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Area spectrum of the Schwarzschild black hole
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We consider a Hamiltonian theory of spherically symmetric vacuum Einstein gravity under Kruskal-l
boundary conditions in variables associated with the Einstein-Rosen wormhole throat. The configuration
able in the reduced classical theory is the radius of the throat, in a foliation that is frozen at the left-hand
infinity but asymptotically Minkowski at the right-hand side infinity, and such that the proper time at the thr
agrees with the right-hand side Minkowski time. The classical Hamiltonian is numerically equal to
Schwarzschild mass. Within a class of Hamiltonian quantizations, we show that the spectrum of the Ha
tonian operator is discrete and bounded below, and can be made positive definite. The large eigenvalues
asymptotically asA2k, where k is an integer. The resulting area spectrum agrees with that proposed
Bekenstein and others. Analogous results hold in the presence of a negative cosmological constant and e
charge. The classical input that led to the quantum results is discussed.@S0556-2821~96!04720-0#

PACS number~s!: 04.60.Ds, 04.20.Fy, 04.60.Kz, 04.70.Dy
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I. INTRODUCTION

One of the most intriguing problems in black hole the
modynamics is the statistical mechanical interpretation
black hole entropy. One surmises that black hole entro
should reflect an outside observer’s ignorance about
quantum-mechanical microstates of the hole, but it h
proved very difficult to characterize what exactly the
quantum-mechanical microstates might be. There are h
that the relevant degrees of freedom may live on the horiz
of the hole @1–4#, in situations where the horizon can b
meaningfully defined. There is also evidence that black h
entropy describes the entanglement between the degree
freedom in the interior and in the exterior of the hole@5–8#.
Recent results from string theory@9# suggest that black hole
entropy can be recovered by counting the quantum m
crostates even in situations where the definition of the
states presupposes no black hole geometry. For reviews
Refs.@9–11#.

Even prior to Hawking’s prediction of black hole radia
tion @12#, the anticipated connection between black holes a
thermodynamics led Bekenstein@13# to propose that the ho-
rizon area of a black hole is quantized in integer multiples
a fundamental scale, presumably of the order of the squar
the Planck lengthlPlanck5A\Gc23:

A5aklPlanck
2 , ~1.1!

wherek ranges over the positive integers anda is a pure
number of order 1. This proposal has since been revived
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various grounds; see Refs.@14–31#, and references therein.
Although the horizon of a~classical! black hole is a nonlocal
object, its total area is completely determined by the irredu
ible mass@32#, and one can therefore alternatively view th
rule ~1.1! as a proposal for the spectrum of the quantu
irreducible mass operator.1 As the irreducible mass can clas-
sically be read off from the asymptotic falloff of the black
hole gravitational field, one expects such an operator to
sensibly definable even in a quantum theory that only refe
to observations made at an asymptotically flat infinity. I
particular, for a Schwarzschild hole, the irreducible mass c
incides with the Schwarzschild mass.

The implications of the area spectrum~1.1! for macro-
scopic physics were recently elaborated on by Bekenste
and Mukhanov@26#. Consider, for concreteness, a Schwarz
schild hole. The area is given in terms of the Schwarzsch
massM by

A516pS lPlanckmPlanck
D 2M2, ~1.2!

wheremPlanck5A\cG21 is the Planck mass. Now, Eqs.~1.1!
and ~1.2! imply thatM can only take discrete values. When
the black hole evaporates, it can thus only make transitio
between the mass eigenstates corresponding to these disc
values. As a consequence, the radiation comes out in m
tiples of a fundamental frequency, which is of the same ord
as the maximum of Hawking’s blackbody spectrum, and th
corresponding wavelength is of the order of the Schwar
schild radius of the hole. This means that the radiation w
differ from the blackbody spectrum in a way that is, in prin

of
1We thank John Friedman and Pawel Mazur for emphasizing th

to us.
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ciple, macroscopically observable. For example, ifM is of
the order of ten solar masses, or 231031 kg, then the funda-
mental frequency is of the order of 0.1 kHz, which is rough
the resolving power of an ordinary portable radio receiv
The discussion can also be generalized to accommoda
nonvanishing angular momentum@13#.

Arguments presented in favor of the area spectrum~1.1!
include quantizing the angular momentum of a rotating bla
hole@13#, information theoretic considerations@14,18,19,26#,
string theoretic arguments@15,16#, periodicity of Euclidean
or Lorentzian time@15,17,27,29–31#, a treatment of the
event horizon as a membrane with certain quantum mech
cal properties@22,24#, and a Hamiltonian quantization of a
dust collapse@25#. Recently, a membrane model for the ho
rizon @33# recovered an area spectrum that is finer than E
~1.1!, and a calculation within a loop representation of qua
tum gravity@34# recovered an area spectrum that effective
reproduces the Planckian spectrum for black hole radiati
The purpose of the present paper is to give a derivation
~effectively! the spectrum~1.1! from a Hamiltonian quantum
theory of spherically symmetric Einstein gravity, with jud
ciously chosen dynamical degrees of freedom.

By Birkhoff’s theorem@35#, the local properties of spheri
cally symmetric vacuum Einstein geometries are complet
characterized by a single parameter, the Schwarzschild m
In a classical Hamiltonian theory of such spacetimes, the t
dynamical degrees of freedom are thus expected to con
information only about the Schwarzschild mass and the e
bedding of the spacelike hypersurfaces in the spacetime
was demonstrated in Refs.@36–39# that this is indeed the
case, under certain types of boundary conditions that spe
the ~possibly asymptotic! embedding of the ends of the
spacelike hypersurfaces in the spacetime. The variable
the reduced theory then consist of a single canonical p
The coordinate can be taken to be the Schwarzschild m
and its conjugate momentum carries the information ab
the evolution of the~asymptotic! ends of the spacelike hy-
persurfaces in the spacetime. The theory is thus no long
field theory, but a theory of finitely many degrees of fre
dom. This means, in particular, that quantization of t
theory can be addressed within ordinary, finite-dimensio
quantum mechanics.

Our Hamiltonian theory of spherically symmetric vacuu
spacetimes will be built on two major assumptions. First, w
shall adopt for the spacetime foliation the boundary con
tions of Ref. @38#. This implies that the classical solution
have a positive value of the Schwarzschild mass, and that
spacelike hypersurfaces extend on the Kruskal manif
from the left-hand side spacelike infinity to the right-han
side spacelike infinity, crossing the horizons in arbitra
ways. We shall, however, specialize to the case where
evolution of the hypersurfaces at the left-hand side infinity
frozen, and the evolution at the right-hand side infinity pr
ceeds at unit rate with respect to the right-hand side asym
totic Minkowski time. This means that, apart from con
straints, the Hamiltonian will consist of a contribution from
the right-hand side infinity only, and the value of the Ham
tonian is equal to the Schwarzschild mass. The physical r
son for this choice is that while our theory will remain that o
vacuum spacetimes, we expect these conditions to co
spond to physics accessible to an inertial observer at
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spacelike infinity, at rest with respect to the hole: The prop
time of such an observer is our asymptotic Minkowski time
and the Arnowitt-Deser-Misner~ADM ! mass observed is the
Schwarzschild mass.

Second, we shall adopt as our reduced dynamical va
ables a canonical pair that is intimately related to the d
namical aspects of the Kruskal manifold. Our configuratio
variablea can be envisaged as the radius of the Einstei
Rosen wormhole throat@32#, in a spacetime foliation in
which the proper time at the throat increases at the same r
as the asymptotic Minkowski time at the right-hand side in
finity. An example of a foliation satisfying these conditions
can be constructed by taking the Novikov coordinates@32#
and deforming them near the left-hand side infinity to con
form to our boundary conditions there.

The resulting classical theory has two properties who
physical interest should be emphasized. First, every classi
solution is bounded, in the sense that the variablea starts
from zero, increases to the maximum value 2M , whereM is
the Schwarzschild mass, and then collapses back to ze
This evolution corresponds to the wormhole throat startin
from the white hole singularity, expanding to the bifurcatio
two-sphere, and then collapsing to the black hole singulari
The spacetime dynamics in these variables is therefore, in
certain sense, confined to the interior regions of the Krusk
manifold. This property reflects the physics observed by a
inertial observer at asymptotic infinity, as such an observ
sees her exterior region of the Kruskal manifold as stati
Second, as the proper time on the timelike geodesics th
form the throat trajectory increases at the same rate as
asymptotic right-hand side Minkowski time, one may regar
our foliation as a preferred one, by the principle of equiva
lence, for relating the experiences of an inertial observer
the asymptotic infinity to the experiences of an inertial ob
server at the throat. Note, however, that as the total prop
time from the initial singularity to the final singularity along
the throat trajectory is finite, our choice of the foliation im
plies that the throat reaches the white and black hole sing
larities at finite values of the asymptotic right-hand sid
Minkowski time. As the asymptotic right-hand side
Minkowski time evolves at unit rate with respect to our pa
rameter time, this means that the classical theory is inco
plete: The classical solutions cannot be extended to ar
trarily large values of the parameter time, neither to the pa
nor to the future.

