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Power counting of loop diagrams in general relativity
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A class of loop diagrams in general relativity appears to have a behavior which would upset the utility of t
energy expansion for quantum effects. We show through the study of specific diagrams that cancellations o
which restore the expected behavior of the energy expansion. By considering the power counting in a phys
gauge we show that the apparent bad behavior is a gauge artifact, and that the quantum loops enter w
well-behaved energy expansion.@S0556-2821~96!01620-7#

PACS number~s!: 04.60.2m, 11.15.Bt
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I. INTRODUCTION

Loop calculations in general relativity are readily inte
preted using the techniques of effective field theory@1,2#. As
in all effective field theories, the utility of such calculation
is tied to an expansion in powers of the energy or inver
distance. In chiral theories, Weinberg@3# has provided an
important theorem which states that diagrams with incre
ing numbers of loops contribute to an amplitude with in
creasing powers of the energy, with each extra loop add
an extra factor ofE2. For example, if one is working to order
E4 accuracy one needs to include only one-loop diagram
While pure gravity behaves exactly in the same way, if w
try a simple extension of this same argument to gravity i
teracting with matter, we will see in Sec. II that the desire
behavior is not obtained. There is a class of diagrams wh
appears to haveGm2 as the expansion parameter. Th
would upset the utility of the energy expansion. The purpo
of this paper is to explore this problem and to see if it o
structs the energy expansion.

The desired expansion parameter for quantum correcti
in an effective theory of gravity isGq2;G/r 2, such that at
low energies or long distances the higher order loop effe
are suppressed with respect to tree diagrams and low o
loops. Thus we can obtain predictions to a given order with
finite amount of calculation. General relativity also contain
the classical expansion parameterGmq;Gm/r which rep-
resents the nonlinearities of the classical theory. This can
found in the loop expansion from the nonanalytic terms
the formGq2Am2/2q2. However,Gm2 as an expansion pa-
rameter is a major problem. In the first place, the mass can
extremely large in units of the Planck mass~e.g., m
5MSun) so thatGm

2 can be a number very much larger tha
unity. In addition if we restore factors of\, this dimension-
less combination goes likeGm2/\. The classical limit
\→0 would be upset by corrections of this form.

We will see that the apparent difficulty with the loop ex
pansion appears to be a gauge artifact. When calculating
harmonic gauge, where the power counting is first discus
in Sec. II, there occur cancellations between individual d
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grams, canceling the bad behavior. We detail the calculat
for the box and crossed box diagrams. Part of the problem
due to the occurrence of both classical and quantum effe
in the same Feynman diagram, when treated in covaria
gauges. This suggests that separating the classical phy
from the physical quantum~transverse and traceless! degrees
of freedom will improve the power counting. For the inter
action of two nearly static masses, we show that this is
fact the case.

The organization of this paper is as follows. In Sec. II w
make a naive generalization of the Weinberg power counti
theorem and isolate those diagrams which appear to giv
problem. The resolution in covariant gauge must lie in th
cancellation among different diagrams, and we demonstr
how these occur in Sec III. Section IV is devoted to deve
opment of the power counting scheme in a physical gaug
and to the interpretation of the apparent problem as a gau
artifact. We end with some concluding comments.

II. POWER COUNTING IN COVARIANT GAUGES

We are interested in treating powers of energies a
masses in vertices and propagators in order to determine
overall energy dependence of a given multiloop diagram
The mass of the matter field is not a small parameter, but
can treat the external three-momenta as small if we are wo
ing at low enough energies. Let us review the Feynm
rules, and extract the essential dependence of the vertic
Starting from the action

S5E d4xAg
2

k2R ~1!

with k2532pG, we expand this metric

gmn5hmn1khmn , ~2!

where hmn is the fluctuating field. Expanding (2/k2)R in
powers ofhmn we see that a term which involvesn graviton
fields, i.e.,hn, carries a coupling constantkn22. Since the
curvature is second order in derivatives, all terms emergi
from the Einstein action will be of orderq2. Thus the triple
graviton coupling of Fig. 1 is of orderkq2, while the four-
graviton vertex is of orderk2q2, etc. The matter fields couple
to gravitons throughTmn , which for a scalar field has matrix
elements
4963 © 1996 The American Physical Society
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^p8uTmnup&5pmpn81pnpm8 2
1

2
gmn~p•p82m2! ~3!

with pm5(Am21pW 2upW )m . Treating the mass as a large pa
rameter leads to a one-graviton vertex~see Fig. 2! which
behaves askm2 while the two graviton diagram is of order
k2m2, etc.

