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No hair for spherical black holes: Charged and nonminimally coupled scalar field
with self-interaction
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We prove three theorems in general relativity which rule out classical scalar hair of static, spherically
symmetric, possibly electrically charged black holes. We first generalize Bekenstein’s no-hair theorem for a
multiplet of minimally coupled real scalar fields with not necessarily quadratic action to the case of a charged
black hole. We then use a conformal map of the geometry to convert the problem of a ctargedtra)
black hole with hair in the form of a neutral self-interacting scalar field nonminimally coupled to gravity to the
preceding problem, thus establishing a no-hair theorem for the cases with a nonminimal coupling parameter
£<0 or é=1/2. The proof also makes use of a causality requirement on the field configuration. Finally, from
the required behavior of the fields at the horizon and infinity we exclude hair of a charged black hole in the
form of a charged self-interacting scalar field nonminimally coupled to gravity for any
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[. INTRODUCTION scalar fields endowed with positive semidefinite self-
interaction potentials of otherwise arbitrary shape. The last
“Black holes have no hair’ was introduced by Wheeler mentioned theorem applies also to fields whose Lagrangians

in the early 1970s as a principle predicting the simplicity ofare not necessarily quadratic in the gradients of the fields.
the stationary black hole family. The proliferation in the Whereas simple scalar fields are covered by all these
1990s of stationary black hole solutions with “hair” of vari- theorems, various complications such as charge of the field

ous sorty1] may give the impression that the principle has@nd the hole, nonminimal coupling to gravity, etc., are not.
fallen by the wayside. However, this is emphatically not theEarly works in this more challenging direction are the papers

case for scalar field hair, possibly accompanied by Abeliarffy X@nthopoulos and Zannig$5] and Zanniag16] which
gauge fields. The only exceptions known to “black holesestabllsh the uniqueness of the BMBB black hole among the

have no hair’ in this department are the Bronnikov- asymptotically flat static solutions of the Einstein atwh-
Melnikov-Bocharova-Bekenstein(BMBB) spherical ex- formal scalar field equations, and the recent theorem by Saa

. . ' [17] which excludes, for spherical black holes, a broader, but
tremal black hole with electric charge and a scalar field nonga limited, class of nonminimally coupled neutral scalar

minimally co'upled to .gravity in conformally invariant hair (see Sec. IVA
fashion[2,3], its magnetic monopole extensi¢d], and the In the present work we consider whether a charged black
Achucarro-Gregory-Kuijken (AGK) black hole [5], &  pole may possess hair in the form of a scalar field with self-
charged black hole transfixed by a Higgs local cosmic strinGinteraction and with nonminimal coupling to gravity and
Even these examples are not contrary to the spirit of thauge covariant coupling to the electromagnetic field. The
no-hair conjecture: the first seems to be unstdble the  motivation for looking at nonminimal gravitational coupling
second is too similar to the first to escape its fate, while thgs supplied by the existence of the BMBB black hole solution
third is not asymptotically flat. What is the evidence for “no with nonminimally coupled scalar hair. The motivation for
scalar hair” for black holes? considering coupling of the scalar to the electromagnetic
The first no-scalar hair theorems applied to the commoriield comes from the existence of the AGK black hole. Since
massless scalar field?,8] and to the neutral Klein-Gordon nonminimal gravitational coupling entails not necessarily
field [8,9]. The latter theorem’s proof is also found to work positive field energy, one loses one of the earlier tools for
for the neutral scalar field with a monotonically increasingproving no hair theoremgl4]. Our assumption of spherical
self-interacting potential. Little progress was made in ex-symmetry simplifies things enough to allow us to prove sev-
tending these theorems during the 1970s and 80s. A notabtgal useful theorems.
exception was the Adler-Pearson theorgb®] which ex- In Sec. Il we formulate the equations of the scalar field
cludes charged Higgs hair for a charged black hole. Thigoupled nonminimally to gravity and gauge covariantly to
theorem has, however, occasionally been regarded as flawgae Maxwell field, write down the energy-momentum tensor,
[11]. Lately theorems by Heuslgfi2], Sudarsky[13], and and discuss restrictions on it from regularity of the horizon
Bekensteir{ 14] have become available which exclude elec-and causality requirements. The last, in particular, do not
trically neutral black holes with hair as minimally coupled seem to have been taken advantage of by previous workers.
Section 1ll generalizes a theorem by one of[ag] which
excludes hair in the form of a multiplet of mutually interact-
:Electronic address: Mayo@venus.fiz.huji.ac.il ing real scalar fields with possibly nonquadratic kinetic ac-
Electronic address: bekenste@vms.huiji.ac.il tion. The theorem is here extended to an electrically charged
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black hole, still under the assumption of positivity of energywhere is the complex scalar fieldy,, the Maxwell vector

of the fields. The extended theorem provides one of the toolpotential,D ,=d,—igA,, the gauge covariant derivativey (
for proving, in Sec. IV, a theorem ruling out, for an electri- is the charg)g F AM Y « the Faraday field tensor,
cally charged or neutral black hole, hair in the form of aVv=V(|4|?) the self-mteractmn potentlalR the scalar curva-
neutral scalar field with standard quadratic kinetic action, aure, and¢ the strength of the nonminimal coupling to grav-
positive semidefinite self-interacting potential, and nonmini-ity. We assume throughout th¥tis everywhere regular
mal coupling to gravity. The theorem is proved for the and its first derivative bounded for finite argumeas well
ranges£<0 or £= 1 of the nonminimal coupling parameter; as positive semidefinite.

its proof uses a conformal map to convert the problem to the The energy-momentum tensor that follows from the ac-
one dealt with by the theorem of Sec. Il Also central to itstion is
proof are the causality restrictions on the energy-momentum
tensor. In SecV a theorem is proved which rules out, for an
electrically charged black hole, hair in the form of a charged =
scalar field with standard kinetic action, a positive semidefi-

