariant coupling to the electromagnetic field. T
motivation for looking at nonminimal gravitational coupling
is supplied by the existence of the BMBB black hole solutio
with nonminimally coupled scalar hair. The motivation fo
considering coupling of the scalar to the electromagne
field comes from the existence of the AGK black hole. Sinc
nonminimal gravitational coupling entails not necessari
positive field energy, one loses one of the earlier tools f
proving no hair theorems@14#. Our assumption of spherical
symmetry simplifies things enough to allow us to prove se
eral useful theorems.

In Sec. II we formulate the equations of the scalar fie
coupled nonminimally to gravity and gauge covariantly t
the Maxwell field, write down the energy-momentum tenso
and discuss restrictions on it from regularity of the horizo
and causality requirements. The last, in particular, do n
seem to have been taken advantage of by previous work
Section III generalizes a theorem by one of us@14# which
excludes hair in the form of a multiplet of mutually interact
ing real scalar fields with possibly nonquadratic kinetic a
tion. The theorem is here extended to an electrically charg
5059 © 1996 The American Physical Society
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black hole, still under the assumption of positivity of energ
of the fields. The extended theorem provides one of the to
for proving, in Sec. IV, a theorem ruling out, for an electr
cally charged or neutral black hole, hair in the form of
neutral scalar field with standard quadratic kinetic action
positive semidefinite self-interacting potential, and nonmin
mal coupling to gravity. The theorem is proved for th

rangesj,0 or j> 1
2 of the nonminimal coupling parameter

its proof uses a conformal map to convert the problem to t
one dealt with by the theorem of Sec. III. Also central to i
proof are the causality restrictions on the energy-moment
tensor. In Sec. V a theorem is proved which rules out, for a
electrically charged black hole, hair in the form of a charg
scalar field with standard kinetic action, a positive semide
nite self-interaction potential, and nonminimal coupling
gravity with anyj. The proof, which is given separately fo
nonextremal and extremal black holes, centers on the beh
ior of the various fields near the horizon and at infinity. Se
tion VI summarizes our findings and speculates on their i
plications.

II. BASIC EQUATIONS AND PHYSICAL RESTRICTIONS

Here we derive the energy-momentum tensor from t
Maxwell-charged scalar action with self-interaction and no
minimal coupling to gravity. Then we derive the field equa
tions for the scalar and the Maxwell fields. Throughout w
use units withc51.

A. The energy-momentum tensor

We assume the existence of an asymptotically flat jo
solution of the Einstein, scalar field, and Maxwell equation
having the character of a static, spherically symmetr
charged black hole spacetime. The symmetries entitle us
write the metric outside the horizon as

ds252endt21eldr21r 2~du21sin2udf2! ~2.1!

with n(r ) and l(r ) both non-negative and obeying
n(r ),l(r );O(r21) asr→` because of asymptotic flatness
The event horizon is atr5r H wheree2l(rH)50 ~see Sec.
VA below!. In case there are several such zeroes, the h
zon corresponds to the outer one. Anticipating the results
Secs. VB and VE, we note that near the event horizon o
black hole of nonextremal or extremal kind

en;e2l;H r2r H nonextremal,

~r2r H!2 extremal.
~2.2!

These results apply whatever the matter content of the spa
time.

The action of a charged scalar field with nonminimal co
pling to gravity, gauge covariant coupling to electromagn
tism @or any U~1! gauge field#, and with a general self-
interaction potential is

SSMj52
1

2E SDac~Dac!*1jRcc*1V~cc* !

1
1

8p
FabFabDA2gd4x, ~2.3!
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wherec is the complex scalar field,Am the Maxwell vector
potential,Dm5]m2 iqAm the gauge covariant derivative (q
is the charge!, Fnm5Am,n2An,m the Faraday field tensor,
V5V(ucu2) the self-interaction potential,R the scalar curva-
ture, andj the strength of the nonminimal coupling to grav
ity. We assume throughout thatV is everywhere regular (V
and its first derivative bounded for finite argument! as well
as positive semidefinite.

The energy-momentum tensor that follows from the a
tion is

Tmn5
1

2
Dmc~Dnc!*1

1

2
~Dmc!*Dnc2

1

2
Dac~Dac!* gmn

2j~c*c! ,m;n1jh~c*c!gmn1j~c*c!Gmn

2
1

2
Vgmn1Tmn

~em! , ~2.4!

whereGmn denotes the Einstein tensor and

Tmn
~em!5

1

4pS FmaFn
a2

1

4
gmnF

abFabD . ~2.5!

Here and elsewhereh is the d’Alembertian. By virtue of the
symmetries, the components of the electromagnetic ener
momentum tensor satisfy@18#

T~em!
r
r5T~em!

t
t52T~em!

u
u52T~em!

f
f52

Q2

8pr 4
, ~2.6!

whereQ(r ) is the electric charge enclosed by the sphere
radiusr . EliminatingR from Eq. ~2.4! by means of the trace
of Einstein’s equations,R528pGT, we obtain

Tm
n ~128pGjc*c!5

1

2
Dmc~Dnc!*1

1

2
~Dmc!*Dnc

2
1

2
Dac~Dac!* dm

n 2j~c*c! ,m
;n

1jh~c*c!dm
n 2

1

2
Vdm

n 1T~em!
m
n .

~2.7!

In light of the angular and temporal symmetries,F tr is the
only nonvanishing field component. Thus onlyAr and At
need be nonvanishing. Then the gauge transformat
Am→Am1L ,m with L52*Ardr removesAr . The newAt
must have the formf (r )1g(t) in order to give a stationary
F tr . A further gauge transformation withL52*g(t)dt
makesAt static. In this second gauge any temporal variatio
of the phase ofc must be linear int in order that both the
current and charge density be time independent. More p
cisely, the phase must bew(r )2vt with v a real constant. A
last gauge transformation withL52vt/q reducesc to the
form c5a(r )eiw(r ), while merely adding a constant toAt .

