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Computation of the winding number diffusion rate due to the cosmological sphaleron

Mikhail S. Volkov
Institut für Theoretische Physik der Universita¨t Zürich–Irchel, Winterthurerstrasse 190, CH–8057 Zürich, Switzerland

~Received 10 April 1996!

A detailed quantitative analysis of the transition process mediated by a sphaleron-type non-Abelian gauge
field configuration in a static Einstein universe is carried out. By examining spectra of the fluctuation operators
and applying thez-function regularization scheme, a closed analytical expression for the transition rate at the
one-loop level is derived. This is a unique example of an exact solution for a sphaleron model in 311
spacetime dimensions.@S0556-2821~96!02720-8#

PACS number~s!: 04.62.1v, 11.10.Wx, 11.15.Kc, 98.80.Cq
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I. INTRODUCTION

The discovery of vacuum periodicity@1,2# and sphalerons
@3# in the standard model has revealed a considerable fe
ion number violation in the theory at high temperatures. T
fermion number changes in the processes of barrier tra
tions between the distinct topological sectors of the theo
where the barrier height is determined by the sphaleron
ergy. Such processes become unsuppressed at tempera
of the order of the sphaleron mass. Since the different to
logical sectors are in thermal equilibrium at high temper
tures, the sphaleron transitions lead to the dissipation of
baryon asymmetry produced at earlier times, that is, dur
the electroweak phase transition or at grand unified the
~GUT! energies@4#. The estimates for the transition rat
@5–9# show that the sphaleron mechanism can be effici
enough to reduce the asymmetry by several orders of m
nitude.

The sphaleron solution in the standard model is kno
only numerically, which causes considerable computatio
difficulties @7–9#. Other field-theoretical sphaleron mode
have, therefore, become important@10–12#. Some of these
models are exactly solvable in the sense that the correspo
ing sphaleron transition rate can be evaluated analytically
the one-loop level@11,12#, which provides a closer insigh
into the physics. Unfortunately, all of these models exist on
in low spacetime dimensions. There is also an alternat
example of four-dimensional sphalerons which appear in
theory of a self-gravitating non-Abelian gauge field. Gravi
violates the scale invariance and plays, therefore, a role s
lar to that of a Higgs field. This results in the existence
classical@13# sphaleronlike solutions in the theory@14,15#,
which are also known only numerically.

The purpose of the present paper is to investigate
sphaleron model that is exactly solvable and yet exists
311 spacetime dimensions, which distinguishes it from t
other known models. Similarly to the example mention
above, this model deals with a non-Abelian gauge field
teracting with gravity, but now gravity is regarded as a fix
external field. Specifically, we shall consider the theory o
pure SU~2! Yang-Mills field in a static Einstein universe
This theory admits an analytically known sphaleron soluti
which we shall call cosmological sphaleron. The analysis
the corresponding transition problem is the subject of t
paper.
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In fact, this type of sphaleron was found long ago. Th
solution itself has been discussed in various contexts,
gether with the other related solutions of the~Einstein-!
Yang-Mills field equations@16–18#. The sphaleron nature of
the solution was also recognized and discussed in connect
with the finite volume QCD@19# and in a cosmological con-
text as well@20,21#. However, an analysis of the correspond
ing sphaleron transition problem has been lacking so far.

The cosmological sphaleron is distinguished by the im
portant property that the sphaleron configuration consists
the gauge field alone. This implies that the sphaleron is n
plagued with the various symmetry-breaking phase tran
tions, and this also ensures that the dynamics of t
sphaleron-mediated processes is conformally invariant, up
the anomalous scale dependence of the gauge coupling c
stant. Since the sphaleron has very high symmetry, there
an opportunity to analyze the sphaleron transition proble
analytically at the one-loop level, which is of a great meth
odological interest.~We shall use the names ‘‘cosmological’’
and ‘‘universe,’’ although the model can be applied not onl
in the cosmological context.!

The problem which will be investigated below can b
formulated as follows. Consider a gauge field in a static Ei
stein universe at finite temperature. Specifically, consider t
thermal ensemble over one of the topological vacua of t
field. Find the rate of the decay of this thermal state due
the diffusion into the neighboring topological sector. In orde
to obtain the answer, we use the Langer-Affleck formula an
take only the bosonic degrees of freedom into account~the
fermion contribution can be considered in a similar way!.
We do not assume the high temperature limit and take t
sum over all Matsubara modes. We use thez-function regu-
larization scheme, which allows us to entirely carry out th
analysis. Our principal results are given by Eqs.~6.20!–
~6.27! and Eq.~6.37! and presented in Figs. 1–3. The rest o
the paper is organized as follows. The basic properties of t
model, such as topological vacua and the sphaleron soluti
are discussed in Sec. II. A brief derivation, based on the pa
integral methods, of the decay rate of an unstable phase
finite temperature is given in Sec. III. The path integratio
procedure is outlined in Sec. IV. The spectra of the fluctu
tion operators are analyzed in Sec. V. The determinants
these operators are calculated in Sec. VI which also includ
the consideration of the high temperature limit. Section V
contains some concluding remarks, and the derivation of n
5014 © 1996 The American Physical Society
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54 5015COMPUTATION OF THE WINDING NUMBER DIFFUSION . . .
merous formulas used in thez-function approach is given in
Appendix.

Throughout the paper the units\5c5kB51 are used.
The symbol g stands for the gauge coupling constan
whereas the spacetime metric is denoted byg.

II. THE SPHALERON ON S3

Consider the static Einstein universe (M ,g), where
M5R13S3, and the metric is

ds25a2~2dh21dV3
2!. ~2.1!

Here,a is a constant scale factor, and the line element
S3 is parametrized by

dV3
25dj21sin2j~dq21sin2qdw2!, ~2.2!

where jP@0,p#, andq, w are the usual spherical coordi
nates onS2.

The model under consideration is defined by the actio

S@A#52
1

2g2
trE

M
FmnF

mnA2gd4x, ~2.3!

where A5Amdx
m5TpAm

pdxm is the gauge field, and
Fmn5]mAn2]nAm2 i @Am ,An# is the field tensor. The Her-
mitian group generators areTp5tp/2 with ta being the Pauli
matrices. The metricg in Eq. ~2.3! is given by Eq.~2.1!, such
that the action defines the theory of a pure non-Abeli
SU~2! gauge field in the static Einstein universe.~Through-
out the paper we neglect the back reaction of the gauge fi
on the spacetime geometry, which can be justified
a@ lPl /g, where lPl is Planck’s length.! The classical equa-
tions of motion following from the action are

¹mF
mn2 i @Am ,F

mn#50, ~2.4!

where ¹m is the covariant derivative with respect to th
spacetime metric.

First, we need to describe the topological vacua of t
gauge field in this case. We do so by introducing a smoo
time-independent function on the manifold,U(x)PSU(2),
wherex5xm, m51,2,3, thus defining the mapping

U~x!:S3→SU~2!. ~2.5!

Any such mapping can be characterized by an integer wi
ing number

k@U#5
1

24p2 trE
S3
UdU21`UdU21`UdU21, ~2.6!

such that the set of allU ’s falls into a countable sequence o
disjoint homotopy classes. The representative of thekth
class,U (k), k@U (k)#5k, can be chosen as

U ~k!~x!5U ~k!~j,q,w!5exp$2 ikjnata%, ~2.7!

where na5(sinq cosw,sinq sinw,cosq). The functionsU ’s
generate static gauge transformations:

A→UAU211 iUdU21. ~2.8!
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The elements of the zeroth homotopy class,U (0), give rise to
small gauge transformations which can be continuously d
formed to identity; other functions,U (k), kÞ0, generate
large transformations. A vacuum of the gauge field is a pu
gauge,Avac5 iUdU21. Since allU ’s split into homotopy
classes, all pure gauges decompose into disjoint sets ca
topological vacua. Thekth topological vacuum in the tem-
poral gauge is

A~k!~x!5 iU ~k!dU~k!21. ~2.9!

By construction, the Chern-Simons number of this field con
figuration coincides with the winding numberk.

