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Role of a ‘‘local’’ cosmological constant in Euclidean quantum gravity
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In 4D nonperturbative Regge calculus a positive value of the effective cosmological constant characte
the collapsed phase of the system. If a local term of the formS85(he$h1 ,h2 , . . . %

lhVh is added to the gravita-
tional action, where$h1 ,h2 , . . . % is a subset of the hinges and$lh% are positive constants, one expects that th
volumesVh1

, Vh2
, . . . tend to collapse and that the excitations of the lattice propagating through the hin

$h1 ,h2 , . . . % are damped. We study the continuum analogue of this effect. The additional termS8 may
represent the coupling of the gravitational field to an external Bose condensate.@S0556-2821~96!02918-9#

PACS number~s!: 04.60.Nc, 04.25.Dm
ds.
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Since the first perturbative formulations of quantum gra
ity it was realized that the addition of a cosmological ter
(L/8pG)*d4xAg(x) to the pure Einstein action gives the
graviton a mass, which is positive ifL,0 and negative —
that means, the theory becomes unstable — ifL.0 ~see@1#
and the specifications in Sec. II!.

Although the vacuum fluctuations of the quantum field
should in principle produce a very large value of the cosm
logical constant, there is no observable hint of it: name
neither does the Newtonian potential show any finite ran
up to solar system distances, nor does pure gravity exh
any instability in the weak field case. The observations
cosmological scale set an upper limit onuLu as small as
uLu,102120G21 in natural units. This discrepancy is know
as the ‘‘cosmological constant problem’’ and several po
sible solutions have been suggested@2#. Treating the problem
at a fundamental level requires a nonperturbative approa
since one should be able to explain why the actual larg
scale geometry of spacetime is flat just on the base of
namic considerations. It is therefore not surprising that a d
finitive and generally accepted solution of the paradox of t
cosmological constant is still remote. We shall not make a
attempt to a new explanation here.

We shall consider four-dimensional~4D! pure gravity in
the Euclidean approach with special reference to quant
Regge calculus@3#. In this model the results of the numerica
nonperturbative simulations compose the following pictu
of the behavior of the cosmological constant: while i
‘‘bare’’ value l is generally nonzero, the effective valueL
depends on the energy scalem and vanishes at large dis
tances likeuLu;G21(m l 0)

g, wherel 0 is the lattice spacing
andg a critical exponent. This means that the quantum g
ometry fluctuates on small scales, but reproduces flat sp
at macroscopic distances. The sign ofL is negative, thus the
flat limit is well defined.

Our aim is to study the interaction of this gravitationa
system with a particular external source, namely a Bose c
densate described by a scalar fieldf(x)5f0(x)1f̃(x). We
assume that the vacuum densityf0(x) is forced from the
outside to a certain value, as it can happen for instance i
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541/96/54~8!/5002~8!/$10.00
v-
m

s
o-
ly,
ge
ibit
on

n
s-

ch,
e-
dy-
e-
he
ny

um
l
re
ts

-

e-
ace

l
on-

n a

superconductor subjected to external electromagnetic fiel
It turns out that the positivity of the Euclidean action off
ensures that the terms@]mf0(x)#* @]mf0(x)# and
mf
2 uf0(x)u2 act like positive cosmological contributions to

the gravitational action, possibly inducing local gravitationa
instabilities.

The structure of the paper is the following. In Sec. I w
recall the main results of Euclidean 4D quantum Regge c
culus concerning the effective cosmological constant. W
mention its scale behavior and two possible interpretations
the lattice spacingl 0.

In Sec. II we consider in the continuum theory, at dis
tances much larger than Planck scale, a weak Euclide
gravitational fieldgmn(x)5dmn1khmn(x) whose action in-
cludes an infinitesimal effective cosmological term wit
L,0. Such a theory can be regarded as the continuum lim
of the lattice theory described in Sec. I. We then coup
minimally gmn(x) to the mentioned scalar fieldf(x), with
vacuum densityf0(x) determined from the outside, and
write in detail the various terms of the action. It turns out th
the infinitesimal graviton massmg

2}uLu receives a local
negative contribution which we denote by2m2(x). This
means~as we show explicitly for the simpler case of an
almost-massless scalar field! that if there exist some four-
dimensional regions in whichm2(x).mg

2 , it is possible to
find field configurationshmn(x) which make the Euclidean
action unbounded from below. The field tends to develo
singularities in those regions or — if a cutoff mechanism
comes into play — it tends to assume constant extremal v
ues which are independent from those in the neighbori
regions. We suggest that these ‘‘constraints’’ should be i
serted in the equation for the field propagator.

