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Role of a “local” cosmological constant in Euclidean quantum gravity
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In 4D nonperturbative Regge calculus a positive value of the effective cosmological constant characterizes
the collapsed phase of the system. If a local term of the fﬁ‘rmZhe{hl,hZV .. }A\nVh is added to the gravita-
tional action, wheré¢h,,h,, ...} is a subset of the hinges afidl,} are positive constants, one expects that the
volumesvhl, th, ... tend to collapse and that the excitations of the lattice propagating through the hinges
{hy,h,, ...} are damped. We study the continuum analogue of this effect. The additionalSemmay
represent the coupling of the gravitational field to an external Bose condef8a5&6-282(196)02918-9

PACS numbd(s): 04.60.Nc, 04.25.Dm

Since the first perturbative formulations of quantum grav-superconductor subjected to external electromagnetic fields.
ity it was realized that the addition of a cosmological termlit turns out that the positivity of the Euclidean action ¢f
(A/87G) [d*x\/g(x) to the pure Einstein action gives the ensures that the terms[d*¢o(x)]*[d,¢bo(X)] and

graviton a mass, which is positive <0 and negative — mf[)|<;so(x)|2 act like positive cosmological contributions to
that means, the theory becomes unstable A0 (see[1]  the gravitational action, possibly inducing local gravitational
and the specifications in Sec).ll instabilities.

Although the vacuum fluctuations of the quantum fields The structure of the paper is the following. In Sec. | we
should in principle produce a very large value of the cosmo+ecall the main results of Euclidean 4D quantum Regge cal-
logical constant, there is no observable hint of it: namely,culus concerning the effective cosmological constant. We
neither does the Newtonian potential show any finite rangenention its scale behavior and two possible interpretations of
up to solar system distances, nor does pure gravity exhibthe lattice spacind,.
any instability in the weak field case. The observations on In Sec. Il we consider in the continuum theory, at dis-
cosmological scale set an upper limit ¢A| as small as tances much larger than Planck scale, a weak Euclidean
|A|<10"**%G "t in natural units. This discrepancy is known gravitational fieldg,,,(x)=8,,+ «xh,,(x) whose action in-
as the “cosmological constant problem” and several poscludes an infinitesimal effective cosmological term with
sible solutions have been suggedt2d Treating the problem A <0. Such a theory can be regarded as the continuum limit
at a fundamental level requires a nonperturbative approaclof the lattice theory described in Sec. I. We then couple
since one should be able to explain why the actual largeminimally g,,,(x) to the mentioned scalar fiel@(x), with
scale geometry of spacetime is flat just on the base of dyyacuum density¢y(x) determined from the outside, and
namic considerations. It is therefore not surprising that a deyyrite in detail the various terms of the action. It turns out that
finitive an(_j generally a(_:cep_ted solution of the paradox of thgne infinitesimal graviton masmgoc|A| receives a local
cosmological constant is still remote. We shall not make amﬁegative contribution which we denote byu2(x). This

attemet :}0 I? ner:'vigxflfn?tg)i;hﬁr?'nm[)) re aravitv in means(as we show explicitly for the simpler case of an
€ shall consider four-dimensio pure gravity almost-massless scalar figlthat if there exist some four-

the Euclidean approach with special reference to quanturaimensional regions in whic2(x)>m2, it is possible to
g L

Regge calculug3]. In this model the results of the numerical , ) X / .
nonperturbative simulations compose the following picturefind field configurationsh,,,(x) which make the Euclidean
of the behavior of the cosmological constant: while its@Cction unbounded from below. The field tends to develop

