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Finding apparent horizons in numerical relativity
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Physics Department, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
~Received 7 August 1995!

We review various algorithms for finding apparent horizons in 311 numerical relativity. We then focus on
one particular algorithm, in which we pose the apparent horizon equationH[¹ in

i1Ki j n
inj2K50 as a

nonlinear elliptic ~boundary-value! PDE on angular-coordinate space for the horizon shape functi
r5h(u,f), finite difference this PDE, and use Newton’s method or a variant to solve the finite differe
equations. We describe a method for computing the Jacobian matrix of the finite differencedH(h) function
H(h) by symbolically differentiating the finite difference equations, giving the Jacobian elements directly
terms of the finite difference molecule coefficients used in computingH(h). Assuming the finite differencing
scheme commutes with linearization, we show how the Jacobian elements may be computed by first linea
the continuumH(h) equations, then finite differencing the linearized continuum equations.~This is essentially
just the ‘‘Jacobian part’’ of the Newton-Kantorovich method for solving nonlinear PDEs.! We tabulate the
resulting Jacobian coefficients for a number of differentH(h) and Jacobian computation schemes. We find thi
symbolic differentiation method of computing theH(h) Jacobian to bemuchmore efficient than the usual
numerical-perturbation method, and also much easier to implement than is commonly thought. When so
the discreteH(h)50 equations, we find that Newton’s method generally shows robust convergence. Howe
we find that it has a small~poor! radius of convergence if the initial guess for the horizon position contain
significant high-spatial-frequency error components, i.e., angular Fourier components varying as~say! cosmu
with m*8. ~Such components occur naturally if spacetime contains significant amounts of high-freque
gravitational radiation.! We show that this poor convergence behavior isnot an artifact of insufficient resolu-
tion in the finite difference grid; rather, it appears to be caused by a strong nonlinearity in the contin
H(h) function for high-spatial-frequency error components inh. We find that a simple ‘‘line search’’ modi-
fication of Newton’s method roughly doubles the horizon finder’s radius of convergence, but both the unm
fied and modified methods’ radia of convergence still fall rapidly with increasing spatial frequency, appr
mately as 1/m3/2. Further research is needed to explore more robust numerical algorithms for solving
H(h)50 equations. Provided it converges, the Newton’s-method algorithm for horizon finding is potenti
very accurate, in practice limited only by the accuracy of theH(h) finite differencing scheme. Using fourth
order finite differencing, we demonstrate that the error in the numerically computed horizon position show
expectedO„(Du)4… scaling with grid resolutionDu, and is typically;1025(1026) for a grid resolution of

Du5
p/2
50 (

p/2
100). Finally, we briefly discuss the global problem of finding or recognizing theoutermostapparent

horizon in a slice. We argue that this is an important problem, and that no reliable algorithms currently
for it except in spherical symmetry.@S0556-2821~96!02616-1#

PACS number~s!: 04.25.Dm, 02.60.Cb, 02.60.Lj, 02.70.Bf
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I. INTRODUCTION

In 311 numerical relativity, one often wishes to locat
the black hole~s! in a ~spacelike! slice. As discussed by Refs
@1,2#, a black hole is rigorously defined in terms of its eve
horizon, the boundary of future null infinity’s causal pas
Although the event horizon has, in the words of Hawkin
and Ellis@3#, ‘‘a number of nice properties,’’ it is defined in
an inherentlyacausalmanner: It can only be determined i
the entire future development of the slice is known.~As dis-
cussed by Refs.@4,5#, in practice the event horizon may b
located to good accuracy given only the usual numerica
generated approximate development to a nearly station
state, but the fundamental acausality remains.!

In contrast, an apparent horizon, also known as a marg

*Address for written correspondence: Box 8–7, Thetis Islan
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ally outer trapped surface, is defined@1,2# locally in time,
within a single slice, as a closed two-surface whose outgoin
null geodesics have zero expansion. An apparent horizon
slicing-dependent: If we define a ‘‘world tube’’ by taking the
union of the apparent horizon~s! in each slice of a slicing,
this world tube will vary from one slicing to another. In a
stationary spacetime event and apparent horizons coincid
although this generally is not the case in dynamic space
times. However, given certain technical assumptions, the ex
istence of an apparent horizon in a slice implies the existenc
of an event horizon, and thus by definition a black hole,
containing the apparent horizon.~Unfortunately, the con-
verse does not always hold. Notably, Wald and Iyer@6# have
constructed a family of angularly anisotropic slices in
Schwarzschild spacetime which approach arbitrarily close to
r50 yet contain no apparent horizons.!

There is thus considerable interest in numerical algo
rithms to find apparent horizons in numerically computed
slices, both as diagnostic tools for locating black holes and
studying their behavior~see, for example, Refs.@4,7#!, and
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4900 54JONATHAN THORNBURG
for use ‘‘on the fly’’ during numerical evolutions to help in
choosing the coordinates and ‘‘steering’’ the numerical ev
lution @8–11#. This latter context makes particularly stron
demands on a horizon-finding algorithm: Because the co
puted horizon position is used in the coordinate condition
the horizon must be located quite accurately to ensure t
spurious finite difference instabilities do not develop in th
time evolution. Furthermore, the horizon must be re-locat
at each time step of the evolution, and so the horizon-find
algorithm should be as efficient as possible. Finally, wh
evolving multiple-black-hole spacetimes in this manner it
desirable to have a means of detecting the appearance
new outermost apparent horizon surrounding two black ho
which are about to merge. We discuss this last problem f
ther in Sec. XI.

In this paper we give a detailed discussion of the ‘‘New
ton’s method’’ apparent-horizon-finding algorithm. This a
gorithm poses the apparent horizon equation as a nonlin
elliptic ~boundary-value! partial differential equation~PDE!
on angular-coordinate space for the horizon shape funct
r5h(u,f), finite differences this PDE, and uses some va
ant of Newton’s method to solve the resulting set of simu
taneous nonlinear algebraic equations for the values ofh at
the angular-coordinate grid points. This algorithm is suitab
for both axisymmetric and fully general spacetimes, and
discuss both cases. As explained in Sec. II, we assum
locally polar spherical topology for the coordinates and fini
differencing, though we make no assumptions about the
sis used in taking tensor components.

II. NOTATION

Our notation generally follows that of Misner, Thorne
and Wheeler@12#, with G5c51 units and a (2,1,1,1)
spacetime metric signature. We assume the usual Eins
summation convention for repeated indices regardless
their tensor character, and we use the Penrose abstract-in
notation, as described by~for example! Ref. @13#. We use the
standard 311 formalism of Arnowitt, Deser, and Misner
@14# ~see Refs.@15,16# for recent reviews!.

We assume that a specific spacetime and 311 ~spacelike!
slice are given, and all our discussions take place within t
slice. We use the term ‘‘horizon’’ to refer to the~an! appar-
ent horizon in this slice. We often refer to various sets in t
slice as being one, two, or three dimensional, meaning
number ofspatialdimensions — the time coordinate is neve
included in the dimensionality count. For example, we ref
to the horizon itself as two dimensional.

We assume that the spatial coordinatesxi[(r ,u,f) are
such that in some neighborhood of the horizon, surfaces
constantr are topologically nested two-spheres withr in-
creasing outward, and we refer tor as a ‘‘radial’’ coordinate
andu andf as ‘‘angular’’ coordinates. For pedagogical con
venience~only!, we takeu and f to be the usual polar
spherical coordinates, so that if spacetime is axisymme
~spherically symmetric!, f is (u andf are! the symmetry
coordinate~s!. However, we make no assumptions about t
detailed form of the coordinates; i.e., we allow all comp
nents of the three-metric to be nonzero.

We emphasize that although our assumptions about
local topology ofr are fundamental, our assumptions abo
o-
g
m-
s,
hat
e
ed
ing
en
is
of a
les
ur-

-
l-
ear

ion
ri-
l-

le
we
e a
te
ba-

,

tein
of
dex

his

he
the
r
er

of

-

tric

he
o-

the
ut

the angular coordinates are for pedagogical convenienc
only, and could easily be eliminated. In particular, all our
discussions carry over unchanged to multiple-black-hol
spacetimes, using~for example! either Čadež conformal-
mapping equipotential coordinates@17# or multiple-
coordinate-patch coordinate systems@18#.

We usei jkl for spatial ~three!-indices, anduvwxy for
indices ranging over the angular coordinates only.gi j de-
notes the three-metric in the slice,g its determinant, and
¹ i the associated three-covariant derivative operator.Ki j de-
notes the three-extrinsic curvature of the slice, andK its
trace.

We useA to denote the two dimensional space of angula
coordinates (u,f). We sometimes need to distinguish be-
tween field variables defined onA or on the~two dimen-
sional! horizon, and field variables defined on a three dimen
sional neighborhoodN of the horizon. This distinction is
often clear from context, but where ambiguity might arise we
use prefixes(2) and (3), respectively, as in(2)H and (3)H.

We use italic lettersH, h, etc., to denotecontinuumco-
ordinates, functions, differential operators, and other quant
ties. We use sans serif lettersH, h, etc., to denote grid func-
tions, and small capital roman indicesI, J, andK to index grid
points. We use subscript grid-point indices to denote th
evaluation of a continuum or grid function at a particular
grid point, as inH I or HI . We useJ@P(Q)# to denote the
Jacobian matrix of the grid functionP5P(Q), as defined by
Eq. ~17!, and• to denote the product of two such Jacobians
or that of a Jacobian and a grid function. We useJ@P(Q)# to
denote the linearization of the differential operator
P5P(Q) about the pointQ.

We useM as a generic finite difference molecule andM as
a generic index for molecule coefficients. We writeMPM to
mean thatM has a nonzero coefficient at positionM. Tem-
porarily taking ^M& to denote some particular coordinate
component ofM, we refer to maxMPMu^M&u as the ‘‘radius’’
of M, and to the number of distinct^M& values withMPM as
the ‘‘diameter’’ or ‘‘number of points’’ ofM. ~For example,
the usual symmetric second-order three-point molecules fo
first and second derivatives both have radius 1 and diamet
3.! We often refer to a molecule as itself being a discrete
operator, the actual application to a grid function being im
plicit.

Given a grid functionf and a set of points$xk% in its
domain, we use interp„f (x),x5a… to mean an interpola-
tion of the values f (xk) to the point x5a and
interp8„f (x),x5a… to mean the derivative of the same in-
terpolant at this point. More precisely, takingI to be a
smooth interpolating function~typically a Lagrange polyno-
mial! such thatI (xk)5 f (xk) for eachk, interp„f (x),x5a…
denotes I (a) and interp8„f (x),x5a… denotes
(]I /]x)ux5a .

III. APPARENT HORIZON EQUATION

As discussed by~for example! Ref. @19#, an apparent ho-
rizon satisfies the equation

H[~2!H[¹ in
i1Ki j n

inj2K50, ~1!

whereni is the outward-pointing unit normal to the horizon,
all the field variables are evaluated on the horizon surface
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54 4901FINDING APPARENT HORIZONS IN NUMERICAL RELATIVITY
and where for future use we define the ‘‘horizon function
H[ (2)H as the left-hand side of Eq.~1!. @Notice that in order
for the three-divergence¹ in

i to be meaningful,ni must be
~smoothly! continued off the horizon, and extended to a fie
(3)ni in some three-dimensional neighborhood of the ho
zon. The off-horizon continuation is nonunique, but it is ea
to see that this does not affectH on the horizon.#

To solve the apparent horizon equation~1!, we begin by
assuming that the horizon and coordinates are such that e
radial coordinate line$(u,f)5const% intersects the horizon
in exactly one point. In other words, we assume that t
horizon’s coordinate shape is a ‘‘Strahlko¨rper,’’ defined by
Minkowski as ‘‘a region inn-dimensional Euclidean space
containing the origin and whose surface, as seen from
origin, exhibits only one point in any direction’’@20#. Given
this assumption, we can parametrize the horizon’s shape
r5h(u,f) for some single-valued ‘‘horizon shape func
tion’’ h defined on the two-dimensional domainA of angular
coordinates (u,f).