The graviton propagator, like all massless boson propa
tors, scales as 1/q2. The matter field propagator requires a b
more explanation. Because we are dealing with an effect
theory at low energies, we need not consider loops of hea
matter fields. These loops have already been integrated ou
order to define the low energy effective theory. However, w
do need to consider matter fields which appear as exter
states and which propagate through a given diagram inter
ing with each other and with gravitons. The explicit form o
the propagator is

D~p1q!5
i

~p1q!22m2

5
i

2p•q1q21~p22m2!
, ~4!

where p is the momentum that the matter field has as
external particle, andq is the momentum which has bee
added to it through interactions with gravitons~internal or
external!. The external momentum is on shell (p22m250)
so that the matter propagator is counted as a factor
1/mq. Note that if we had chosen a different normalizatio
for our matter fields@e.g., a nonrelativistic normalization
such thatT00;m and D(q);1/q# both the vertices and
propagators change in a way that compensates each o
leading to the same counting rules as in our normalizatio

Before giving the general power counting theorem, let
illustrate the idea with two specific examples, one of whic
illustrates the ‘‘good’’ behavior and one which shows th
problem. First consider graviton-graviton scattering, who
overall matrix element is dimensionless. At lowest order w

FIG. 1. Three- and four-graviton couplings.

FIG. 2. Matter-graviton couplings fromTmn .
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have a 1/k2 factor from the coupling in the Einstein action,
one ofk4 from the four-graviton fields and oneq2 because
the Einstein action involves two derivatives. This leads to a
overall matrix element

Mtree;k2q2. ~5!

If we try to iterate this vertex to produce the one-loop
diagram of Fig. 3~b! we obtain, schematically,

Mloop;k4E d4l

~2p!4
~ l2p1!

2~ l2p2
2!2

l 2~ l2q!2
, ~6!

where p1 ,p2 ,q are various combinations of external mo-
menta. If this loop integral is regularized dimensionally,
which does not introduce powers of any new scale, the inte
gral will be represented in terms of the exchanged momen
tum to the appropriate power. Thus we have

Mloop;k4q4, ~7!

where againq represents some combination of external mo
menta.~There may also be logarithms ofq2/m2 wherem is
the usual scale introduced in dimensional regularization.! In
this case adding a loop has generated an effect which
higher order in the energy expansion. The expansion is i
terms of powers ofk2q2.

A different behavior is shown by the interactions of two
massive particles, such as in Figs. 4~a! and 4~b!. The tree
level result in our normalization is

Mtree5k2
m1
2m2

2

q2
~8!

which again is dimensionless. Iterating this to form a loop
gives us

FIG. 3. Sample four-graviton interaction diagrams to one loop
illustrating the expected behavior in the energy expansion.

FIG. 4. Sample interactions of two massive particles.



,

-

-
ta.
e
g
l
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Mloop;k4m1
4m2

4

3E d4l
1

m1~ l1p!

1

m2~ l1p8!

1

~ l1q8!2
1

~ l1q!2
,

~9!

which by the same reasoning is

Mloop;k4
m1
3m2

3

q2
;k2

m1
2m2

2

q2
k2m1m2 . ~10!

Here the expansion parameter appears ask2m2. An ex-
plicit calculation of this diagram later in this paper confirm
that this is the correct result for the diagram by itself. Th
expansion parameterk2m2 would cause the problem de
scribed in the Introduction.

Now let us turn to the general power counting result. O
goal is to obtain the power ofq ~with q being a typical
external momentum! that a general diagram would yield
This will tell us what order in the energy expansion th
diagram will contribute to. The problematic class will b
manifest by having diagrams with increasing number
loops which yield the same power ofq, so that to calculate to
this order in the energy expansion one would apparen
need to sum all the diagrams in this class. For a gene
result we need to allow for vertices not just from the lowe
order gravitational action, but also from ones which conta
more derivatives. Let us write this schematically as

Sg5E d4xAg
2

k2 @R1k0
2R21k0

4R31•••# ~11!

such that the coefficients of a gravitational Lagrangian w
n derivatives will bek0

n22/k2. Note thatk0;1/energy. In a
pure gravitational theory one would expectk0;k, but there
is no need to impose such a restriction here. Likewise
matter Lagrangian can involve extra derivatives on the lig
fields. We let the coefficients of the higher derivative term
involve a scalek0: i.e.,

Sm5E d4xAgF12 ~]mF]mF2m2F2!1k0
2R]mF]mF

1k0
4R2]mF]mF1••• G ~12!

so that the coefficient of a Lagrangian withl derivatives on
the gravitational field ism2k0

l . ~Again, k0;1/energy and
k0 can be kept distinct fromk0 andk if desired.!