Now on the one hand, the radial current component is

Jr5ı~c* ] rc2c] rc* !522a2] rw. ~2.8!
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On the other hand, conservation of charge together with
symmetries implies that

Jre
2lA2g5const. ~2.9!

The constant here must vanish; otherwise charge would l
out continually to infinity. It follows from Eq.~2.8! that w
cannot depend onr , except possibly for jumps at node
where a50. However, an arbitrary jump ofw through a
node causes an unacceptable discontinuity inc,r unless the
jump is by an odd multiple ofp in which case its effect on
c,r is cancelled by the change in sign ofa,r at the node.
Accordingly, in all that follows we regardw as strictly con-
stant ~and thus irrelevant! at the cost of allowinga(r ) to
change sign. Thus in our problemc, henceforth denoted by
a, is real whileAm reduces to a static temporal componen

In what follows it will be convenient to look at the differ-
ences

Tt
t2Tf

f5je2l
~2/r2n8!aa,r
128pGja2

2
Q2/~4pr 4!1q2e2nAt

2a2

128pGja2
,

~2.10!

Tt
t2Tr

r5e2l
~2j21!a,r

22j~n1l!8aa,r12jaa,rr
128pGja2

2
q2e2nAt

2a2

128pGja2
~2.11!

~here and henceforth8[]/]r ), as well as at the negative o
the energy density

Tt
t5e2l

~2j21/2!a,r
212jaa,rr1j~4/r2l8!aa,r
128pGja2

2
1

2

V1Q2/~4pr 4!1q2At
2a2e2n

128pGja2
. ~2.12!

B. The scalar-Maxwell field equations

The field equation fora that follows from Eq.~2.3! is

DmD
ma2~jR1V̇!a50, ~2.13!

whereV̇[]V(a2)/]a2. After substitution of the metric func-
tions and simplification we get

a,rr1~1/2!~4/r1n82l8!a,r2~jR1V̇2q2e2nAt
2!ela50.

~2.14!

Finally the temporal component of the Maxwell equa
tions,

Fmn
;m54pJn, ~2.15!

takes the form

At ,rr1~1/2!~4/r2n82l8!At ,r24pq2a2elAt50.
~2.16!

Note that whenq50 the equations forAt and for the scalar
field decouple so that we can consider the two fields se
rately.
the

eak

s

t.

f

-

pa-

C. Finiteness ofTµ
n and the causality restriction

There are two types of restrictions on the total energy-
momentum tensor which must be obeyed everywhere in th
black hole exterior and horizon in order for a solution to be
physically acceptable: boundedness of the mixed compo
nentsTm

n , and the causality restriction.
Staticity and spherical symmetry imply that the only non-

vanishing mixed components ofTm
n are Tt

t , Tr
r , and

Tu
u5Tf

f . Thus TabT
ab5(Tt

t)21(Tr
r)21(Tu

u)21(Tf
f)2. But

TabT
ab is a physical invariant and must thus be bounded

everywhere, including at the horizon: any divergence would
imply divergence of the curvature invariantGmnG

mn. It fol-
lows that themixedcomponentsTt

t , Tr
r , andTu

u5Tf
f are all

bounded everywhere including at the horizon~this is no
longer true for a component likeTrr ).

Along with finiteness ofTm
n in general we should cite here

an important result to be obtained in Secs. VB and VE; it
has also been noticed by Achucarro, Gregory, and Kuijken
@5# and by Núñez, Quevedo, and Sudarsky@19#. For any
static and spherical black hole and for any matter content,

Tt
t~r H!5Tr

r~r H!. ~2.17!

Now consider the Poynting vector according to a physica
observer with four-velocityun

j m52Tm
n um ~2.18!

with umum521, and the associated energy density

«[Tmnu
mun. ~2.19!

If «.0 then j m should be a nonspacelike four-vector, for in
this case j m defines a future-directed four-velocity~with
positive time component}«), and on grounds of causality
this ‘‘velocity of transfer of energy’’ should not be superlu-
minal. If «,0 the Poynting vector points into the past. We
still expect thatj m should be nonspacelike because the flow
of negative energy can be interpreted as flow of positive
energy in the opposite space direction from that demarcarte
by j m. In other wordsj m should, in this case, point into the
past lightcone. Hence, for any observer we must have

Tm
n unTs

mus<0. ~2.20!

Now suppose that our observer moves in any way in the
equatorial planeu50 in the hole’s exterior, Eq.~2.20! be-
comes

utut~Tt
t!21urur~Tr

r !21ufuf~Tf
f!2<0. ~2.21!

Substituting hereutut from the normalization of the velocity

utut1urur1ufuf521 ~2.22!

and rearranging the inequality gives

~Tt
t!2>

uru
r~Tr

r !21ufu
f~Tf

f!2

11urur1ufuf
. ~2.23!

In light of the positivity ofurur andu
fuf , it follows that

inequality~2.21! or ~2.20! can be true for any velocity only if
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uTu
uu5uTf

fu<uTt
tu>uTr

r u. ~2.24!

The energy conditions~2.24! have been discussed by
Hawking and Ellis@20# who, however, considered them onl
for the positive energy density case. When dealing with no
minimal coupling to gravity, negative energy density is n
excluded. In the Appendix we prove that either the ener
conditions ~2.24!, or the causality condition~2.20! for all
observers, are equivalent to consensus of all observers a
the sign of the energy density. From all this it is clear that t
energy conditions~2.24! are a must for a nonpathologica
solution of the field equations, and henceforth we assu
them to hold.

The energy conditions~2.24! can also be stated as

sgn~Tt
t!5sgn~Tt

t2Tr
r !5sgn~Tt

t2Tf
f!. ~2.25!

We stress that no assumption is made here about the sig
the energy density2Tt

t , so that these inequalities are mor
broadly valid than theweak energy conditionTr

r2Tt
t>0

which is sometimes invoked.

