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Effective field theory of gravity, reduction of couplings, and the renormalization group

Mario Atance* and Jose´ Luis Cortés†

Departamento de Fı´sica Teo´rica, Universidad de Zaragoza, 50009 Zaragoza, Spain
~Received 31 May 1996!

The structure of the renormalization group equations for the low-energy effective theory of gravity coupled
to a scalar field is presented. An approximate solution to these equations with a finite number of independent
renormalized parameters can be found when the mass scale characteristic of the fluctuations in the geometry is
much smaller than the Planck mass. The cosmological constant problem is reformulated in this context and
some conditions on the matter field content and interactions required in order to have a sufficiently small
cosmological constant are identified.@S0556-2821~96!06320-5#
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I. INTRODUCTION

This work can be classified within the perturbative a
proach in which quantum gravity is seen as a theory of sm
quantum fluctuations around a flat Minkowski backgroun
spacetime. From this point of view, quantum gravity can
regarded as just another field theory to be quantized in
standard way as it should be the case for any relativis
quantum theory at low energy@1#. This leads us to identify
an effective field theory with the gravitational field describe
by a symmetric two-index tensor field as the low-energy e
fective field theoretic formulation of quantum gravity.

Like any effective field theory, its Lagrangian density wi
contain an infinite number of terms of arbitrary dimensio
ality and, therefore, is not perturbatively renormalizable
the usual power counting sense@2#. But it is renormalizable
in the sense that all the ultraviolet divergences can be c
celed by a renormalization of the infinite number of param
eters corresponding to the most general action invariant
der general covariant transformations@3#. Then the
perturbative approach of renormalized effective theories@4#
also can be applied in general relativity. This point of vie
has been advocated recently by Donoghue@5#, who shows
how some large distance quantum gravitational effects c
be derived within this framework.

In order to compute results for physical quantities in a
effective field theory, it is necessary to specify the Lagran
ian together with a renormalization scheme. A natural way
parametrize the Lagrangian is based on the introduction o
fixed mass scaleM , which is a characteristic scale of th
physical system described by the effective theory, and a
mensionless parameter for each term in the Lagrangian g
ing the corresponding coefficient in units ofM raised to the
appropriate power. Then one has an expansion of the
grangian with terms of dimensionality greater than four su
pressed by negative powers of the mass scaleM . If one
wants to have a well-defined expansion~with terms of higher
dimension being less important in the calculation of physic
quantities! a mass-independent renormalization scheme m
be chosen@6#.
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Each term in the Lagrangian of the effective theory o
gravity is a product of~covariant derivatives of! matter fields
and components of the Riemann tensor. At sufficiently lo
energies and for sufficiently small fluctuations in the matt
fields and the geometry of spacetime, the lower dimension
terms in the Lagrangian will be dominant and the expansi
in the effective Lagrangian is a good approximation. A
higher energies, and/or for larger fluctuations of the matt
system or the geometry, higher order terms in the effecti
Lagrangian become comparable to the lower dimension
terms. There is an intermediate situation, where correctio
to the dominant term can be incorporated as a small pert
bation.

In the general case, at each order in the expansion n
free parameters appear and the predictibility of the effecti
theory is reduced, but this is not always necessarily the ca
The renormalization group equations, fixing the dependen
of the renormalized parameters on the renormalization sca
allow us to identify special situations, where only a finit
number of renormalized parameters can be chosen freely
those cases the predictibility of the theory is not lost whe
successive terms in the expansion of the effective theory
incorporated.

If one goes beyond the domain of validity of the pertu
bative approach to gravity, then new interactions and ne
degrees of freedom will be required in a new theory beyo
quantum field theory based on some unknown general pr
ciples @7#. The main point of this work is to investigate the
possibility that this new theory going beyond the perturb
tive regime is such that its low-energy limit is as independe
on the details of the theory as possible. In other words, w
consider an effective field theory with a minimal number o
free renormalized parameters.

In a previous work@8#, the general structure of the renor
malization group equations for the effective field theory o
pure gravity was identified. In the limiting case, where th
mass scale of the effective theory is much smaller than t
Planck mass~a possibility compatible with the renormaliza
tion group equations!, a theory with just one free renormal-
ized parameter is obtained when contributions suppressed
inverse powers of the Planck mass are neglected. The aim
this work is to extend these results to the effective fie
theory of gravity, including matter fields and nongravita
tional interactions. Additional renormalization group equa
4973 © 1996 The American Physical Society
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4974 54MARIO ATANCE AND JOSÉLUIS CORTÉS
tions for the new parameters as well as the modificatio
induced by these new parameters on the renormalizat
group equations of the pure gravity theory have to be co
sidered. Then one has to identify what are the conditions
be able to express the effective Lagrangian in terms o
finite number of free parameters in a way consistent with t
renormalization group equations.

In the next section we consider the renormalization of t
theory of a scalar field coupled to a symmetric two-inde
tensor field invariant under general covariant transform
tions. The absence of a dimensionful ultraviolet cutoff in
mass independent substraction scheme~dimensional regular-
ization and minimal substraction! allows us to give the gen-
eral structure of the renormalization group equations for t
dimensionless renormalized parameters of the theory. T
renormalized parameters corresponding to terms in the
grangian of dimension less than four~mass and cosmologica
term! can be set equal to zero. In this case the renormali
tion group equations for the remaining parameters have
triangular structure. For a given term in the Lagrangian, t
renormalization group equation for the corresponding para
eter depends only on a finite number of parameters co
sponding to the terms in the Lagrangian of dimensional
smaller or equal than that of the original term. Theb func-
tions are fixed by dimensional arguments up to the dep
dence on the parameter corresponding to the scalar qua
self-coupling term. There is a series expansion in this para
eter, which can be determined order by order in perturbat
theory.