Our procedure is to count powers ofk, k0 , k0, andm
2 in

a general diagram. The remaining energy factor of the d
gram, needed to give the proper overall dimension, w
come from factors of the external momenta. Consider a d
gram withNE

m external matter legs andNE
g external graviton

legs, with a series of interactions between these partic
Correspondingly letNI

m andNI
g be the number of internal

matter and graviton propagators, respectively. There areNV
g

vertices involving only gravitons, andNV
m vertices which in-

volve matter fields plus any number of gravitons, and a to
of NL loops. However, these vertices need to be categoriz
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by the number of derivatives that are involved. For example
let NV

g@n# be the number of graviton vertices which come
from a Lagrangian with n derivatives. Clearly,
NV
g5(nNV

g@n#. Likewise the number of matter vertices with
l derivatives on the light fields will be calledNV

m@ l # with
NV
m5( lNV

m@ l #. We illustrate this with a sample diagram in
Fig. 5. All matter lines propagate all the way through a dia
gram without terminating.

With these definitions the coupling constants contribute
the dimensionful factors

~k2!2NV
g
~k0!

(n~n22!NV
g [n]~m!2NV

m
~k0!

( l l •NV
m[ l ] . ~13!

In addition, because each internal graviton line is formed
using two vertices, the graviton fields will contribute a power
of

~k!2NI
g
1NE

g
~14!

from the normalization of the metric in Eq.~2!. On a matter
line, there will be (v21) propagators if there arev vertices.
Thus the number of matter propagatorsNI

m satisfies

NI
m5NV

m2
1

2
NE
m . ~15!

Since each propagator counts as a power of 1/m, this con-
tributes mass factors

S 1mD NVm2~1/2!NE
m

. ~16!

These constitute all of the general dimensionful param
eters except the external momenta and the loop momen
When the loop integrals are regularized dimensionally ther
will not be any powers of a regulator mass and the remainin
dimensions after integration will be carried by the externa
momenta. Let us generically call these momentaq, and de-
scribe the power of the momenta by a factorqD. It is the
dimensionD which we are seeking in this exercise.

Overall, this matrix element carries a dimension

FIG. 5. Sample diagram withNE
g51, NE

m54, NI
g56, NI

m54,
NV
g52, NV

m56, NL53.
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A;~energy!42NE
m

2NE
g
. ~17!

From our identification above, this is decomposed as

A;~ energy!42NE
m

2NE
g
5~k0!

(n~n22!NV
g [n]~m!2NV

m

3~k0!
( l l •NV

m[ l ]~k!2NI
g
1NE

g
22NV

gS 1mD NVm2~1/2!NE
m

qD.

~18!

There are however some relations among all the variab
For example, the total number of internal lines can be e
pressed in terms of the total number of vertices and the nu
ber of loops. The relation is

NI
m1NI

g5NL1~NV
m1NV

g !21

5NL1(
l
NV
m@ l #1(

n
NV
g@n#21. ~19!

We can use this to eliminateNI
g using alsoNI

m5NV
m2 1

2NE
m

to find

NI
g5~NI

g1NI
m!2SNV

m2
1

2
NE
mD

5NL1
1

2
NE
m1(

n
NV
g@n#21. ~20!

Plugging this into the general formula, Eq.~18!, using
(nNV

g@n#5NV
g , and recalling thatk,k0 ,k0 all go as

1/ energy allow us to solve for the parameterD, resulting in

D522
NE
m

2
12NL2NV

m1(
n

~n22!NV
g@n#1(

l
l •NV

m@ l #.

~21!