Equivalently, we may write the horizon’s shape a
(3)F50, where the scalar function(3)F, defined on some
three-dimensional neighborhoodN of the horizon, satisfies
(3)F50 if and only if r5h(u,f), and we take(3)F to in-
crease outward. In practice we take(3)F(r ,u,f)
5r2h(u,f).

We define the nonunit outward-pointing normal~field! to
the horizon by

si[
~3!si5¹ i

~3!F, ~2!

i.e., by

sr51, ~3a!

su52]uh, ~3b!

and the outward-pointing unit normal~field! to the horizon
by

ni[~3!ni5
si

iski
~4!

5
gi j sj

Agklsksl
~5!

5
gir2giu]uh

Agrr22gru]uh1guv~]uh!~]vh!
. ~6!

Henceforth we drop the(3) prefixes on(3)si and
(3)ni .

Substituting Eq.~6! into the apparent horizon equation
~1!, we see that the horizon functionH(h) depends on the
~angular! second derivatives ofh. In fact, the apparent hori-
zon equation~1! is a second-order elliptic~boundary-value!
PDE for h on the domain of angular coordinatesA. The
apparent horizon equation~1! must, therefore, be augmente
with suitable boundary conditions to define a~locally!
unique solution. These are easily obtained by requiring
horizon’s three-dimensional shape to be smooth across
artificial boundariesu50, u5p, f50, andf52p.
’’
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IV. ALGORITHMS FOR SOLVING THE APPARENT
HORIZON EQUATION

We now survey various algorithms for solving the appa
ent horizon equation~1!. Reference@21# reviews much of the
previous work on this topic.

In spherical symmetry, the apparent horizon equation~1!
degenerates into a one-dimensional nonlinear algebraic eq
tion for the horizon radiush. This is easily solved by zero
finding on the horizon-functionH(h). This technique has
been used by a number of authors, for example, Re
@22,23,9,11#. ~See also Ref.@24# for an interesting analytical
study giving necessary and sufficient conditions for appare
horizons to form in nonvacuum spherically symmetric spac
times.!

In an axisymmetric spacetime, the angular-coordina
spaceA is effectively one-dimensional, and so the appare
horizon equation~1! reduces to a nonlinear two-point bound
ary value ordinary differential equation~ODE! for the func-
tion h(u), which may be solved either with a shooting
method, or with one of the more general methods describ
below. Shooting methods have been used by a number
authors, for example, Refs.@25–31#.

The remaining apparent-horizon-finding algorithms w
discuss are all applicable to either axisymmetric spacetim
~two-dimensional codes! or fully general spacetimes~three-
dimensional codes!.

Tod @32# has proposed an interesting pair of ‘‘curvatur
flow’’ methods for finding apparent horizons. Bernstein@33#
has tested these methods in several axisymmetric spacetim
and reports favorable results. Unfortunately, the theoretic
justification for these methods’ convergence is only valid
time-symmetric (Ki j50) slices.

The next two algorithms we discuss are both based on
pseudospectral expansion of the horizon shape funct
h(u,f) in some complete set of basis functions~typically
spherical harmonics or symmetric trace-free tensors!, using
some finite number of the expansion coefficients$ak% to pa-
rametrize the horizon shape. One algorithm rewrites the a
parent horizon equationH(ak)50 as iH(ak)i50 and then
uses a general-purpose function-minimization routine
search$ak%-space for a minimum ofiHi . This algorithm has
been used by Refs.@34,35# in axisymmetric spacetimes, and
more recently by Ref.@36# in fully general spacetimes. Al-
ternatively, Nakamura, Oohara, and Kojima@37–39# have
suggested a functional iteration method for directly solvin
the apparent horizon equationH(ak)50 for the expansion
coefficients$ak%, and have used it in a number of fully gen
eral spacetimes. Kemball and Bishop@40# have suggested
and tested several modifications of this latter algorithm
improve its convergence properties.

The final algorithm we discuss, and the main subject
this paper, poses the apparent horizon equationH(h)50 as a
nonlinear elliptic ~boundary-value! PDE for h on the
angular-coordinate spaceA. Finite differencing this PDE on
an angular-coordinate grid$(uK ,fK)% gives a set of simulta-
neous nonlinear algebraic equations for the unknown valu
$h(uK ,fK)%, which are then solved by some variant of New
ton’s method. This ‘‘Newton’s-method’’ algorithm~we con-
tinue to use this term even if a modification of Newton’
method is actually used! has been used in axisymmetric
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spacetimes by a number of authors, for example, Refs.@41–
44,10#, and is also applicable in fully general spacetim
when the coordinates have a~locally! polar spherical topol-
ogy. Huq @45# has extended this algorithm to fully genera
spacetimes with Cartesian-topology coordinates and fin
differencing, and much of our discussion remains applica
to his extension.

The Newton’s-method algorithm has three main parts: t
computation of the discrete horizon functionH(h), the com-
putation of the discrete horizon function’s Jacobian matr
J@H(h)#, and the solution of the simultaneous nonlinear a
gebraic equationsH(h)50. We now discuss these in mor
detail.

V. COMPUTING THE HORIZON FUNCTION

In this section we discuss the details of the computation
the discrete horizon functionH(h). More precisely, first fix
an angular-coordinate grid$(uK ,fK)%. Then, given a ‘‘trial
horizon surface’’r5h(u,f), which need not actually be an
apparent horizon, we defineh(u,f) to be the discretization
of h(u,f) to the angular-coordinate grid, and we consid
the computation ofH(h) on the discretized trial horizon sur-
face, i.e., at the points$(r5h(uK ,fK),u5uK ,f5fK)%.

The apparent horizon equation~1! definesH[ (2)H in
terms of the field variables and their spatial derivatives
the trial horizon surface. However, these are typically know
only at the~three-dimensional! grid points of the underlying
311 code of which the horizon finder is a part. We therefo
extend(2)H to some~three-dimensional! neighborhoodN of
the trial horizon surface; i.e., we define an extended horiz
function (3)H onN:

~3!H5¹ in
i1Ki j n

inj2K ~7!

5] in
i1~] i lnAg!ni1Ki j n

inj2K. ~8!

To compute(2)H(h) on the ~discretized! trial horizon sur-
face, we first compute(3)H(h) on the underlying 311
code’s ~three-dimensional! grid points inN, and then radi-
ally interpolate these(3)H values to the trial-horizon-surface
position to obtain(2)H(h),

~2!H~u,f!5 interp„~3!H~r ,u,f!, r5h~u,f!… ~9a!

or, equivalently,

~2!HI5 interp~ ~3!H^r I& ,r5hI!, ~9b!

whereI is an angular grid-point index and the^rI& subscript
denotes that the interpolation is done independently at e
angular coordinate along the radial coordinate lin
$u5u I ,f5f I%. In practice any reasonable interpolatio
method should work well here: References@43,44# report
satisfactory results using a spline interpolant; in this wor
we use a Lagrange~polynomial! interpolant centered on the
trial-horizon-surface position, also with satisfactory resul
Neglecting the interpolation error, we can also write Eq.~9!
in the form

~2!H~u,f!5 ~3!H„r5h~u,f!,u,f…. ~10!
es
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We consider two basic types of methods for computin
the extended horizon-function(3)H(h).

A ‘‘two-stage’’ computation method uses two sequentia
numerical finite differencing stages, first explicitly comput
ing si and/orn

i by numerically finite differencingh, and then
computing (3)H by numerically finite differencingsi or n

i .
A ‘‘one-stage’’ computation method uses only a single

numerical ~second! finite differencing stage, computing
(3)H directly in terms ofh’s first and second angular deriva-
tives.

Figure 1 illustrates this.
To derive the detailed equations for these methods, w

substitute Eqs.~3! and Eqs.~5! into Eq. ~8!:

~3!H5¹ in
i1Ki j n

inj2K ~11!

5] in
i1~] i lnAg!ni1Ki j n

inj2K ~12!

5] i
gi j sj

~gklsksl !
1/21~] i lnAg!

gi j sj
~gklsksl !

1/21
Ki j sisj
gklsksl

2K

~13!

5
A

D3/21
B

D1/21
C

D
2K, ~14!

where the subexpressionsA, B, C, andD are given by

A52~giksk!~g
jl sl !] isj2

1
2 ~gi j sj !@~] ig

kl!sksl #, ~15a!

B5~] ig
i j !sj1gi j ] isj1~] i lnAg!~gi j sj !, ~15b!

C5Ki j sisj , ~15c!

D5gi j sisj , ~15d!

i.e.,

A5~gur2guw]wh!~gvr2gvw]wh!]uvh

2 1
2 ~gir2giu]uh!@] ig

rr22~] ig
ru!]uh

1~] ig
uv!~]uh!~]vh!#, ~16a!

B5@] ig
ir2~] ig

iu!]uh#2guv]uvh1~] i lnAg!~gir2giu]uh!,
~16b!

FIG. 1. This figure illustrates the various two-stage and one
stage computation methods for the horizon-functionH(h). The
solid arrows denote finite differencing operations, the dotted arro
denotes an algebraic computation, and the dashed arrow denote
radial interpolation to the horizon positionr5h(u,f). Each path
from h to H represents a separate computation method. Notice th
there are three distinct two-stage methods~using the upper arrows
from (2)h to (3)H in the figure! and one one-stage method~using the
lower arrow from(2)h to (3)H).
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C5Krr22Kru]uh1Kuv~]uh!~]vh!, ~16c!

D5grr22gru]uh1guv~]uh!~]vh!. ~16d!

Comparing the one-stage and two-stage methods, the tw
stage methods’ equations are somewhat simpler, and so th
methods are somewhat easier to implement and somew
cheaper~faster! to compute. However, for a proper compari
son the cost of computing the horizon function must be co
sidered in conjunction with the cost of computing the hor
zon function’s Jacobian. Compared to the one-stage meth
the two-stage methods double the effective radius of the n
H(h) finite differencing molecules, and thus have 2~4! times
as many nonzero off-diagonal Jacobian elements for a tw
~three-! dimensional code. In practice the cost of computin
these extra Jacobian elements for the two-stage metho
more than outweighs the slight cost saving in evaluating th
horizon function. We discuss the relative costs of the diffe
ent methods further in Sec. VI D.

VI. COMPUTING THE JACOBIAN

In this section we discuss the details of the computation
the Jacobian matrixJ@H(h)# of the horizon functionH(h) on
a given trial horizon surface.