1 1
D,u(ﬂ(DV(ﬂ)* + E(D,u(ﬂ)* Dvw_ EDalﬂ(Dalp)* gp,v

nite self-interaction potential, and nonminimal coupling to =&Y Y) i HEDW )9, T EWT )Gy,
gravity with any&. The proof, which is given separately for 1
nonextremal and extremal black holes, centers on the behav- - >vg,,+ TEN, (2.9

ior of the various fields near the horizon and at infinity. Sec-
tion VI summarizes our findings and speculates on their im-

plications. whereG,, denotes the Einstein tensor and

1 1
II. BASIC EQUATIONS AND PHYSICAL RESTRICTIONS Tfﬂ“):ﬂ N ZgMVF“BFaﬁ . (2.5

Here we derive the energy-momentum tensor from the

Maxwell-charged scalar action with self-interaction and non-Here and elsewhetd is the d’Alembertian. By virtue of the

minimal coupling to gravity. Then we derive the field equa- symmetries, the components of the electromagnetic energy-
tions for the scalar and the Maxwell fields. Throughout wemomentum tensor satisfyl 8]

use units withc=1.

2
Q 7, (2.6

r_ t_ 0__ —
T(emr = T(emi— T(em)e_ —Temé_ P

A. The energy-momentum tensor
We assume the existence of an asymptotically flat joint
solution of the Einstein, scalar field, and Maxwell equationswhereQ(r) is the electric charge enclosed by the sphere of
having the character of a static, spherically symmetricradiusr. EliminatingR from Eq.(2.4) by means of the trace
charged black hole spacetime. The symmetries entitle us tof Einstein’s equationdR=—87GT, we obtain
write the metric outside the horizon as

1 1
d’=—e"dt?+erdr2+r3(de?+sirfede?) (2.1 T,(1-87GEY" ) =5D,(D"§)* + 5 (D)D"

with »(r) and A\(r) both non-negative and obeying 1
v(r),)\(r)~0(r_‘1) asr—oo because oj asymptotic flatness. - EDadl(D“w)* 5, — &P~ ¢)f;
The event horizon is at=r, wheree M'H)=0 (see Sec.

V A below). In case there are several such zeroes, the hori- 1
zon corresponds to the outer one. Anticipating the results of +E0(Y* ¢) 6, — V5V+T(em);-
Secs. VB and VE, we note that near the event horizon of a
black hole of nonextremal or extremal kind 2.7
S R nonextremal, In light of the angular and temporal symmetri€g, is the
e~e "~ (r—ry)? extremal. (2.2) only nonvanishing field component. Thus oy and A,

need be nonvanishing. Then the gauge transformation
These results apply whatever the matter content of the spacé,—A,+A , with A=—[A.dr removesA, . The newA,
time. must have the forni(r)+g(t) in order to give a stationary
The action of a charged scalar field with nonminimal cou-Fy. A further gauge transformation withh = — fg(t)dt
pling to gravity, gauge covariant coupling to electromagne-smakesA; static. In this second gauge any temporal variation
tism [or any U1) gauge field, and with a general self- of the phase ofy must be linear irt in order that both the
interaction potential is current and charge density be time independent. More pre-
cisely, the phase must kegr) — ot with o a real constant. A
1
Ssme=— Ej

last gauge transformation with=— wt/q reducesy to the
! FPF 5]\ —gd* 2.3
t8- ap | V90X, (2.3

Do (D*)* + ERyy™ +V(yy*) form y=a(r)e'*("), while merely adding a constant #g.
Now on the one hand, the radial current component is

Jr=1(¢* 9 p— ‘p’?r‘/’*):_zazé’r@- (2.9
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On the other hand, conservation of charge together with the C. Finiteness of T}, and the causality restriction

symmetries implies that There are two types of restrictions on the total energy-

momentum tensor which must be obeyed everywhere in the
black hole exterior and horizon in order for a solution to be

The constant here must vanish; otherwise charge would leaRhysically acceptable: boundedness of the mixed compo-
out continually to infinity. It follows from Eq(2.8) that  NentsT,, and the causality restriction.

cannot depend om, except possibly for jumps at nodes  Staticity and spherical symmetry imply that the only non-
where a=0. However, an arbitrary jump of through a Vanishing mixed components of ;, are T;, T{, and
node causes an unacceptable discontinuityinunless the  T§j=T4. Thus T,,T*f=(T})2+(T))*+(T))?+(T5)?. But
jump is by an odd multiple ofr in which case its effect on TaﬁT"‘B is a physical invariant and must thus be bounded
¥, is cancelled by the change in sign af, at the node. everywhere, including at the horizon: any divergence would
Accordingly, in all that follows we regarg as strictly con-  imply divergence of the curvature invaria@t,,G*". It fol-
stant(and thus irrelevantat the cost of allowinga(r) to  lows that themixedcomponentsT;, T, andTZ=T$ are all
change sign. Thus in our probleg henceforth denoted by bounded everywhere including at the horizéthis is no

a, is real whileA,, reduces to a static temporal component. longer true for a component liKg,,).

J.e*J/—g=const. (2.9

In what follows it will be convenient to look at the differ- Along with finiteness off , in general we should cite here
ences an important result to be obtained in Secs. VB and VE; it
, ) 4 5 2o has also been~noticed by Achucarro, Gregory, and Kuijken
T‘—T"’=§e‘“(2/r_v )aa,, QY/(4nr")+qe "Ara [5] and by Niez, Quevedo, and Sudarskg9]. For any
t ¢ 1-8nGéa® 1-87Géa® ' static and spherical black hole and for any matter content,
2.1
219 THr) =Ti(rn). (2.17)
(o (2é-Dai-gv+N) aa, +2¢aa, . _ . .
T—T,=e 1-8nGEa? Now consider the Poynting vector according to a physical
observer with four-velocity”
Zef VAZaZ )

L . .
(here and henceforti=4/dr), as well as at the negative of with ufu,, 1, and the associated energy density

the energy density e=T,uku". (2.19

_ 2 N/
zeﬂ(ZS 12)a,, +2§aa,”+2§(4/r A)aa, If >0 thenj* should be a nonspacelike four-vector, for in
1-87Géa this casej* defines a future-directed four-velocitiwith
2 4 282,27 positive time componenke), and on grounds of causality
_ E VrQUam) TqAa’e (2.12 this “velocity of transfer of energy” should not be superlu-

