PHYSICAL REVIEW D VOLUME 54, NUMBER 8 15 OCTOBER 1996

Effective field theory of gravity, reduction of couplings, and the renormalization group
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The structure of the renormalization group equations for the low-energy effective theory of gravity coupled
to a scalar field is presented. An approximate solution to these equations with a finite number of independent
renormalized parameters can be found when the mass scale characteristic of the fluctuations in the geometry is
much smaller than the Planck mass. The cosmological constant problem is reformulated in this context and
some conditions on the matter field content and interactions required in order to have a sufficiently small
cosmological constant are identifig0556-282(96)06320-5

PACS numbds): 04.60—m, 11.10.Hi

I. INTRODUCTION Each term in the Lagrangian of the effective theory of
gravity is a product ofcovariant derivatives ¢fmatter fields
This work can be classified within the perturbative ap-and components of the Riemann tensor. At sufficiently low
proach in which quantum gravity is seen as a theory of smaknergies and for sufficiently small fluctuations in the matter
guantum fluctuations around a flat Minkowski backgroundfields and the geometry of spacetime, the lower dimensional
spacetime. From this point of view, quantum gravity can beterms in the Lagrangian will be dominant and the expansion
regarded as just another field theory to be quantized in & the effective Lagrangian is a good approximation. At
standard way as it should be the case for any relativistihigher energies, and/or for larger fluctuations of the matter
quantum theory at low enerdyL]. This leads us to identify system or the geometry, higher order terms in the effective
an effective field theory with the gravitational field describedLagrangian become comparable to the lower dimensional
by a symmetric two-index tensor field as the low-energy efterms. There is an intermediate situation, where corrections
fective field theoretic formulation of quantum gravity. to the dominant term can be incorporated as a small pertur-
Like any effective field theory, its Lagrangian density will bation.
contain an infinite number of terms of arbitrary dimension- In the general case, at each order in the expansion new
ality and, therefore, is not perturbatively renormalizable infree parameters appear and the predictibility of the effective
the usual power counting sengd. But it is renormalizable theory is reduced, but this is not always necessarily the case.
in the sense that all the ultraviolet divergences can be carFhe renormalization group equations, fixing the dependence
celed by a renormalization of the infinite number of param-of the renormalized parameters on the renormalization scale,
eters corresponding to the most general action invariant urallow us to identify special situations, where only a finite
der general covariant transformationg3]. Then the number of renormalized parameters can be chosen freely. In
perturbative approach of renormalized effective thedds those cases the predictibility of the theory is not lost when
also can be applied in general relativity. This point of view successive terms in the expansion of the effective theory are
has been advocated recently by Donoghbie who shows incorporated.
how some large distance quantum gravitational effects can If one goes beyond the domain of validity of the pertur-
be derived within this framework. bative approach to gravity, then new interactions and new
In order to compute results for physical quantities in andegrees of freedom will be required in a new theory beyond
effective field theory, it is necessary to specify the Lagrangquantum field theory based on some unknown general prin-
ian together with a renormalization scheme. A natural way taiples[7]. The main point of this work is to investigate the
parametrize the Lagrangian is based on the introduction of possibility that this new theory going beyond the perturba-
fixed mass scalévl, which is a characteristic scale of the tive regime is such that its low-energy limit is as independent
physical system described by the effective theory, and a dien the details of the theory as possible. In other words, we
mensionless parameter for each term in the Lagrangian giveonsider an effective field theory with a minimal number of
ing the corresponding coefficient in units Bf raised to the free renormalized parameters.
appropriate power. Then one has an expansion of the La- In a previous worK8], the general structure of the renor-
grangian with terms of dimensionality greater than four sup-malization group equations for the effective field theory of
pressed by negative powers of the mass séédlelf one  pure gravity was identified. In the limiting case, where the
wants to have a well-defined expansi@vith terms of higher mass scale of the effective theory is much smaller than the
dimension being less important in the calculation of physicaPlanck masga possibility compatible with the renormaliza-
quantitie3 a mass-independent renormalization scheme musion group equations a theory with just one free renormal-
be choser}6]. ized parameter is obtained when contributions suppressed by
inverse powers of the Planck mass are neglected. The aim of
this work is to extend these results to the effective field
:Electronic address: atance@posta.unizar.es theory of gravity, including matter fields and nongravita-
Electronic address: cortes@posta.unizar.es tional interactions. Additional renormalization group equa-
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tions for the new parameters as well as the modificationshe remaining parameters as a small perturbation that can be
induced by these new parameters on the renormalizationeglected in a first approximation. In fact the experimental
group equations of the pure gravity theory have to be conupper bound on the cosmological constant forces this to be
sidered. Then one has to identify what are the conditions téhe case for the cosmological term and the parameter corre-
be able to express the effective Lagrangian in terms of &ponding to the mass term has to be tuned in such a way that
finite number of free parameters in a way consistent with théhe scalar mass is much smaller than the remaining mass
renormalization group equations. scales of the effective theory. The consistency of the tuning
In the next section we consider the renormalization of thd€quired on the cosmological parameter with its renormaliza-
theory of a scalar field coupled to a symmetric two-indextion group equation leads to a reformulation of the cosmo-
tensor field invariant under general covariant transformal0gical constant probleni9] at the level of the effective
tions. The absence of a dimensionful ultraviolet cutoff in ath€ory- Different alternatives to the solution of this problem
mass independent substraction schédimensional regular- in connection W|th_the redl_Jctlon of parameters in the effec-
ization and minimal substractipmllows us to give the gen- Ve theory of gravity are discussed. _
eral structure of the renormalization group equations for the Ve close in Sec. V with a summary and some concluding
dimensionless renormalized parameters of the theory. ThEPMments.
renormalized parameters corresponding to terms in the La-
grangian of dimension less than foimass and cosmological Il. RENORMALIZATION GROUP EQUATIONS.
term) can be set equal to zero. In this case the renormaliza- MASSLESS CASE
tion group equations for the remaining parameters have a The main idea in this work is to try to get some informa-
triangular structure. For a given term in the Lagrangian, the[io