We quantize the theory by Hamiltonian methods, treatin
a as a configuration variable, specifying a class of ‘‘reaso
able’’ inner products, and promoting the classical Hami
tonian into a self-adjoint Hamiltonian operator. For certai
choices of the inner product the Hamiltonian operator turn
out to be essentially self-adjoint, whereas in the remainin
cases the class of self-adjoint extensions is parametrized
U~1! and associated with a boundary condition ata50. We
find that the spectrum of the Hamiltonian is discrete an
bounded below in all the cases. When the Hamiltonian
essentially self-adjoint, the spectrum is strictly positive, an
in the remaining cases there always exist self-adjoint exte
sions for which the spectrum is strictly positive. A WKB
estimate for the large eigenvalues of the Hamiltonian yield
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via Eq. ~1.2!, the result that the large area eigenvalues a
asymptotically given by2

A;32pklPlanck
2 1const1o~1!, ~1.3!

wherek is an integer ando(1) denotes a term that vanishe
asymptotically at largeA. The additive constant depends o
the choice of the inner product and, when the Hamiltonian
not essentially self-adjoint, also on the choice of the se
adjoint extension. With two particular choices for the inn
product, we can verify~and improve on! the accuracy of this
WKB result rigorously; with another two particular choices
we can rigorously verify the accuracy of the leading ord
term. We can, therefore, view our theory as producing, fro
a Hamiltonian quantum theory constructed from first pri
ciples, the area spectrum~1.1! with a532p.

We shall argue that the discreteness of the quantum sp
trum is related to the classical incompleteness of the theo
As the variablea classically reaches the singularity ata50
within finite parameter time, both in the past and in the f
ture, the classical theory can be thought of as particle mot
on the positive half-line in a confining potential. Whenev
the self-adjoint Hamiltonian operator is constructed so th
the possible ‘‘quantum potential’’ part does not become s
nificant, general theorems guarantee that the spectrum of
Hamiltonian will be discrete@40,41#. In physical terms, wave
packets following classical trajectories will be reflecte
quantum mechanically from the origin, and the quantum d
namics will in this sense have a quasiperiodic character.
contrast, if the spacetime foliation were chosen so that
would take an infinite amount of parameter time for the va
ablea to reach the singularity, the classical theory could
thought of as particle motion on the full real line in a poten
tial that is confining on the right but not on the left. In suc
potentials, the spectrum of a self-adjoint Hamiltonian ope
tor generically has a continuous part, corresponding phy
cally to the fact that wave packets can travel arbitrarily far
the left without being reflected. We shall present a simp
example of each of these two types of foliation, handpick
so that the Hamiltonian operator becomes easily tractab
From the first example we can reproduce the area spect
~1.1! with an arbitrary value of the constanta; in the second
example, the spectrum of the Hamiltonian operator will b
continuous and consist of the full non-negative half-line.

In addition to the above results for the vacuum theory, w
shall also briefly investigate the inclusion of a fixed electr
charge and a negative cosmological constant. With the an
gous choices for the boundary conditions, the phase sp
coordinates, and the Hamiltonian quantum theory, we ag
show that the spectrum of the Hamiltonian operator is d
crete and bounded below. The distribution of the large eige
values could presumably be analyzed by a suitable gene
zation of our vacuum techniques; however, we shall n
pursue this issue here.

The rest of the paper is as follows. In Sec. II we derive t
reduced Hamiltonian theory in our phase space variab
starting from Kucharˇ’s reduced phase space variables@38#

2We shall use the symbol; to denote an asymptotic expansio
throughout the paper.
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and performing the appropriate canonical transformatio
The theory is quantized in Sec. III, with considerable parts
the technical analysis deferred to three appendixes. In S
IV we discuss the inclusion of the electric charge and a neg
tive cosmological constant. Section V contains a brief sum
mary and a discussion.

For the remainder of this paper we shall work in natur
units\5c5G51.

II. CLASSICAL WORMHOLE THROAT THEORY

In this section we present a classical Hamiltonian theo
of the Schwarzschild black hole in terms of reduced pha
space variables that are associated with a wormhole throa
a sense to be made more precise below. We first brie
recall, in Sec. II A, Kucharˇ’s Hamiltonian reduction of
spherically symmetric vacuum geometries@38#. In Sec. II B
we derive the throat theory from Kucharˇ’s reduced theory via
a suitable canonical transformation.

A. Kuchař reduction

We start from the general spherically symmetri
Arnowitt-Deser-Misner~ADM ! line element

ds252N2dt21L2~dr1Nrdt!21R2dV2, ~2.1!

where dV2 is the metric on the unit two-sphere, andN,
Nr , L, andR are functions oft and r only. We adopt the
falloff conditions of Ref.@38#. These conditions render the
spacetime asymptotically flat both atr→` andr→2`, and
they makeur u coincide asymptotically with the spacelike ra
dial proper distance coordinate in Minkowski space. Ea
classical solution consists of some portion of the Krusk
manifold @32#, such that the constantt hypersurfaces extend
from the left-hand side spacelike infinity to the right-han
side spacelike infinity, crossing the horizons in arbitrar
ways. In particular, the Schwarzschild mass is positive f
every classical solution. The falloff conditions also guarant
that the four-momentum at the infinities has no spatial com
ponent: The black hole is at rest with respect to the left a
right asymptotic Minkowski frames.

We fix the asymptotic values ofN at r→6` to be pre-
scribed t-dependent quantities, denoted byN6(t). The
Hamiltonian form of the Einstein action, with appropriat
boundary terms, reads then

S5E dtE
2`

`

dr~PLL̇1PRṘ2NH2NrHr !

2E dt~N1M11N2M2!, ~2.2!

whereH and Hr are, respectively, the super-Hamiltonian
constraint and the radial supermomentum constraint. T
quantitiesM6(t) are determined by the asymptotic falloff o
the configuration variables, and on a classical solution th
both are equal to the Schwarzschild mass. We refer to R
@38# for the details. Note that when varying the action~2.2!,
N6(t) are considered fixed.

n
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Through a judiciously chosen canonical transformatio
followed by elimination of the constraints by Hamiltonia
reduction, Kucharˇ @38# brings the action~2.2! to the uncon-
strained Hamiltonian form

S5E dt@pṁ2~N11N2!m#, ~2.3!

where the independent variablesm andp are functions oft
only. The degrees of freedom constitute thus the single
nonical pair (m,p): The theory is no longer that of fields, bu
that of finitely many degrees of freedom. The variables ta
the valuesm.0 and2`,p,`, and their equations of mo-
tion are

ṁ50, ~2.4a!

ṗ52N12N2. ~2.4b!

For our purposes, it will not be necessary to recall t
details of the derivation of the action~2.3!, but what will be
important is the interpretation of the reduced theory in term
of the spacetime geometry. On each classical solution,
time-independent value ofm is simply the value of the
Schwarzschild mass. By Birkhoff’s theorem,m thus carries
all the information about the local geometry of the classic
solutions. The variablep, on the other hand, is equal to th
difference of the asymptotic Killing times between the le
and right infinities on a constantt hypersurface, in the con-
vention where the Killing time at the right~left! infinity in-
creases towards the future~past!. The two terms in the evo-
lution equation ~2.4b! arise, respectively, from the two
infinities. Thus,p contains no information about the loca
geometry, but instead it carries the information about t
anchoring of the spacelike hypersurfaces at the two infiniti
Note thatp, as the difference of the asymptotic Killing times
is invariant under the global isometries that correspond
translations in the Killing time.

B. Hamiltonian throat theory

We shall now make two restrictions on the reduced theo
~2.3!. First, we specialize toN151 andN250. This means
that the parameter timet coincides with the asymptotic right-
hand side Minkowski time, up to an additive constan
whereas at the left-hand side infinity the hypersurfaces
main frozen at the same value of the asymptotic Minkows
time for all t. The action reads then

S5E dt~pṁ2m!. ~2.5!

The fact that the Hamiltonian now equals simplym repro-
duces the familiar identification of the Schwarzschild ma
as the ADM energy, from the viewpoint of asymptoti
Minkowski time evolution atoneasymptotically flat infinity.
Our choice as to which of the two infinities has been taken
evolve is of course merely a convention, but the choice
completely freezing the evolution at the other infinity arise
from the requirement that our theory describe physics acc
sible to observers at just one infinity. We shall return to th
issue in Sec. V.
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Second, for reasons that will become transparent below
we confine the variables by hand to the rangeupu,pm. This
means that in each classical solution, the asymptotic righ
hand side Minkowski time only takes values within an inter-
val of length 2pm, centered around a value that is diago-
nally opposite to the nonevolving left end of the
hypersurfaces in the Kruskal diagram. In terms of the param
eter timet, each classical solution is then defined only for an
interval2pm,t2t0,pm, wheret5t0 is the hypersurface
whose two asymptotic ends are diagonally opposite.

