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Power counting of loop diagrams in general relativity
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A class of loop diagrams in general relativity appears to have a behavior which would upset the utility of the
energy expansion for quantum effects. We show through the study of specific diagrams that cancellations occur
which restore the expected behavior of the energy expansion. By considering the power counting in a physical
gauge we show that the apparent bad behavior is a gauge artifact, and that the quantum loops enter with a
well-behaved energy expansidis0556-282(96)01620-7

PACS numbsgps): 04.60—m, 11.15.Bt

[. INTRODUCTION grams, canceling the bad behavior. We detail the calculation
for the box and crossed box diagrams. Part of the problem is
Loop calculations in general relativity are readily inter- due to the occurrence of both classical and quantum effects
preted using the techniques of effective field thedr?]. As  in the same Feynman diagram, when treated in covariant
in all effective field theories, the utility of such calculations gauges. This suggests that separating the classical physics
is tied to an expansion in powers of the energy or inversdrom the physical quanturtransverse and tracelestegrees
distance. In chiral theories, Weinbefg] has provided an Of freedom will improve the power counting. For the inter-
important theorem which states that diagrams with increas2ction of two nearly static masses, we show that this is in
ing numbers of loops contribute to an amplitude with in- fact the case.

creasing powers of the energy, with each extra loop addin%1 'Lhe organization Olf tht'.s pa;]z%r] |sV<a/s.fotI)Iows. In Sec. Il \{ye
an extra factor oE2. For example, if one is working to order ake a naive generalization ol the Vveinberg power counting

E* accuracy one needs to include only one-loop diagrams:[heorem and isolate those diagrams which appear to give a

While pure aravity behaves exactly in the same way. if Weproblem. The resolution in covariant gauge must lie in the
pure g y L : y Y, T Wecancellation among different diagrams, and we demonstrate
try a simple extension of this same argument to gravity in

) - ) X ' ""how these occur in Sec Ill. Section IV is devoted to devel-
teractlpg y\nth matter, we will see in Sec. I thgt the des'r?dopment of the power counting scheme in a physical gauge,
behavior is not obtalged. There is a clc_elss of diagrams Wh_|cgnd to the interpretation of the apparent problem as a gauge
appears to havésnm as the expansion parameter. ThiS grifact. We end with some concluding comments.

would upset the utility of the energy expansion. The purpose

of this paper is to explore this problem and to see if it ob- || pOWER COUNTING IN COVARIANT GAUGES

structs the energy expansion.

The desired expansion parameter for quantum corrections We are interested in treating powers of energies and
in an effective theory of gravity i§¢?~G/r2, such that at Masses in vertices and propagators in order to deter.mme the
low energies or long distances the higher order loop effect@verall energy dependence of a given multiloop diagram.
are suppressed with respect to tree diagrams and low ordéhe mass of the matter field is not a small parameter, but we
loops. Thus we can obtain predictions to a given order with £an treat the external three_-momenta as small if we are work-
finite amount of calculation. General relativity also containsind at low enough energies. Let us review the Feynman
the classical expansion parame@mg~Gm/r which rep- rules_, and extract th_e essential dependence of the vertices.
resents the nonlinearities of the classical theory. This can betarting from the action
found in the loop expansion from the nonanalytic terms of 2
the forquz\/mzl—qz. However,Gm? as an expansion pa- s:f d4x\/§—2R 1)
rameter is a major problem. In the first place, the mass can be K
extremely large in units of the Planck mage.g., m

. 2: - .
=Mg, S0 thatGm? can be a number very much larger than with «“=32mG, we expand this metric

unity. In addition if we restore factors df, this dimension- 9= Muvt KNy, 2)
less combination goes lik&sm?/%. The classical limit
#—0 would be upset by corrections of this form. where h,,, is the fluctuating field. Expanding @R in

We will see that the apparent difficulty with the loop ex- powers ofh,,, we see that a term which involvesgraviton
pansion appears to be a gauge artifact. When calculating ifields, i.e.,h", carries a coupling constant' 2. Since the
harmonic gauge, where the power counting is first discussecurvature is second order in derivatives, all terms emerging
in Sec. II, there occur cancellations between individual diafrom the Einstein action will be of order®. Thus the triple

graviton coupling of Fig. 1 is of ordekq?, while the four-

graviton vertex is of ordek?g?, etc. The matter fields couple
*Electronic address: donoghue@phast.umass.edu to gravitons througf ,,,, which for a scalar field has matrix
Electronic address: kakukk@phast.umass.edu elements

