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We consider a Hamiltonian theory of spherically symmetric vacuum Einstein gravity under Kruskal-like
boundary conditions in variables associated with the Einstein-Rosen wormhole throat. The configuration vari-
able in the reduced classical theory is the radius of the throat, in a foliation that is frozen at the left-hand side
infinity but asymptotically Minkowski at the right-hand side infinity, and such that the proper time at the throat
agrees with the right-hand side Minkowski time. The classical Hamiltonian is numerically equal to the
Schwarzschild mass. Within a class of Hamiltonian quantizations, we show that the spectrum of the Hamil-
tonian operator is discrete and bounded below, and can be made positive definite. The large eigenvalues behave
asymptotically as\2k, wherek is an integer. The resulting area spectrum agrees with that proposed by
Bekenstein and others. Analogous results hold in the presence of a negative cosmological constant and electric
charge. The classical input that led to the quantum results is discyStEth6-282(96)04720-7

PACS numbg(s): 04.60.Ds, 04.20.Fy, 04.60.Kz, 04.70.Dy

[. INTRODUCTION various grounds; see Refdl4-31], and references therein.
Although the horizon of &classical black hole is a nonlocal

One of the most intriguing problems in black hole ther- object, its total area is completely determined by the irreduc-
modynamics is the statistical mechanical interpretation ofble mass[32], and one can therefore alternatively view the
black hole entropy. One surmises that black hole entropyule (1.1) as a proposal for the spectrum of the quantum
should reflect an outside observer's ignorance about thireducible mass operatérs the irreducible mass can clas-
guantum-mechanical microstates of the hole, but it hasically be read off from the asymptotic falloff of the black
proved very difficult to characterize what exactly thesehole gravitational field, one expects such an operator to be
guantum-mechanical microstates might be. There are hintsensibly definable even in a quantum theory that only refers
that the relevant degrees of freedom may live on the horizoto observations made at an asymptotically flat infinity. In
of the hole[1-4], in situations where the horizon can be particular, for a Schwarzschild hole, the irreducible mass co-
meaningfully defined. There is also evidence that black holéncides with the Schwarzschild mass.
entropy describes the entanglement between the degrees of The implications of the area spectrufh.1) for macro-
freedom in the interior and in the exterior of the hfe-8]. scopic physics were recently elaborated on by Bekenstein
Recent results from string theof9] suggest that black hole and Mukhano\26]. Consider, for concreteness, a Schwarz-
entropy can be recovered by counting the quantum mischild hole. The area is given in terms of the Schwarzschild
crostates even in situations where the definition of thesenassM by
states presupposes no black hole geometry. For reviews, see
Refs.[9-11].

Even prior to Hawking’s prediction of black hole radia-
tion [12], the anticipated connection between black holes and
thermodynamics led Bekenstdihi3] to propose that the ho- wheremp,,= VAcG T is the Planck mass. Now, Eq4..1)
rizon area of a black hole is quantized in integer multiples ofand (1.2) imply thatM can only take discrete values. When
a fundamental scale, presumably of the order of the square @he black hole evaporates, it can thus only make transitions

| 2
Azl%(m) M2, (1.2
Mpjanc|

the Planck lengthpiana= \VAEGE™3: between the mass eigenstates corresponding to these discrete
values. As a consequence, the radiation comes out in mul-
A= aklZcn (1.2)  tiples of a fundamental frequency, which is of the same order

as the maximum of Hawking'’s blackbody spectrum, and the
wherek ranges over the positive integers aadis a pure corresponding wavelength is of the order of the Schwarz-
number of order 1. This proposal has since been revived oschild radius of the hole. This means that the radiation will

differ from the blackbody spectrum in a way that is, in prin-
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ciple, macroscopically observable. For exampleMifis of  spacelike infinity, at rest with respect to the hole: The proper
the order of ten solar masses, ox 20°! kg, then the funda- time of such an observer is our asymptotic Minkowski time,
mental frequency is of the order of 0.1 kHz, which is roughly and the Arnowitt-Deser-MisndADM ) mass observed is the
the resolving power of an ordinary portable radio receiver.Schwarzschild mass.
The discussion can also be generalized to accommodate a Second, we shall adopt as our reduced dynamical vari-
nonvanishing angular momentura3]. ables a canonical pair that is intimately related to the dy-
Arguments presented in favor of the area spectfry  namical aspects of the Kruskal manifold. Our configuration
include quantizing the angular momentum of a rotating blackvariablea can be envisaged as the radius of the Einstein-
hole[13], information theoretic consideratiofik4,18,19,2 Rosen wormhole throaf32], in a spacetime foliation in
string theoretic argumen{d5,16|, periodicity of Euclidean which the proper time at the throat increases at the same rate
or Lorentzian time[15,17,27,29-3]l a treatment of the as the asymptotic Minkowski time at the right-hand side in-
event horizon as a membrane with certain quantum mechanfinity. An example of a foliation satisfying these conditions
cal propertie 22,24, and a Hamiltonian quantization of a can be constructed by taking the Novikov coordindte®)
dust collaps¢25]. Recently, a membrane model for the ho- and deforming them near the left-hand side infinity to con-
rizon [33] recovered an area spectrum that is finer than Edigrm to our boundary conditions there.
(1.1), and a calculation within a loop representation of quan-  The resulting classical theory has two properties whose
tum gravity[34] recovered an area spectrum that effectivelypnysical interest should be emphasized. First, every classical
reproduces the Planckian spectrum for black hole radiations,tion is bounded, in the sense that the variablstarts
The purpose of the present paper is to give a derivation of oy zero, increases to the maximum valud 2whereM is
(effectively) the _spectrumil.l) fr_om a Ha_mlltonlgn qu_ant_um_ the Schwarzschild mass, and then collapses back to zero.
theory of spherically symmetric Einstein gravity, with judi- This evolution corresponds to the wormhole throat startin
ciously chosen dynamical degrees of freedom. ) P . . i ting
from the white hole singularity, expanding to the bifurcation

By Birkhoff's theorem[35], the local properties of spheri- . : .
cally symmetric vacuum Einstein geometries are completel wo-sphere, and then collapsing to the black hole singularity.
he spacetime dynamics in these variables is therefore, in a

characterized by a single parameter, the Schwarzschild mass.™ * ! o )
In a classical Hamiltonian theory of such spacetimes, the tru€rtain sense, confined to the interior regions of the Kruskal

dynamical degrees of freedom are thus expected to contaff@nifold. This property reflects the physics observed by an
information only about the Schwarzschild mass and the eminertial observer at asymptotic infinity, as such an observer
bedding of the spacelike hypersurfaces in the spacetime. fi€es her exterior region of the Kruskal manifold as static.
was demonstrated in Refg36—39 that this is indeed the Second, as the proper time on the timelike geodesics that
case, under certain types of boundary conditions that specifijprm the throat trajectory increases at the same rate as the
the (possibly asymptotic embedding of the ends of the asymptotic right-hand side Minkowski time, one may regard
spacelike hypersurfaces in the spacetime. The variables ofur foliation as a preferred one, by the principle of equiva-
the reduced theory then consist of a single canonical pailence, for relating the experiences of an inertial observer at
The coordinate can be taken to be the Schwarzschild masthe asymptotic infinity to the experiences of an inertial ob-
and its conjugate momentum carries the information abougerver at the throat. Note, however, that as the total proper
the evolution of the(asymptotig ends of the spacelike hy- time from the initial singularity to the final singularity along
persurfaces in the spacetime. The theory is thus no longer e throat trajectory is finite, our choice of the foliation im-
field theory, but a theory of finitely many degrees of free-pjies that the throat reaches the white and black hole singu-
dom. This means, in particular, that quantization of thejgrities at finite values of the asymptotic right-hand side
theory can be addressed within ordinary, finite-dimensionaljinkowski time. As the asymptotic right-hand ~side

quantum mglchgnlcs.r] ¢ sohericall , Minkowski time evolves at unit rate with respect to our pa-
Our Hamiltonian theory of spherically symmetric vacuum ., noter time, this means that the classical theory is incom-

spacetimes will be built on two major assumptions. First, Wfa'plete: The classical solutions cannot be extended to arbi-
shall adopt for the spacetime foliation the boundary condi-

tions of Ref.[38]. This implies that the classical solutions trarily large values of the parameter time, neither to the past