Distinct topological vacua cannot be joined by a continu
ous interpolating sequence of pure gauge configuratio
iUdU21, since this would require a change in the windin
numberk@U#. However, one can join them by a family of
nonvacuum fields. That is how one can see that the mod
admits a sphaleron solution. Consider the two neighborin
vacua given by Eqs.~2.7! and~2.9!: A(0)50 andA(1). They
can be joined by the following path in the configuration
space:

A@h#5 i
11h

2
U ~1!dU~1!21, ~2.10!

where the parameterhP@21,1#. ~Applying a large gauge
transformation one can reduce such a path to a noncontra
ible loop.! The energy-momentum tensor for this field is

Tn
m~A@h# !5

~h221!2

2g2a4
diag~3,21,21,21!, ~2.11!

such that the energy is given by

E@h#5E T0
0A 3g d3x5

3p2

g2a
~h221!2. ~2.12!

This function has the typical barrier shape: it vanishes at t
vacuum values ofh, h561, and reaches its maximum in
between, ath50. The top of the barrier relates to the field
configuration

A~sp![A@h50#5
i

2
U ~1!dU~1!21, ~2.13!

with the energyEmax53p2/g2a.
Similarly, one can defineEmax for any other interpolating

path, and then minimize the result over all paths. If a nonze
minimum exists then it relates to an unstable classical so
tion called sphaleron. By construction, the sphaleron ener
defines the minimal height of the potential barrier@3,10#.

To carry out such a program would, however, be too di
ficult a task which has, in reality, never been done. Instea
we simply check that the field~2.13! solves the classical
equations of motion. To see this, it is illuminating to allow
the parameterh in Eq. ~2.10! to depend on time,h→h(h).
Then, the Yang-Mills equations~2.4! for the field ~2.10! re-
duce to one nontrivial equation, which admits a first integra

d2h

dh2 12h~h221!50, ⇒S dhdh D 21~h221!25«, ~2.14!
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5016 54MIKHAIL S. VOLKOV
with « being an integration constant. Effectively, these equ
tions describe a particle moving in the one-dimension
double-well potential. When«51, one finds the static solu
tion h(h)50, which describes an unstable equilibrium of th
particle on the top of the barrier. This shows that field co
figuration ~2.13! indeed solves the equations of motion an
relates to a saddle point of the energy functional, such tha
can be naturally called sphaleron. Later, we shall see that
solution has only one unstable mode. In addition, for«51,
Eqs. ~2.14! admit the solution for the particle rolling down
the barrier,h(h)5A2/coshA2(h2h0), which describes the
time evolution of the sphaleron during its classical decay

Of course, these arguments do not prove that the sph
ron relates to the absolute minimum of energy for stat
nonvacuum solutions. Note, however, that Eq.~2.13! is the
only static, nonvacuum, SO~4! symmetric solution@17#. It is,
therefore, very plausible that this solution does indeed m
mize the energy.

Another handy form for the sphaleron solution~2.13! can
be achieved as follows. Introduce the left- and right-invaria
one-forms onS3,

vL
a5

i

2
tr~taU ~1!dU~1!21!, vR

a5
i

2
tr~taU ~1!21dU~1!!,

~2.15!

which satisfy the Maurer-Cartan equations

dva1«abcv
b`vc50. ~2.16!

This allows us to represent the field~2.13! as

A~sp!5TavL
a . ~2.17!

It is worth noting the following feature of this solution
the sphaleron configuration consists of the gauge field alo
This, together with the high symmetry of the solution, w
be of crucial importance for the analysis below. It is we
known that in the Minkowski space, the existence of stat
finite energy solutions for the pure gauge field is ruled out
the scaling arguments. However, these arguments do
generally apply in curved spacetime, since the invarian
with respect to the rescaling of the coordinates,x→lx, is
broken by the curvature. It is, therefore, gravity which e
sures the existence of the static sphaleron solution. Since
spacetime geometry is homogeneous and isotropic,
sphaleron inherits the same symmetries, such that, for
stance, its energy-momentum tensor has the manifest SO~4!-
symmetric structure.

Let us mention also the following point: since the Yan
Mills ~YM ! equations are conformally invariant, and the g
ometry ~2.1! is conformally flat, there exists the Minkowsk
space counterpart of the sphaleron solution. However,
flat spacetime solution is, of course, no longer static. Spec
cally, if one chooses the conformal factor of the metric~2.1!
asa5a(h,j)5(cosh1cosj)21 and introduces the new coor
dinatest6r5tan@(h6j)/2#, the metric assumes the stan
dard flat form @20#. In the new coordinates, the sphalero
field ~2.13! becomes a member of the family of the ellipti
solutions@22#, which describe spherical shells of the Yan
Mills radiation in the Minkowski space@23#. In this sense,
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one can think of the sphaleron as being a radiative soluti
which is rendered static by gravity.

We will also need some knowledge about instantons
the model. We first note that the vacua and the sphalero
since they are static, can be regarded as Euclidean solutio
Next, let us pass to the imaginary time in Eq.~2.14!,
h→2 i t:

S dhdt D 22~h221!252«. ~2.18!

Apart from the static solutions, this equation admits also th
interpolating solutions for«50, such thath(2`)521,
h(`)51. The periodic solutions exist for 0,«,1, and the
corresponding period is bounded from below:

t.A2p. ~2.19!

Other known instanton solutions onS3 can be obtained from
the flat space Belavin-Polyakov-Schwarz-Tyupkin~BPST!
instantons by making use of the conformal invariance of th
YM equations@19#.

III. THE SPHALERON TRANSITION RATE

Consider the low energy excitations over thekth topologi-
cal vacuum,A(k)(x)→A(k)(x,t)5A(k)(x)1dA(x,t). If the
energy is small compared to the barrier height, 3p2/g2a,
then the excitations over the distinct vacua are classica
independent. There is a nonzero amplitude for the quantu
tunneling between distinct sectors; however, the correspon
ing probability is exponentially small. On the perturbative
level, one can consider the excitations in each sector ind
pendently. The energy of the ground state excitation in ea
sector is 1/a @see Eq.~5.20! below#. The necessary condition
for the smallness of the energy of the excitations is, ther
fore, g2/3p2!1.

Consider the zeroth topological sector and assume a th
mal distribution for the states in this sector. There is a fini
probability for such a thermal system to decay, both becau
of the underbarrier tunneling and due to the overbarrier the
mal excitation. According to the Langer-Affleck theory o
the metastable phase@24#, the decay rate is proportional to
the imaginary part of the free energy. To estimate the latte
it is convenient to use the path integral approach~the precise
definition of the path integration procedure will be given in
the next section!.

The partition function of the gauge field is

Z5exp~2bF !5E d@A#exp~2SE@A# !. ~3.1!

In this expression,SE@A# is the Euclidean action of the
gauge field in the static Riemannian space (S13S3,g), with
g being the analytic continuation of the metric~2.1! to the
imaginary time,h→2 i t, tP@0,b#. In the weak coupling
limit, one can approximate the partition function by the sum
over the classical extremaA$ j %, asZ.( jZj , where the semi-
classical contribution of thej th extremum is
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Zj5exp~2bF j !5exp~2S@A$ j %# !E d@w#exp~2d2Sj !.

~3.2!

The action for the fluctuations around thej th extremum,
A$ j %→A$ j %1w, can be represented as

S@A$ j %1w#5S@A$ j %#1d2Sj1•••,

d2Sj5E
0

b

dtE
S3

~w,D̂jw!Agd3x, ~3.3!

whereD̂j5D̂@A$ j %# is the Gaussian fluctuation operator. Th
gives the one-loop expression for the partition function:

Z.(
j
Zj5(

j

exp~2S@A$ j %# !

ADet~D̂j !

. ~3.4!

Assume that this sum is dominated by two term
Z.Z01Z1, whereZ0 and Z1 are the contributions of the
vacuum and the sphaleron, respectively. Other periodic
stantons that could exist for a given value ofb are assumed
to have a large action.

The sphaleron fluctuation operatorD̂1 has at least one
negative eigenvalue,v2

2 ,0. Under the condition specified
by the lower bound in Eq.~3.8! below, there is only one
negative eigenvalue. This implies thatZ1 is purely imagi-
nary, and the free energy of the whole system picks up
imaginary part

Im~bF !52Im lnZ.2Im lnFZ0S 11
Z1
Z0

D G.2
1

Z0
ImZ1 .

~3.5!

According to Langer@24#, the imaginary part of the free
energy is to be interpreted as giving rise to the decay rate
the unstable phase built over the perturbative vacuum as

G5
uku
pT

ImF, ~3.6!

where the damping constantk is the real time decay rate o
the sphaleron configuration in the heat bath. In the we
coupling limit one hasuku5uv2u @5#, which finally deter-
mines the decay rate to be

G52
uv2u

p

ImZ1
Z0

. ~3.7!