III. MINIMALLY COUPLED NEUTRAL SCALAR FIELD
WITH NONQUADRATIC ACTION

There exists a no-hair theorem for black holes which rul
out hair in the form of a minimally coupled~to gravity!, real
multiplet scalar field for any asymptotically flat, static
spherically symmetric neutral black hole@14#. The field is
assumed to bear positive energy, but its field Lagrang
need not be quadratic in the field derivatives. Here we ge
eralize that theorem to charged black holes@21#, not only for
its intrinsic interest, but for use in our later theorems f
nonminimally coupled fields.

Consider the action for real scalar fields,c,x, . . . , ac-
companied by an electromagnetic field

Sc,x, . . .52E S E~I,J,K, . . . ,c,x, . . . !1
1

16p
FabF

abD
3A2gd4x. ~3.1!

HereE is a function~which for static fields turns out to be
identical to the energy density!, and I[gabc,ac,b ,
J[gabx,ax,b , andK[gabx,ac,b are examples of the in-
variants that can be formed from first derivatives of the sc
lar fields. We do not assume that the kinetic part of t
scalar’s Lagrangian density can be separated out, nor th
is a quadratic form in first derivatives.

Assume the existence of a spherically symmetric sta
black hole solution with the said scalar fields as hair. B
cause the scalar fields are assumed decoupled from the e
tromagnetic field, the energy-momentum tensor of the sca
fields is conserved separately. From the radial componen
the conservation lawT(sc)m

n
;n50 together with the result

T(sc)t
t5T(sc)f

f which follows from the form ofSc,x,••• and the
symmetries, one obtains, as in@14#, the results

T~sc!
r
r52

e2n/2

r 2 E
rH

r

~r 2en/2!8rdr, ~3.2!
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~T~sc!
r
r !852

e2n/2

r 2
~r 2en/2!8~r1T~sc!

r
r !. ~3.3!

Herer5E52T(sc)t
t is the~assumed positive! energy density

of the scalar fields. In order for the mass to be finite, we sha
require that asymptoticallyr5O(r23). Now the positivity
of r, the relation~2.6! and the causality restriction~2.25! for
the overallTm

n tell us thatr1T(sc)r
r.0. Sinceen vanishes at

r5r H ~see Sec. VA below! and must be positive for
r.r H , r

2en/2 must grow withr at least sufficiently near the
horizon. It is then immediately obvious from Eqs.~3.2! and
~3.3! that sufficiently near the horizonT(sc)r

r and (T(sc)r
r)8 are

both negative.
Asymptotic flatness considerations together with Eq

~3.2! and ~3.3! tell us that asr→`, T(sc)r
r5O(r22) and

(T(sc)r
r)8,0. From these follows that asymptotically

T(sc)r
r.0 so thatT(sc)r

r must switch sign at some finite point
r5r c . Hence we infer that in some intermediate interva
@r a ,r b#, (T

(sc)
r
r)8.0 and the point whereT(sc)r

r changes sign
is r cP@r a ,r b#. T

(sc)
r
r is positive in@r c ,r b#.

Now it turns out that this last conclusion clashes with
Einstein’s equations. The relevant one are

e2lS 1r 2 2
l8

r D2
1

r 2
58pGTt

t528pGS r1
Q2

8pr 4D ,
e2lS n8

r
1

1

r 2D2
1

r 2
58pGTr

r58pGS T~sc!
r
r2

Q2

8pr 4D ,
~3.4!

whereQ, a constant in the present section as well as in Se
IV, is the total charge of the black hole. Sometimes the di
ference of these comes in handy:

e2l~n81l8!528pG~Tt
t2Tr

r !r . ~3.5!

Now by integrating Eq.~3.4! out from the horizon radius,
r H , and solving forel we obtain

e2l512
r H
r

2
8pG

r E
rH

r S r1
Q2

8pr 4D r 2dr, ~3.6!

where the integration constant has been set so thate2l van-
ishes atr H . It follows from Eq.~3.6! thatel>1 throughout
the black hole exterior.

Consider now the second Einstein equation. Sinc
e2l(rH)50, but n8(r ) may diverge positively atr5r H ~see
Sec. VA below!, we can write it as

8pGT~sc!
r
r~r H!2

GQ2

r H
4 >2

1

r H
2 . ~3.7!

Because in the proximity of the horizonT(sc)r
r,0, we can

infer that

GQ2<r H
2 ~3.8!

so that trivially

2GQ2

2r 3
1

1

2r
.0. ~3.9!
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Now rewriting Eq.~3.4! we infer from Eq.~3.9! that, in a
region whereT(sc)r

r.0,

e2n/2

2
~r 2en/2!85S 4pGrT~sc!

r
r2

GQ2

2r 3
1

1

2r Del1
3

2r
.0.

~3.10!

We found that in @r c ,r b#, T(sc)r
r.0. Thus

(e2n/2/2)(r 2en/2)8.0 there. According to Eq.~3.3! this
means that (T(sc)r

r)8,0 throughout@r c ,r b#. However, we
determined that (T(sc)r

r)8.0 throughout the encompassin
interval @r a ,r b#. Thus there is a contradiction. The only wa
to resolve it is to accept that the the scalar field compon
must be constant throughout the black hole exterior, tak
values such that all components ofT(sc)n

m vanish identically.
Such values must exist in order that the trivial solution of th
scalar field equation be possible in free empty space. It is t
solution which served implicitly as an asymptotic bounda
condition in our argument.

Thus the unique asymptotically flat, static, sphericall
symmetric black hole solution of the action (3.1) is th
Reissner-Nordstro¨m black hole with no scalar hair.

IV. NONMINIMALLY COUPLED „j<0 OR j> 1
2 …

NEUTRAL SCALAR FIELD WITH SELF-INTERACTION

A. Casej<0

We now consider hair described by action~2.3! with
q50 and a potential restricted byV>0 for a black hole
which may or may not be charged. In order to prove that t
field can only be in a trivial configuration, we shall use
conformal map to show that in a new metric the action
equivalent to that considered in Sec. III. This approach h
also been used by Saa@17#, who also started from the theo
rem discussed in Sec. III in its neutral black hole versio
@14#.

