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Finding apparent horizons in numerical relativity
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We review various algorithms for finding apparent horizons #n13numerical relativity. We then focus on
one particular algorithm, in which we pose the apparent horizon equht'rerini+Kijninj—K:0 as a
nonlinear elliptic (boundary-valug PDE on angular-coordinate space for the horizon shape function
r=h(6,¢), finite difference this PDE, and use Newton’s method or a variant to solve the finite difference
equations. We describe a method for computing the Jacobian matrix of the finite diffetdficgdunction
H(h) by symbolically differentiating the finite difference equations, giving the Jacobian elements directly in
terms of the finite difference molecule coefficients used in computiftg. Assuming the finite differencing
scheme commutes with linearization, we show how the Jacobian elements may be computed by first linearizing
the continuunH (h) equations, then finite differencing the linearized continuum equati{@hss is essentially
just the “Jacobian part” of the Newton-Kantorovich method for solving nonlinear PD&® tabulate the
resulting Jacobian coefficients for a number of differd(ih) and Jacobian computation schemes. We find this
symbolic differentiation method of computing tié(h) Jacobian to benuchmore efficient than the usual
numerical-perturbation method, and also much easier to implement than is commonly thought. When solving
the discreteH(h) =0 equations, we find that Newton’s method generally shows robust convergence. However,
we find that it has a smalpoon radius of convergence if the initial guess for the horizon position contains
significant high-spatial-frequency error components, i.e., angular Fourier components varyéag a®snd
with m=8. (Such components occur naturally if spacetime contains significant amounts of high-frequency
gravitational radiation.We show that this poor convergence behavianasan artifact of insufficient resolu-
tion in the finite difference grid; rather, it appears to be caused by a strong nonlinearity in the continuum
H(h) function for high-spatial-frequency error componentinNe find that a simple “line search” modi-
fication of Newton’s method roughly doubles the horizon finder’s radius of convergence, but both the unmodi-
fied and modified methods’ radia of convergence still fall rapidly with increasing spatial frequency, approxi-
mately as 12 Further research is needed to explore more robust numerical algorithms for solving the
H(h)=0 equations. Provided it converges, the Newton’s-method algorithm for horizon finding is potentially
very accurate, in practice limited only by the accuracy of ) finite differencing scheme. Using fourth
order finite differencing, we demonstrate that the error in the numerically computed horizon position shows the
expectedO((A 6)*) scaling with grid resolutiomh 6, and is typically~10~5(1076) for a grid resolution of
A= Z2(H2). Finally, we briefly discuss the global problem of finding or recognizingatiermostapparent
horizon in a slice. We argue that this is an important problem, and that no reliable algorithms currently exist
for it except in spherical symmetr}S0556-282(96)02616-1