This formula holds in the following range of temperature
@24#:

uv2u
2p

,
1

b
!
3p2

g2
. ~3.8!

The lower bound rules out the periodic instantons which p
the leading role at low temperatures@24# @for the cosmologi-
cal sphaleron one hasuv2u5A2, such that this condition is
opposite to that specified by Eq.~2.19!#. The upper bound is
the sphaleron energy which must exceed the temperat
otherwise the system would not be metastable. Notice t
is
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this formula involves only conformally invariant quantities,
the conformal factora drops out. Another crucial assumption
is the weak coupling limit,g2/4p!1. First of all, this en-
sures the very existence of the thermal ensemble. In additio
it justifies the validity of the Gaussian approximation, and
moreover, leads to the weak damping limit fork.

IV. THE PATH INTEGRATION PROCEDURE

We outline below the main steps of the path integratio
procedure. It is worth noting that the gauge field theory o
S3 resembles that onS4. We shall, therefore, mainly follow
the approach given in Refs.@25–27#.

Passing to the imaginary time, the spacetime metric~2.1!
becomes

ds25a2~dt21dV3
2!, ~4.1!

wheretP@0,b#. We assume that the coordinates are dimen
sionless, implying that@a#5@L#. Notice that 1/b is thecon-
formal temperature. The physical temperatureT is defined
with respect to the physical timeat, such thatT51/ba.

The Euclidean action of the gauge field is

SE@A#5
1

2g2
trE FmnF

mnAgd4x.0. ~4.2!

Consider small fluctuations around thej th extremum of the
actionAm

$ j %→Am
$ j %1wm , where the valuesj51,0 refer to the

sphaleron and the vacuum configurations, respectively~we
shall omit this index where possible!. The infinitesimal
gauge transformations act aswm→wm

(a)5wm1Dma, where
Dma5¹ma2 i @Am ,a#, anda is a Lie-algebra-valued scalar
field. Define the operators

D̂wn5M̂wn1Dn~Dsws!,

M̂wn52DsD
swn1Rs

n ws12i @Fs
n ,ws#. ~4.3!

These are the vector fluctuation operator and the gauge-fix
fluctuation operator, respectively. Introduce also th
Faddeev-Popov operator

M̂FPa52DsD
sa. ~4.4!

In these formulas,Rs
n is the Ricci tensor for the geometry

~4.1!, andFns is the background gauge field tensor. Thes
operators are self-adjoint~symmetric! with respect to the sca-
lar products

^w,w8&52trE wsws8Agd4x, ^a,a8&52trE aa8Agd4x.
~4.5!

The norms areuuwuu5A^w,w&, and uuauu5A^a,a&. The ac-
tion can be expanded as

SE@A1w#'SE@A#1
1

2g2
^w,D̂w&. ~4.6!

The Gaussian path integral is
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Z5exp~2SE@A# !E dFP@w#expS 2
1

2g2
^w,D̂w& D , ~4.7!

where the Faddeev-Popov measure is

dFP@w#5d@w#G~w!F~w!, 15G~w!E d@a#F~w~a!!,

~4.8!

andF is the gauge-fixing function. The fluctuationsw can be
decomposed as

wm5Dma1jm , ~4.9!

where the pure gauge partDma is annihilated byD̂, and
jm is orthogonal to all gauge modes,Dsjs50. The fields
jm anda can be expanded with respect to the eigenfunctio
of D̂ andM̂FP:

jm5(
k
Ckjk

m , a5(
n

Bnan ;

D̂jk
n5lkjk

m , M̂FPan5qnan . ~4.10!

The gauge-fixing function is chosen to be

F~w!5expH 2
1

2g2
^Dsws,Dmwm&J

5expH 2
1

2g2(n Bn
2qn

2uuanuu2J , ~4.11!

and the integration measure is the square root of the de
minant of the metric on the function space@27#:

d@w#5)
k

m0

A2pg
dCkuujk

muu)
n

8 m0

A2pg
dBnAqnuuanuu,

d@a#5)
n

m0
2

A2pg
dBnuuanuu. ~4.12!

Here,m0 /(A2pg) is a normalization factor withm0 being an
arbitrary normalization scale; the prime indicates that term
with qn50 should be omitted. Taking Eqs.~4.8!–~4.12! into
account, the Gaussian path integral in Eq.~4.7! reduces to

GE )
k

m0dCk

A2pg
uujk

muu)
n

8 m0dBn

A2pg
uuanuu

3expH 2
1

2g2 S (k lkCk
2uujk

muu21(
n

qnBn
2uuanuu2D J ,

~4.13!

whereAqn has been absorbed inBn , and

G215E )
n

m0
2

A2pg
dBnuuanuuexpH 2

1

2g2(n Bn
2qn

2uuanuu2J .
~4.14!
ns

ter-

s

Let us first apply these formulas to the sphaleron. In th
case, as we will see in the next section, the vector fluctuati
operator has one negative eigenvalue,l2,0, whereas all the
other eigenvalueslk , qn in Eqs.~4.13! and ~4.14! are posi-
tive ~zero modes are absent!. The integral overC2 in Eq.
~4.13! can be defined by analytic continuation@28#, and the
result ism0/2iAul2u. The rest are well-defined Gaussian in
tegrals. It is convenient to introduce the conformally invar
ant dimensionless operatorsM̂ and M̂FP whose eigenvalues
arevk

2 andvn
2 :

M̂5
1

a2
M̂ , M̂FP5

1

a2
M̂FP; lk5

vk
2

a2
, qn5

vn
2

a2
.

~4.15!

This implies that the partition function for the Gaussian fluc
tuations around the sphaleron is

Z15exp~2SE@A~sp!# !
m0a

2iAuv2u

Det~M̂1
FP/m0

2a2!

ADet8~M̂1 /m0
2a2!

,

~4.16!

where Det8 has all nonpositive eigenvalues omitted, and th
index 1 refers to the sphaleron. Note that Det8(M̂ ) must be
computed on the space of all vector fluctuationswn, and not
only for those satisfyingDsws50.

Consider now the vacuum case. As we will see below, th
ghost operatorM̂FP in this case has three zero mode
ap5tp/2 (p51,2,3) related to the global gauge rotations o
the vacuumA50. The norm of these modes is

uuapuu25E
0

b

dtE
S3

Agd3x52p2ba4. ~4.17!

The quantityG specified by Eq.~4.14! then reads

G5
1

Y)
n

8 qn
m0
2 5

1

Y
Det8S M̂FP

m0
2 D , ~4.18!

with

Y5 )
p51

3 E m0
2

A2pg
dBpuuapuu5VSU~2!

pAp

g3
m0
6a6b3/2,

~4.19!

where the integration overBp gives the volume of the stabil-
ity group, in our normalization it isVSU(2)516p2. In addi-
tion, there are three constant vector modes annihilated by
vector fluctuation operator:jp

m5d0
mtp/2, uujp

muu252p2ba2.
Under the gauge transformation generated by

Up~t!5expS i t 2p

b
l tpD , Up~0!5Up~b!, lPZ,

~4.20!

these modes change according to

Up~t!:jp
m5d0

m tp

2
→d0

m tp

2 S 11
4p l

b D . ~4.21!
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This shows that the range of integration overCp in Eq.
~4.13! is finite, CpP@0,4p/b#. The contribution of these
three modes to Eq.~4.13!, therefore, is

E )
p51

3
m0dCp

A2pg
uujp

muu5S 4p

b D 3pAp

g3
m0
3a3b3/2. ~4.22!

All other eigenvalues are positive, which finally gives, fo
the fluctuations around the vacuum,

Z05
4p

m0
3a3b3

Det8~M̂0
FP/m0

2a2!

ADet8~M̂0 /m0
2a2!

. ~4.23!

We shall omit below the factorm0, m0a→a, such thata will
be understood as the radius of the Universe expresse
units of anarbitrary length scale.

V. SPECTRA OF THE FLUCTUATION OPERATORS

To analyze the spectra of the conformally invariant ope
tors M̂ andM̂FP defined by Eqs.~4.3!, ~4.4!, and~4.15!, one
can puta51 in the line element. We introduce the one-for
basis $v0,va% on the spacetime manifold, wherev05dt,
and va5vL

a are the left-invariant one-forms given by Eq
~2.15!. The metric is

ds25v0
^ v01va

^ va. ~5.1!