This is our general power counting result for the mome
tum dependence of a general diagram. If we disregard
matter vertices,NE

m5NV
m@ l #5NV

m50, it is identical to Wein-
berg’s theorem for chiral theories. The momentum dime
sion of a diagram is higher if we increase the number
loops or if we use a gravitational Lagrangian with more tha
two derivatives. This shows that the power counting of loo
diagrams in pure gravity involves the parameterk2q2 ~or
k0
2q2 if k0Þk).
In the presence of matter, the last term also behaves

expected: using the Lagrangian with extra derivatives
light fields (l.0) only increases the power of the momen
tum. However, the problem arises because of the minus s
in front of NV

m . Increasing the number of matter vertices
diagrams does not increase the order in the energy exp
sion. This cannot actually make the momentum powerD
decrease by increasing the number of matter vertices, si
to add matter vertices to a given process we also have
change the number of loops. However, there are diagra
where one can increase the number of loops by one wh
increasing the number of matter vertices by two. Figure 4
les.
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one such example. This leavesD unchanged. Thus higher
loop processes contribute at the same level to the ener
expansion as tree processes. This gives a loop expansion
k2m2 instead ofk2q2.

In summary, we have computed the momentum power o
a given process~13!, and found a class of dangerous dia-
grams where the addition of two matter vertices adds onl
one loop to the process, leading to no net increase in th
momentum powerD.

III. CANCELLATIONS IN COVARIANT GAUGE

The naive rule for power counting of the previous section
is unacceptable in physical amplitudes. Nevertheless, it
easy to calculate some individual diagrams to see that th
rule is in fact correct for that diagram.~We give an example
below in connection with the box diagram.! Therefore, there
must be cancellations among the diagrams which remove th
unwanted behavior. In this section we describe the cancell
tions that occur in the interaction of two heavy masses. A
examination of the permutations of attaching multiple gravi
tons to a single heavy particle suggests that these cancel
tions should occur in other processes as well.

Let us first consider the vertex correction, Fig. 6. Of the
several contributions to the vertex at one loop only, Fig. 6~b!
and the self-energy diagrams are of the dangerous catego
with two extra matter vertices and one loop.

Because the vertex coupling is the energy momentum te
sor, and the energy momentum tensor is conserved, there i
nonrenormalization theorem for the matrix element a
q250. The general form for the vertex, consistent with the
conservation]mTmn50 is

^p8uTmnup&5F1~q
2!@pmpn81pnpm8 2hmn#

1F2~q
2!@qmqn2hmnq

2#, ~22!

and at tree levelF151, F250. The dangerous diagrams
naively give a correction toF1 of orderk

2m2, and individu-
ally will do so. @Because powers ofq2 multiply F2 it auto-
matically is not a problem — a one-loop contribution to
F2(q

2) of orderk2m2 is allowable in a well-behaved energy
expansion.# However, sinceTmn measures the physical en-
ergy and momentum we have the constraintF1(0)51. Thus
all contributions toF1(q

2) which are independent ofq2, in
particular all corrections of orderk2m2, must cancel when
expressed in terms of the physical mass and momenta. Th
occurs by the cancellation of the vertex Fig. 6~b! with the

FIG. 6. Graviton vertex and one of the loop corrections.
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renormalization due to the self-energy. This is entirely ana
gous to the nonrenormalization of the charge form factor
QED atq250.

The analysis of the box diagram is more complicated b
cause there is no symmetry which determines the normali
tion of the diagrams. One needs to find the cancellation
direct calculation and then to extract from this any lesso
for other calculations. There are two previous works whi
bear on this issue. Iwasaki@4# explicitly calculated theclas-
sical corrections to the Hamiltonian which arise in one-loo
diagrams@5#. Although he did not explicitly comment on it,
it is clear from his final result~i.e., he did obtain the usua
classical limit! that the dangerous mass dependence had
cancel out of the calculation. The issue is addressed m
directly in a nice paper by Boulware and Deser@6#. Here the
nature of the quantum expansion is noted, and a cancella
of the leading mass dependence is demonstrated in the l
of a heavy static source. Therefore implicit in these works
the observation that the dangerous mass dependence doe
survive in the calculation of the box and crossed box d
grams. However, we would like to make the mechanism f
the cancellation somewhat more explicit and show that it w
occur in other situations as well. This allows us to extend t
demonstration of the cancellation to some higher order d
grams in addition. Because the couplings of general relativ
are complicated by the tensor indices, it is easier to fi
analyze a simpler model. Although it is clear that the mod
is not identical with general relativity, it will nevertheles
exhibit several interesting features which we will be able
generalize to the case of gravity.

