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Computation of the winding number diffusion rate due to the cosmological sphaleron
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A detailed quantitative analysis of the transition process mediated by a sphaleron-type non-Abelian gauge
field configuration in a static Einstein universe is carried out. By examining spectra of the fluctuation operators
and applying the-function regularization scheme, a closed analytical expression for the transition rate at the
one-loop level is derived. This is a unique example of an exact solution for a sphaleron modellin 3
spacetime dimensiongS0556-282(196)02720-9

PACS numbeps): 04.62+v, 11.10.Wx, 11.15.Kc, 98.80.Cq

[. INTRODUCTION In fact, this type of sphaleron was found long ago. The
solution itself has been discussed in various contexts, to-
The discovery of vacuum periodicifit,2] and sphalerons gether with the other related solutions of tkginstein)
[3] in the standard model has revealed a considerable fern¥ang-Mills field equation$16—18. The sphaleron nature of
ion number violation in the theory at high temperatures. Thehe solution was also recognized and discussed in connection
fermion number changes in the processes of barrier transwith the finite volume QCO19] and in a cosmological con-
tions between the distinct topological sectors of the theorytext as wel[20,21]. However, an analysis of the correspond-
where the barrier height is determined by the sphaleron ering sphaleron transition problem has been lacking so far.
ergy. Such processes become unsuppressed at temperatureIhe cosmological sphaleron is distinguished by the im-
of the order of the sphaleron mass. Since the different topoportant property that the sphaleron configuration consists of
logical sectors are in thermal equilibrium at high tempera-the gauge field alone. This implies that the sphaleron is not
tures, the sphaleron transitions lead to the dissipation of thplagued with the various symmetry-breaking phase transi-
baryon asymmetry produced at earlier times, that is, duringions, and this also ensures that the dynamics of the
the electroweak phase transition or at grand unified theorgphaleron-mediated processes is conformally invariant, up to
(GUT) energies[4]. The estimates for the transition rate the anomalous scale dependence of the gauge coupling con-
[5-9] show that the sphaleron mechanism can be efficienstant. Since the sphaleron has very high symmetry, there is
enough to reduce the asymmetry by several orders of magn opportunity to analyze the sphaleron transition problem
nitude. analytically at the one-loop level, which is of a great meth-
The sphaleron solution in the standard model is knowrbdological interesttWe shall use the names “cosmological”
only numerically, which causes considerable computationa&nd “universe,” although the model can be applied not only
difficulties [7—-9]. Other field-theoretical sphaleron models in the cosmological context.
have, therefore, become importdi0-12. Some of these The problem which will be investigated below can be
models are exactly solvable in the sense that the correspontbrmulated as follows. Consider a gauge field in a static Ein-
ing sphaleron transition rate can be evaluated analytically atein universe at finite temperature. Specifically, consider the
the one-loop leve[11,12, which provides a closer insight thermal ensemble over one of the topological vacua of the
into the physics. Unfortunately, all of these models exist onlyfield. Find the rate of the decay of this thermal state due to
in low spacetime dimensions. There is also an alternativéhe diffusion into the neighboring topological sector. In order
example of four-dimensional sphalerons which appear in théo obtain the answer, we use the Langer-Affleck formula and
theory of a self-gravitating non-Abelian gauge field. Gravitytake only the bosonic degrees of freedom into accdgtime
violates the scale invariance and plays, therefore, a role simfermion contribution can be considered in a similar yay
lar to that of a Higgs field. This results in the existence ofWe do not assume the high temperature limit and take the
classical[13] sphaleronlike solutions in the theof$4,15, sum over all Matsubara modes. We use gheinction regu-
which are also known only numerically. larization scheme, which allows us to entirely carry out the
The purpose of the present paper is to investigate analysis. Our principal results are given by E¢8.20-
sphaleron model that is exactly solvable and yet exists ir{6.27) and Eq.(6.37 and presented in Figs. 1-3. The rest of
3+ 1 spacetime dimensions, which distinguishes it from thehe paper is organized as follows. The basic properties of the
other known models. Similarly to the example mentionedmodel, such as topological vacua and the sphaleron solution,
above, this model deals with a non-Abelian gauge field in-are discussed in Sec. Il. A brief derivation, based on the path
teracting with gravity, but now gravity is regarded as a fixedintegral methods, of the decay rate of an unstable phase at
external field. Specifically, we shall consider the theory of afinite temperature is given in Sec. lll. The path integration
pure SUW2) Yang-Mills field in a static Einstein universe. procedure is outlined in Sec. IV. The spectra of the fluctua-
This theory admits an analytically known sphaleron solutiontion operators are analyzed in Sec. V. The determinants of
which we shall call cosmological sphaleron. The analysis othese operators are calculated in Sec. VI which also includes
the corresponding transition problem is the subject of thighe consideration of the high temperature limit. Section VI
paper. contains some concluding remarks, and the derivation of nu-
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merous formulas used in thefunction approach is given in  The elements of the zeroth homotopy clds€), give rise to

Appendix. small gauge transformations which can be continuously de-
Throughout the paper the units=c=xg=1 are used. formed to identity; other functionsy®, k+0, generate

The symbol g stands for the gauge coupling constant,large transformations. A vacuum of the gauge field is a pure

whereas the spacetime metric is denotedyby gauge,A,,=iUdU 1. Since allU’s split into homotopy
classes, all pure gauges decompose into disjoint sets called
Il. THE SPHALERON ON S3 topological vacua. Thé&th topological vacuum in the tem-

_ ) _ ) ) poral gauge is
Consider the static Einstein universeM(g), where

M=R1x S8, and the metric is AW =iu®gqu®-1, (2.9

ds?=a?(—dn’+ dQ%). (2.2 By construction, the Chern-Simons number of this field con-
_ . figuration coincides with the winding numbkr
Here,a is a constant scale factor, and the line element on Distinct topological vacua cannot be joined by a continu-

S® is parametrized by ous interpolating sequence of pure gauge configurations
5 , _ ) iUdU 1, since this would require a change in the winding
dQ3=dé+siré(d 9+ sif9de?), (220 numberk[U]. However, one can join them by a family of

nonvacuum fields. That is how one can see that the model

where £[0m], and 9, ¢ are the usual spherical coordi- 4 yits 5 sphaleron solution. Consider the two neighboring

nates onS?. : . A(0) (€))
. o . . vacua given by Eq92.7) and(2.9): A®=0 andA®). They
The model under consideration is defined by the action can be joined by the following path in the configuration
1 space:
SAl=— 5= trf F L F#7\—gd?x, (2.3
29° Jwm “1+h
Alh]=i TU(l)dU(l)’l, (2.10

where A=Ade”=TpAdex” is the gauge field, and
Fuv=0,A,—3d,A,—i[A,,A,] is the field tensor. The Her- where the parametene[—1,1]. (Applying a large gauge
mitian group generators afig,= 7°/2 with 7% being the Pauli  transformation one can reduce such a path to a noncontract-

matrices. The metrigin Eq.(2.3) is given by Eq(2.1), such  jble loop) The energy-momentum tensor for this field is
that the action defines the theory of a pure non-Abelian

SU(2) gauge field in the static Einstein univerg&hrough- (h2—1)?

out the paper we neglect the back reaction of the gauge field Tg(A[h]):W diag3,-1-1-1), (213
on the spacetime geometry, which can be justified if

a>1p /g, wherelp is Planck’s length. The classical equa- such that the energy is given by

tions of motion following from the action are

3 2
V#Fﬂv_i[AM,F#V]:O, (2.4 E[h]=f Tg\/s—g d3X=gTﬂ-a(h2—l)2. (2.12

where V, is the covariant derivative with respect to the Thjs function has the typical barrier shape: it vanishes at the

spacetime metric. vacuum values oh, h=+1, and reaches its maximum in

First, we need to describe the topological vacua of thg)epyeen, ah=0. The top of the barrier relates to the field
gauge field in this case. We do so by introducing a SmOOthconfiguration

time-independent function on the manifold(x) e SU(2),
wherex=x", m=1,2,3, thus defining the mapping i
A(SP)EA[hz0]=§U(1)du(1)‘1, (213
U(x):S3—SuU(2). (2.5
. . . . with the energyE m.=3m?/g?%a.
Any such mapping can be characterized by an integer wind- Similarly, one can defin&,, for any other interpolating
ing number S
path, and then minimize the result over all paths. If a nonzero
1 minimum exists then it relates to an unstable classical solu-
kfU]= 22,2 trf 3Udel/\Udufl/\UdU*l, (2.6 tion called sphaleron. By construction, the sphaleron energy
m S defines the minimal height of the potential bariigr10].