- . nor to the future
have a positive value of the Schwarzschild mass, and that the N . . .
P We quantize the theory by Hamiltonian methods, treating

spacelike hypersurfaces extend on the Kruskal manifold : . : e '
from the left-hand side spacelike infinity to the right-hand® @S @ configuration variable, specifying a class of “reason-

side spacelike infinity, crossing the horizons in arbitrary@P!€” inner products, and promoting the classical Hamil-
ways. We shall, however, specialize to the case where th@nlgn into a sglf—adpmt Hamiltonian .opelrator. For certain
evolution of the hypersurfaces at the left-hand side infinity ischoices of the inner product the Hamiltonian operator turns
frozen, and the evolution at the right-hand side infinity pro-out to be essentially self-adjoint, whereas in the remaining
ceeds at unit rate with respect to the right-hand side asymgsases the class of self-adjoint extensions is parametrized by
totic Minkowski time. This means that, apart from con- U(1) and associated with a boundary conditioraat0. We
straints, the Hamiltonian will consist of a contribution from find that the spectrum of the Hamiltonian is discrete and
the right-hand side infinity only, and the value of the Hamil- bounded below in all the cases. When the Hamiltonian is
tonian is equal to the Schwarzschild mass. The physical reassentially self-adjoint, the spectrum is strictly positive, and
son for this choice is that while our theory will remain that of in the remaining cases there always exist self-adjoint exten-
vacuum spacetimes, we expect these conditions to corresions for which the spectrum is strictly positive. A WKB
spond to physics accessible to an inertial observer at onestimate for the large eigenvalues of the Hamiltonian yields,
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via Eqg. (1.2), the result that the large area eigenvalues arand performing the appropriate canonical transformation.

asymptotically given b¥ The theory is quantized in Sec. Ill, with considerable parts of
the technical analysis deferred to three appendixes. In Sec.
A~327kIZ,, ot COnstto(1), (1.3) IV we discuss the inclusion of the electric charge and a nega-

tive cosmological constant. Section V contains a brief sum-

wherek is an integer and(1) denotes a term that vanishes M&ry and a discussion. _
asymptotically at largé\. The additive constant depends on ~ FOr the remainder of this paper we shall work in natural
the choice of the inner product and, when the Hamiltonian idinitsi=c=G=1.

not essentially self-adjoint, also on the choice of the self-

adjoint extension. With two particular choices for the in_ner IIl. CLASSICAL WORMHOLE THROAT THEORY

product, we can verifyand improve ohthe accuracy of this

WKB result rigorously; with another two particular choices, In this section we present a classical Hamiltonian theory
we can rigorously verify the accuracy of the leading orderof the Schwarzschild black hole in terms of reduced phase
term. We can, therefore, view our theory as producing, frorrspace variables that are associated with a wormhole throat, in
a Hamiltonian quantum theory constructed from first prin-a sense to be made more precise below. We first briefly
ciples, the area spectruft.1) with a=23217. recall, in Sec. Il A, Kuchds Hamiltonian reduction of

We shall argue that the discreteness of the quantum spegpherically symmetric vacuum geometr{@8]. In Sec. 11 B
trum is related to the classical incompleteness of the theoryve derive the throat theory from Kuchsreduced theory via
As the variablea classically reaches the singularityat0 @ suitable canonical transformation.
within finite parameter time, both in the past and in the fu-
ture, the classical theory can be thought of as particle motion
on the positive half-line in a confining potential. Whenever
the self-adjoint Hamiltonian operator is constructed so that We start from the general spherically symmetric
the possible “gquantum potential” part does not become sigArnowitt-Deser-Misne(ADM) line element
nificant, general theorems guarantee that the spectrum of the B
Hamiltonian will be discret40,41. In physical terms, wave ds’=—N?dt*+ A%(dr+N'dt)* + R*dQ?, 2D
packets following classical trajectories will be reflected
quantum mechanically from the origin, and the quantum dywhere dQ? is the metric on the unit two-sphere, ai
namics will in this sense have a quasiperiodic character. IN", A, andR are functions oft andr only. We adopt the
contrast, if the spacetime foliation were chosen so that ifalloff conditions of Ref.[38]. These conditions render the
would take an infinite amount of parameter time for the vari-spacetime asymptotically flat bothratsc0 andr— —oc, and
ablea to reach the singularity, the classical theory could bethey makelr| coincide asymptotically with the spacelike ra-
thought of as particle motion on the full real line in a poten-dial proper distance coordinate in Minkowski space. Each
tial that is confining on the right but not on the left. In such classical solution consists of some portion of the Kruskal
potentials, the spectrum of a self-adjoint Hamiltonian operamanifold [32], such that the constahthypersurfaces extend
tor generically has a continuous part, corresponding physifrom the left-hand side spacelike infinity to the right-hand
cally to the fact that wave packets can travel arbitrarily far toside spacelike infinity, crossing the horizons in arbitrary
the left without being reflected. We shall present a simpleways. In particular, the Schwarzschild mass is positive for
example of each of these two types of foliation, handpickedevery classical solution. The falloff conditions also guarantee
so that the Hamiltonian operator becomes easily tractabldghat the four-momentum at the infinities has no spatial com-
From the first example we can reproduce the area spectruponent: The black hole is at rest with respect to the left and
(1.1) with an arbitrary value of the constaat in the second right asymptotic Minkowski frames.
example, the spectrum of the Hamiltonian operator will be We fix the asymptotic values df atr— *=oo to be pre-
continuous and consist of the full non-negative half-line.  scribed t-dependent quantities, denoted Wy.(t). The

In addition to the above results for the vacuum theory, weHamiltonian form of the Einstein action, with appropriate
shall also briefly investigate the inclusion of a fixed electricboundary terms, reads then
charge and a negative cosmological constant. With the analo-
gous choices for the boundary conditions, the phase space ©
coordinates, and the Hamiltonian quantum theory, we again S=j dtf dr(PAA+ PRR—NH—N’Hr)
show that the spectrum of the Hamiltonian operator is dis- -
crete and bounded below. The distribution of the large eigen-
values could presumably be analyzed by a suitable generali- - f dt(N.M,+N_M_), (2.2
zation of our vacuum techniques; however, we shall not
pursue this issue here.

The rest of the paper is as follows. In Sec. Il we derive thewhere H and H, are, respectively, the super-Hamiltonian
reduced Hamiltonian theory in our phase space variablegonstraint and the radial supermomentum constraint. The
starting from Kuchds reduced phase space variabl@8]  quantitiesM . (t) are determined by the asymptotic falloff of

the configuration variables, and on a classical solution they
both are equal to the Schwarzschild mass. We refer to Ref.
2We shall use the symbet to denote an asymptotic expansion [38] for the details. Note that when varying the acti@?),
throughout the paper. N. (t) are considered fixed.

A. Kuchar reduction
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Through a judiciously chosen canonical transformation, Second, for reasons that will become transparent below,
followed by elimination of the constraints by Hamiltonian we confine the variables by hand to the rafgje< 7m. This
reduction, Kuchaf38] brings the action(2.2) to the uncon- means that in each classical solution, the asymptotic right-

strained Hamiltonian form hand side Minkowski time only takes values within an inter-
val of length 2rm, centered around a value that is diago-
_ o nally opposite to the nonevolving left end of the

S f dtfpm=(N+N-)m], @3 hypersurfaces in the Kruskal diagram. In terms of the param-

] . . eter timet, each classical solution is then defined only for an
where the independent variablesandp are functions ot jyterval — sm<t—t,<7m, wheret=t, is the hypersurface
only. The degrees of freedom constitute thus the single cgznose two asymptotic ends are diagonally opposite.
nonical pair (n,p): The theory is no longer that of fields, but  consider now the transformation from the pain,p) to
that of finitely many degrees of freedom. The variables takgne new pair &,p,) defined by the equations
the valuesn>0 and—»<p<w, and their equations of mo-

tion are om db
|p|:f —
m=0, (2.4 a \2mb1-1
) =\2ma—a?+marcsifl—a/m)+imm, (2.6
p=—N,—N_. (2.4b) (| ) 2T ( 3
pa=sgr(p)\/2ma—a7. (2.6b

For our purposes, it will not be necessary to recall the
details of the derivation of the actid@.3), but what will be g ranges of the variables ame-0 and—x<p,<o. The

important is the interpretation of the reduced theory in termg,ansformation is well defined, one to one, and canonical.
of the spacetime geometry. On each classical solution, th¢pe new action reads

time-independent value ofn is simply the value of the

Schwarzschild mass. By Birkhoff's theoremm, thus carries .

all the information about the local geometry of the classical 5=f dt(paa—H), 2.7
solutions. The variablg, on the other hand, is equal to the

difference of the asymptotic Killing times between the left where the Hamiltonian is given by

and right infinities on a constamnthypersurface, in the con-

vention where the Killing time at the righiteft) infinity in- 1
creases towards the futu(pas). The two terms in the evo- H= >
lution equation (2.4b arise, respectively, from the two

infinities. Thus,p contains no information about the local The classical solutions are easily written out in the new vari-
geometry, but instead it carries the information about thesples. The value dfl on a classical solution is just, and by
anchoring of the spacelike hypersurfaces at the two infinitiesyriting the canonical momentum, in Eq. (2.8) in terms of

No_te thgtp, as the difference of the asymptotic Killing times, 5 4nq a, one recovers the equation of motion frin the
is invariant under the global isometries that correspond tg,n

translations in the Killing time.