A. Computing the Jacobian of a generic functionP(Q)

We consider first the case of a generic functionP(Q) in
d dimensions, finite differenced usingN-point molecules.
We define the Jacobian matrix of the discreteP(Q) function
by

J@P~Q!# IJ5
]PI

]QJ

~17a!

or, equivalently, by the requirement that

dPI[@P~Q1dQ!2P~Q!# I5J@P~Q!# IJ•dQJ ~17b!

for any infinitesimal perturbationdQ of Q.
We assume thatP is actually alocal grid function ofQ,

and so the Jacobian matrix is sparse.~For example, this
would preclude the nonlocal fourth-order ‘‘compact differ
encing’’ methods described by Refs.@46,47#.! We assume
that by exploiting the locality of the discreteP(Q) function,
any singlePI can be computed inO(1) time, independent of
the grid size.

1. Computing Jacobians by numerical perturbation

We consider two general methods for computing the Jac
bian matrix J@P(Q)#. The first of these is the ‘‘numerical
perturbation’’ method. This involves numerically perturbing
Q and examining the resulting perturbation inP(Q),

J@P~Q!# IJ'FP~Q1me~J!!2P~Q!

m G
I

, ~18!

wheree(J) is a Kronecker-delta vector defined by

@e~J!# I5 H1 if I5J,
0 otherwise, ~19!
o-
ese
hat
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g
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e
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andm is a ‘‘small’’ perturbation amplitude. This computa-
tion of the Jacobian proceeds by columns: For eachJ, QJ is
perturbed, and the resulting perturbation inP(Q) gives the
Jth column of the Jacobian matrix.

The perturbation amplitudem should be chosen to bal-
ance the truncation error of the one-sided finite differenc
approximation~18! against the numerical loss of significance
caused by subtracting the nearly equal quantitie
P(Q1me(J)) and P(Q). References@48,49# discuss the
choice ofm, and conclude that ifP(Q) can be evaluated with
an accuracy of«, thenm'A« ‘‘seems to work the best.’’ In
practice the choice ofm is not very critical for horizon find-
ing. Values of 1024–1026 seem to work well, and the inac-
curacies in the Jacobian matrix resulting from these values
m do not seem to be a significant problem.

This method of computing Jacobians requires no know
edge of theP(Q) function’s internal structure. In particular,
theP(Q) function may involve arbitrary nonlinear computa-
tions, including multiple sequential stages of finite differenc
ing and/or interpolation. This method is thus directly appli
cable to the(2)H(h) computation.

Assuming that P(Q) is already known, computing
J@P(Q)# by numerical perturbation requires a total ofNd

PI evaluations at each grid point; i.e., it requires a perturbe
PI evaluation for each nonzero Jacobian element.

2. Computing Jacobians by symbolic differentiation

An alternate method of computing the Jacobian matr
J@P(Q)# is by ‘‘symbolic differentiation.’’ This method
makes explicit use of the finite differencing scheme used
compute the discreteP(Q) function.

Suppose first that the continuumP(Q) function is a
position-dependent locallinear differential operator, dis-
cretely approximated by a position-dependent local finite di
ference moleculeM:

PI5 (
MPM~ I!

M~ I!MQI1M . ~20!

Differentiating this, we have

J@P~Q!# IJ[
]PI

]QJ

5HM~ I!J2I if J2 IPM~ I!,

0 otherwise, ~21!

so that the molecule coefficients at each grid point give th
corresponding row of the Jacobian matrix.

More generally, supposeP is a position-dependent local
nonlinear algebraic function ofQ and some finite number of
Q’s derivatives, say,

P5P~Q,] iQ,] i j Q!. ~22!

Logically, the Jacobian matrixJ@P(Q)# is defined@by Eq.
~17!# in terms of the linearization of the discrete~finite dif-
ferenced! P(Q) function. However, as illustrated in Fig. 2, if
the discretization~the finite differencing scheme! commutes
with the linearization, we can instead compute the Jacobi
by first linearizing the continuumP(Q) function, and then
finite differencing this~continuum! linearized function.~This
method of computing the Jacobian is essentially just th
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‘‘Jacobian part’’ of the Newton-Kantorovich algorithm fo
solving nonlinear elliptic PDEs.!

That is, we first linearize the continuumP(Q) function:

dP5
]P

]Q
dQ1

]P

]~] iQ!
d] iQ1

]P

]~] i j Q!
d] i j Q ~23!

5
]P

]Q
dQ1

]P

]~] iQ!
] idQ1

]P

]~] i j Q!
] i jdQ. ~24!

We then view the linearized functiondP(dQ) as a linear
differential operator, and discretely approximate it by th
position-dependent finite difference molecule

M5
]P

]Q
I1

]P

]~] iQ!
di1

]P

]~] i j Q!
di j , ~25!

where I is the identity molecule anddi and di j are finite
difference molecules discretely approximating] i and] i j , re-
spectively. Finally, we apply Eq.~21! to the moleculeM
defined by Eq.~25! to obtain the desired Jacobian matri
J@P(Q)#.

In practice, there is no need to explicitly form the mo
eculeM — the Jacobian matrix elements can easily be a
sembled directly from the knownI , di , and di j molecule
coefficients and the ‘‘Jacobian coefficients’’]P/]Q,
]P/](] iQ), and ]P/](] i j Q). Once these coefficients are
known, the assembly of the actual Jacobian matrix eleme
is very cheap, requiring only a few arithmetic operations p
matrix element to evaluate Eqs.~25! and~21!. The main cost
of computing a Jacobian matrix by symbolic differentiatio
is thus the computation of the Jacobian coefficients the
selves. Depending on the functional form of theP(Q) func-
tion, there may be anywhere from 1 to 10 coefficients, a
though in practice these often have many comm
subexpressions.

In other words, where the numerical perturbation meth
requires aPI evaluation per nonzero Jacobianelement, the

FIG. 2. This commutative diagram illustrates the two differe
ways a Jacobian matrix can be computed. Given a nonlinear c
tinuum functionP(Q), the Jacobian matrixJ@P(Q)# is logically
defined in terms of the lower-left path in the diagram; i.e., it
defined as the Jacobian of a nonlinear discrete~finite difference!
approximationP(Q) to P(Q). However, if the operations of dis-
cretization~finite differencing! and linearization commute, we can
instead compute the Jacobian by the upper-right path in the d
gram, i.e., by first linearizing the continuumP(Q) function and
then discretizing~finite differencing! this linearizationdP(dQ).
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symbolic differentiation method requires the computation o
‘‘a few’’ Jacobian-coefficient subexpressions per Jacobia
row. More precisely, suppose the computation of all the
Jacobian coefficients at a single grid point isR times as
costly as aPI evaluation. Then the symbolic differentiation
method is approximatelyNd/R times more efficient than the
numerical perturbation method.

B. Semantics of the horizon-function Jacobian

We now consider the detailed semantics of the horizon
function Jacobian. We define the Jacobian o
H(h)[ (2)H(h), J@H(h)#[J@ (2)H(h)#, by

J@ ~2!H~h!# IJ5
d~2!HI

dhJ

~26a!

or, equivalently, by the requirement that

d~2!HI[@~2!H~h1dh!2 ~2!H~h!# I5J@ ~2!H~h!# IJ•dhJ ~26b!

for any infinitesimal perturbationdh. Here I and J are both
angular~two-dimensional! grid-point indices. Notice that this
definition uses thetotal derivatived(2)H/dh. This is because
(2)H(h) is defined to always be evaluatedat the position
r5h(u,f) of the trial horizon surface, and so the Jacobian
J@ (2)H(h)# must take into account not only the direct change
in (2)H at a fixed position due to a perturbation inh, but also
the implicit change in(2)H caused by the field-variable co-
efficients in (2)H being evaluated at a perturbed position
r5h(u,f).

It is also useful to consider the JacobianJ@ (3)H(h)# of the
extended horizon function(3)H(h), which we define analo-
gously by

J@ ~3!H~h!# IJ5
]~3!HI

]hJ

~27a!

or, equivalently, by the requirement that

d~3!HI[@~3!H~h1dh!2 ~3!H~h!# I5J@ ~3!H~h!# IJ•dhJ ~27b!

for any infinitesimal perturbationdh. Here I is a three-
dimensional grid-point index for(3)H, while J is an~angular!
two-dimensional grid-point index forh. In contrast with
J@ (2)H(h)#, this definition uses thepartial derivative
] (3)H/]h. This is because we take(3)H(h) to be evaluated at
a fixed position~a grid point in the neighborhoodN of the
trial horizon surface! which does not change with perturba-
tions inh, and soJ@ (3)H(h)# need only take into account the
direct change in(3)H at a fixed position due to a perturbation
in h.

J@ (3)H(h)# thus has much simpler semantics than
J@ (2)H(h)#. We have foundJ@ (3)H(h)# very useful, both as
an intermediate variable in the computation ofJ@ (2)H(h)#
~described in the next section!, and also conceptually, as an
aid to thinkingabout the Jacobians.
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TABLE I. This table summarizes the various methods for computing the horizon function(2)H(h) and its JacobianJ@ (2)H(h)#. The
‘‘codes’’ are shorthand labels for referring to the various methods. The relative CPU times are as measured for our impleme
~described in Appendix B!, and are per angular grid point, normalized relative to the one-stage(2)H(h) computation. The notation
‘‘ si uni ’’ means whichever ofsi and/orni is appropriate, depending on the precise two-stage method used to compute the horizon fun

Jacobian Horizon Relative Estimated
computation function CPU implementation

Code dimensions Jacobian computation method method Jacobian matrices used time effort

H.1s one-stage [1 Moderate
H.2s two-stage 0.7 Low
2d.np.1s two-dimensional Numerical perturbation of(2)H(h) one-stage J@ (2)H(h)# 6 Low
2d.np.2s two-dimensional Numerical perturbation of(2)H(h) two-stage J@ (2)H(h)# 8 Low
3d.np.1s three-dimensionalNumerical perturbation of(3)H(h) one-stage J@ (2)H(h)#, J@ (3)H(h)# 7 Low – Moderate
3d.sd.1s three-dimensionalSymbolic differentiation of(3)H(h) one-stage J@ (2)H(h)#, J@ (3)H(h)# 1.5 Moderate
3d.np.2s three-dimensionalNumerical perturbation of(3)H(h) two-stage J@ (2)H(h)#, J@ (3)H(h)# 8 Low – Moderate
3d.np2.2s three-dimensional Numerical perturbation two-stageJ@ (2)H(h)#, J@ (3)H(h)#, 14 Moderate – High

of si uni(h) and (3)H(si uni) J@si uni(h)#, J@ (3)H(si uni)#
3d.sd2.2s three-dimensional Symbolic differentiation two-stageJ@ (2)H(h)#, J@ (3)H(h)#, 5 Moderate – High

of si uni(h) and (3)H(si uni) J@si uni(h)#, J@ (3)H(si uni)#
-
A.
e

id
in
C. Computing the horizon-function Jacobian

Table I ~discussed further in Sec. VI D! summarizes all
the Jacobian-computation methods in this paper, which
now describe in detail. We tag each method with a shorth
‘‘code,’’ which gives the method’s basic properties: wheth
it computesJ@ (2)H(h)# directly or computesJ@ (3)H(h)# as
an intermediate step, whether it uses symbolic differentiat
or numerical perturbation, and whether it uses a one-stag
a two-stage horizon function computation.

The simplest methods for computingJ@ (2)H(h)# are the
‘‘two-dimensional’’ ones, which work directly with
(2)H(h) in angular-coordinate space, without computin
J@ (3)H(h)# as an intermediate step. Since(2)H(h) is not
given by a simple molecule operation of the form Eq.~20!,
symbolic differentiation is not directly applicable here. How
ever, numerical perturbation in angular-coordinate spac
applicable, using either a one-stage or a two-stage metho
compute(2)H(h). We refer to the resulting Jacobian comp
tation methods as the ‘‘2d.np.1s’’ and ‘‘2d.np.2s’’ method
respectively.