In Sec. III we recall the formula which gives the stati
potential energy in Euclidean quantum gravity as a fun
tional average@4,5#. We illustrate its statistical meaning in
the case of a weak field through an analogy with a simple 2
Ising model, which we also treat numerically with an e
ementary simulation. We show numerically that the insertio
of local supplementary constraints due to an external field~in
analogy to the singularities of the continuum case! damps in
a sensible way the spin-spin correlations and thus the int
action they represent in the model.
5002 © 1996 The American Physical Society
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54 5003ROLE OF A ‘‘LOCAL’’ COSMOLOGICAL CONSTANT . . .
I. REGGE CALCULUS

In the last years discretized quantum gravity on the Reg
lattice has led, especially through the Monte Carlo numeri
simulations of Hamber and Williams, to a better comprehe
sion of the nonperturbative behavior of the Euclidean gra
tational field in four dimensions. Some of the features whi
emerge from their results@3# depend on the specific model
but several others are quite general. In this approach
physical quantities are extracted from functional averag
The partition function is written as

Z5E
geometries

d@g#e2\21S@g#, ~1!

where the geometries are represented by piecewise flat s
plicial manifolds. The integral~i.e., the Monte Carlo sam-
pling! runs over the lengths of the links which define a fie
configuration. The action in Eq.~1! has the form

S5E d4xAgS l2kR1
1

4
aRmnrsR

mnrsD ~2!

or, in discretized version,

S@ l #5 (
hingesH

VhFl2k
Ahdh
Vh

1a
Ah
2dh

2

Vh
2 G , ~3!

whereAh is the area of a hinge,Vh its volume, anddh the
defect angle~see the original papers for the definitions o
lattice quantities and the functional measure!.

In the following we shall set\51. The constantsk and
l are related, as ‘‘bare’’ quantities, to the Newton consta
G and to the cosmological constantL: k corresponds to
1/8pG andl to L/8pG. It is important, however, to keep
distinct the physical valuesG andL from k andl. The latter
are entered as parameters at the beginning, and then a se
order transition point for the statistical system described
Z is found by Monte Carlo simulation. Actually, there is
line of transition, since one can also vary the adimensio
parametera, which does not have a macroscopic counterpa
On this line in the parameter space the theory admits a c
tinuum limit. Unlike in perturbation theory, where a fla
background is introduced by hand, here the flat space
pears dynamically; namely, the average value of the cur
ture is found to vanish on the transition line, which separa
a ‘‘smooth phase,’’ with small negative curvature, from
‘‘rough,’’ unphysical phase, with large positive curvature. I
this way the effective, large scale cosmological constant

L5
K E AgRL
K E AgL ~4!

vanishes in the continuum quantum theory.
More precisely, the dependence of the effective~or ‘‘run-

ning’’ ! cosmological constantL on the scale is the follow-
ing. If we compute Eq.~4! on small volumes, the curvature
fluctuates wildly. At larger distances the average curvatu
decreases, because the fluctuations tend to average ou
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m denotes the energy scale, close to the critical point th
adimensional quantityuLuG behaves like

~ uLuG!~m!;~ l 0m!g, ~5!

wherel 0 is the average spacing of the dynamical lattice an
g;1.56 in the first simulations. The sign ofL is negative, as
mentioned. Since them dependence ofG is quite weak, the
effective cosmological constant decreases approximately li
a power law as the length scale grows.

Equation~5! admits two different physical interpretations,
depending on the role we attribute to the average lattice spa
ing l 05A^ l 2&. In the usual lattice theories,l 0 is sent to zero
in order to obtain the continuum limit. In this first interpre-
tation, Eq.~5! shows the way the lattice theory reproduce
flat space in the physical limit. No real physical meaning i
assigned to the effectiveL which, at a fixed scalem, is
simply proportional to a positive power of the regulator.