In Sec. III a discussion of the possibility to find a reno
malized Lagrangian with a finite number of independe
renormalized parameters is presented. Two special cases
identified. In the first case one has a generalization of
reduction obtained in a previous work in pure gravity@8#
with a mass scaleMR , characteristic of the fluctuations in
the geometry of spacetime, much smaller than the Plan
mass and an additional dependence on the scalar s
coupling determined perturbatively. A second case cor
sponds to the presence of still another new independent
rameter corresponding to a term of dimension six in t
matter field Lagrangian. This new parameter defines a n
mass scale, associated to the matter field fluctuations,
gether with the Planck mass and the scaleMR . In both cases
the reduction of the infinite number of parameters in th
general effective Lagrangian in terms of three or four ind
pendent parameters can be determined systematically o
by order in perturbation theory by using the renormalizatio
group equations of the effective theory.

In Sec. IV we discuss the modification induced in th
renormalization group equations when a mass term in
Lagrangian is added. In the general case a cosmological t
is unavoidable and, due to the presence of terms of a dim
sion less than four in the Lagrangian, the renormalizati
group equations lose its simple structure and all the infin
parameters appear in the renormalization group equation
each parameter. The only way to translate to this case
discussion of the possibility to have an effective theory wi
a finite number of parameters is based on the assumption
the dimensionless parameters corresponding to the mass
cosmological terms in the Lagrangian are sufficiently sm
to treat the modifications they induce on theb functions of
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the remaining parameters as a small perturbation that can
neglected in a first approximation. In fact the experiment
upper bound on the cosmological constant forces this to
the case for the cosmological term and the parameter cor
sponding to the mass term has to be tuned in such a way t
the scalar mass is much smaller than the remaining ma
scales of the effective theory. The consistency of the tunin
required on the cosmological parameter with its renormaliz
tion group equation leads to a reformulation of the cosmo
logical constant problem@9# at the level of the effective
theory. Different alternatives to the solution of this problem
in connection with the reduction of parameters in the effec
tive theory of gravity are discussed.

We close in Sec. V with a summary and some concludin
comments.

II. RENORMALIZATION GROUP EQUATIONS.
MASSLESS CASE

The main idea in this work is to try to get some informa
tion on quantum gravity from the renormalization group
equations of its effective field theory formulation. This equa
tion can be derived following the same steps of a perturb
tively renormalizable theory in the power counting sens
@10#. A very important tool in the perturbative renormaliza-
tion of an effective field theory is dimensional regularization
@11# and the minimal substraction scheme@12#.

We will consider for definiteness the simplest matter sys
tem ~a real scalar field! coupled to the gravitational field, but
most of the discussion can be translated directly to a gene
matter system. It is convenient to introduce a fixed mas
scaleM as a reference unit for all the couplings of the effec
tive theory. The general expression for the action can b
written, using the invariance under general covariant tran
formations, in the form

S5E d4x@Lg1Lm1Lnm#, ~2.1!

whereLg is the Lagrangian density of the gravitational field
andLm , Lnm are the Lagrangian densities for the minima
and nonminimal coupling of the scalar and gravitationa
fields, respectively:

Lg5A2g
M2

a1
2 FR1

aW 2

M2RW
~2!1

aW 4

M4RW
~4!1•••G , ~2.2!

Lm5A2gF1
2
gmn]mf]nf1l0f

41
lW 2
M2LWm~2!

1
lW 4
M4LWm~4!1•••G , ~2.3!

Lnm5A2gF j0Rf21
jW2
M2LW nm~2!1

jW4
M4LW nm~4!1•••G . ~2.4!

A cosmological constant@constant term inside the brackets
in Eq. ~2.2!# and a mass@f2 term in Eq.~2.3!# have not been
included~later we will see how the structure of the renormal
ization group equations would be affected in the presence
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54 4975EFFECTIVE FIELD THEORY OF GRAVITY, . . .
such terms!. The coefficientsa1, aW 2, aW 4 , . . . , l0, lW 2,
lW 4 , . . . , j0, jW2, jW4 , . . . are dimensionless parameters.

The dimensionality of the different terms in the actio
fixes the power dependence on the mass scaleM of the ef-
fective theory. In the Lagrangian density of pure gravi
Lg , R is the scalar curvature,RW (2) is a vector with the three
different invariants built out of two Riemann tensors as com
ponents, the different invariants with three Riemann tens
or two Riemann tensors and two derivatives are the com
nents of the vectorRW (4) and so on. The expansion in invers
powers of the mass scale for the terms depending on
matter field has been written in a compact notation whe
LWm(2n) is a vector, whose components are the different ter
of dimension 412n built out of the scalar field and deriva-
tives of the scalar field with all derivatives replaced by ge
eral covariant derivatives. The additional terms of the sa
dimension involving the Riemann tensor are the compone
of LW nm(2n) in the energy expansion of the nonminimal couplin
of the scalar and gravitational fields~2.4!.