PACS numbe(s): 04.25.Dm, 02.60.Cb, 02.60.Lj, 02.70.Bf

I. INTRODUCTION ally outer trapped surface, is defingdl,2] locally in time,
within a single slice, as a closed two-surface whose outgoing
In 3+1 numerical relativity, one often wishes to locate null geodesics have zero expansion. An apparent horizon is
the black holés) in a (spacelike slice. As discussed by Refs. slicing-dependent: If we define a “world tube” by taking the
[1,2], a black hole is rigorously defined in terms of its eventunion of the apparent horiz@) in each slice of a slicing,
horizon, the boundary of future null infinity’s causal past.this world tube will vary from one slicing to another. In a
Although the event horizon has, in the words of Hawkingstationary spacetime event and apparent horizons coincide,
and Ellis[3], “a number of nice properties,” it is defined in although this generally is not the case in dynamic space-
an inherentlyacausalmanner: It can only be determined if times. However, given certain technical assumptions, the ex-
the entire future development of the slice is knovds dis-  istence of an apparent horizon in a slice implies the existence
cussed by Refd4,5], in practice the event horizon may be of an event horizon, and thus by definition a black hole,
located to good accuracy given only the usual numericallycontaining the apparent horizofUnfortunately, the con-
generated approximate development to a nearly stationamerse does not always hold. Notably, Wald and [y@rhave
state, but the fundamental acausality remains. constructed a family of angularly anisotropic slices in
In contrast, an apparent horizon, also known as a marginsSchwarzschild spacetime which approach arbitrarily close to
r=0 yet contain no apparent horizons.
There is thus considerable interest in numerical algo-
*Address for written correspondence: Box 8-7, Thetis Islandfithms to find apparent horizons in numerically computed
British Columbia, VOR 2YO0, Canada. Electronic address:slices, both as diagnostic tools for locating black holes and
thornbur@theory.physics.ubc.ca studying their behaviotsee, for example, Ref$4,7]), and
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for use “on the fly” during numerical evolutions to help in the angular coordinates are for pedagogical convenience
choosing the coordinates and “steering” the numerical evo-only, and could easily be eliminated. In particular, all our
lution [8—11]. This latter context makes particularly strong discussions carry over unchanged tg multiple-black-hole
demands on a horizon-finding algorithm: Because the comspacetimes, usingfor examplg either Gadez conformal-
puted horizon position is used in the coordinate conditionsmapping equipotential coordinate$17] or multiple-

the horizon must be located quite accurately to ensure thatoordinate-patch coordinate systefiS].

spurious finite difference instabilities do not develop in the We useijkl for spatial (three-indices, anduvwxy for
time evolution. Furthermore, the horizon must be re-locatedndices ranging over the angular coordinates owgly. de-

at each time step of the evolution, and so the horizon-findingiotes the three-metric in the slicg, its determinant, and
algorithm should be as efficient as possible. Finally, wher¥; the associated three-covariant derivative operatgrde-
evolving multiple-black-hole spacetimes in this manner it isnotes the three-extrinsic curvature of the slice, &hdts
desirable to have a means of detecting the appearance oftace.

new outermost apparent horizon surrounding two black holes We useA to denote the two dimensional space of angular
which are about to merge. We discuss this last problem fureoordinates ¢,¢). We sometimes need to distinguish be-
ther in Sec. XI. tween field variables defined oA or on the(two dimen-

In this paper we give a detailed discussion of the “New-sjona) horizon, and field variables defined on a three dimen-
ton’s method” apparent-horizon-finding algorithm. This al- sional neighborhoodV" of the horizon. This distinction is
gorithm poses the apparent horizon equation as a nonlineaften clear from context, but where ambiguity might arise we
elliptic (boundary-valug partial differential equatioriPDE) use prefixes? and (®, respectively, as id?’H and ®)H.
on angular-coordinate space for the horizon shape function e use italic letterd, h, etc., to denoteontinuumco-
r=h(0,¢), finite differences this PDE, and uses some vari-grdinates, functions, differential operators, and other quanti-
ant of Newton’s method to solve the resulting set of SimU'-ties_ We use sans serif |ettd-|¢5 h, etc., to denote gr|d func-
taneous nonlinear algebraic equations for the values af  tions, and small capital roman indices, andk to index grid
the angular-coordinate grld points. This algorithm is SUitab'%ointsl We use Subscript grid-point indices to denote the
for both axisymmetric and fully general spacetimes, and wesvaluation of a continuum or grid function at a particular
discuss both cases. As explained in Sec. Il, we assume gid point, as inH, or H,. We useJ[P(Q)] to denote the
locally polar spherical topology for the coordinates and finitejacobian matrix of the grid functioR=P(Q), as defined by
differencing, though we make no assumptions about the bazq. (17), and - to denote the product of two such Jacobians
sis used in taking tensor components. or that of a Jacobian and a grid function. We UgB(Q)] to
denote the linearization of the differential operator
P=P(Q) about the poinQ.