0556-2821/96/5)/496310)/$10.00 54 4963 © 1996 The American Physical Society



4964 JOHN F. DONOGHUE AND TIBOR TORMA 54
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FIG. 1. Three- and four-graviton couplings. FIG. 3. Sample four-graviton interaction diagrams to one loop,

1 illustrating the expected behavior in the energy expansion.
2 _ ’ ’ ’ 2
{p ITWIp>—pry+pva 29“”(p' pr=my 3 have a 14 factor from the coupling in the Einstein action,
_ one of x* from the four-graviton fields and org because
with pﬂ:(\/m2+ p2|p)ﬂ. Treating the mass as a large pa- the Einstein action involves two derivatives. This leads to an
rameter leads to a one-graviton vertésee Fig. 2 which  overall matrix element
behaves agm? while the two graviton diagram is of order
K2m2’ etc. Mires™ K2q2- )]
The graviton propagator, like all massless boson propaga-
tors, scales aslq?. The matter field propagator _requires a b.it If we try to iterate this vertex to produce the one-loop
more explanation. Because we are dealing with an effec“"ﬁiagram of Fig. &) we obtain, schematically
theory at low energies, we need not consider loops of heavy ' '
matter fields. These loops have already been integrated out in 4 5 2.2
order to define the low energy effective theory. However, we M NKAJ d*l (I=p)(l=p3) ®)
do need to consider matter fields which appear as external loop (2m)* 1’(l—-q)?>
states and which propagate through a given diagram interact-

ing with each other and with gravitons. The explicit form of where p,,p,,q are various combinations of external mo-

the propagator is menta. If this loop integral is regularized dimensionally,
. which does not introduce powers of any new scale, the inte-
D(p+q)= % gral will be represented in terms of the exchanged momen-
(p+q)°—m tum to the appropriate power. Thus we have
_ ! @ Moo~ g %)
2p_q+q2+(p2_m2)i loop ’

where p is the momentum that the matter field has as arivhere agair represents some combination of external mo-
external particle, and] is the momentum which has been menta.(There may also be logarithms gf/u? where u is
added to it through interactions with gravitofisternal or ~ the usual scale introduced in dimensional regularizatitm.
externa]_ The external momentum is on Shebz(_ m2= 0) this case addlng a |00p has generatEd an effect which is
so that the matter propagator is counted as a factor dfigher order in the energy expansion. The expansion is in
1/mgq. Note that if we had chosen a different normalizationterms of powers ok’

for our matter fields[e.g., a nonrelativistic normalization A different behavior is shown by the interactions of two
such thatToo~m and D(q)~1/q] both the vertices and Massive particles, such as in Figsa4and 4b). The tree
propagators change in a way that compensates each othéVel result in our normalization is

leading to the same counting rules as in our normalization.

Before giving the general power counting theorem, let us memg
illustrate the idea with two specific examples, one of which Miree™ K 7 (8

illustrates the “good” behavior and one which shows the

problem. First consider graviton-graviton scattering, whose

- L . which in is dimensionless. lIterating thi form a |
overall matrix element is dimensionless. At lowest order we' o' adain Is dimensionless. lterating this to form a loop

gives us
Km? Kk*m?
(o) o) w B

FIG. 2. Matter-graviton couplings from,, . FIG. 4. Sample interactions of two massive particles.
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4.4 4
Migop™ k"Mm;

1 1 1 1
XJ d4| ’ 12 2y
my(1+p) my(l+p") (I+9")° (I+q)
€)
which by the same reasoning is
3 3 2 2
mim; mym;
Mloopw K4—2WK2 2 K2m1m2- (10

q q

Here the expansion parameter appearscas®. An ex-
plicit calculation of this diagram later in this paper confirms > v > —
that thi; is the correctzrezsult for the diagram by itself. This g5 5 Sample diagram withg=1, N"=4, N=6, N"=4,
expansion parametex m would cause the problem de- Ng=2, NT=6, N, =3.
scribed in the Introduction.