“bare” value \ is generally nonzero, the effective valde singularities in those regions or — if a cutoff mechanism
depends on the energy scaleand vanishes at large dis- cOmes into play — it tends to assume constant extremal val-
tances like| A|~G~%(uly)?, wherel, is the lattice spacing Ues which are independent from those in the neighboring
and y a critical exponent. This means that the quantum geregions. We suggest that these “constraints” should be in-
ometry fluctuates on small scales, but reproduces flat spaggrted in the equation for the field propagator.
at macroscopic distances. The signfofs negative, thus the In Sec. lll we recall the formula which gives the static
flat limit is well defined. potential energy in Euclidean quantum gravity as a func-
Our aim is to study the interaction of this gravitational tional averagd4,5]. We illustrate its statistical meaning in

system with a particular external source, namely a Bose corthe case of a weak field through an analogy with a simple 2D
densate described by a scalar figltk) = ¢o(X) + #(x). We  Ising model, which we also treat numerically with an el-
assume that the vacuum densiby(x) is forced from the ementary simulation. We show numerically that the insertion
outside to a certain value, as it can happen for instance in af local supplementary constraints due to an external fiald

analogy to the singularities of the continuum gademps in

a sensible way the spin-spin correlations and thus the inter-

*Electronic address: modanese@science.unitn.it action they represent in the model.
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ROLE OF A “LOCAL” COSMOLOGICAL CONSTANT ... 5003

I. REGGE CALCULUS p denotes the energy scale, close to the critical point the

In the last years discretized quantum gravity on the Regggdlmensmnal quantityA|G behaves like

lattice has led, especially through the Monte Carlo numerical
simulations of Hamber and Williams, to a better comprehen-
sion of the nonperturbative behavior of the Euclidean gravi-
tational field in four dimensions. Some of the features which
emerge from their resulfs8] depend on the specific model, . _ . .
but several others are quite general. In this approach th@herélo is the average spacing of the dynamical lattice and

physical quantities are extracted from functional averagesy ™ 1-56 in the first simulations. The sign 4fis negative, as
The partition function is written as mentioned. Since thg dependence db is quite weak, the

effective cosmological constant decreases approximately like
a power law as the length scale grows.
Equation(5) admits two different physical interpretations,
depending on the role we attribute to the average lattice spac-
ng lo=(I?). In the usual lattice theoriet, is sent to zero
in order to obtain the continuum limit. In this first interpre-
dtation, Eqg.(5) shows the way the lattice theory reproduces
flat space in the physical limit. No real physical meaning is
assigned to the effectivd which, at a fixed scaleu, is

(JAIG) (w)~(lom)?, ®)

z=[  diget s, &
geometries

where the geometries are represented by piecewise flat si
plicial manifolds. The integrali.e., the Monte Carlo sam-
pling) runs over the lengths of the links which define a fiel
configuration. The action in Eql) has the form

1 simply proportional to a positive power of the regulator.
S= f d4x\/§( A— kR+ZaRﬂVWR””P") (2 On the other hand, we can believe that in quantum gravity
I, has an intrinsic minimum value of the order of Planck
or. in discretized version length Lpjanac 10722 cm. This hypothesis arises indepen-
' ' dently from several operational modéfer a review se¢6])
ALS A252 or from more complex quantum theorigse for instancg7]
1= > Vi r-k—L4a—n (3)  and referencgs In the framework of Regge calculus, it is
hingesH Vh Vh possible to fiX, by imposing that the effective Newton con-

stantG computed nonperturbative[] is of the same mag-
nitude order of the observed value; in this way one finds one
more time that, has to be of the order of Planck lend®i.

whereA, is the area of a hingey,, its volume, ands;, the
defect angle(see the original papers for the definitions of

lattice quantities and the functioEaI meagure In this second case, that lis~Lpjanck the interpretation
In the following we shall set=1. The constantk and ¢ gq (5) is different: it means that the effective cosmologi-

A are related, as “bare” quantities, to_ the Newton constanig| constant tends to zero on large scale, while it is nonvan-
G and to the cosmological constadt: k corresponds 0 jghing, in principle, on small scalérere and in the following

1/8wG and\ to A/87G. It is important, however, to keep \ye mean by “large” scale the laboratory or atomic scale,
distinct the physical values andA from k_and)\. The latter  5nqg by “small” scale the Planck scaleThis interpretation
are entered as parameters at the beginning, and then a secQibs not necessarily have observable physical consequences,
order transition point for the statistical system described b\jnce in factA could be far too smal. Namely, the exponent
Z is found by Monte Carlo simulation. Actually, there is a ., has peen computed only for small lattices; an evaluation
line of transnmp, since one can also vary the' adimensionagfy, |attices of “macroscopic” size is of course technically
parameten, which does not have a macroscopic counterpartinnossible, and thus only the experiments could tell us
On this line in the parameter space the theory admits a CORynether the law(s) keeps true for large distances, and with
tinuum limit. Unlike in perturbation theory, where a flat \yhich exponent. The fact that on astronomical scale we have
background is introduced by hand, here the flat space aPA|G< 102 for u~10"30 cm~! constrainsy to be ap-
pears dynamically; namely, the average value of the curvas oximately larger than 2. But the vanishing could be much