renormalization group equation for the corresponding param:- h on quantum gravity from the renormalization group
group €q P 9p equations of its effective field theory formulation. This equa-

eter dgpends only on a finite number_ of parameters COMSion can be derived following the same steps of a perturba-
sponding to the terms in the Lagrangian of dImenSIOr]a“tytively renormalizable theory in the power counting sense

;gnna!?rgrﬁiggatl) thgi%g]:stig;;]Zrorl:?];ne?t;eijm. tl—'atﬁgngé o 10]. A very important tool in the perturbative renormaliza-
y gun P PETEon of an effective field theory is dimensional regularization
dence on the parameter corresponding to the scalar quar El] and the minimal substraction schefie]

self—coupling term. There i_s a series expansioq in this ParaIr= e will consider for definiteness the simplest matter sys-
ﬁ:gngh'Ch can be determined order by order in perturbatlotgem(a real scalar fieldcoupled to the gravitational field, but
Y. . . . . most of the discussion can be translated directly to a general
In Sec. Il a dl_scu33|_on of t.h(? possibility to f!nd arenor | atter system. It is convenient to introduce a fixed mass
malized !_agranglan W'th.a finite number of In(.jeDendemscaleM as a reference unit for all the couplings of the effec-
renormalized parameters is presented. Two special cases 3k

identified. In the first case one has a generalization of thel\(?e theory. The general expression for the action can be

: . i : g Written, using the invariance under general covariant trans-
reduction obtained in a previous work in pure graVigj ; :
. . . . formations, in the form
with a mass scaldl g, characteristic of the fluctuations in
the geometry of spacetime, much smaller than the Planck
mass and an additional dependence on the scalar self- S=J d4x[£g+ Lot Loml, (2.1
coupling determined perturbatively. A second case corre-
SDOH?S to the presg_nce tOf St'ltl anothfe:jnew 'r,‘depe_nd,enihp?\ihereﬁg is the Lagrangian density of the gravitational field,
rarr:te erf' clzr:_espon Ing ?_h"." erm o |metnS|(cj>nf.S|x N M€ nd L, Lom are the Lagrangian densities for the minimal
matter nield Lagrangian. 1his new parameter detines a NeW,y nonminimal coupling of the scalar and gravitational
mass scale, associated to the matter field fluctuations, tor ; .
; ields, respectively:

gether with the Planck mass and the sddlg. In both cases
the reduction of the infinite nhumber of parameters in the M2
general effective Lagrangian in terms of three or four inde- L4= NE
pendent parameters can be determined systematically order a
by order in perturbation theory by using the renormalization
group equations of the effective theory.

In Sec. IV we discuss the modification induced in the Ln=V—0
renormalization group equations when a mass term in the
Lagrangian is added. In the general case a cosmological term *4 .
is unavoidable and, due to the presence of terms of a dimen- +—4/JET‘]”+ e
sion less than four in the Lagrangian, the renormalization
group equations lose its simple structure and all the infinite
parameters appear in the renormalization group equation of L. =g
each parameter. The only way to translate to this case the =" 9
discussion of the possibility to have an effective theory with
a finite number of parameters is based on the assumption thAt cosmological constarficonstant term inside the brackets
the dimensionless parameters corresponding to the mass amdEq. (2.2)] and a masg¢? term in Eq.(2.3)] have not been
cosmological terms in the Lagrangian are sufficiently smallincluded(later we will see how the structure of the renormal-
to treat the modifications they induce on tBefunctions of  ization group equations would be affected in the presence of
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such terms The coefficientsa;, a,, @4, ..., Ao, X,,  there are two different scales for the fluctuations of the ge-
ometry and the matter system together with the Planck scale.
One could consider even more complicated systems with
more and more different characteristic mass scales corre-
sponding at the level of the effective field theory to richer