Consider now the transformation from the pair (m,p) to
the new pair (a,pa) defined by the equations

upu5E
a

2m db

A2mb2121

5A2ma2a21marcsin~12a/m!1 1
2pm, ~2.6a!

pa5sgn~p!A2ma2a2. ~2.6b!

The ranges of the variables area.0 and2`,pa,`. The
transformation is well defined, one to one, and canonica
The new action reads

S5E dt~paȧ2H !, ~2.7!

where the Hamiltonian is given by

H5
1

2 S pa2a 1aD . ~2.8!

The classical solutions are easily written out in the new vari
ables. The value ofH on a classical solution is justm, and by
writing the canonical momentumpa in Eq. ~2.8! in terms of
a and ȧ, one recovers the equation of motion fora in the
form

ȧ25
2m

a
21. ~2.9!

Hence the configuration variablea starts from zero at
t5t02pm, reaches the maximum value 2m at t5t0, and
collapses back to zero att5t01pm.

The interest in the variables (a,pa) is that they have an
appealing geometrical interpretation in terms of the dynam
ics of a wormhole throat in the black hole spacetime. To se
this, we recall that the derivation of the reduced action~2.3!
from the original geometrodynamical action~2.2! in Ref.
@38# relied on the properties of the spacelike hypersurface
only through their asymptotic behavior, but otherwise left
these hypersurfaces completely arbitrary. We can thus exe
cise this freedom and seek an interpretation of the variable
(a,pa) in terms of a suitably chosen foliation.

The crucial observation is now that Eq.~2.9! is identical
to the equation of a radial timelike geodesic through the
bifurcation two-sphere of a Kruskal manifold of massm,
providedone identifiesa as the curvature radius of the two-
sphere and the overdot as the proper time derivative. This
easily seen, for example, from the expression of the interio
Schwarzschild metric in the Schwarzschild coordinates. Wit



all

y

m
-
ime

s

t
l-
d
he

d
tic
,
M
-

ed

c
o

rt

-
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these identifications, Eqs.~2.6! show that2p becomes iden-
tified with the proper time elapsed along this geodesic fro
the bifurcation two-sphere, with positive~negative! values of
2p yielding the part of the geodesic that is in the blac
~white! hole interior. Thus, if there exists a foliation consis
tent with the falloff conditions of Ref.@38#, intersecting a
timelike geodesic through the bifurcation two-sphere so th
2p agrees with the proper time on the geodesic in this fas
ion, then the quantitya defined by Eq.~2.6a! is the two-
sphere radius along this geodesic.

It is easy to see that foliations of this kind do exist. Let u
briefly discuss an example that is closely related to the N
vikov coordinates@32#. Recall that the geometric idea behin
the Novikov coordinates consists of fixing a spacelike hype
surface of constant Killing time through the Kruskal man
fold, and releasing from this hypersurface a family of free
falling test particles with a vanishing initial three-velocity in
the Schwarzschild coordinates. The coordinates (t,R* ) are
then defined so that they follow these test particles: The t
jectories are the lines of constantR* , and on each trajectory
t is equal to the proper time. The initial hypersurface
t50, with R*.0 and R*,0 giving, respectively, the
halves living in the right and left exterior regions. Now, t
arrive at a foliation satisfying our requirements, we first d
form the Novikov coordinates near the left-hand side infini
to accommodate the conditionN250, and we then redefine
R* near the infinities in at-independent fashion so as to
conform to the radial falloff assumed in Ref.@38# ~the right-
hand side infinity will then have, in the notation of Ref.@38#,
a falloff with e51). The distinguished geodesic through th
bifurcation two-sphere is given byR*50, and the coordi-
natet agrees by construction both with the proper time alo
this geodesic and with the asymptotic Minkowski time at th
right-hand side infinity.

Our interpretation ofa gives now a geometrical reason fo
the restriction upu,pm, which we above introduced by
hand. As a radial timelike geodesic from the initial singula
ity to the final singularity through the bifurcation two-spher
has the finite total proper time 2pm, foliations satisfying our
conditions do not cover all of the spacetime. The foliatio
only exist for the duration of 2pm in the asymptotic right-
hand side Minkowski time.3

We summarize. Fix a radial timelike geodesic through t
bifurcation two-sphere, and choose any foliation, consist
with our falloff conditions, such that the proper time alon
the geodesic and the asymptotic right-hand side Minkow
time agree on the constantt hypersurfaces. Then, the vari
able a equals the radius of the two-sphere on the disti
guished geodesic. In particular, if the foliation is chosen
that on each constantt hypersurface the radius of the two
sphere attains its minimum value on the distinguished ge
desic, then this geodesic and the ones obtained from it
spherical symmetry form the trajectory of the Einstein-Ros
wormhole throat. This is the case for example in foliation
obtained by deforming the Novikov coordinates near the le

3Note that although the Novikov coordinates (t,R* ) are globally
well defined on the Kruskal manifold, the hypersurfaces of const
t extend from one infinity to the other only forutu,pm. For larger
values ofutu, these hypersurfaces hit a singularity.
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hand side infinity in the manner discussed above. We sh
therefore, with a minor abuse of terminology, refer toa as
the radius of the wormhole throat, and to the theory given b
Eqs.~2.7! and ~2.8! as the Hamiltonian throat theory.

It is important to note that the configuration variablea is
bounded on each classical trajectory, reaching the maximu
value 2m as the wormhole throat crosses the bifurcation two
sphere. This means, in a certain sense, that the spacet
dynamics in terms of our configuration variablea is confined
‘‘inside’’ the hole. This is physically appealing from the
viewpoint of an observer at infinity: Such an observer see
the exterior region of the spacetime as static.

III. THROAT QUANTIZATION

In this section we shall quantize the Hamiltonian throa
theory of Sec. II. We saw above that the classical Hami
tonian is numerically equal to the Schwarzschild mass, an
that this Hamiltonian arises as the energy with respect to t
Minkowski time evolution at one asymptotically flat infinity.
The quantum Hamiltonian operator can therefore be viewe
as the energy operator with respect to an asympto
Minkowski frame in which the hole is at rest. In particular
the spectrum of the Hamiltonian operator becomes the AD
mass spectrum of the hole. Our main aim will be a qualita
tive analysis of this spectrum.

We take the states of the quantum theory to be describ
by functions of the configuration variablea. The Hilbert
space isH:5L2(R1;mda), with the inner product

~c1 ,c2!5E
0

`

mdac1c2, ~3.1!

wherem(a) is some smooth positive weight function. To
obtain the Hamiltonian operatorĤ, we make in the classical
Hamiltonian~2.8! the substitutionpa→2 id/(da) and adopt
a symmetric ordering with respect to the inner product~3.1!.
The result is

Ĥ5
1

2 F2
1

m

d

daS m

a

d

daD1aG . ~3.2!

For technical reasons, it will be useful to work with an
isomorphic theory in which the inner product and the kineti
term of the Hamiltonian take a more conventional form. T
achieve this, we writea5x2/3, m5 3

2x
1/3n2, and c5n21x.

The theory above is then mapped to the theory whose Hilbe
space isH0:5L2(R1;dx), with the inner product

~x1 ,x2!05E
0

`

dxx1x2. ~3.3!

The new Hamiltonian operator is

Ĥ05
9

8 F2
d2

dx2
1
4x2/3

9
1

n9

n G , ~3.4!

where 85d/dx. By construction,Ĥ0 is a symmetric operator
in H0. Note that if we had retained dimensions, the ‘‘quan
tum potential’’ term9

8n9/n would be proportional to\2.

ant
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To completely specify the quantum theory, we need
make Ĥ0 into a self-adjoint operator onH0. The possible
ways of doing this depend on the quantum potential term9

8

n9/n. For concreteness, we shall from now on takem5as,
wheres is a real parameter. The qualitative results woul
however, be analogous for any sufficiently similarm with a
power-law asymptotic behavior ata→0 anda→`.

With m5as, Ĥ0 takes the form

Ĥ05
9

8 F2
d2

dx2
1
4x2/3

9
1
r ~r21!

x2 G , ~3.5!

where

r5~2s21!/6 for s>2, ~3.6a!

r5~722s!/6 for s,2 . ~3.6b!

We could have replaced Eq.~3.6! by ~say! Eq. ~3.6a! for all
s, with Eq. ~3.5! still holding. However, as Eq.~3.5! is in-
variant underr→12r , it will be sufficient to analyzeĤ0 for
r>1/2; this range forr is recovered through the definition
Eq. ~3.6!.

It is easy to see thatĤ0 has self-adjoint extensions for any
r . In the terminology of Ref.@41#, infinity is a limit point
case, whereas zero is a limit point case forr>3/2 and limit
circle case otherwise~Ref. @41#, theorems X.8 and X.10, and
problem 7!. For r>3/2, Ĥ0 is therefore essentially self-
adjoint. For 1/2<r,3/2, on the other hand, the self-adjoin
extensions ofĤ0 are characterized by a boundary conditio
at zero and parametrized byU(1).