We useM as a generic finite difference molecule amés

Our notation generally follows that of Misner, Thorne, a generic index for molecule coefficients. We wiite M to
and Wheelef12], with G=c=1 units and a ,+,+,+) mean thatM has a nonzero coefficient at position Tem-
spacetime metric signature. We assume the usual Einsteporarily taking (M) to denote some particular coordinate
summation convention for repeated indices regardless afomponent ofv, we refer to max< pm|(M)| as the “radius”
their tensor character, and we use the Penrose abstract-indekM, and to the number of distin¢i) values withm e M as
notation, as described lfor example Ref.[13]. We use the the “diameter” or “number of points” ofM. (For example,
standard 31 formalism of Arnowitt, Deser, and Misner the usual symmetric second-order three-point molecules for
[14] (see Refs[15,14 for recent reviews first and second derivatives both have radius 1 and diameter

We assume that a specific spacetime andlyspacelik¢  3.) We often refer to a molecule as itself being a discrete
slice are given, and all our discussions take place within thi®perator, the actual application to a grid function being im-
slice. We use the term “horizon” to refer to tan) appar-  plicit.
ent horizon in this slice. We often refer to various sets in the Given a grid functionf and a set of pointgx,} in its
slice as being one, two, or three dimensional, meaning thdomain, we use inteff(x),x=a) to mean an interpola-
number ofspatialdimensions — the time coordinate is nevertion of the values f(x,) to the point x=a and
included in the dimensionality count. For example, we referinterp’ (f(x),x=a) to mean the derivative of the same in-
to the horizon itself as two dimensional. terpolant at this point. More precisely, takilgto be a

We assume that the spatial coordinakes(r,6,¢) are  smooth interpolating functioftypically a Lagrange polyno-
such that in some neighborhood of the horizon, surfaces ahial) such thatl (x,) =f(x,) for eachk, interp(f(x),x=a)
constantr are topologically nested two-spheres withn-  denotes 1(a) and interp(f(x),x=a) denotes
creasing outward, and we referttas a “radial” coordinate  (91/9x)|,—5.
and@ and ¢ as “angular” coordinates. For pedagogical con-
venience(only), we take # and ¢ to be the usual polar Ill. APPARENT HORIZON EQUATION
spherical coordinates, so that if spacetime is axisymmetric i
(spherically symmetric ¢ is (6 and ¢ are the symmetry As dlgcqssed byfor e>.<ample Ref.[19], an apparent ho-
coordinatés). However, we make no assumptions about the 120N satisfies the equation
detailed form of the coordinates; i.e., we allow all compo- —Qy =\ ni N K —
nents of the three-metric to be nonzero. P _ H=TH=Vin+Kynin =K =0, @

We emphasize that although our assumptions about th&heren' is the outward-pointing unit normal to the horizon,
local topology ofr are fundamental, our assumptions aboutall the field variables are evaluated on the horizon surface,

II. NOTATION
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IV. ALGORITHMS FOR SOLVING THE APPARENT
HORIZON EQUATION

and where for future use we define the “horizon function”
H=(H as the left-hand side of E¢L). [Notice that in order
for the three-divergencEn' to be meaningfuln' must be
(smoothly continued off the horizon, and extended to a field
®)n' in some three-dimensional neighborhood of the hori-

zon. The off-horizon continuation is nonunique, but it is easyp ) .
to see that this does not affedt on the horizon. In spherical symmetry, the apparent horizon equation

To solve the apparent horizon equatidy, we begin by c_iegenerates int_o a one-_olimensi_on_al non_linear algebraic equa-
assuming that the horizon and coordinates are such that ealiin for the horizon radiu. This is easily solved by zero
radial coordinate lind (6, )= const intersects the horizon finding on the horizon-functiorH (h). This technique has
in exactly one point. In other words, we assume that thdeen used by a number of authors, for example, Refs.
horizon’s coordinate shape is a “Strahtger,” defined by [22,23,9,11 (See also Ref.24] for an interesting analytical
Minkowski as “a region inn-dimensional Euclidean space Study giving necessary and sufficient conditions for apparent
containing the origin and whose surface, as seen from thBorizons to form in nonvacuum spherically symmetric space-
origin, exhibits only one point in any direction’20]. Given  times)
this assumption, we can parametrize the horizon’s shape by In an axisymmetric spacetime, the angular-coordinate
r=h(6,¢) for some single-valued “horizon shape func- spaceA is effectively one-dimensional, and so the apparent