Nar ..., &0 &2, &4, ... are dimensionless parameters.
The dimensionality of the different terms in the action
fixes the power dependence on the mass seblef the ef-

fective theory. In the Lagrangian density of pure gravity > - :

) =(2) , hierarchies for the dimensionless parameters.
Ly, Ris the scalar curvatur&'®’ is a vector with the three 5 orrhative analysis of the actid@.1)—(2.4) based on
different invariants bun_t out_of two _Rlemann tensors as com+y,o decomposition of the metric
ponents, the different invariants with three Riemann tensors
or two Riemann tensors and two derivatives are the compo- @y
nents of the vectoR™ and so on. The expansion in inverse  9uv= 7ot 3wy 7uy=diagl,-1,-1,-1),
powers of the mass scale for the terms depending on the (2.6)
matter field has been written in a compact notation where
L2 is a vector, whose components are the different term&an be don¢13—13 by using the standard methods of gauge
of dimension 4+ 2n built out of the scalar field and deriva- theories. A noninvariant terrfgauge fixing has to be added
tives of the scalar field with all derivatives replaced by gen-t0 the action(2.1): for example,
eral covariant derivatives. The additional terms of the same
dimension involving the Riemann tensor are the components 5@sz d4x\/—_g %( aphﬂp_la h?

of £ in the energy expansion of the nonminimal coupling 20
of the scalar and gravitational field2.4).

For the first terms in the effective field theory expansion,
one has

2

2.7)

is a very convenient choice for explicit calculations. The
standard derivation, in perturbatively renormalizable theo-
ries, of the renormalization group in a mass independent
renormalization schen{é.0] can be translated to an effective
field theory. One has an infinite number of bare parameters
22) g o 2 2w 6 in one to one corre_spond_ence Wi_th the dime_nsionless param-
L' =[(g""D,0,$)",¢°9"" 0, $d,$,¢°], (2.9  eters of the effective action. Using dimensional regulariza-
. . tion one has expressions for the bare parameters in terms of
L2=(R?$2,RG*"d,$d,$,Rd,$d,6,ReY). the renormalized parameters with poles wiken0 (dimen-
sion D=4-¢€). From the independence of the bare param-
The general parametrization of the effective action is reeters on the renormalization scale one concludes that any
dundant for two different reasons. First, a change in the scalehange ofu must be equivalent to a change in the renormal-
M is equivalent to an appropriate rescaling of every dimenized parameters. The renormalization group equations ex-
sionless parameter. Second, by using a nonlinear redefinitiqgvess this fact.
of fields, it is possible to eliminate some of the terms in the |n the case of gravity coupled to a scalar field, these equa-
action (2.1)—(2.4). Nevertheless, it is simpler to use this re- tions are
dundant parametrization in order to identify the general
structure of the renormalization group equations. There are da;, I dagg I
two simple examples for a convenient choice of the masgt g~ = Ba,(®N a18), Mﬁzﬁagg(a,)\,alf), 2.9
scale of the effective theorlyl. If there is a choice of the
scaleM such that all the dimensionless parametef5in the da )
Lagrangian density of the gravitational fielt}, are simulta- p—22 =B (aN,ad), (2.9
neously of order one, then this scale characterizes the size of du an
the fluctuations in the geometry. Alternatively, if there is a .
choice of M such that all the dimensionless parameters d(ayéhn)
A0) &0) are of order one, then this is the scale characteristic *
of the matter field fluctuations. Once the scale of the effec-
tive theoryM has been choosen as one of the scales of thasherea X, € are the set of dimensionless parameters appear-
physical system, using the Newtonian limit of this action oneing in Ly, £, Ly, respectively. The renormalization
haSa§:1677(M/M p)2 WhereMp, is the Planck mass. Then group 8 functions are determined perturbatively from the
a4 gives the scalé/ in units of the Planck mass. residues of the simple poles &t 0 in the relations between
The simplest case, a system with a unique natural scaleare and renormalized dimensionless parameters. In the pa-
(Planck masks corresponds to an effective action with all the rametrization used in Eq$2.1)—(2.4) any interaction term
dimensionless parameters of order one wher M. Next  with the gravitational fielch ,, is proportional toe;. This is
one can consider a case where all the parameters exgept the reason why the parameters corresponding to the nonmini-
are of order one at a given value & and it corresponds to mal coupling appear in the renormalization group equations
a system with two mass scales, one associated to the classig¢atough the combinationlé.
limit and a common scale for the geometry and matter field Dimensional arguments together with the presence of a
fluctuations. Another possibility is that there are two differ- single mass scal®! (the dependence on the renormalization
ent choices foM, one making allal) of order one and a scaleu is logarithmio lead us to identify a simple structure
second one making aM(Z',Z, (2'% of order one; in this case for the renormalization group equations, which is a generali-

R@=(R%R,, R, €%, R R 5),

nrpo

:ﬁalfgr:(&i)zvalg)! (21@
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zation of the structure found in the case of pure grajy  equation of thex ¢* theory. Theg function for &, can be