To carry out such a program would, however, be too dif-
ficult a task which has, in reality, never been done. Instead,
we simply check that the field2.13 solves the classical
equations of motion. To see this, it is illuminating to allow

(K () — 1 1K) — il £nana the parameteh in Eq. (2.10 to depend on timeh— h( 7).
UT00=UT(E, 9, ¢) =exp ~iken™ s, @7 Then, the Yang-Mills equation@.4) for the field (2.10 re-
where n?= (sind cosp,sind sing,cosd). The functionsU’s  duce to one nontrivial equation, which admits a first integral:
generate static gauge transformations: 2 (

d2h ,
W+2h(h —1)20, =

such that the set of all’s falls into a countable sequence of
disjoint homotopy classes. The representative of Iite
class, U™, kTU®]=k, can be chosen as

2
+(h?—1)%=¢, (2.19

dn

A—UAU 1+iudu—L. (2.9
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with & being an integration constant. Effectively, these equaone can think of the sphaleron as being a radiative solution

tions describe a particle moving in the one-dimensionaWwhich is rendered static by gravity.

double-well potential. Whes =1, one finds the static solu- We will also need some knowledge about instantons in

tion h(#) =0, which describes an unstable equilibrium of thethe model. We first note that the vacua and the sphaleron,

particle on the top of the barrier. This shows that field con-since they are static, can be regarded as Euclidean solutions.

figuration (2.13 indeed solves the equations of motion andNext, let us pass to the imaginary time in E@.14,

relates to a saddle point of the energy functional, such that ip— —i7:

can be naturally called sphaleron. Later, we shall see that this

solution has only one unstable mode. In addition, fer1,

Egs.(2.14 admit the solution for the particle rolling down

the barrierh( )= \2/cosh/2(7— 7,), which describes the

time evolution of the sphaleron during its classical decay. ) ) ) ) )
Of course, these arguments do not prove that the Spha@part fror_n the stat_lc solutions, this equation admits also the

ron relates to the absolute minimum of energy for static/Ntérpolating solutions fore =0, such thath(—o)=—-1,

nonvacuum solutions. Note, however, that E13 is the h(=)=1. The perlpdlc' solutions exist for<0e <1, and the

only static, nonvacuum, S@ symmetric solutioff17]. Itis, ~ corresponding period is bounded from below:

therefore, very plausible that this solution does indeed mini-

mize the energy. > \2. (2.19
Another handy form for the sphaleron solutigh13 can

one-forms ons®, the flat space Belavin-Polyakov-Schwarz-TyupKBPST)
instantons by making use of the conformal invariance of the

i i ;
wfzz tr(2AUDduO -1, wi=— tr(2AUD-1gu®), YM equations[19].

dh

2
E) —(h?—1)%?=—¢. (2.18

2
(2195 IIl. THE SPHALERON TRANSITION RATE
which satisfy the Maurer-Cartan equations Consider the low energy excitations over #ib topologi-
cal vacuum, AR (x)— AR (x,t) =AM (x) + 5A(x,t). If the
dw?+ £ p0°\w®=0. (2.1 (0 —A (X () (x.0)

energy is small compared to the barrier height’f?a,
then the excitations over the distinct vacua are classically
independent. There is a nonzero amplitude for the quantum
(59— a tunneling between distinct sectors; however, the correspond-
AP =Ty . (217 ing probability is exponentially small. On the perturbative
level, one can consider the excitations in each sector inde-
It is worth noting the following feature of this solution: pendently. The energy of the ground state excitation in each
the Sphaleron Configuration consists of the gauge field alon%.ector is 14 [See Eq(52@ be|0vv]_ The necessary condition
This, together with the high symmetry of the solution, will for the smallness of the energy of the excitations is, there-
be of crucial importance for the analysis below. It is well fore, g2/3m2<1.
known that in the Minkowski space, the existence of static, Consider the zeroth topological sector and assume a ther-
finite energy solutions for the pure gauge field is ruled out bymg| distribution for the states in this sector. There is a finite
the scaling arguments. However, these arguments do nekobability for such a thermal system to decay, both because
generally apply in curved spacetime, since the invariancef the underbarrier tunneling and due to the overbarrier ther-
with respect to the rescaling of the coordinates;\x, is  mal excitation. According to the Langer-Affleck theory of
broken by the curvature. It is, therefore, gravity which en-the metastable phage4], the decay rate is proportional to
sures the existence of the static sphaleron solution. Since thge imaginary part of the free energy. To estimate the latter,
spacetime geometry is homogeneous and isotropic, thgis convenient to use the path integral approéble precise
sphaleron inherits the same symmetries, such that, for ingefinition of the path integration procedure will be given in
stance, its energy-momentum tensor has the manife®)SO the next section
symmetric structure. The partition function of the gauge field is
Let us mention also the following point: since the Yang-
Mills (YM) equations are conformally invariant, and the ge-
ometry(2.1) is conformally flat, there exists the Minkowski zzexp(—,m:):f d[Alexp(— Sg[A]). (3.2
space counterpart of the sphaleron solution. However, this
flat spacetime solution is, of course, no longer static. Specifi-
cally, if one chooses the conformal factor of the metfic)  In this expressionSg[A] is the Euclidean action of the
asa=a(7,&) = (cosp+cost) * and introduces the new coor- gauge field in the static Riemannian spa&x S°,g), with
dinatest +r=tar{ (5= £)/2], the metric assumes the stan- g being the analytic continuation of the met(.1) to the
dard flat form[20]. In the new coordinates, the sphaleronimaginary time,»— —ir, 7€[0,8]. In the weak coupling
field (2.13 becomes a member of the family of the elliptic limit, one can approximate the partition function by the sum
solutions[22], which describe spherical shells of the Yang- over the classical extrenf)}, asz=3.Z. , where the semi-

1=
Mills radiation in the Minkowski spacg?3]. In this sense, classical contribution of th¢th extremum is

This allows us to represent the figl@.13 as
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_ this formula involves only conformally invariant quantities,
Zj=exp(— BF;)=exp( — S[A{’}])f d[ ¢]exp( — 6°S)). the conformal factoa drops out. Another crucial assumption
(3.2 s the weak coupling limitg?/4m<1. First of all, this en-
sures the very existence of the thermal ensemble. In addition,
The action for the fluctuations around theh extremum, it justifies the validity of the Gaussian approximation, and,
AUl Al + o can be represented as moreover, leads to the weak damping limit fier

{iy = {i} 2S 4+ ...
SAT T e]=F AT+ 675+ ' IV. THE PATH INTEGRATION PROCEDURE

B - We outline below the main steps of the path integration
2Q — . 3
oS, fo dTLs(@'DI‘P)‘/éd X, @3 procedure. It is worth noting that the gauge field theory on

- S® resembles that o8*. We shall, therefore, mainly follow
whereD; = D[Al}] is the Gaussian fluctuation operator. This the approach given in Reff25—27.
gives the one-loop expression for the partition function: Passing to the imaginary time, the spacetime megit)

i becomes
exp(—S[AU])
z=3 7=F ————.

j

) VDet(D;) . .
wherere[0,8]. We assume that the coordinates are dimen-

Assume that this sum is dominated by two terms,sionless, implying thata]=[L]. Notice that 18 is thecon-
Z=Z,+2Z,, whereZ, and Z, are the contributions of the formal temperature. The physical temperatdres defined
vacuum and the sphaleron, respectively. Other periodic inwith respect to the physical timer, such thafl = 1/8a.
stantons that could exist for a given value®fire assumed The Euclidean action of the gauge field is
to have a large action. . .