T

2 1-8nGéa’ minal. If s<0 the Poynting vector points into the past. We
still expect thatj* should be nonspacelike because the flow
B. The scalar-Maxwell field equations of negative energy can be interpreted as flow of positive

energy in the opposite space direction from that demarcarted
by j#. In other wordsj* should, in this case, point into the
2.13 past lightcone. Hence, for any observer we must have

The field equation fom that follows from Eq.(2.3) is

D,D*a—(£R+V)a=0,

- _ . T u,THu’<0. 2.2
whereV=gV(a?)/9a?. After substitution of the metric func- wovie (2.29
tions and simplification we get Now suppose that our observer moves in any way in the

TP equatorial plane#=0 in the hole’s exterior, Eq2.20 be-
8,0+ (L2(4+ v —\)a, — (ER+V-g2e "A)E"a=0.  comes

(2.19
t t\ 2 r 2 1) d\2
Finally the temporal component of the Maxwell equa- UU(TO)™+ WU (T) "+ uug(Ty)"<0. (221
tions, Substituting hereitu, from the normalization of the velocity
v ,=4md?, (2.15 utug+ urur+u¢u¢,: -1 (2.22

takes the form and rearranging the inequality gives

Acrr + (12 (4 —v' —N")A,,, — 47qa®eA=0.

(216) (T{)Zz Urur(T:)2+U¢U¢(T£)2

1+u'u,+uuy

(2.23

Note that wherg=0 the equations foA; and for the scalar
field decouple so that we can consider the two fields sepdn light of the positivity of u'u, and u¢u¢, it follows that
rately. inequality(2.21) or (2.20 can be true for any velocity only if
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O — |7 < | Tt = |T" —vl2
|T0| |T¢|\|Tt|/|Tr| (224) (T(S(:)D/: _ e_rz_(rZeV/2)/(p+T(SC);)_ (33)
The energy conditiong2.24 have been discussed by
Hawking and Ellig20] who, however, considered them only Herep=&E=—T®% is the (assumed positiyeenergy density
for the positive energy density case. When dealing with nonef the scalar fields. In order for the mass to be finite, we shall
minimal coupling to gravity, negative energy density is notrequire that asymptoticallp=O(r ~3). Now the positivity
excluded. In the Appendix we prove that either the energyf p, the relation(2.6) and the causality restrictiof2.25 for
conditions (2.24), or the causality conditiori2.20 for all  the overallT}, tell us thatp+T(%>0. Sincee” vanishes at
observers, are equivalent to consensus of all observers asite:-r, (see Sec. VA beloyw and must be positive for
the sign of the energy density. From all this itis clear that ther >r , | r2e”2 must grow withr at least sufficiently near the
energy conditiong2.24) are a must for a nonpathological horizon. It is then immediately obvious from Ed8.2) and
solution of the field equations, and henceforth we assumes 3) that sufficiently near the horizoR®®f and (T')" are
them to hold. 3 both negative.
The energy conditiont2.24 can also be stated as Asymptotic flatness considerations together with Egs.
. - C s (3.2 and (3.3 tell us that asr—o, TE¥=0(r"2) and
sgr(Ty) =sgn(T—T,)=sgn(T,—Tg). (229 (1)’ <0. From these follows that asymptotically

h e h he s TG >0 so thatTY must switch sign at some finite point
We stress that no assumption is made here about the sign pf. ence we infer that in some intermediate interval

the energy density-T!, so that these inequalities are more [Fa,ru], (T >0 and the point wherds®) changes sign
broadly valid than theweak energy conditionT;—T;=0 . %’ e[,r rb]r T s positive in[r..ry] '

. . . . Cc an . r c» .
which is sometimes invoked. Now it turns out that this last conclusion clashes with

Einstein's equations. The relevant one are
Ill. MINIMALLY COUPLED NEUTRAL SCALAR FIELD

WITH NONQUADRATIC ACTION 1 A} 1 2
Q e}\(r—z—T)——z_S’ﬂGTi— 87G| p+ %),
There exists a no-hair theorem for black holes which rules ™
out hair in the form of a minimally coupledo gravity), real roq 1 Q?
multiplet scalar field for any asymptotically flat, static, — e-* Y |- 5=87GT = 87TG( T(s0r — 4) ,
spherically symmetric neutral black holé4]. The field is rr r 87r

assumed to bear positive energy, but its field Lagrangian (3.4
need not be quadratic in the field derivatives. Here we ge
eralize that theorem to charged black hd2$], not only for
its intrinsic interest, but for use in our later theorems for
nonminimally coupled fields.

Consider the action for real scalar fieldg,y, ..., ac- e Ny +N)= —SWG(TE—TDr. (3.5
companied by an electromagnetic field

r‘\7\/hereQ, a constant in the present section as well as in Sec.
IV, is the total charge of the black hole. Sometimes the dif-
ference of these comes in handy:

Now by integrating Eq(3.4) out from the horizon radius,

ry, and solving fore® we obtain
S¢’X’__.:—j LT, ... X, "')+ﬁFaﬁFaﬁ) H g
A My 87wG (r Q2 2d
xy=gdx. (3.0 et =t [Pt ggya)ridn (36

Here £ is a function(which for static fields turns out to be where the integration constant has been set soetitatvan-
identical to the energy densjty and Z=g*#y, 4,5, ishes atry. It follows from Eq.(3.6) thate*=1 throughout
T=9"X,aX .5, aNAK=g**y, .1, ; are examples of the in- the black hole exterior.
variants that can be formed from first derivatives of the sca- Consider now the second Einstein equation. Since
lar fields. We do not assume that the kinetic part of theg 2w =0, but v’ (r) may diverge positively at=r, (see
scalar's Lagrangian density can be separated out, nor that$ec. VA below, we can write it as
is a quadratic form in first derivatives.