With the proposed solution for the black hole with non
minimally coupled and neutral scalar field hair,$a,gmn%, we
construct the map

gmn→ḡmn[gmnV,

V[128pGja2. ~4.1!

For ḡmn to be nondegenerate and of like signature togmn ,
V must be strictly positive and bounded inrP@r H ,`). Ob-
viously V.0 here. Saa leaves pending the question
boundedness of the conformal factor. We nowprove that
V is bounded in the black hole exterior both forj,0 and for
1
2<j.

V can blow up only wherea does so. However, at such a
point r c , a,r anda,rr would be even more singular thana.
Specifically, a,r

2/a2 and a,rr /a should both behave like
(r2r c)

22. We see from Eqs.~2.10! and ~2.12! that if
r c.r H , the physical components of the energy-momentu
tensor definitely diverge atr c , which is unphysical~Sec.
IIC!. If r c5r H , the factore2l, ameliorates the divergence
According to Eq. ~2.2! for a nonextremal black hole
e2l;(r2r H); this is not enough to cancel the divergenc
By contrast, for an extremal black holee2l;(r2r H)

2 so it
would seem that the divergence is quenched. But sin
g
y
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a2→` for r approachingr H from the right, it is evident that
aa,r andaa,rr.0 near the singularity. We thus see from Eq.
~2.11! in its variant form~4.3! that for r→r H , Tt

t2Tr
r has a

negativedefinite limit for eitherj,0 or j>1/2. However,
Eq. ~2.17! tells us thatTt

t2Tr
r must vanish at a regular

spherical horizon. Thus for all black holes and forj,0 or

j> 1
2, V can blow up inrP@r H ,`) only for physically un-

acceptable solutions. Additionally, ifa were to diverge for
r→`, the variousTm

n would blow asymptotically. We con-
clude thatV,` everywhere outside the black hole both for
j,0 and forj>1/2. And sinceV cannot vanish forj,0 we
see that the map is regular for physically acceptable black
holes andj,0.

Under the map the action~2.3! together with the Hilbert-
Einstein action is transformed into

S5
1

16pGE R̄A2ḡd4x2
1

2E S ~11 f !ḡaba,aa,b1V̄

1
1

8p
ḡagḡbdFabFgdDA2ḡd4x,

f[48pGj2a2~128pGja2!22,

V̄[V~128pGja2!22. ~4.2!

The transformed action is of the form~3.1!. It is easily
checked that in the static situation the field bears positive
energy with respect toḡmn , not least because of the assumed
positivity of V(a2). It is also easily seen that the map leaves
the mixed componentsTm

n unaffected. Hence the finiteness of
these, and the causality sign relations~2.25!, can be used in
the new geometry.

There is one little complication. We know thatV goes to
some finite positive value at infinity~an oscillatory behavior
is excluded by the argument to be given presently thatV
determines the effective gravitational constant, which cannot
oscillate spatially in a physical solution!. Since this value is
not necessarily unity, the asymptotically Minkowskian met-
ric gmn will be mapped into a not necessarily asymptotically
Minkowskian ḡmn . But ḡmn is asymptotically flat. One need
only redefine globally the units of length and time to make it
of standard Minkowski form at infinity. With this proviso we
may apply the theorem of Sec. III to show thata must be
constant.

Thus there exists no static spherically symmetric neutral
or charged black hole endowed with nontrivial hair in the
form of a neutral scalar field nonminimally coupled to grav-
ity with j,0 and with a non-negative self-interaction poten-
tial.

B. Casej> 1
2 with QÞ0

Before starting that proof, we comment on the asymptotic
value ofV. This is determined by the value ofa for which
a,r→0 anda,rr→0 asr→` according to the scalar equa-
tion, Eq. ~2.14!. Sinceq50 here andR→0 asymptotically,
a(`) is determined byV̇„a(`)2…50. Further, in order for
the energy density2Tt

t to vanish in the same limit~asymp-
totic flatness!, we need, according to Eq.~2.12!, thatV(a2)
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itself vanish whereV̇(a2) vanishes. In addition, this common

zero ofV and V̇ must be such as to makeV.0. For other-
wise theeffectivegravitational constant would be negativ
far away from the black hole. One way to see this is
imagine adding to the background of the black hole soluti
with energy-momentum tensor given by Eq.~2.4! a small
positive mass. In Eqs.~2.10! and ~2.12! the additional
energy-momentum tensor would appear as contributions
the numerators, with everything divided byV. In a region
where V,0 that mass would thus contribute to th
gravitational field as if it were negative. This contributio
will repel a second particle of the same kind~treated as a
test particle!. Thus positive masses would repel each oth
gravitationally and the effective gravitational consta
Geff5G(128pGja2)21 would be negative. This is cer-
tainly unphysical if the region is far from the black hole~it
could be our neighborhood!. We conclude that a physically
reasonable black hole solution must haveV.0 asymptoti-
cally, which requires that bothV(a2) andV̇(a2) have at least
one common roota2,(8pGj)21.

We now proceed to prove by contradiction thatV cannot
vanish in @r H ,`). Suppose that there is a nontrivial phys
cally reasonable neutral black hole solution, for whichV
vanishes at some pointr5 r̃ ~if there are several pointsr̃ , we
focus on therightmostone!. It is obvious from Eq.~2.10!
that a,rÞ0 and 2/r2n8Þ0 at r̃ for if either vanished,
Tt
t2Tf

f would necessarily diverge there contrary to the r
quirements in Sec. IIC. In facta2,r,0 at r5 r̃ becauseV
must be positive asr→` .

Now a2 cannot have a minimum. For at such poin
r5 r̂ , a,r50, and aa,rr.0. Obviously r̂Þ r̃ because we
founda,rÞ0 at the latter. But then according to Eqs.~2.10!
and ~2.11!, Tt

t2Tf
f and Tt

t2Tr
r will have opposite signs at

r5 r̂ ~we assumej. 1
2). But this contradicts the causality

restriction~2.25!. Thus in our solutiona(r )2 must be mono-
tonically decreasing.