Our remaining methods for computingJ@ (2)H(h)# are all
‘‘three-dimensional’’ ones, which first explicitly comput
J@ (3)H(h)# and then computeJ@ (2)H(h)# from this in the
manner described below.

If (3)H(h) is computed using the one-stage method, i
via Eqs.~14! and~16!, then either numerical perturbation o
symbolic differentiation may be used to compu
J@ (3)H(h)#. We refer to these as the ‘‘3d.np.1s’’ an
‘‘3d.sd.1s’’ methods, respectively. The symbolic differenti
tion Jacobian coefficients for the 3d.sd.1s method are ta
lated in Appendix A.

Alternatively, if (3)H(h) is computed using a two-stag
method, thenJ@ (3)H(h)# may be computed either by th
simple numerical perturbation of(3)H(h) ~the ‘‘3d.np.2s’’
method! or by separately computing the Jacobians of t
individual stages and matrix-multiplying them together. F
the latter case, either numerical perturbation or symbolic
ferentiation may be used to compute the individual-stage
cobians, giving the ‘‘3d.np2.2s’’ and ‘‘3d.sd2.2s’’ method
we
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respectively. The symbolic differentiation Jacobian coeffi
cients for the 3d.sd2.2s method are tabulated in Appendix

For any of the three dimensional methods, onc
J@ (3)H(h)# is known, we computeJ@ (2)H(h)# as follows:

J@ ~2!H~h!# IJ[
d~2!HI

dhJ

~28!

5
d~2!H~u I ,f I!

dh~uJ ,fJ!
~29!

5
d~3!H„r5h~u I ,f I!,u I ,f I…

dh~uJ ,fJ!
@by Eq.~10!#

~30!

5
]~3!H~r ,u I ,f I!

]h~uJ ,fJ!
U
r5h~u I ,f I!

1
]~3!H~r ,u I ,f I!

r U
r5h~u I ,f I!

~31!

5 interp„J@ ~3!H~h!#^r I&J ,r5hI…

1 interp8~ ~3!H^r I& ,r5hI!, ~32!

where thê r I& subscripts in Eq.~32! denote that the interpo-
lations are done along the radial line$u5u I ,f5f I%, analo-
gously to Eq.~9!, and where we neglect the interpolation
errors in Eq.~32!.

Notice that the interp8(•••) term in Eq. ~32! may be
computed very cheaply using the same(3)H data values used
in computing (2)H; cf. Eq. ~9!. @The number of(3)H data
points used in the radial interpolation at each angular gr
position will probably have to be increased by one to reta
the same order of accuracy in the interp8(•••) term in Eq.
~32! as in the interp(•••) term.# It is thus easy to compute
J@ (2)H(h)# onceJ@ (3)H(h)# is known.
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D. Comparing the methods

Table I summarizes all the horizon-function and Jacobi
computation methods described in Secs. V and VI C. T
table also shows which Jacobian matrices the methods
the methods’ measured relative CPU times in o
axisymmetric-spacetime~two-dimensional! code ~discussed
further in Appendix B!, and our estimates of the method
approximate implementation effort~programming complex-
ity!.

As can be seen from the table, for our implementation
3d.sd.1s method is by far the most efficient of the Jacobi
computation methods, being about a factor of 5 faster t
any of the numerical perturbation methods. In fact, the co
putation of the JacobianJ@ (2)H(h)# by the 3d.sd.1s method
is only 1.5–2 times more expensive than the simple eva
tion of the horizon-function(2)H(h).

The relative performance of the different methods will
course vary considerably from one implementation to a
other, and especially between axisymmetric-spacetime~two-
dimensional! and fully-general-spacetime ~three-
dimensional! codes. However, counting the number of ope
tions needed for each method shows that the 3d.sd.1s me
should remain the fastest for any reasonable implementa
~We omit details of the counting in view of their length an
lack of general interest.! Notably, the 3d.sd.1s method’s rela
tive advantage over the other methods should be appr
mately a factor of the molecule diameterlarger for fully-
general-spacetime ~three-dimensional! codes than for
axisymmetric-spacetime~two-dimensional! codes such as
ours.

Considering now the implementation efforts required
the various methods, in general we find that these dep
more on which Jacobian matrices are involved than on h
the Jacobians are computed: The two-dimensional meth
involving only J@ (2)H(h)#, are the easiest to implemen
while the three-dimensional methods involving~only!
J@ (2)H(h)# and J@ (3)H(h)# are somewhat harder to imple
ment. The three-dimensional methods involving t
individual-stage JacobiansJ@si(h)#, J@ni(h)#, J@ (3)H(si)#,
and/orJ@ (3)H(ni)# are considerably more difficult to imple
ment, due to these Jacobians’ more complicated sparsity
terns.

All the Jacobian matrices are highly sparse, and for r
sonable efficiency it is essential to exploit this sparsity
their storage and computation. We have done this in
code, and our CPU-time measurements and implementat
effort estimates all reflect this. We briefly describe o
sparse-Jacobian storage scheme in Appendix C. This sch
is very efficient, but its programming is a significant fractio
of the overall Jacobian implementation effort, especially
the individual-stage Jacobians.

Comparing numerical perturbation and symbolic differe
tiation methods, we had previously suggested@50# that
symbolic-differentiation Jacobian computations would
very difficult to implement, necessarily requiring substant
support from a~computer! symbolic computation system
Several colleagues have expressed similar opinions to us
had also previously suggested@50# that due to the structure
of theH(h) function, a Jacobian-coefficient formalism of th
type described in Secs. VI A 2 and VI C would not be va
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for the horizon function, and so symbolic differentiation
methods would require explicitly differentiating the finite
difference equations.

These suggestions have proven to be incorrect: Using
Jacobian-coefficient formalism described in Secs. VI A 2 an
VI C, only the continuum equations need be differentiate
and this is easily done by hand. More generally, using th
formalism we find the actual programming of the symbol
differentiation methods to be only moderately more difficu
than that of the numerical perturbation methods. Some of t
Jacobian coefficients tabulated in Appendix A are fair
complicated, but no more so than many other computatio
in 311 numerical relativity.

In order to be confident of the correctness of any of th
Jacobian-computation methods except the simple tw
dimensional numerical perturbation ones, we feel that it
highly desirable to program an independent method~which
may be programmed for simplicity at the expense of ef
ciency! and make an end-to-end comparison of the resulti
Jacobian matrices.~We have successfully done this for eac
of the Jacobian matrices computed by each of the metho
listed in Table I, and our implementation-effort estimate
there include doing this.! If, and only if, the Jacobians agree
to within the expected truncation error of the numerica
perturbation Jacobian approximation~18! can we then have a
high degree of confidence that both calculations are corre
If they disagree, then we find the detailed pattern of whic
matrix elements differ to be a very useful debugging aid.

Summarizing our comparisons, then, we find that the be
Jacobian computation method is clearly the 3d.sd.1s one
is much more efficient than any of the other methods, a
still quite easy to implement.

VII. CONVERGENCE TESTS

Before continuing our discussion of Newton’s-method ho
rizon finding, in this section we digress to consider the co
vergence of finite differencing computations to the con
tinuum limit.

As has been forcefully emphasized by Choptu
@23,51,52#, a careful comparison of a finite differencing
code’s numerical results at different grid resolutions ca
yield very stringent tests of the code’s numerical perfo
mance and correctness. In particular, such ‘‘convergen
tests’’ can yield reliable numerical estimates of a code’sex-
ternal errors, i.e., of the deviation of the code’s results from
those that would be obtained by exactly solving the co
tinuum equations. With, and only with, such estimates ava
able can we safely draw inferences about solutions of t
continuum equations from the code’s~finite-resolution! nu-
merical results.

To apply this technique in the horizon-finding contex
suppose first that the~a! true ~continuum! apparent horizon
positionh* is known. For a convergence test in this case, w
run the horizon finder twice, using a 1:2 ratio of grid resolu
tions. As discussed in detail by Ref.@51#, if the code’s nu-
merical errors are dominated by truncation errors fro
nth-order finite differencing, the numerically computed hor
zon positionsh must satisfy

h@Dx#5h*1~Dx!nf1O„~Dx!n12
…, ~33a!
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h@Dx/2#5h*1~Dx/2!nf1O„~Dx!n12
…, ~33b!

at each grid point, whereh@Dx# denotes the numerically
computed horizon position using grid resolutionDx, and f is
an O(1) smooth function depending on various high-ord
derivatives ofh* and the field variables, butnot on the grid
resolution. @We are assuming centered finite differencin
here in writing the higher-order terms asO„(Dx)n12

…; oth-
erwise, they would only beO„(Dx)n11

….# Neglecting the
higher-order terms, i.e., in the limit of smallDx, we can
eliminatef to obtain a direct relationship between the code
errors at the two resolutions,

h@Dx/2#2h*

h@Dx#2h*
5

1

2n
, ~34!

which must hold at each grid point common to the two grid
To test how well any particular set of~finite-resolution!

numerical results satisfies this convergence criterion, we p
a scatterplot of the high-resolution errorsh@Dx/2#2h*
against the low-resolution errorsh@Dx#2h* at the grid
points common to the two grids. If, and given the argumen
of Ref. @51#, in practiceonly if, the error expansions Eq.~33!
are valid with the higher-order error terms negligible, i.e.,
and only if the errors are indeed dominated by the expec
nth-order finite difference truncation errors, will all the
points in the scatterplot fall on a line through the origin wit
slope 1/2n.

Now suppose the true~continuum! apparent horizon posi-
tion h* is unknown. For a convergence test in this case,
run the horizon finder 3 times, using a 1:2:4 ratio of gr
resolutions. Analogously to the two-grid case, we now ha

h@Dx#5h*1~Dx!nf1O„~Dx!n12
…, ~35a!

h@Dx/2#5h*1~Dx/2!nf1O„~Dx!n12
…, ~35b!

h@Dx/4#5h*1~Dx/4!nf1O„~Dx!n12
…, ~35c!

at each grid point, withf again independent of the grid reso
lution. Again neglecting the higher-order terms, we ca
eliminate bothf andh* to obtain the ‘‘three-grid’’ conver-
gence criterion

h@Dx/2#2h@Dx/4#

h@Dx#2h@Dx/2#
5

1

2n
, ~36!

which must hold at each grid point common to the thre
grids. We test this criterion using a scatterplot techniq
analogous to that for the two-grid criterion~34!.

We emphasize that for a three-grid convergence test
this type, the true continuum solutionh* need not be known.
In fact, nothing in the derivation actually requiresh* to be
the true continuum horizon position — it need only be th
true continuum solution to some continuum equation su
that the truncation error formulas~35! hold. We make use of
this latter case in Secs. VIII C and IX B to apply three-gr
convergence tests to intermediate Newton iterates~trial hori-
zon surfaces! of our horizon finder.

For both the two-grid and the three-grid convergence te
we find that thepointwisenature of the scatterplot compari
son makes it significantly more useful than a simple com
er
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parison of gridwise norms. In particular, the scatterplot co
parison clearly shows convergence problems which m
occur only in a small subset of the grid points~for example
near a boundary!, which would be ‘‘washed out’’ in a com-
parison of gridwise norms.