2
p
—+a

a . (2.9

-, 2m
B. Hamiltonian throat theory a :?_1- (2.9
We shall now make two restrictions on the reduced theory ] ] )
(2.3). First, we specialize t, =1 andN_=0. This means Hence the configuration variabla starts from zero at
that the parameter tintecoincides with the asymptotic right- {=to—7m, reaches the maximum valuer2at t=t,, and
hand side Minkowski time, up to an additive constant,collapses back to zero at-to+7m.
whereas at the left-hand side infinity the hypersurfaces re- The interest in the variablesa(p,) is that they have an

main frozen at the same value of the asymptotic Minkowski@PPealing geometrical interpretation in terms of the dynam-
time for allt. The action reads then ics of a wormhole throat in the black hole spacetime. To see

this, we recall that the derivation of the reduced acti®:3)
. from the original geometrodynamical actigg.2) in Ref.
S:f dt(pm—m). (2.9 [38] relied on the properties of the spacelike hypersurfaces
only through their asymptotic behavior, but otherwise left
The fact that the Hamiltonian now equals simplyrepro-  these hypersurfaces completely arbitrary. We can thus exer-
duces the familiar identification of the Schwarzschild mas<ise this freedom and seek an interpretation of the variables
as the ADM energy, from the viewpoint of asymptotic (a,p,) in terms of a suitably chosen foliation.
Minkowski time evolution abneasymptotically flat infinity. The crucial observation is now that EQ.9) is identical
Our choice as to which of the two infinities has been taken tdo the equation of a radial timelike geodesic through the
evolve is of course merely a convention, but the choice obifurcation two-sphere of a Kruskal manifold of mass
completely freezing the evolution at the other infinity arisesprovidedone identifiesa as the curvature radius of the two-
from the requirement that our theory describe physics accesphere and the overdot as the proper time derivative. This is
sible to observers at just one infinity. We shall return to thiseasily seen, for example, from the expression of the interior
issue in Sec. V. Schwarzschild metric in the Schwarzschild coordinates. With
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these identifications, Eqé2.6) show that—p becomes iden- hand side infinity in the manner discussed above. We shalll
tified with the proper time elapsed along this geodesic frontherefore, with a minor abuse of terminology, referaas
the bifurcation two-sphere, with positiyeegative values of  the radius of the wormhole throat, and to the theory given by
—p yielding the part of the geodesic that is in the blackEgs.(2.7) and(2.8) as the Hamiltonian throat theory.
(white) hole interior. Thus, if there exists a foliation consis- It is important to note that the configuration variallés
tent with the falloff conditions of Ref[38], intersecting a bounded on each classical trajectory, reaching the maximum
timelike geodesic through the bifurcation two-sphere so thavalue 2m as the wormhole throat crosses the bifurcation two-
—p agrees with the proper time on the geodesic in this fashsphere. This means, in a certain sense, that the spacetime
ion, then the quantitya defined by Eq.2.6a is the two- dynamics in terms of our configuration variallés confined
sphere radius along this geodesic. “inside” the hole. This is physically appealing from the
It is easy to see that foliations of this kind do exist. Let usviewpoint of an observer at infinity: Such an observer sees
briefly discuss an example that is closely related to the Nothe exterior region of the spacetime as static.
vikov coordinate$32]. Recall that the geometric idea behind
the Novikov coordinates consists of fixing a spacelike hyper- lIl. THROAT QUANTIZATION
surface of constant Killing time through the Kruskal mani- . ) ) o
fold, and releasing from this hypersurface a family of freely I this section we shall quantize the Hamiltonian throat
falling test particles with a vanishing initial three-velocity in theory of Sec. Il. We saw above that the classical Hamil-
the Schwarzschild coordinates. The coordinate®Rt) are tonlan_ls num_erlcglly equal to the Schwarzs_chlld mass, and
then defined so that they follow these test particles: The trathat this Hamiltonian arises as the energy with respect to the
jectories are the lines of constaRt, and on each trajectory Minkowski time evqluuo_n at one asymptotically flat mﬂmty.
7 is equal to the proper time. The initial hypersurface isThe quantum Hamiltonian operator can therefore be wewgd
7=0, with R*>0 and R*<0 giving, respectively, the as the energy operator with respect to an asymptotic
halves living in the right and left exterior regions. Now, to Minkowski frame in which the hole is at rest. In particular,
arrive at a foliation satisfying our requirements, we first de-the Spectrum of the Hamiltonian operator becomes the ADM
form the Novikov coordinates near the left-hand side infinityM@ss spectrum of the hole. Our main aim will be a qualita-
to accommodate the conditidw_=0, and we then redefine V€ analysis of this spectrum. ,
R* near the infinities in ar-independent fashion so as to e take the states of the quantum theory to be described
conform to the radial falloff assumed in R§88] (the right-  PY functions (2)f trje configuration variabke. The Hilbert
hand side infinity will then have, in the notation of REgg], ~ SPace isH:=L(R";uda), with the inner product
a falloff with e=1). The distinguished geodesic through the .
bifurcation two-sphere is .given bR*'=0, and the goordi— (lﬂl,lﬂz):f Mdaﬁlﬁz, (3.1
nater agrees by construction both with the proper time along 0
this geodesic and with the asymptotic Minkowski time at the
right-hand side infinity. where u(a) is some smooth positive weight function. To
Our interpretation o gives now a geometrical reason for obtain the Hamiltonian operatét, we make in the classical
the restriction|p|<am, which we above introduced by Hamiltonian(2.8) the substitutiorp,— —id/(da) and adopt
hand. As a radial timelike geodesic from the initial singular-a symmetric ordering with respect to the inner prodgct).
ity to the final singularity through the bifurcation two-sphere The result is
has the finite total proper times&n, foliations satisfying our
conditions do not cover all of the spacetime. The foliations ~ 1
only exist for the duration of Z2m in the asymptotic right- H= 5
hand side Minkowski timé.
We summarize. Fix a radial timelike geodesic through the  £qr technical reasons, it will be useful to work with an

bifurcation two-sphere, and choose any foliation, consistensomorphic theory in which the inner product and the kinetic
with our falloff conditions, such that the proper time along term of the Hamiltonian take a more conventional form. To

the geodesic and the asymptotic right-hand side Minkow_sk(iichieve this, we write=x23 u=3x¥32, and y=»"1y.

time agree on the constanthypersurfaces. Then, the vari- The theory above is then mapped to the theory whose Hilbert
able a equals the radius of the two-sphere on the distin-gpace igH,: = L2(R*:dx), with the inner product

guished geodesic. In particular, if the foliation is chosen so
that on each constamthypersurface the radius of the two- x
sphere attains its minimum value on the distinguished geo- (Xl:XZ)Ozf dXx1X2- 3.3
desic, then this geodesic and the ones obtained from it by 0
spherical symmetry form the trajectory of the Einstein-Rosen]_
wormhole throat. This is the case for example in foliations

obtained by deforming the Novikov coordinates near the left-

1d
-

pn o d

E% +al. (32)

he new Hamiltonian operator is

d2 4X2/3 "
- W'ﬁ‘ T+ it (3.4

~ 9
H0: g

3Note that although the Novikov coordinates R*) are globally .
well defined on the Kruskal manifold, the hypersurfaces of constanwhere ' =d/dx. By constructionH, is a symmetric operator
7 extend from one infinity to the other only fpr| <mm. For larger  in Ho. Note that if we had retained dimensions, the “quan-
values of| 7|, these hypersurfaces hit a singularity. tum potential” term2v"/v would be proportional tdi 2.
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To completely specify the quantum theory, we need to These properties of the spectrum have consequences of
make H, into a self-adjoint operator okly. The possible direct physical interest. At the low end of the spectrum, the
ways of doing this depend on the quantum potential térm fact that the Hamiltonian is bounded below indicates stabil-
v"[v. For concreteness, we shall from now on take a®, ity: One cannot extract from the system an infinite amount of
wheres is a real parameter. The qualitative results would,energy. At the high end of the spectrum, the asymptotic dis-
however, be ana|ogous for any Sufficient|y S|m|}.ar\N|th a tribution of the Iarge eigenenergies ylelds for the black hole
power-law asymptotic behavior at—0 anda— . area the eigenvalued.3): This agrees with Bekenstein's

With w=as, |:|0 takes the form area spectrum(1.1), with «=327. We shall discuss the

physical implications of these results further in Sec. V.
~ 9] d* 4x?® r(r-1)
Ho=gl "2t ot — | (3.9 IV. THROAT THEORY WITH CHARGE
AND A NEGATIVE COSMOLOGICAL CONSTANT

where In this section we shall outline how the throat theory can
r=(2s—1)/6 fors=2, (3.6a  be generalized to accommodate electric charge and a nega-
tive cosmological constant. The classical black hole solu-
r=(7—-2s)/6 fors<2 . (3.6b tions are in this case giveflocally) by the Reissner—