For the first terms in the effective field theory expansio
one has

RW ~2!5~R2,RmnR
mn,eabgdemnrsR

mn
abR

rs
gd!,

LWm~2!5@~gmnDm]nf!2,f2gmn]mf]nf,f6#, ~2.5!

LW nm~2!5~RW ~2!f2,Rgmn]mf]nf,Rmn]mf]nf,Rf4!.

The general parametrization of the effective action is r
dundant for two different reasons. First, a change in the sc
M is equivalent to an appropriate rescaling of every dime
sionless parameter. Second, by using a nonlinear redefini
of fields, it is possible to eliminate some of the terms in th
action ~2.1!–~2.4!. Nevertheless, it is simpler to use this re
dundant parametrization in order to identify the gener
structure of the renormalization group equations. There
two simple examples for a convenient choice of the ma
scale of the effective theoryM . If there is a choice of the
scaleM such that all the dimensionless parametersa2n

( i ) in the
Lagrangian density of the gravitational fieldLg are simulta-
neously of order one, then this scale characterizes the siz
the fluctuations in the geometry. Alternatively, if there is
choice of M such that all the dimensionless paramete
l2n
( i ) ,j2n

( i ) are of order one, then this is the scale characteris
of the matter field fluctuations. Once the scale of the effe
tive theoryM has been choosen as one of the scales of
physical system, using the Newtonian limit of this action on
hasa1

2516p(M /MPl)
2 whereMPl is the Planck mass. Then

a1 gives the scaleM in units of the Planck mass.
The simplest case, a system with a unique natural sc

~Planck mass!, corresponds to an effective action with all th
dimensionless parameters of order one whenM;MPl . Next
one can consider a case where all the parameters excepa1
are of order one at a given value ofM and it corresponds to
a system with two mass scales, one associated to the clas
limit and a common scale for the geometry and matter fie
fluctuations. Another possibility is that there are two diffe
ent choices forM , one making alla2n

( i ) of order one and a
second one making alll2n

( i ) ,j2n
( i ) of order one; in this case
n
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there are two different scales for the fluctuations of the ge
ometry and the matter system together with the Planck scale
One could consider even more complicated systems wit
more and more different characteristic mass scales corre
sponding at the level of the effective field theory to richer
hierarchies for the dimensionless parameters.

A perturbative analysis of the action~2.1!–~2.4! based on
the decomposition of the metric

gmn5hmn1
a1

M
hmn , hmn5diag~1,21,21,21!,

~2.6!

can be done@13–15# by using the standard methods of gauge
theories. A noninvariant term~gauge fixing! has to be added
to the action~2.1!: for example,

SGF5E d4xA2g
1

2 S ]rhmr2
1

2
]mhr

rD 2 ~2.7!

is a very convenient choice for explicit calculations. The
standard derivation, in perturbatively renormalizable theo-
ries, of the renormalization group in a mass independen
renormalization scheme@10# can be translated to an effective
field theory. One has an infinite number of bare parameter
in one to one correspondence with the dimensionless param
eters of the effective action. Using dimensional regulariza-
tion one has expressions for the bare parameters in terms
the renormalized parameters with poles whene→0 ~dimen-
sionD542e). From the independence of the bare param-
eters on the renormalization scalem, one concludes that any
change ofm must be equivalent to a change in the renormal-
ized parameters. The renormalization group equations ex
press this fact.

In the case of gravity coupled to a scalar field, these equa
tions are

m
da1

dm
5ba1

~aW ,lW ,a1jW !, m
da2n

~ i !

dm
5ba

2n
~ i !~aW ,lW ,a1jW !, ~2.8!

m
dl2n

~ i !

dm
5bl

2n
~ i !~aW ,lW ,a1jW !, ~2.9!

m
d~a1j2n

~ i !!

dm
5ba1j

2n
~ i !~aW ,lW ,a1jW !, ~2.10!

whereaW lW , jW are the set of dimensionless parameters appea
ing in Lg , Lm , Lnm, respectively. The renormalization
group b functions are determined perturbatively from the
residues of the simple poles ate50 in the relations between
bare and renormalized dimensionless parameters. In the p
rametrization used in Eqs.~2.1!–~2.4! any interaction term
with the gravitational fieldhmn is proportional toa1. This is
the reason why the parameters corresponding to the nonmin
mal coupling appear in the renormalization group equation
through the combinationa1jW .

Dimensional arguments together with the presence of
single mass scaleM ~the dependence on the renormalization
scalem is logarithmic! lead us to identify a simple structure
for the renormalization group equations, which is a generali
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4976 54MARIO ATANCE AND JOSÉLUIS CORTÉS
zation of the structure found in the case of pure gravity@8#.
Theb functions satisfy the homogeneity conditions

ba1
~aW 8,lW 8,a18jW8!5tba1

~aW ,lW ,a1jW !, ~2.11!

ba
2n
~ i !~aW 8,lW 8,a18jW8!5t2nba

2n
~ i !~aW ,lW ,a1jW !, ~2.12!

bl
2n
~ i !~aW 8,lW 8,a18jW8!5t2nbl

2n
~ i !~aW ,lW ,a1jW !, ~2.13!

ba1j
2n
~ i !~aW 8,lW 8,a18jW8!5t2n11ba1j

2n
~ i !~aW ,lW ,a1jW !, ~2.14!

where

a185ta1 ,aW 2n8 5t2naW 2n ,lW 2n8 5t2nlW 2n ,

jW2n8 5t2njW2n . ~2.15!