The B functions satisfy the homogeneity conditions read from the insertion of an external graviton and a single
Lo . L gravitational coupling on the scalar self-energy and it does
Bal(a’,)\’,aig’)ztﬁal(a,)\,alg), (2.11 not involve any effect from the fluctuations of the gravita-

tional field. This is the reason why there is a common power
Bai(a' N alE)=t2B i@ X, ), (2.12  expansion in\, for the two terms in theg function for &,
2n 2n and the relative coefficient-12 can be read from the one
e U Z e ez loop results for the divergencies of gravitation interacting
Br(a’ N ar &) =tTBp(a N @), (213 yith a scalar particlé13).
L R L Next one has
ﬁal‘fgn)(a/,)\r,aigf):t2n+1ﬁa1§(2ir:(a,)\,alf), (214)
dOll

where o
e 0

(2.18
ai=tal,&én=t2n&2n v}:én:tanZny
R R This is because any gravitational interaction is proportional
Eb =12, (2.19 to aq and it is not posssible to have a divergen¢ toHntri-
bution compatible with Eq(2.11). At order 1M? the renor-
These conditions put strong restrictions on the depenmalization group equations are
dence of theg functions on all the dimensionless parameters
with one exception, the scalar self-coupling. Each renor- dalh
ma!lgatlon groupgB function waI be a polynpm|al in .the re- ,u—2Iaf[B(z"l)Jr508(2"2)+§SB(2"3)], 2.19
maining parameters of a given degree with a series expan- d
sion in\, as coefficients, which can be determined order by
order in perturbation theory. From Eq&.12—(2.14 one NG
can see that tha. dependence ok, Az, §2n is fixed by_a Md—2=2 NJNBUTD + a?N[BY D + £,B4 O
finite number of parametees, , ., andé, with k<2n. This J
triangular structure of the renormalization group equations in 2np(i,7)
) o X S +&5B5 7], (2.20
a mass independent renormalization scheme is the main in-
gredient in the discussion of the effective field theory formu-
lation of gravity presented in this work. dei
A for the scalar field and logical 2 fDNBUIE LS \[BY O+ £,BY 10
mass for the scalar field and a cosmological constant  u da 4 &5\ B> >, \3[B5 £0By 7]
term corresponds, in the parametrization of the effective field K ! !
theoryZV\_/e are using, to the qddltlon of a tekm,M ¢~ and + af[B(z"“)Jr §oB<2"12)+ 538(21,13>+ 585(2"14)]1
a_,M* inside the brackets in Eq$2.3) and (2.2), respec-
tively. The modifications in the renormalization group equa- (2.21
tions are the addition of two equations fer , and\ _, and

Fhe presence of new contributions in tﬁef_u_nctions depend- \yhere once more one has several coeffici@ysas power
ing ona_, A _,. The homogeneity condition®.11—(2.149  expansions in the self-coupling,. The generalization to

. . . 12 _ 72 ! A . R R
can be generalized includinga’,=t""a_, and higher-order terms in the M expansion is obvious.
N ,=t"2\_,. One consequence of these conditions is that The zero-order term in the expansion BV, B2

Ba_,andp,_, are both proportional tar_, or A _; and then  g(i3) for the gauge fixing in Eq(2.7) can be read from the

a vanishing mass and cosmological constant parameters, réne loop calculations ifil3,14. The determination of the

quired in order to get the simple triangular structure for therenormalization group coefficients far{’ in lowest order

w dependence of the parameters of the effective action igequires a two-loop calculation whose results in the case of

consistent with the renormalization group equations. _pure gravity are given ifil4]. Although the divergences, and
To illustrate the general previous considerations, we Willihen the coefficients of the renormalization group equations,

end up this section by writing explicitly the renormalization gepend on the gauge fixing conditifh6], there are no ad-

group equations for the first terms in theMllexpansion of  gitional substractions and a modification of the gauge fixing

the effective action. One has condition simply gives an equivalent formulation of the ef-
d fective field theory.
Mﬂ: ngD, (2.16 The general structure of the renormalization group equa-
du tions based on dimensional arguments will be valid beyond
the simple example of a scalar field considered in this sec-
%_)\ B@|1_ éo 21 tion. The only difference will be on the number and explicit
Hdu — 000 12)° .19 form of the different terms in the minimal and nonminimal

coupling of the matter system to the gravitational field and
whereBg‘) are power expansions iy. There is no effect of on the values for the coefficients of the counterterms, which
the gravitational interaction on the dependence of the sca- determine the coefficients in the renormalization group equa-
lar self-coupling and Eq2.16 is the renormalization group tions.