Let $e0 ,ea% be the corresponding dual tetrad; here,ea5ea
L

are the left-invariant vector fields onS3. Introduce the right-
invariant fieldsea

R dual to the one-formsvR
a . The commuta-

tion relations hold

@ea
L ,eb

L#52«abcec
L , @ea

R ,eb
R#52«abcec

R , @ea
L ,eb

R#50.
~5.2!

Let ¹0 and ¹a denote the covariant derivatives along th
tetrad vectors$e0 ,ea%. The following tetrad rotation coeffi-
cients do not vanish:

¹aeb5«abcec , ¹av
b5«abcvc . ~5.3!

Let us represent the gauge field of the vacuum and
sphaleron as

A$ j %5 jvsTs , ~5.4!

where j50,1, respectively. All this suggests to expand t
fluctuations as@16#

w5f0v01fava, ~5.5!

wheref0 andfa are the scalar and the vector fluctuation
respectively.

Using Eqs.~4.3!, ~4.4! and ~5.1!–~5.5!, a straightforward
calculation shows that the fluctuation operatorsM̂ j
( j50,1) decompose into the direct sum of the two operat
acting on the scalar and the vector fluctuations, respectiv

M̂ jw5~M̂ j
scalf0!v01~M̂ j

vecfa!va. ~5.6!
r
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Here, the scalar fluctuation operatorM̂ scal formally coincides
with the ghost operatorM̂FP introduced in the previous sec-
tion:

M̂ j
scalf052~¹0¹01¹a¹a!f

0

2 j $2¹s@Ts ,f
0#1@Ts ,@Ts ,f

0##%. ~5.7!

The vector operator reads

M̂ j
vecfa52~¹0¹01¹c¹c24!fa22«abc¹bf

c

1 j $22¹s@Ts ,f
a#14«abs@Ts ,f

b#

2@Ts ,@Ts ,f
a##%. ~5.8!

Each of these operators decomposes into the direct sum o
temporal and a spatial part,

M̂52
]2

]t2
1M̂, ~5.9!

such that the problem reduces to the study of the correspo
ing spatial operatorsM̂j

scal andM̂j
vec.

We now introduce

La5
i

2
ea
L , L̃a5

i

2
ea
R , L¢ 25LaLa5L̃aL̃a , ~5.10!

which are the SO~4! angular momentum operators, since

@La ,Lb#5 i«abcL c , @ L̃a ,L̃b#5 i«abcL̃ c , @La ,L̃b#50.
~5.11!

The commuting operators areL¢ 2, L3, andL̃3. The eigenval-
ues are similar to those for the SO~3! case, but the angular
momentum can now assume both integer and half-integ
values:

L¢ 25 l ~ l11!; l50,
1

2
,1,

3

2
, . . . ; L35m,

L̃35m̃; m,m̃52 l ,2 l11, . . . l . ~5.12!

Next, expanding the fluctuations over the basis of the L
algebra,f05fp

0Tp , fa5fp
aTp , we define the spin and isos-

pin operatorsS¢ andT¢ by

Safp
b5

1

i
«abcfp

c , Tpf r
a5

1

i
«prsfs

a , Tpf r
05

1

i
«prsfs

0 ,

~5.13!

which satisfy the usual commutation relations. One ha
S¢25T¢ 252, which corresponds to the unit spin and unit isos
pin, respectively.

Using Eqs.~5.7!–~5.13! one can represent the spatial op
erators for the fluctuations around the sphaleron (j51) and
the vacuum (j50) configurations as
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M̂1
vec52@L¢ 21~L¢ 1S¢1T¢ !221#,

M̂1
scal52@L¢ 21~L¢ 1T¢ !221#,

M̂0
vec52@L¢ 21~L¢ 1S¢ !2#, M̂0

scal54L¢ 2. ~5.14!

The fluctuation operators, therefore, reduce to the combi
tions of the angular momentum operators whose spectra
be analyzed by the usual methods. Let us illustrate the p
cedure for the operatorM̂1

vec.
We represent the operator in the formM̂1

vec

52(L¢ 21J¢221), whereJ¢5L¢ 1K¢ , andK¢ 5L¢ 1T¢ . The com-
muting operators areL¢ 2, J¢2, L̃3, andJ3, such that the eigen-
values of M̂1

vec and their degeneracies rea
v252$ l ( l11)1 j ( j11)21% andd5n(2l11)(2j11), re-
spectively. Here,n is the degeneracy factor associated wi
the several possibilities to obtain a given value ofj for a
given value ofl .

To find n, let us fix a valuel>2. K¢ is the sum of the two
unit angular momenta, such thatK50,1,2. ForK52 the
possible values ofj are l22,l21 . . . ,l12, for K51 one
obtains j5 l21,l ,l11 and forK50 one hasj5 l . The val-
ues j5 l62, therefore, appear only whenK52, the values
j5 l61 are possible whenK51 orK52, and there are three
different ways to getj5 l , that is, whenK50,1,2. Thus, if
we write j5 l1s, wheres50,61,62, the degeneraciesn
are as follows:n53 for s50, n52 for s561, andn51
for s562. As a result, the eigenvalues ofM̂1

vec and their
degeneracies can be represented as

v25~2l1s11!21s223,

d5~32usu!~2l11!~2l12s11!, l>2, s50,61,62.
~5.15!

For l,2, the factorn changes. For instance, forl50 one
has j5K, such that n51 for s52,1,0 and n50 for
s521,22. Similarly, for l51/2 one obtains
n5$1,2,2,0,0% for s5$2,1,0,21,22%, respectively. For
l51 one hasn5$1,2,3,1,0% and for l53/2 the result is
n5$1,2,3,2,0%.

Introducing the new quantum number,n52l1s11, the
whole spectrum can be given in the compact form

M̂1
vec:v25n21s223, d5n~n22s2!, s50,61,62,

~5.16!

where n532usu for n>3, and n5nd0s1dn2d1usu for
n51,2. For the other fluctuation operators, one similarly o
tains

M̂1
scal:v25n21s223, d5n22s2, s50,61, n>2;

M̂0
vec:v25n21s221, d53~n22s2!, s50,61,

n>2;

M̂0
scal:v25n221, d53n2, n>1. ~5.17!
na-
can
ro-

d

th

b-

All these eigenvalues are positive forn>2. Whenn51,
the operatorM̂1

vec has one negative mode with eigenvalue
v2
2 522. It is worth noting that the sphaleron does not pos

sess any zero modes. This can be understood as follows:
sphaleron solution completely shares the symmetries of t
three space, both are SO~4! symmetric. The sphaleron is,
therefore, invariant under spatial translations and rotation
In this case, all zero modes must be of pure gauge origin, b
the gauge is completely fixed.

For n51, the vacuum operatorM̂0
scal has three zero

modes. As is seen from Eq.~5.14!, their eigenfunctions are
just constants discussed in the previous section:jp

m

5dp
mtp/2. Since the spectra ofM̂scal andM̂FP coincide~but

these operators act in different spaces!, M̂0
FP also has three

constant zero modes,ap5tp/2, which have been discussed
above.

The next step is to pick up the physical modes. The pa
tition functionsZj specified by Eqs.~4.16! and~4.23! involve
the ratios of the determinants, such that some of the eige
values cancel. Notice that Eq.~5.6! implies that
Det8(M̂ )5Det8(M̂ scal)Det8(M̂ vec), whereas Det8(M̂ scal)
5Det8(M̂FP). The partition functions, therefore, are@25#

Z15exp~2SE@A~sp!# !
a

2iAuv2u
ADet8~M̂1

scal/a2!

Det8~M̂1
vec/a2!

,

Z05
4p

a3b3ADet8~M̂0
scal/a2!

Det8~M̂0
vec/a2!

. ~5.18!

Thus, the physical oscillator modes constitute the part of th
spectrum ofM̂ vec that remains after the subtraction of all
eigenvalues ofM̂ scal. Since all eigenvalues ofM̂ scal are con-
tained in the spectrum ofM̂ vec ~besides the zero modes of
M̂0

vec), such a subtraction results in the change of the dege
eracy factors of the eigenmodes ofM̂ vec. Using Eqs.~5.16!
and~5.17!, one obtains the eigenvalues and the degeneraci
$v2,d%, of the physical oscillators:

M̂1
vec/M̂1

scal:$22,1%,$1,4%,$n21s223,2~n22s2!%,

n>3,s50,1,2; ~5.19!

also

M̂0
vec/M̂0

scal:$0,23%,$n2,6~n221!%, n>2. ~5.20!