ture is found to vanish on the transition line, which separateg, e rapid, so that we could disregatdat any physically
a “smooth phase,” with small negative curvature, from a gjevant scale.

“rough,” unphysical phase, with large positive curvature. In
this way the effective, large scale cosmological constant

[ &

vanishes in the continuum quantum theory.

Another property of Regge calculus which shows an in-
trinsic feature of quantum gravity is the instability of the
“rough” phase with positive average curvature, i.e., with
positive effective cosmological constant. This phase does not
admit any continuum limit. Its fractal dimension is small,
which denotes that the geometry is collapsed.

The nonperturbative instability properties of the phase
with positive average curvature extend the validity of known
considerations based on perturbation theory. Namely, in the

More precisely, the dependence of the effectimerun-  weak field approximation a positive cosmological constant in
ning”) cosmological constant on the scale is the follow- the gravitational Lagrangian produces a negative mass for
ing. If we compute Eq(4) on small volumes, the curvature the graviton(compare[1] and the next sectigninstabilities
fluctuates wildly. At larger distances the average curvatur@rise in the perturbative theory on a de Sitter background too
decreases, because the fluctuations tend to average out.[%210]. On the contrary, a small negative cosmological con-

(4)
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stant generally does not imply any instability, but a smallscale dependent; we suppose here to stay at some fixed
massm, for the graviton, of the order oAY2 in natural  scale) From the geometrical point of view, the small nega-
units. tive value ofA stabilizes the system, preventing it from fall-

In conclusion, at a scale large enough with respect to théhg into small-volume, collapsed configurations.
lattice scale it is possible to regard the discretized gravita- |n the naive perturbation theory around the flat back-

tional functional integral(1) as describing an almost flat ground theA term represents a small mass for the gravi-
mean field plus fluctuations. If the fixed point of the lattice (51 Namely, setting 9ur(X)=0,,+ kh,,(X), with
theor)_/ is approach_ed from the physmal, smooth phase, the_ J87G, the determinang of g,., can be expanded as
effective cosmological constant (i.e., the average of the
scalar curvatur®) is very small and negative, and the large
scale fluctuations oR are small too. The system is stable, _ _
because the field configurations with larger volume, in which g=1+kh®+x?h@+ . | (8)
the links are as stretched as possible, are preferred to the
collapsed configurations, since the Euclidean action depends
on the volume likeS~ (A/87G) [d*x\/g~ (A/87G)=Vy, . ) T _ ) )
(On the contrary, a positive value df would favor the col-  Whereh'™, h'®, . .. denote expressions which are linear,
lapsed configurations with smaller volurén this picture ~quadratic, etc. inh,,. The linear “tadpole” termh() is
A can be regarded either as a purely formal regulator, whictisually disregarded, since it is proportional to the trage
goes to zero in the physical limly—0, or as a physical which vanishes on physical states. The tetff? takes the
quantity, though possibly extremely sméih the interpreta- form of a graviton mass term, such that the mass is positive
tion in which g~ pjaned - when A <0 (comparg[1]). We thus have
Keeping these properties in mind, it is interesting to con-
sider the case in which the coupling of the Euclidean gravi-
tational field with an external source gives in some four-
dimensioqal regions a positive contribu_tion to the effective Sui= d4x{[m§ﬁ(2)(x)—ﬁ(z)(x)]+A[Kﬁ(3>(x)
cosmological constant. In the next section we shall analyze
this phenomenon in the continuum case, that is, on large =4 ~ 2=
scale(in the meaning of “large scale” we defined above @00+ J-[kRPO)+ RO+ Th,
On the lattice, such a coupling would correspond in the (9
action(3) to an additional term of the form