These conditions put strong restrictions on the depe
dence of theb functions on all the dimensionless paramete
with one exception, the scalar self-couplingl0. Each renor-
malization groupb function will be a polynomial in the re-
maining parameters of a given degree with a series exp
sion inl0 as coefficients, which can be determined order
order in perturbation theory. From Eqs.~2.12!–~2.14! one
can see that them dependence ofaW 2n , lW 2n , jW2n is fixed by a
finite number of parametersaW k , lW k , andjW k with k<2n. This
triangular structure of the renormalization group equations
a mass independent renormalization scheme is the main
gredient in the discussion of the effective field theory form
lation of gravity presented in this work.

A mass for the scalar field and a cosmological consta
term corresponds, in the parametrization of the effective fie
theory we are using, to the addition of a terml22M

2f2 and
a22M

2 inside the brackets in Eqs.~2.3! and ~2.2!, respec-
tively. The modifications in the renormalization group equ
tions are the addition of two equations fora22 andl22 and
the presence of new contributions in theb functions depend-
ing ona22, l22. The homogeneity conditions~2.11!–~2.14!
can be generalized including a228 5t22a22 and
l228 5t22l22. One consequence of these conditions is th
ba22

andbl22
are both proportional toa22 or l22 and then

a vanishing mass and cosmological constant parameters
quired in order to get the simple triangular structure for th
m dependence of the parameters of the effective action
consistent with the renormalization group equations.

To illustrate the general previous considerations, we w
end up this section by writing explicitly the renormalizatio
group equations for the first terms in the 1/M expansion of
the effective action. One has

m
dl0

dm
5l0

2B0
~1! , ~2.16!

m
dj0
dm

5l0B0
~2!S 12

j0
12D , ~2.17!

whereB0
(k) are power expansions inl0. There is no effect of

the gravitational interaction on them dependence of the sca
lar self-coupling and Eq.~2.16! is the renormalization group
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equation of thelf4 theory. Theb function for j0 can be
read from the insertion of an external graviton and a singl
gravitational coupling on the scalar self-energy and it doe
not involve any effect from the fluctuations of the gravita-
tional field. This is the reason why there is a common powe
expansion inl0 for the two terms in theb function for j0,
and the relative coefficient212 can be read from the one
loop results for the divergencies of gravitation interacting
with a scalar particle@13#.

Next one has

m
da1

dm
50. ~2.18!

This is because any gravitational interaction is proportiona
to a1 and it is not posssible to have a divergent 1/e contri-
bution compatible with Eq.~2.11!. At order 1/M2 the renor-
malization group equations are

m
da2

~ i !

dm
5a1

2@B2
~ i ,1!1j0B2

~ i ,2!1j0
2B2

~ i ,3!#, ~2.19!

m
dl2

~ i !

dm
5(

j
l2

~ j !l0B2
~ i , j ,4!1a1

2l0@B2
~ i ,5!1j0B2

~ i ,6!

1j0
2B2

~ i ,7!#, ~2.20!

m
dj2

~ i !

dm
5(

j
j2

~ j !l0B2
~ i , j ,8!1(

j
l2
j @B2

~ j ,9!1j0B2
~ j ,10!#

1a1
2@B2

~ i ,11!1j0B2
~ i ,12!1j0

2B2
~ i ,13!1j0

3B2
~ i ,14!#,

~2.21!

where once more one has several coefficientsB2 as power
expansions in the self-couplingl0. The generalization to
higher-order terms in the 1/M expansion is obvious.

The zero-order term in the expansion ofB2
( i ,1) , B2

( i ,2) ,
B2
( i ,3) for the gauge fixing in Eq.~2.7! can be read from the

one loop calculations in@13,14#. The determination of the
renormalization group coefficients fora4

( i ) in lowest order
requires a two-loop calculation whose results in the case o
pure gravity are given in@14#. Although the divergences, and
then the coefficients of the renormalization group equations
depend on the gauge fixing condition@16#, there are no ad-
ditional substractions and a modification of the gauge fixing
condition simply gives an equivalent formulation of the ef-
fective field theory.

The general structure of the renormalization group equa
tions based on dimensional arguments will be valid beyon
the simple example of a scalar field considered in this sec
tion. The only difference will be on the number and explicit
form of the different terms in the minimal and nonminimal
coupling of the matter system to the gravitational field and
on the values for the coefficients of the counterterms, whic
determine the coefficients in the renormalization group equa
tions.
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III. REDUCTION OF COUPLINGS

A. General considerations

The idea of looking for relations between the couplings
a renormalizable field theory, which are independent of
renormalization scale and compatible with the renorma
ability of the theory has been studied in recent years
different purposes@17#. The program of reduction of cou
plings was initiated in@18# by looking for massless renor
malizable theories in the power counting sense with a sin
dimensionless coupling parameter. The same basic id
were considered in@19# in order to understand the presen
of a finite number of parameters in a renormalizable the
despite the appearence of an infinite number of interac
terms in the light-cone quantization method. The underly
Lorentz covariance and gauge invariance, which are
manifest in this quantization scheme, are reflected in the p
sibility to determine the renormalization group trajectories
terms of a finite number of running variables.