Now let us turn to the general power counting result. Ourb
goal is to obtain the power off (with g being a typical
external momentujnthat a general diagram would yield.
This will tell us what order in the energy expansion that ) : ) \
diagram will contribute to. The problem%{ic cFI)ass will be N%:_E“N_%[n]' L|keW|s_e the_ numbe_r of matter vn?mces_ with
manifest by having diagrams with increasing number of derivatives on th_e light f|eI<jS W_'" be caIIeNV[I_] with _
loops which yield the same power gf so that to calculate to Nv=ZNy[I]. We illustrate this with a sample diagram in
this order in the energy expansion one would apparentlfig- 5. All matter lines propagate all the way through a dia-
need to sum all the diagrams in this class. For a generdlram without terminating.
result we need to allow for vertices not just from the lowest ~With these definitions the coupling constants contribute
order gravitational action, but also from ones which contairthe dimensionful factors
more derivatives. Let us write this schematically as

y the number of derivatives that are involved. For example,
let NJ[n] be the number of graviton vertices which come
from a Lagrangian with n derivatives. Clearly,

2 (1) V(1) n(M= 2NV () 2NV () =1 NV, (13)
sng d*x\Jg—[R+kZR2+ kgR3+- -] (11 N _ o
K In addition, because each internal graviton line is formed

- oL . .. using two vertices, the graviton fields will contribute a power
such that the coefficients of a gravitational Lagrangian W|thOf

n derivatives will beKS’Z/KZ. Note thatky~ 1/energy. In a

pure gravitational theory one would expegi~ «, but there NG NG

is no need to impose such a restriction here. Likewise the (k) TTTTE (14

matter Lagrangian can involve extra derivatives on the light

fields. We let the coefficients of the higher derivative termsfrom the normalization of the metric in ER). On a matter

involve a scaIeK_o: ie., line, there will be ¢ —1) propagators if there ate vertices.
Thus the number of matter propagatdfs satisfies

! O 9*D — m2D2) + k2RI, D HD
5 (9,0 —mPd?) + k*R7, D3

Sm=f d*x\/g

1
N"=Ny— 5 NE. (15)

+ Kk2R29 D IFD A+ - - - (12)
0 I

Since each propagator counts as a power wof, tis con-

so that the coefficient of a Lagrangian witiderivatives on tributes mass factors

the gravitational field ism?k, . (Again, ko~ 1/energy and
Ko can be kept distinct fronky and « if desired)

Our procedure is to count powers ©f kg, ko, andm? in
a general diagram. The remaining energy factor of the dia-

gram, needed to give the proper overall dimension, will These constitute all of the general dimensionful param-
come from factors of the external momenta. Consider a diagtgrs except the external momenta and the loop momenta.
gram withNE external matter legs andig external graviton  \when the loop integrals are regularized dimensionally there
|egS, with a series of interactions between these partlcle$w|| not be any powers of a regu|ator mass and the remaining
Correspondingly leN[" and NP be the number of internal dimensions after integration will be carried by the external
matter and graviton propagators, respectively. ThereNg§re momenta. Let us generically call these momemtand de-
vertices involving only gravitons, anl} vertices which in-  scribe the power of the momenta by a factpt. It is the
volve matter fields plus any number of gravitons, and a totatimensionD which we are seeking in this exercise.

of N, loops. However, these vertices need to be categorized Overall, this matrix element carries a dimension

1\ V- (12NE
) (16)

m
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A~ (energy* NE Mg,

7

From our identification above, this is decomposed as

A~ ( energy® NE~NE= (jcp) Sn(n-2INYIN] () 2NY

1

D
m a-

o n . ] Ny — (12N
X(KO)E|I-NV[I](K)2N|+NE—2NV( )

(18
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(a) (b)

FIG. 6. Graviton vertex and one of the loop corrections.

There are however some relations among all the variables.

For example, the total number of internal lines can be ex
pressed in terms of the total number of vertices and the nu
ber of loops. The relation is

N+ NP=N_+(Ng+NY) -1

=NL+§|: N{}‘[I]+§n: N[n]-1. (19

We can use this to eliminatd? using alsoN["=N{ — iNF
to find

1
|

NP=(NE+ )~ -

:NL+

1
2NQ+; N9[n]-1.