On the other hand, we can believe that in quantum gravi
l 0 has an intrinsic minimum value of the order of Planck
length LPlanck;10233 cm. This hypothesis arises indepen
dently from several operational models~for a review see@6#!
or from more complex quantum theories~see for instance@7#
and references!. In the framework of Regge calculus, it is
possible to fixl 0 by imposing that the effective Newton con-
stantG computed nonperturbatively@5# is of the same mag-
nitude order of the observed value; in this way one finds on
more time thatl 0 has to be of the order of Planck length@8#.

In this second case, that isl 0;LPlanck, the interpretation
of Eq. ~5! is different: it means that the effective cosmologi
cal constant tends to zero on large scale, while it is nonva
ishing, in principle, on small scale~here and in the following
we mean by ‘‘large’’ scale the laboratory or atomic scale
and by ‘‘small’’ scale the Planck scale!. This interpretation
does not necessarily have observable physical consequen
since in factL could be far too small. Namely, the exponen
g has been computed only for small lattices; an evaluatio
for lattices of ‘‘macroscopic’’ size is of course technically
impossible, and thus only the experiments could tell u
whether the law~5! keeps true for large distances, and with
which exponent. The fact that on astronomical scale we ha
uLuG,102120 for m;10230 cm21 constrainsg to be ap-
proximately larger than 2. But the vanishing could be muc
more rapid, so that we could disregardL at any physically
relevant scale.

Another property of Regge calculus which shows an in
trinsic feature of quantum gravity is the instability of the
‘‘rough’’ phase with positive average curvature, i.e., with
positive effective cosmological constant. This phase does n
admit any continuum limit. Its fractal dimension is small
which denotes that the geometry is collapsed.

The nonperturbative instability properties of the phas
with positive average curvature extend the validity of know
considerations based on perturbation theory. Namely, in t
weak field approximation a positive cosmological constant
the gravitational Lagrangian produces a negative mass
the graviton~compare@1# and the next section!. Instabilities
arise in the perturbative theory on a de Sitter background t
@9,10#. On the contrary, a small negative cosmological con
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stant generally does not imply any instability, but a sma
massmg for the graviton, of the order ofL1/2 in natural
units.

In conclusion, at a scale large enough with respect to
lattice scale it is possible to regard the discretized gravi
tional functional integral~1! as describing an almost fla
mean field plus fluctuations. If the fixed point of the lattic
theory is approached from the physical, smooth phase,
effective cosmological constantL ~i.e., the average of the
scalar curvatureR) is very small and negative, and the larg
scale fluctuations ofR are small too. The system is stable
because the field configurations with larger volume, in whi
the links are as stretched as possible, are preferred to
collapsed configurations, since the Euclidean action depe
on the volume likeS;(L/8pG)*d4xAg;(L/8pG)(hVh .
~On the contrary, a positive value ofL would favor the col-
lapsed configurations with smaller volume.! In this picture
L can be regarded either as a purely formal regulator, wh
goes to zero in the physical limitl 0→0, or as a physical
quantity, though possibly extremely small~in the interpreta-
tion in which l 0; lPlanck).

Keeping these properties in mind, it is interesting to co
sider the case in which the coupling of the Euclidean gra
tational field with an external source gives in some fou
dimensional regions a positive contribution to the effectiv
cosmological constant. In the next section we shall analy
this phenomenon in the continuum case, that is, on la
scale~in the meaning of ‘‘large scale’’ we defined above!.

On the lattice, such a coupling would correspond in t
action ~3! to an additional term of the form

(
$h1 ,h2 , . . . %

lhVh ~6!

where$h1 ,h2 , . . . % is a subset of the hinges andlh are fixed
positive constants.

We expect that when the Monte Carlo algorithm choos
for the random variation a link which ends in a hing
hie$h1 ,h2 , . . . %, the favored variation will be that for which
the volume Vhi

decreases. Thus the volume

$Vh1
,Vh2

, . . . % will tend to collapse and the lattice excita

tions propagating through the hinges$h1 ,h2 , . . . % will be
damped.

II. CONTINUUM CASE

We have seen that the results of quantum Regge calcu
can be interpreted as leading at distances large compare
LPlanckto an effective Euclidean action for pure gravity of th
form

Seff5E d4xAg~x!F L

8pG
2

1

8pG
R~x!G , ~7!

where the curvature fluctuations around flat space are sm
and the effective cosmological constantL is negative and
very small too.~As we saw in the previous section,L is
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scale dependent; we suppose here to stay at some fi
scale.! From the geometrical point of view, the small nega
tive value ofL stabilizes the system, preventing it from fall
ing into small-volume, collapsed configurations.