In the case of the effective field theory formulation
gravity, one also has an infinite number of interaction ter
as required by the ultraviolet divergences of the theory,
one can consider the possibility to have a finite number
independent renormalized parameters. The reduction of c
plings in this case could be a consequence of a symmetr
the underlying fundamental theory, which is hidden in t
field theoretical limit. If the effective field theory of gravity
is a result of the application of the reduction program, th
one has a situation where the field theoretical approach g
as far as possible in the sense that the low-energy limit of
theory is only sensitive to the details of the underlying theo
through the value of a finite number of parameters.

This idea has been studied in the simpler case of p
gravity in @8#. The result is that it is possible to express a
the parametersaW 2n in terms of two parametersa1 anda2 in
a way compatible with the renormalization group equatio
but in the general case there are as many free paramete
these relations as parametersaW 2n due to the trivialm depen-
dence ofa1. Then one has a real reduction of couplings on
when one assumes thata1

2!a2, which corresponds to a mas
scale for the fluctuations of the geometry much smaller th
the Planck mass, and keeps only the dominant term in
expansion in powers ofa1. The aim of this section is to
consider possible extensions of the reduction of coupling
the presence of a scalar matter field coupled to the grav
tional field. The main difference with the pure gravity case
the presence of a parameterl0 in the renormalization group
equations and in the relations between couplings. The de
dence on this new parameter is not fixed by dimensio
considerations and is incorporated order by order in a per
bative expansion. Another difference comes from the po
bility to consider new reductions of couplings with an add
tional independent parameterl2 associated to the matte
system.

B. Minimal reduction

The triangular structure of the renormalization gro
equations allows us to look for reduction of parameters or
by order in the 1/M expansion of the effective theory. In
lowest order the relevant parameters to consider arel0, j0,
of
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and the renormalization group equations~2.16! and~2.17!. A
reduction at this level corresponds to expressj0 as a power
expansion inl0 with coefficients fixed in order to reproduce
its m dependence. The only possible reduction is a trivi
one,j05

1
12 .

At order 1/M2 the first parameter to consider isaW 2. The
renormalization group equation~2.19! can be written, using
the reduction ofj0, as

m
daW 2

dm
5AW 2a1

2. ~3.1!

The factorization at this level of the radiative corrections du
to the matter field leads us to identify a unique power expa
sion inl0, A2,

AW 25aW 2
~0!A2 , ~3.2!

where the zero-order term inA2 is chosen to be one and the
constant coefficientsaW 2

(0) can be read from the one loop re
sult @13# for the counterterms quadratic in the Riemann te
sor. A reduction of couplings at this level can be obtained
one introduces a dimensionless parametera2 with a renor-
malization scale dependence given by

m
da2

dm
5A2a1

2. ~3.3!

Then it is possible to write the parametersa2
( i ) in terms of

a2 and a1 in a way compatible with the renormalization
group equations,

aW 25aW 2
~0!a21aW 2

~1!a1
2, ~3.4!

but, as a consequence of the independence ofa1 on the
renormalization scale, the coefficientsaW 2

(1) are free param-
eters and the relations~3.4! are not real reduction equations
but simply a reparametrization. Ifa1

2!a2, and one takes the
dominant term in the expansion in powers ofa1

2/a2 in Eq.
~3.4!, then one has a reduction of couplings for the term
quadratic in the Riemann tensor.

The next step is to consider the renormalization grou
equations for the parameters corresponding to terms of
mension 6 in the minimal coupling of the scalar and grav
tational fields. Using the reduction ofaW 2 andj0 one has

m
dl2

~ i !

dm
5(

j51

3

l2
~ j !l0L2

~ i , j !1L2
~ i !a1

2. ~3.5!

If one does not consider additional free parameters~minimal
reduction!, then one has to be able to expressl2

( i ) in terms of
l0, a1, anda2 . Consistency with the renormalization group
equations leads to

lW 25
lW2
l0

a1
2 , ~3.6!

wherelW2 are power expansions inl0 with coefficients deter-
mined order by order as the solution of consistency equ
tions, which reduce to a linear system of equations.
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If one inserts the reduction of parameters in the previo
steps into the renormalization group equations~2.21! for the
nonminimal couplings of dimension 6, one obtains

m
dj2

~ i !

dm
5(

j51

3

j2
~ j !l0X2

~ i , j !1
X2

~ i !

l0
a1
2. ~3.7!

Once more the reduction of the parametersj2
( i ) is uniquely

determined by the renormalization group equations

jW25
xW2
l0
2a1

2 , ~3.8!

where each term in the expansion in powers ofl0 of xW2 is the
solution of a linear system of equations.

The iterative procedure to reduce parameters can be
plied to the remaining parameters of the effective theory. F
the terms of order 1/M4 in Lg one has

m
daW 4

dm
5AW 4

~0!a1
2a21

AW 4
~1!

l0
2 a1

4, ~3.9!

and a reduction consistent with the renormalization gro
leads to

aW 45aW 4
~0!a2

21
aW 4

~1!

l0
a1
2a21

aW 4
~2!

l0
3 a1

4. ~3.10!