We now wish to extract qualitative information about th
spectrum of the self-adjoint extensions ofĤ0.

A first observation is that the essential spectrum of eve
self-adjoint extension ofĤ0 is empty ~Ref. @40#, theorems
XIII.7.4, XIII.7.16, and XIII.7.17!. This means that the spec
trum is discrete: The spectrum consists of eigenvalues co
sponding to genuine, normalizable eigenstates, and the
genvalues have disjoint neighborhoods.

Second, we shall show in Appendix A that every se
adjoint extension ofĤ0 is bounded below: The system has
ground state. Forr>3/2, the ground state energy is alway
positive. For 1/2<r,3/2, the ground state energy depend
on the self-adjoint extension, and the situation is more v
satile. On the one hand, there is a certain~open! set among
the self-adjoint extensions within which the ground state e
ergy is positive. On the other hand, there exist extensio
whose ground state energy is arbitrarily negative.

Third, we shall show in Appendix B that a WKB analysi
yields for the squares of the large eigenenergies the asy
totic estimate

EWKB
2 ;2k1const1o~1!, ~3.7!

wherek is an integer ando(1) denotes a term that vanishe
asymptotically at largeE. The constant depends onr and, for
1/2,r,3/2, also on the self-adjoint extension, in a way di
cussed in Appendix B. We shall also be able to rigorous
verify the accuracy of this WKB result in the special cas
r55/6, and the accuracy of its leading order term in th
special caser51.
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These properties of the spectrum have consequences
direct physical interest. At the low end of the spectrum, th
fact that the Hamiltonian is bounded below indicates stab
ity: One cannot extract from the system an infinite amount
energy. At the high end of the spectrum, the asymptotic d
tribution of the large eigenenergies yields for the black ho
area the eigenvalues~1.3!: This agrees with Bekenstein’s
area spectrum~1.1!, with a532p. We shall discuss the
physical implications of these results further in Sec. V.

IV. THROAT THEORY WITH CHARGE
AND A NEGATIVE COSMOLOGICAL CONSTANT

In this section we shall outline how the throat theory ca
be generalized to accommodate electric charge and a ne
tive cosmological constant. The classical black hole sol
tions are in this case given~locally! by the Reissner–
Nordström–anti-de Sitter metric@35#

ds252S 12
2M

R
1
Q2

R2 1
R2

l 2DdT2
1

dR2

122M /R1Q2/R21R2/l 21R2dV2, ~4.1a!

with the electromagnetic potential one-form

A5
Q

R
dT. ~4.1b!

The parametersM andQ are referred to as the mass and th
~electric! charge, and the cosmological constant has be
written in terms of the positive parameterl as23l 22. For
the global structure of the spacetime, see Refs.@42,43#. We
shall understand the case of a vanishing cosmological c
stant as the limitl →`, and in this case the above solution
reduces to the Reissner-Nordstro¨m solution.

The Hamiltonian structure of the spherically symmetri
Einstein-Maxwell system with a cosmological constant wa
analyzed by a technique related to Ashtekar’s variables
Refs.@44,45#. An analysis via a Kucharˇ-type canonical trans-
formation and Hamiltonian reduction, both with and withou
a negative cosmological constant, was given in Ref.@46#.
Although the focus of Ref.@46# was on thermodynamically
motivated boundary conditions, which confine the consta
t hypersurfaces to one exterior region of the spacetime,
discussion therein generalizes without essential difficulty
boundary conditions that allow the constantt hypersurfaces
to extend from a left-hand side spacelike infinity to the co
responding right-hand side spacelike infinity, crossing th
event horizons in arbitrary ways but crossing no inner ho
zons. The new technical issues arise mainly from the fa
that with a negative cosmological constant, the left and rig
infinities are asymptotically anti–de Sitter rather than asym
totically flat. The new physical issues arise mainly in th
choice of the electromagnetic boundary conditions at the
finities.

We shall here concentrate on the theory where the elec
charge is fixed at the infinities. In the reduced theory, th
charge then becomes an entirely nondynamical, external
rameter, which we denote byq. On a classical solution,q is
equal toQ in Eq. ~4.1!.
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The action of the reduced theory takes the form~2.3!. On
the classical solutions,m is equal to the mass parameterM
of Eq. ~4.1a!. The canonical conjugatep again equals the
difference in the asymptotic Killing times between the le
and right ends of a constantt hypersurface. The range o
m ism.mcrit , where the critical valuemcrit(q,l ) is positive
for qÞ0 and vanishes forq50: This restriction arises from
the requirement that the classical solutions have a nonde
erate event horizon@42,43,46#. The range of p is
2`,p,`. The quantitiesN6 determine the evolution of
the ends of the hypersurface in the asymptotic Killing tim
For l →`, N6 are simply the asymptotic values of th
lapse, whereas for 0,l ,` they are related to the lapse b
a factor that diverges at the infinities. Note that in the spe
case ofq50 and 0,l ,`, we get a theory of vacuum
spacetimes with a negative cosmological constant.

Mimicking Sec. II, we freeze the evolution of the hype
surfaces at the left-hand side infinity by settingN250, and
fix the evolution at the right-hand side infinity to proceed
unit rate with respect to the Killing time by settingN151.
The action is given by Eq.~2.5!. The value of the Hamil-
tonian on a classical solution is then equal to the mass
rameter. Forl →` this reproduces the identification of th
mass as the ADM energy from the viewpoint of asympto
Minkowski time evolution at one infinity, just as in the un
charged case in Sec. II. For 0,l ,`, we similarly recover
the interpretation of the mass parameter as the ADM-ty
energy from the viewpoint of asymptotic anti–de Sitter Ki
ing time evolution at one infinity.

In analogy with Eq.~2.6!, we introduce the new variable
(a,pa) via the transformation

upu5E
a

a1 db

A2mb21212q2b222b2l 22
, ~4.2a!

pa5sgn~p!A2ma2a22q22a4l 22, ~4.2b!

wherea1(m,q,l ) is the unique positive zero of the right
hand side in Eq.~4.2b! for q50, and the larger of the two
positive zeros forqÞ0. On a classical solution,a1 is the
radius of the event horizon. To make this transformation w
defined, we again need to restrict by hand the range ofp. For
q50, the upper limit forupu is obtained from Eq.~4.2a! with
a50. ForqÞ0, the upper limit forupu is obtained from Eq.
~4.2a! with a5a2 , wherea2(m,q,l ) is the smaller of the
two positive zeros of the right-hand side in Eq.~4.2b!. On a
classical solution,a2 is the radius of the inner horizon.

With this restriction on the range ofp, the transformation
~4.2! is well defined, one to one, and canonical. The n
action is given by Eq.~2.7! with the Hamiltonian

H5
1

2 S pa2a 1a1
q2

a
1
a3

l 2D , ~4.3!

and the value of this Hamiltonian on a classical solution
just the mass.

As in Sec. II, the theory has an interpretation in terms
a wormhole throat. If there exists a foliation with the appr
priate falloff conditions@46#, intersecting a timelike geodesi
through the event horizon bifurcation two-sphere so t
2p coincides with the proper time from the bifurcation two
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sphere along this geodesic, then the quantitya defined by
Eq. ~4.2a! is the two-sphere radius on this geodesic. If th
foliation is chosen suitably symmetric near the specified ge
desic, we can think ofa as the radius of the wormhole throat
We shall now examine the existence of such foliations f
the different values of the parametersq and l .

For q50 and 0,l ,`, the classical solution is the
Schwarzschild-anti–de Sitter hole. The Penrose diagram d
fers from that of the Kruskal manifold only in that the as
ymptotically flat infinities are replaced by asymptotically
anti–de Sitter infinities, represented by vertical lines@42,43#.
Foliations of the desired kind clearly exist: The timelike geo
desic starts at the initial singularity witha50, reaches the
maximum value ofa at the bifurcation two-sphere, and end
at the final singularity witha50. The situation is thus quali-
tatively very similar to that with the Schwarzschild hole.

For qÞ0 and l →`, the classical solution is the
Reissner-Nordstro¨m hole withm.uqu. The Penrose diagram
can be found in Refs.@32,47#. Our Kucharˇ-type Hamiltonian
formulation is valid for the part of the spacetime that consis
of one pair of spacelike-separated left and right asympto
cally flat regions and the connecting region that is bound
in the past and future by the Cauchy horizons. The solutio
to the equations of motion obtained from the Hamiltonia
~4.3! are periodic oscillations in the intervala2<a<a1 ,
but our derivation of this Hamiltonian is only valid on eac
solution between two successive minima ofa. Now, it is
clear that foliations of the desired kind exist: The timelik
geodesic starts witha5a2 at the past Cauchy horizon bifur-
cation two-sphere, reachesa5a1 at the event horizon bifur-
cation two-sphere, and ends witha5a2 at the future Cauchy
horizon bifurcation two-sphere.