Consider a massless scalar fieldh coupled to one or more
massive scalarsF with a trilinear coupling which carries the

FIG. 7. Tree level graph for heavy scalar scattering.
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same strength as our counting rule given in Eq.~13!. That is,
we identify the Lagrangian

L5
1

2
]mF]mF1m2F2~11kh!1

1

2
]mh]mh. ~23!

The couplingkm2F2h enters into the power counting
derivation in the same way as the lowest order graviton co
pling and in this theory we obtain the same momentu
power as in Eq. ~13! with NV

g@n#50 for n.2 and
NV
m@ l #50 for l.0. The dangerous class of diagrams ident

fied in the previous section also are equally problematic f
this model.

Let us verify the result of the counting theorem by con
siderations of the gravitational interaction of two heav
masses, as in Figs. 7, 8~a!, and 8~b!. The single ‘‘graviton’’
exchange vertex, Fig. 7, has magnitude

M5k2
m1
2m2

2

q2
~24!

as expected. Now consider the box diagram. Figure 8~a!: The
diagram is ultraviolet finite but has an infrared divergenc
which we regulate dimensionally. If we define
p1•p25m1m21w, after a modest calculation we end up
with

Mbox5
k2m1

2m2
2

q2
k2m1m2

16p2 F211
w

3m1m2
1 ip

m1m2

p~m11m2!
G

3H 2

42d
2 lnS 2

q2

m2D1 const1OS qM D J , ~25!

with p5upW u in the center of mass. If we defer comment o
the imaginary part of this amplitude to below, we see th
this does obey the expectation of the power counting the
rem, with a correction of orderk2m1m2 compared to the tree
level amplitude.

However, we must also consider the crossed box diagr
in Fig. 8~b!. This can be handled in a similar fashion, and
slightly easier because it does not have an imaginary pa
Defining p1•p45m1m21w8, we obtain
FIG. 8. The~a! box and~b! crossed box graphs which have the wrong naive power counting behavior.
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Mcrossed5
k2m1

2m2
2

q2
k2m1m2

16p2 F112
w8

3m1m2
G

3H 2

42d
2 lnS 2

q2

m2D1 const1OS qM D J ,
~26!

with the sameconstant as in Eq.~25!. We see that the most
dangerous terms cancel between the diagrams. Us
w2w852q2/2 we get the final result

Mtotal5Mtree1Mbox1Mcrossed

5
k2m1

2m2
2

q2 H 11
1

16p F2
1

6
k2q21 ip

k2m1m2

p~m11m2!
G

3F 2

42d
2 lnS 2

q2

m2D1 constG J . ~27!

Note that no approximation has been made in obtaining t
result. In the real part of the amplitude, the expansion para
eter has becomek2q2, which is well behaved. The imaginary
part of the amplitude is just a phase and does not contrib
to observables at this order when the matrix element
squared. It is simply the analogue of the well-known ‘‘Cou
lomb phase’’ and is generated from the rescattering of the
shell intermediate state of matter particles. It is even more
behaved than the power counting theorem suggests, sinc
comes from the exceptional case where the heavy part
propagators go on shell~and hence do not behave as 1/m).
However, like the Coulomb phase, it has been shown
Weinberg@7# to exponentiate to all orders in general relativ
ity ~the proof extends to this simpler theory as well!, so that
this term does not cause any trouble. The same paper
Weinberg also proves that infrared divergencies cancel
general relativity and by extension in this theory, by the co
siderations of virtual corrections of these diagrams plus t
bremsstrahlung radiation of real particles. These can be re
lated dimensionally also@8#, and will yield as finite effects
residual corrections of orderk2q2 andk2q2lnq2. We are not
here directly interested in the exact answer; for us the imp
tant result was the cancellation ofk2m2 effects in Eq.~27!.

We can show that this cancellation is not peculiar to t
box diagram, but rather is a general feature of this theo
This can be seen by considering the basic unit of a single l
with two interactions with off shell gravitons, as in Fig. 9
Any time a given ordering is possible, the crossed order
also possible, cf. Figs. 9~a! and 9~b!. If we add these two dia-
ing
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grams and allow the external legs to be on shell, we find th
the sum of propagators behaves as 1/m2 whereas each indi-
vidual propagator was of order 1/m:

V5km2F 1

~p1k!22m2 1
1

~p82k!22m2Gkm2

5~km2!2F 1

2p•k1k2
1

1

22p8•k1k2G
5~km2!2F 2~p82p!•k22k2

@2p•k1k2#•@2p8•k2k2#G . ~28!