54 EFFECTIVE FIELD THEORY OF GRAVITY, ... 4977

. REDUCTION OF COUPLINGS and the renormalization group equatid@sl6 and(2.17). A

reduction at this level corresponds to exprésas a power

expansion in with coefficients fixed in order to reproduce
The idea of looking for relations between the couplings ofits x dependence. The only possible reduction is a trivial

a renormalizable field theory, which are independent of theyne, &= 5.

renormalization scale and compatible with the renormaliz- At order 1LM?2 the first parameter to considerf@. The

ability of the theory has been studied in recent years fokenormalization group equatio2.19 can be written, using
different purpose$17]. The program of reduction of cou- the reduction of,, as

plings was initiated if18] by looking for massless renor-

A. General considerations

-

malizable theories in the power counting sense with a single da, .

i i i ic i —=AK,a} (3.0
dimensionless coupling parameter. The same basic ideas I du 207 :
were considered ifil9] in order to understand the presence
of a finite number of parameters in a renormalizable theorylhe factorization at this level of the radiative corrections due
despite the appearence of an infinite number of interactioto the matter field leads us to identify a uniqgue power expan-
terms in the light-cone quantization method. The underlyingsion in\y, A,,
Lorentz covariance and gauge invariance, which are not

manifest in this quantization scheme, are reflected in the pos- A,=aPA,, (3.2
sibility to determine the renormalization group trajectories in
terms of a finite number of running variables. where the zero-order term iy, is chosen to be one and the

In the case of the effective field theory formulation of constant coefficienta’) can be read from the one loop re-
gravity, one also has an infinite number of interaction termssult [13] for the counterterms quadratic in the Riemann ten-
as required by the ultraviolet divergences of the theory, butor. A reduction of couplings at this level can be obtained if
one can consider the possibility to have a finite number obne introduces a dimensionless parametgmwith a renor-
independent renormalized parameters. The reduction of counalization scale dependence given by
plings in this case could be a consequence of a symmetry of
the underlying fundamental theory, which is hidden in the da; 2
field theoretical limit. If the effective field theory of gravity ”‘WZA?QI' 3.3
is a result of the application of the reduction program, then _
one has a situation where the field theoretical approach goéehen it is possible to write the parameterg) in terms of
as far as possible in the sense that the low-energy limit of they, and «; in a way compatible with the renormalization
theory is only sensitive to the details of the underlying theorygroup equations,
through the value of a finite number of parameters.

This idea has been studied in the simpler case of pure a,=a a,+ast o, (3.9
gravity in [8]. The result is that it is possible to express all
the parameters,, in terms of two parameters; anda, in ~ Put, s a consequence of the independencer,0bn the
a way compatible with the renormalization group equationsrenormalization scale, the coefficierd$" are free param-
but in the general case there are as many free parameterseters and the relation8.4) are not real reduction equations,

these relations as parameters, due to the trivialu depen-  but simply a reparametrization. #;<a,, and one takes the
dence ofa;. Then one has a real reduction of couplings onlydominant term in the expansion in powers &/ a; in Eq.
when one assumes thmf< a,, which corresponds to a mass (3.4), then one has a reduction of couplings for the terms
scale for the fluctuations of the geometry much smaller thaiuadratic in the Riemann tensor.

the Planck mass, and keeps only the dominant term in the The next step is to consider the renormalization group
expansion in powers of;. The aim of this section is to equations for the parameters corresponding to terms of di-
consider possible extensions of the reduction of couplings ifnension 6 in the minimal coupling of the scalar and gravi-
the presence of a scalar matter field coupled to the gravitaational fields. Using the reduction 6]‘2 and &, one has

tional field. The main difference with the pure gravity case is 03

the presence qf a parametey in the renormal!zatlon group d\; S AL+ L, 35
equations and in the relations between couplings. The depen- w du & "2 N2 2%

dence on this new parameter is not fixed by dimensional

considerations and is incorporated order by order in a pertutf one does not consider additional free parametanisimal
bative expansion. Another difference comes from the IOOSSireductioﬁ, then one has to be able to exprﬁé‘é in terms of

bility to consider new reductions of couplings with an addi—)\oy ay, anda, . Consistency with the renormalization group
tional independent parametdr, associated to the matter equations leads to

system.

-y
B. Minimal reduction )\2:)\—06&, (3.6

The triangular structure of the renormalization group R
equations allows us to look for reduction of parameters ordewherel , are power expansions iy with coefficients deter-
by order in the I expansion of the effective theory. In mined order by order as the solution of consistency equa-
lowest order the relevant parameters to considemngret,,  tions, which reduce to a linear system of equations.
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If one inserts the reduction of parameters in the previous . . ai
steps into the renormalization group equati¢a®1) for the an=asas 1+0 —
nonminimal couplings of dimension 6, one obtains 2
. . hd 2
dgy) & LX) - lan o pg s al”
%2 _ (y w22 2 Non="—a5 ~aj|1+0|—]]|, (3.149
o de ~ & ENXS Y+ X a;i. (3.7 nTN, 2 “ @,
. i) - . " 2
Once more the reduction of the paramet&i‘é is uniquely 2 =@a”’1a2 140 @
determined by the renormalization group equations an )\g 2 1 asl |’
L X ’ The condition to have a real reduction of couplings is that
52:{5“1’ (3.8 a?<a,. In this case we have shown that there is a unique

way to find perturbatively a unique Lagrangian with the
property that all the couplings can be written, at any renor-
malization scaleu, in terms of three independent dimension-
%ess parameterd,, «4, and a,. The reduction equations

where each term in the expansion in powera gbf )Zz is the
solution of a linear system of equations.