Nordstran—anti-de Sitter metri¢35]
We could have replaced E@3.6) by (say Eq. (3.6a for all

s, with Eq. (3.9) still holding. However, as Eq(3.5) is in- g— | 1- ﬂ+ Q? N R? 4T

variant under —1—r, it will be sufficient to analyzé, for R R /2

r=1/2; this range for is recovered through the definition 5

Eq. (3.6). A + dR +R2dO?, (4.1a
Itis easy to see thai, has self-adjoint extensions for any 1-2M/R+Q?*/R*+R?I/? o

r. In the terminology of Ref[41], infinity is a limit point
case, whereas zero is a limit point case fer3/2 and limit
circle case otherwisgRef. [41], theorems X.8 and X.10, and Q

problem 3. For r=3/2, H, is therefore essentially self- A= =dT. (4.1b
adjoint. For 1/2<r<3/2, on the other hand, the self-adjoint

extensions oH, are characterized by a boundary conditionThe parameter® andQ are referred to as the mass and the

with the electromagnetic potential one-form

at zero and parametrized ty(1). (electrig charge, and the cosmological constant has been
We now wish to extract qualitative inﬁormation about the written in terms of the positive parameté’ras—3/*2_ For
spectrum of the self-adjoint extensionsto§. the global structure of the spacetime, see Refg,43. We

A first observation is that the essential spectrum of evershall understand the case of a vanishing cosmological con-
self-adjoint extension of, is empty (Ref. [40], theorems ~stant as the limi¥"—c, and in this case the above solution
X111.7.4, XI11.7.16, and XII1.7.17. This means that the spec- reduces to the Reissner-Nordstrsolution. _
trum is discrete: The spectrum consists of eigenvalues corre- The Hamiltonian structure of the spherically symmetric
sponding to genuine, normalizable eigenstates, and the eginstein-Maxwell system with a cosmological constant was
genvalues have disjoint neighborhoods. analyzed by a technique related to Ashtekar’'s variables in

Second, we shall show in Appendix A that every self-Refs.[44,45. An analysis via a Kuchatype canonical trans-
adjoint extension ofl, is bounded below: The system has a formation and Hamiltonian reduction, both with and without

ground state. For=3/2, the ground state energy is always & negative cosmological constant, was given in R&].
positive. For 1/2<r<3/2, the ground state energy depends”though the focus of Refl46] was on thermodynamically
on the self-adjoint extension, and the situation is more vermotivated boundary conditions, which confine the constant
satile. On the one hand, there is a cert@pen set among ! hypersurfaces to one exterior region of the spacetime, the
the self-adjoint extensions within which the ground state endiscussion therein generalizes without essential difficulty to
ergy is positive. On the other hand, there exist extensionoundary conditions that allow the constartiypersurfaces
whose ground state energy is arbitrarily negative. to extend from a left-hand side spacelike infinity to the cor-
Third, we shall show in Appendix B that a WKB analysis responding right-hand side spacelike infinity, crossing the

yields for the squares of the large eigenenergies the asym§Vent horizons in arbitrary ways but crossing no inner hori-
totic estimate zons. The new technical issues arise mainly from the fact

that with a negative cosmological constant, the left and right
E\ZNKB~2|<+ constto(1), (3.7 infinities are asymptotically anti—de Sitter rather than asymp-

totically flat. The new physical issues arise mainly in the
wherek is an integer an@(1) denotes a term that vanishes choice of the electromagnetic boundary conditions at the in-
asymptotically at larg&. The constant depends orand, for  finities.
1/2<r<3/2, also on the self-adjoint extension, in a way dis- We shall here concentrate on the theory where the electric
cussed in Appendix B. We shall also be able to rigorouslycharge is fixed at the infinities. In the reduced theory, the
verify the accuracy of this WKB result in the special casecharge then becomes an entirely nondynamical, external pa-
r=5/6, and the accuracy of its leading order term in therameter, which we denote ly. On a classical solutiorq is
special case=1. equal toQ in Eq. (4.1).
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The action of the reduced theory takes the fdth8). On  sphere along this geodesic, then the quarditgefined by
the classical solutionsn is equal to the mass parametdr  Eq. (4.23 is the two-sphere radius on this geodesic. If the
of Eq. (4.1a. The canonical conjugatp again equals the foliation is chosen suitably symmetric near the specified geo-
difference in the asymptotic Killing times between the left desic, we can think dd as the radius of the wormhole throat.
and right ends of a constanthypersurface. The range of we shall now examine the existence of such foliations for
m is m>mc;, where the critical valueng(q,/) is positive  the different values of the parameteysand /.
for g# 0 and vanishes fog=0: This restriction arises from For =0 and 0</<w=, the classical solution is the
the requirement that the classical solutions have a nondegegchyarzschild-anti—de Sitter hole. The Penrose diagram dif-
erate event horizon[42,43,46. The range of p iS  fers from that of the Kruskal manifold only in that the as-
—c<p<c. The quantitiesN. determine the evolution of yhintically flat infinities are replaced by asymptotically
the ends of the hypersurface in the asymptotic Killing time.2 ti_de Sitter infinities, represented by vertical lifie2,43.

::or & _’hoo’ N far?o/il?gh:hthe asymlpiogct v?rI]uels of tEe Foliations of the desired kind clearly exist: The timelike geo-

apse, whereas forvs 1€y are refated 1o the 'apse by ?esic starts at the initial singularity with=0, reaches the

a factor that diverges at the infinities. Note that in the special . . .

case ofq=0 and 0</<w, we get a theory of vacuum maximum value ok at the bifurcation two-sphere, and ends
X at the final singularity witta=0. The situation is thus quali-

spacetimes with a negative cosmological constant. Vel il h ith the Sch hild hol
Mimicking Sec. Il, we freeze the evolution of the hyper- tatively very simifar to that with the chwarzschild hote.
For g#0 and /—o, the classical solution is the

surfaces at the left-hand side infinity by setting =0, and ' i . )
fix the evolution at the right-hand side infinity to proceed atReissner-Nordstra hole withm>|g|. The Penrose diagram
unit rate with respect to the Killing time by settig, =1. ~ ¢an be found in Ref$32,47. Our Kuchartype Hamiltonian
The action is given by Eq2.5. The value of the Hamil- formulation is valid for the part of the spacetime that consists
tonian on a classical solution is then equal to the mass p&f one pair of spacelike-separated left and right asymptoti-
rameter. For'— this reproduces the identification of the cally flat regions and the connecting region that is bounded
mass as the ADM energy from the viewpoint of asymptoticin the past and future by the Cauchy horizons. The solutions
Minkowski time evolution at one infinity, just as in the un- to the equations of motion obtained from the Hamiltonian
charged case in Sec. Il. Fox/'<w, we similarly recover (4.3) are periodic oscillations in the interval_<a<a, ,

the interpretation of the mass parameter as the ADM-typdut our derivation of this Hamiltonian is only valid on each
energy from the viewpoint of asymptotic anti—de Sitter Kill- solution between two successive minima af Now, it is

ing time evolution at one infinity. clear that foliations of the desired kind exist: The timelike
In analogy with Eq(2.6), we introduce the new variables geodesic starts wita=a_ at the past Cauchy horizon bifur-
(a,pa) via the transformation cation two-sphere, reaches=a, at the event horizon bifur-
cation two-sphere, and ends wil-a_ at the future Cauchy

p|= fa+ db . (429 horizon bifurcation two-sphere.
a y2mb 1—-1-g’b 2—Db?%/? Finally, for q#0 and 0</<w, the classical solution is
the Reissner-Nordstno-anti—de Sitter hole, witim so large
Pa=sgnp)y2ma—a’—qg’>—a*/ 2, (4.2b  that a nondegenerate event horizon exists. The Penrose dia-

gram is obtained from that of the Reissner-Nordstroole
by replacing the asymptotically flat infinities by asymptoti-
cally anti-de Sitter infinities[42,43. Our Kuchartype
amiltonian formulation is valid for the part of the space-
ime that consists of one pair of spacelike-separated left and
right asymptotically anti—de Sitter regions and the connect-
ing region that is bounded in the past and future by the inner
horizons. The inner horizons are now not Cauchy horizons,

two positive zeros of the right-hand side in Ed.2b. On a as the asymptqtically anti—de Sitter infinitie_zs render_our part
classical solutiona_ is the radius of the inner horizon. of the spacetime not globally hyperbolic. As with the
With this restriction on the range @f the transformation Xeissner-Nordstra hole above, the solutions to the equa-
(4.2 is well defined, one to one, and canonical. The newfions of motion obtained from the HamiltoniaA.3) are pe-
action is given by Eq(2.7) with the Hamiltonian riodic oscillations in the intervad_<a<a, , and our deri-
vation of this Hamiltonian is only valid on each solution
between two successive minima af Foliations of the de-
sired kind now exist while the timelike geodesic remains
sufficiently close to the event horizon bifurcation two-
and the value of this Hamiltonian on a classical solution issphere. However, it is seen from the Penrose diagram that as
just the mass. the geodesic progresses towards the past and future inner
As in Sec. Il, the theory has an interpretation in terms ofhorizon bifurcation two-spheres, there will occur a critical
a wormhole throat. If there exists a foliation with the appro-value of the proper time after which the constahtypersur-
priate falloff conditiong46], intersecting a timelike geodesic faces would necessarily need to become somewhere timelike.
through the event horizon bifurcation two-sphere so thaiTherefore, the throat interpretation can only be maintained in
—p coincides with the proper time from the bifurcation two- the full domain of validity of the Hamiltoniaf4.3) by ap-

wherea_(m,q,/) is the unique positive zero of the right-
hand side in Eq(4.2b for =0, and the larger of the two
positive zeros forg#0. On a classical solutiora, is the
radius of the event horizon. To make this transformation wel
defined, we again need to restrict by hand the range Bbr
q=0, the upper limit forp| is obtained from Eq(4.23 with
a=0. Forg#0, the upper limit forp| is obtained from Eq.
(4.29 with a=a_, wherea_(m,q,”) is the smaller of the

2 2 3
Pa q- a
Ztat+—+—
a a /?