SNV ©) where my, apart from some numerical factor, is equal to
th oty mh |A|¥2andR®), R®), .. denote the parts dk which are
quadratic, cubic, etc. ih,,,, .

where(n;,h,, . ..} is a subset of the hinges angl are fixed ~_ The fict brackets contain the quadratic part of fhe action.
positive constants. e thir rackets contain the familiar self-interaction verti-

We expect that when the Monte Carlo algorithm choose$®S of the graviton, involving respectively L.2 Qeriva-_
for the random variation a link which ends in a hinget'VeS ofh,,. The second brackets contain self-interaction

el .. e fevoredvraionwil e thatorwiich Y2TEeS VG 42 Pectr o o heony O e
the volume V, decreases. Thus the volumes ’ ' '

Ve V il tend I d the latii __the self-interaction vertices df,,, in the following.

{_ nyVhg oo Wi tend to co apse an the attlcg EXCIta- N ow we would like to consider the interaction iwith a

tions propagating through the hingesy,h,, ...} will be  gcajar field ¢ having nonvanishing vacuum expectation

damped. value ¢,. We supposep, to be spacetime dependent and
denoted(X) = do(X) + d(X); do(X) is regarded as a quantity
determined from the outside, that is, as a source term. In this

Il. CONTINUUM CASE way, the fielde¢(x) describes a Bose condensate with ground

state densitypy(x) fixed by external conditionglike, for

We have seen that the results of quantum Regge calculygstance, the Cooper pairs density in certain superconductors
can be interpreted as leading at distances large compared @der external em fie)d

L pianckto an effective Euclidean action for pure gravity of the  The total action is
form

A 1 1As remarked if1], this widespread belief is not rigorously true.
8.G %R(X) ) (7)1t has also been proveld.1] that all theories of a massive tensor
field in Minkowski space which satisfy the usual quantum field
theory (QFT) postulates are incompatible with general relativity in
where the curvature fluctuations around flat space are smahe limit of vanishing mass. In our reasoning it is not essential to
and the effective cosmological constahtis negative and regard the cosmological term as a graviton mass term, but for sim-
very small too.(As we saw in the previous section, is  plicity we stick to this terminology.

Seft= f d*x Va(X)
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_ ~ 1 1 ~
s=Sur+ | % g(x)[aﬂ[¢o<x)+¢><x>]*ay[¢o<x>+¢<x>]gf”<x)+ 5 Ml o002+ 5 AL 65 (x) $(x)

e 1 2177 2
+ do(X) % (X)]+ SmEl (0. (10)
We can rewrite it as
A 1 1
S= f d“ng(x)[ gc T a0 |- g gRM | +81+S,, (11)
where
1 2 1 * Y22 1 2 2.
> 120 = 519,65 010 bo(x)1+5 M| do(x) [ (12)
1 _

=5 f d*x\/g(x)d,b% (X),do(X) kh“7(X); (13)

1 —_ _ ~ _ _ _

S=5 f d*xVGOO{ME| 0012+ MEL B () b(X) + Bo(X) $* ()] +[3,,* (X)9,b(X) + 9, b5 (X) 8, h(X)

+0,¢* (X)d,Bo(X)1g*"(X)}. (14)

For brevity, we have not expanded hefg andR like in gradlent term 3[9*x (X)d,x(x)] and the mass term
Eq. (9). Let us first look at the term§; and S,. The term 2m 2x?(x) (both positive defined
S, describes a process in which gravitons are produced by In the presence of the source termu?(x)x?(x), the
the sourcepy(x). The termS, contains the free action of the action decreases whey? increases within the regior@; .
field ¢(x), which describes the excitations of the condensateThe growth ofy in these regions is limited only by the fact
and several vertices in which the graviton fldzig (x) and  that outside theny must go to zerddue to the ternm ) and
¢(x) interact between themselves and possibly with thethat the gradient in the transition region cannot in turn be too
source. All these interactions are not of special interest herkarge. Let us suppose for instance that there is only one re-
and are generally very weak, due to the smallness of thgion Q,, with the shape of a 4-sphere of radiug Let
coupling«. The relevant point is that the purely gravitational 4 (x) take the valueu, inside Q, and zero outside. We

cosmological term\/8wG receives a “local” positive con-  consider fory the trial function y(r)= xof(r). The action
tribution 3.2(x) which depends on the fixed external sourcepecomegwe admit spherical symmetry

bo(X). Accordlng to Eqs(9) and(7) and to our discussion of
the sign ofA, this amounts to a negative mass contribution
and could lead to instabilities.