(20)
Plugging this into the general formula, E¢18), using
SoNY[n]=N¢, and recalling thatx,xq,xo all go as
1/ energy allow us to solve for the parameerresulting in

NE

2

D=2

+2N —ND+ > (n—2)N€,[n]+ZI I-NITIT.
(21)

This is our general power counting result for the momen-

tum dependence of a general diagram. If we disregard th
matter verticesNg'=NU[I]=NJ=0, it is identical to Wein-

berg’'s theorem for chiral theories. The momentum dimen
sion of a diagram is higher if we increase the number o

ﬁonservatiom"Twz 0is

one such example. This leav& unchanged. Thus higher

rT]bop processes contribute at the same level to the energy

expansion as tree processes. This gives a loop expansion of
«’m? instead ofx?g?.

In summary, we have computed the momentum power or
a given proces$13), and found a class of dangerous dia-
grams where the addition of two matter vertices adds only
one loop to the process, leading to no net increase in the
momentum powebD.

IIl. CANCELLATIONS IN COVARIANT GAUGE

The naive rule for power counting of the previous section
is unacceptable in physical amplitudes. Nevertheless, it is
easy to calculate some individual diagrams to see that the
rule is in fact correct for that diagraniVe give an example
below in connection with the box diagranTherefore, there
must be cancellations among the diagrams which remove the
unwanted behavior. In this section we describe the cancella-
tions that occur in the interaction of two heavy masses. An
examination of the permutations of attaching multiple gravi-
tons to a single heavy particle suggests that these cancella-
tions should occur in other processes as well.

Let us first consider the vertex correction, Fig. 6. Of the
several contributions to the vertex at one loop only, Fit) 6
and the self-energy diagrams are of the dangerous category,
with two extra matter vertices and one loop.

Because the vertex coupling is the energy momentum ten-
sor, and the energy momentum tensor is conserved, there is a
nonrenormalization theorem for the matrix element at
g°=0. The general form for the vertex, consistent with the

loops or if we use a gravitational Lagrangian with more than
two derivatives. This shows that the power counting of loop
diagrams in pure gravity involves the parameieq? (or
k292 if Kko# K).

In the presence of matter, the last term also behaves as
expected: using the Lagrangian with extra derivatives orand at tree leveF,=1, F,=0. The dangerous diagrams
light fields (1>0) only increases the power of the momen- naively give a correction t&, of order x>’m?, and individu-
tum. However, the problem arises because of the minus sigally will do so. [Because powers af?> multiply F, it auto-
in front of N\J. Increasing the number of matter vertices in matically is not a problen — a one-loop contribution to
diagrams does not increase the order in the energy expaf-(q?) of orderx?m? is allowable in a well-behaved energy
sion. This cannot actually make the momentum poWer expansion. However, sinceT,, measures the physical en-
decrease by increasing the number of matter vertices, sina@rgy and momentum we have the constr&pt0)=1. Thus
to add matter vertices to a given process we also have tall contributions toF;(g?) which are independent af?, in
change the number of loops. However, there are diagramgarticular all corrections of ordet?m?, must cancel when
where one can increase the number of loops by one whilexpressed in terms of the physical mass and momenta. This
increasing the number of matter vertices by two. Figure 4 isoccurs by the cancellation of the vertex Figbpwith the

(P'|T,..lP)=F1(a)[P P, + PP, — 7,.]

+F2(99)[a,9,~ 7,,9°], (22)
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> . > same strength as our counting rule given in 84). That is,
we identify the Lagrangian
P (mi) P (m1) v the Lagrang
T)¢" 1 22 1
£=§(?M<I>(W6D+m d (1+Kh)+§(9Mh(7Mh. (23
5 (m2) i (ma) ing Kkm2d?2 i i
D3 \m2 Pa\mz The couplingxm?®2h enters into the power counting

A\

> A

derivation in the same way as the lowest order graviton cou-

pling and in this theory we obtain the same momentum

power as in Eq.(13) with N¢[n]=0 for n>2 and

NU[I1=0 for I>0. The dangerous class of diagrams identi-

fied in the previous section also are equally problematic for

this model.

renormalization due to the self-energy. This is entirely analo- | et ys verify the result of the counting theorem by con-

gous to the nonrenormalization of the charge form factor insiderations of the gravitational interaction of two heavy