Assume the existence of a spherically symmetric static (sor GQ? 1
black hole solution with the said scalar fields as hair. Be- BrCT (W)~ 7=~ 2 .7
cause the scalar fields are assumed decoupled from the elec-
tromagnetic field, the energy-momentum tensor of the scalaBecause in the proximity of the horizoRf <0, we can
fields is conserved separately. From the radial component afifer that
the conservation lawr®®”. =0 together with the resuilt .
T(sck=T(9 which follows from the form ofS,, , ... and the GQ<ry 3.9
symmetries, one obtains, as[ib4], the results

A

so that trivially

—vl2
e [ -GQ* 1
T(s9r=— f r2e”?)’ pdr, 3.2 Q
r I.2 FH( ) p ( ) 73—+ 2r>0 (39)
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Now rewriting Eq.(3.4) we infer from Eq.(3.9) that,ina  a®—ox for r approaching from the right, it is evident that
region whereT ¢ >0, aa,, andaa,,, >0 near the singularity. We thus see from Eq.
o 6?1 3 (2.1)) in its variant form(4.3) that forr—r,, Ti—Tﬁ has a

e Vi . - . . .
202\ 1 _ (sor _ Sl 2 negativedefinite limit for eitheré<0 or £=1/2. However,
=|47GrT —+ + —>0. .
2 (re™ e T gy 2r)® T2 Eq. (2.17) tells us thatT{—T| must vanish at a regular
(3.10  spherical horizon. Thus for all black holes and 0 or

We found that in [re,ry], TE¥>0. Thus £=1 Q can blovy up inr e_[_rH ,) o_nly for phys_ically un-
(e~"212)(r2e”?)'>0 there. According to Eq(3.3 this acceptable sqlutlons. Additionally, & were .to diverge for
r—o, the variousT ,” would blow asymptotically. We con-

clude that() <« everywhere outside the black hole both for
£<0 and foré=1/2. And since() cannot vanish foE<0 we
ee that the map is regular for physically acceptable black
oles andé< 0.

Under the map the actiof2.3) together with the Hilbert-
Einstein action is transformed into

means that T¢Y)’<0 throughout[r.,r,]. However, we
determined that T®%)’'>0 throughout the encompassing
interval[r,,rp]. Thus there is a contradiction. The only way
to resolve it is to accept that the the scalar field compone
must be constant throughout the black hole exterior, taking
values such that all components Bf* vanish identically.
Such values must exist in order that the trivial solution of the
scalar field equation be possible in free empty space. It is this 1 - 1 o _
solution which served implicitly as an asymptotic boundary S= 16-G R\/—_gd"'x— EJ ((1+f)g“ﬁa,aa,5+v
condition in our argument. ™

Thus the unique asymptotically flat, static, spherically 1 _
symmetric black hole solution of the action (3.1) is the + gg“VEB‘sFaﬁFﬁ) J=gd*x,
Reissner-Nordstimm black hole with no scalar hair.

f=48wG&%a%(1—-8wGéa?) 2,
IV. NONMINIMALLY COUPLED (£<0 OR &= %)

NEUTRAL SCALAR FIELD WITH SELF-INTERACTION V_EV(1—87TG§a2)72. (4.2

A. Caseé¢<0

We now consider hair described by actié.3 with The transformed action is of the forit8.1). It is easily

checked that in the static situation the field bears positive

qE_Ohand a potentlalt LeSt”thed gyf 0 :;or ? black ?ﬁli th energy with respect tg_w, not least because of the assumed
which may or may not be chargec. In order to prove tha epositivity of V(a?). It is also easily seen that the map leaves

field can only be in a trivial c_onﬁguratlon, we shall US€ 8 e mixed componenfE.. unaffected. Hence the finiteness of
conformal map to show that in a new metric the action is I

equivalent to that considered in Sec. lll. This approach ha%?ese, and the causality sign relatigls25, can be used in

€ new geometry.
also been used by S&4a7], who also started from the theo- ? . .
rem discussed in Sec. Il in its neutral black hole version There is one little complication. We know théit goes to

[14] some finite positive value at infinittan oscillatory behavior

' is excluded by the argument to be given presently Rat
determines the effective gravitational constant, which cannot
oscillate spatially in a physical solutipnSince this value is
not necessarily unity, the asymptotically Minkowskian met-

With the proposed solution for the black hole with non-
minimally coupled and neutral scalar field hdia,g,,,}, we
construct the map

gﬂvﬁg_ﬂvzgwgy ric g, will be mapped into a not necessarily asymptotically
Minkowskiang,,, . Butg,,, is asymptotically flat. One need
O=1-87Géa. 4.1 only redefine globally the units of length and time to make it
of standard Minkowski form at infinity. With this proviso we
Forg_,w to be nondegenerate and of like signaturegig, may apply the theorem of Sec. Ill to show tretmust be

Q) must be strictly positive and boundedrir[ry,>). Ob-  constant.

viously O3>0 here. Saa leaves pending the question of Thusthere exists no static spherically symmetric neutral

boundedness of the conformal factor. We npvove that  or charged black hole endowed with nontrivial hair in the

Q is bounded in the black hole exterior both 80 and for ~ form of a neutral scalar field nonminimally coupled to grav-

i<é¢. ity with §<0 and with a non-negative self-interaction poten-
Q can blow up only whera does so. However, at such a tial.

pointr., a,, anda,,, would be even more singular than

Specifically, a,f/a2 and a,,, /a should both behave I_ike B. Case£= & with Q0

(r—ro) 2% We see from Egs(2.10 and (2.12 that if . )

r.>ry, the physical components of the energy-momentum Before start!ng that proqf, we comment on the asymptotlc

tensor definitely diverge at., which is unphysical(Sec. value of . This is determined by the value affor which

IIC). If r.=ry, the factore >, ameliorates the divergence. &r—0 anda,;,—0 asr—c according to the scalar equa-

According to Eq. (2.2 for a nonextremal black hole tion: Ed.(2.14. Sinceq=0 here andR—0 asymptotically,

e M~ (r—ry); this is not enough to cancel the divergence.a(«) is determined by (a(=)%)=0. Further, in order for