The iterative procedure to reduce parameters can be a|
plied to the remaining parameters of the effective theory. Fo
the terms of order M* in £, one has

3.14) as well as theuw dependence of the independent pa-
rameters(2.16), (2.18, and(3.3) can be determined from a
perturbative calculation of counterterms.
- (1) Each of the parameters of the reduced theory allows us to
% _ R(0) 2 AL 4 identify a typical scale of the system. The scale associated to
M Ay ajayt——ay, (3.9

du Ag the parametei, can be taken, for example, as the scale

Mg such that\o(u=My)/47=1 and it fixes the range of

and a reduction consistent with the renormalization groupvalidity of the perturbative approach to the effective theory.

leads to If we choose the scal® in the energy expansion of the
effective theory adM, then the second parametey is as-
. a a® sociated to the scale characteristic of the classical limit, the
=302+ 2 a4t 31 (2 2/\12
@y=ay ap - ana; \3 oL (3.10  Planck mas#/ p through the relatiom?/16m=M2/M2, The

parametew,(M;) allows us to introduce a third scale in the
system, which is the scale characteristic of the fluctuations of
) ) . ) the geometry\M ; generated by the matter system at the scale
d.etermlned by § SYStegn-ofJ|2ear eguatlons with one ex.ceqvI o. From the expansion of, in powers of the Riemann
tion, the coefficient ofg in a$?), which does not appear N tensor one geta,(Mgy)=M2/M% and the condition for the
the consistency equations. Then once more the relationgyjigity of the reductione?< a, in terms of the three scales

(3.10 are not a real reduction, but a reparametrization inof the system corresponds to the condition thigt<M p,.
terms of the arbitrary constant coefficientscd.

For the 1M* terms inL,, one has the reduced renormal-
ization group equations

The coefficientsal¥, k=0,1,2, are power expansions

C. Nonminimal reduction

The minimal reduction of couplings is an extension of the
dny) (s 1 (D) ay ()2 LD 4 reduction found in the case of pure gravity [i8] with the
M du =; Ny holg Ly a1a2+)\—ga1, addition of the seIf—coupIin_go to the indep_endent param-
(3.1 etersa, anda,. An alternative to this reduction corresponds
to introduce still another independent parameter from the

and the reduction relations matter system Lagrangian. This can be done by going back
to the renormalization group equations fo&‘) (3.5 and in-
) rgo) r5‘1> f[rod'ucing a new independent parametgrwith a renormal-
)\4:7\_0aia2+7a‘1" (3.12 ization scale dependence given by
0
d\,

which can be used to extend the reduction to the nonminimal Ma= LoNoh2, (3.1
couplings

N N wherelL, is a new expansion in powers &f, to be chosen
X(O) X(l) . . . . . .
z R4 47 4 conveniently in a way compatible with the renormalization
54_)\_(2)‘110‘2+)\_g“1' 313 group equations. The most general form for the reduction of
the parameters(z') compatible with dimensional arguments
The steps followed in the determination of the reductionhas three terms proportional 13, «,, and ai, respectively
of the parameters corresponding to terms of ordd4¢an  with coefficients, depending or,. These coefficients can be
be repeated order by order in the expansion M 16 get the  determined perturbatively through the consistency conditions
minimal reduction of the field theory of gravity coupled to a on the reduction imposed by the renormalization group equa-
scalar field, which is given by the relations tions. The solution can be written in the form
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_ _ ) dimensional arguments leading to the general structure of the
)\(2')=I<2'f 2+)\—a1. (3.1 renormalization group equations. The homogeneity condi-
0 , . > z
tions of the B functions for the parameters;, a,,, Aop,
The parametek, can be chosen such thi} is a constant §2n include the rescaling of the additional parameter
corresponding to one of the eigenvalues of the matrix given’ ,=t~2\ _, and the simple triangular structure is lost due
by the zero-order term in the expansionLé‘f’” appearing in  to the contributions proportional to positive powersiaf,,
the renormalization group equation ng) (3.5. The zero- which will be accompanied by the parameters corresponding
order terms in the expansion in powers)of of |(2i)0 are the to terms of higher dimensionality. If one wants the reduction
components of the corresponding eigenvector. The remairff couplings to be applicable also in this case, then one has

ing terms in the expansion of the coefficients in the reduci0 assume that the dimensionless paramate; is suffi-
tion, 19}, and1{, are the solutions of the remaining consis- €iéntly small to treat its effects as a small perturbation. The

tency ‘conditions. which reduce to a system of linearadditional parameter is associated to a new mass scale in the
equations. system, the scalar particle masé=\_,M?, and the reduc-