We now survey various algorithms for solving the appar-
ent horizon equatiofil). Referencé¢21] reviews much of the
revious work on this topic.

tion” h defined on the two-dimensional domaihof angular
coordinates ¢, ¢).

horizon equatior§l) reduces to a nonlinear two-point bound-
ary value ordinary differential equatiq@®DE) for the func-

Equivalently, we may write the horizon's shape astion h(6), which may be solved either with a shooting

®)F=0, where the scalar functiof®)F, defined on some
three-dimensional neighborhood of the horizon, satisfies
G)F=0 if and only if r=h(6, ), and we take®F to in-
crease outward. In practice we takédF(r,0,q)
—r—h(6,).

We define the nonunit outward-pointing norntééld) to
the horizon by

s=%s=V,OF, 2

i.e., by
s =1, (33
s,=—d,h, (3b)

and the outward-pointing unit norméield) to the horizon
by

Si
n'=Cni= 4
T (4)
g's

= 5

VO SS

ir _ IU& h

g —gdy ©)

g 207 a,h g™ (agn)(a,h)

Henceforth we drop thé® prefixes on®)s; and G)n'.

Substituting Eq.(6) into the apparent horizon equation

(1), we see that the horizon functidr(h) depends on the
(angulay second derivatives di. In fact, the apparent hori-
zon equation1) is a second-order elliptidboundary-valug
PDE for h on the domain of angular coordinates The

method, or with one of the more general methods described
below. Shooting methods have been used by a number of
authors, for example, Reff25-31].

The remaining apparent-horizon-finding algorithms we
discuss are all applicable to either axisymmetric spacetimes
(two-dimensional codesor fully general spacetimeghree-
dimensional codgs

Tod [32] has proposed an interesting pair of “curvature
flow” methods for finding apparent horizons. Bernstga3]
has tested these methods in several axisymmetric spacetimes,
and reports favorable results. Unfortunately, the theoretical
justification for these methods’ convergence is only valid in
time-symmetric K;;=0) slices.

The next two algorithms we discuss are both based on a
pseudospectral expansion of the horizon shape function
h(6,¢) in some complete set of basis functiotigpically
spherical harmonics or symmetric trace-free tensarsing
some finite number of the expansion coefficiefag} to pa-
rametrize the horizon shape. One algorithm rewrites the ap-
parent horizon equatiok (a,)=0 as||H(ay)||=0 and then
uses a general-purpose function-minimization routine to
search{a,}-space for a minimum dfH||. This algorithm has
been used by Ref$34,35 in axisymmetric spacetimes, and
more recently by Ref 36] in fully general spacetimes. Al-
ternatively, Nakamura, Oochara, and Kojimd7—-39 have
suggested a functional iteration method for directly solving
the apparent horizon equatidth(a,)=0 for the expansion
coefficients{a,}, and have used it in a number of fully gen-
eral spacetimes. Kemball and Bishp#0] have suggested
and tested several modifications of this latter algorithm to
improve its convergence properties.