Note thats in Eq. ~5.19! assumes three values which corre
spond to the three ‘‘colors’’ of the ‘‘gluon,’’ and the coeffi-
cient 2 in the degeneracy factor refers to its two polariza
tions, whereas in Eq.~5.20! all ~2 spin!3~3 isospin! gluon
degrees of freedom are absorbed by the coefficient 6 in t
degeneracy factor. Taking into account the temporal part
the fluctuation operators,2 ]2/]t2, whose eigenvalues are
the Matsubara frequencies, 4p2l 2/b2, we obtain the follow-
ing contribution of each physical oscillator,$v2,d%, into the
partition function:
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)
l52`

` H 1

a2 S 4p2l 2

b2 1v2D J 2d/2

. ~5.21!

For v2,0 or v250, the term with l50 in this product
should be omitted, since the corresponding negative or z
modes have already been taken into account. Note that
negative degeneracy for the zero mode in Eq.~5.20! arises
simply because this mode is not in the spectrum ofM̂0

vec but
only in that ofM̂0

scal.
We are now in a position to give the formal closed e

pressions for the partition functions. For the fluctuatio
around the sphaleron we obtain

exp~2SE@A~sp!# !

Z1
5 i2

A2
a )

l51

` H 1

a2 S 4p2l 2

b2 22D J
3 )

l52`

` H 1

a2 S 4p2l 2

b2 11D J 2

3 )
l52`

`

)
s50,1,2

)
n53

` H 1

a2 S 4p2l 2

b2 1n2

1s223D J n22s2

, ~5.22!

and for the vacuum

1

Z0
5
a3b3

4p )
l51

` H 1

a2 S 4p2l 2

b2 D J 23

3 )
l52`

`

)
n52

` H 1

a2 S 4p2l 2

b2 1n2D J 3~n221!

. ~5.23!

VI. EVALUATION OF DETERMINANTS AND THE
TRANSITION RATE

We use thez-function techniques~see@29–36#, and ref-
erences therein! to regularize and evaluate the infinite prod
ucts entering Eqs.~5.22! and ~5.23!. The key steps of our
analysis are presented in this section, whereas a large num
of the technical details are given in Appendix.

The basicz-function relation reads

)
n

S ln

m D dn5exp$2z8~0!2 lnmz~0!%, ~6.1!

where

z~s!5(
n

dn
~ln!

s5
1

G~s!
E
0

`

ts21(
n

dnexp~2tln!dt,

~6.2!

which, in fact, should be regarded as the definition of t
product.

We start by applying this to the zero mode contribution
Eq. ~5.23!:

)
l51

` H 1

a2 S 4p2l 2

b2 D J 23

5)
l51

` S 2p l

ab D 26

. ~6.3!
ero
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The scale factorm is given bym5ab/2p, and thez function
is

z0~s!526(
l51

`
1

l s
526zR~s!, ⇒z0~0!53,

z08~0!53 ln2p, ~6.4!

wherezR(s) is the Riemannz function. This gives

)
l51

` H 1

a2 S 4p2l 2

b2 D J 23

5
1

a3b3 , ~6.5!

such that the overall contribution of the zero modes togeth
with their Matsubara excitations into Eq.~5.23! is

a3b3

4p )
l51

` H 1

a2 S 4p2l 2

b2 D J 23

5
1

4p
. ~6.6!

Next, consider the product in Eq.~5.22! due to the nega-
tive mode. The correspondingz function is

z2~s!5(
l51

` S l 22 b2

2p2D 2s

, ⇒z2~0!52
1

2
,

z28 ~0!52 lnF2A2p

b
sinS b

A2D G ~6.7!

@see Appendix, Eq.~A18!#. The normalization factor is
m5(ba/2p)2, which yields

2
A2
a )

l51

` H 1

a2 S 4p2l 2

b2 22D J 54 sin
b

A2
. ~6.8!

Now, we want to take into account the contribution of th
positive field modes. We introduce the spatialz function
associated with the positive physical oscillators~5.19! and
~5.20!,

zspat~s!521 (
s50,1,2

(
n53

`
n22s2

~n21s223!s
23(

n52

`
n221

~n2!s
,

~6.9!

such that

ADet8M̂1
scal

DetM̂1
vec

DetM̂0
vec

Det8M̂0
scal

5exp$zspat8 ~0!%. ~6.10!

One has

zspat~s!5
1

G~s!
E
0

`

dtts21Qspat~ t !, ~6.11!

where the heat kernel is
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Qspat~ t !52 exp$2t%1 (
s50,1,2

(
n53

`

~n22s2!

3exp$2t~n21s223!%

23(
n52

`

~n221!exp$2tn2%. ~6.12!

We shall need the asymptotic expansion of this function
small t

Qspat~ t !;
1

~4pt !3/2 (
r50,1/2,1, . . .

Crt
r . ~6.13!

The computation of the coefficientsCr for r<2 is performed
in Appendix:

C05C1/25C150, C3/2522~4p!3/2, C2522p2.
~6.14!

Next, we introduce the thermalz function related to the spa-
tial z function:

zb~s!5
1

G~s!
E
0

`

ts21 (
l52`

`

expH 2S 2p l

b D 2tJ Qspat~ t !dt.

~6.15!

As a result, we can collect all parts together and represent
expression for the sphaleron transition rate in the form

G52
v2

p

ImZ1
Z0

5
1

8A2p2sin~b/A2!

3expH 2
3p2

g2
b1zb8 ~0!1 ln a2zb~0!J . ~6.16!

Here, the prefactor on the right-hand side includes the c
tribution of the zero modes and the contribution of the neg
tive mode. The exponent contains the one-loop contribut
of the positive oscillator modes, and the classical sphale
action

SE@A~sp!#5
3p2

g2
b. ~6.17!

To compute the quantitieszb8 (0) andzb(0) entering Eq.
~6.16!, we represent the heat kernel in Eq.~6.12! symboli-
cally as

Qspat~ t !5(
v

exp$2v2t%, v2.0. ~6.18!

Then, the values ofzb(0) andzb8 (0) are given by~see Ap-
pendix!

zb~0!5
C2b

16p2 ,
for

the

on-
a-
ion
ron

zb8 ~0!5H ~222 ln2!C2

16p2 2PPzspat~2 1
2 !J b

22(
v

ln~12e2bv!, ~6.19!

where the coefficientC2 is specified by Eq.~6.14!.
All this allows us to represent the transition rate~6.16! as

G5
1

8A2p2sin~b/A2!
expH 2

3p2

g2~a!
b2E0b2b~F12F0!J .

~6.20!

In this expression, the renormalized gauge coupling consta
is

1

g2~a!
5

1

g2~a0!
2

11

12p2 lnS aa0D . ~6.21!

Here, we have returned to the dimensionfula and replaced
g by g(a0), wherea051/m0. This expression agrees with the
renormalization group flow, such that it does not depend o
the scalea0 if g(a0) is chosen to obey the Gell-Mann–Low
equation. To fix the scale, we assume that the value
g(a0) is determined by the typical energy of the physica
processes in the Universe, that is, by the physical temper
ture T(a0)51/ba0. Then, we use the QCD data~see, for
example,@37#!

T~a0!5100 GeV,
g2~a0!

4p
50.12, ~6.22!

and assume that the weak coupling region extends up
someamax. One can chooseamax;102100a0.
E0 is the contribution of the zero field oscillations, that is

the Casimir energy,

E05PPzspat~2 1
2 !1 11

4 ~ ln221!. ~6.23!

It is worth noting that this quantity can be computed exactl
in this case. The corresponding computation itself presen
some methodological interest and is given in Appendix. Th
result is

E05
5

6
1
11

4
~ ln2212g!1E

0

1

dzA12z2

3E
0

1

dt tanS pt

2 D $~z214!F~z,t !

1~4z222!G~z,t,A2!19z2G~z,t,A3!%, ~6.24!

where

F~z,t !5t2
sinh~pzt!

sinh~pz!
,

G~z,t,q!5t2
sin~pqzt!

sin~pqz!
1
2

p

sin~pt !

~12q2z2!
. ~6.25!

The numerical value is
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E0521.084 . . . ~6.26!

The contribution of the thermal degrees of freedom in E
~6.20! is

b~F12F0!54ln~12e2b!12 (
s50,1,2

(
n53

`

~n22s2!