Once the new independent parametgrhas been intro- tion of couplings requires this scale to be much smaller than
duced, with its corresponding renormalization group equa@ny Of the other mass scales of the system. The reduction of
tion (3.15), there is no difficulty in repeating the step by stepcouplmgs identified in the previous section for the mass_less
reduction of the remaining dimensionless parameters in th§2S€ can be taken as the zero order term of an expansion of

effective theory. The results for the first terms in theviz/ the reduction equations in powers of the paramktey.
expansion are Another effect of the mass of the scalar particle is that one

. . has to consider simultaneously a cosmological constant. This
z _%20 X21 5 can be seen from the renormalization group equation for the
€= Ao 2 )\g el dimensionless parameter_,, corresponding to the cosmo-
logical term, which can be written in the form

- > 54,1 54,2 54,3
a4:a4,oa§+)\—oa2a§+yof)\2ai+ﬁai,
da_z ~ S - >
(3.17 Hgy N 20iBa (N 2@k ) F0(ap). (4.1

):4=|)\4—'0)\§+ I)\i'zl)\zai-i—l)\i'zazai-i-%gai,
0 0 0 0 Dimensional arguments and the fact that all the couplings of
. >Z4,o ) )24’1>\ ) )24’2 ) )24’3 . the scalar field to the gravitatiqnal field,,, are prpportional
§4ZFM+F 2a1+?a2a1+va1- to a; have been used to write the contribution to tAe
0 0 0 0 function of the dimensionless cosmological parameter due to

The expansion in powers of, of the reduction coefficients the. remai.ni!'\g parameters in. terms Of the functiép _,
a, [ x is fixed by a set of linear systems of equations with thehich satisfies the homogeneity condition

exception of the term proportional t?og in 54,3, which re-
mains undgtermmed. Once more a real reduction of cou- Bo (@' N ENV=B. (aXb). 4.2)
plings requires to assume tha§< a, and to neglect terms 2 2
supressed by powers fo/az in the reduction equations
(3.17). The first terms in the expansion in powersxaf, for the

The new independent parametes in this nonminimal  renormalization group equation of the dimensionless cosmo-
reduction corresponds to a new mass stajein the energy  |ogical parameter are
expansion of the matter system related to the dimensionless
parameten, by Ap(Mg)=Mg/MZ. One can see the non- ¢ ,
minimal reduction as an extension of the scalar effectiveu
field theory with two free parameteis, and\,. The gravi-
tational interaction introduces at least two additional param-
etersa; and a,. The main difference with respect to the +B(2%a§>)\2+
minimal reduction discussed in the previous subsection is
that the contributions of higher dimensional operators in the . o . o
matter system Lagrangian are not necessarily suppressed by +Z Bﬂ*§*1>>x8)7x9>+2 B(l%'z)?\(z')f(z”
inverse powers of the Planck mass. b "

)20 B+ S BN+ S B

S B+ Bl

(i,],3) (i) £(j) (i,5 (i) 2
IV. MASSIVE CASE. COSMOLOGICAL CONSTANT +i2j Bo27& &3 +2i Bryay )
PROBLEM
If one considers the gravitational interaction of a massive + BUIND a2+ BV a2+ BCat N2,
I I

spinless particle, then one has to include a termM?2¢? in
the matter Lagrangian density. The dimensionless parameter
\ _, has to be taken into account in the discussion based on +O()\3,2) +0(a_y). (4.3
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The cosmological constant parameter(«_,/a3)M*  Assuming that the remaining coefficient expansions are of
can be written in units of the scalar mass by using the diorder one, one has the additional condition for the indepen-

mensionless parametesis, «_,, and\ _, as dent dimensionless parametetis/a5<10°, which corre-
sponds to the restriction on the mass scales of the effective
A ap, a, 1 4.2 theoryM2/M3=10"6. On the contrary, if the solution to the
—a= .

cosmological problem is based on some symmetry of the
underlying theory leading t&,=0, there is no restriction,
This, together with the renormalization group equali4/®, due to the smallness of the cosmological constant, on the
gives a reformulation of the cosmological constant problemmass scales of the effective theory.

at the level of the effective field theoretic formulation. Itis  The cosmological constant problem can be discussed
not possible to haver_,<a2\?, over the energy range of along the same lines if there is a nonminimal reduction of the
validity of the effective theory and then it is not possible to effective theory with an additional parameleyr . In this case
haveA/m*<1 as required by the experimental upper boundone has the renormalization group equation for the dimen-

m ai)\z_z_)\_z ai)\_zl

for the cosmological constant. sionless cosmological parameter

In order to discuss possible solutions to the cosmological g
constant problem, one has first to consider, instead of a sca- Q-2 o 2 (1) 1(2) 2, At(3)
lar field, a realistic matter system including fermion and K du =AS[AL (AT Al AT AN
gauge fields with the strong and electroweak interactions of Y@ 24 ar(5) 2. n1(6) )
the minimal standard model of particle physics. If the matter T(AD N+ AL apay+ AT N pan