By contrast, for an extremal black hode *~(r —r,)2 so it  the energy density- T; to vanish in the same limitasymp-

would seem that the divergence is quenched. But sinctotic flatnesy we need, according to E€R.12), thatV(a?)
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itself vanish wher&/(a?) vanishes. In addition, this common  Let us first eliminater’ +\" from Eq. (2.1 with the

zero ofV andV must be such as to mak&>0. For other- help of Eq.(3.5 to get

wise theeffectivegravitational constant would be negative o e M(26—1)a,2+2¢aa,,, ]
far away from the black hole. One way to see this is to T,—T,= 1-8-Géa®—8-Géraa. "
imagine adding to the background of the black hole solution mGé mGéraa,,
with energy-momentum tensor given by E@.4) a small oy igusly ag — o, aa(r),, must fall off faster tham ~%, so
positive mass. In Egs(2.10 and (2.12 the additional  yat the denominator here is asymptotically positive by the
energy-momentum tensor would appear as contributions tgositivity of the asymptotic gravitational constant.

the numerators, with everything divided 1§y. In a region Now suppose that asymptoticallg’ decreases, which
where (<0 that mass would thus contribute to the means thatia,, <0 andaa,,,>0. It is then plain from Eq.
gravitational field as if it were negative. This contribution (2.10 that T{—T$<0 while from Eq. (4.3 it is clear that
will repel a second particle of the same kifieated as & T!_T'>0. This would violate causality, and must be ex-
test particle. Thus positive masses would repel each otheljyded. Thus suppose the opposite, taincreases asymp-

gravitationally and the effective gravitational constanttgtically so thata?,,>0 while a2,,,<0. Rewriting Eq.(4.3)
Ger=G(1—87Géa?) ! would be negative. This is cer- in the form

tainly unphysical if the region is far from the black hdie
could be our neighborho®dWe conclude that a physically

4.3

- 2 2
€ )\[ga :rr_a’r]

reasonable black hole solution must hae-0 asymptoti- Ti= I:1—87-rG§a2—47-rG§ra2,,’ (4.4
cally, which requires that botti(a?) andV(a?) have at least
one common rooa?< (87G¢) L. we see that now;— T$>0 while T{—T;<0. This new pos-

We now proceed to prove by contradiction tliatcannot  sibility is thus also ruled out by causality. Likewise, were
vanish in[ry,*). Suppose that there is a nontrivial physi- a? to oscillate indefinitely ag —<, a similar clash would
cally reasonable neutral black hole solution, for whidh  ensue over part of each cycle. We must thus conclude that
vanishes at some point=T (if there are several points we  a is strictly constant for greater than some finite but large
focus on therightmostone. It is obvious from Eq.2.10  r, . A Taylor expansion o&(r) about a point to the right of
that a,,+0 and 2f—v'#0 atT for if either vanished, r, must obviously sum up to the asymptotic valagx).
TE—Tﬁ would necessarily diverge there contrary to the re-Now the differential equation foa, Eq. (2.14), has singular
quirements in Sec. IIC. In fa@?,,<0 atr=T because&)  points only atr=ry andr=o (R must be bounded in the
must be positive as—» . black hole exterior while we assume thais a regular func-

Now a? cannot have a minimum. For at such pointtion). Thus the series must converge to the coredc) all
r=r, a,,=0, andaa,,>0. Obviouslyr#7 because we the way to the horizon ana= const so that there is no hair.
founda,, #0 at the latter. But then according to E¢8.10 Summarizing this and the last secticiere exists no
and (2.10), TE_TZ/? and T{—Tﬁ will have opposite signs at Static spher_ically sy_mmetri_c _neutral or charged black hole
r=f (we assume>1). But this contradicts the causality endowed with nontrivial hair in the form of a neutral scalar

restriction(2.25. Thus in our solutiora(r)? must be mono- ng_:ém;:i'\?émﬂg feouuﬁgdsg f%:waxlrtgc\?i/:ﬁ? })/tze ‘;’l‘gglw'th a
tonically decreasing. g 9 p -

It follows that near infinity we must havaa, <0 and

aa,,,>0. From asymptotic flatness it follows that~ 1/r2 V. NONMINIMALLY COUPLED  (ANY &) CHARGED
for sufficiently larger. Hence by Eq(2.10, T{—T£<O as- SCALAR FIELD WITH SELF-INTERACTION
ymptotically. By causalityfEq. (2.25] T;—T; must then be Next we consider charged scalar hair, possibly nonmini-

negative for large . This condition together with E¢3.5) mally coupled to gravity(any &) and with a positive
tells us that asymptotically (+\)’'>0. Substituting all semidefinite self-interaction potential assumed to be a regu-
these in Eq(2.11) we find thatT;—T;>0 for larger. But lar function of its argumena2. We shall here invoke a new
this contradicts our previous conclusion. Our suppositiorstrategy, namely looking at the analytic behavior of various
that ) vanishes somewhere is thus rebutted, at least foguantities in the horizon’s vicinity, as dictated by the very
£=1 q=0, andQ=#0. nature of the horizon. The following two subsections contain
Recalling from Sec. IVA that) cannot blow up in the general conclusions about the horizon and its neighborhood

black hole exterior, we see that the map used there is equalifhich are independent of the matter content of the black hole

valid in the present case. Thus by the same logic as used fxterior, first in general and then for nonextremal black
Sec. IVA, hair is excluded in the present case. holes. These are extended to extremal black holes in Sec.
VF. In this sectionQ(r) denotes the charge of black hole
[ lar fiel ial [
C. Case£= 1 with Q=0 plus scalar field up to radial coordinate

Thze vanishing 0lQ compromises our proof in Sec. IVB A General properties of a spherical static event horizon
thata“ has no minimum. We thus adopt here a new strategy

unrelated to the map4.1). Again the proof of this claim We return to Eq(3.6) written as

proceeds by contradiction. We assume there is a nontrivial r 847G [r

physically reasonable neutral black hole solution with e =1- "4 _J T{rzdr. (5.2
Q=0. rJrm
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As anticipated already, the point=r,, wheree * vanishes 1/r3. We thus conclude that+\ is regular everywhere,
is to be interpreted as the location of the horizon. To see whgxcept possibly on the horizon.