3 ln~12e2bAn21s223!

26(
n52

`

~n221!ln~12e2bn!, ~6.27!

and the remaining sums in this expression can be evalua
numerically~see Fig. 1!.

One can see thatF1 andF0 are precisely the free energie
of the physical oscillators~5.19! and~5.20!. Altogether, Eqs.
~6.20!–~6.27! provide the desired solution of the one-loo
sphaleron transition problem. The numerical curves
G(1/b) evaluated according to these formulas for seve
values ofa are presented in Fig. 2.

This solution makes sense under the following assum
tions:

a<amax,
1

A2p
,
1

b
!

3p2

g2~a!
. ~6.28!

The first condition is the weak coupling requirement. Wh
the scale factora is too large, the running coupling constan
~6.21! becomes big~confinement phase!, and the effects of
the strong coupling can completely change the semiclass
picture. That is why our solution can be trusted only f
small values of the size of the Universe. The other condit
in Eq. ~6.28! requires that the thermal fluctuations are sm
compared to the classical sphaleron energy, such that
perturbation theory is valid. Note that each curve in Fig.
develops a maximum at some temperature 1/bmax(a); how-
ever, this value seems to be already beyond the scope o
approximation: 3p2/g2(a);2/bmax(a). The subsequent de

FIG. 1. The thermal function exp@2b(F12F0)#.
q.

ted
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-

crease ofG is presumably fictitious. Indeed, it is but natura
to expect that the transition rate is increasing with growin
temperature@12#. Thus, our results can be trusted at best on
for 1/b,1/bmax(a).

One can also find the high temperature limit for the solu
tion @but the upper bound in Eq.~6.28! is to be assumed#. To
determine the asymptotic behavior of the free energy, t
procedure is the following@30#. First, one returns to thez
function zb(s) and replaces in Eq.~6.15! the heat kernel
Qspat(t) by its asymptotic expansion~6.13!. Then, one takes
the integral overt, and the sum overl reduces to the Rie-
mann z function. As a result, one arrives at the following
asymptotic expansion for smallb @30#:

zb8 ~0!5
p2

45

C0

b3 1
z~3!

2pAp

C1/2

b2 1
C1

12b
2

C3/2

4pAp
lnb

1
C2

8p2 S g1 ln
b

4p Db

1
1

4pAp
(
r>1

Cr13/2S b

2p D 2rzR~2r !G~r !1zspat8 ~0!.

~6.29!

This gives the free energy@see Eq.~6.19!#

F52
1

b
zb8 ~0!1

~12 ln2!C2

8p2 2PPzspat~2 1
2 !. ~6.30!

As an illustration, we apply this to the vacuum fluctuation
alone. The corresponding spatialz function is given by the
last piece in Eq.~6.9!: zspat

0 (s)53zR(2s22)23zR(2s), its
coefficients Cr are computed in Appendix~one has
C250), and the result is

FIG. 2. The sphaleron transition rateG(1/b).
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F0522p2S p2

15b4 2
1

2b2 2
3

2p2

lnb

b
1

3

4p2b

1
11

80p2 1O~b! D . ~6.31!

Here, 2p2 is the volume ofS3 ~remember thatb51/aT),
and the leading term is just the free energy of a gas of n
interacting, massless particles with 233 polarization states.

Now, let us return to the full expression~6.9! for
zspat(s). The values ofCr in this case are given by Eq
~6.14!. Using Eqs.~6.23! and ~6.30!, one obtains

2b~F12F0!54 lnb1zspat8 ~0!1F114 S g1 ln
b

4p D1E0Gb
1O~b2!. ~6.32!

The quantityzspat8 (0) is computed in Appendix:

k[exp$zspat8 ~0!%5
2A2
p3 sinh

4~p!usin~A2p!u

3exp$J~1!2I~A2!2I~A3!%, ~6.33!

where

J~x!5pE
0

x

t2coth~pt !dt,

I~x!5E
0

xS 2t

12t2
1pt2cot~pt ! Ddt, ~6.34!

with the numerical value

k51250.21 . . . ~6.35!

~It is interesting to observe the large value ofk. The corre-
sponding quantity for the electroweak sphaleron is su
pressed by several orders of magnitude@7,8#.!

Finally, one obtains~see Fig. 3!

exp$2b~F12F0!%5kb4S 11
11

4
b lnb D1O~b5!

as b→0. ~6.36!

As a result, we arrive at the following expression for th
sphaleron transition rate in the high temperature limit:

G~b!5
kb3

8p2 expH 2
3p2

g2~a!
bJ , ~6.37!

where we have neglected also the Casimir term. As one
see from Fig. 3, the high temperature approximation can
reasonable for 1/b>103. On the other hand, the temperatu
should be less than the sphaleron energy 3p2/g2(a). These
two conditions imply that Eq.~6.37! makes sense only for
smallg(a): 103<3p2/g2(a), that is, for smalla.
on-

.

p-

e
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VII. CONCLUDING REMARKS

In this paper we have obtained the exact solution of th
sphaleron transition problem for a pure non-Abelian gaug
field in a static Einstein universe. This has been achieved
the straightforward diagonalization of the one-loop fluctua
tion operators with the subsequent computation of the fun
tional determinants in thez-function regularization scheme.
To carry out this program, the following points have bee
crucial: the high symmetry of the sphaleron solution and th
fact that the sphaleron configuration consists of the gau
field alone. Actually, these properties of the model und
consideration make it somewhat similar to the instanto
theory@2,25,26#. It is worth noting that the solution obtained
in this paper is unique in the sense that no other exact so
tions of the sphaleron models in 311 spacetime dimensions
are known.

Equations~6.20!–~6.27! and ~6.37! are our principal re-
sults. They specify the number of transitions between th
neighboring topological sectors per unit conformal timeh. It
should be stressed that such transitions do not lead to a
violation of chiral fermion number unless the thermal equ
librium between the different topological sectors is broken
This can arise, for instance, when a fermion asymmetry
present. Then, one has to introduce a small chemical pot
tial m for the fermions@6,5#. This favors those transitions
which erase the asymmetry. Specifically, letDN5NF2N̄F
be the fermion number of the Universe, then

d

dh
DN'2

m

T
G. ~7.1!

Note that, sinceG defines the number of transitions in the
whole Universe,DN refers to the whole Universe as well,
and not to the unit volume. For one doublet of chiral ferm
ons, standard thermodynamics gives

FIG. 3. The ratio between the thermal function
exp@2b(F12F0)# and its high temperature asymptote 1250.21b4.
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NF5
V

p2E
0

` p2dp

expH p2m

T J 11

5
3VT3

2p2 zR~3!1
m

6
VT21O~m2!, ~7.2!

where V52p2a3 is the volume of three space, such th
DN52p2am/3b2. Finally, passing to the physical time
t5ah, one obtains the fermion number diffusion rate

1

DN

d

dt
DN52

3b3

2p2a
GS 1b D . ~7.3!

In fact, we do not specify the nature of the fields und
consideration. The discussion of the possible applications
the results obtained in this paper will be given separately.
present, we just mention where our results can be used.
us recall the typical values of the parametersa, b, and
T51/ab. The range ofT is restricted by the condition of the
validity of the semiclassical picture:T>1–10 GeV~‘‘decon-
finement phase’’!, whereas the metastability condition re
quires that the conformal temperature 1/b is not too high
@see Eq.~6.28!#. The size of the Universe,a51/Tb, there-
fore, should not be too large compared to 1/T. Such condi-
tions can be met in the context of the finite volume QCD~the
typical volume in that case isa3;1 fm3; see@19# and ref-
erences therein!. Another natural possibility relates to th
preinflation cosmology. In this case, the gravitating Yan
Mills field can arise in the context of a superstring theo
@38#. In fact, the semiclassical sphaleron transition pictu
applies also after inflation. However, the conformal tempe
ture is enormously large then, 1/b5aT;s1/3;1028, where
s is the total entropy of the Universe. Equivalently, one c
say that the temperatureT is huge in comparison with the
sphaleron barrier 3p2/g2(a)a, such that there is no suppres
sion for transitions between the different topological secto
at all. Unfortunately, there are no reliable methods for co
puting the transition rateG in this limit. One can use a di-
mensional argument to estimate that the rate related to
unit physical four volume,G/a4, should be proportional to
T4. Then,G(1/b);1/b4, and Eq.~7.3! yields

1

DN

d

dt
DN;T. ~7.4!