However, sincep82p5q, there is no factor of the large
massm in the numerator:

V5~km2!2F q22k22~k2q!2

@2p•k1k2#•@2p8•k2k2#G . ~29!

Because there are two factors ofp•k;m in the denomi-
nator, this double vertex counts as

V;
k2m4

m2 ;k2m2 ~30!

rather than theV;k2m3 that the naive counting would im-
ply. For Fig. 9~a! or 9~b! individually would give the extra
two factors of 1/m which converts the undesirable expressio
to k2q2, thereby explaining the result found above.

The only exceptions to this power counting occurs fo
what can be termed ‘‘exceptional momenta.’’ This refers t
momenta where the propagator is not of order 1/m, and can
occur when the intermediate line goes on shel
(p1k)22m25052p•k1k2 so thatp•k;k2. In this case
we do not gain a power the power of 1/m from the propaga-
tor. This is exactly what was found above in the explici
calculation of the box diagram. The on shell intermediat
states generate the imaginary part of the diagram which ha
different dependence on the masses than does the remain
of the diagram. This leads to the Coulomb phase in the bo
diagram.

We have been able to extend the demonstration of canc
lations to three and four vertices~using computer algebra!.
The difficulty here appears because only the external lin
are on shell. The desired cancellation does not occur for ju
the symmetrized sum of any two of the permutations, e.g
when we permutel 1 and l 2 in Fig. 10, but requires the sum
of all six permutations.
FIG. 9. The definition of the ‘‘Bose-symmetrized’’ propagators.
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We take the ‘‘Bose-symmetrized propagator’’ denoted b
a double line in Fig. 10:

Dm
~3!~p,l 1 ,l 2 ,l 3!5

1

3! (perm
i

S p1 l 11
q

3D
2

2m2

3
i

@p1 l 11 l 212~q/3!#22m2 , ~31!

where the summation goes for all permutations of thel i ,
subject to( i l i[0.

Naive power counting would sayD (3)5O(1/m2q2) and
for the total disappearance of thekm expansion parameter
we would needD (3)5O(1/m4) because the expected behav
ior of the amplitude is, in power counting,

~km1
2!~km2

2!

q2
$11~km! one loop

2 1~km! two loop
2 1•••%

~32!

and, in the effective theory,

~km1
2!~km2

2!

q2
$11~kq! one loop

2 1~kq! two loop
2 1•••%.

~33!

A tedious but straightforward algebra shows indeed th
disregarding special points in the integration region whe
some of the denominators are less thanO(mi), cancellations
occur with the result

Dm
~3!~p,l 1 ,l 2 ,l 3!5OS 1

m4D . ~34!

Although we do not have an inductive proof valid for a
orders we did the same calculation forDm

(4)(p,l 1 ,l 2 ,l 3 ,l 4),
figuring in ladder-type three-loop diagrams, which indee
showed a similar behavior,

Dm
~4!~p,l 1 ,l 2 ,l 3 ,l 4!5OS 1

m6D , ~35!

in accordance with the requirement of the validity of th
energy expansion. This calculation was done with
MATHEMATICA program and attempts to calculateDm

(6) did
not succeed because of the prohibitively large amount
CPU time required. We have unfortunately not found an i
ductive proof that lets us extend these results to all orde
These calculations show that in the toy model, which is fr
of gauge complications, the power counting theorem wor

FIG. 10. The two-loop ‘‘Bose-symmetrized’’ propagator, de
fined for(1

3l i[0.
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correspondingly to Weinberg’s power counting theorem
chiral effective QCD due to unexpected cancellations.

The features of the toy model which are relevant for o
topic can be extended to similar diagrams in general relat
ity. One can repeat the exercise to show that the sum of
two diagrams in Figs. 8~a! and 8~b!, but with two gravitons
instead of scalars, behaves ask2m2 instead of thek2m3 be-
havior as given by the naive power counting. The gravit
tional vertex is more complicated than the scalar one, f
example involvingkpm(p1k)n at a given vertex instead of
km2. However, in the counting of powers of masspmkn is
already 1 factor fewer power of the mass than ispmpn .
Therefore in showing that thek2m3 behavior is not present
in the sum of diagrams, we need only consider thekpmpn

portion of the vertex, which is common to all vertices an
which will not upset the cancellation of the two diagrams
The proof then goes through exactly as given above.