1
H=>

5 , 4.3
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pealing to a foliation where the constaritypersurfaces need 2k, wherek is an integer, and we were able to rigorously
not be everywhere spacelike. We shall return to this issue igerify the accuracy of this estimate for four particular

Sec. V. o _ choices of the weight factor. The resulting spectrum for the
Quantization of the theory proceeds as in Sec. lll. Thegrea of the black hole agrees with the spectrini) pro-
HamiltonianH,, Eq. (3.9), inherits the additional terms posed by Bekenstein and others, with the dimensionless con-

stanta taking the value 32. We also showed that analogous
(4.4) results can be obtained in the presence of a fixed electric
charge and a negative cosmological constant.
It is perhaps worth emphasizing that the basic postulates
The theorems cited in Sec. Ill show that the additional termsf our guantum theory consisted of the choice of a Hilbert
make no difference for the existence and counting of thgpace and a self-adjoint Hamiltonian operator on it. We did
self-adjoint extensions ofly, and they also show that the not attempt to define more “elementary” operators, such as
essential spectrum of any self-adjoint extensionHyf is  those for “position” or “momentum,” self-adjoint or other-
again empty. Fog=0, the proof of the lower bound for the wise, from which the Hamiltonian operator could be con-
spectrum given in Appendix A goes through virtually with- structed. This issue might merit further study within some
out change. Fog+0, the charge term modifies the small geometric or algebraic framework of quantizafi¢49-51.
behavior of the wave functions, and the analysis of the self- Even though our theory is that of pure vacuum, our
adjointness boundary condition is more involved; in particu-boundary conditions were chosen so as to make the results
lar, there is a qualitative difference between the casegelevant for physics that is accessible to an inertial observer
7/6<r<3/2,r=7/6, and 1/2r<7/6, arising from whether at a spacelike infinity. Our spacelike hypersurfaces have evo-
the next-to-leading term in the counterpartigf(x) in Eq. lution at onlyoneinfinity, and there they evolve at unit rate
(A2) dominates the leading order term in the counterpart ofvith respect to the asymptotic Minkowski time. Our classical
ug(x) at smallx. However, the modified Bessel function Hamiltonian is therefore the gravitational Hamiltonian with
asymptotic behaviofA6) and (A9) still holds, as can be respect to the proper time of an inertial observer at the infin-
shown by applying the series solution methoddgrand the ity, at rest with respect to the hole. It is thus reasonable to
“second solution” integral formula foo ¢ (see, for example, think of the eigenvalues of the Hamiltonian operator as the
Chap. 8 of Ref[48]). The spectrum of every self-adjoint Possible outcomes that an asymptotic observer would in
extension is therefore again bounded below, and certain selprinciple obtain when measuring the ADM mass of the hole.
adjoint extensions are strictly positive. In a given(pure quantum state, the probability for obtaining
One expects that the asymptotic distribution of the large? given eigenvalue is determined by the component of the
eigenvalues could be investigated via a suitable generalizgtate in the respective eigenspace in the standard way. Al-
tion of the WKB techniques of Appendix B. We shall, how- though we are here for concreteness using language adapted

ever, not attempt to carry out such an ana|ysis here. to a Copenhagen-type interpretation, a translation into inter-
pretations of the many-worlds type could easily be made.

One can also make a case that our throat variabdke-
picts in a particularly natural way the dynamical aspects of

In this paper we have considered a Hamiltonian theory othe Kruskal manifold. Classically, the wormhole throat be-
spherically symmetric vacuum Einstein gravity undergins life at the white hole singularity, expands to maximum
Kruskal-like boundary conditions. The foliation was chosenradius at the bifurcation two-sphere, and collapses to the
such that the evolution of the spacelike hypersurfaces is froblack hole singularity. The dynamics afis therefore, in a
zen at the left-hand side infinity, but proceeds at unit ratecertain sense, confined to the interior regions of the Kruskal
with respect to the asymptotic Minkowski time at the right- manifold, and these are precisely the regions that do not
hand side infinity. The reduced Hamiltonian theory was writ-admit a timelike Killing vector. From a physical viewpoint,
ten in a set of variables associated with the Einstein-Roseusing a variable with this property is motivated by the fact
wormhole throat; The configuration variable is the radius ofthat an inertial observer at a spacelike infinity sees her exte-
the throat, in a foliation in which the proper time at the throatrior region of the Kruskal manifold as static. Further, our
agrees with the asymptotic right-hand side Minkowski time.foliation made the proper time at the throat increase at the
The classical Hamiltonian is numerically equal to thesame rate as the asymptotic right-hand side Minkowski time:
Schwarzschild mass. by the principle of equivalence, one may see this as the pre-

We quantized the theory by Hamiltonian methods, takingferred condition for relating the experiences of an inertial
the wave functions to be functions of the classical configu-observer at the asymptotic infinity to the experiences of an
ration variable, and including a general power-law weightinertial observer at the throat. We recall, in contrast, that the
factor in the inner product. The classical Hamiltonian wasreduced phase space variables of REI6—38 reflect more
promoted into a self-adjoint Hamiltonian operator. We found
that the spectrum of the Hamiltonian operator is discrete and—
bounded below for all the choices of the weight factor. In the “For example, note that the kinetic term of the Hamiltonian op-
cases where the Hamiltonian operator is essentially selferator H, Eq. (3.2, can be written astu ™ Y2p,a 1upau 22,
adjoint, the spectrum is necessarily positive definite; in thevherep,: gy~ —iu~*2(d/da) u'/?y is a symmetriqbut not self-
remaining cases, self-adjoint extensions with a positive defiadjoiny momentum operator that can be regarded as conjugate to
nite spectrum always exist. In all the cases, a WKB estimatehe position operatoa: ¢+~>ay. We thank Thomas Strobl for this
gave for the large eigenvalues the asymptotic behaviosbservation.

2 2
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closely thestatic aspects of the Kruskal manifold. Yet an- direct Hamiltonian reduction of the geometrodynamical
other set of variables has been discussed in RB&53. theory in the corresponding wormhole-type gauge would
With this physical picture, the properties we obtained forthus only yield our theory in a more limited domain, valid on
the spectrum of the Hamiltonian operator acquire conseeach classical solution in a certain interval around a maxi-
guences of direct physical interest. At the low end of themum ofa.
spectrum, the fact that the Hamiltonian is bounded below Our choice of freezing the evolution of the spacelike hy-
indicates stability: One cannot extract from the system arpersurfaces at the left-hand side infinity was motivated by
infinite amount of energy. At the high end of the spectrum, inthe desire to have a theory that would describe physics ac-
the semiclassical regime of the theory, the discreteness of theessible to observers at just one infinity. For a vanishing
spectrum in accordance with the area quantization(u®  charge and cosmological constant, this motivation can be
yields the macroscopically observable consequences digmplemented at the very beginning by setting up the Hamil-
cussed by Bekenstein and Mukhar{@g]. It should be em-  tonian theory not on the Kruskal manifold, but instead on the
phasized, however, that these arguments operate at a somgp3 geon[54]. To see this, reca[l54] that theRP3 geon is
what formal level, as our theory does not describe how thghe quotient of the Kruskal manifold under a freely acting
quantum black hole would interact with other degrees Ofinyolutive isometry: This isometry consists of a reflection of
freedom, such as departures from spherical symmetry gfe Kryskal diagram about the vertical timelike line through
matter fields. the bifurcation point, followed by the antipodal map on the

On the grounds of classical positive energy theorems, Onﬁvo-sphere. Th&P? geon has thus only one exterior region,