In the naive perturbation theory around the flat bac
ground theL term represents a small mass for the grav
ton.1 Namely, setting gmn(x)5dmn1kh̃mn(x), with
k5A8pG, the determinantg of gmn can be expanded as

g511kh̃~1!1k2h̃~2!1 . . . , ~8!

where h̃(1), h̃(2), . . . denote expressions which are linea
quadratic, etc. inh̃mn . The linear ‘‘tadpole’’ termh̃(1) is
usually disregarded, since it is proportional to the traceh̃m

m ,
which vanishes on physical states. The termh̃(2) takes the
form of a graviton mass term, such that the mass is posit
whenL,0 ~compare@1#!. We thus have

Seff5E d4x$@mg
2h̃~2!~x!2R̃~2!~x!#1L@kh̃~3!~x!

1k2h̃~4!~x!1•••#2@kR̃~3!~x!1k2R̃~4!~x!1•••#%,

~9!

wheremg , apart from some numerical factor, is equal t
uLu1/2 and R̃(2), R̃(3), . . . denote the parts ofR which are
quadratic, cubic, etc. inh̃mn .

The first brackets contain the quadratic part of the actio
The third brackets contain the familiar self-interaction vert
ces of the graviton, involving respectively 1, 2, . . . deriva-
tives of hmn . The second brackets contain self-interactio
vertices which are peculiar of the theory withLÞ0 and do
not involve derivatives. We are, however, not interested
the self-interaction vertices ofhmn in the following.

Now we would like to consider the interaction ofh̃ with a
scalar field f having nonvanishing vacuum expectatio
value f0. We supposef0 to be spacetime dependent an
denotef(x)5f0(x)1f̃(x); f0(x) is regarded as a quantity
determined from the outside, that is, as a source term. In t
way, the fieldf(x) describes a Bose condensate with groun
state densityf0(x) fixed by external conditions~like, for
instance, the Cooper pairs density in certain superconduct
under external em field!.

The total action is

1As remarked in@1#, this widespread belief is not rigorously true
It has also been proved@11# that all theories of a massive tenso
field in Minkowski space which satisfy the usual quantum fiel
theory ~QFT! postulates are incompatible with general relativity i
the limit of vanishing mass. In our reasoning it is not essential
regard the cosmological term as a graviton mass term, but for s
plicity we stick to this terminology.
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S5Seff1E d4xAg~x!H ]m@f0~x!1f̃~x!#* ]n@f0~x!1f̃~x!#gmn~x!1
1

2
mf
2 uf0~x!u21

1

2
mf
2 @f0* ~x!f̃~x!

1f0~x!f̃* ~x!#1
1

2
mf
2 uf̃~x!u2J . ~10!

We can rewrite it as

S5E d4xAg~x!H F L

8pG
1
1

2
m2~x!G2

1

8pG
R~x!J 1S11S2 , ~11!

where

1

2
m2~x!5

1

2
@]mf0* ~x!#@]mf0~x!#1

1

2
mf
2 uf0~x!u2; ~12!

S15
1

2E d4xAg~x!]mf0* ~x!]nf0~x!kh̃mn~x!; ~13!

S25
1

2E d4xAg~x!$mf
2 uf̃~x!u21mf

2 @f0* ~x!f̃~x!1f0~x!f̃* ~x!#1@]mf̃* ~x!]nf̃~x!1]mf0* ~x!]nf̃~x!

1]mf̃* ~x!]nf0~x!#gmn~x!%. ~14!
t

oo
re-

as
For brevity, we have not expanded hereAg andR like in
Eq. ~9!. Let us first look at the termsS1 andS2. The term
S1 describes a process in which gravitons are produced
the sourcef0(x). The termS2 contains the free action of the
field f̃(x), which describes the excitations of the condensa
and several vertices in which the graviton fieldh̃mn(x) and
f̃(x) interact between themselves and possibly with t
source. All these interactions are not of special interest h
and are generally very weak, due to the smallness of
couplingk. The relevant point is that the purely gravitationa
cosmological termL/8pG receives a ‘‘local’’ positive con-
tribution 1

2m
2(x) which depends on the fixed external sourc

f0(x). According to Eqs.~9! and~7! and to our discussion of
the sign ofL, this amounts to a negative mass contributio
and could lead to instabilities.