QED atg?®=0. masses, as in Figs. 7(a8, and 8b). The single “graviton”
The analysis of the box diagram is more complicated beexchange vertex, Fig. 7, has magnitude

cause there is no symmetry which determines the normaliza-

tion of the diagrams. One needs to find the cancellation by

direct calculation and then to extract from this any lessons mZm3

for other calculations. There are two previous works which M= Kqu_ (24)

bear on this issue. lwasald] explicitly calculated theclas-

sical corrections to the Hamiltonian which arise in one-loop . ) )

diagrams[5]. Although he did not explicitly comment on it, &S €xpected. Now consider the box diagram. Figaz 8he

it is clear from his final resulti.e., he did obtain the usual diagram is ultraviolet finite but has an infrared divergence

classical limi} that the dangerous mass dependence had tyhich ~we  regulate  dimensionally. If ~we define

cancel out of the calculation. The issue is addressed morL’ P2=MiMz+W, after a modest calculation we end up

directly in a nice paper by Boulware and Def@}. Here the with

nature of the quantum expansion is noted, and a cancellation

of the leading mass dependence is demonstrated in the limit

FIG. 7. Tree level graph for heavy scalar scattering.

2m2m2 .2
of a heavy static source. Therefore implicit in these works is “ m;mz “ mlrznz[_1+ Rl i MMz }
the observation that the dangerous mass dependence does not q 167 3mym, p(mg+mj)
survive in the calculation of the box and crossed box dia- 2
. . 2 q q
grams. However, we would like to make the mechanism for X{ ———In| — — |+ const-O —| |, (25)
the cancellation somewhat more explicit and show that it will 4-d m M

occur in other situations as well. This allows us to extend the
demonstration of the cancellation to some higher order dia-

. " . " SWwith p=|p| in the center of mass. If we defer comment on
grams in addition. Because the couplings of general relativit he imaginary part of this amplitude to below, we see that
are complicated by the tensor indices, it is easier to firslé '

: e his does obey the expectation of the power counting theo-

analyze a simpler model. Although it is clear that the modelrem’ with a correction of ordet?m,m, compared to the tree

is not identical with general relativity, it will nevertheless g amplitude.

exhibit several interesting features which we will be able to However, we must also consider the crossed box diagram

generalize to the case of gravity. in Fig. 8(b). This can be handled in a similar fashion, and is
Consider a massless scalar fiel¢oupled to one or more  gjightly easier because it does not have an imaginary part.

massive scalar® with a trilinear coupling which carries the Defining p;- p;=m;m,+w’, we obtain

P () Ph ()

tChe gk

ps(m2) pi(m2)

(¢)

FIG. 8. The(a) box and(b) crossed box graphs which have the wrong naive power counting behavior.
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szfmg K’mym, w’ grams and allow the external legs to be on shell, we f!nd.that
Merossed 9 1672 1 the sum of propagators behaves as?livhereas each indi-

3mym; vidual propagator was of orderri/

X 2 | ( a + t-l—O( q)] 1 1
———In| — —| + cons —
4—d m? M)’ V= km? + m?
6 Tprioz=m? " (p'—kF-m?)"
1 1
with the sameconstant as in Eq25). We see that the most =(Km2)2[2 et o
dangerous terms cancel between the diagrams. Using P P
w—w’=—q?/2 we get the final result 2(p' —p)-k—2k?
=) kK2 [2p k=K (28
Miota™ Migee™ Mpoxt Merossed [2p- 1-L2p" ]
szfmg 1 1, ., x2mym, However, sincep’ — p=gq, there is no factor of the large
=—qz—| + E[— EK q +lﬁm} massm in the numerator:
2 2 2
2 q> a0 q°—k°—(k—q)
X m—ln(—m + const | . (27) V=(xkm?) [2p k+ K2 [2p - k—K7]|' (29