The coefficientsaW 4
(k), k50,1,2, are power expansions inl0

determined by a system of linear equations with one exc
tion, the coefficient ofl0

3 in aW 4
(2) , which does not appear in

the consistency equations. Then once more the relati
~3.10! are not a real reduction, but a reparametrization
terms of the arbitrary constant coefficients ofa1

4.
For the 1/M4 terms inLm one has the reduced renorma

ization group equations

m
dl4

~ i !

dm
5(

j
l4

~ j !l0L4
~ i , j !1L4

~ i !a1
2a21

L48
~ i !

l0
2 a1

4,

~3.11!

and the reduction relations

lW 45
lW4

~0!

l0
a1
2a21

lW4
~1!

l0
3 a1

4, ~3.12!

which can be used to extend the reduction to the nonminim
couplings

jW45
xW4

~0!

l0
2 a1

2a21
xW4

~1!

l0
4 a1

4. ~3.13!

The steps followed in the determination of the reductio
of the parameters corresponding to terms of order 1/M4 can
be repeated order by order in the expansion in 1/M to get the
minimal reduction of the field theory of gravity coupled to
scalar field, which is given by the relations
us
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a

aW 2n5aW 2na2
nF11OS a1

2

a2
D G ,

lW 2n5
lW2n
l0

a2
n21a1

2F11OS a1
2

a2
D G , ~3.14!

jW2n5
xW2n
l0
2 a2

n21a1
2F11OS a1

2

a2
D G .

The condition to have a real reduction of couplings is th
a1
2!a2. In this case we have shown that there is a uniq

way to find perturbatively a unique Lagrangian with th
property that all the couplings can be written, at any reno
malization scalem, in terms of three independent dimension
less parametersl0, a1, and a2. The reduction equations
~3.14! as well as them dependence of the independent pa
rameters~2.16!, ~2.18!, and ~3.3! can be determined from a
perturbative calculation of counterterms.

Each of the parameters of the reduced theory allows us
identify a typical scale of the system. The scale associated
the parameterl0 can be taken, for example, as the sca
M0 such thatl0(m5M0)/4p51 and it fixes the range of
validity of the perturbative approach to the effective theor
If we choose the scaleM in the energy expansion of the
effective theory asM0, then the second parametera1 is as-
sociated to the scale characteristic of the classical limit, t
Planck massMPl through the relationa1

2/16p5M0
2/MPl

2 The
parametera2(M0) allows us to introduce a third scale in the
system, which is the scale characteristic of the fluctuations
the geometryMR generated by the matter system at the sca
M0. From the expansion ofLg in powers of the Riemann
tensor one getsa2(M0)5M0

2/MR
2 and the condition for the

validity of the reductiona1
2!a2 in terms of the three scales

of the system corresponds to the condition thatMR!MPl .

C. Nonminimal reduction

The minimal reduction of couplings is an extension of th
reduction found in the case of pure gravity in@8# with the
addition of the self-couplingl0 to the independent param-
etersa1 anda2. An alternative to this reduction correspond
to introduce still another independent parameter from t
matter system Lagrangian. This can be done by going ba
to the renormalization group equations forl2

( i ) ~3.5! and in-
troducing a new independent parameterl2 with a renormal-
ization scale dependence given by

m
dl2

dm
5L2l0l2 , ~3.15!

whereL2 is a new expansion in powers ofl0 to be chosen
conveniently in a way compatible with the renormalizatio
group equations. The most general form for the reduction
the parametersl2

( i ) compatible with dimensional arguments
has three terms proportional tol2, a2, anda1

2, respectively
with coefficients, depending onl0. These coefficients can be
determined perturbatively through the consistency conditio
on the reduction imposed by the renormalization group equ
tions. The solution can be written in the form
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l2
~ i !5 l 2,0

~ i !l21
l 2,1
~ i !

l0
a1
2. ~3.16!

The parameterl2 can be chosen such thatL2 is a constant
corresponding to one of the eigenvalues of the matrix giv
by the zero-order term in the expansion ofL2

( i , j ) appearing in
the renormalization group equation ofl2

( i ) ~3.5!. The zero-
order terms in the expansion in powers ofl0 of l 2,0

( i ) are the
components of the corresponding eigenvector. The rema
ing terms in the expansion of the coefficients in the redu
tion, l 2,0

( i ) and l 2,1
( i ) are the solutions of the remaining consis

tency conditions, which reduce to a system of line
equations.

Once the new independent parameterl2 has been intro-
duced, with its corresponding renormalization group equ
tion ~3.15!, there is no difficulty in repeating the step by ste
reduction of the remaining dimensionless parameters in
effective theory. The results for the first terms in the 1/M
expansion are

jW25
xW2,0
l0

l21
xW2,1
l0
2 a1

2 ,

aW 45aW 4,0a2
21

aW 4,1
l0

a2a1
21

aW 4,2
l0
2 l2a1

21
aW 4,3
l0
3 a1

4 ,

~3.17!

lW 45
lW4,0
l0

l2
21

lW4,1
l0
2 l2a1

21
lW4,2
l0

a2a1
21

lW4,3
l0
3 a1

4,

jW45
xW4,0
l0
2 l2

21
xW4,1
l0
3 l2a1

21
xW4,2
l0
2 a2a1

21
xW4,3
l0
4 a1

4.