Notice also that the parametern, the order of the conver-
gence, is~should be! known in advance from the form of the
finite differencing scheme. Thus the slope-1/2n line with
which the scatterplot points are compared is not fitted to
data points, but is rather ana priori prediction withno ad-
justable parameters. Convergence tests of this type are th
very strong test of the validity of the finite differencin
scheme and the error expansions Eq.~33! or Eq. ~35!.

VIII. SOLVING THE NONLINEAR ALGEBRAIC
EQUATIONS

Returning to our specific discussion of horizon findin
we now discuss the details of using Newton’s method o
variant to solve the simultaneous nonlinear algebraic eq
tionsH(h)50.

A. Newton’s method

The basic Newton’s-method algorithm is well known: A
each iteration, we first linearize the discreteH(h) function
about the current approximate solutionh(k):

H~h~k!1dh!5H~h~k!!1J@H~h~k!!#•dh1O~ idhi2!, ~37!

wheredh now denotes a finite perturbation inh, and where
J@H(h(k))# denotes the Jacobian matrixJ@H(h)# evaluated at
the pointh5h(k). We then neglect the higher-order~nonlin-
ear! terms and solve for the perturbationdh(k) such that
H(h(k)1dh(k))50. This gives the simultaneous linear alg
braic equations

J@H~h~k!!#•dh~k!52H~h~k!! ~38!

to be solved fordh(k). Finally, we update the approximat
solution via

h~k11!←h~k!1dh~k! ~39!

and repeat the iteration until some convergence criterion
satisfied.

Notice that here we are using the word ‘‘convergence’’
a very different sense from that of Sec. VII — here it refe
to the ‘‘iteration convergence’’ of the Newton iteratesh(k) to
the exact solutionh* of the discrete equations, whereas the
it refers to the ‘‘finite difference convergence’’ of a finit
difference computation resulth@Dx# to its continuum limit
h* as the grid resolution is increased.

Once the current solution estimateh(k) is reasonably close
to h* ; i.e., in practice once the trial horizon surface is re
sonably close to the~an! apparent horizon, Newton’s metho
converges extremely rapidly. In particular, once the line
approximation in Eq.~37! is approximately valid, Newton’s
method roughly squares the relative errorih2h* i /ih* i at
each iteration, and can thus bring the error down to a ne
gible value in only a few~more! iterations.~This rapid ‘‘qua-
dratic’’ convergence depends critically on the mutual cons
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tency of the horizon function and Jacobian matrix used in t
computation, and is thus a useful diagnostic for monitori
the Jacobian’s correctness.! ~For a detailed discussion of
Newton’s method, including precise formulations and proo
of these statements, see, for example, Ref.@49#.!

However, if the initial guessh(0) for the horizon position,
or more generally any Newton iterate~trial horizon surface!
h(k), differs sufficiently fromh* so that the linear approxi-
mation in Eq.~37! is not approximately valid, then Newton’s
method may converge poorly, or fail to converge at all.

B. Modifications of Newton’s method

Unfortunately, as discussed in Sec. IX B, for certain typ
of initial guesses Newton’s method fails to converge unle
the initial guess is very close to the exact solution of th
finite difference equations. There is an extensive numeri
analysis literature on more robust ‘‘modified Newton’’ algo
rithms for solving nonlinear algebraic equations, for e
ample, Refs.@53–59#. We have found Ref.@55# to be a par-
ticularly useful introduction to this topic.

For horizon finding, the Jacobian matrix’s size is the num
ber of angular grid points on the horizon surface. This
generally large enough that it is important for the nonlinea
algebraic-equations solver to support treating the Jacobian
either a band matrix~for axisymmetric-spacetime codes! or a
fully general sparse matrix~for fully-general-spacetime
codes!. It is also desirable for the nonlinear-algebraic
equations solver to permit explicit bounds on the solutio
vector, so as to ensure the trial horizon surfaces never
outside the radial extent of the code’s main thre
dimensional grid. Unfortunately, these requirements rule o
many nonlinear-algebraic-equations software packages.

For the sake of expediency, in the present work we cho
to write our own implementation of a relatively simple
modified-Newton algorithm, the ‘‘line-search’’ algorithm de
scribed by Refs.@55,57#. However, a much better long-term
solution would be to use an extant nonlinear-algebra
equations code embodying high-quality implementations
more sophisticated algorithms, such as theGIANT code de-
scribed by Refs.@58,59#. We would expect Newton’s-
method horizon-finding codes using such software to be c
siderably more robust and efficient than our present code

The modified-Newton algorithm used in this work, th
line-search algorithm of Refs.@55,57#, is identical to the ba-
sic Newton’s-method algorithm, except that the Newton’
method update, Eq. ~39!, is modified to
h(k11)←h(k)1ldh(k), where lP(0,1# is chosen at each
‘‘outer’’ iteration by an inner ‘‘line search’’ iteration to en-
sure thatiHi2 decreases monotonically. References@55,57#
show that such a choice ofl is always possible, and describ
an efficient algorithm for it. Sufficiently close to the solutio
h* , this algorithm always choosesl51, and so takes the
same steps as Newton’s method. The overall modifie
Newton algorithm thus retains the extremely rapid conve
gence of Newton’s method once the linear approximation
Eq. ~37! is good.

The line-search algorithm described by Refs.@55,57# al-
ways begins by trying the basic Newton stepl51. For ho-
rizon finding, we have slightly modified the algorithm t
decrease the starting value ofl if necessary to ensure tha
he
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h(k)1ldh(k) lies within the radial extent of our code’s main
~three-dimensional! numerical grid at each angular grid co-
ordinate. Our implementation of the algorithm also enforces
an upper bound~typically 10%! on the relative change
ildh(k)/h(k)i` in any component ofh(k) in a single outer
iteration. However, it is not clear whether or not this latter
restriction is a good idea: Although it makes the algorithm
more robust when theH(h) function is highly nonlinear, it
may slow the algorithm’s convergence when theH(h) func-
tion is only weakly nonlinear and the error in the initial guess
is large. We give an example of this latter behavior in Sec
X.

C. Newton-Kantorovich method

We have described the Newton’s-method algorithm, and
the more robust modified versions of it, in terms of solving
the discreteH(h)50 equations. However, these algorithms
can also be interpreted directly in terms of solving the con-
tinuum H(h)50 equations. This ‘‘Newton-Kantorovich’’
method and its relationship to the discrete Newton’s method
are discussed in detail by Ref.@60#.

For the Newton-Kantorovich algorithm, at each iteration,
we first linearize the continuum differential operatorH(h)
about the current continuum approximate solutionh(k),

H~h~k!1dh!5H~h~k!!1J@H~h~k!!#~dh!1O~ idhi2!,
~40!

wheredh is now a finite perturbation inh, and where the
linear differential operatorJ@H(h(k))# is now the lineariza-
tion of the differential operatorH(h) about the point
h5h(k). We then neglect the higher-order~nonlinear! terms
and solve for the perturbationdh(k) such that
H(h(k)1dh(k))50. This gives the linear differential equa-
tion

J@H~h~k!!#~dh~k!!52H~h~k!! ~41!

to be solved fordh(k). Finally, we update the approximate
solution via

h~k11!←h~k!1dh~k! ~42!

and repeat the iteration until some convergence criterion i
satisfied.

Now suppose we discretely approximate this continuum
Newton-Kantorovich algorithm by finite differencing the it-
eration equation~41!. If the finite differencing and the lin-
earization commute in the manner discussed in Sec. VI A 2
then this finite difference approximation to the Newton-
Kantorovich algorithm is in fact identical to the discrete
Newton’s-method algorithm applied to the (discrete)
H(h)50 equations obtained by finite differencing the con-
tinuum H(h)50 equation. ~In a simpler context, our
Jacobian-coefficient formalism described in Sec. VI A 2 es-
sentially just exploits the ‘‘Jacobian part’’ of this identity.!

Therefore, when using the discrete Newton’s method to
solve theH(h)50 equations, we can equivalently view each
Newton iterate~trial horizon surface! h(k)@Dx# as being a
finite difference approximation to the corresponding con-
tinuum Newton-Kantorovich iterate~trial horizon surface!
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h(k). As the grid resolution is increased, each Newton itera
h(k)@Dx# should therefore show proper finite difference co
vergenceregardless of the iteration convergence or iteratio
divergence of the Newton or Newton-Kantorovich iteratio
itself.

Moreover, once we verify the individual Newton iterates
finite differencing convergence~with a three-grid conver-
gence test!, we can safely extrapolate the iteration conve
gence or iteration divergence of this discrete iteration to th
of the continuum Newton-Kantorovich algorithm applied t
the ~continuum! H(h)50 equations. In other words, by this
procedure we can ascribe the iteration convergence or ite
tion divergence of Newton’s method to inherent properties
the continuumH(h)50 equations, as opposed to~say! a
finite differencing artifact. We make use of this in Sec. IX B

IX. GLOBAL CONVERGENCE OF THE HORIZON
FINDER

We now consider the global convergence behavior of t
Newton’s-method horizon-finding algorithm. That is, how
close must the initial guessh(0) be to the~an! exact solution
h* of the finite difference equations in order for the iterate
~trial horizon surfaces! h(k) to converge toh* ? In other
words, how large is the algorithm’s radius of convergence

A. Global convergence for Schwarzschild spacetime

To gain a general picture of the qualitative behavior
H(h) and its implications for Newton’s-method horizon
finding, it is useful to consider Schwarzschild spacetime. W
use the Eddington-Finkelstein slicing, where the time coo
dinate is defined by requiringt1r to be an ingoing null
coordinate.~These slices are not maximal:K is nonzero and
spatially variable throughout the slices.!

Taking the black hole to be of dimensionless unit mas
the ~only! apparent horizon in such a slice is the coordina
spherer52. More generally, a straightforward calculatio
gives

H5
2~r22!

r 3/2Ar12
~43!

for spherical trial horizon surfaces with coordinate radiusr .
Figure 3 showsH(r ) for these surfaces. As expected
H50 for the horizonr52. However, notice thatH reaches
a maximum value atr5rmax51

2(31A33)'4.372, and in
particular that forr.rmax, H.0 anddH/dr,0. Because of
this, almost any algorithm — including Newton’s metho
and its variants — which tries to solveH(r )50 using only
local information aboutH(r ), and which maintains the
spherical symmetry, will diverge towards infinity whe
started from within this region, or if any intermediate itera
~trial horizon surface! ever enters it.

In fact, we expect broadly similar behavior forH in any
black hole spacetime: Given an asymptotically flat slice co
taining an apparent horizon or horizons, consider any o
parameter family of topologically two-spherical nested tri
horizon surfaces starting at the outermost apparent hori
and extending outward towards the two-sphere at spatial
finity. H50 for the horizon and for the two-sphere at spati
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infinity, and soiHi must attain a maximum for some finite
trial horizon surface somewhere between these two surfac
We thus expect the same general behavior as in
Schwarzschild-slice case, i.e., divergence to infinity if th
initial guess or any intermediate iterate~trial horizon surface!
lies outside the maximum-iHi surface. This argument is not
completely rigorous, since the algorithm could move inwa
in an angularly anisotropic manner, but this seems unlike

Fortunately, in practice this is not a problem: The blac
hole area theorem places an upper bound on the size of
apparent horizon, and this lets us avoid overly large initi
guesses, or restart the Newton iteration if any intermedia
iterate~trial horizon surface! is too large.