It follows that near infinity we must haveaa,r,0 and
aa,rr.0. From asymptotic flatness it follows thatn8;1/r 2

for sufficiently larger . Hence by Eq.~2.10!, Tt
t2Tf

f,0 as-
ymptotically. By causality@Eq. ~2.25!# Tt

t2Tr
r must then be

negative for larger . This condition together with Eq.~3.5!
tells us that asymptotically (n1l)8.0. Substituting all
these in Eq.~2.11! we find thatTt

t2Tr
r.0 for larger . But

this contradicts our previous conclusion. Our suppositi
that V vanishes somewhere is thus rebutted, at least

j> 1
2, q50, andQÞ0.
Recalling from Sec. IVA thatV cannot blow up in the

black hole exterior, we see that the map used there is equ
valid in the present case. Thus by the same logic as use
Sec. IVA, hair is excluded in the present case.

C. Casej> 1
2 with Q50

The vanishing ofQ compromises our proof in Sec. IVB
thata2 has no minimum. We thus adopt here a new strate
unrelated to the map~4.1!. Again the proof of this claim
proceeds by contradiction. We assume there is a nontriv
physically reasonable neutral black hole solution wi
Q50.
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Let us first eliminaten81l8 from Eq. ~2.11! with the
help of Eq.~3.5! to get

Tt
t2Tr

r5
e2l@~2j21!a,r

212jaa,rr #

128pGja228pGjraa,r
. ~4.3!

Obviously asr→`, aa(r ),r must fall off faster thanr
21, so

that the denominator here is asymptotically positive by th
positivity of the asymptotic gravitational constant.

Now suppose that asymptoticallya2 decreases, which
means thataa,r,0 andaa,rr.0. It is then plain from Eq.
~2.10! that Tt

t2Tf
f,0 while from Eq. ~4.3! it is clear that

Tt
t2Tr

r.0. This would violate causality, and must be ex
cluded. Thus suppose the opposite, thata2 increases asymp-
totically so thata2,r.0 while a2,rr,0. Rewriting Eq.~4.3!
in the form

Tt
t2Tr

r5
e2l@ja2,rr2a,r

2#

128pGja224pGjra2,r
, ~4.4!

we see that nowTt
t2Tf

f.0 whileTt
t2Tr

r,0. This new pos-
sibility is thus also ruled out by causality. Likewise, wer
a2 to oscillate indefinitely asr→`, a similar clash would
ensue over part of each cycle. We must thus conclude t
a is strictly constant forr greater than some finite but large
r * . A Taylor expansion ofa(r ) about a point to the right of
r * must obviously sum up to the asymptotic valuea(`).
Now the differential equation fora, Eq. ~2.14!, has singular
points only atr5r H and r5` (R must be bounded in the
black hole exterior while we assume thatV is a regular func-
tion!. Thus the series must converge to the correcta(r ) all
the way to the horizon anda[ const so that there is no hair.

Summarizing this and the last section,there exists no
static spherically symmetric neutral or charged black ho
endowed with nontrivial hair in the form of a neutral scala
field nonminimally coupled to gravity withj>1/2and with a
non-negative and regular self-interaction potential.

V. NONMINIMALLY COUPLED „ANY j… CHARGED
SCALAR FIELD WITH SELF-INTERACTION

Next we consider charged scalar hair, possibly nonmin
mally coupled to gravity ~any j) and with a positive
semidefinite self-interaction potential assumed to be a reg
lar function of its argumenta2. We shall here invoke a new
strategy, namely looking at the analytic behavior of variou
quantities in the horizon’s vicinity, as dictated by the ver
nature of the horizon. The following two subsections conta
general conclusions about the horizon and its neighborho
which are independent of the matter content of the black ho
exterior, first in general and then for nonextremal blac
holes. These are extended to extremal black holes in S
VF. In this sectionQ(r ) denotes the charge of black hole
plus scalar field up to radial coordinater .

A. General properties of a spherical static event horizon

We return to Eq.~3.6! written as

e2l512
r H
r

1
8pG

r E
rH

r

Tt
tr 2dr. ~5.1!
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As anticipated already, the pointr5r H wheree2l vanishes
is to be interpreted as the location of the horizon. To see w
define a family of spherical hypersurfaces by the conditio
$;t; f (r )5 const% with f monotonic. Each value of the con
stant labels a different surface. The normal to each such
persurface is

nm5
] f

]xm 5~0,1,0,0! f 8. ~5.2!

Hence

nmn
m5e2l~ f 8!2 ~5.3!

which vanishes only forr5r H . This must thus be the loca-
tion of the horizon which is defined as a null surface~hence
null normal!.

Proceeding with the argument, assume thaten vanishes at
some pointr̄ . Then n→2` and n8→` as r→ r̄ from the
right. It is then obvious from Eq.~3.4! thate2l must vanish
as r→ r̄ sinceTr

r must be bounded. But sincee2l vanishes
only for r5r H , we see thatr̄5r H : e

2l vanishes wherever
en vanishes. The converse is also true: the horizonr5r H
must always be an infinite redshift surface withen50. For if
en were positive atr5r H , then according to the metric Eq
~2.1! the t direction would be timelike there, while theu and
f directions would be, as always, spacelike. But since t
horizon is a null surface, it must have a null tangent dire
tion, and this must obviously be thet direction. Thus it is
inconsistent to assume thatenÞ0 at r5r H .

B. Matter independent characterization
of nonextremal event horizon

SinceTt
t must be bounded on the horizon, we may wri

the first approximation~in Taylor’s sense! for e2l near the
horizon as

e2l5L~r2r H!1O@~r2r H!2#, L[
118pGTt

t~r H!r H
2

r H
.

~5.4!