The expansion in powers ofl0 of the reduction coefficients
aW , lW,xW is fixed by a set of linear systems of equations with th
exception of the term proportional tol0

3 in aW 4,3, which re-
mains undetermined. Once more a real reduction of co
plings requires to assume thata1

2!a2 and to neglect terms
supressed by powers ofa1

2/a2 in the reduction equations
~3.17!.

The new independent parameterl2 in this nonminimal
reduction corresponds to a new mass scaleME in the energy
expansion of the matter system related to the dimensionl
parameterl2 by l2(M0)5M0

2/ME
2 . One can see the non

minimal reduction as an extension of the scalar effecti
field theory with two free parametersl0 andl2. The gravi-
tational interaction introduces at least two additional para
etersa1 and a2. The main difference with respect to th
minimal reduction discussed in the previous subsection
that the contributions of higher dimensional operators in t
matter system Lagrangian are not necessarily suppresse
inverse powers of the Planck mass.

IV. MASSIVE CASE. COSMOLOGICAL CONSTANT
PROBLEM

If one considers the gravitational interaction of a massi
spinless particle, then one has to include a terml22M

2f2 in
the matter Lagrangian density. The dimensionless param
l22 has to be taken into account in the discussion based
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dimensional arguments leading to the general structure of
renormalization group equations. The homogeneity con
tions of theb functions for the parametersa1, aW 2n , lW 2n ,
jW2n include the rescaling of the additional paramete
l228 5t22l22 and the simple triangular structure is lost du
to the contributions proportional to positive powers ofl22,
which will be accompanied by the parameters correspond
to terms of higher dimensionality. If one wants the reductio
of couplings to be applicable also in this case, then one h
to assume that the dimensionless parameterl22 is suffi-
ciently small to treat its effects as a small perturbation. Th
additional parameter is associated to a new mass scale in
system, the scalar particle massm25l22M

2, and the reduc-
tion of couplings requires this scale to be much smaller th
any of the other mass scales of the system. The reduction
couplings identified in the previous section for the massle
case can be taken as the zero order term of an expansio
the reduction equations in powers of the parameterl22.

Another effect of the mass of the scalar particle is that o
has to consider simultaneously a cosmological constant. T
can be seen from the renormalization group equation for t
dimensionless parametera22, corresponding to the cosmo-
logical term, which can be written in the form

m
da22

dm
5l22

2 a1
2b̂a22

~l22 ,aW ,lW ,jW !1O~a22!. ~4.1!

Dimensional arguments and the fact that all the couplings
the scalar field to the gravitational fieldhmn are proportional
to a1 have been used to write the contribution to theb
function of the dimensionless cosmological parameter due
the remaining parameters in terms of the functionb̂a22

,
which satisfies the homogeneity condition

b̂a22
~aW 8,lW 8,jW8!5b̂a22

~aW ,lW ,jW !. ~4.2!

The first terms in the expansion in powers ofl22 for the
renormalization group equation of the dimensionless cosm
logical parameter are

m
da22

dm
5l22

2 a1
2FB22

~1!1S (
i
B22

~ i ,1!l2
~ i !1(

i
B22

~ i ,2!j2
~ i !

1B22
~2!a1

2Dl221S (
i
B22

~ i ,3!l4
~ i !1(

i
B22

~ i ,4!j4
~ i !

1(
i , j

B22
~ i , j ,1!l2

~ i !l2
~ j !1(

i , j
B22

~ i , j ,2!l2
~ i !j2

~ j !

1(
i , j

B22
~ i , j ,3!j2

~ i !j2
~ j !1(

i
B22

~ i ,5!a2
~ i !a1

2

1(
i
B22

~ i ,6!l2
~ i !a1

21(
i
B22

~ i ,7!j2
~ i !a1

21B22
~3!a1

4Dl22
2

1O~l22
3 !G1O~a22!. ~4.3!
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The cosmological constant parameterL5(a22 /a1
2)M4

can be written in units of the scalar mass by using the
mensionless parametersa1, a22, andl22 as

L

m4 5
a22

a1
2l22

2 5
a22

l22

1

a1
2l22

. ~4.4!

This, together with the renormalization group equation~4.3!,
gives a reformulation of the cosmological constant probl
at the level of the effective field theoretic formulation. It
not possible to havea22!a1

2l22
2 over the energy range o

validity of the effective theory and then it is not possible
haveL/m4!1 as required by the experimental upper bou
for the cosmological constant.

In order to discuss possible solutions to the cosmolog
constant problem, one has first to consider, instead of a
lar field, a realistic matter system including fermion a
gauge fields with the strong and electroweak interactions
the minimal standard model of particle physics. If the mat
system content of fields and interactions is such that a
consequence of a symmetryb̂a22

50, then

m
da22

dm
}a22 , ~4.5!

and the cosmological parameter can be made arbitra
small.1

Taking into account thata1
2l225m2/MPl

2 is of the order
of 10232 for a mass scale of the matter systemm of the order
of 1 TeV, another possibility to solve the cosmological pro
lem is based on the assumption that the first two terms in
expansion ofba22

vanish. The remaining terms can be ma
compatible with the smallness of the cosmological const
if the combinations of parameters, appearing in the coe
cient of l22

2 inside the brackets in Eq.~4.1!, are not much
bigger thana1

4.
If one considers a minimal reduction of the effectiv

theory for a realistic matter system with the same numbe
independent parametersl22, l0, a1, a2 as in the case of a
scalar field, then the renormalization group equation of
cosmological parameter will be given by

m
da22

dm
5l22

2 a1
2@A22

~1!1A22
~2!a1

2l221A22
~3!a1

2a2l22
2

1A22
~4!a1

4l22
2 1O~l22

3 !#1O~a22!, ~4.6!

where the coefficientsA22
(k) are power expansions in the pa

rameterl0. In this case the possible solution of the cosm
logical constant problem based on the vanishing of the fi
few terms in thel22 expansion of theb function gives just
two conditions on the matter system:

A22
~1!50, A22

~2!50. ~4.7!