define a family of spherical hypersurfaces by the conditions Now in view of Eq.(5.4) we get from Eq.5.6)
{V1;f(r)= cons} with f monotonic. Each value of the con-
stant labels a different surface. The normal to each such hy- Ti(r) = Ti(ry)

_ 2 _
persurface is v+A=const-87Gry 1+87TGT§(rH)rﬁ In(r—ry)
of +O(r—ry). 5.
nMZWZ(O,l,O,Qf’. (5.2 (r=ru) 6.7
But Eq. (5.4) informs us that
Hence
N=const-In(r—ry)+O(r—ry). (5.8
r=e"Nf")? 5.3
nunt=e (I 6.3 Thus
which vanishes only for=r, . This must thus be the loca- B
tion of the horizon which is defined as a null surfabence v=constt In(r—ry)+O(r—ry),
null norma). ; 2
Proceeding with the argument, assume tfatanishes at B= 1+87GT(ru)rh (5.9

some pointr. Thenv— —% and v’ —% asr—r from the 1+8mGTy(ry)ry’
right. It is then obvious from Eq3.4) thate ™ must vanish ) ) _
asr—T sinceT' must be bounded. But sine * vanishes The value off is restricted by the requirement that the
only forr=r,, we see that=r,: e~ vanishes wherever Sc&lar curvature

e” vanishes. The converse is also true: the horizeiry

must always be an infinite redshift surface wéth=0. For if R=e
e” were positive at =r, then according to the metric Eq.

(2.1) thet direction would be timelike there, while theand (5.10

¢ directions would be, as always, spacelike. But since thgy, o nded on the horizdthis is the same as boundedness

horizon is a null surface, it must have a null tangent direc- ;
' of T). If we substitute here Eq$5.8) and (5.9 we get
tion, and this must obviously be thedirection. Thus it is ) a$5.8) 69 g
2 1 -1 2 +1 2
R:—r—2+L(r—rH)< ﬁ(ﬁ ) ad )

inconsistent to assume that#0 atr=ry.
= +— +—.
H 2(r=rp)® ry(r—ry) I’a

B. Matter independent characterization (5.12)
of nonextremal event horizon

//+1 /2_|_2 "\ "N+ 2
O L U A L s

Obviously the terms in Eq5.11) that diverge at the fastest
rate must cancel. Since we are considering a nonextremal
black hole,L>0, so we are left with the condition

SinceT; must be bounded on the horizon, we may write
the first approximatior{in Taylor’'s sensgfor e * near the

horizon as
1+87GTH(ry)r} AlA-1)=0. (.12
e M=L(r—ry)+0[(r—ry?], L= . _ _ _
My The alternative8=0 is excluded by the requiremefBec.
(5.4  VA) thate’=0 at the horizon. Thus necessarjy=1. We
. N . . . thus recover Eq(2.17). In addition, we learn that
Since e™* must be non-negative outside the horizon, we
learn thatL >0, that is,at every static spherically symmetric e’=N(r—ry)+0((r—rp)?, (5.13
event horizon
whereN denotes a positive constant.
—(87GrE) I<Ti(ry). (5.5

Note that the energy density at the horizon, if positive, is C. A is bounded on the horizon

limited by the very condition of regularity at the horizon.  Our choice of gauge in Sec. Il A does not guarantee that
The inequality is saturated for the extremal black hole; weA(<)=0. For that same gauge transformation with

consider this case in Sec. VE below. A =constxt which we used to make static adds a constant
Under the assumption of asymptotic flatness, we can into A;, and so may maké(=)+#0. To show this does not
tegrate Eq(3.5) to get happen in a physically acceptable solution, we assume oth-

erwise and exhibit a contradiction. Thus suppége») # 0
© Lt —r , with A;,, and A;,,, vanishing asymptotically. Then it fol-
VH\ZSWGI, r(T—Toetdr’. (5.6 lows frtorm MaX\;vgll’s Eq.(zg@ t)k:atpa(oo)zs(g so that all
derivatives ofa vanish asymptotically. Putting this fact to-
Here theT,, are finite everywhere, including at the horizon, gether with the requirement from asymptotic flatness that
and T! must vanish asymptotically faster tharr3in order ~ T;—0 into Eq.(2.12, we see that the potential must satisfy
for " not to diverge at infinitysee Eq(5.1)]. In view of Eq.  V(0)=0. But the potential is positive semidefinite so that we
(2.24) the differenceTi— T vanishes at least as fast as must also require thaf(0)=0.
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Turn now to the scalar equation E@.14) and realize that This completes our proof.
because of the asymptotic vanishingRyfthe equation must

reduce ag —o to D. Proof for nonextremal black hole
a,+2r ta,, —q?A(=)%a=0 (5.14 First consider the Maxwell equatidg.16. We know that
A:,, must be bounded on the horizon, so that eveA;if,
with general solution diverges there, it can only do so slower than—¢,) 1.

Now sincee diverges asf(—ry)~* while (v+\)’ remains
bounded,a must vanish on the horizon; otherwise, the last
term in the equation would blow up without being balanced.
We now look at the scalar equati¢®.14). If the potential

a=Kr IsifgAye)r+x], (5.15

whereK and y are integration constants. Although thas
falls off asymptotically, it does so too slowly. The electric

charge density it implies, is regular as assumet, has to be bounded a0 at the
horizon. The curvatur® is likewise bounded by assumption
pxgPA@ocr 2sin?[qA(©)r + x] (5.16  of a regular horizon. Therefore, according to E@s13 and

) ) ) (5.19, the last term of the equation is dominated by the
leads to a total charge which diverges asymptotically .as factor proportional tay2. It follows from Eq.(5.4) that near
with infinite charge is clearly physically unacceptable. We

conclude that the assumptidq() # 0 is incompatible with a,;+(r—ry) ta, +(LN) " 1g?A(ry)?(r—ry) 2a=0.
a physically acceptable solution. We shall thus assume (5.20
henceforth thaf\,()=0. ] ] ) e