Since e2l must be non-negative outside the horizon, w
learn thatL.0, that is,at every static spherically symmetric
event horizon

2~8pGrH
2 !21<Tt

t~r H!. ~5.5!

Note that the energy density at the horizon, if positive,
limited by the very condition of regularity at the horizon
The inequality is saturated for the extremal black hole; w
consider this case in Sec. VE below.

Under the assumption of asymptotic flatness, we can
tegrate Eq.~3.5! to get

n1l58pGE
r

`

r 8~Tt
t2Tr

r !eldr8. ~5.6!

Here theTm
n are finite everywhere, including at the horizon

andTt
t must vanish asymptotically faster than 1/r 3 in order

for el not to diverge at infinity@see Eq.~5.1!#. In view of Eq.
~2.24! the differenceTt

t2Tr
r vanishes at least as fast a
hy
ns
-
hy-

.

he
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1/r 3. We thus conclude thatn1l is regular everywhere,
except possibly on the horizon.

Now in view of Eq.~5.4! we get from Eq.~5.6!

n1l5const28pGrH
2

Tt
t~r H!2Tr

r~r H!

118pGTt
t~r H!r H

2 ln~r2r H!

1O~r2r H!. ~5.7!

But Eq. ~5.4! informs us that

l5const2 ln~r2r H!1O~r2r H!. ~5.8!

Thus

n5const1b ln~r2r H!1O~r2r H!,

b[
118pGTr

r~r H!r H
2

118pGTt
t~r H!r H

2 . ~5.9!

The value ofb is restricted by the requirement that the
scalar curvature

R5e2lS n91
1

2
n821

2

r
~n82l8!2

1

2
n8l81

2

r 2D2
2

r 2

~5.10!

be bounded on the horizon~this is the same as boundednes
of T). If we substitute here Eqs.~5.8! and ~5.9! we get

R52
2

r H
2 1L~r2r H!S 12 b~b21!

~r2r H!2
1

2

r H

b11

~r2r H!
1

2

r H
2 D .
~5.11!

Obviously the terms in Eq.~5.11! that diverge at the fastest
rate must cancel. Since we are considering a nonextrem
black hole,L.0, so we are left with the condition

b~b21!50. ~5.12!

The alternativeb50 is excluded by the requirement~Sec.
VA ! that en50 at the horizon. Thus necessarilyb51. We
thus recover Eq.~2.17!. In addition, we learn that

en5N~r2r H!1O„~r2r H!2…, ~5.13!

whereN denotes a positive constant.

C. At is bounded on the horizon

Our choice of gauge in Sec. II A does not guarantee th
At(`)50. For that same gauge transformation with
L5const3t which we used to makec static adds a constant
to At , and so may makeAt(`)Þ0. To show this does not
happen in a physically acceptable solution, we assume o
erwise and exhibit a contradiction. Thus supposeAt(`)Þ0
with At ,r and At ,rr vanishing asymptotically. Then it fol-
lows from Maxwell’s Eq. ~2.16! that a(`)50 so that all
derivatives ofa vanish asymptotically. Putting this fact to-
gether with the requirement from asymptotic flatness th
Tt
t→0 into Eq.~2.12!, we see that the potential must satisfy

V(0)50. But the potential is positive semidefinite so that w
must also require thatV̇(0)50.
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Turn now to the scalar equation Eq.~2.14! and realize that
because of the asymptotic vanishing ofR, the equation must
reduce asr→` to

a,rr12r21a,r2q2At~`!2a50 ~5.14!

with general solution

a5Kr21sin@qAt~`!r1x#, ~5.15!

whereK and x are integration constants. Although thisa
falls off asymptotically, it does so too slowly. The electri
charge density it implies,

r}q2Ata
2}r22sin2@qAt~`!r1x# ~5.16!

leads to a total charge which diverges asymptotically asr .
The implication that the black hole is surrounded by a clo
with infinite charge is clearly physically unacceptable. W
conclude that the assumptionAt(`)Þ0 is incompatible with
a physically acceptable solution. We shall thus assu
henceforth thatAt(`)50.

We shall now prove thatuAtu is a monotonically decreas-
ing function of r . F tr must obviously vanish at spatial infin-
ity. Consider the case thatAt is of one sign throughout and
with no loss of generality, assume thatAt is non-negative.
Assume further thatAt has an extremum at some poin
r5 r̂ outside of the horizon. But according to Eq.~2.16!, at
any extremum sgn(At ,rr )5 sgn(At) so that an extremum
must be a minimum. On the other hand, sinceAt vanishes
asymptotically, it cannot have a minimum without also ha
ing a maximum. There is thus a contradiction which signa
the incorrectness of the assumption that there is an ex
mum.

WhenAt can change sign, assume with no loss of gen
ality thatAt changes from negative to positive with increa
ing r . In that caseAt would have to attain a positive maxi-
mum in order forAt→0 asr→`. But the previous argument
shows thatAt is forbidden positive maxima. ThusuAtu cannot
change sign. It follows from the preceding argument th
uAtu must be monotonically decreasing inr .

Introduce now the set of orthonormal differential forms

dt̂52en/2dt,

dr̂5el/2dr,

dû5rdu,

df̂5rsinudf. ~5.17!

The physical components of the Faraday tensor,F̂mn , are

related to the coordinates components byF̂mndv̂m

`dv̂n5Fmndx
m`dxn, so that

F̂ tre
~n1l!/25F tr . ~5.18!

The physical componentF̂ tr must be finite. From Eqs.~5.4!
and ~5.13! we see thate(n1l)/2 is bounded at the horizon.
ThusAt ,r52F tr must be bounded at the horizon. Integra
ing it once we obtain

At5 const2const3~r2r H!, r→r H . ~5.19!
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This completes our proof.