Let us study the effect of such a local negative mass con- = 72 X0 J dre3{[f'(r)]?+ mz[f(r)]2
tribution in the simpler case of a scalar field in flat space. We
consider a scalar fielg with very small massn, and add to —,uée(r —ro)[f()]3). (16)

its free Euclidean action a source term of the form
—2u?(X)x%(x), which represents a “localized negative

mass.” The action becomes We see that if the integral is positive, the valuexgfwhich

1 minimizes the action is stily,=0. On the contrary, if the
szif d4x{[&“x(x)][aﬂx(x)]+mf(xz(x)—uz(x)xz(x)}. integral is negative, the action is not bounded from below as
15 Xo grows. . N
We choose the following explicit form off(r): for
To fix the ideas, let us suppose that(x) is different [<Fo let f(r)=1, ie, x(r)=xo for r>ry let
from zero in certain four-dimensional regiofls, where it (") =€xd—(r—ro)/5]. We, thus, have
takes the constant valueg?: Outside these regions let
12(x) go rapidly to zero. The solution of the classical field
equation fory is obtained by minimizing the action. In the g = 72y 2 i+m2 fwdrr3e‘2“‘r0)’5— E(,uz—mz)r“
absence of the source term we would have of course” o\ ) )i, 42m0 X0
x(X)=const=0, because this minimizes at the same time the (17)
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1 3 3 3 1 complex mathematical problem, but the physical conse-
=772)(§ (Efrmi <§54+Zroé\°’+ ng52+ Er?,a quence will clearly be a “damping” of the correlations of
x(X). One can check this numerically in some model; we
1, L. shall do this shortly in the next section, referring to a toy
— 2 (Ko—mYro;- (18 bidimensional spin model.

It is easy to check that for suitable choices of the parameters IIl. THE FORMULA
the expression within the braces in E@8) turns out to be FOR THE STATIC POTENTIAL ENERGY

negative. For instance, i, can be disregarded with respect |, thjs section we recall the formula which gives the static
to Moi?nd 6~Tro, the expression is negative provided potential energy in Euclidean quantum gravity as a func-
mo>6 " If 6<rq the expression is negative provided tional averagg4,5]. We illustrate its statistical meaning in
mo>To*, etc. Thus the system is unstable. For the gravitonhe case of a weak field through an analogy with a simple 2D
the instability is even worse, because the kinetic tR% is  Ising model, which we also treat numerically with an el-
not positive-definite. ementary simulation. We show numerically that the insertion

Physically, we might of course invoke some additionalof local supplementary constraints due to an external fiald
“regularizing” process which comes into play for large val- analogy with the singularities of the continuum dademps
ues ofyo and cuts the action. Thus the valuexdi(x) inside  in a sensible way the spin-spin correlations, and thus the
the region() is forced by the source to a certain maximum. interaction they represent in the model.

This will affect the propagation of the field: the differen-  Let us first consider, in Euclidean quantum field theory, a
tial equation for the propagator g{x) in the presence of the scalar field®(x) with action S)[®]=fd*xL(P(x)). In the
source must now satisfy additional boundary conditions orpresence of the external sourdgx) the ground state energy
each region();. Finding the exact propagator amounts to aof the system can be expressed as

_F-1lrrq4 4
ho Jd[DJexp{— A " [d*XL(D(x))+ fd*xD(x)I(x) ]} f <exp{—ﬁ1f d4x¢(x)J(x)}>,

E=lim = ln TA[®Jexp— i~ L d*XL(D (X))} = lim = in

T—oo

(19

where it is assumed that the source vanishes outside the isuitable expression fal. In flat space the trajectories of the
terval (—T/2,T/2) and that the coupling betwednand® is  two sources are
linear. More generally a formula similar to E¢L9) holds

when we are dealing with several fields, and correspond- xf(t1)=(11,0,0,0; x5(t,)=(t,,L,0,0). (20
ing sources)®, and when the coupling between fields and
sources is not linear. In ordinary gauge theories we may reobtain in this way