The sphaleron fluctuation operatbr; has at least one _ v [ 4
negative eigenvaluay? <0. Under the condition specified SelAl 29 trf FuF " gde- 0. “.2
by the lower bound in Eq(3.8) below, there is only one
negative eigenvalue. This implies tha is purely imagi- Consider small fluctuations around thi extremum of the
nary, and the free energy of the whole system picks up thaCtiOﬂAﬂ}HAﬂ}Jr ¢,,» where the valueg= 1,0 refer to the

(3.4 d&?=a?(dr?+dQ3), (4.2)

imaginary part sphaleron and the vacuum configurations, respectiwely
shall omit this index where possibleThe infinitesimal
Z 1 auge transformations act as,— ¢! = ¢ ,+D ,a, where
IM(BF)=—Im InZ=—1m In| Zo| 1+ =] |=— =-Imz,. 9349 . B O = PuT Dudty
(BF) 0( ZOH Zy ! D,a=V, a—i[A,,a], anda is a Lie-algebra-valued scalar
(8.5 field. Define the operators
According to Langef24], the imaginary part of the free 6(PV:|\7|(PV+ D¥(D,¢°),

energy is to be interpreted as giving rise to the decay rate of

the unstable phase built over the perturbative vacuum as M V= — D, D70+ R 7+ 2I[F", o], 4.3
K

I'= u ImF, (3.6  These are the vector fluctuation operator and the gauge-fixed

T fluctuation operator, respectively. Introduce also the

where the damping constantis the real time decay rate of Faddeev-Popov operator
the sphaleron configuration in the heat bath. In the weak ~ Ep "
coupling limit one hagx|=|w_| [5], which finally deter- M™a=-D,D%. (4.9

mines the decay rate to be . .
In these formulasR,, is the Ricci tensor for the geometry

|w_| ImZ; (4.1, andF,, is the background gauge field tensor. These
=—-—— . (3.7 operators are self-adjoitgymmetri¢ with respect to the sca-
T L lar products
This formula holds in the following range of temperatures
[24]:

<(p,qo'>=2trf 00! \gd*x, (a,a'>=2trf aa’ Jgd*x.

lo_| 1 372 4.5

The norms aréd|¢||= V{¢,¢), and||a||= V{a,a). The ac-
The lower bound rules out the periodic instantons which playtion can be expanded as

the leading role at low temperaturg4] [for the cosmologi-

cal sphaleron one has_|= 2, such that this condition is
opposite to that specified by E(.19]. The upper bound is
the sphaleron energy which must exceed the temperature,
otherwise the system would not be metastable. Notice thathe Gaussian path integral is

1 ~
Se[A+ @]“SE[AHEZW,D@)- (4.6)
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1 . Let us first apply these formulas to the sphaleron. In this
Z=exp(— SE[A])j d™ @]eXP( —2—z<<P,D€0>) - (4.7 case, as we will see in the next section, the vector fluctuation

g operator has one negative eigenvalue< 0, whereas all the
where the Faddeev-Popov measure is other eigenvalues,, g, in Egs.(4.13 and(4.14 are posi-

tive (zero modes are absénfThe integral overC_ in Eq.
(4.13 can be defined by analytic continuatif28], and the
d M e]l=dl¢]G(¢) o), 1=g(<P)f dla]F(e), result isuo/2i V[N _|. The rest are well-defined Gaussian in-
(4.9  tegrals. It is convenient to introduce the conformally invari-
ant dimensionless operatoké and M whose eigenvalues
andF is the gauge-fixing function. The fluctuatiopscan be  are w? and ?:
decomposed as

~ 1. ~ 1. wi w2
:D:U“a_l—g#’ (49) M:any MFPZEZMFP; )\k —2— qn=gg
(4.195

where the pure gauge pait,a is annihilated byf), and

&, is orthogonal to all gauge modeB,,£”=0. The fields  Thijs implies that the partition function for the Gaussian fluc-
&, anda can be expanded with respect to the eigenfunctionguyations around the sphaleron is

of D andM™™ A
moa  DetMTufal)

. Z,=exp(— S[AP]) ,
“_ CLéM , _ B : 1 . =<
¢ EK Kk, «a ; nn 2iV|o_| \/Det’(Mll,u,Saz)
) ) (4.1
Déy=Ne &, MFPa = . 4.1 L .
&= Mk @n=0nn (4.10 where Det has all nonpositive eigenvalues omitted, and the
The gauge-fixing function is chosen to be index 1 refers to the sphaleron. Note that Dkt) must be

computed on the space of all vector fluctuatigrts and not
1 ” only for those satisfyind ,¢”=0.
Flo)=exp — 2_92<D(r‘»° D ,e") Consider now the vacuum case. As we will see below, the

ghost operatorl\A/IFP in this case has three zero modes

1 a,=7°12 (p=1,2,3) related to the global gauge rotations of
= _ 2.2 2 p 149
—exp{ 292§n: Brdh| el ] (41D the vacuumA=0. The norm of these modes is
and the integration measure is the square root of the deter- 2:f d J d3x=2m28a%. 4.1
minant of the metric on the function spal®7]: llell 7 3\/6 mh .17

! The quantityG specified by Eq(4.14) then reads
Mo Mo
dlel=11 ——-dCdl&ll] ——-dBVaullaal, )
k 27Tg n 2’7Tg H qn 1 ( MFP>
=—|| === Det 4.1
| y be 2 (4.18

dla]= H

dBnHanH (4.12 with

Here,uq/(V/27g) is a normalization factor withkg being an T 2
arbitrary normalization scale; the prime indicates that terms Y= H f dBp““p” Vsuz) 53~ 9° Moa °B
with g,=0 should be omitted. Taking Eqgt.8)—(4.12) into

. . . 4.1
account, the Gaussian path integral in E47) reduces to 4.19
, where the integration ovdd, gives the volume of the stabil-
o 11 ,Uvode”gM“H Hod Bn|| I ity group, in our normalization it i&/gy(z)= 1672 In addi-
k 2mg “n tion, there are three constant vector modes annihilated by the

vector fluctuation operatorély= 547712, ||£4||°=2m"Bal.
Under the gauge transformation generated by

1
><exp<—-§—z(25 NCRIEE12+ 2 anﬁHanHZ)},
97\ 'k n 27
(4.13 Up(T):eXF<ITF|Tp), Up(0)=Uy(B), leZ,
where \/q,, has been absorbed By,, and (4.20
these modes change according to

2
_ Mo
g l:f rn[ \/ﬂgdBnHanHexp[ 22 Bnqn”an”zJ p 7P

(4.14 Uplr):65= 05— 3t 5

1+fiq (4.20)
) .
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This shows that the range of integration ov@p in Eq.  Here, the scalar fluctuation operatd<@ formally coincides
(4.13 is finite, Cpe[0,4w/B]. The contribution of these jith the ghost operatav 7P introduced in the previous sec-

three modes to Eq4.13, therefore, is tion:
3 3 -
[ T 2% = (7] T g w22 30 — (V¥ V¥) ¢
p=1 \27g g i
— {2V T, %1+ [T [Ts, 911} (5.7
All other eigenvalues are positive, which finally gives, for
the fluctuations around the vacuum, The vector operator reads
47 Det(MEF u2a?) MYEp2= — (VoVo+ VoV o — 4) 62— 26450V b
Zo=—3 33 ' (4.23 ; a b
Ho?B VDEt’(MO/,LLSaZ) +J{_2VS[TS!¢ 1+4e,pd Ts,0"]
—[Ts.[Ts, 11} (5.9