Finally, for qÞ0 and 0,l ,`, the classical solution is
the Reissner-Nordstro¨m-anti–de Sitter hole, withm so large
that a nondegenerate event horizon exists. The Penrose
gram is obtained from that of the Reissner-Nordstro¨m hole
by replacing the asymptotically flat infinities by asymptot
cally anti–de Sitter infinities@42,43#. Our Kucharˇ-type
Hamiltonian formulation is valid for the part of the space
time that consists of one pair of spacelike-separated left a
right asymptotically anti–de Sitter regions and the conne
ing region that is bounded in the past and future by the inn
horizons. The inner horizons are now not Cauchy horizon
as the asymptotically anti–de Sitter infinities render our pa
of the spacetime not globally hyperbolic. As with the
Reissner-Nordstro¨m hole above, the solutions to the equa
tions of motion obtained from the Hamiltonian~4.3! are pe-
riodic oscillations in the intervala2<a<a1 , and our deri-
vation of this Hamiltonian is only valid on each solution
between two successive minima ofa. Foliations of the de-
sired kind now exist while the timelike geodesic remain
sufficiently close to the event horizon bifurcation two
sphere. However, it is seen from the Penrose diagram tha
the geodesic progresses towards the past and future in
horizon bifurcation two-spheres, there will occur a critica
value of the proper time after which the constantt hypersur-
faces would necessarily need to become somewhere timel
Therefore, the throat interpretation can only be maintained
the full domain of validity of the Hamiltonian~4.3! by ap-
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pealing to a foliation where the constantt hypersurfaces need
not be everywhere spacelike. We shall return to this issue
Sec. V.

Quantization of the theory proceeds as in Sec. III. T
HamiltonianĤ0, Eq. ~3.5!, inherits the additional terms

q2

2x2/3
1

x2

2l 2. ~4.4!

The theorems cited in Sec. III show that the additional term
make no difference for the existence and counting of t
self-adjoint extensions ofĤ0, and they also show that the
essential spectrum of any self-adjoint extension ofĤ0 is
again empty. Forq50, the proof of the lower bound for the
spectrum given in Appendix A goes through virtually with
out change. ForqÞ0, the charge term modifies the smallx
behavior of the wave functions, and the analysis of the se
adjointness boundary condition is more involved; in partic
lar, there is a qualitative difference between the cas
7/6,r,3/2, r57/6, and 1/2,r,7/6, arising from whether
the next-to-leading term in the counterpart ofvE(x) in Eq.
~A2! dominates the leading order term in the counterpart
uE(x) at small x. However, the modified Bessel function
asymptotic behavior~A6! and ~A9! still holds, as can be
shown by applying the series solution method foruE and the
‘‘second solution’’ integral formula forvE ~see, for example,
Chap. 8 of Ref.@48#!. The spectrum of every self-adjoin
extension is therefore again bounded below, and certain s
adjoint extensions are strictly positive.

One expects that the asymptotic distribution of the lar
eigenvalues could be investigated via a suitable general
tion of the WKB techniques of Appendix B. We shall, how
ever, not attempt to carry out such an analysis here.

V. DISCUSSION

In this paper we have considered a Hamiltonian theory
spherically symmetric vacuum Einstein gravity unde
Kruskal-like boundary conditions. The foliation was chose
such that the evolution of the spacelike hypersurfaces is f
zen at the left-hand side infinity, but proceeds at unit ra
with respect to the asymptotic Minkowski time at the righ
hand side infinity. The reduced Hamiltonian theory was wr
ten in a set of variables associated with the Einstein-Ros
wormhole throat: The configuration variable is the radius
the throat, in a foliation in which the proper time at the thro
agrees with the asymptotic right-hand side Minkowski tim
The classical Hamiltonian is numerically equal to th
Schwarzschild mass.

We quantized the theory by Hamiltonian methods, taki
the wave functions to be functions of the classical config
ration variable, and including a general power-law weig
factor in the inner product. The classical Hamiltonian w
promoted into a self-adjoint Hamiltonian operator. We foun
that the spectrum of the Hamiltonian operator is discrete a
bounded below for all the choices of the weight factor. In th
cases where the Hamiltonian operator is essentially s
adjoint, the spectrum is necessarily positive definite; in t
remaining cases, self-adjoint extensions with a positive de
nite spectrum always exist. In all the cases, a WKB estim
gave for the large eigenvalues the asymptotic behav
in
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A2k, wherek is an integer, and we were able to rigorously
verify the accuracy of this estimate for four particula
choices of the weight factor. The resulting spectrum for th
area of the black hole agrees with the spectrum~1.1! pro-
posed by Bekenstein and others, with the dimensionless co
stanta taking the value 32p. We also showed that analogous
results can be obtained in the presence of a fixed elect
charge and a negative cosmological constant.

It is perhaps worth emphasizing that the basic postulat
of our quantum theory consisted of the choice of a Hilbe
space and a self-adjoint Hamiltonian operator on it. We d
not attempt to define more ‘‘elementary’’ operators, such a
those for ‘‘position’’ or ‘‘momentum,’’ self-adjoint or other-
wise, from which the Hamiltonian operator could be con
structed. This issue might merit further study within som
geometric or algebraic framework of quantization4 @49–51#.

Even though our theory is that of pure vacuum, ou
boundary conditions were chosen so as to make the resu
relevant for physics that is accessible to an inertial observ
at a spacelike infinity. Our spacelike hypersurfaces have ev
lution at onlyone infinity, and there they evolve at unit rate
with respect to the asymptotic Minkowski time. Our classica
Hamiltonian is therefore the gravitational Hamiltonian with
respect to the proper time of an inertial observer at the infi
ity, at rest with respect to the hole. It is thus reasonable
think of the eigenvalues of the Hamiltonian operator as th
possible outcomes that an asymptotic observer would
principle obtain when measuring the ADM mass of the hole
In a given~pure! quantum state, the probability for obtaining
a given eigenvalue is determined by the component of th
state in the respective eigenspace in the standard way.
though we are here for concreteness using language adap
to a Copenhagen-type interpretation, a translation into inte
pretations of the many-worlds type could easily be made.

One can also make a case that our throat variablea de-
picts in a particularly natural way the dynamical aspects o
the Kruskal manifold. Classically, the wormhole throat be
gins life at the white hole singularity, expands to maximum
radius at the bifurcation two-sphere, and collapses to t
black hole singularity. The dynamics ofa is therefore, in a
certain sense, confined to the interior regions of the Krusk
manifold, and these are precisely the regions that do n
admit a timelike Killing vector. From a physical viewpoint,
using a variable with this property is motivated by the fac
that an inertial observer at a spacelike infinity sees her ex
rior region of the Kruskal manifold as static. Further, ou
foliation made the proper time at the throat increase at th
same rate as the asymptotic right-hand side Minkowski tim
by the principle of equivalence, one may see this as the p
ferred condition for relating the experiences of an inertia
observer at the asymptotic infinity to the experiences of a
inertial observer at the throat. We recall, in contrast, that th
reduced phase space variables of Refs.@36–38# reflect more

4For example, note that the kinetic term of the Hamiltonian op
erator Ĥ, Eq. ~3.2!, can be written as12m21/2p̂aa

21m p̂am
21/2,

where p̂a: c°2 iu21/2(d/da)m1/2c is a symmetric~but not self-
adjoint! momentum operator that can be regarded as conjugate
the position operatorâ: c°ac. We thank Thomas Strobl for this
observation.
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closely thestatic aspects of the Kruskal manifold. Yet an
other set of variables has been discussed in Refs.@52,53#.

With this physical picture, the properties we obtained f
the spectrum of the Hamiltonian operator acquire cons
quences of direct physical interest. At the low end of th
spectrum, the fact that the Hamiltonian is bounded belo
indicates stability: One cannot extract from the system
infinite amount of energy. At the high end of the spectrum,
the semiclassical regime of the theory, the discreteness of
spectrum in accordance with the area quantization rule~1.1!
yields the macroscopically observable consequences
cussed by Bekenstein and Mukhanov@26#. It should be em-
phasized, however, that these arguments operate at a so
what formal level, as our theory does not describe how t
quantum black hole would interact with other degrees
freedom, such as departures from spherical symmetry
matter fields.

On the grounds of classical positive energy theorems, o
may feel inclined to exclude by fiat quantum theories
which the ground state energy of an isolated self-gravitati
system is negative. Among our theories, this would amou
to a restriction on the self-adjoint extension in the cas
where the Hamiltonian operator is not essentially se
adjoint. However, given the freedom that we have alrea
allowed in the choice of the the inner product, it would be
relatively minor further generalization to add to our Hami
tonian operator the identity operator with some real coef
cient, and to take the coefficient as a new parameter in
quantum theory.5 The classical limit of the quantum theory
would still be correct, provided the new parameter is und
stood to be proportional to Planck’s constant. When t
Hamiltonian operator is not essentially self-adjoint, an
given self-adjoint extension can then be made positive d
nite by choosing the new parameter sufficiently large. No
however, that with any fixed value of the new paramete
there still exist self-adjoint extensions whose ground sta
energy is arbitrarily negative.