We have also explicitly evaluated the box and cross
box diagrams in general relativity in order to verify tha
these have the appropriate structure, as suggested by pr
ous calculations@4–6#. At the order 1/q2 there survives only
the Coulomb phase~more properly the ‘‘Newton’’ phase!
which is divergent and purely imaginary:

;2
i

16p

1

q2
k4

pAs
@s222s~m1

21m2
2!1~m1

41m2
4!#2

3S 1e 1 lnq1
C212 ln4p

2 D , ~36!

where thee→0 singularity is of IR origin. We found, by a
similar calculation, that theO(1/q) part hasno imaginary
part, containsno IR or UV singular terms. Its coefficient is a
complicated function ofs, m1

2 andm2
2 which we do not dis-

play for lack of space but whosep→0 limit is

;
k4m1

2m2
2

128q Fm11m21OS pmD G . ~37!

This term corresponds to a contribution to the classical p
tential

V~r !→2G
m1m2

r F •••2
G~m11m2!

4r
1••• G , ~38!

and forms part of theclassicalgeneral relativity corrections
@4# which are encoded in the one-loop diagrams of Fig.
when the harmonic gauge is used. We note that no simi
real term arises in the toy model of Eq.~27!. The remaining
contributions enter with the desired quantum expansion p
rameter@5#.

-
FIG. 11. Suppressed matter-gravity interaction vertices.
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FIG. 12. Interaction of two masses in a physical gauge.
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IV. POWER COUNTING IN A PHYSICAL GAUGE

In covariant gauges, both classical and quantum effe
are included in the same Feynman diagram. The simp
example is the one graviton exchange diagram, which
cludes the classical Newton potential, but loop diagrams a
exhibit this property@2#. However, in physical gauges, clas
sical and quantum effects are separated. The physical qu
tum degrees of freedom are transverse and traceless@9#, cor-
responding to massless spin-two quanta. In a multip
expansion the monopole term, which generates the New
potential, is classical, while the spin-two degrees of freedo
couple to the quadrupole term. This suggests that the do
nantkm2 coupling that caused us do much trouble in Sec.
is to be associated with classical physics while the quant
degrees of freedom have a milder behavior. We will sho
that this is the case for the interaction of two heavy mass
This allows a quantum power counting which is well be
haved.

Covariant gauges, in particular the harmonic gau
treated covariantly, are preferred for practical calculatio
@10#. When combined with the background field techniqu
they can explicitly retain the invariances of general relativit
In contrast the construction of the physical gauge quant
theory severely disturbs the underlying symmetry of gene
coordinate invariance@11#. One picks a preferred frame fo
the quantization, and the split of quantum and classical
grees of freedom depends on that frame. Nevertheles
physical gauge is attractive conceptually because only
physical radiation degrees of freedom are quantized. This
analogous to the Coulomb gauge quantization of QED.

Although the general metric tensorgmn has ten real com-
ponents, the radiation field has only two independent degr
of freedom, corresponding to helicity62 @9#. For a wave
propagating in thez direction, a harmonic gauge constrain
plus residual gauge freedom can be used to reduce the
original components of a polarization tensoremn such that
only e1152e22 and e125e21 are nonvanishing~other
choices are also possible.! The helicity states withl562
can be found from these via

e65e117 i e1252e227 i e12. ~39!

When quantized, these become the graviton degrees of f
dom.
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Let us consider the interaction of two heavy masse
which have a small relative momentum. The momentum o
one of the masses can be written as

pm5mvm1 p̄m ,

~40!

vm5~1,0,0,0!m .