D. Proof for nonextremal black hole

First consider the Maxwell equation~2.16!. We know that
At ,r must be bounded on the horizon, so that even ifAt ,rr
diverges there, it can only do so slower than (r2r H)

21.
Now sinceel diverges as (r2r H)

21 while (n1l)8 remains
bounded,a must vanish on the horizon; otherwise, the las
term in the equation would blow up without being balanced

We now look at the scalar equation~2.14!. If the potential
is regular as assumed,V̇ has to be bounded asa→0 at the
horizon. The curvatureR is likewise bounded by assumption
of a regular horizon. Therefore, according to Eqs.~5.13! and
~5.19!, the last term of the equation is dominated by th
factor proportional toq2. It follows from Eq.~5.4! that near
the horizon the scalar equation has the limiting form

a,rr1~r2r H!21a,r1~LN!21q2At~r H!2~r2r H!22a50.
~5.20!

The two solutions of this Euler equation are (r2r H)
6ıa with

a[qAt(r H)(NL)
21/2. Combining them we get the general

solution

a~r !5BsinF, F[a ln@~r2r H!/D# ~5.21!

with B andD arbitrary constants.
Obviously for no choice of the constants doesa(r ) vanish

for r→0 as required. Not only that, but when we substitut
this a(r ) into the expressions~2.10!, ~2.11!, and ~2.12! for
the components ofTm

n every derivative ofa brings out a
factor (r2r H)

21, so that the expressions are singular at th
horizon. For instance, from Eqs.~2.10!, ~2.11!, ~5.4!, and
~5.9! we get, near the horizon,

Tr
r2Tf

f52
LB2

r2r H

asinF~jcosF1asinF!1O~r2r H!

128pGjB2sin2F
.

~5.22!

ObviouslyTr
r2Tf

f cannot remain bounded on the horizon a
required. Thus the solution with regular horizon we hav
been assuming is untenable.

In conclusion there exists no nonextremal static and
spherical charged black hole endowed with hair in the form
of a charged scalar field, whether minimally or nonmini-
mally coupled to gravity, and with a regular positive
semidefinite self-interaction potential.

E. Matter independent characterization
of extremal event horizon

When inequality~5.5! is saturated, namely when

Tt
t~r H!52~8pGrH

2 !21, ~5.23!

we must continue the expansion ofe2l to second order:

e2l5L~r2r H!21O„~r2r H!3…;

L[
4pGrH

3Tt
t8~r H!21

r H
2 . ~5.24!
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Becausee2l has to be positive forr.r H , L.0 or

Tt
t8~r H!.~4pGrH

3 !21. ~5.25!

Of course Eq.~2.17! must still hold since the saturated cas
is a special member of the black hole family which can b
reached continuously from the main branch. We note th
Eqs.~5.23!, ~5.24! and~2.17! are all satisfied at the extrema
Reissner-Nordstro¨m and BMBB black hole horizons.

Substituting these results in Einstein’s equation~3.4!, ex-
pandingTr

r about its value atr5r H , solving for n8, and
integrating we have

n5const12k ln~r2r H!1O~r2r H!,

k5
4pGrH

3Tr
r8~r H!21

4pGrH
3Tt

t8~r H!21
. ~5.26!

We now show that causality restricts the possible values
k.

Assume thatTt
t8(r H)ÞTr

r8(r H). Then in light of Eq.
~2.17! we may expand near the horizon

Tt
t~r !2Tr

r~r !5~Tt
t82Tr

r8!urH~r2r H!1O„~r2r H!2….
~5.27!

BecauseTt
t(r H),0, Tt

t(r ) must be negative in a neighbor
hood of the horizon. The causality condition~2.25! then tells
us that in that same neighborhood,Tt

t(r ),Tr
r(r ). Then Eq.

~5.27! implies thatTr
r8(r H).Tt

t8(r H). In light of Eq. ~5.25!
this means thatk.1 in Eq. ~5.26!.

Thus the assumptionTt
t8(r H)ÞTr

r8(r H) implies thaten

vanishes at the horizon faster than (r2r H)
2 @presumably as

(r2r H)
4 if the metric coefficients are to avoid branch poin

at the horizon and if the metric is not to change signatu
upon traversal of the horizon#. However, there is nothing
wrong with the possibilityTt

t8(r H)5Tr
r8(r H); it would sim-

ply mean that the second order term in Eq.~5.27! is not
allowed to be positive. In factTt

t8(r H)5Tr
r8(r H), which cor-

responds tok51, is attained at the extremal Reissne
Nordström and BMBB horizons. In view of all these facts w
find it natural to define extremal black holes as those ch
acterized by Eqs.~5.23!, ~5.24! and ~2.17! together with

en5N~r2r H!21O„~r2r H!3…, ~5.28!

whereN is a positive constant. Higher order black hole
with k52,3, . . . may notexist, just as third- and higher-
order phase transitions do not.

F. Proof for extremal black hole

With the extremal black hole forms of the metric near th
horizon, Eqs.~5.24! and ~5.28!, no change transpires in the
conclusions of Sec. VC, namely, the fieldAt must be mono-
tonic in r , and from the regularity of the physical compo
nents ofFmn one concludes thatAt attains a bounded and
nonvanishing value at the horizon. Repeating the argum
in Sec. VD with the new forms of the metric coefficients
one concludes thata must vanish at the horizon faster tha
(r2r H)

1/2 in order for the Maxwell equation~2.16! to hold.
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With this in mind let us look at the scalar equation~2.14!
in the neighborhood of the horizon. Recall thatR and V̇(0)
must be bounded, so the corresponding terms are negligib
compared with theq2 term. Substituting Eqs.~5.24! and
~5.28! and retaining the leading contributions we get

a,rr12~r2r H!21a,r1~LN!21q2At~r H!2~r2r H!24a50
~5.29!

which is to be contrasted with Eq.~5.20!. In the variable
u5(r2r H)

21 we have

a,uu1ā2a50, ā[qAt~r H!~LN!21/2 ~5.30!

with the general solution

a~r !5BsinF̄, F̄[ā~r2r H!211z, ~5.31!

whereB and z are integration constants. For no choice of
B andz doesa vanish forr→r H as required. In addition, its
very singular derivative leads, for instance, to the expressio

Tr
r2Tf

f5
LB2

~r2r H!2
āsinF̄~2jcosF̄2āsinF̄!1O„~r2r H!2…

128pGjB2sin2F̄
~5.32!

which is incompatible with a regular horizon. Thus the theo
rem stated at the end of Sec. VD is extended to extrem
black holes.