In Sec. II, we obtained the classical Hamiltonian thro
theory by first going from the geometrodynamical Hami
tonian variables to Kucharˇ’s reduced Hamiltonian theory,
and then performing a suitable canonical transformation. T
interpretation of our variablea as the radius of the wormhole
throat was only introduced after the fact, by appealing to
particular choice of the spacetime foliation. We took th
same route in the presence of charge and a negative cos
logical constant in Sec. IV. We have not discussed here h
to derive a throat theory directly from the unreduced geom
rodynamical Hamiltonian theory by introducing a gauge a
performing the Hamiltonian reduction, but with the appropr
ate gauge choice, the resulting theory should by construct
be at least locally identical to ours. The only case where o
anticipates a difference in the global properties is in the pr
ence of both a nonvanishing charge and a negative cos
logical constant. In this case, we saw in Sec. IV that wh
our throat theory is valid on each classical solution betwe
two successive minima ofa, the wormhole throat interpreta-
tion could be maintained for all of this interval only by ap
pealing to a foliation that is not everywhere spacelike.

5We thank John Friedman for this observation.
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direct Hamiltonian reduction of the geometrodynamica
theory in the corresponding wormhole-type gauge wou
thus only yield our theory in a more limited domain, valid on
each classical solution in a certain interval around a max
mum ofa.

Our choice of freezing the evolution of the spacelike hy
persurfaces at the left-hand side infinity was motivated b
the desire to have a theory that would describe physics a
cessible to observers at just one infinity. For a vanishin
charge and cosmological constant, this motivation can b
implemented at the very beginning by setting up the Hami
tonian theory not on the Kruskal manifold, but instead on th
RP3 geon@54#. To see this, recall@54# that theRP3 geon is
the quotient of the Kruskal manifold under a freely acting
involutive isometry: This isometry consists of a reflection o
the Kruskal diagram about the vertical timelike line throug
the bifurcation point, followed by the antipodal map on the
two-sphere. TheRP3 geon has thus only one exterior region
identical to one of the Kruskal exterior regions. Further, th
RP3 geon possesses a distinguishedRP2 of timelike geode-
sics through the image of the Kruskal bifurcation two
sphere: In the Penrose diagram@54#, these geodesics go
straight up along the ‘‘boundary’’ of the diagram. The exist
ence of the distinguished geodesics reflects the fact th
translations in the Killing time on the Kruskal manifold do
not descend into globally defined isometries of theRP3

geon. Now, Kucharˇ’s canonical transformation and Hamil-
tonian reduction generalize readily to theRP3 geon @39#.
The reduced action is obtained from Eq.~2.3! by setting
N250, and the momentump is now equal to the difference
of the Killing times between the distinguished timelike geo
desics and the single spacelike infinity. SettingN151, we
are led to the action~2.5!. The variablea defined by Eq.
~2.6! is now equal to the curvature radius of the distinguishe
RP2 of timelike geodesics.

The above interpretation of our theory in terms of th
RP3 geon generalizes immediately to accommodate a neg
tive cosmological constant. For a nonvanishing charge, o
the other hand, there exists again an analogous involuti
isometry that can be used to quotient the manifold, but th
electric field is invariant under this isometry only up to its
sign. This reflects the fact that Gauss’s theorem prohibits
regular spacelike hypersurface with just one asymptotic i
finity from carrying a nonzero charge. TheRP3 geon inter-
pretation does therefore not extend to the charged case wit
conventional implementation of the electromagnetic field.

As we have seen, the central input in our classical theo
was to parametrize the geometry in terms of the radius of t
wormhole throat in a judiciously chosen foliation: Our vari-
ablea is the two-sphere radius on a radial geodesic throug
the event horizon bifurcation two-sphere, in a foliation suc
that the proper time along the distinguished geodesic agre
with the asymptotic Killing time at the right-hand side infin-
ity. One possible generalization would be to relax the re
quirement that the variable ‘‘live’’ in the interior regions of
the manifold, and use instead timelike geodesics that do n
pass through the bifurcation two-sphere. To examine this,
us for concreteness set the charge and the cosmological c
stant to zero, and let us generalize the canonical transform
tion ~2.6! to
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upu5E
a

2m[11~R0* !2] db

A2mb212@11~R0* !2#21
, ~5.1a!

pa5sgn~p!A2ma2a2@11~R0* !2#21, ~5.1b!

where R0* is a real-valued parameter. The transformatio
~2.6! is recovered as the special caseR0*50. The ranges of
the new variables are againa.0 and2`,pa,`, but the
restriction forp is now upu,p@11(R0* )

2#3/2m. The action is
given by Eq.~2.7! with the Hamiltonian

H5
1

2 Fpa2a 1
a

11~R0* !2G . ~5.2!

On a classical solution, the variablea is now equal to the
two-sphere radius on a radial timelike geodesic whose traj
tory is given byR*5R0* , whereR* is the Novikov space
coordinate in the notation of Ref.@32#. Foliations that make
this interpretation possible clearly exist. Simple examples
obtained by deforming the Novikov foliation near the lef
hand side infinity as in Sec. II, to accommodate the bound
conditionN250, and~for R0*Þ0) also near the throat, to
prohibit the constantt hypersurfaces from reaching the sin
gularity before the geodesic atR*5R0* . Upon quantization
along the lines of Sec. II, we find that the spectrum depen
on the parameterR0* only through an overall factor: If the

eigenvalues are denoted byE
k

(R0* ) , wherek ranges over the
nonnegative integers, we have

E
k
~R0* !

5@11~R0* !2#23/4Ek
~0!. ~5.3!

A much wider generalization would be to relax the re
quirement, which we above motivated by the equivalen
principle, that the proper time along the throat trajecto
agree with the asymptotic Killing time. If one allows thi
freedom, it is not difficult to come up with examples of fo
liations in which the Hamiltonian takes a mathematical
simple form. As an illustration, let us exhibit two example
in the case of vanishing charge and cosmological consta

As the first example, suppose thatp is restricted by hand
to have the rangeupu,g21pm, whereg is a positive con-
stant. We perform the canonical transformation

j5A2/gmcosS gp

2mD , ~5.4a!

pj5A2/gmsinS gp

2mD , ~5.4b!

where the ranges of the new canonical variables arej.0
and2`,pj,`. The Hamiltonian takes the form

H5A 1
2g~pj

21j2!. ~5.5!

We can identifyA2gj as the two-sphere radius on a radia
geodesic through the bifurcation two-sphere in a foliatio
where the proper timet along this geodesic is
n
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t52sgn~p!E
A2gj

2m db

A2mb2121
, ~5.6!

with j given by Eq.~5.4a!.
To quantize this theory, we adopt the inner product

(c1 ,c2)5*0
`djc1c2. We define the Hamiltonian operator

Ĥ by spectral analysis as the positive square root of som
positive definite self-adjoint extension ofgĤSHO, where
ĤSHO:5

1
2 @2(d/dj)21j2# is the simple harmonic oscillator

Hamiltonian operator on the positive half-line. The following
statements aboutĤSHO can now be verified:~i! The self-
adjoint extensions are specified by the boundary condition
cos(u)c2sin(u)dc/dj50 at the origin, with the parameteru
satisfying 0<u,p; ~ii ! the spectrum of each self-adjoint
extension is purely discrete;~iii ! the eigenfunctions are para-
bolic cylinder functions@55#, and foru50 andu5p/2 they
reduce respectively to the odd and even ordinary harmoni
oscillator wave functions;~iv! if ek denotes the eigenvalues,
with k ranging over the nonnegative integers, we have for
u50 andu5p/2 the respective exact resultsek52k1 3

2 and
ek52k1 1

2, and for other values ofu the asymptotic large
k expansionek;2k1 1

21p21cot(u)k21/21o(k21/2); ~v! the
absence of negative eigenvalues is equivalent to the cond
tion that u not lie in the interval2223/2p21@G(1/4)#2

,tan(u),0. The resulting spectrum forĤ therefore agrees
asymptotically with the area quantization rule~1.1! for any
u that makesĤSHO positive definite. The numerical constant
a takes the value 32pg.

As the second example, suppose thatp retains the full
range2`,p,`, and perform the canonical transformation

h5
m2

cosh~p/2m!
, ~5.7a!

ph5sinhS p

2mD , ~5.7b!

where the ranges of the new canonical variables areh.0
and2`,ph,`. The Hamiltonian takes the form

H5~h2ph
21h2!1/4. ~5.8!