B. Global convergence in the presence
of high-spatial-frequency errors

Assuming that the initial guess is close enough to th
horizon for the divergence-to-infinity phenomenon not to o
cur, we find the global convergence behavior of Newton
method to depend critically on the angular spatial frequen
spectrum of the initial guess’s errorh(0)2h* : If the error has
only low-spatial-frequency components~in a sense to be
clarified below!, then Newton’s method has a large radius o
convergence; i.e., it will converge even for a rather inacc
rate initial guess. However,if the error has significant high-
spatial-frequency components, then we find that Newto
method has a very small radius of convergence; i.e., it oft
fails to converge even when the errorh(0)2h* is very small.

This behavior isnotan artifact of insufficient resolution in
the finite difference grid. Rather, it appears to be caused b
strong nonlinearity in the continuumH(h) function for high-
spatial-frequency components inh. In this context there is no
sharp demarcation between ‘‘low’’ and ‘‘high’’ spatial fre-
quencies, but in practice we use the terms to refer to angu
Fourier components varying as~say! cosmu with m&4 and
m*8, respectively.

FIG. 3. This figure showsH(r ) for spherical trial horizon sur-
faces with coordinate radiusr in an Eddington-Finkelstein slice of a
unit-mass Schwarzschild spacetime. Notice that fo
r.rmax'4.372,H.0 and dH/dr,0, and so Newton’s method
diverges in this region.
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FIG. 4. This figure illustrates how the convergence behavior of the basic and modified-Newton iterations depends on the
frequency spectrum of the initial guess’s errorh(0)2h* . In each part of the figure, the true continuum horizonh* is plotted as a solid line,
while the horizon finder’s first few iterates~trial horizon surfaces! h(k) are plotted with dots at the grid points. Part~a! of the figure shows
the behavior of Newton’s method for an initial-guess error containing only low spatial frequencies, part~b! shows the behavior of Newton’s
method for an initial-guess error containing significant high spatial frequencies, and part~c! shows the behavior of the modified-Newton
iteration for the same initial guess as part~b!. In parts~a! and ~c!, where the iteration is converging, the final iterates shown are indist
guishable from the true continuum horizon at the scale of the figure. In part~b!, where the iteration is diverging, the computed values for th
next iterateh(3) ~not shown! are almost all far outside the scale of the figure; many of them are in fact negative.
ng
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1. Example

As an example of this behavior, consider Kerr spacetim
with dimensionless angular momentuma[J/M250.6. We
use the Kerr slicing, where the time coordinate is defined
requiringt1r to be an ingoing null coordinate.~These slices
generalize the Eddington-Finkelstein slices of Schwarzsch
spacetime, and are similarly nonmaximal, withK nonzero
and spatially variable throughout the slices.! Taking the
black hole to be of dimensionless unit mass, the~only! ap-
parent horizon in such a slice is the coordinate sphe
r5h* (u,f)511A12a251.8.

For this example we consider two different initial guess
for the horizon position: one containing only low-spatia
e

by

ild

re

es
l-

frequency errors,r5h(0)(u,f)51.810.1cos4u, and one
containing significant high-spatial-frequency errors,
r5h(0)(u,f)51.810.1cos10u. Notice that both initial
guesses are quite close to the actual horizon shape, differi
from it by slightly less than 5%. We use a finite difference

grid with Du5 p/2
50 , which is ample to resolve all the trial

horizon surfaces occurring in the example.
Figure 4~a! shows the behavior of Newton’s method for

the low-spatial-frequency-error initial guess. As can be see
here Newton’s method converges without difficulty.

Figure 4~b! shows the behavior of Newton’s method for
the high-spatial-frequency-error initial guess. Here Newton’
method fails to converge: The successive iterates~trial hori-
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zon surfaces! h(k) move farther and farther away from the
horizon, and rapidly become more and more nonspherica

Figure 4~c! shows the behavior of the modified Newton’
method for this same high-spatial-frequency-error initi
guess. Although the first iteration still moves the trial hor
zon surface somewhat inward from the horizon, the nonsp
ricity damps rapidly, and the successive iterates~trial horizon
surfaces! quickly converge to the horizon.

Notice that all the intermediate iterates~trial horizon sur-
faces! in this example are well resolved by the finite differ
ence grid. To verify that insufficient grid resolution is not
factor in the behavior of the horizon finder here, we ha
rerun all three parts of this example with several higher g
resolutions, obtaining results essentially identical to tho
plotted here.

More quantitatively, following our discussion of the
Newton-Kantorovich method in Sec. VIII C , we have mad
three-grid convergence tests of each intermediate iter
~trial horizon surface! in this example. For example, Fig. 5
shows a three-grid convergence test for the Newton iter
~trial horizon surface! h(2) plotted in Fig. 4~b!, using grids
with resolutions

Du5
p/2

50
:
p/2

100
:
p/2

200
.

Notice that despite the iteration divergence of the Newt
iteration, this iterate shows excellent fourth-order finite d
ference convergence. The other Newton and modifie
Newton iterates~trial horizon surfaces! in our example all
similarly show excellent fourth-order finite difference con
vergence.

FIG. 5. This figure shows the results of a three-grid covergen
test for the second-iteration Newton iterate~trial horizon surface!
h(2) plotted in Fig. 4~b!. The line has slope116, appropriate for
fourth-order convergence.~Recall that this line is not fitted to the
data, but is rather ana priori prediction withno adjustable param-
eters.! ~The absolute magnitude of the errors shown here is mu
larger than is typical for our horizon finder, due to a combination
the compounding of smaller errors in the earlier Newton itera
h(1), and the very strong angular variation in both iteratesh(1) and
h(2).!
l.
s
al
i-
he-

-
a
ve
rid
se

e
ate

ate

on
if-
d-

-

We conclude that the iteration divergence of Newton’s
method seen in Fig. 4~b! is in fact an inherent property of the
continuum Newton-Kantorovich algorithm for this initial
guess and slice. Looking at the internal structure of this a
gorithm, we see that its only approximation is the lineariza
tion of the continuumH(h) function in Eq.~40!, and so the
algorithm’s iteration divergence must~can only! be due to
nonlinearity in the continuumH(h) function.

2. Horizon-perturbation survey

To investigate how general the poor convergence of New
ton’s method seen in this example is, and to what extent
also occurs for the modified Newton’s method, we have
made a Monte Carlo numerical survey of both algorithms
behavior over a range of different initial-guess-error spatia
frequency spectra.

For this survey we first fix a particular horizon-finding
algorithm. Suppose we are given a slice containing an appa
ent horizon at the continuum positionh* , and consider run-
ning the horizon finder with the generic perturbed initial
guess

h5h*1 (
m50
m even

M

cmcosmu ~44!

for some set of initial-guess-error Fourier coefficients$cm%.
~Here we include only even-m cosine terms inu so as to
preserve axisymmetry and equatorial reflection symmetry
which our code requires.!

For each value ofM we define the horizon finder’s ‘‘con-
vergence region’’ in$cm%-space to be the set of coefficients
$cm% for which the horizon finder converges~we presume to
the correct solution!. For example, the convergence region
will in practice always include the origin in$cm%-space,
since thereh5h* , so the initial guess differs from the exact
solution of the discreteH(h)50 equations only by the small
H(h) finite differencing error.

We defineVM to be the~hyper!volume of the conver-
gence region. As described in detail in Appendix D, we es
timateVM by Monte Carlo sampling in$cm%-space. Given
VM , we then define the ‘‘volume ratio’’

RM5H V0 if M50,

VM

VM22
if M>2, ~45!

so thatRM measures the average radius of convergence
the horizon finder in thecM dimension.

3. Results and discussion

We have carried out such a horizon-perturbation surve
for the same Kerr slices of the unit-mass spin-0.6 Kerr space
time used in the previous example, for both the Newton an
the modified-Newton algorithms, forM50,2,4, . . . ,12.Fig-
ure 6 shows the resulting volume ratios. Although the precis
values are somewhat dependent on the details of our impl
mentation and on the test setup~in particular on the position
of the inner grid boundary, which is atr51 for these tests!,
the relative trends in the data should be fairly generic. Thes
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tests use a grid withDu5 p/2
50 , which is adequate to resolve

all the perturbed trial horizon surfaces.
As can be seen from the figure, the modified-Newton

gorithm is clearly superior to the Newton algorithm, increa
ing the radius of convergence by a factor of 2–3 at hig
spatial frequencies. However, both algorithms’ radia of co
vergence still fall rapidly with increasing spatial frequenc
approximately as 1/M3/2, although the rate is slightly slower
for the modified-Newton than for the Newton algorithm. Th
radius of convergence of Newton’s method falls below 0
(;5% of the horizon radius! by M*10, and the data sug-
gest that the radius of convergence of the modified-New
method would be similarly small byM*18.

Since the grid resolution is adequate, we again conclu
that the small radius of convergence of Newton’s meth
must be due to a strong high-spatial-frequency nonlinear
in the continuumH(h) function. Our horizon-perturbation
survey covers only a single axisymmetric initial slice an
generic axisymmetric perturbations of the initial guess, bu
seems unlikely that the nonlinearity would diminish for mor
general cases. Huq@61# has made limited tests with nonaxi
symmetric spacetimes and high-spatial-frequency pertur
tions, and has found~poor! convergence of Newton’s method
similar to our results.

Although we write the continuum horizon function a
H5H(h), it is more accurate to write this as
H5H(gi j ,Ki j ,h), sinceH also depends on the slice’s field
variables and their spatial derivatives. Examining the fun
tional form of theH(gi j ,Ki j ,h) function in Eqs.~14! and
~16!, we see thatH depends on thegi j components in a
manner broadly similar to its dependence onh. We thus
conjecture that theH(gi j ,Ki j ,h) function may exhibit strong
high-spatial-frequency nonlinearity in the field variables,
particular in thegi j components, similar to its nonlinear de
pendence onh.

FIG. 6. This figure shows the volume ratiosRM for the horizon-
perturbation survey. These measure the average radius of con
gence of the horizon finder as a function of the initial-guess-erro
maximum spatial frequencyM . The points and solid lines show the
results for the modified-Newton~upper! and Newton~lower! algo-
rithms, with61s statistical error bars from the Monte Carlo est
mation procedure. The dashed line shows anRM;1/M3/2 falloff.
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If this is the case, then high-spatial-frequency variation
in the field variables, such as would be caused by hig
frequency gravitational radiation, might well impair the con
vergence of Newton’s method in a manner similar to high
spatial-frequency perturbations inh. Further investigation of
this possibility, either by analytical study of the nonlinea
structure of theH(gi j ,Ki j ,h) function, or by numerical in-
vestigations, would be very interesting. Fortunately, how
ever, those~few! dynamic black hole spacetimes which have
been explicitly computed thus far~for example, Ref.@62#!
seem to contain mainly low-frequency gravitational radia
tion.

In general, how serious a problem is the poor high-spatia
frequency convergence of Newton’s method? Given a suf
ciently good initial guess, Newton’s method still converge
very rapidly~quadratically!, and so the key question is, how
good is the initial guess in practice? Two cases seem to be
particular importance: If the horizon finder is being used t
update a horizon’s position at each time step of a time ev
lution, then the previous time step’s horizon position prob
ably provides a sufficiently good initial guess for Newton’s
method to converge well. In contrast, if the horizon finder i
being used on initial data, or in a time evolution where ther
is no nearby horizon in the previous time step, then signifi
cant initial-guess errors can be expected, and Newton
method may converge poorly.