This agrees with the usual estimate for the fermion num
dissipation rate at very high temperatures@4#.
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APPENDIX: z-FUNCTION TECHNIQUES

In subsections 1–4 below the detailed computation
PPzspat(21/2) andzspat8 (0) is presented. The basic idea is t
expand these quantities into certain series of the Riemanz
functions and then to use the appropriate summation form
las. The asymptotic expansion for the heat kernelQspat(t) is
derived in subsection 5. Subsection 6 contains the comp
tion of zb(0) andzb8 (0) for a thermal system.

1. Summation formulas

Consider the generating function for the Bernoulli poly
nomials~see@36#, p. 804!,

xext

ex21
5 (

k50

`

Bk~ t !
xk

k!
, uxu,2p. ~A1!

Putting heret50, one obtains

coth~x!5
1

x(k50

`

B2k

~2x!2k

~2k!!
, uxu,p, ~A2!

whereBk(0)5Bk are the Bernoulli numbers. Using the rela
tion between the Bernoulli numbers and the Riemannz func-
tion ~see@36#, p. 807!,

B2k5~21!k11
2~2k!!

~2p!2k
zR~2k!, ~A3!

and considering the replacementx→ ix, one finds

coth~x!52
2

x(k50

`

~21!kS xp D 2kzR~2k!;

cot~x!52
2

x(k50

` S xp D 2kzR~2k!. ~A4!

The sums on the right-hand sides converge only
uxu,p, whereas those on the left-hand sides are meram
phic functions on the whole complex plane. One can, the
fore, consider these relations for anyx as a result of analytic
continuation.

Let us now restrict ourselves to the real values ofx. Inte-
grating both sides of Eq.~A4!, one obtains

(
k51

`
~21!k

k S xp D 2kzR~2k!5 ln
x

sinh~x!
;

(
k51

`
1

k S xp D 2kzR~2k!5 ln
x

sin~x!
. ~A5!

In the second of these formulas one should assume
x,p, unless the integration rule for the poles of cot(x) is
specified~see below!.

Multiplying Eq. ~A4! by x2 and integrating from zero to
x, one obtains
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(
k51

`
~21!k

k S xp D 2kzR~2k22!5JS xp D ,
(
k51

`
1

k S xp D 2kzR~2k22!5J̃S xp D , ~A6!

where

J~x!5pE
0

x

t2coth~pt !dt, ~any x!;

J̃~x!52pE
0

x

t2cot~pt !dt ~x,p!. ~A7!

Equations~A5!–~A7! will be used below. To proceed fur
ther, we return for a moment to Eq.~A1!. Consider the equa-
tion which is obtained from Eq.~A1! under the replacemen
x→2x. Taking the difference of the two equations, one o
tains

ext

ex21
1

e2xt

e2x21
52(

k50

`

B2k11~ t !
x2k

~2k11!!
. ~A8!

Using the explicit form of thek50 term on the right-hand
side, 2B1(t)52t21, and utilizing also the following rela-
tion ~see@36#, p. 807!:

zR~2k11!5~21!k11
~2p!2k11

2~2k11!! E0
1

B2k11~ t !cot~pt !dt,

~A9!

one finds

(
k51

`

~21!kS x

2p D 2kzR~2k11!52
p

2E0
1S 122t1

ext

ex21

1
e2xt

e2x21D cot~pt !dt.

~A10!

Replacing herex→2x and t→2t21, and considering also
x→ ix, one arrives at

(
k51

`

~21!kS xp D 2kzR~2k11!52
p

2
I ~x!,

(
k51

` S xp D 2kzR~2k11!52
p

2
Ĩ ~x!, ~A11!

where

I ~x!5E
0

1S t2sinh~xt!

sinh~x! D tanS pt

2 Ddt,
Ĩ ~x!5E

0

1S t2sin~xt!

sin~x! D tanS pt

2 Ddt. ~A12!

Next, one deduces from Eq.~A11! that
-

t
b-

(
k51

`

~21!kn2kz2kzR~2k11!52
p

2
I ~pnz!. ~A13!

Using

G~k11/2!

G~k12!
5

4

Ap
E
0

1

dzz2kA12z2,

G~k11/2!

G~k13!
5

8

3Ap
E
0

1

dzz2k~12z2!3/2, ~A14!

we finally obtain the following formulas:

(
k51

`

~21!kn2k
G~k11/2!

G~k12!
zR~2k11!

522ApE
0

1

dzA12z2I ~pnz!,

(
k51

`

~21!kn2k
G~k11/2!

G~k13!
zR~2k11!

52
4

3
ApE

0

1

dz~12z2!3/2I ~pnz!, ~A15!

together with the corresponding two relations obtained b
n→ in, I (pnz)→ Ĩ (pnz). Here, the integrals can be consid
ered for arbitrary values ofn, which defines the analytic
extension of the series.

2. The basicz-function relation

Consider the followingz function

zn
0~s!5 (

n51

`
1

~n21n2!s

5
1

G~s!
E
0

`

ts21(
n51

`

exp$2t~n21n2!%dt. ~A16!

In order to express this function in terms of the Riemannz
function, we expand exp(2tn2)5(k(21)kn2ktk/k!, and per-
form the integration overt. Then, the sum overn gives the
Riemannz function, such that

zn
0~s!5zR~2s!1 (

k51

`
~21!k

k!
n2k

G~k1s!

G~s!
zR~2k12s!.

~A17!

This relation will turn out to be especially handy. Taking th
pole of the gamma function ats50 into account, using Eq.
~A5! and utilizingzR(0)52 1

2, zR8 (0)52 1
2ln2p, one finds

zn
0~0!52

1

2
,
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d

ds
zn
0~0!52 ln~2p!1 (

k51

`
~21!k

k
n2kzR~2k!

5 ln
n

2 sinh~pn!
. ~A18!

For a harmonical oscillator, for instance, one has

z~s!5(
l51

` H S 2p l

b D 21v2J 2s

5S b

2p D 2szbv/2p
0 ~s!⇒ d

ds
z~0!

5 ln
v

2 sinh~bv/2!
, ~A19!

which gives rise to the formula~6.8! in the main text when
v5 iA2.

We shall also use anotherz function

zn
2~s!5 (

n51

`
n2

~n21n2!s
5zR~2s22!

1 (
k51

`
~21!k

k!
n2k

G~k1s!

G~s!
zR~2k12s22!.

~A20!

Using Eqs.~A6! and ~A7!, one obtains

zn
2~0!50,

d

ds
zn
2~0!52zR8 ~22!1J~n!, ~A21!

whereJ(n) is defined by Eq.~A7!.

3. Evaluation of PPzspat„2
1
2…

We consider the spatialz function

zspat~s!521 (
s50,1,2

(
n53

`
n22s2

~n21s223!s
23(

n52

`
n221

~n2!s
,

~A22!

which can be represented in the form

zspat~s!5A~s!1B~s!, ~A23!

where

A~s!5213zR~2s!23zR~2s22!1(
n2

~n221!~41n2!2s,

~A24!

and

B~s!5(
n2

$zn
0~s21!2~11n2!12s%

2(
n2

~312n2!$zn
0~s!2~11n2!2s%. ~A25!

Here, zn
0(s) is defined by Eq. ~A16!, and n25s223

51,22,23. In A(s) one can simply put s521/2,
which yields PPA(21/2)5A(21/2)5291/4023A2.
Let us now considerB(s21/2) in the limits→0. We first
analyzezn

0(s21/2). Using Eq.~A17!, we obtain

zn
0~s2 1

2 !5zR~2s21!2n2
G~s1 1

2 !

G~s2 1
2 !

zR~2s11!

1 (
k52

`
~21!k

k!
n2k

G~k1s21/2!

G~s2 1
2 !

zR~2k12s21!.

~A26!

Let us now consider the limit wheres tends to zero. Then,
the second term on the right-hand side diverges due to th
pole of the Riemannz function,

zR~11s!5
1

s
1g1O~s2!, ~A27!

whereg is the Euler constant. The remaining terms in Eq.
~A26! are all finite. The principal part is

PPzn
0~2 1

2 !5 lims→0

d

ds
~szn

0~s2 1
2 !!. ~A28!

Using zR(21)521/12, G(21/2)522Ap, and replacing
k→k11 in the sum entering Eq.~A26!, one obtains

PPzn
0~2 1

2 !52
1

12
2
1

2
n2~12g!1

n2

2Ap
(
k51

`

~21!kn2k

3
G~k11/2!

G~k12!
zR~2k11!. ~A29!