Note that no approximation has been made in obtaining this Because there are two factors pfk~m in the denomi-
result. In the real part of the amplitude, the expansion parampator, this double vertex counts as
eter has become?q?, which is well behaved. The imaginary -
part of the amplitude is just a phase and does not contribute Y kTm- 22 (30)
to observables at this order when the matrix element is z K
squared. It is simply the analogue of the well-known “Cou-
lomb phase” and is generated from the rescattering of the onather than thé’~ «?m? that the naive counting would im-
shell intermediate state of matter particles. It is even more ilply. For Fig. 9a) or Y(b) individually would give the extra
behaved than the power counting theorem suggests, sincetwo factors of Ifn which converts the undesirable expression
comes from the exceptional case where the heavy particl® «2g?, thereby explaining the result found above.
propagators go on sheland hence do not behave asn})/ The only exceptions to this power counting occurs for
However, like the Coulomb phase, it has been shown byvhat can be termed “exceptional momenta.” This refers to
Weinberg[7] to exponentiate to all orders in general relativ- momenta where the propagator is not of orden,1and can
ity (the proof extends to this simpler theory as wedb that occur when the intermediate line goes on shell,
this term does not cause any trouble. The same paper Hp+k)?—m?=0=2p-k+k? so thatp-k~k?. In this case
Weinberg also proves that infrared divergencies cancel inve do not gain a power the power ofrifrom the propaga-
general relativity and by extension in this theory, by the con+tor. This is exactly what was found above in the explicit
siderations of virtual corrections of these diagrams plus thealculation of the box diagram. The on shell intermediate
bremsstrahlung radiation of real particles. These can be regsgtates generate the imaginary part of the diagram which has a
lated dimensionally alsg8], and will yield as finite effects different dependence on the masses than does the remainder
residual corrections of order®q? and x2q2Ing?. We are not  of the diagram. This leads to the Coulomb phase in the box
here directly interested in the exact answer; for us the impordiagram.
tant result was the cancellation efm? effects in Eq.(27). We have been able to extend the demonstration of cancel-
We can show that this cancellation is not peculiar to thdations to three and four verticésising computer algebra
box diagram, but rather is a general feature of this theoryThe difficulty here appears because only the external lines
This can be seen by considering the basic unit of a single linare on shell. The desired cancellation does not occur for just
with two interactions with off shell gravitons, as in Fig. 9. the symmetrized sum of any two of the permutations, e.g.,
Any time a given ordering is possible, the crossed order isvhen we permuté; andl, in Fig. 10, but requires the sum
also possible, cf. Figs.(8) and 9b). If we add these two dia- of all six permutations.

p p+q p ptq P . !
ékl ékg + ,ﬁ’ ;% L2 = TSk TSk
(2) (b) (c)

FIG. 9. The definition of the “Bose-symmetrized” propagators.
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We take the “Bose-symmetrized propagator” denoted bycorrespondingly to Weinberg’s power counting theorem in
a double line in Fig. 10: chiral effective QCD due to unexpected cancellations.
The features of the toy model which are relevant for our
i topic can be extended to similar diagrams in general relativ-
q\? ) ity. One can repeat the exercise to show that the sum of the
3 —m two diagrams in Figs. @) and 8b), but with two gravitons
instead of scalars, behaves rn? instead of thex?m?® be-
[ havior as given by the naive power counting. The gravita-
X[p+I1+I2+2(q/3)]2—m2’ (31)  tional vertex is more complicated than the scalar one, for
example involvingkp,,(p+Kk), at a given vertex instead of
where the summation goes for all permutations of the ~«m”. However, in the counting of powers of maggk, is
subject to=;l;=0. already 1 _factor fgwer power of the mass thanpisp, .
Naive power counting would sap®=0(1/m2g?) and  Therefore in showing that the?m® behavior is not present

for the total disappearance of then expansion parameter in the sum of diagrams, we need only consider ire,p,
we would need®=0(1/m?* because the expected behav- portion of the vertex, which is common to all vertices and

perm

1
DY (Pllz )= 57 2
(b

ior of the amplitude is, in power counting, which will not upset the cancellation of the two diagrams.
The proof then goes through exactly as given above.
(km?)(km2) , , We have also explicitly evaluated the box and crossed
T{H(Km) one loop™ (KM)‘twoloop™ * * * box diagrams in general relativity in order to verify that

(32) these have the appropriate structure, as suggested by previ-

ous calculation§4—6]. At the order 142 there survives only
and, in the effective theory, the Coulomb phasémore properly the “Newton” phage
which is divergent and purely imaginary:

(km2)(km3) , ) _
—q2—{1+(Kq) one Ioop+(Kq) two Ioop+ o } i 1 «* 2 2 2 4 4v2
(33 W_E?R[S —2s(mj+m3)+(mj+mj)]
A tedious but straightforward algebra shows indeed that, 1 C—1-Ind4m
disregarding special points in the integration region where X ;+Inq+ 2 ' (36)

some of the denominators are less ti@m;), cancellations
occur with the result where thee— 0 singularity is of IR origin. We found, by a
similar calculation, that thé@(1/q) part hasno imaginary
part, containso IR or UV singular terms. Its coefficient is a
complicated function o, m? andm3 which we do not dis-
play for lack of space but whoge—0 limit is