Vn\:ﬁ)éhf?ﬁé mr(z)“l?neg sigt:)(ecri:crje lgf ;ﬁltis?)?z;gtdu?el?er(;cﬁ;ilr?identical to one of the Kruskal exterior regions. Further, the
9 9y 9 P2 geon possesses a distinguisti@? of timelike geode-

system is negative. Among our theories, this would amount. . ) 4
to a restriction on the self-adjoint extension in the cases'°S through the image of the Kruskal bifurcation two-

where the Hamiltonian operator is not essentially self-SPhere: In the Penrose diagraihd], these geodesics go
adjoint. However, given the freedom that we have already?tr@ight up along the "boundary” of the diagram. The exist-
allowed in the choice of the the inner product, it would be aNc€ of the distinguished geodesics reflects the fact that
relatively minor further generalization to add to our Hamil- translations in the Killing time on the Kruskal manifold do
tonian operator the identity operator with some real coeffi-not descend into globally defined isometries of the*
cient, and to take the coefficient as a new parameter in thgeon. Now, Kuchds canonical transformation and Hamil-
guantum theory. The classical limit of the quantum theory tonian reduction generalize readily to tiP* geon[39].
would still be correct, provided the new parameter is underThe reduced action is obtained from E@.3 by setting
stood to be proportional to Planck’s constant. When theN_=0, and the momenturp is now equal to the difference
Hamiltonian operator is not essentially self-adjoint, anyof the Killing times between the distinguished timelike geo-
given self-adjoint extension can then be made positive defidesics and the single spacelike infinity. Settdg=1, we
nite by choosing the new parameter sufficiently large. Noteare led to the actiori2.5). The variablea defined by Eq.
however, that with any fixed value of the new parameter(2.6) is now equal to the curvature radius of the distinguished
there still exist self-adjoint extensions whose ground staté&kP? of timelike geodesics.
energy is arbitrarily negative. The above interpretation of our theory in terms of the
In Sec. I, we obtained the classical Hamiltonian throatRP® geon generalizes immediately to accommodate a nega-
theory by first going from the geometrodynamical Hamil- tive cosmological constant. For a nonvanishing charge, on
tonian variables to Kuchar reduced Hamiltonian theory, the other hand, there exists again an analogous involutive
and then performing a suitable canonical transformation. Thésometry that can be used to quotient the manifold, but the
interpretation of our variable as the radius of the wormhole electric field is invariant under this isometry only up to its
throat was only introduced after the fact, by appealing to aign. This reflects the fact that Gauss'’s theorem prohibits a
particular choice of the spacetime foliation. We took theregular spacelike hypersurface with just one asymptotic in-
same route in the presence of charge and a negative cosmiinity from carrying a nonzero charge. T3 geon inter-
logical constant in Sec. IV. We have not discussed here howretation does therefore not extend to the charged case with a
to derive a throat theory directly from the unreduced geometeonventional implementation of the electromagnetic field.
rodynamical Hamiltonian theory by introducing a gauge and As we have seen, the central input in our classical theory
performing the Hamiltonian reduction, but with the appropri-was to parametrize the geometry in terms of the radius of the
ate gauge choice, the resulting theory should by constructiowormhole throat in a judiciously chosen foliation: Our vari-
be at least locally identical to ours. The only case where onablea is the two-sphere radius on a radial geodesic through
anticipates a difference in the global properties is in the presthe event horizon bifurcation two-sphere, in a foliation such
ence of both a nonvanishing charge and a negative cosmthat the proper time along the distinguished geodesic agrees
logical constant. In this case, we saw in Sec. IV that whilewith the asymptotic Killing time at the right-hand side infin-
our throat theory is valid on each classical solution betweelity. One possible generalization would be to relax the re-
two successive minima @, the wormhole throat interpreta- quirement that the variable “live” in the interior regions of
tion could be maintained for all of this interval only by ap- the manifold, and use instead timelike geodesics that do not
pealing to a foliation that is not everywhere spacelike. Apass through the bifurcation two-sphere. To examine this, let
us for concreteness set the charge and the cosmological con-
stant to zero, and let us generalize the canonical transforma-
SWe thank John Friedman for this observation. tion (2.6) to
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Ipl me[H(R;;)z] ab (5.19 sgr(p)fzm ab (5.6
= : . T= — ———— .
a V2mb 1-[1+(R%)?] ! Zyey2mb1-1

Pa=Sgr(p)2ma—a’[1+(R§)*] (518 \ith ¢ given by Eq.(5.4a.
To quantize this theory, we adopt the inner product
wher(_a RS is a real-valued pgrameter. The tramformaﬂo”(%,%)=f§d§%¢2. We define the Hamiltonian operator
(2.6) is recovered as the special c#@p=0. The ranges of H by spectral analysis as the positive square root of some

the new variables are again>0 and — o< p, <<, but the positive definite self-adjoint extension ofH where
triction forp i <7a[1+(R%)%]®’m. The actionis o . sHo»
restriction forp is now|p| < 1+ (Rg)*J**m. The action is Hsho: =3[ — (d/d&)2+ 2] is the simple harmonic oscillator

given by Eq.(2.7) with the Hamiltonian Hamiltonian operator on the positive half-line. The following

1[p2 a statements aboutls,o can now be verified(i) The self-
H=o| 24 ——]|. (5.2  adjoint extensions are specified by the boundary condition
2[a 1+(Rg) cos(@)y—sin(f)dy/dé=0 at the origin, with the parameter

) ) ] ) satisfying O<6<r; (ii) the spectrum of each self-adjoint
On a classical solution, the variabéeis now equal to the  extension is purely discretéii) the eigenfunctions are para-
two-sphere radius on a radial timelike geodesic whose trajegsg)ic cylinder functiond55], and for6=0 and§= /2 they
tory is given byR* =Rj , whereR* is the Novikov space reduce respectively to the odd and even ordinary harmonic
coordinate in the notation of Reff32]. Foliations that make gscillator wave functions(iv) if €, denotes the eigenvalues,
this interpretation possible clearly exist. Simple examples arqith k ranging over the nonnegative integers, we have for

obtained by deforming the Novikov foliation near the left- 9_o and 9=n/2 the respective exact resulig=2k+ 2 and
hand side infinity as in Sec. Il, to accommodate the boundary, — >k +1 and for other values o the asymptotic large

conditionN_=0, and(for R§ #0) also near the throat, to expansione, ~ 2k+ i+ 7~ cot(O)k Y2+ o(k 1?); (v) the
prohibit the constant hypersurfaces from reaching the sin- ghsence of negative eigenvalues is equivalent to the condi-
gularity before the geodesic B* =Rj . Upon quantization tion that 6 not lie in the interval —27 %2771 T(1/4)]?
along the lines of Sec. Il, we find that the spectrum depends: tan(9)<0. The resulting spectrum fod therefore agrees

on the parameteR; only through an overall factor: If the asymptotically with the area quantization ryte1) for any
eigenvalues are denoted E’;ﬁRS) , wherek ranges over the @ that makesH o positive definite. The numerical constant

nonnegative integers, we have a takes the value 32y. _
As the second example, suppose tpatetains the full

* range— o <p<o, and perform the canonical transformation
B\ = [1+(R§)2)ELD. (53 9P P
A much wider generalization would be to relax the re- _ m? 57

qguirement, which we above motivated by the equivalence n_cosr(pIZm)’ (5.78
principle, that the proper time along the throat trajectory

agree with the asymptotic Killing time. If one allows this

freedom, it is not difficult to come up with examples of fo- pnzsim—(_), (5.7b
liations in which the Hamiltonian takes a mathematically 2

simple form. As an illustration, let us exhibit two examples
in the case of vanishing charge and cosmological constant

As the first example, suppose thats restricted by hand
to have the rangép| <y lmm, wherey is a positive con-
stant. We perform the canonical transformation

where the ranges of the new canonical variablesyared
and —~<p,<w. The Hamiltonian takes the form

H=(7"py+ nH)Y" (5.8
&= \/2/ymcos(% , (5.439
We can identify 2/7 as the two-sphere radius on a radial
p geodesic through the bifurcation two-sphere in a foliation
- inl 2 where the proper time along this geodesic is
Pe \/2/ymsm(2m), (5.4b
. . 2m db
where the ranges of the new canonical variables &r® 7= —sgnp) S (5.9
and —o<p <. The Hamiltonian takes the form ortp 27y2mb -1
H=\3y(pi+&). (5.5  with 5 given by Eq.(5.79.