Finally, taking into account Eqs.~A15!, one arrives at

PPzn
0~2 1

2 !52
1

12
2
1

2
n2~12g!2n2E

0

1

dzA12z2I ~pnz!,

~A30!

whereI (x) is defined by Eq.~A12!. Similarly, one obtains

PPzn
0~2 3

2 !5
1

120
2
1

8
n22

1

2
n4~12 3

4g!

2n4E
0

1

dz~12z2!3/2I ~pnz!. ~A31!

The next step is to insert these relations in Eq.~A25! and
to compute the sum overn251,22,23. The n251 case
presents no problems, whereas the negative values ofn2

should be treated with some care. Let us pass in Eq.~A30! to
negativen2, n→ iq, whereq5uqu. For q,1 one obtains

PPzn
0~2 1

2 !→PPz iq
0 ~2 1

2 !

52
1

12
1
1

2
q2~12g!1q2E

0

1

dzA12z2Ĩ ~pqz!,

~A32!
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where Ĩ (x) is defined by Eq.~A12!. Next, we consider the
following integral representation forA12q2 which is valid
for 0,q,1:

A12q2512
2q2

p E
0

1

dzA12z2E
0

1 sin~pt !

12q2z2
tanS pt

2 Ddt.
~A33!

This implies

PPz iq
0 ~21/2!2A12q25212

1

12
1
1

2
q2~12g!

1q2E
0

1

dzA12z2

3E
0

1S t2sin~pzqt!

sin~pzq!

1
2

p

sin~pt !

12q2z2D
3tanS pt

2 Ddt. ~A34!

Here, we can safely extend the range ofq from 0,q,1 to
0,q,2, thus taking the valuesq5A2,A3 into account, that
is, n2522,23. This allows us to compute the second su
over n2 in the formula~A25! for PPB(21/2). The first sum
can be done with a similar rearrangement, using the form

~12q2!3/2512
3

2
q21

2q4

p E
0

1

dz~12z2!3/2

3E
0

1 sin~pt !

12q2z2
tanS pt

2 Ddt. ~A35!

Finally, collecting everything together, we arrive at

PPzspat~2 1
2 !5

5

6
2
11

4
g15R1~1!2R3~1!12P1~A2!

24P3~A2!19P1~A3!29P3~A3!,

~A36!

where

Rm~n!5E
0

1

dz~12z2!m/2E
0

1S t2sinh~pznt !

sinh~pzn! D tanS pt

2 Ddt,
Pm~q!5E

0

1

dz~12z2!m/2E
0

1S t2sin~pzqt!

sin~pzq!

1
2

p

sin~pt !

~12q2z2! D tanS pt

2 Ddt. ~A37!

4. Evaluation of zspat8 „0…

The procedure in this case is similar to that of the prev
ous section. One again starts from Eqs.~A23!–~A25!, but
m

ula

i-

now, using Eq.~A16! and~A20!, it is convenient to represent
the functionB(s) in the equivalent form

B~s!5(
n2

$zn
2~s!2~11n2!2s%

2(
n2

~31n2!$zn
0~s!2~11n2!2s%. ~A38!

The next steps are straightforward. Using Eqs.~A18! and
~A21!, one obtains

B8~0!5(
n2

$2zR8 ~22!1J~n!1 ln~11n2!%

2(
n2

~31n2!ln
n~11n2!

2 sinh~pn!
, ~A39!

whereJ(n) is defined by Eq.~A7!, andn251,22,23. For
negativen252q2,0, one again needs some minor modifi
cations. No changes are needed for the second sum in
~A39!:

ln
n~11n2!

2 sinh~pn!
→ ln

q~12q2!

2 sin~pq!
, ~A40!

where we can putq5A2, A3. In the first sum one has

J~n!1 ln~11n2!→J̃~q!1 ln~12q2!

52pE
0

q

t2cot~pt !dt2E
0

q 2tdt

12t2

[2I~q!, ~A41!

where

I~q!5E
0

qS 2t

12t2
1pt2cot~pt ! Ddt, ~A42!

which can also be extended to the valuesq5A2, A3. For
A8(0) one has

A8~0!523 ln~2p!26zR8 ~22!13 ln2, ~A43!

which finally gives

zspat8 ~0!5 lnS 2A2p3 sinh
4~p!usin~A2p!u D

1J~1!2I~A2!2I~A3!, ~A44!

with J(x) andI(x) being defined in Eqs.~A7! and ~A42!,
respectively.
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5. Asymptotic expansion ofQspat„t…

Let us consider the function

Q~ i , j ,kut !5(
n5 i

`

~n22 j !e2~n21k!t

52e2ktS ddt1 j D(
n5 i

`

e2n2t. ~A45!

We want to find its asymptotic expansion for smallt:

Q~ i , j ,kut !;
1

~4pt !3/2 (
r50,1/2,1, . . .

Crt
r . ~A46!

Such an expansion can be obtained with the use of the th
function identity@35#

(
n52`

`

exp~2tn2!5Ap

t (
n52`

`

expH 2
p2

t
n2J ,

~A47!

which implies that

(
n5 i

`

exp~2tn2!;
1

2
Ap

t
2
1

2
2 (

n51

i21

exp~2tn2!,

~A48!

since for t→0, all terms with exp$2p2n2/t%, nÞ0 vanish
faster than any power oft and can, therefore, be omitted
Inserting this into Eq.~A45! and expanding the remaining
exponents, we find

Q~ i , j ,kut !;
Ap

4t3/2
2

Ap

4t1/2
~k12 j !1 j /21 (

n51

i21

~ j2n2!

1
Ap

8
k~k14 j !t1/21O~ t !. ~A49!

The coefficientsCr for r<2 are, therefore,

C052p2, C1/250, C1522p2~k12 j !,

C3/258pApS j21 (
n51

i21

~ j2n2!D , C25p2k~k14 j !.

~A50!

The heat kernel~6.12! in the main text can be represented

Qspat~ t !52e2t1 (
s50,1,2

Q~3,s2,s223ut !23Q~2,1,0ut !,

~A51!

which finally gives rise to Eq.~6.14!.

6. Evaluation of zb„0… and zb8 „0… †34‡

Consider the thermalz function for an arbitrary system of
harmonic oscillators with positive energies
eta

.

as

zb~s!5
1

G~s!
E
0

`

ts21 (
l52`

`

expH 2S 2p l

b D 2tJ Q~ t !dt,

~A52!

where

Q~ t !5(
v

exp$2v2t%, v2.0. ~A53!

Transforming the sum overl in Eq. ~A52! with the use of the
theta function identity~A47! and using the integral represen-
tation for the Kelvin functions,

Kn~z!5
1

2 S z2D
nE

0

`

dtt2n21expH 2t2
z2

4t J , ~A54!

one obtains@34#

zb~s!5
b

2Ap

1

G~s!
Yspat~s2 1

2 !

1
2b

ApG~s!
(
l51

`

(
v

S b l

2v D s21/2

K1/22s~b lv!,

~A55!

where

Yspat~s!5E
0

`

dtts21Q~ t !5zspat~s!G~s!. ~A56!

This function has the pole structure@32#

Yspat~s!5
1

~4p!3/2(r
Cr

s1r23/2
1 f ~s!, ~A57!

whereCr are defined by the asymptotic expansion ofQ(t),
and f (r ) is an entire analytic function ofs. This relation
implies

Yspat~s2 1
2 !5

C2

~4p!3/2
1

s
1PPYspat~2 1

2 !. ~A58!

Taking Eq.~A56! and the properties of the gamma function
into account,

1

G~s!
5s1gs21O~s3!,

G~2 1
21s!522Ap$11~2g1222 ln2!s%1O~s3!,

~A59!

one, therefore, obtains
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1

2ApG~s!
Yspat~s2 1

2 !

5
C2

16p2 1H ~12 ln2!C2

8p2

2PPzspat~2 1
2 !J s1O~s2!. ~A60!

Finally, using

K1/2~z!5Ap

2z
e2z, (

l51

`
1

l
e2 lz52 ln~12e2z!, ~A61!
one arrives at

zb~s!5
C2b

16p2 1H S ~12 ln2!C2

8p2 2PPzspat~2 1
2 ! Db

22(
v

ln~12e2bv!J s1O~s2!, ~A62!

which gives rise to the formula~6.19! in the main text.
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