Since

qm5 p̄m2 p̄m8 , ~41!

we will treat the residualp̄ as of orderq in the energy ex-
pansion. If we quantize in the frame wherevm defines the
timelike direction, then the physical graviton degrees of free
dom will only couple to the spacelike traceless componen
of the energy momentum tensorTi j . Since the large mass
does not contribute to these, we know

Ti j5 p̄i p̄ j81 p̄ j8p̄i , ~42!

and we countTi j as orderq2, whereasT00 is of orderm2.
The same suppression is present for the two-graviton inte
action of Fig. 11~a!, and the coupling of one classical New-
tonian field and one physical quantum field as shown in Fi
11~b!. From the general vertex

tlh,rs5 i
k2

2 H I hl,adI b,rs
d ~pap8bp8apb!

2
1

2
~hhlI bs,ab1hrsI hl,ab!p8apb

2
1

2 S I hl,rs2
1

2
hhlhrs D @p•p82m2#J , ~43!

we have

t00,00;k2m2,

t00,i j;k2q2, ~44!

t i j ,kl;k2q2.
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What we see from these couplings is that the physical qu
tum degrees of freedom have a reduced matter coupling w
two fewer powers ofm compared to the harmonic gaug
counting rules.

Various other diagrams describing the interaction of tw
masses in physical gauges are shown in Fig. 12. The das
line represents the classical Newtonian potential while t
wavy line describes the quantum degrees of freedom. In
normalization used throughout this work, the classical inte
action is again of orderk2m4/q2. Corrections due to vacuum
polarization in Figs. 12~b! and 12~c! have the same powers
of m but two extra powers ofk2, leading to a result of order

k2m4

q2
k2q2~a1blnq2! , ~45!

so that these diagrams have the expected expansion pa
eter k2q2 as desired. An important feature of the physic
gauge is that diagrams with extra matter couplings are s
pressed. For example, the mixed box diagram of Fig. 12~d!
has two factors of 1/m from the propagators, but no compen
sating factors of the mass in the vertex coupling or the phy
cal gravitons. This means that this diagram is suppressed
1/m2 compared to the vacuum polarization corrections. A
of the diagrams with graviton-matter vertices are suppres
by powers of 1/m. This leaves the vacuum polarization dia
gram as the leading quantum correction is this gauge, wit
well-behaved expansion parameter.

The above results may be seen more easily in differe
normalization for the fields, typical for the nonrelativisti
limit. Here, we divide all matter vertices by a factor of 2m,
so thatT005m for a particle at rest. In this normalization
~used also in heavy quark effective theory@12#! propagators
have no factor of 1/m. However, the coupling of the trans
verse traceless degrees of freedom to matter fields are
portional to

Ti j5
p̄i p̄ j81 p̄i8p̄ j

2m
, ~46!

and vanish asm→0. Then all diagrams with matter coupling
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of graviton simply drop out, leaving only the vacuum polar
ization diagram in this gauge.

To close this section, we note that the use of a physic
gauge seems to be required if we are to be able to introdu
the idea of a purely classical source. In the harmonic gau
the inclusion of the matter propagator was required to pro
erly identify the classical and quantum corrections. Both ve
tex and vacuum polarization diagrams are important. O
could not at the start of the calculation take the mass
infinity and treat this resulting field in the classical limit. The
reason is that the vertex coupling strength also goes to infi
ity in this limit. However, in the physical gauge, the dia
grams with matter propagators and couplings to transve
quantum fields are unimportant in the limitm→`. By taking
this limit in this gauge, one obtains a classical source, w
an interaction which receives quantum corrections.

V. SUMMARY

We were motivated for this study by the observation of
class of diagrams which in harmonic gauge would apparen
upset the utility of the energy expansion, and indeed al
spoil the classical limit of the theory. Part of the problem
due to the fact that the graviton propagator in harmon
gauge includes both classical and quantum effects. By co
sideration of several diagrams we were able to demonstr
the nature of the cancellations in harmonic gauge which
moved the undesirable expansion parameter and led to
well-defined energy expansion. The logic for this behavior
clearer in a physical gauge, analogous to Coulomb gauge
QED, even if explicit calculations are much more painful i
such a gauge. The physical transverse traceless quantum
grees of freedom only couple with a reduced strength
problems with nearly static matter fields. In the limit tha
m becomes very large, the effect of matter couplings becom
negligible, and the modification to the gravitational sel
interactions~i.e., vacuum polarization! become the most im-
portant quantum corrections. These self-interactions of t
sector satisfy the Weinberg power counting theorem witho
any problems. This indicates that the quantum energy exp
sion is well behaved in physical gauges, and hence by ext
sion in all gauges as long as one is calculating gauge inva
ant quantities.
-
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