In the quantum theory we now adopt the inner product
We can identify\2y¢ as the two-sphere radius on a radial (#1,%2) =[5 7~ 'dngy,. The operatorH ey: = —[ 7(d/
geodesic through the bifurcation two-sphere in a foliationd#)]2+ #»? is essentially self-adjoint, its discrete spectrum is
where the proper time along this geodesic is empty, and its essential spectrum consists of the non-
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negativeAhaIf-IinéS. We can therefore define the Hamiltonian related work on throat variables for the Schwarzschild geom-
operatorH by spectral analysis asH(-:-xpt)lm- It follows that  etry[63,64], and to John Friedman and Stephen Winters-Hilt
the spectrum oH is now continuousand consists of the for discussions and collaboration in an early stage of this
non-negative half-line. work. We would also like to thank Andrei Barvinsky, David
These examples suggest that the continuity versus digrown, Valeri Frolov, Gary Horowitz, Ted Jacobson, lan
creteness of the spectrum is related to the question dfogan, Karel KucharGabor Kunstatter, Pawel Mazur, Di-
whether the wormhole throat reaches the initial and final sinego Mazzitelli, Yoav Peleg, Jonathan Simon, Thomas Strobl,
gularities within finite parameter time. There are generaland especially Don Marolf for helpful discussions and com-
grounds to expect this to be the case. A classical theory iments. J.M. is grateful to the DAMTP relativity group for
which the two-sphere radius reaches zero within finite pahospitality during his visit. J.L. was supported in part by
rameter time is singular, in the sense that the classical SolINSF Grant No. PHY91-19726. J.M. was supported by the
tions cannot be continued arbitrarily far into the past andrinnish Cultural Foundation.
future. If one quantizes such a theory so that the classical
Hamiltonian is promoted into a time-independent, self- -
adjoint Hamiltonian operator, then the unitary evolution gen- APPENDIX A: SEMIBOUNDEDNESS OF Hy

erated by the Hamiltonian operator remains well-defined for | this appendix we shall show that every self-adjoint ex-

a_\rb|trﬁrlly_large times. If I(()nefstl?rts_ with an |n|t||al w_avle fur_1c- tension of the Hamiltoniai, Eq. (3.5, is bounded below,
tion that Is a wave packet following some classical trajeC-, g that certain self-adjoint extensions are strictly positive.
tory, the quantum time evolution will force the wave packet

. ) : " ="We shall di tely th es3/2, 1/x<r<3/2,
to be reflected from the classical singularity. The reflection 'Sanz rS =?L/2 ISCUSS separately the cas '

an entirely quantum-mechanical phenomenon, and the quan-

tum dynamics acquires in this sense a quasiperiodic charac-

ter. On the other hand, if the classical solutions require an 1.r=3/2
infinite amount of time to reach the singularity, one generi-
cally expectd41] that in the quantum theory a wave packet
initially following a classical trajectory will just keep follow- . .

: ’ X ; . - overall numerical factory is real valued and has the small
ing this trajectory, with some spreading, for arbitrarily large !

. . . X expansion

times. It is clear that these arguments apply without changé
also in the presence of a negative cosmological constant. In x(X)=xT1+0(x?)]. (Al)
the presence of a nonvanishing charge, an analogous discus-

sion applies with the singularity replaced by the inner hori- " -
PP g y rep y Both y and x' are therefore positive for sufficiently small

zon. : ; .
One may hold mixed feelings about a wormhole throat*- If now E<O0, the eigenvalue equation shows then thét

quantum theory that introduces a quantum-mechanicd/¢reasing for alix>0. This implies thaty cannot be nor-

bounce at a classical singularity or at an inner horizon. ofnalizable, which contradicts the assumption thais an

the one hand, singularities and inner horizons are place&igenfunction. Hence the spectrum is strictly positive.

where the classical theory behaves poorly, and one antici-

pates quantum effects to be important. On the other hand, an 2. 1/r<3/2

outright bounce may appear an uncomfortably orderly quan- . , ~

tum prediction, given thaisemjclassical intuition associates  FOr 1/2<r<3/2, the self-adjoint extensions bk, form a
singularities and inner horizons with collapses and instabilifamily characterized by a boundary conditionxa¢ 0, and
ties. Related discussion, in this and related contexts, can H&rametrized byJ(1). To findthese extensions, we note that
found in Refs.[56—62. While we view the model of the for any E, the differential equatioi,y=Ex has two lin-
present paper as a useful arena where these issues canégsly independent solutions, denoted by(x) and vg(x),
addressed in relatively explicit terms, the model is undoubtwith the asymptotic smak behavior:

edly dynamically too poor to support confident conclusions o 5

about the physical reasonableness of a discrete versus con- Ug(X) =X [1+0(x)], (A23)
tinuous black hole spectrum. It would be substantially more

interesting if our techniques could be generalized to models ve(X)=x""T1+0(x?)]. (A2Db)
containing degrees of freedom that carry Hawking radiation.

For r=3/2, I:|O is essentially self-adjoint. Leg be an
eigenfunction with energy¥. With a suitable choice of the

ACKNOWLEDGMENTS For realE, bothu andv are real valued. Using the tech-

_ _ _ _niques of Ref[41], it is easily shown that the eigenfunctions
We are indebted to John Friedman, Stephen Winters-Hiltgs 54 given self-adjoint extension df, take, up to overall

and lan Redmount for making us aware of their previousnormalization, the form

5These statements follow in a straightforward manner from Chap. Xe=COS O)Ug+sin(O)ve, (A3)

VIII of Ref. [40] after bringingH e, and the inner product to a

standard form by the substitutiop=€’. Note that if we had retained where 6 [0,7) is the parameter specifying the self-adjoint
dimensions, this substitution would need to include a dimensionaéxtension. The conditioA3) can be written without explicit
constant. reference to the solution®\2) as
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d(x""1y) 3.r=1/2

dx | Forr=1/2, the self-adjoint extensions élfo form again a
(A4)  family parametrized by (1). Theboundary condition char-
acterizing the extensions takes the foih3), where 6

We now proceed to obtain a lower bound for the eigenen-<[0.7), but now with

0= Ilim (2[’ — 1)003 G)Xr_lx— Sin( 0)X2(1—r)

x—0

ergies. T, 2
Consider first an extension in the range 6= /2. Com- Ue() =X 1+ 0(x*)], (A73)
paring the eigenvalue differential equation to the correspond- ve(X)=Uug(x)Inx+O(x52). (A7b)

ing equation with the termx?® omitted fromH,, Eq. (3.5),
and the energy set to zero, one sees that the prospecti@ondition(A4) is replaced by
eigenft:nctions \ivitrrEso are bounded below by the function dix-2y)
cos@)X +sin(@)x ', which does not vanish exponentially at ~_ . : X —12
largex. However, as the potential increases without bound aso_)l(lino [cog6) + sin(6)Inx]x dx SICOX k-
X goes to infinity, every eigenfunction must vanish exponen- (A8)
tially at largex. Hence the spectrum is strictly positive.

Consider then an extension in the remaining range For the extension wittf=0, one sees as above that the
ml2< @< . Let xy be an eigenfunction with energg<0.  Spectrum is strictly positive.
Writing y= (—8E/9)%, the eigenfunction equation reads Consider then an extension in the range @<m. Let x

be an eigenfunction with energi<0, and proceed as
42 r(r-1) ( 3y above. EquatiorfA6) is replaced by
+

0=|—ge* 7z *1tlge

2/3
dy }X- (A5)

_gE\| 14
XN(T) yY2({cos ) — sin( 6)[ y+ in(— 2E/9)] Ho(y)

The last term in Eq(A5) is asymptotically small at large

negativeE, uniformly in the intervaly e (0,M ], whereM is —sin(0)Ky(y)), (A9)
an arbitrary positive constant. Omitting this last term gives ] N ] ]
an equation whose linearly independent solutions ardvhereK is the second modified Bessel functii@®] andy is
y1/2|r_(1/2)(y) and y1/2|(1/2)—r(Y), where | is a modified Euler's constant. At large negatig, the term proportional

Bessel functiori65]. Thereforey has at large negative the 10 Y2 o(Y) dominates, and one can argue as above. Hence
asymptotic behavior the spectrum is bounded below.

As in the case 1Rr<3/2, for any given energi there
_ 1 1N —12 exists a self-adjoint extension such tfiats in the spectrum.
X~ (¥12) ot O)T (1 +3)(= 2E/9) ™™ - wa(y) One can thus again find extensions with arbitrarily negative

+sin(0)F(%—r)(—2E/9)(’_1)/2I(1/2)_,(y)], (AB) ground state energy.

uniformly for y e (0,M]. The coefficients of the two Bessel APPENDIX B: LARGE EIGENVALUES OF H,

functions in Eq.(A6) have been fixed by comparing the In this appendix we analyze the asymptotic distribution of
smally expansions of EqgA3) and (A6) [65]. the large eigenvalues of the self-adjoint extensiondgf

By the asymptotic behavior of the Bessel functions atgq. (3.5). The idea is to match a Bessel function approxima-
large argument[65], we can now chooseM so that tion at small argument to a WKB approximation in the re-
Y (12—(y) is positive and increasing for=M/2. For fu-  gion of rapid oscillations. We shall again discuss separately
ture use, we make this choice so tihat>1. Then, the sec- the cases=3/2, 1/2<r<3/2, andr =1/2.
ond term in Eq(A6) dominates the first term at large nega-
tive E, uniformly for M/2<y<M. Therefore there exists a 1. r=3/2
constantE<0, dependent om and ¢, such thaty and
dyx/dy are positive at y=M whenever E<E. As
Ir(r—1)[<1, Eq.(A5) then shows, by virtue of the choice > ;
M>1, thaty diverges at largg whenevelE<E. As y is by tion with energyE>0.