VI. CONCLUSIONS AND SPECULATIONS

We have extended to charged static spherical black hole
the exclusion of hair in the form of a neutral scalar multiplet
with action which need not be quadratic in the derivatives
From this theorem we have excluded, for charged or neutr
static spherical black holes, hair in the form of a neutra
scalar field with standard kinetic action, positive semidefinite
self-interaction potential, and nonminimal coupling to grav-

ity with j,0 andj> 1
2. Finally, for charged static spherical

black holes, we have excluded hair in the form of a charge
scalar field with standard kinetic action, regular self-
interaction potential, and nonminimal coupling to gravity
with any j.

Extension of the theorem excluding the neutral scalar fiel

to the full range 0,j, 1
2 is blocked by the existence of the

BMBB black hole, an extremal spherical black hole solution

for the casej5 1
6 with no self-interaction. Xanthopoulos and

Zannias@15,16# have shown that there are no more static
black holes in this case, even if extremality or spherical sym

metry are given up. It may be thatj5 1
6 is the unique value

for which nonminimally coupled scalar black hole hair ap-
pears. In that case it should not be prohibitively difficult to
produce a single theorem proving this. But if there exists
whole family of black holes with nonminimally coupled hair

within the domain 0,j, 1
2, of which the BMBB black hole

is just one example, it would seem that at least two theorem
involving different approaches would be needed to exclud
the unoccupied hair parameter space on both sides of t
putative family.

It seems unlikely that slightly aspherical charged black
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holes with self-interacting neutral or charged scalar hair e
ist. For one would expect any such family to be governed
a parameter quantifying the departure from spherical symm
try. This parameter should reach the spherical black ho
Yet the spherical example is rigorously ruled out by o
theorems. This heuristic argument obviously cannot be
plied to very aspherical black holes, or to those which sho
a topological distinction from the spherical one. Such is t
case of the AGK black hole, a charged black hole with min
mally coupled self-interacting~Higgs! scalar hair in the form
of a local cosmic string which transfixes the black hol
Strictly speaking, our third theorem does not rule out such
solution because of its lack of spherical symmetry and a
ymptotic flatness. But it is really the distinct topology of th
scalar field phase with its multiple connectivity around th
string which makes our proof far from relevant.

One can speculate on more complicated situations. S
pose a black hole forms with two local Higgs strings throug
it. The situation would seem unstable. Strings with the sa
sense of winding of the phase repel each other, so the
strings will become antiparallel and approach. If the windin
numbers were originally equal in absolute value, the strin
will annihilate with the Higgs phase topology becomin
simple. The configuration will then relax. But by our third
theorem the end point cannot be a spherical black hole w
Higgs hair. With due caution we infer that the black hole w
swallow part of the field and jettison the rest, so that we e
up with a Reissner-Nordstro¨m hole. By extension we may
surmise that if a black hole is transfixed by an even numb
of unit winding-number strings, it will end up with no scala
field, whereas if it has an odd number, it will end up in th
AGK configuration.
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APPENDIX: THE ENERGY CONDITIONS

At a given spacetime event consider the eigenvalue pr
lem

Tm
nwm5swn. ~A1!

BecauseTm
n is a 434 matrix, there must be four distinc

eigenvectorswm. Obviously
x-
by
e-
le.
ur
ap-
w
he
i-

e.
a
s-
e
e

up-
h
me
two
g
gs
g

ith
ill
nd

er
r
e

d
u-

ob-

t

0[wn
~2!Tm

nw~1!m2wn
~1!Tm

nw~2!m5~s~1!2s~2!!w~2!nw
~1!n.
~A2!

Hence for distinct eigenvalues the eigenvectors are orthog
nal with respect to the spacetime metric~for degenerate ei-
genvalues they can be made orthogonal by the Schmidt p
cedure!. We gloss over the possibility that some eigenvecto
may be null~radiative solutions!. Thus one must be timelike;
call it w(0)m and normalize so thatw(0)mwm

(0)521. The other
three must be spacelike; call them$w(1)m,w(2)m,w(3)m% and
normalize them so thatw(1)mwm

(1)511, etc.
The four eigenvectors obviously furnish a basis for writ

ing any four-vector, in particular the four-velocity of an ob-
server:

um5c~0!w~0!m1S i
3c~ i !w~ i !m, ~A3!

where obviously

~c~0!!25S i
3~c~ i !!211 ~A4!

in order to satisfyumu
m521. The various choices of

$c( i )% label all possible observers at a given event.
Now use Eqs.~A1!, ~A3!, and ~A4! and the normaliza-

tions to reexpress~see Sec. IIC!

j m j m52~s0!22S i~c
~ i !!2@~s~0!!22~s~ i !!2# ~A5!

and

«[Tmnu
mun52s02S i~c

~ i !!2~s~0!2s~ i !!. ~A6!

We now see that the energy conditions

us~0!u>$us~ i !u% ~A7!

are necessary and sufficient forj m j m to be nonpositive for all
observers~all choices of$c( i )%) and for the energy density
« to be of like sign~that of2s (0)) for all observers. Like-
wise j m j m<0 for all observers is a necessary and sufficien
condition for the energy conditions to be satisfied. And con
sensus of all observers as to the sign of the energy density
necessary and sufficient for the energy conditions to be s
isfied and the causality conditionj m j m<0 to hold for all
observers.

In the static spherically symmetric situation considered i
Sec. IIC, theTm

n is diagonal, so thats (0)5Tt
t , s (1)5Tr

r ,
s (2)5s (3)5Tu

u5Tf
f We thus recover the energy conditions
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