We shall now prove thatd,| is a monotonically decreas- The two solutions of this Eu_le_r equation arery)~'* with
ing function ofr. F,, must obviously vanish at spatial infin- @=0Aq(rx)(NL)~* Combining them we get the general
ity. Consider the case tha, is of one sign throughout and, Solution
with no loss of generality, assume th& is non-negative.
Assume further thatA; has an extremum at some point
r=r outside of the horizon. But according to EQ.16), at
any extremum sgif;,,,)= sgn(d;) so that an extremum

must be a minimum. On the other hand, sirievanishes for r—0 as required. Not only that, but when we substitute

asymptotically, it cannot have a minimum without also hav-_ . : .
ing a maximum. There is thus a contradiction which signalsthIS a(r) into the exgressmn&.lp), (.2'1])’ and.(2.12 for
he components off, every derivative ofa brings out a

the incorrectness of the assumption that there is an extrx% 21 . )
actor (r—ry) -, so that the expressions are singular at the

mum. X .
WhenA; can change sign, assume with no loss of generhor'zon' For instance, frqm Eq#2.10, (2.1D, (5.4), and
(5.9 we get, near the horizon,

ality that A; changes from negative to positive with increas-
ing r. In that caseA; would have to attain a positive maxi- LB? asind(£cosh + asind)+ O(r —ryy)
mum in order forA;— 0 asr —o. But the previous argument T{_ng — — Ho
shows tha#\, is forbidden positive maxima. Thyé,| cannot r=ru 1-87G¢Bsir®
change sign. It follows from the preceding argument that (5.22
|A;] must be monotonically decreasingrin

Introduce now the set of orthonormal differential forms

a(ry=Bsin®, ®=aln[(r—ry)/D] (5.21)

with B andD arbitrary constants.
Obviously for no choice of the constants d@gs) vanish

ObvioustT{—Tg cannot remain bounded on the horizon as
required. Thus the solution with regular horizon we have

di= —e”2dt, been assuming is untenable.
In conclusion there exists no nonextremal static and
dr=eMadr, spherical charged black hole endowed with hair in the form
of a charged scalar field, whether minimally or nonmini-
dfg:rdg, mally coupled to gravity, and with a regular positive
semidefinite self-interaction potential.
dg=rsindd¢. (5.17
R E. Matter independent characterization
The physical components of the Faraday tensqy,, are of extremal event horizon
related to the coordinates components Wy, ,do* When inequality(5.5) is saturated, namely when

Ndo"=F ,,dx*/\dx", so that
. Ti(ry)=—(87Grj) 4, (5.23
Foe MV2=F, . (5.18 e :

] - o we must continue the expansion@f* to second order:

The physical componeri,, must be finite. From Eqg5.4)

and (5.13 we see thae!”*N’2 is bounded at the horizon. e M =L(r—ry)2+0((r—ry)3);
ThusA;,,= —F must be bounded at the horizon. Integrat-
ing it once we obtain AxGriTV (ry)—1

L= )
A= const-const (r—ry), r—ry. (5.19 MH

(5.29
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Becausee * has to be positive for>r,, £>0 or With this in mind let us look at the scalar equati¢hl4)
. 3.1 in the neighborhood of the horizon. Recall tiand V(0)
Ty (rp)>(47Gry) -~ (529 must be bounded, so the corresponding terms are negligible

, ) compared with theg? term. Substituting Eqs(5.24 and
Of course EQq(2.17 must still hold since the saturated case (5.28 and retaining the leading contributions we get
is a special member of the black hole family which can be

reached continuously from the main branch. We note thata,,, +2(r—ry) ta, +(LN) "1g?A(ry)2(r—ry) " %a=0

Egs.(5.23, (5.24 and(2.17) are all satisfied at the extremal (5.29

Reissner-Nordstrmm and BMBB black hole horizons. o ] )
Substituting these results in Einstein’s equatidm), ex- which is to be contrasted with E¢5.20. In the variable

. . . —(r — -1
panding T' about its value at=r,,, solving for »’, and U=(r—rn) ~we have

integrating we have a, +a?a=0, a=qA(ry)(LN) 12 (5.30
v=constt 2«In(r —ry) +O(r —ry), with the general solution
_47TGFaT:'(rH)—1 (5.26 a(r)=Bsind, ®=a(r—ry) +¢, (5.30)

K= 3t .
47GrT, (ry)—1 . . .
mGraT () where 5 and { are integration constants. For no choice of

We now show that causality restricts the possible values of @nd¢ doesa vanish forr —ry, as required. In addition, its
K. very singular derivative leads, for instance, to the expression
Assume thatT{(r) =T/’ (ry). Then in light of Eg. > —. — — — 2
(2.17) we may expand near the horizon T _T¢= LB , aS|n<I>(2§cosl>—aS|n<IJ)+Cl((r—rH) )
: : T (r=ry) 1—87G B2Sintd
Tt(r)_T;(r):(Tt,_T;’)er(r_rH)+O((r_rH)2)- (5.32

5.2 o . . .
(.29 which is incompatible with a regular horizon. Thus the theo-
BecauseT!(ry)<0, T{(r) must be negative in a neighbor- €M stated at the end of Sec. VD is extended to extremal

hood of the horizon. The causality conditi@25 then tells ~ black holes.
us that in that same neighborhodt(r)<T(r). Then Eq.
(5.27 implies thatT}’(ry)>T; (ry). In light of Eq. (5.25 VI. CONCLUSIONS AND SPECULATIONS

this means thak>1 in Eﬂ- (5.26. o We have extended to charged static spherical black holes
Thus the assumptio,’(ry) #T;'(ry)_implies thate”  the exclusion of hair in the form of a neutral scalar multiplet
vanishes at the horizon faster than-(r;)* [presumably as with action which need not be quadratic in the derivatives.
(r—ry)* if the metric coefficients are to avoid branch points From this theorem we have excluded, for charged or neutral
at the horizon and if the metric is not to change signaturestatic spherical black holes, hair in the form of a neutral
upon traversal of the horizgnHowever, there is nothing scalar field with standard kinetic action, positive semidefinite
wrong with the possibilityTy'(r,;) =T}’ (ry); it would sim-  self-interaction potential, and nonminimal coupling to grav-
ply mean that the second otrfjer term in E§.27) is not iy with ¢<0 andé=1. Finally, for charged static spherical
allowed to be positive. In fack; (1) =T;"(rw), which cor- pjacy holes, we have excluded hair in the form of a charged