Let us study the effect of such a local negative mass c
tribution in the simpler case of a scalar field in flat space. W
consider a scalar fieldx with very small massmx and add to
its free Euclidean action a source term of the for
2 1

2m
2(x)x2(x), which represents a ‘‘localized negativ

mass.’’ The action becomes

Sx5
1

2E d4x$@]mx~x!#@]mx~x!#1mx
2x2~x!2m2~x!x2~x!%.

~15!

To fix the ideas, let us suppose thatm2(x) is different
from zero in certain four-dimensional regionsV i , where it
takes the constant valuesm i

2 : Outside these regions le
m2(x) go rapidly to zero. The solution of the classical fiel
equation forx is obtained by minimizing the action. In the
absence of the source term we would have of cou
x(x)5const50, because this minimizes at the same time t
by
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gradient term 1
2@]mx(x)]mx(x)# and the mass term

1
2mx

2x2(x) ~both positive defined!.
In the presence of the source term2 1

2m
2(x)x2(x), the

action decreases whenx2 increases within the regionsV i .
The growth ofx in these regions is limited only by the fac
that outside themx must go to zero~due to the termmx

2) and
that the gradient in the transition region cannot in turn be t
large. Let us suppose for instance that there is only one
gion V0, with the shape of a 4-sphere of radiusr 0. Let
m(x) take the valuem0 inside V0 and zero outside. We
consider forx the trial functionx(r )5x0f (r ). The action
becomes~we admit spherical symmetry!

Sx5p2x0
2E

0

`

drr 3$@ f 8~r !#21mx
2@ f ~r !#2

2m0
2u~r2r 0!@ f ~r !#2%. ~16!

We see that if the integral is positive, the value ofx0 which
minimizes the action is stillx050. On the contrary, if the
integral is negative, the action is not bounded from below
x0 grows.

We choose the following explicit form off (r ): for
r,r 0 let f (r )51, i.e., x(r )5x0; for r.r 0 let
f (r )5exp@2(r2r0)/d#. We, thus, have

Sx5p2x0
2H S 1d2 1mx

2D E
r0

`

drr 3e22~r2r0!/d2
1

4
~m0

22mx
2!r 0

4J
~17!
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5p2x0
2H S 1d2 1mx

2D S 38 d41
3

4
r 0d

31
3

4
r 0
2d21

1

2
r 0
3d D

2
1

4
~m0

22mx
2!r 0

4J . ~18!

It is easy to check that for suitable choices of the paramet
the expression within the braces in Eq.~18! turns out to be
negative. For instance, ifmx can be disregarded with respec
to m0 and d;r 0, the expression is negative provide
m0@d21. If d!r 0 the expression is negative provide
m0@r 0

21, etc. Thus the system is unstable. For the gravit
the instability is even worse, because the kinetic termR̃(2) is
not positive-definite.

Physically, we might of course invoke some addition
‘‘regularizing’’ process which comes into play for large val
ues ofx0 and cuts the action. Thus the value ofx2(x) inside
the regionV0 is forced by the source to a certain maximum

This will affect the propagation of the field: the differen
tial equation for the propagator ofx(x) in the presence of the
source must now satisfy additional boundary conditions
each regionV i . Finding the exact propagator amounts to
ers

t
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d
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a

complex mathematical problem, but the physical cons
quence will clearly be a ‘‘damping’’ of the correlations o
x(x). One can check this numerically in some model; w
shall do this shortly in the next section, referring to a to
bidimensional spin model.

III. THE FORMULA
FOR THE STATIC POTENTIAL ENERGY

In this section we recall the formula which gives the stat
potential energy in Euclidean quantum gravity as a fun
tional average@4,5#. We illustrate its statistical meaning in
the case of a weak field through an analogy with a simple 2
Ising model, which we also treat numerically with an e
ementary simulation. We show numerically that the insertio
of local supplementary constraints due to an external field~in
analogy with the singularities of the continuum case! damps
in a sensible way the spin-spin correlations, and thus t
interaction they represent in the model.