As a useful application of Eq19) we can write the in- the Wilson formula for the static quark-antiquark potential.
teraction energye(L) of two static pointlike sources of the In quantum gravity we are led to the following equation for
field, kept at a fixed distance. We just need to insert the the static potentigl4]:

E(L)— fim - 1 ALO1exB A ISg1+ 311 TrpdtG,u X (DX (DX O]
e T Jdlglexp{—%~"S[g]}

(21)

Elim—gln<exp<—ﬁll2 m; e ds]> , (22
S

Tow i=1,2 -T2

whereS is the Euclidean gravitational actién. parallel with respect to the dynamic metgg, and thus they
In Egs. (21) and (22) the linesx;(t) and x,(t) must be should in principle be retraced for each field configuration of
the functional integral. In practice it is extremely difficult to

2Notice that this formula applies also to two masses which are not
pointlike (“pointlike particle” is actually an ill-defined concept in  of freedom. Namely, their action is still equal X3/ ds;, where the
general relativity, provided we can disregard the internal degreesintegrals are taken along the trajectories of the centers of mass.
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compute a functional integral defined in such a formal way.

Let us then limit ourselves to consider weak fluctuations of L A S
the gravitational field about flat space. The trajectories of the
sources may be defined with respect to the background met- A S A S
ric like in Eq. (20). It is straightforward to reproduce in this
way the Newton potential enerdy,5]; higher order correc- i A A S A S
tions have been computed t6f12]; compare alsg13]). The
geodesic distance between the trajectoxigs) andx,(t) is R S e S e A S
now equal toL only on the average; in fact such an approxi-
mation is not without physical meaning, since in any realistic i A S S S S T St i
source the fixed distance at which the two masses are kept
can only be an average value. Also in the nonperturbative LA S A A S e S 4
evaluations of Eq(22) in quantum Regge gravit}5] the
distancel is evaluateda posteriorias the mean value of the i S A S A S
geodesic distance on all configurations.
Let us consider the almost-flat metrig,,(x)=46,, i S S S S S A S
+h,,(X) in a fixed gauge. We find
++ -+ - + +- -+ - -+ -+ + -
T2 T2
J ds:J’ dt;v1+hyq[x(t)] -4+ - -+ - 4+ -+ + 4+ -+ -+ +
—-TI2 —-TI2
1 (TR - =4+ 4+ - 4+ -+ ++ - -+ -+ + -
=3[ athuixay) 29
2) 112 | |
and we see that to a first approximation the fluctuations of j1 j2
h have the effect of making each line ‘“shorter” or
“longer.” Let us call [ h] the (gauge-invariantdifference
between the lengths of the two lines in a field configuration
h and assume for simplicity that the masses of the two <===-L---->
sources are equam;=m,=m. We may expand the expo-
nential in Eq.(22) finding (note that{a[h]) obviously van- FIG. 1. Spin sums taken along two columns of a 2D Ising sys-
ishes by symmetpy tem.
ok . 2 ?
E=2m+ lim —Tln(exp[—ﬁ ma[hl}) (ising = EI Sijl_zi Sij,
T—o
m2 2 2
=2m+ lim — ﬁ(dz[hp-f— cee (29 :<(E| Sijl + zl Sijz) _zzi Siilzk skj2>'
T—oo

(25)

This equation exhibits an interesting relation between the . . .
vacuurﬂ fluctuations of the geometrygand the static gravita-,. We are interested only in the term which _depends on the
tional potential. To better illustrate its “statistical” meaning distancel between the two columns, that is, the product
we would like now to introduce a toy analogy with the 2D term
Ising model.

Let us consider a planar spin system with periodic P1o= < E siJ-lE Skj2>- (26)
boundary  conditions and the local coupling i k
H=—JEi’jS”—Si/jr [J>0,(|’,J’) nEighborS of (,])] Let us ] . . . .
then consider two columrjs andj, at a distance of lattice A numerical simulation with a simple 2012 system has
spacings(see Fig. 1 given, as expected, the following results at the critical tem-

We can regard this system as the analogue of a discretizeRfrature:
configuration of a 4D gravitational field on the plane of the
two parallel lines of Eq(20). The spin variables-1 repre-
sent fluctuations of the metric. At the transition temperaturd- (lattice spacings p-{12}
the fluctuations of the spin variables are correlated approxi-

) ; -1 2 1.15+/- 0.13
mately like (distance ™ -.