responds tox=1, is aftained at the extremal Reissner-gcajar field with standard kinetic action, regular self-
Nordstran and BMBB horizons. In view of all these facts we jnteraction potential, and nonminimal coupling to gravity

find it natural to define extremal black holes as those charyi any £.
acterized by Eqs5.23, (5.24 and(2.17) together with Extension of the theorem excluding the neutral scalar field
e’ =Mr—ry)2+0((r—ry)), (5.28 to the full range 6<£<3 is blocked by the existence of the
BMBB black hole, an extremal spherical black hole solution
where N is a positive constant. Higher order black holesfor the caset= 3 with no self-interaction. Xanthopoulos and

with k=23, ... may notexist, just as third- and higher- Zannias[15,16] have shown that there are no more static

order phase transitions do not. black holes in this case, even if extremality or spherical sym-
metry are given up. It may be thgt= £ is the unique value

F. Proof for extremal black hole for which nonminimally coupled scalar black hole hair ap-

With the extremal black hole forms of the metric near thePears. In that case it should not be prohibitively difficult to
horizon, Egs(5.24) and (5.28, no change transpires in the Produce a single theorem proving this. But if there exists a
conclusions of Sec. V C, namely, the figdg must be mono- whole family of black holes with nonminimally coupled hair
tonic in r, and from the regularity of the physical compo- within the domain 6<£< 3, of which the BMBB black hole
nents ofF,, one concludes thaA; attains a bounded and is just one example, it would seem that at least two theorems
nonvanishing value at the horizon. Repeating the argumenivolving different approaches would be needed to exclude
in Sec. VD with the new forms of the metric coefficients, the unoccupied hair parameter space on both sides of the
one concludes tha must vanish at the horizon faster than putative family.

(r—rp)Y¥2in order for the Maxwell equatiof2.16) to hold. It seems unlikely that slightly aspherical charged black
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holes with self-interacting neutral or charged scalar hair ex- OEW(VZ)TIZW(DM_Wsjl)TZW(z)l’v:(0-(1)_0-(2))W(2)VW(1)V_

ist. For one would expect any such family to be governed by (A2)

a parameter quantifying the departure from spherical symme-

try. This parameter should reach the spherical black holgdence for distinct eigenvalues the eigenvectors are orthogo-
Yet the spherical example is rigorously ruled out by ournal with respect to the spacetime metfor degenerate ei-
theorems. This heuristic argument obviously cannot be apgenvalues they can be made orthogonal by the Schmidt pro-
plied to very aspherical black holes, or to those which showgedurg. We gloss over the possibility that some eigenvectors
a topological distinction from the spherical one. Such is themay be null(radiative solutions Thus one must be timelike;
case of the AGK black hole, a charged black hole with mini-call it w(®* and normalize so that(®*w(®= —1. The other
mally coupled self-interactingHiggs) scalar hair in the form  three must be spacelike; call thefw# w(» w®x) and

of a local cosmic string which transfixes the black hole.normalize them so thait/(l)”“wﬁf)=+1, etc.

Strictly speaking, our third theorem does not rule out such a The four eigenvectors obviously furnish a basis for writ-

solution because of its lack of spherical symmetry and asing any four-vector, in particular the four-velocity of an ob-
ymptotic flatness. But it is really the distinct topology of the server:

scalar field phase with its multiple connectivity around the o
string which makes our proof far from relevant. ut=cOwOr 4 33y r, (A3)
One can speculate on more complicated situations. Sup- )
pose a black hole forms with two local Higgs strings throughwhere obviously
it. The situation would seem unstable. Strings with the same (012 53/ (i 2
sense of winding of the phase repel each other, so the two (€ =Z7(cM)*+1 (A4)
strings will become antiparallel and approach. If the Wlndlngin order to satisfyu,u=

numbers were originally equal in absolute value, the string?C(i)} label all possible observers at a given event.

will annihilate with the Higgs phase topology becoming Now use Eqgs(Al), (A3), and (A4) and the normaliza-
simple. The configuration will then relax. But by our third tions to reexpres&ee' Sec ’Il(j:

theorem the end point cannot be a spherical black hole with
Higgs hair. With due caution we infer that the black hole will 4= (692-3,(cMZ ()2 (¢M)2] (AB)
swallow part of the field and jettison the rest, so that we end

up with a Reissner-Nordstmo hole. By extension we may and

surmise that if a black hole is transfixed by an even number B , 0 (IN2¢ (0)_ —(0)

of unit winding-number strings, it will end up with no scalar e=T,uku"=—0"—2i(c")(a7—a).  (A6)
field, whereas if it has an odd number, it will end up in the
AGK configuration.

—1. The various choices of

We now see that the energy conditions

| 1={]aM]} (A7)
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are necessary and sufficient fiéfj , to be nonpositive for all
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George Lavrelashvili for useful comments and Markus Heu-, ig pe of like sign(that of — ¢(®) for all observers. Like-

sler and Daniel Sudarsky for correspondence. wise j#j ,<0 for all observers is a necessary and sufficient
condition for the energy conditions to be satisfied. And con-
APPENDIX: THE ENERGY CONDITIONS sensus of all observers as to the sign of the energy density is

gaecessary and sufficient for the energy conditions to be sat-
isfied and the causality conditiojtj, <0 to hold for all
observers.
TIwh=ow". (A1) In the static spherically symmetric situation considered in
Sec. IIC, theT}, is diagonal, so that®=T{, ocW=T[,
BecauseT,, is a 4x4 matrix, there must be four distinct o(?=¢®=TJ=T$ We thus recover the energy conditions

At a given spacetime event consider the eigenvalue pro
lem

eigenvectorsv*. Obviously (2.24).
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