Let us first consider, in Euclidean quantum field theory,
scalar fieldF(x) with actionS0@F#5*d4xL„F(x)…. In the
presence of the external sourceJ(x) the ground state energy
of the system can be expressed as
E5 lim
T→`

2
\

T
ln

*d@F#exp$2\21@*d4xL„F~x!…1*d4xF~x!J~x!#%

*d@F#exp$2\21*d4xL„F~x!…%
5 lim

T→`

2
\

T
lnK expH 2\21E d4xF~x!J~x!J L ,

~19!
y
l.
r

where it is assumed that the source vanishes outside the
terval (2T/2,T/2) and that the coupling betweenJ andF is
linear. More generally a formula similar to Eq.~19! holds
when we are dealing with several fieldsFA and correspond-
ing sourcesJA, and when the coupling between fields an
sources is not linear.

As a useful application of Eq.~19! we can write the in-
teraction energyE(L) of two static pointlike sources of the
field, kept at a fixed distanceL. We just need to insert the
in-

d

suitable expression forJ. In flat space the trajectories of the
two sources are

x1
m~ t1!5~ t1 ,0,0,0!; x2

m~ t2!5~ t2 ,L,0,0!. ~20!

In ordinary gauge theories we may reobtain in this wa
the Wilson formula for the static quark-antiquark potentia
In quantum gravity we are led to the following equation fo
the static potential@4#:
E~L !5 lim
T→`

2
\

T
ln

*d@g#exp$2\21
†S@g#1( i51,2mi*2T/2

T/2 dtAgmn@xi~ t !# ẋi
m~ t !ẋi

n~ t !‡%

*d@g#exp$2\21S@g#%
~21!

[ lim
T→`

2
\

T
lnK expH 2\21 (

i51,2
miE

2T/2

T/2

dsi J L
S

, ~22!
of

.

whereS is the Euclidean gravitational action.2

In Eqs. ~21! and ~22! the linesx1(t) and x2(t) must be

2Notice that this formula applies also to two masses which are
pointlike ~‘‘pointlike particle’’ is actually an ill-defined concept in
general relativity!, provided we can disregard the internal degre
parallel with respect to the dynamic metricgmn and thus they
should in principle be retraced for each field configuration
the functional integral. In practice it is extremely difficult to

not

es
of freedom. Namely, their action is still equal to( i*dsi , where the
integrals are taken along the trajectories of the centers of mass
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compute a functional integral defined in such a formal wa
Let us then limit ourselves to consider weak fluctuations
the gravitational field about flat space. The trajectories of t
sources may be defined with respect to the background m
ric like in Eq. ~20!. It is straightforward to reproduce in this
way the Newton potential energy@4,5#; higher order correc-
tions have been computed too~ @12#; compare also@13#!. The
geodesic distance between the trajectoriesx1(t) andx2(t) is
now equal toL only on the average; in fact such an approx
mation is not without physical meaning, since in any realis
source the fixed distance at which the two masses are k
can only be an average value. Also in the nonperturbat
evaluations of Eq.~22! in quantum Regge gravity@5# the
distanceL is evaluateda posteriorias the mean value of the
geodesic distance on all configurations.

Let us consider the almost-flat metricgmn(x)5dmn

1hmn(x) in a fixed gauge. We find

E
2T/2

T/2

dsi.E
2T/2

T/2

dtiA11h11@x~ t i !#

.T1
1

2E2T/2

T/2

dtih11@x~ t i !# ~23!

and we see that to a first approximation the fluctuations
h have the effect of making each line ‘‘shorter’’ o
‘‘longer.’’ Let us call a@h# the ~gauge-invariant! difference
between the lengths of the two lines in a field configuratio
h and assume for simplicity that the masses of the tw
sources are equal:m15m25m. We may expand the expo-
nential in Eq.~22! finding ~note that̂ a@h#& obviously van-
ishes by symmetry!

E52m1 lim
T→`

2
\

T
ln^exp$2\21ma@h#%&

52m1 lim
T→`

2
m2

2\T
^a2@h#&1•••. ~24!

This equation exhibits an interesting relation between t
vacuum fluctuations of the geometry and the static gravi
tional potential. To better illustrate its ‘‘statistical’’ meaning
we would like now to introduce a toy analogy with the 2D
Ising model.

Let us consider a planar spin system with period
boundary conditions and the local couplin
H52J( i , j si j si 8 j 8 @J.0;(i 8, j 8) neighbors of (i , j )#. Let us
then consider two columnsj 1 and j 2 at a distance ofL lattice
spacings~see Fig. 1!.