Although we do not have an inductive proof valid for all
orders we did the same calculation @ (p,11,15,13,14), k*m2ms3
figuring in ladder-type three-loop diagrams, which indeed - 128
showed a similar behavior,

1
Dﬁ)(p,llJz,lg):O(W)_ (34)

m;+my,+0O

TR

This term corresponds to a contribution to the classical po-

1 i
Dﬁ)(p.|1,|2,|3,|4)20(56)’ (35) tential
m;m; G(m;+m,)
in accordance with the requirement of the validity of the V(r)——G ; = ar +...], (39

energy expansion. This calculation was done with a

MATHEMATICA program and attempts to calculaléy’ did  and forms part of thelassicalgeneral relativity corrections
not succeed because of the prohibitively large amount of4] which are encoded in the one-loop diagrams of Fig. 8
CPU time required. We have unfortunately not found an inhen the harmonic gauge is used. We note that no similar
ductive proof that lets us extend these results to all ordergeal term arises in the toy model of EQ7). The remaining

These calculations show that in the toy model, which is fregontributions enter with the desired quantum expansion pa-
of gauge complications, the power counting theorem workgameter[5].

D prq

T%ﬁ% 0 §12+§ T%frg :

| (a) (b)
FIG. 10. The two-loop “Bose-symmetrized” propagator, de-
fined forEfIiEO. FIG. 11. Suppressed matter-gravity interaction vertices.
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FIG. 12. Interaction of two masses in a physical gauge.

IV. POWER COUNTING IN A PHYSICAL GAUGE Let us consider the interaction of two heavy masses,

In covariant gauges. both classical and guantum effectWhiCh have a small relative momentum. The momentum of
gauges, q ne of the masses can be written as

are included in the same Feynman diagram. The simples
example is the one graviton exchange diagram, which in- p.=mu,+p.
cludes the classical Newton potential, but loop diagrams also © mo B

exhibit this propertyf2]. However, in physical gauges, clas- (40)
sical and quantum effects are separated. The physical quan-

tum degrees of freedom are transverse and tracgdéssor- v,=(1,00.0,.

responding to massless spin-two quanta. In a multipole..

expansion the monopole term, which generates the NewtoeﬁInce

potential, is classical, while the spin-two degrees of freedom — —

couple to the quadrupole term. This suggests that the domi- Q.= Pu= Py (42)
nantxm? coupling that caused us do much trouble in Sec. Il _ I p— .
is to be associated with classical physics while the quantuny® Will treat the residuap as of orderg in the energy ex-

degrees of freedom have a milder behavior. We will showPansion. If we quantize in the frame wherg defines the
that this is the case for the interaction of two heavy massedimelike direction, then the physical graviton degrees of free-

This allows a quantum power counting which is well be- dom will only couple to the spacelike_traceless components
haved. of the energy momentum tens@i; . Since the large mass

Covariant gauges, in particular the harmonic gaugél©€s not contribute to these, we know
treated covariantly, are preferred for practical calculations SR
[10]. When combined with the background field technique, Tij=PiP; +P;Pi, (42)
they can explicitly retain the invariances of general relativity. ) i )
In contrast the construction of the physical gauge quantur@"d we counfT;; as orderq®, whereasTq is of orderm.
theory severely disturbs the underlying symmetry of generaf "€ Same suppression is present for the two-graviton inter-
coordinate invariancgl1]. One picks a preferred frame for action of Fig. 11a), and the coupling of one classical New-
the quantization, and the split of quantum and classical deionian field and one physical quantum field as shown in Fig.
grees of freedom depends on that frame. Nevertheless &l(b).- From the general vertex
physical gauge is attractive conceptually because only the )
physical radiation degrees of freedom are quantized. This is - =i K | 12 (p*p’Pp’*ph)
analogous to the Coulomb gauge quantization of QED. Nmpo T o | ThadiBipo

Although the general metric tensgy,, has ten real com-
ponents, the radiation field has only two independent degrees
of freedom, corresponding to helicity 2 [9]. For a wave