1A supersymmetric extension of the minimal standard model i
candidate, but it is not clear how the required soft supersymme
breaking terms can be made compatible with the vanishing
b̂a22

.
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Assuming that the remaining coefficient expansions are
order one, one has the additional condition for the indep
dent dimensionless parametersa2 /a1

2<106, which corre-
sponds to the restriction on the mass scales of the effec
theoryMR

2/MPl
2 >1026. On the contrary, if the solution to the

cosmological problem is based on some symmetry of
underlying theory leading toA22

(k)50, there is no restriction,
due to the smallness of the cosmological constant, on
mass scales of the effective theory.

The cosmological constant problem can be discus
along the same lines if there is a nonminimal reduction of
effective theory with an additional parameterl2 . In this case
one has the renormalization group equation for the dim
sionless cosmological parameter

m
da22

dm
5l22

2 a1
2@A228~1!1~A228~2!a1

21A228~3!l2!l22

1~A228~4!l2
21A228~5!a2a1

21A228~6!l2a1
2

1A228~7!a1
4!l22

2 1O~l22
3 !#1O~a22!. ~4.8!

In this case a solution to the cosmological constant probl
based on the vanishing of the first two terms in the expans
in powers ofl22 requires that the matter system satisfies t
three conditions

A228~k!50, k51,2,3, ~4.9!

and one also has the bounds for the parametersl2 anda2,

a2

a1
2<106,

l2

a1
2<103, ~4.10!

which gives a restriction on the additional mass scaleME ,
ME

2/MPl
2 >1023 .

V. SUMMARY

It has been shown that the perturbative renormalization
the theory of a scalar field coupled to the gravitational fie
which requires an infinite number of counterterms, is co
patible with the presence of only a finite number of reno
malized parameters, which can be chosen arbitrarily a
given scale. In this sense one has a theory with the sa
predictibility as a renormalizable theory in the power coun
ing sense. The corrections to the low-energy limit due to
higher-order terms in the energy expansion of the effect
theory do not necessarily involve additional free paramete
This result found in the case of pure gravity@8# has been
extended to the case of a scalar field coupled to gravity
two different forms~minimal and nonminimal reduction o
couplings!. The effective theory has several characteris
mass scales: the scale associated to the classical limit~the
Planck massMPl), the scale associated to the fluctuations
the geometry (MR), the scale of the fluctuations of the matte
system (ME), the scale limiting the validity of the perturba
tive treatment (M0), and the mass of the scalar field (m).
Each of these scales is in one to one correspondence with
independent dimensionless parameters of the effective the
after a reduction of couplings compatible with the renorm
ization group equations. The reduction of couplings p
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some limitations on the mass scales. The reduction of
couplings in the gravitational Lagrangian require
a2 /a1

2@1 and thenMR!MPl . The treatment of the scala
mass as a perturbation requiresl22l2!1, which implies
that m!ME . In the case of minimal reduction, one ha
l2;a1

2 and thenME;MPl .
In order to have an energy range within the perturbati

domain where some of the low-energy limit corrections ha
to be included, it is necessary for eitherMR or ME to be
smaller thanM0. In the case of minimal reduction of cou
plings, the contribution from a termLm(n) in the matter La-
grangian, which is of order (l2n /M

2n)E2n when one is con-
sidering the matter system at energies of orderE, gives an
effect of order (E/MPl)(E

2/MR
2)n21. Then even if the scale

M0 for the domain of validity of the perturbative treatmen
can be much lower thanMPl , one has to consider energie
E;MR in order to go beyond the low-energy limit.

It is natural to expect that the results found for a sca
field coupled to gravity can be generalized to more gene
cases for the matter system. Instead of the scalar s
couplingl0, one will have a set of dimensionless coupling
for the nongravitational interactions and instead of the ma
of the scalar one will have one or several masses for
matter fields.
the
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The cosmological constant problem has been reform
lated at the level of the renormalization group equations.
the presence of a mass for the scalar field, the~logarithmic!
derivative of the cosmological parameter with respect to
renormalization scale has a contribution, which is not p
portional to the cosmological parameter. Then it is not po
sible to have an arbitrarily small value for this parame
over a given range of scales. Two possible solutions of t
problem have been considered corresponding to the poss
ity that these terms in theb function of the cosmologic pa-
rameter, which are not proportional to it, either vanish for
appropriate choice of matter Lagrangian or are sufficien
small to be compatible with the smallness of the cosmolo
cal constant. The number of conditions that the matter s
tem have to satisfy, in order to have a solution to the cosm
logical constant problem based on the second possib
mentioned above, is significantly reduced if one considers
effective theory with a reduction of couplings.
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