We shall omit below the factowg, uga— a, such thata will

be understood as the radius of the Universe expressed f;ch of these operators decomposes into the direct sum of a
units of anarbitrary length scale. temporal and a spatial part

V. SPECTRA OF THE FLUCTUATION OPERATORS 92

o M=——+M, (5.9
To analyze the spectra of the conformally invariant opera- ar

torsM andMFP defined by Eqs(4.3), (4.4), and(4.15), one

can puta=1 in the line element. We introduce the one-form such that the problem reduces to the study of the correspond-
basis{w® »? on the spacetime manifold, whess’=dr,  ing spatial operators/>°* and M}®.

and 0®= ! are the left-invariant one-forms given by Eq.  We now introduce

(2.15. The metric is

~ i . _—
ds?=w'® 0+ w?® w?. (5.2 Laz_e;a La= eg, L?=L,La=Lala, (5.10

Let {ey,e,} be the corresponding dual tetrad; heeg= e}
are the left-invariant vector fields &. Introduce the right-

invariant fieldse} dual to the one-forms?3. The commuta- . ~ -~
tion relations hold [La.Lo]=igapckc, [La.Lpl=igapdc, [La:Lp]=0.

which are the S@) angular momentum operators, since

[efli 1e|5]:283bce(% ) [eg =ebR]:28abcecRa [e; 7ebR]:O' . ~
(5.2  The commuting operators ate, L, andL ;. The eigenval-
ues are similar to those for the &) case, but the angular
Let V, and V, denote the covariant derivatives along the momentum can now assume both integer and half-integer
tetrad vectordey,e,}. The following tetrad rotation coeffi- values:
cients do not vanish:

. 1 3
Vaer=¢€ap€c, Va®’=e€qpc0c. (5.3 L2=I(1+1): 1=051,5,...; Lg=m,
Let us represent the gauge field of the vacuum and the _
sphaleron as Ly=m; mm=-1,—1+1,...l. (5.12
Alll=j Ty, (5.4) Next, expanding the fluctuations over the basis of the Lie

algebra,p’= ¢3Tp, = qﬁng, we define the spin and isos-

herej=0,1, tively. All thi ts t d the . > 5
wherej respectively is suggests to expan epln operatorss andT by

fluctuations a$16]
— 40 0 a_ .a
o=¢ 0’ + p?w?, (5.5 1 1 1
¢ ¢ Sad’g:i_sabcd’gv Tp¢?:T8prs¢g! Tp¢(r):i_8prs¢2'
where ¢° and ¢2 are the scalar and the vector fluctuations, (5.13
respectively.
Using Eqs.(4.3), (4.4) and(5.1)—(5.9), a straightforward  which satisfy the usual commutation relations. One has

calculation shows that the fluctuation operatoM;  &=T2=2 which corresponds to the unit spin and unit isos-
(j=0,1) decompose into the direct sum of the two operatorgn, respectively.

acting on the scalar and the vector fluctuations, respectively: ysing Eqs.(5.7)—(5.13 one can represent the spatial op-

A ~ scal on 0. Cevec s a erators for the fluctuations around the sphalerpa 1) and
Mje=(M]*¢") 0"+ (M{*¢?) 0. (5.6)  the vacuum {=0) configurations as
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All these eigenvalues are positive for2. Whenn=1,
the operatorM;°® has one negative mode with eigenvalue
w? =—2. Itis worth noting that the sphaleron does not pos-
sess any zero modes. This can be understood as follows: the
sphaleron solution completely shares the symmetries of the

three space, both are $f) symmetric. The sphaleron is,
therefore, invariant under spatial translations and rotations.

The fluctuation operators, therefore, reduce to the combingy, this case, all zero modes must be of pure gauge origin, but
tions of the angular momentum operators whose spectra cafe gauge is completely fixed.

be analyzed by the usual methods. Let us illustrate the pro-

cedure for the operatok1;°°.

We represent the operator in the form(\A/l‘{eC
=2(L?+3?-1), whereJ=L+K, andK =L +T. The com-
muting operators ar&?, 32, L, andJs, such that the eigen-

values of MJ* and their degeneracies
w2=2{1(1+1)+j(j+1)—1} andd=w(21+1)(2j +1), re-

For n=1, the vacuum operatom® has three zero
modes. As is seen from E¢b.14), their eigenfunctions are
just constants discussed in the previous sectigy:
= 8ly7P/2. Since the spectra 0¥1°°® and M coincide(but
these operators act in different spe)ce’mgp also has three

read constant zero modes,= 7°/2, which have been discussed

above.

spectively. Herep is the degeneracy factor associated with  The next step is to pick up the physical modes. The par-

the several possibilities to obtain a given valuejofor a
given value ofl.

To find v, let us fix a valud =2.K is the sum of the two
unit angular momenta, such th&t=0,1,2. ForK=2 the
possible values of arel—2]1-1...|+2, for K=1 one
obtainsj=1-1],I+1 and forK=0 one hag=I. The val-
uesj=1=2, therefore, appear only whdf=2, the values
j=1=1 are possible whek=1 orK=2, and there are three
different ways to gef=I, that is, whenK=0,1,2. Thus, if
we write j=I+ o, whereo=0,£1,=2, the degeneracies
are as followsw=3 for c=0, v=2 for c==1, andv=1
for o=*2. As a result, the eigenvalues #f(;°° and their
degeneracies can be represented as

w?=2l+o+1)%+0%-3,

d=(3—|o)(21+1)(21+20+1), [=2,

oc=0,=1,£2.
(5.15

For|<2, the factorv changes. For instance, fb=0 one
has j=K, such thatv=1 for ¢=2,1,0 and v=0 for
o=-1-2. Similarly, for [1=1/2 one obtains
v={1,2,2,0,0 for 0={2,1,0~-1,—2}, respectively. For
=1 one hasv={1,2,3,1,0 and for |=3/2 the result is
v={1,2,3,2,0.

Introducing the new quantum numbers=2l+o+1, the
whole spectrum can be given in the compact form

./\/l\iec:w2=n2+o'2—3, d=v(n’-0?), 0=0,+1,%+2,
(5.1

where v=3—|o| for n=3, and v=ndy,+ 6,61, for

tition functionsZ; specified by Eqs4.16) and(4.23 involve

the ratios of the determinants, such that some of the eigen-
values cancel. Notice that Eq(5.6) implies that
Det'(M)=Det (M*?)Det' (M"®), whereas Dé&{M"?)
=Det' (MFP). The partition functions, therefore, af25]

7 o~ SLA]) a [Det' (M%) a2)
=exXp — = ,
! : "2iJo_| V Det(M¥9a2)
L, AT [Det (M3} a2)

*aB° N pet(MPYa2)

Thus, the physical oscillator modes constitute the part of the
spectrum ofMY*¢ that remains after the subtraction of all
eigenvalues ofv1s¢@ Since all eigenvalues a1 are con-
tained in the spectrum df1"*® (besides the zero modes of

M{®), such a subtraction results in the change of the degen-

eracy factors of the eigenmodes e Using Eqgs.(5.16
and(5.17), one obtains the eigenvalues and the degeneracies,
{w?,d}, of the physical oscillators:

(5.18

METME:{—2,11,{1,4,{n?+ 02— 3,2n- 02},
n=3,0=0,1,2; (5.19
also

JAYeG 2 10,— 3}, {n2,6(n— 1)}, n=2. (5.20

n=1,2. For the other fluctuation operators, one similarly ob-

tains

M w2=n2+02-3, d=n?-¢? =01, n=2;

./\A/l\éeciw2=n2+02—l, d=3(n’-¢?), o=02*1,
n=2;
Mgca"wzznz—l, d=3n2, n=1. (5.17

Note thato in Eqg. (5.19 assumes three values which corre-
spond to the three “colors” of the “gluon,” and the coeffi-
cient 2 in the degeneracy factor refers to its two polariza-
tions, whereas in Eq5.20 all (2 spin X (3 isospin gluon
degrees of freedom are absorbed by the coefficient 6 in the
degeneracy factor. Taking into account the temporal part of
the fluctuation operators; 9%/97%, whose eigenvalues are
the Matsubara frequenciess8l%/ 82, we obtain the follow-

ing contribution of each physical oscillatdip?,d}, into the
partition function:
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o 1 {47212 —di2 The scale factop is given byu=ag/2#, and the function
il T i
For w“<0 or w“=0, the term withl=0 in this product o(s)=—6 2‘ S =—6lR(S), ={o(0)=3

should be omitted, since the corresponding negative or zero
modes have already been taken into account. Note that the

negative degeneracy for the zero mode in Eg20 arises {5(0)=31In27 (6.4)
simply because this mode is not in the spectrumhgf*° but
only in that of Mg™. whereg(s) is the Riemanny function. This gives

We are now in a position to give the formal closed ex-

pressions for the partition functions. For the fluctuations 0 47212\1°3 1
around the sphaleron we obtain — =
P L [ 2\ g )] B ©9
exp(—Se[ASP]) 2.5 4772|2
-z~ —H 32 —Qz 2 such that the overall contribution of the zero modes together
! with their Matsubara excitations into E¢5.23 is
= 1[4n%2 2 )
><|=110 2 _2_,8 +1 a333 1 /4722 73_ 1 -
] ) i |27 A ©9
1/(4m%?
X ]___[ vl —2+n2 . .
1=~ ¢=012n=3 | & | B Next, consider the product in E€.22 due to the nega-
- tive mode. The correspondingfunction is
n~—o
+ 2_ . o0
o 3)] , (5.22 . ,82 1
((9=2 |IP-52] » =L(0=-3,
and for the vacuum
1 &g~ (1474?73 2\2x@
— = | R ' (0)=—1In —J— sin L (6.7
Zo Amiui |\ B B 2
22 (14722 3(n?-1) ) o _
x 1T 11 [ —  4n2 . (5.23 [see Appendix, Eq(A18)]. The normalization factor is
1222 ns2 &% B w=(Bal27)?2, which yields
VI. EVALUATION OF DETERMINANTS AND THE 471'2|2 B
TRANSITION RATE —H Q2| =4 Sln—\/z- (6.8

We use theZ-function techniquegsee[29-34, and ref-
erences therejrto regularize and evaluate the infinite prod-  Now, we want to take into account the contribution of the
ucts entering Egs(5.22 and (5.23. The key steps of our positive field modes. We introduce the spatialfunction
analysis are presented in this section, whereas a large numbessociated with the positive physical oscillat¢ss19 and
of the technical details are given in Appendix. (5.20,
The basicZ-function relation reads
o 2_ 2 o

)\n dn _ n
(2] =en-c@-muzo), @1 Gl e

n

(6.9)

where
such that

{(s)= 2 ()\ )s mf s 12 dpexp(—tAp)dt, \/Det'./{/lical Det/\A/l\éec
(6.2

peutiy per A - el O (010
which, in fact, should be regarded as the definition of the
product. One has

We start by applying this to the zero mode contribution in

. 1 -
Eq. (5.23: gsPa{s):TS)fo dtts 1O gpaft), (6.1

2l

A R e

where the heat kernel is
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Ogpaft)=2 exp{—t}+ 2 Z n?—o?
X exp{—t(n?+ g?—3)}
—322 (n?—1)exp{—tn?}. (6.12

We shall need the asymptotic expansion of this function for

smallt

>

/2,1,

1
spa(t) W Crtr, (6.13

The computation of the coefficient for r<2 is performed
in Appendix:

Co=C1,=C1=0, Cyp=—2(4m)°%, C,=227°.

(6.19

Next, we introduce the thermdglfunction related to the spa-

tial ¢ function:
2l ?
|5 tr Ogpaft)dt

(6.19

1 © - o0
WZ@L& 2 ex

As a result, we can collect all parts together and represent the

expression for the sphaleron transition rate in the form

w_ Imz, 1

8\2n2sin BIN2)

3m?
xexp{ - ?,BJr {p(0)+Ina’Z4(0) .

T Zo

(6.16

Here, the prefactor on the right-hand side includes the co
tribution of the zero modes and the contribution of the nega
tive mode. The exponent contains the one-loop contributio
of the positive oscillator modes, and the classical sphaler

action

372
Se[ASP]= ?—/3- (6.17)

To compute the quantitie§[’;(0) and{g(0) entering Eq.
(6.16), we represent the heat kernel in H§.12 symboli-
cally as

Ogpa(t) =2 expl—w?t}, w?>0. (6.18

Then, the values of 5(0) andgg(O) are given by(see Ap-
pendiy

{5(0)= 23

VOLKOV 54
, (2—21n2)C,
{p(0)= 1672 PPspal — 3) (B
—2> In(1—e Av), (6.19

where the coefficient, is specified by Eq(6.14).

All this allows us to represent the transition ré6el6 as
77_2

1
=8\/§wzsin(,8/\/§)exﬂ’_—gz(a)ﬁ_gOB_'B(Fl_FO)]'
(6.20

In this expression, the renormalized gauge coupling constant
is

1 _ 1 ou (_)
02(a) gi(ay) 122 \a)

Here, we have returned to the dimensiorduénd replaced

g by g(ay), whereag= 1/uq. This expression agrees with the
renormalization group flow, such that it does not depend on
the scaleq, if g(ap) is chosen to obey the Gell-Mann—Low
equation. To fix the scale, we assume that the value of
d(ay) is determined by the typical energy of the physical
processes in the Universe, that is, by the physical tempera-
ture T(ay)=1/Bay. Then, we use the QCD daiaee, for
example[37])

(6.21)

9%(ap)
4T

T(ag)=100 GeV, =0.12, (6.22

and assume that the weak coupling region extends up to
somea,a. One can choosay,,,~ 10— 100g,.
& is the contribution of the zero field oscillations, that is,
the Casimir energy,
&o= Ppgspa{ (6.23

Ly+ U (In2—1).