) ) : . Consider first y at small argument. Setting
assumption normalizable, we thus see that the eigenenergies 1 . . .
~ 7= (8E/9)""*x, the eigenfunction equation reads
are bounded below bk.

We begin with the case=3/2, where|:|o is essentially
self-adjoint. We shall throughout denote fyan eigenfunc-

2/3

Note that the lower bound for the eigenenergies is not d> r(r—1) 3z
uniform in ¢. For fixedr and any givenE, there exists a 0=l g2t —F7= 1*tiggez) |© (B1)

unique self-adjoint extension dfi, such thatE is in the

spectrum. This is because the differential equatiorThe last term in Eq(B1) is asymptotically small at large
Hox=Eyx has for anyE a normalizable solution that is E, uniformly in the intervalze (0,ME*?], whereM is an
unigue up to a multiplicative constant, and matching thearbitrary positive constant. Omitting this last term gives
smallx behavior of this solution to EGA3) uniquely speci- an equation whose linearly independent solutions are
fies the value ofg. One can thus find extensions with arbi- 2223, _(12(2) and zY2N,_(1;(2), whereJ and N are the
trarily negative ground state energy. Bessel functions of the first and second kinds, and only the
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former solution is normalizable at small[65]. The asymp- 2. Uxr<3/2

totic largeE behavior of is, therefore, For 1/2<r<3/2, we recall from Appendix A that the self-

(8E) Y2 adjoint extensions ol are specified by the boundary con-
X )(1/2‘]“1/2)[T , (B2) dition (A3) at smallx. Fixing ¢ and proceeding as above, we
see from the small argument behavior of the Bessel functions
[65] that Eq.(B2) is replaced by

valid uniformly in any bounded region ix. Here, and from

now on, we use the symbel to denote the asymptotic form x~(212)Y cog )T (r +3)(2E/9) "2, _ 15(2)

at largeE, up to a possiblye-dependent coefficient. Intro-

ducing two constants$; and &, that satisfy G6<6;< &,, and +sin(O)(3—1)(2E/9) V245 _((2)].  (B8)
using the asymptotic large argument behaviod ¢65], we

can rewrite Eq(B2) as When #=0, the second term in E4B8) vanishes, and we

can proceed as above, with now denoting the larger one of

the two turning points for>1 and the unique turning point

for r<1. The WKB estimate for the large eigenenergies is

again given by Eq(B7). When 6+ 0, on the other hand, the

valid uniformly for §;<x<6,. second term in Eq(B8) dominates the first term at large
Consider then the region of rapid oscillations. We takeE, andr in Eq. (B3) is replaced by *r. The WKB estimate

E so large that the eigenvalue equation has two turningB7) is therefore replaced by

points, and we denote the larger turning point>yy The

X < COo 3 —7

12
- S{(8E) X wr} ©3)

region of rapid oscillations at large s sufficiently far left of Edwa~2k—r—3+0(1). (B9)

Xg but sufficiently far right of the origin. Ay decays expo-

nentially right ofxo, the WKB approximation to the wave  In the special case=5/6, we can verify the accuracy of
function in the region of rapid oscillations isee, for ex- these WKB results rigorously. The eigenfunctions are now
ample, Ref[66]) x=x"8U (- 1E? \J2(x?**-E)), where U is the parabolic

cylinder function that vanishes at large values of its second
X T ..
XWKBZ[pz(X)]l’ZCOﬁ{f °dx’ D,(X')— Z}’ (B4) argument55]. The boundary conditiotA4) reads
X

0=cog §)U(— 1E2,—\2E)— \2sin §)U’ (- 1E?, — 2E),
where (B10)
2 g Or(r—1) 12 where the prime denotes the derivativelbfwith respect to
p2=§ 2E—x""— TaxZ (BS) its second argument. Using Olver’'s asymptotic expansions of

parabolic cylinder functiongRef. [67], formula (9.7), and
The evaluation of the integral in EqB4) is discussed in the discussion of the derivative on p. 15%e find
Appendix C. We find

E2~2k—2/3+ O(E®3) for 6=0, (B11a

~ [BE)"x wE* w 1
Xwkg * €O§———— ——+ ,+O(E")|, (BO) E2~2k+2/3+O(E"*?) for 9=m/2,  (Bllb
valid uniformly for 8;<x<4,. Comparing Eqs(B3) and E2~2k+2/3+ O(E~Y®) for 0+ 9+ /2. (B110

(B6) yields for the large eigenenergies the WKB estimate
This corroborates the WKB resultéB7) and (B9) for
Edwg~2k+r+3+o0(1), (B7)  r=5/6, and gives an improved bound for the error term.
In the special case=1, the theorem in Sec. 7 of Ref.
wherek is a large integer and(1) indicates a term that goes [68] yields the rigorous asymptotic estimate
to zero at largeE.
Note that we have not attempted to control how far the E2~2k+O(InE). (B12)
integerk is from the number of the eigenvalue that EB7)
iS meant to approximate. To obtain a formula that gives ahThe leading order term of E¢B12) also follows from Ref.
approximation to thekth eigenenergy in the limit of large [40], p. 1614] This corroborates the leading order term in
k, one may need to add to the right-hand side of &B¥) our WKB results(B7) and(B9) forr=1
some even integer. Finally, we note in passing that for=5/6, the boundary
As the potential term in the Hamiltonian is smooth with- condition (B10) and Olver’s expansiong7] yield the as-
out oscillations or steplike behavior, and|agp, 2| vanishes ymptotic relation
for large E uniformly in §;<x=<4,, one expects the WKB N )
estimate to the large eigenenergies to be an accurate one. We tan(6) ~ — 3HI(1/3)] +0((—Ep)~%¥ (B13
shall not attempt to investigate the accuracy rigorously for 2B r(—Eg) P 0
generalr, but we shall see below that the accuracy can be
verified by independent means in the special casé/6, for the parameted and the ground state energy, valid in
and, to leading order, also in the special casel. the limit of large negative=,,.
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3.r=1/2 the integral in Eq(C1) by 2E— §;5/E, with the error inS
Forr=1/2, Eq.(B8) is replaced by being of ord.erO(E_‘l). The gecond term under tflle second
square root inC1) is now uniformly of orderO(E™"). As

—la 12 ) L the first square root is of ordéd(E), we can expand the
X~ ( ?) z"({cog 0) —sin(O)[ y+ 3In(2E/9)]}Jo(2) second square root in the Taylor series and truncate the series
after the third term, with the error ifs being of order
+(7/2)sin(0)Ny(2)), (B14)  O(E™Y). In the truncated integrand, the third term is propor-

, ’ tional to b~Y42E—b) %2 which is uniformly of order
where y is Euler's constant as before. For afy the term O(E~%?), and this term can thus be omitted with the conse-

proportional taz'2Jo(2) dominates at large energies, and Eq.quence of making an error of ord&(E~?) in S, We there-
(B3) holds withr=1/2. The WKB estimate for the eigenen- fqre have

ergies is thus given by EqB7) with r=1/2, for anyé.

2E- 54 /E or(r—1)
. s~f db| V2Eb—b?— ———— | +O(E~13).
APPENDIX C: EVALUATION OF THE WKB INTEGRAL a 8b2\2Eb—Db?
In this appendix we outline the evaluation of the integral (C2

in Eq. (B4) at largeE. We shall throughout assume ttais
so large that a classically allowed domain existhich is a
restriction only forr>1), thatx is in the classically allowed
domain, and thak> &§,, where the constanf; was intro-
duced in Appendix B.
Returning to the variablea=x

The integral in Eq(C2) is elementary. The contribution from
the second term turns out to be of or@(E '), and in the
first term the upper limit can be replaced b¥ 2wvith the
consequence of making an error of ord®fE 1). We thus

. obtain
23 of the main text, and

writing b= (x")?3, the integral in the exponent in E(B4) S~1(E—a)2Ea—a?+ iE%arcsifl—al/E)+ i wE?
takes the form
+O(E~1?). (C3)
a or(r—1
s;:f *dbVZEb—Db2/1— m (CY Finally, we restricta to be in the intervabb2®*<a= §3°,
. =

where the constand, was introduced in Appendix B. A

213 large E expansion of Eq(C3) then gives

where ag=Xg "~ is the (largep turning point. At largeE,

ao~2E+O(E ™). [BEa® =E2

We fix a constant 3>0, take E so large that S~- 3 +T+O(E71/2), (C4)
|ag—2E|<853/E, and restricta to be in the interval
5?P<a<2E— 5,/E. We can then replace the upper limit of which leads to Eq(B6).
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