X. ACCURACY OF THE HORIZON FINDER

We now consider the accuracy of the Newton’s-metho
horizon-finding algorithm. That is, assuming the Newton o
modified-Newton iteration converges, how close is the hor
zon finder’s final numerically computed horizon position to
the ~a! true continuum horizon positionh* ?

The horizon finder computes Newton or modified-Newto
iterates~trial horizon surfaces! h(k) for k50,1,2, . . . , until
some convergence criterion is satisfied, say, atk5p. Be-
cause of the extremely rapid convergence of the Newton a
modified-Newton iterations, once the error is sufficiently
small ~cf. Sec. VIII A!, there is little extra cost in using a
very strict convergence criterion, i.e., in solving the discret
H(h)50 equations to very high accuracy. In our horizon
finder we typically requireiH(h(p))i`,10210.

We denote the exact solution of the discreteH(h)50
equations byh* . Given thatiH(h(p))i is reasonably small,
then from standard matrix-perturbation theory~see, for ex-
ample, Refs.@63,64#!, ih(p)2h* i&kiH(h(p))i , wherek is
the condition number of the~presumably nonsingular! Jaco-
bian matrixJ@H(h)# at the horizon position.

If we take the convergence tolerance to be strict enoug
for ih(p)2h* i to be negligible, then the overall accuracy o
the horizon finder, i.e., the external errorih(p)2h* i in the
computed horizon position, is thus limited only by the close
ness with which the discreteH(h)50 equations approximate
the continuumH(h)50 equations, i.e., by the accuracy of
theH(h) finite differencing. This potential for very high ac-
curacy is one of the main advantages of the Newton’
method horizon-finding algorithm.

For an example of the accuracy attainable in practice, w
again consider the Kerr slices of the unit-mass spin-0.6 Ke
spacetime. However, to make the horizon deviate from
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coordinate sphere and hence be a more significant test
for our horizon finder, we apply the spatial coordinate tra
formation

r→r1
b2

b21r 2
~a2cos2u1a4cos4u! ~46a!

to the slice, where the parameters are given by

b55, a250.75, a450.05. ~46b!

As shown in Fig. 7~a!, in the transformed coordinates th
gives a strongly nonspherical ‘‘peanut-shaped’’ horizo
similar in shape to those around a pair of coalescing bl
holes.

We have run our horizon finder on this slice, using t
warped-coordinate coordinate spherer51.8 as an initial
guess and a grid resolution ofDu5 p/2

50 . We used the
modified-Newton algorithm, which converged to the horiz
without difficulty. ~The convergence took nine iterations, b
would have taken only six iterations in the absence of o
10% restriction on the relative change in any componen
h in a single outer iteration; cf. Sec. VIII B.! Figure 7~a!
shows the initial guess and the final numerically compu
horizon position.

Figure 7~b! shows the results of a two-grid convergen
test of the final numerically computed horizon position f
this example, using grids with resolutions

Du5
p/2

50
:
p/2

100
.

As can be seen, the numerically computed solution sho
excellent fourth-order convergence. Moreover, the num
cally computed horizon positions are very accurate, w

ih(p)2h* i;1025(1026) for a grid resolution ofDu5 p/2
50

( p/2
100). Errors of this magnitude are typical of what we fin
for Newton’s-method horizon finding using fourth-order fi
nite differencing, as long as the grid adequately resolves
horizon shape.

XI. FINDING OUTERMOST APPARENT HORIZONS

The main focus of this paper is on locally finding appare
horizons, i.e., on finding an apparent horizon in a neighb
hood of the initial guess. However, there is a related glo
problem of some interest which has heretofore attracted l
attention, that of finding or recognizing theoutermostappar-
ent horizon in a slice.~By ‘‘recognizing’’ the outermost ap-
parent horizon we mean the problem of determining whet
or not a given apparent horizon is in fact the outermost o
in a slice.!

These global problems are of particular interest when
parent horizons are used to set the inner boundary of a bl
hole-excluding grid in the numerical evolution of a multiple
black-hole spacetime, as discussed by Refs.@8–11#. In this
context, we can use the appearance of a new outermos
parent horizon surrounding the previously-outermost app
ent horizons around two black holes as a diagnostic that
black holes have collided and coalesced into a single~dis-
torted! black hole. As suggested by Ref.@10#, we can then
generate a new numerical grid and attach it to the new o
case
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ermost apparent horizon, and continue the evolution on th
exterior of the new~distorted! black hole.

So far as we know, no reliable algorithms are known for
finding or recognizing outermost apparent horizons in non
spherical spacetimes.~For spherical spacetimes, a one-
dimensional search onH(r ) suffices.! If started with a very
large two-sphere as the initial guess, the curvature flow
method might well converge to the outermost horizon in the
slice, but as mentioned in Sec. IV, the theoretical justifica

FIG. 7. This figure illustrates the accuracy of our horizon finder
for a test case where the horizon’s coordinate shape is strong
nonspherical. The figure is plotted using the transformed radial co
ordinate defined by Eq.~46!. Part ~a! of the figure shows the
‘‘peanut-shaped’’ true continuum horizon positionh* , plotted as a
solid line, and the initial guessh(0) and the final numerically com-
puted horizon positionh(p), plotted with dots at the grid points. At
this scale the numerically computed horizon positionh(p) is indis-
tinguishable from the true continuum positionh* . Part ~b! of the
figure shows the results of a two-grid convergence test for the nu
merically computed horizon positionh(p). The line has slope116,
appropriate for fourth-order convergence.~Recall again that this
line is not fitted to the data, but is rather ana priori prediction with
no adjustable parameters.!
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4914 54JONATHAN THORNBURG
tion for this method’s convergence is only valid in time
symmetric (Ki j50) slices.

For the remaining local-horizon-finding algorithms su
veyed in Sec. IV, including the Newton’s-method one, w
know of no better method for locating or recognizing oute
most horizons than trying the local horizon finder with
number of different initial guesses near the suspected p
tion of an outermost horizon. If this method succeeds,
locates a horizon, but there is still no assurance that t
horizon is the outermost one in the slice. Moreover, if all th
local-horizon-finding trials fail, this may mean that there
no horizon in the vicinity of the initial guesses, or it ma
only mean that a horizon is present nearby but the meth
failed to converge to it. It is also not clear how many loca
horizon-finding trials should be made, or just how their in
tial guesses should be chosen.

This is clearly not a satisfactory algorithm. Further re
search to develop reliable algorithms for finding or recogn
ing outermost apparent horizons in generic~nonspherical,
nonmaximal! slices would be very useful.

XII. CONCLUSIONS

We find Newton’s method to be an excellent horizon
finding algorithm: It handles fully generic slices, it is fairly
easy to implement, it is very efficient, it is generally robust
its convergence, and it is very accurate. These properties
all well known, and Newton’s method is widely used fo
horizon finding. In this paper we focus on two key aspects
this algorithm: the computation of the Jacobian matrix a
the algorithm’s global convergence behavior.

Traditionally, the Newton’s-method Jacobian matrix
computed by a numerical perturbation technique. In this p
per we present a much more efficient ‘‘symbolic differentia
tion’’ technique. Conceptually, this entails differentiating th
actual finite difference equations used to compute the d
crete horizon functionH(h). However, provided the finite
differencing scheme commutes with linearization, the co
putation can instead be done by first differentiating the co
tinuum horizon functionH(h) and then finite differencing.
~This is essentially just the ‘‘Jacobian part’’ of the Newton
Kantorovich method for solving nonlinear PDEs.!

In our axisymmetric-spacetime~two-dimensional! nu-
merical code, this method is about a factor of 5 faster th
any other Jacobian computation method. In fact, the Jacob
computation using this method is only 1.5–2 times mo
expensive than the simple evaluation ofH(h). We expect the
symbolic differentiation method’s relative advantage ov
other Jacobian computation methods to be roughly simi
for other axisymmetric-spacetime~two-dimensional! codes,
and an additional factor of;3–5 larger for fully-general-
spacetime~three-dimensional! codes.

We had previously suggested@10# that symbolic-
differentiation Jacobian computations would be quite dif
cult, necessarily requiring substantial support from a~com-
puter! symbolic computation system. Several colleagu
have expressed similar opinions to us. However, this tu
out not to be the case: We computed all the symbolic diffe
entiation Jacobian coefficients for our horizon finder by ha
in only a few few pages of algebra. Some of the coefficien
are fairly complicated, but no more so than many other co
-
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putations in 311 numerical relativity.
We find the actual programming of the symbolic differ-

entiation Jacobian computation to be only moderately mor
difficult than that of a numerical perturbation computation.
In order to be confident of the correctness of a symboli
differentiation Jacobian computation, we feel that it is highly
desirable to program an independent numerical perturbatio
method and make an end-to-end comparison of the resultin
Jacobian matrices. The comparison Jacobian computatio
may be programmed for simplicity at the expense of effi
ciency, and so it need not add much to the overall symbolic
differentiation implementation effort.

Turning now to the convergence behavior of Newton’s
method, we find that as long as the error in the initial gues
~its deviation from the true horizon position! contains only
low-spatial-frequency components, a Newton’s-method hor
zon finder has a large~good! radius of convergence; i.e., it
converges even for rather inaccurate initial guesses. How
ever, if the error in the initial guess contains significant high
spatial-frequency components, then we find that Newton’
method has a small~poor! radius of convergence; i.e., it may
fail to converge even when the initial guess is quite close t
the true horizon position. In this context there is no sharp
demarcation between ‘‘low’’ and ‘‘high’’ spatial frequen-
cies, but in practice we use the terms to refer to angula
Fourier components varying as~say! cosmu with m&4 and
m*8, respectively.

Using a Monte Carlo survey of initial-guess-error Fourier-
coefficient space, we find that the radius of convergence fo
Newton’s method falls rapidly with increasing spatial fre-
quency, approximately as 1/m3/2. A simple ‘‘line-search’’
modification of Newton’s method roughly doubles the hori-
zon finder’s radius of convergence, and slightly slows the
rate of decline with spatial frequency. Using a robus
nonlinear-algebraic-equations code to solve the discre
H(h)50 equations would probably give some further im-
provement, but we doubt that it would change the overa
trend.

Using quantitative convergence tests, we demonstrate th
the poor high-spatial-frequency convergence behavior o
Newton’s method isnot an artifact of insufficient resolution
in the finite difference grid. Rather, it appears to be inheren
in the~a! strong nonlinearity of the continuumH(h) function
for high-spatial-frequency components inh. We conjecture
that H may be similarly nonlinear in its high-spatial-
frequency dependence on the inverse-metric components.
so, then the presence of high-frequency gravitational radia
tion might well also impair the convergence of Newton’s
method, and possibly other horizon-finding methods as wel
Further investigation of this possibility would be very inter-
esting.

Fortunately, if the horizon finder is being used to update
horizon’s position at each time step of a time evolution, then
the previous time step’s horizon position probably provides
sufficiently good initial guess for Newton’s method to con-
verge well.