"t is worth noting that this quantity can be computed exactly

in this case. The corresponding computation itself presents

"Some methodological interest and is given in Appendix. The
fesult is

5 11 1
Lo=g+ Z(InZ—l— y)+ fo dzy1-7°

1 7t 5
X fo dt tar(?){(z +4)F(z,t)

+(42%-2)G(z,t,\2) +92°G(z,t,\3)}, (6.29

where
sinh( 7zt)
PO =t Gz
sin(mqzt) 2 sin(wt)

The numerical value is
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exp(~B(F,~F,) ]

0.001 r(1/g) |

0.0005 -

05 8 i |
L > |
! ] ,
oi L R \ ] 05 ! - .
- ° ondt/e) : log(1/6)
FIG. 1. The thermal function exp 8(F,—Fo)]. FIG. 2. The sphaleron transition ral€1/3).
E=—-1.08... (6.26  crease of" is presumably fictitious. Indeed, it is but natural

to expect that the transition rate is increasing with growing
The contribution of the thermal degrees of freedom in Edtemperaturg12]. Thus, our results can be trusted at best only

(6.20 is for 1/8< 1/B,(4).
% One can also find the high temperature limit for the solu-
Fi—FE)=4ln(1—e #)+2 n2— tion [but the upper bound in E@6.28) is to be assumgdTo
A(Fi=Fo) ( ) a=o,12n§=:3 ( o determine the asymptotic behavior of the free energy, the

procedure is the following30]. First, one returns to thé

XIn(1—e A"+’ =3y function £ 4(s) and replaces in Eq(6.15 the heat kernel

o Ogpalt) by its asymptotic expansiof®.13. Then, one takes
P 2_1)in(1—e A", 6.2 the integral qvert, and the sum over r'educes to the R|g—
nzz (n )In(1—e"") (6.27 mann ¢ function. As a result, one arrives at the following

asymptotic expansion for sma#l [30]:
and the remaining sums in this expression can be evaluated

numerically(see Fig. L

One can see th&t; andF are precisely the free energies m Cy ((3) Cyp Cy Cap
of the physical oscillatoré5.19 and(5.20. Altogether, Eqs.  {3(0)= 5 5 = v +@ - Ing
(6.20—(6.27) provide the desired solution of the one-loop 2m\mw 4w

sphaleron transition problem. The numerical curves of c, B

I'(1/B) evaluated according to these formulas for several +8—2 y+|n4—>ﬁ

values ofa are presented in Fig. 2. & 77

This solution makes sense under the following assump- B\
tions: 477\/—2 Cr+3/2( ) {R(20)T(r) + £¢paf 0).
1 1 37?
a< , —<=<——. 6.2 (6.29
amax \/577 B QZ(a) ( &

The first condition is the weak coupling requirement. WhenThis gives the free enerdgee Eq.(6.19]

the scale factoa is too large, the running coupling constant

(6.21) becomes bigconfinement phaseand the effects of 1 (1-1h2)C

the strong coupling can completely change the semiclassical __ = — 2

picture. That is why our solution can be trusted only for F= Bgﬂ( )+ 82 ~ PPlspal ~ (6.30
small values of the size of the Universe. The other condition

in Eq. (6.28 requires that the thermal fluctuations are small

compared to the classical sphaleron energy, such that ths an illustration, we apply this to the vacuum fluctuations
perturbation theory is valid. Note that each curve in Fig. 2alone. The correspondlng spatiafunction is given by the
develops a maximum at some temperaturg,14a); how- last piece in Eq(6.9): é’spa(S) 3¢r(2s—2)—3¢r(2s), its
ever, this value seems to be already beyond the scope of tlwwefficients C, are computed in Appendix(one has
approximation: 3r?/g%(a)~ 2/Bma{@). The subsequent de- C,=0), and the result is
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o[ 7 1 3 Ing 3 ; .
Fo=—2m 17522 52 7 Ta125 - 1
158% 2B% 27 B 4w 1

11
+ W+O(ﬁ)). (6.30)

Here, 272 is the volume ofS® (remember thap3= 1/aT),

and the leading term is just the free energy of a gas of non-
interacting, massless particles witt3 polarization states.

Now, let us return to the full expressio(6.9) for

{spalS). The values ofC, in this case are given by Eq.

(6.14. Using Egs.(6.23 and(6.30), one obtains

11
—B(F1—Fg)=4InB+ {{n(0) +

B
Z y+lnﬂ) +50 B
+0(B?). (6.32
The quantityggpa(O) is computed in Appendix:
22
K=exp{{(0)} =7T—\/;sinrf"(w)|sin( V2m)|
xexp{J(1)—Z(\2) ~T(3)}, (6.33
where
J(X)= wfoxtzcotf( art)dt,
I(x):jox 1_t2+77t2c0t(7rt))dt, (6.34)
with the numerical value
k=1250.2 . .. (6.3

(It is interesting to observe the large valuesfThe corre-

0.8

exp(-B(F,—Fy))/xp*

0.6

0.4

r L L | L L L 1 L ) L L 1
0.2 é 3
log,,(1/8)

FIG. 3. The ratio between the thermal function
exfd —B(F;—Fg)] and its high temperature asymptote 125@21

VIl. CONCLUDING REMARKS

In this paper we have obtained the exact solution of the
sphaleron transition problem for a pure non-Abelian gauge
field in a static Einstein universe. This has been achieved by
the straightforward diagonalization of the one-loop fluctua-
tion operators with the subsequent computation of the func-
tional determinants in thé-function regularization scheme.
To carry out this program, the following points have been
crucial: the high symmetry of the sphaleron solution and the
fact that the sphaleron configuration consists of the gauge
field alone. Actually, these properties of the model under
consideration make it somewhat similar to the instanton
theory[2,25,2§. It is worth noting that the solution obtained
in this paper is unique in the sense that no other exact solu-
tions of the sphaleron models int3l spacetime dimensions
are known.

sponding quantity for the electroweak sphaleron is sup- Equations(6.20—(6.27 and (6.37 are our principal re-

pressed by several orders of magnitdides].)
Finally, one obtaingsee Fig. 3

exp{— B(F1—Fo)}=kpB* +0(B°)

1+11 I
4 BInB

as B—0. (6.36

sults. They specify the number of transitions between the
neighboring topological sectors per unit conformal timdt
should be stressed that such transitions do not lead to any
violation of chiral fermion number unless the thermal equi-
librium between the different topological sectors is broken.
This can arise, for instance, when a fermion asymmetry is
present. Then, one has to introduce a small chemical poten-
tial w for the fermions[6,5]. This favors those transitions

As a result, we arrive at the following expression for thewhich erase the asymmetry. Specifically, feW=Ng—Ng

sphaleron transition rate in the high temperature limit:

_Kﬁ3 3m?
F(ﬂ)—gzex —mﬂ, (6.37

be the fermion number of the Universe, then

(7.0

where we have neglected also the Casimir term. As one can

see from Fig. 3, the high temperature approximation can be

reasonable for =10°. On the other hand, the temperature Note that, sincd” defines the number of transitions in the
should be less than the sphaleron energy/8?(a). These whole Universe AN refers to the whole Universe as well,
two conditions imply that Eq(6.37) makes sense only for and not to the unit volume. For one doublet of chiral fermi-
smallg(a): 10°<37?/g?(a), that is, for smalla. ons, standard thermodynamics gives
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V [ pde APPENDIX: {-FUNCTION TECHNIQUES

No— f __pap | . |
P2 o In subsections 1-4 below the detailed computation of

PPl spa( —1/2) and{,,(0) is presented. The basic idea is to

3

P—u
=
VT expand these quantities into certain series of the Rienfjann
K functions and then to use the appropriate summation formu-
= (R(B)HFZVTZHO(1?), 7.2 . '€ approp .
2 £R(3) 6 (%) (7.2 las. The asymptotic expansion for the heat kefgl.(t) is
derived in subsection 5. Subsection 6 contains the computa-

where V=272a3 is the volume of three space, such thattion of £5(0) and(0) for a thermal system.
AN=2m?aul/3B?. Finally, passing to the physical time
t=an, one obtains the fermion number diffusion rate 1. Summation formulas

Consider the generating function for the Bernoulli poly-

1 d 3° [1 nomials(see[36], p. 809,
AN at N T 2zl ﬂ)' (7.3 .
x et xK
1= 2 Bl X<z (A1)
In fact, we do not specify the nature of the fields under e k=0 :

consideration. The discussion of the possible applications of

the results obtained in this paper will be given separately. APutting heret=0, one obtains
present, we just mention where our results can be used. Let

us recall the typical values of the parametexsB, and * (2x)2
T=1/aB. The range ofl is restricted by the condition of the coth(x) = ;2 szw,
validity of the semiclassical pictur@=1-10 GeV("decon- k=0 '
finement phase), whereas the metastability condition re- _ _
quires that the conformal temperaturg8lis not too high vyhereBk(O)=Bk are the Bernoulh numbers. U_smg the rela-
[see Eq.(6.28]. The size of the Universe=1/T3, there- t!on between the Bernoulli numbers and the Riemarumnc-
fore, should not be too large compared td.16uch condi- 10N (see[36], p. 807,

tions can be met in the context of the finite volume QGlie

typical volume in that case ia®>~1 fm?; see[19] and ref- B, — _1)k+12(2k)! (2K) (A3)
erences therejn Another natural possibility relates to the 2= (277)7'““R '

preinflation cosmology. In this case, the gravitating Yang-

Mills field can arise in the context of a superstring theoryand considering the replacemeatix, one finds