We can identify 2Ah as the two-sphere radius on a radial
geodesic through the bifurcation two-sphere in a foliation
where the proper timet along this geodesic is

t52sgn~p!E
2Ah

2m db

A2mb2121
, ~5.9!

with h given by Eq.~5.7a!.
In the quantum theory we now adopt the inner product

(c1 ,c2)5*0
`h21dhc1c2. The operatorĤexpt:52@h(d/

dh)] 21h2 is essentially self-adjoint, its discrete spectrum is
empty, and its essential spectrum consists of the non
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negative half-line.6 We can therefore define the Hamiltonia
operatorĤ by spectral analysis as (Ĥexpt)

1/4. It follows that
the spectrum ofĤ is now continuousand consists of the
non-negative half-line.

These examples suggest that the continuity versus d
creteness of the spectrum is related to the question
whether the wormhole throat reaches the initial and final s
gularities within finite parameter time. There are gene
grounds to expect this to be the case. A classical theory
which the two-sphere radius reaches zero within finite p
rameter time is singular, in the sense that the classical so
tions cannot be continued arbitrarily far into the past a
future. If one quantizes such a theory so that the class
Hamiltonian is promoted into a time-independent, se
adjoint Hamiltonian operator, then the unitary evolution ge
erated by the Hamiltonian operator remains well-defined
arbitrarily large times. If one starts with an initial wave func
tion that is a wave packet following some classical traje
tory, the quantum time evolution will force the wave pack
to be reflected from the classical singularity. The reflection
an entirely quantum-mechanical phenomenon, and the qu
tum dynamics acquires in this sense a quasiperiodic cha
ter. On the other hand, if the classical solutions require
infinite amount of time to reach the singularity, one gene
cally expects@41# that in the quantum theory a wave packe
initially following a classical trajectory will just keep follow-
ing this trajectory, with some spreading, for arbitrarily larg
times. It is clear that these arguments apply without chan
also in the presence of a negative cosmological constant
the presence of a nonvanishing charge, an analogous dis
sion applies with the singularity replaced by the inner ho
zon.

One may hold mixed feelings about a wormhole thro
quantum theory that introduces a quantum-mechani
bounce at a classical singularity or at an inner horizon. O
the one hand, singularities and inner horizons are pla
where the classical theory behaves poorly, and one ant
pates quantum effects to be important. On the other hand
outright bounce may appear an uncomfortably orderly qua
tum prediction, given that~semi!classical intuition associates
singularities and inner horizons with collapses and instab
ties. Related discussion, in this and related contexts, can
found in Refs.@56–62#. While we view the model of the
present paper as a useful arena where these issues ca
addressed in relatively explicit terms, the model is undou
edly dynamically too poor to support confident conclusio
about the physical reasonableness of a discrete versus
tinuous black hole spectrum. It would be substantially mo
interesting if our techniques could be generalized to mod
containing degrees of freedom that carry Hawking radiatio
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APPENDIX A: SEMIBOUNDEDNESS OF Ĥ 0

In this appendix we shall show that every self-adjoint ex-
tension of the HamiltonianĤ0, Eq. ~3.5!, is bounded below,
and that certain self-adjoint extensions are strictly positive.
We shall discuss separately the casesr>3/2, 1/2,r,3/2,
and r51/2.

1. r>3/2

For r>3/2, Ĥ0 is essentially self-adjoint. Letx be an
eigenfunction with energyE. With a suitable choice of the
overall numerical factor,x is real valued and has the small
x expansion

x~x!5xr@11O~x2!#. ~A1!

Both x and x8 are therefore positive for sufficiently small
x. If now E<0, the eigenvalue equation shows then thatx is
increasing for allx.0. This implies thatx cannot be nor-
malizable, which contradicts the assumption thatx is an
eigenfunction. Hence the spectrum is strictly positive.

2. 1/2<r<3/2

For 1/2,r,3/2, the self-adjoint extensions ofĤ0 form a
family characterized by a boundary condition atx50, and
parametrized byU(1). To findthese extensions, we note that
for any E, the differential equationĤ0x5Ex has two lin-
early independent solutions, denoted byuE(x) and vE(x),
with the asymptotic smallx behavior:

uE~x!5xr@11O~x2!#, ~A2a!

vE~x!5x12r@11O~x2!#. ~A2b!

For realE, both u and v are real valued. Using the tech-
niques of Ref.@41#, it is easily shown that the eigenfunctions
of a given self-adjoint extension ofĤ0 take, up to overall
normalization, the form

xE5cos~u!uE1sin~u!vE, ~A3!

whereuP@0,p) is the parameter specifying the self-adjoint
extension. The condition~A3! can be written without explicit
reference to the solutions~A2! as

ap.
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05 lim
x→0

F ~2r21!cos~u!xr21x2sin~u!x2~12r !
d~xr21x!

dx G .
~A4!

We now proceed to obtain a lower bound for the eigene
ergies.

Consider first an extension in the range 0<u<p/2. Com-
paring the eigenvalue differential equation to the correspon
ing equation with the term12x

2/3 omitted fromĤ0, Eq. ~3.5!,
and the energy set to zero, one sees that the prospec
eigenfunctions withE<0 are bounded below by the function
cos(u)xr1sin(u)x12r, which does not vanish exponentially a
largex. However, as the potential increases without bound
x goes to infinity, every eigenfunction must vanish expone
tially at largex. Hence the spectrum is strictly positive.

Consider then an extension in the remaining ran
p/2,u,p. Let x be an eigenfunction with energyE,0.
Writing y5(28E/9)1/2x, the eigenfunction equation reads

05F2
d2

dy2
1
r ~r21!

y2
111S 3y8E2D 2/3Gx. ~A5!

The last term in Eq.~A5! is asymptotically small at large
negativeE, uniformly in the intervalyP(0,M #, whereM is
an arbitrary positive constant. Omitting this last term giv
an equation whose linearly independent solutions a
y1/2I r2(1/2)(y) and y1/2I (1/2)2r(y), where I is a modified
Bessel function@65#. Thereforex has at large negativeE the
asymptotic behavior

x;~y/2!1/2@cos~u!G~r1 1
2 !~22E/9!2r /2I r2~1/2!~y!

1sin~u!G~ 3
22r !~22E/9!~r21!/2I ~1/2!2r~y!#, ~A6!

uniformly for yP(0,M #. The coefficients of the two Besse
functions in Eq.~A6! have been fixed by comparing the
small y expansions of Eqs.~A3! and ~A6! @65#.

By the asymptotic behavior of the Bessel functions
large argument@65#, we can now chooseM so that
y1/2I (1/2)2r(y) is positive and increasing fory>M /2. For fu-
ture use, we make this choice so thatM.1. Then, the sec-
ond term in Eq.~A6! dominates the first term at large nega
tive E, uniformly for M /2<y<M . Therefore there exists a
constant Ẽ,0, dependent onr and u, such thatx and
dx/dy are positive at y5M whenever E,Ẽ. As
ur (r21)u,1, Eq. ~A5! then shows, by virtue of the choice
M.1, thatx diverges at largey wheneverE,Ẽ. As x is by
assumption normalizable, we thus see that the eigenener
are bounded below byẼ.

Note that the lower bound for the eigenenergies is n
uniform in u. For fixed r and any givenE, there exists a
unique self-adjoint extension ofĤ0 such thatE is in the
spectrum. This is because the differential equati
Ĥ0x5Ex has for anyE a normalizable solution that is
unique up to a multiplicative constant, and matching t
smallx behavior of this solution to Eq.~A3! uniquely speci-
fies the value ofu. One can thus find extensions with arb
trarily negative ground state energy.
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3. r51/2

For r51/2, the self-adjoint extensions ofĤ0 form again a
family parametrized byU(1). Theboundary condition char-
acterizing the extensions takes the form~A3!, where u
P@0,p), but now with

uE~x!5x1/2@11O~x2!#, ~A7a!

vE~x!5uE~x!lnx1O~x5/2!. ~A7b!

Condition ~A4! is replaced by

05 lim
x→0

H @cos~u!1sin~u!lnx#x
d~x21/2x!

dx
2sin~u!x21/2xJ .

~A8!

For the extension withu50, one sees as above that the
spectrum is strictly positive.

Consider then an extension in the range 0,u,p. Let x
be an eigenfunction with energyE,0, and proceed as
above. Equation~A6! is replaced by

x;S 28E

9 D 21/4

y1/2„$cos~u!2sin~u![g1 1
2 ln(22E/9!] %I 0~y!

2sin~u!K0~y!…, ~A9!

whereK is the second modified Bessel function@65# andg is
Euler’s constant. At large negativeE, the term proportional
to y1/2I 0(y) dominates, and one can argue as above. Hen
the spectrum is bounded below.

As in the case 1/2,r,3/2, for any given energyE there
exists a self-adjoint extension such thatE is in the spectrum.
One can thus again find extensions with arbitrarily negativ
ground state energy.

APPENDIX B: LARGE EIGENVALUES OF Ĥ 0

In this appendix we analyze the asymptotic distribution o
the large eigenvalues of the self-adjoint extensions ofĤ0,
Eq. ~3.5!. The idea is to match a Bessel function approxima
tion at small argument to a WKB approximation in the re
gion of rapid oscillations. We shall again discuss separate
the casesr>3/2, 1/2,r,3/2, andr51/2.