Going back to Eq(23) and making the correspondence 3 0.74+/—0.09
s—hy;, we see that the analogue @fg] is the difference 4 0.48+/— 0.09
between spin sums taken along the columpsindj,. The 5 0.42+/— 0.08
analogue of Eq(24) is 6 0.41+/- 0.08
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we associate to each spin-flip an opposite flip on a neighbor-

0x0000x00000 0x0000x00000 ing site. The flips occur at each Monte Carlo step; since the
0200060%x00000 020400%x00000 mean frequency at which the regular sites are flipped during

the simulation is 120 times smaller, the resulting effect is to
0x0%00x00000 0x0000x00000 force a zero at the “*” sites.

The precise positions of the sites at which the spin-flips
0x0000x00000 0x00*x0x00000 occur are almost irrelevant; we find in all cases, as appears
0Xx00%0%00000 0x0000%x00000 from the examples in the following table, a sensible diminu-

tion of the correlations between the spin sums taken along
0x0000x00000 0x00*x0x00000 the columng; andj,:
0x0*00x00000 0x0000x00000
0x0000x00000 0x0*00x00000 Number of **” sites p-{12} for L=5
! ! I | 3 [Fig. 2a)] 0.19 +/— 0.04
it j2 “91 j2 4 [Fig. 2(b)] 0.13+/- 0.03
(a) () It appears therefore that the insertion of variables which

are driven by an external field damps the correlations in the
system and that this mechanism is of a quite general nature,
although we are not able to give a precise analytical descrip-
tion yet.

FIG. 2. Insertions of singular points “*” between the columns
j1 andj2.

IV. CONCLUSIVE REMARKS

We see that the ~* law is approximately verified also for ) ) ) ) )
the correlation between the spin sums taken along the two N this paper we have investigated an unusual interaction
columns. Only forL=6 there is a deviation, which can be mechanism between gravity and a macroscopic quantum sys-
explained as due to the periodic boundary conditions. tem driven by external fields. This idea was originally sug-

We observe that, due to the nature of the spin system, th@ested by a possible phenomenological applicalioh 19,
correlation between two spin sums alojgand j, is neces- but. the m.echanllsm is interesting also from the_purely theo-
sarily positive. Thus the part C(falzsing> which depends on retical point of view and deserves further numerical and ana-

: . ; : - _ lytical investigation.
the distance. is negative. On the contrary, in perturbative . " .
quantum  gravity 9 one finds that ythe pcorrelation We have shown that under certain conditions the gravita-

: ; ; tional field becomes unstable and may develop singularities,
ﬁzlglgt(i)vgl%s(ié)r? ;;am ea )éitréi%ﬁaﬁl\geﬁ e\?lg)l/cir:lle&’aa(js to the correctbut we have neither worked out a physical regularization nor

We now introduce some supplementary conditions in Or_cqmputed th'e effect of the_ regularizeq singularities yet.
mple physical and numerical analogies show, however,

der to simulate the case in which the spin variables assumt%I t1h nerally reduce the aravitational long-ran fre-
on certain sites a fixed value. This could be due, like in th '?onsey generally reduce the gravitational fong-range corre

ravitational in which we are inter he localiz . - L
gravitational case ch we are interested, to the localize Thus our next task will be the explicit estimation of the

action of an external field. In the spin model we may imagine h in th lation functi in t f th d
that an external magnetic field localized on certain siteg12N9Es 1N ezcorrealon unctions in terms ot the square
ensity| ¢o(x)|* of the Bose condensate and of its squared

forces spin-flips. With reference to Fig. 2 let us suppose tha i
the spin-flips occur on the sites marked with a star an(gradlent[aﬂ¢o(x)]*[(9“¢O(x)].

placed between the two columpsandj, whose correlation ACKNOWLEDGMENT
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