We can regard this system as the analogue of a discreti
configuration of a 4D gravitational field on the plane of th
two parallel lines of Eq.~20!. The spin variables61 repre-
sent fluctuations of the metric. At the transition temperatu
the fluctuations of the spin variables are correlated appro
mately like ~distance! 21.

Going back to Eq.~23! and making the correspondenc
s↔h11, we see that the analogue ofa@g# is the difference
between spin sums taken along the columnsj 1 and j 2. The
analogue of Eq.~24! is
y.
of
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e

^a Ising
2 &5K S (

i
si j 12(

i
si j 2D 2L

5K S (
i
si j 1D 21S (

i
si j 2D 222(

i
si j 1(k sk j2L .

~25!

We are interested only in the term which depends on th
distanceL between the two columns, that is, the produc
term

p125K (
i
si j 1(k sk j2L . ~26!

A numerical simulation with a simple 10312 system has
given, as expected, the following results at the critical tem
perature:

L ~lattice spacings! r2{12}

2 1.151/2 0.13
3 0.741/2 0.09
4 0.481/2 0.09
5 0.421/2 0.08
6 0.411/2 0.08

FIG. 1. Spin sums taken along two columns of a 2D Ising sys
tem.
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We see that theL21 law is approximately verified also for
the correlation between the spin sums taken along the
columns. Only forL56 there is a deviation, which can be
explained as due to the periodic boundary conditions.

We observe that, due to the nature of the spin system,
correlation between two spin sums alongj 1 and j 2 is neces-
sarily positive. Thus the part of̂a Ising

2 & which depends on
the distanceL is negative. On the contrary, in perturbativ
quantum gravity one finds that the correlatio
^h11(x)h11(y)& is always negative, which leads to the corre
negative sign for the potential energy in Eq.~24!.

We now introduce some supplementary conditions in o
der to simulate the case in which the spin variables assu
on certain sites a fixed value. This could be due, like in t
gravitational case in which we are interested, to the localiz
action of an external field. In the spin model we may imagi
that an external magnetic field localized on certain sit
forces spin-flips. With reference to Fig. 2 let us suppose th
the spin-flips occur on the sites marked with a star a
placed between the two columnsj 1 and j 2 whose correlation
we are measuring.~The two columns are denoted by ‘‘x,’’
while all the remaining sites are denoted by ‘‘0.’’! To pre-
vent an uncontrolled ‘‘driving’’ of the total magnetization

FIG. 2. Insertions of singular points ‘‘*’’ between the column
j1 and j2.
two

the

e
n
ct

r-
me
he
ed
ne
es
at
nd

we associate to each spin-flip an opposite flip on a neighb
ing site. The flips occur at each Monte Carlo step; since t
mean frequency at which the regular sites are flipped duri
the simulation is 120 times smaller, the resulting effect is
force a zero at the ‘‘*’’ sites.

The precise positions of the sites at which the spin-flip
occur are almost irrelevant; we find in all cases, as appe
from the examples in the following table, a sensible diminu
tion of the correlations between the spin sums taken alo
the columnsj 1 and j 2:

Number of ‘‘*’’ sites p-$12% for L55

3 @Fig. 2~a!# 0.191/2 0.04
4 @Fig. 2~b!# 0.131/2 0.03

It appears therefore that the insertion of variables whi
are driven by an external field damps the correlations in t
system and that this mechanism is of a quite general natu
although we are not able to give a precise analytical descr
tion yet.

IV. CONCLUSIVE REMARKS

In this paper we have investigated an unusual interacti
mechanism between gravity and a macroscopic quantum s
tem driven by external fields. This idea was originally sug
gested by a possible phenomenological application@14,15#,
but the mechanism is interesting also from the purely the
retical point of view and deserves further numerical and an
lytical investigation.

We have shown that under certain conditions the gravi
tional field becomes unstable and may develop singulariti
but we have neither worked out a physical regularization n
computed the effect of the regularized singularities ye
Simple physical and numerical analogies show, howev
that they generally reduce the gravitational long-range cor
lations.

Thus our next task will be the explicit estimation of the
changes in the correlation functions in terms of the squar
density uf0(x)u2 of the Bose condensate and of its square
gradient@]mf0(x)#* @]mf0(x)#.
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