[38]. In fact, the semiclassical sphaleron transition picture

applies also after inflation. However, the conformal tempera- 2. x| 2K

ture is enormously large then, A#aT~s'*~ 10, where cothx)=— -, (—1)"(—) {r(2K);

s is the total entropy of the Universe. Equivalently, one can Xk=0 m

say that the temperatufE is huge in comparison with the

sphaleron barrier 8%/g?(a)a, such that there is no suppres- 2
sion for transitions between the different topological sectors cot(x) = — ;Z
at all. Unfortunately, there are no reliable methods for com- k=0
puting the transition raté' in this limit. One can use a di-

mensional argument to estimate that the rate related to t 'Ehe sumr? on ﬂ;]e nght-hr?n? fsﬁesd C(_);verge only for
unit physical four volume'/a%, should be proportional to |X|<7: Whereas those on the left-hand sides are meramor-

T4, Then,T'(1/8)~1/8*, and Eq.(7.3) yields phic funcu_ons on the whc_)le complex plane. One can, there—
fore, consider these relations for axys a result of analytic
q continuation.
AN~T (7.4) Let us now restrict ourselves to the real valuex ofnte-

|x| <, (A2)

X 2k
;) £R(2K). (A%)

AN dt grating both sides of EA4), one obtains
This agrees with the usual estimate for the fermion number i (=% x| oK) =] X
dissipation rate at very high temperatufds &k =7 £r(2k)=In sinh(x)’
ACKNOWLEDGMENTS Zo1 x| X
> <= r@=In ——. (A5)
The discussions with Andreas Wipf are gratefully ac- k=1 RA\T sin(x)

knowledged. The author also wishes to thank Norbert Strau-

mann, Jurg Fiblich, Daniel Wyler, and Slava Mukhanov for In the second of these formulas one should assume that
useful discussions, and Marcus Heusler for a careful reading<r, unless the integration rule for the poles of aptis

of the manuscript. This work was supported by the Swissspecified(see below

National Science Foundation and by the Tomalla Founda- Multiplying Eq. (A4) by x? and integrating from zero to
tion. X, one obtains
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Co1( x|\ ~[ x
kEl;(—) {r(2k—2)= ;), (A6)
where
j(x)zwfoxtzcotr(wt)dt, (any x);
:?(x)z—q-rfxtzcot(wt)dt (x<r). (A7)
0

Equations(A5)—(A7) will be used below. To proceed fur-

ther, we return for a moment to EGA1). Consider the equa-

tion which is obtained from EqA1) under the replacement

MIKHAIL S. VOLKOV

o0

> (-

k=1

1)kp2a2Ky (2K + 1) = — gl (mv2). (A13)

NS - I p—
T2 —\/;fodzz2 V1-722,

I'(k+1/2)
I'(k+3)

dzsz(l_ZZ):i/z’ (A14)

N J
we finally obtain the following formulas:

T'(k+1/2)
T (k+2)

R

————{r(2k+1)

Xx— —X. Taking the difference of the two equations, one ob-

tains

efxt 2k

e X
22 Bacril) g oy

e“—1 * e (A8)

Using the explicit form of the&k=0 term on the right-hand
side, B,(t)=2t—1, and utilizing also the following rela-
tion (see[36], p. 807%:

1 (277)2k+l
{r(2k+1)=(—-1) mfoszu(t)Cm(wt)dt
(A9)
one finds
S (- (2—)2k§R(2k+1)=—727f (1 2t+ eth
—xt
+e_X 1 cot( 7rt)dt.

(A10)

Replacing herex—2x andt—2t—1, and considering also
X—iX, one arrives at

3 (-1 %)ZK§R<2k+1>=—§|<x>,
é (%) 2k 1) = 2100, (A11)
where
o
T(x)=jol(t Ssllr:(‘();t)))tr( )dt. (A12)

Next, one deduces from E¢A1l) that

= —2\/;f01d2\/1—22| (mv2),

T'(k+1/2)
T'(k+3)

———{r(2k+1)

4 1
=—§J?f0dz(1—zz)3’2|(wvz), (A15)

together with the corresponding two relations obtained by
v—iv, |(mvz)—|(7vz). Here, the integrals can be consid-
ered for arbitrary values of, which defines the analytic
extension of the series.

2. The basicg-function relation

Consider the following, function

©

1
((S)—E L N2+ )8

1 (=
- s—1 - 2 5
_F(S)fot 2‘1 exp{—t(n’+ 1) }dt. (A16)

In order to express this function in terms of the Riemgnn
function, we expand exp(ti)=3(—1)*tK, and per-
form the integration ovet. Then, the sum oven gives the
Riemann{ function, such that

(D% , T(k+s)
£0(8)={r(29)+ E iV T R(2kt2s).

(A17)

This relation will turn out to be especially handy. Taking the
pole of the gamma function at=0 into account, using Eq.
(A5) and utilizing {g(0)= — 3, {x(0)=—3In27, one finds

%0)=—
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(_ 1)k Let us now consideB(s— 1/2) in the limits— 0. We first
g (0)=—In(2m)+ 2 vz e(2K) analyzez%(s—1/2). Using Eq.(A17), we obtain
1
= ; 0 1y _ _ 2F(S+ f)
In Zsintmn)’ (A18)  ((s—3)={(r(2s—1)—v (o %)ZR(25+1)
For a harmonical oscillator, for instance, one has * 1)k F(k+s— 1/2)
B 2 —{r(2k+2s-1).
s (2 B 4 = I(s=3)
§(S)—I=l 5 T Tl Cpar2n(8)=g5£(0) (A26)
—In w (A19) Let us now consider the limit whergtends to zero. Then,
2 sinfBw/2)’ the second term on the right-hand side diverges due to the

which gives rise to the formulé.8) in the main text when

w=i/2.

We shall also use anothérfunction

* 2

n
512,(5)=nzl mZZR(ZS— 2)

- (—1)kV2kl“(k+s)

{r(2k+25—2).

=R I'(s)
(A20)
Using Egs.(A6) and (A7), one obtains
d
£0)=0, FLU0)=2Lp(~2)+Aw),  (A21)
where 7(v) is defined by Eq(A7).
3. Evaluation of PP{gpal — 3)
We consider the spatidl function
” n’—g? ~ n?-1
gspa(s):2+g=§0;1‘2n§=:3m 32 s
(A22)
which can be represented in the form
Lspaf 8) = A(s) +B(s), (A23)

where

A(S)=2+3{r(25) — 3¢r(25— 2)+§2) (2= 1)(4+v?)~S,
! (A24)

and
B(s)=22 {%s—1)—(1+1A)179)

—22 (3+22){%s)— (1+ %) 7). (A25)

Here, {%(s) is defined by Eq.(A16), and v?=c¢?—3
=1-2,—-3. In A(s) one can simply puts=-1/2,
which yields PR{(—1/2)=A(—1/2)=—91/40-32.

pole of the Riemanrd function,
1
R(I+s)= S+t 0(s?), (A27)

where y is the Euler constant. The remaining terms in Eq.
(A26) are all finite. The principal part is

d
PRE(—3)=lims_oqo(si(s=3)).  (A29)