1 ranf
- E( nn)\lﬁa,aﬁ_’_ npo" n)\,aﬁ)p p

propagating in the direction, a harmonic gauge constraint

lus residual freed be used to reduce the t 1 1 o
plus residual gauge freedom can be used to reduce the ten -5 |m’pg_§7]nwpg [p-p'—m?];, (43
original components of a polarization tensgy, such that

only e,=—€,, and e;,=€,; are nonvanishing(other
choices are also possibleThe helicity states with=+2  We have
can be found from these via 2 2
T00,00~ K~M7,
Ei26111i6122_6221i612. (39)
Toojj~ K°07, (44)
When quantized, these become the graviton degrees of free-
dom. Tij,k|~K2q2'
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What we see from these couplings is that the physical quarsf graviton simply drop out, leaving only the vacuum polar-
tum degrees of freedom have a reduced matter coupling witlzation diagram in this gauge.
two fewer powers ofm compared to the harmonic gauge To close this section, we note that the use of a physical
counting rules. gauge seems to be required if we are to be able to introduce
Various other diagrams describing the interaction of twothe idea of a purely classical source. In the harmonic gauge,
masses in physical gauges are shown in Fig. 12. The dashé&ge inclusion of the matter propagator was required to prop-
line represents the classical Newtonian potential while therly identify the classical and quantum corrections. Both ver-
wavy line describes the quantum degrees of freedom. In thté€X and vacuum polarization diagrams are important. One
normalization used throughout this work, the classical intercould not at the start of the calculation take the mass to
action is again of ordex?m*/q2. Corrections due to vacuum infinity and treat this resulting field in the classical limit. The
polarization in Figs. 1®) and 12c) have the same powers eason is that the vertex coupling strength also goes to infin-

of m but two extra powers ok?, leading to a result of order ity in this limit. However, in the physical gauge, the dia-
grams with matter propagators and couplings to transverse

quantum fields are unimportant in the limit— 0. By taking
this limit in this gauge, one obtains a classical source, with
an interaction which receives quantum corrections.

K2m4

ra k2g%(a+bing?), (45)
so that these diagrams have the expected expansion param-
eter k2q? as desired. An important feature of the physical ) ) ]
gauge is that diagrams with extra matter couplings are sup- We were motivated for this study by the observation of a
pressed. For example, the mixed box diagram of Figd)L2 class of d|agr§1ms which in harmonic gauge Woulq apparently
has two factors of 1 from the propagators, but no compen- UPset the utility of the energy expansion, and indeed also
sating factors of the mass in the vertex coupling or the physiSPOil the classical limit of the theory. Part of the problem is
cal gravitons. This means that this diagram is suppressed e to the fact that the graviton propagator in harmonic
1/m? compared to the vacuum polarization corrections. All9auge includes both classical and quantum effects. By con-
of the diagrams with graviton-matter vertices are suppressegideration of several diagrams we were able to demonstrate
by powers of Im. This leaves the vacuum polarization dia- the nature of the cancellations in harmonic gauge which re-
gram as the leading quantum correction is this gauge, with §'0ved the undesirable expansion parameter and led to a
well-behaved expansion parameter. well-defined energy expansion. The logic for this behavior is
The above results may be seen more easily in differeng/€arer in a physical gauge, analogous to Coulomb gauge in
normalization for the fields, typical for the nonrelativistic QED: even if explicit calculations are much more painful in
limit. Here, we divide all matter vertices by a factor af? such a gauge. The physical transyerse traceless quantum_de—
so thatTg=m for a particle at rest. In this normalization 9rées of freedom only couple with a reduced strength in
(used also in heavy quark effective thediy]) propagators problems with nearly static matter fields. In thg limit that
have no factor of h. However, the coupling of the trans- ™M becomes very large, the effect of matter couplings become

verse traceless degrees of freedom to matter fields are prp€dligible, and the modification to the gravitational self-
portional to interactions(i.e., vacuum polarizationrbecome the most im-

portant quantum corrections. These self-interactions of the
sector satisfy the Weinberg power counting theorem without
any problems. This indicates that the quantum energy expan-
sion is well behaved in physical gauges, and hence by exten-
sion in all gauges as long as one is calculating gauge invari-
and vanish am—0. Then all diagrams with matter coupling ant quantities.

V. SUMMARY

T _PPTPR

1 2m (46)
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