Provided it converges, the Newton’s-method algorithm
for horizon finding is potentially very accurate, in practice
limited only by the accuracy of theH(h) finite differencing
scheme. Using fourth-order finite differencing, we demon
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strate that the error in the numerically computed horiz
position, i.e., the deviation ofh from the true continuum
horizon position, shows the expectedO„(Du)4… scaling with
grid resolutionDu, and is typically;1025 (1026) for a

grid resolution ofDu5 p/2
50 ( p/2

100).
Finally, we have argued that considerable further resea

is needed to develop algorithms for finding or recognizin
the outermostapparent horizon in a slice. This is an impo
tant problem for the numerical evolution of multiple-black
hole spacetimes with the black holes excluded from the n
merical evolution, but so far as we know no reliab
algorithms are known for it except in spherical symmetry.
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APPENDIX A: SYMBOLIC-DIFFERENTIATION
JACOBIAN COEFFICIENTS

In this appendix we tabulate all the nonzero symbolic d
ferentiation Jacobian coefficients for(3)H(h) and its sub-
functions. These are used in the 3d.sd.1s and 3d.sd
Jacobian-computation methods. All the coefficients are o
tained by straightforward, if somewhat tedious, linearizatio
in the manner of Eq.~24!, starting from the defining equa-
tions noted.

For (3)H(h), starting from Eqs.~14! and~16!, the coeffi-
cients are

]~3!H

]~]xh!
5

1

D3/2

]A

]~]xh!
1

1

D1/2

]B

]~]xh!
1

1

D

]C

]~]xh!

2S 32 A

D5/21
1

2

B

D3/21
C

D2D ]D

]~]xh!
, ~A1a!

]~3!H

]~]xyh!
5

1

D3/2

]A

]~]xyh!
1

1

D1/2

]B

]~]xyh!
, ~A1b!

where

]A

]~]xh!
52@gux~gvr2gvw]wh!1gvx~gur2guw]wh!#]uvh

1 1
2g

ix@] ig
rr22~] ig

ru!]uh1~] ig
uv!~]uh!~]vh!#

1~gir2giu]uh!@] ig
xr2~] ig

xv!]vh#, ~A1c!

]B

]~]xh!
52] ig

ix2~] i lnAg!gix, ~A1d!

]C

]~]xh!
522~Kxr2Kxu]uh!, ~A1e!
on

rch
g
r-
-
u-
le

on
ts
n-
us.
-
of
s-
for

if-

2.2s
b-
ns

]D

]~]xh!
522~gxr2gxu]uh!, ~A1f!

]A

]~]xyh!
5~gxr2gxu]uh!~gyr2gyu]uh!, ~A1g!

]B

]~]xyh!
52gxy. ~A1h!

For si(h), starting from Eq.~3!, the coefficients are

]su
]~]xh!

5 H 21 if u5x,
0 otherwise. ~A2!

For ni(h), starting from Eq.~6!, the coefficients are

]ni

]~]xh!
52

gix

D1/21
~gir2giu]uh!~gxr2gxv]vh!

D3/2 .

~A3!

For ni(sj ), starting from Eq.~5!, the coefficients are

]ni

]su
5

giu

~gklsksl !
1/22

~giksk!~g
ulsl !

~gklsksl !
3/2 . ~A4!

For (3)H(si), starting from Eqs.~14! and ~15!, the coef-
ficients are

]~3!H

]sx
5

1

D3/2

]A

]sx
1

1

D1/2

]B

]sx
1

1

D

]C

]sx

2S 32 A

D5/21
1

2

B

D3/21
C

D2D ]D

]sx
, ~A5a!

]~3!H

]~]xsy!
5

1

D3/2

]A

]~]xsy!
1

1

D1/2

]B

]~]xsy!
, ~A5b!

where

]A

]sx
52@gix~gjksk!1gjx~giksk!#] isj

2 1
2g

ix@~] ig
kl!sksl #2~gi j sj !@~] ig

xk!sk#,

~A5c!

]B

]sx
52] ig

ix1~] i lnAg!gix, ~A5d!

]C

]sx
52Kxisi , ~A5e!

]D

]sx
52gxisi , ~A5f!

]A

]~]xsy!
52~gxksk!~g

ylsl !, ~A5g!

]B

]~]xsy!
5gxy. ~A5h!

For (3)H(ni), starting from Eq.~8!, the coefficients are
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]~3!H

]nx
5]xlnAg12Kxin

i , ~A6a!

]~3!H

]~]xn
y!

5H 1 if x5y,

0 otherwise.
~A6b!

APPENDIX B: DETAILS OF OUR HORIZON-FINDING
CODE

In this appendix we outline those details of our horizo
finding code relevant to the remainder of this paper.

Our horizon finder implements all the horizon-functio
and Jacobian-computation methods discussed in this pa
as summarized in Table I. It is part of a larger 311 code
under development, designed to time evolve an asymp
cally flat axisymmetric vacuum spacetime containing
single black hole present in the initial data. The black hole
excluded from the numerical grid in the manner described
Refs.@8–11#. The code uses fourth-order centered finite d
ferencing~five-point molecules! for finite differencing, on a
two-dimensional polar-spherical-coordinate grid.~The code
also assumes equatorial reflection symmetry, but this
merely for convenience and could easily be changed.! The
code uses a ‘‘PDE compiler’’ to automatically generate
the finite differencing and other grid-computation code,
cluding that for the horizon function and Jacobian compu
tions, from a high-level tensor-differential-operator spec
cation of the 311 equations.

The entire code is freely available on request from t
author, and may be modified and/or redistributed under
terms of the GNU Public License. The code should be ea
portable to any modern computing platform. It is main
written in ANSI C ~about 30K lines! and the Maple symbolic-
computation language~about 9K lines for the PDE compile
itself, and about 6K lines for the 311 equations!, together
with about 1K lines of Awk. The code for the horizon finde
itself is about 6K lines of C and 2K lines of Maple, but
large part of this is due to its supporting many different co
binations of finite differencing schemes and horizon-functi
and Jacobian computation methods. We estimate tha
implementation supporting only a single differencing sche
and horizon-function and Jacobian-computation meth
supplemented by a not-optimized-for-efficiency independ
Jacobian computation for debugging purposes~cf. Sec.
VI D !, would be a factor of;4 smaller.

The code takes the metric, extrinsic curvature, and ot
311 field tensors to be algebraically fully general; i.e.,
permits all their coordinate components to be nonzero.
avoid z-axis coordinate singularities, the code uses a hyb
of polar spherical and Cartesian coordinates as a tensor b
As discussed in detail by Ref.@10#, for the subset of the slice
containing the code’s~two-dimensional! grid, this hybrid co-
ordinate system combines the convenient topology of po
spherical coordinates with the singularity-free nature of C
tesian coordinates.

For present purposes, the key consequence of
z-axis-handling method is that in this work we have made
effort to avoid expressions which would be singular on t
z axis if polar spherical coordinates were used as a ten
basis. We have not investigated this case in detail, but
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suspect such singularities would be widespread.

APPENDIX C: OUR SPARSE-JACOBIAN STORAGE
SCHEME

As mentioned in Sec. VI D, all the Jacobian matrices in
volved in horizon finding are highly sparse, and for reason
able efficiency this sparsitymustbe exploited in storing and
computing the Jacobians. In this appendix we briefly de
scribe our sparse-Jacobian storage scheme. This sche
stores the Jacobian by rows, and is applicable to all of th
Jacobian matrices which arise in our horizon-finding algo
rithm.

We consider first the storage ofJ@ (2)H(h)#. Which ele-
ments in a specified rowI of this Jacobian are nonzero? From
the basic definition Eq.~26!, we see that the nonzero ele-
mentsJ are precisely those where(2)HI depends onhJ , i.e.,
those for whichhJ enters into the computation of

(2)HI . That
is, for a one-~two-! stage(3)H(h) computation, the nonzero-
JacobianJ values are precisely those within one~two! mol-
ecule radia ofI. This makes it easy to store the Jacobian: Fo
each grid pointI, we simply store a molecule-sized~twice-
molecule-sized! array of Jacobian elements.

In practice, for an axisymmetric-spacetime~two-
dimensional! code, whereI and J are both one-dimensional
(u) grid indices and the Jacobian is a band matrix, we wou
store the Jacobian as a two-dimensional array with indiceI

and J2 I. For a fully-general-spacetime~three-dimensional!
code, whereI andJ are both two-dimensional (u andf) grid
indices, we would store the Jacobian as a four-dimension
array with indicesIu , If , Ju2 Iu , andJf2 If , where we tem-
porarily use subscripts for coordinate components, an
where for pedagogical simplicity we ignore the artificial grid
boundaries atu5$0,p% andf5$0, 2p%.

A similar storage scheme may be used for more comp
cated Jacobians. For example, consider the storage
J@ (3)H(h)#. HereI is a three-dimensional grid point index for
(3)H, while J is a two-dimensional grid point index forh. For
a one-~two-! stage(3)H(h) computation, the nonzero Jaco-
bian elements in a specified Jacobian rowI are now precisely
thoseJ within one~two! angular molecule radia of the angu-
lar components ofI. Thus for an axisymmetric-spacetime
~two-dimensional! code we would store this Jacobian as
three-dimensional array with indicesIr , Iu , andJu2 Iu , while
for a fully-general-spacetime~three-dimensional! code we
would store the Jacobian as a five-dimensional array wi
indicesIr ,Iu , If , Ju2 Iu , andJf2 If .

Notice that with this storage scheme the Jacobian’s stru
ture, i.e., the location of its nonzero elements, is stored im
plicitly. This makes this scheme considerably more efficien
in both space and time than generic ‘‘sparse matrix’’ storag
schemes~for example, those of Refs.@65,66#!, which invari-
ably require the storage of large integer or pointer arrays
record a sparse matrix’s structure.

APPENDIX D: DETAILS OF OUR
HORIZON-PERTURBATION SURVEY

In this appendix we describe our Monte Carlo horizon
perturbation survey~cf. Sec. IX B! in more detail. Given the
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maximum initial-guess-error spatial frequencyM , the goal of
the survey procedure is to estimateVM , the ~hyper!volume
in $cm%-space of the horizon finder’s convergence region.

To do this, we first start from the origin in$cm%-space,
and search outwards along eachcm axis until we find coef-
ficients for which the horizon finder fails to converge. Th
gives the intersection of thecm coordinate axes with the
boundary of the convergence region.

We then construct a sequence of nested hypercu
~strictly speaking, hyperparallelepipeds! C1, C2, C3, . . . in
$cm%-space, starting with C1 just containing the
cm-coordinate-axis boundaries of the convergence regi
and expanding outwards. We use the obvious Monte Ca
sampling algorithm to estimate the volume of the conve
gence region contained within the first hypercubeC1, and
then within the differencesCk112Ck of the succeeding hy-
percubes. We continue this process until one of the diff
ences contains no convergence-region volume. We inclu
is

bes

on,
rlo
r-

er-
de

one additional hypercube in the sequence after this, typical
~25–50!% larger than the previous one in each dimension, t
provide a safety margin against missing disconnected ‘‘is
lands’’ or fractal zones near the boundary of the convergenc
region. @These are quite plausible; recall that the~fractal!
Julia set is just the convergence region of a simple Newton’s
method iteration.# Finally, we compute an estimate forVM
by simply adding the convergence-region-volume estimate
for C1 and eachCk112Ck .

Unfortunately, asM and hence the dimensionality of
$cm%-space increases, we find that the fraction of the hype
cubes and hypercube differences occupied by the conve
gence region decreases rapidly, and so a very large numb
of horizon-finding trials is needed to obtain a reasonable sta
tistical accuracy forVM . ~For example, theM512 points in
Fig. 6 required 15 000 trials each.! It is this effect which
ultimately limits the maximum value ofM attainable in prac-
tice by a survey of this type.
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