Using ¢{r(—1)=—1/12, I'(— 1/2)= -2/, and replacing
k—k+1 in the sum entering E4A26), one obtains

11 -
PRO(—3)=— 55+ (1- y)+—§ — D

I'(k+1/2)

X—F(k+2) (r(2k+1). (A29)

Finally, taking into account Eq$A15), one arrives at

PP{S(_%)Z—%Z—EVZ(l y)—v? f dzy1- 2% (mvz),
(A30)

wherel (x) is defined by Eq(A12). Similarly, one obtains

1
- V4J dz(1-22)%A(mvz). (A31)
0

The next step is to insert these relations in &R5) and
to compute the sum over’=1,—2,—3. The v’=1 case
presents no problems, whereas the negative values? of
should be treated with some care. Let us pass in&3Q) to
negativer?, v—iq, whereq=|q|. Forq<1 one obtains

PPg (= _)_>PP§|q( 2

:_—+2q2(1 y)+q f dzy1-2°1(7q2),

(A32)
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wherel(x) is defined by Eq(A12). Next, we consider the Now, using Eq(A16) and(A20), it is convenient to represent

following integral representation foy1—qg? which is valid
for 0<qg<1:

292 (1 1sin( ot t
Vi—q =1—if dz\/l—zzf ﬂz—)gtar<1)dt.
T Jo ol—qg“z 2
(A33)
This implies
0 2 1 1 2
PPy~ 12— 1-¢°=—1- +50%(1-7)

+? [ 02172

1 sin(zqt)
Xf ( ~ sin(mz0)
2 sin(wt))

7 1-q?Z2

Tt q
Xta ? t.

Here, we can safely extend the rangegofrom 0<<g<1 to

0

(A34)

0< <2, thus taking the valueg=\/2,./3 into account, that

the function3(s) in the equivalent form

B(s)= 2, {¢3(s)=(1++%) 7
=2, (B+A{C(8)—(1+) 7). (A39)

The next steps are straightforward. Using EGs18) and
(A21), one obtains

B’(O)zZ2 {2L5(=2)+ J(v) +In(1+12)}

v(1+v2)

_§ (3+19)ln 2sini#wv)’ (A39)

whereJ(v) is defined by Eq(A7), andv?=1, —2, —3. For
negativer’= —g?<0, one again needs some minor modifi-
cations. No changes are needed for the second sum in Eg.
(A39):

v(1+1?)
2sinH@v

q(1—q?)
2sin(7q)’

(A40)

)—)

is, v>=—2,—3. This allows us to compute the second sum

over v? in the formula(A25) for PPB(— 1/2). The first sum

can be done with a similar rearrangement, using the formul#here we can pugj=+/2, 3. In the first sum one has

3 . 2g*(1
(1_q2)3/2:1__q2+if dZ(1_22)3/2
2 m Jo

1sin(at) at
X J;) 1——(]222 tar<7) dt.

Finally, collecting everything together, we arrive at

(A35)

.. 5 11
PPLopal = 3)= 5 — 7 ¥ 5Ra(1) = Ra(1)+2P1(12)

— 4P5(\2) + 9Py (1/3) — 9P5(V/3),
(A36)

where

1(t_sink(w2vt))tar<1t)dt’

sinh mzv) 2

R V)= J'Oldz(l_ Zz)m/2f

0

e wa [* sin(mzqt)
Pm(q)_fo dz(1-2% /2f0<t_ sin(7zq)

N 2 sin(mrt) )tar( Wt)dt.

-2 (A37)

4. Evaluation of £{,,(0)

Jv)+In(1+ 12— Aq)+In(1—g?)

a, q 2tdt
:—’7TJ’ t COt(ﬂ't)dt—f —
0 ol-t
=-1(q), (A41)
where
a/ 2t
I(q)zf (1 t2+7-rtzcot(7rt))dt, (A42)
ol 1—

which can also be extended to the valups 2, \3. For
A’(0) one has

A'(0)=—-3In(2m)—6LK(—2)+31In2,  (A43)
which finally gives
22
{oa(0)=1n W—\/;sinff‘(w)lsin(\/iwﬂ
+ (1)~ T(\2) - 7(\3), (A44)

The procedure in this case is similar to that of the previ-with J(x) andZ(x) being defined in EqsA7) and (A42),

ous section. One again starts from E¢&23)—(A25), but

respectively.
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5. Asymptotic expansion of@,,(t) 1 (e, 2\ 2
_ s— Q
Let us consider the function 55(5)—“3) fo t l;w ex —(7) t](t)dt,
o (A52)
P _ 2_ iy a— (24Kt
0(i.j k=2 (n*~je
n=i where
d ~ 2
— _ okt s —n“t
- qiti|Zem (A O)=3 exp— w2}, w2>0. (A53)

We want to find its asymptotic expansion for small ) ) ]
Transforming the sum ovérin Eq. (A52) with the use of the

1 theta function identitfA47) and using the integral represen-
O3,j,k|t)~ 4—t)3’7 E Ct". (A46) tation for the Kelvin functions,

=0,1/2,1, ...
2
Such an expansion can be obtained with the use of the theta K, (2)= ( ) f dit~ v~ 16""[ == z ] (A54)
function identity[35] 4t
- - 2 one obtaing34]
> exr(—tnz)=\/? > exW’—WTnZ],
n=—ow n=—owx
(A47) B 1
{p(s)= 20719 Yspal S—32)
which implies that
2,3 BI s—1/2
- 1 1 ' 22( ) Kip-s(Blo),
> exq—tn2)~§\/f———2 exp(—tn?), J_F(s)' 1% |20 e
n=i
(A48) (A55)

since fort—0, all terms with exp—#“n?/t}, n+0 vanish  where
faster than any power df and can, therefore, be omitted.
Inserting this into Eq(A45) and expanding the remaining

exponents, we find Y qpal )= f At 1O (1) = Lpa( ST(S).  (A56)
0
. Vo 7 o d
O(i,] ’k|t)N_37?4t TSI (k+2j)+j/2+ ngl (j—n?) This function has the pole structufa?2]
N
+—k(k+4))tY2+0(1). (A49)
g Y Vo9~ S st (9 (A5T)

The coefficientsC, for r<2 are, therefore,
whereC, are defined by the asymptotic expansion@uft),

Co=2m2, Cyp=0, C;=-27%k+2j), and f(r) is an entire analytic function o$. This relation
implies
cs,z—sw— +Z (j—n ) C,=m2k(K+4j). C, 1
Yspa(S_ %)_ ( ) + Pp{spa{ ) (A58)

(A50)

The heat kernel6.12) in the main text can be represented asTaking Eq.(A56) and the properties of the gamma function
into account,

Oga(t) =267+ X 0(3,0%02-3|)—30(2,1,q1),
¢=0,1,2 1

(A51) E) =s+ys?+0(s%),

which finally gives rise to Eq(6.14).

I'(—3+s)=—2Vm{l+(—y+2-2In2 o(sd),
6. Evaluation of £4(0) and Q’E(O) [34] (Z2*s) \E{ tlorr n2)sh+ (S()A59)

Consider the thermal function for an arbitrary system of
harmonic oscillators with positive energies one, therefore, obtains
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= Yspal $— )
— S__
2\/;1_,(5) spa 2
G (1-1n2)C,
162 | 8n?
—PP{Spa(—%)}S-I-O(SZ). (AB0)
Finally, using
T 1
Kid2)=\/5e7% 2 7e*=—In(l-e®, (A6l
I=1

VOLKOV 54
one arrives at
C (1-1n2)C
(9= 125 +{( P —szspag—%>)ﬁ
-2> |n(1—e—ﬁw)]s+ O(s?), (A62)

which gives rise to the formulé.19 in the main text.
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