system content of fields and interactions is such that as a

1(7) 4\y 2 3
consequence of a symmetgy, ,=0, then TAZZ A= O]+ 0(a ). (4.9
In this case a solution to the cosmological constant problem
da_, based on the vanishing of the first two terms in the expansion
Mgy C-2 45 i ; i
o powers of\ _, requires that the matter system satisfies the
three conditions
and the cosmological parameter can be made arbitrarily
small? A'®=0, k=123, 4.9
Taking into account tha&?\ _,=m?/M3, is of the order
of 10”32 for a mass scale of the matter systanof the order
of 1 TeV, another possibility to solve the cosmological prob-

and one also has the bounds for the parameterand a,

lem is based on the assumption that the first two terms in the a_§$105, )\_gglcﬁ' (4.10
expansion ofBafz vanish. The remaining terms can be made a; a;

compatible with the smaliness of the cosmological constanf,
if the combinations of parameters, appearing in the coeffi
cient of A2, inside the brackets in Eq4.1), are not much
bigger thana].

If one considers a minimal reduction of the effective
theory for a realistic matter system with the same number of |t has been shown that the perturbative renormalization of
independent parametexs ,, Ao, a;, a, as in the case of a the theory of a scalar field coupled to the gravitational field,
scalar field, then the renormalization group equation of thevhich requires an infinite number of counterterms, is com-
cosmological parameter will be given by patible with the presence of only a finite number of renor-
malized parameters, which can be chosen arbitrarily at a
given scale. In this sense one has a theory with the same
predictibility as a renormalizable theory in the power count-
) 42 3 ing sense. The corrections to the low-energy limit due to the

TATa N5+ O(N )]+ O0(ae-2), (4.6 higher-order terms in the energy expansion of the effective
o ® . ] theory do not necessarily involve additional free parameters.
where the coefficientd™; are power expansions in the pa- Thjs result found in the case of pure grav[i§] has been
rameter\,. In this case the possible solution of the cosmo-extended to the case of a scalar field coupled to gravity in
logical constant problem based on the vanishing of the firsgyo different forms(minimal and nonminimal reduction of
few terms in thex _, expansion of thgg function gives just  couplings. The effective theory has several characteristic

hich gives a restriction on the additional mass sddle,
M2Z/M2=10"3 .

V. SUMMARY

da_2
2 2 2) 2 3) 2 2
A =\2,a AN+ AL AN _,+ABLadan?,

two conditions on the matter system: mass scales: the scale associated to the classical (tieit
) @ Planck mas#p), the scale associated to the fluctuations of
A=0, A%5=0. (4.7 the geometry Kl g), the scale of the fluctuations of the matter

system Mg), the scale limiting the validity of the perturba-
tive treatment M), and the mass of the scalar fielth).

A supersymmetric extension of the minimal standard model is &ach of these scales is in one to one correspondence with the
candidate, but it is not clear how the required soft supersymmetryindependent dimensionless parameters of the effective theory
breaking terms can be made compatible with the vanishing offter a reduction of couplings compatible with the renormal-
B., , ization group equations. The reduction of couplings puts
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some limitations on the mass scales. The reduction of the The cosmological constant problem has been reformu-
couplings in the gravitational Lagrangian requireslated at the level of the renormalization group equations. In
ayla?>1 and thenMg<Mp,. The treatment of the scalar the presence of a mass for the scalar field,(tbgarithmig

mass as a perturbation requirks ,\,<1, which implies derivative of the cosmological parameter with respect to the
that m<Mg. In the case of minimal reduction, one has renormalization scale has a contribution, which is not pro-
)\2~a§ and thenMg~Mp, . portional to the cosmological parameter. Then it is not pos-

In order to have an energy range within the perturbativ§ib|e to .have an arbitrarily small Value.for this .paramete.r
domain where some of the low-energy limit corrections havedver a given range of scales. Two possible solutions of this
to be included, it is necessary for either; or Mg to be  Problem have been considered corresponding to the possibil-
smaller thanM,. In the case of minimal reduction of cou- ity that these terms in thg function of the cosmologic pa-
plings, the contribution from a ter™ in the matter La- rameter, which are not proportional to it, either vanish for an
grangian, which is of orden(, /MZH)énZn when one is con- appropriate choice of matter Lagrangian or are sufficiently

] n

sidering the matter system at energies of oflegives an small to be compatible with the smallness of the cosmologi-
effect of order E/Mp)(EZ/M2)"~1. Then even if the scale cal constant. The number of conditions that the matter sys-
R 0

Mg for the domain of validity of the perturbative treatment }gr?cg?vceofqostssr?tswr’olglgrrr?ek;:;eh davoenatf]zlu;fgoﬁ) dtheo(s:gisbr;?i(t)-
can be much lower thaMp, one has to consider energies 9 P P y

E~Mp in order to go beyond the low-energy limit. mentioned above, is significantly reduced if one considers an

It is natural to expect that the results found for a scalareffecnve theory with a reduction of couplings.

field coupled to gravity can be generalized to more general

cases for the ma_tter system. Inst_ead qf the scalar_ self- ACKNOWLEDGMENTS
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