1. r>3/2

We begin with the caser>3/2, whereĤ0 is essentially
self-adjoint. We shall throughout denote byx an eigenfunc-
tion with energyE.0.

Consider first x at small argument. Setting
z5(8E/9)1/2x, the eigenfunction equation reads

05F2
d2

dz2
1
r ~r21!

z2
211S 3z

8E2D 2/3Gx. ~B1!

The last term in Eq.~B1! is asymptotically small at large
E, uniformly in the intervalzP(0,ME1/2#, whereM is an
arbitrary positive constant. Omitting this last term give
an equation whose linearly independent solutions a
z1/2Jr2(1/2)(z) and z1/2Nr2(1/2)(z), where J and N are the
Bessel functions of the first and second kinds, and only th
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former solution is normalizable at smallx @65#. The asymp-
totic largeE behavior ofx is, therefore,

x }̃ x1/2Jr2~1/2!F ~8E!1/2x

3 G , ~B2!

valid uniformly in any bounded region inx. Here, and from
now on, we use the symbol}̃ to denote the asymptotic form
at largeE, up to a possiblyE-dependent coefficient. Intro-
ducing two constantsd1 andd2 that satisfy 0,d1,d2, and
using the asymptotic large argument behavior ofJ @65#, we
can rewrite Eq.~B2! as

x }̃ cosF ~8E!1/2x

3
2

pr

2 G , ~B3!

valid uniformly for d1<x<d2.
Consider then the region of rapid oscillations. We ta

E so large that the eigenvalue equation has two turn
points, and we denote the larger turning point byx0. The
region of rapid oscillations at largeE is sufficiently far left of
x0 but sufficiently far right of the origin. Asx decays expo-
nentially right of x0, the WKB approximation to the wave
function in the region of rapid oscillations is~see, for ex-
ample, Ref.@66#!

xWKB5@p2~x!#21/2cosF E
x

x0
dx8p2~x8!2

p

4 G , ~B4!

where

p25
2

3 F2E2x2/32
9r ~r21!

4x2 G1/2. ~B5!

The evaluation of the integral in Eq.~B4! is discussed in
Appendix C. We find

xWKB }̃ cosF ~8E!1/2x

3
2

pE2

2
1

p

4
1O~E21/2!G , ~B6!

valid uniformly for d1<x<d2. Comparing Eqs.~B3! and
~B6! yields for the large eigenenergies the WKB estimate

EWKB
2 ;2k1r1 1

21o~1!, ~B7!

wherek is a large integer ando(1) indicates a term that goes
to zero at largeE.

Note that we have not attempted to control how far th
integerk is from the number of the eigenvalue that Eq.~B7!
is meant to approximate. To obtain a formula that gives
approximation to thekth eigenenergy in the limit of large
k, one may need to add to the right-hand side of Eq.~B7!
some even integer.

As the potential term in the Hamiltonian is smooth with
out oscillations or steplike behavior, and asup28p2

22u vanishes
for largeE uniformly in d1<x<d2, one expects the WKB
estimate to the large eigenenergies to be an accurate one
shall not attempt to investigate the accuracy rigorously f
generalr , but we shall see below that the accuracy can
verified by independent means in the special caser55/6,
and, to leading order, also in the special caser51.
ke
ing

e

an

-
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or
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2. 1/2<r<3/2

For 1/2,r,3/2, we recall from Appendix A that the self-
adjoint extensions ofĤ0 are specified by the boundary con-
dition ~A3! at smallx. Fixing u and proceeding as above, we
see from the small argument behavior of the Bessel function
@65# that Eq.~B2! is replaced by

x;~z/2!1/2@cos~u!G~r1 1
2 !~2E/9!2r /2Jr2~1/2!~z!

1sin~u!G~ 3
22r !~2E/9!~r21!/2J~1/2!2r~z!#. ~B8!

When u50, the second term in Eq.~B8! vanishes, and we
can proceed as above, withx0 now denoting the larger one of
the two turning points forr.1 and the unique turning point
for r<1. The WKB estimate for the large eigenenergies is
again given by Eq.~B7!. WhenuÞ0, on the other hand, the
second term in Eq.~B8! dominates the first term at large
E, andr in Eq. ~B3! is replaced by 12r . The WKB estimate
~B7! is therefore replaced by

EWKB
2 ;2k2r2 1

21o~1!. ~B9!

In the special caser55/6, we can verify the accuracy of
these WKB results rigorously. The eigenfunctions are now

x5x1/6U„2 1
2E

2,A2(x2/32E)…, where U is the parabolic
cylinder function that vanishes at large values of its secon
argument@55#. The boundary condition~A4! reads

05cos~u!U~2 1
2E

2,2A2E!2A2sin~u!U8~2 1
2E

2,2A2E!,
~B10!

where the prime denotes the derivative ofU with respect to
its second argument. Using Olver’s asymptotic expansions o
parabolic cylinder functions@Ref. @67#, formula ~9.7!, and
the discussion of the derivative on p. 155#, we find

E2;2k22/31O~E28/3! for u50, ~B11a!

E2;2k12/31O~E24/3! for u5p/2, ~B11b!

E2;2k12/31O~E21/3! for 0ÞuÞp/2. ~B11c!

This corroborates the WKB results~B7! and ~B9! for
r55/6, and gives an improved bound for the error term.

In the special caser51, the theorem in Sec. 7 of Ref.
@68# yields the rigorous asymptotic estimate

E2;2k1O~ lnE!. ~B12!

@The leading order term of Eq.~B12! also follows from Ref.
@40#, p. 1614.# This corroborates the leading order term in
our WKB results~B7! and ~B9! for r51.

Finally, we note in passing that forr55/6, the boundary
condition ~B10! and Olver’s expansions@67# yield the as-
ymptotic relation

tan~u!;2
31/6@G~1/3!#2

24/3p~2E0!
1/31O„~2E0!

25/3
… ~B13!

for the parameteru and the ground state energyE0, valid in
the limit of large negativeE0.
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3. r51/2

For r51/2, Eq.~B8! is replaced by

x;S 8E9 D 21/4

z1/2„$cos~u!2sin~u!@g1 1
2 ln~2E/9!#%J0~z!

1~p/2!sin~u!N0~z!…, ~B14!

whereg is Euler’s constant as before. For anyu, the term
proportional toz1/2J0(z) dominates at large energies, and E
~B3! holds withr51/2. The WKB estimate for the eigenen
ergies is thus given by Eq.~B7! with r51/2, for anyu.

APPENDIX C: EVALUATION OF THE WKB INTEGRAL

In this appendix we outline the evaluation of the integr
in Eq. ~B4! at largeE. We shall throughout assume thatE is
so large that a classically allowed domain exists~which is a
restriction only forr.1), thatx is in the classically allowed
domain, and thatx.d1, where the constantd1 was intro-
duced in Appendix B.

Returning to the variablea5x2/3 of the main text, and
writing b5(x8)2/3, the integral in the exponent in Eq.~B4!
takes the form

S:5E
a

a0
dbA2Eb2b2A12

9r ~r21!

4b3~2E2b!
, ~C1!

where a05x0
2/3 is the ~larger! turning point. At largeE,

a0;2E1O(E23).
We fix a constant d3.0, take E so large that

ua022Eu,d3 /E, and restrict a to be in the interval
d1
2/3<a<2E2d3 /E. We can then replace the upper limit o
q.
-

al

f

the integral in Eq.~C1! by 2E2d3 /E, with the error inS
being of orderO(E21). The second term under the second
square root in~C1! is now uniformly of orderO(E21). As
the first square root is of orderO(E), we can expand the
second square root in the Taylor series and truncate the serie
after the third term, with the error inS being of order
O(E21). In the truncated integrand, the third term is propor-
tional to b211/2(2E2b)23/2, which is uniformly of order
O(E23/2), and this term can thus be omitted with the conse-
quence of making an error of orderO(E21/2) in S. We there-
fore have

S;E
a

2E2d3 /E
dbFA2Eb2b22

9r ~r21!

8b2A2Eb2b2
G1O~E21/2!.

~C2!

The integral in Eq.~C2! is elementary. The contribution from
the second term turns out to be of orderO(E21/2), and in the
first term the upper limit can be replaced by 2E with the
consequence of making an error of orderO(E21). We thus
obtain

S; 1
2 ~E2a!A2Ea2a21 1

2E
2arcsin~12a/E!1 1

4pE2

1O~E21/2!. ~C3!

Finally, we restricta to be in the intervald1
2/3<a<d2

2/3,
where the constantd2 was introduced in Appendix B. A
largeE expansion of Eq.~C3! then gives

S;2A8Ea3

3
1

pE2

2
1O~E21/2!, ~C4!

which leads to Eq.~B6!.
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