The final algorithm we discuss, and the main subject of
this paper, poses the apparent horizon equatifim) =0 as a
nonlinear elliptic (boundary-valug PDE for h on the
angular-coordinate spacé. Finite differencing this PDE on
an angular-coordinate grid 6, ,¢,)} gives a set of simulta-

apparent horizon equatidft) must, therefore, be augmented neous nonlinear algebraic equations for the unknown values

with suitable boundary conditions to define (&cally)

{h(6,,¢,)}, which are then solved by some variant of New-

unique solution. These are easily obtained by requiring théon’s method. This “Newton’s-method” algorithrtwe con-
horizon’s three-dimensional shape to be smooth across th&ue to use this term even if a modification of Newton’'s

artificial boundarie®9=0, 6=, ¢=0, andgp=21r.

method is actually us¢dhas been used in axisymmetric
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spacetimes by a number of authors, for example, Réfs- @B)g, <veee - (3) i
44,10, and is also applicable in fully general spacetimes t
when the coordinates have(lacally) polar spherical topol-
ogy. Huqg[45] has extended this algorithm to fully general
spacetimes with Cartesian-topology coordinates and finite
differencing, and much of our discussion remains applicableh = ?h H --->@H =H
to his extension.

The Newton’s-method algorithm has three main parts: the
computation of the discrete horizon functibith), the com- FIG. 1. This figure illustrates the various two-stage and one-
putation of the discrete horizon function’'s Jacobian matriXStage computation methods for the horizon-functidth). The
J[H(h)], and the solution of the simultaneous nonlinear al-solid arrows denote finite differencing operations, the dotted arrow
gebraic equationsi(h)=0. We now discuss these in more denotes an algebraic computation, and the dashed arrow denotes a
detail. radial interpolation to the horizon positian=h(#8,#). Each path

from h to H represents a separate computation method. Notice that

V. COMPUTING THE HORIZON FUNCTION there ?re thr;ee qlistinct. two-stage methodsing the upper arrows
from @h to ®H in the figuré and one one-stage methagsing the

In this section we discuss the details of the computation ofower arrow from@h to H).
the discrete horizon functiol(h). More precisely, first fix
an angular-coordinate grif{ 6,,¢,)}. Then, given a “trial We consider two basic types of methods for computing
horizon surface”r =h(#, ¢), which need not actually be an the extended horizon-functiof’H(h).
apparent horizon, we defirfg 6, ¢) to be the discretization A “two-stage” computation method uses two sequential
of h(#6,¢) to the angular-coordinate grid, and we considernumerical finite differencing stages, first explicitly comput-
the computation oH(h) on the discretized trial horizon sur- ings; and/om' by numerically finite differencingp, and then
face, i.e., at the point&r=h(6,,b),0= 0., b= b)) computing ®H by numerically finite differencing; or n'.

The apparent horizon equatidd) definesH=®H in A “one-stage” computation method uses only a single
terms of the field variables and their spatial derivatives orlumerical (second finite differencing stage, computing
the trial horizon surface. However, these are typically known®H directly in terms ofh’s first and second angular deriva-
only at the(three-dimensionalgrid points of the underlying tives.
3+ 1 code of which the horizon finder is a part. We therefore  Figure 1 illustrates this.

extend®H to some(three-dimensionaneighborhood\ of To derive the detailed equations for these methods, we
the trial horizon surface; i.e., we define an extended horizogubstitute Eqs(3) and Eqgs.(5) into Eq. (8):
0 (3) . . o
function *’H on \V: (OH=V;n'+K;;n'ni—K (12)
GH=V,n'+K;n'n—K 7 : : -
' ! @) =ain'+ (3Inyg)n' + K;;n'ni —K (12)
:&ini+(&iln\/§)ni+Kijnini—K. (8) ; gils, 3D g's, N Kils;s,
'(g¥ss) M g (Mses)™? " gMlsys

To compute ®H(h) on the (discretizedl trial horizon sur-

face, we first compute®H(h) on the underlying 31

code’s (three-dimensionalgrid points in, and then radi- A B C

ally interpolate thesé®H values to the trial-horizon-surface =—p+ =+ = —K, (14)
" 2 D% D" D

position to obtain'“’H(h),

(13

where the subexpressioAs B, C, andD are given by

A=—(g*s)(9"s) s~ 3 (9"s)[(19)ses1], (1539

@H(0,p)=interp(P H(r,0,¢), r=h(6,¢)) (9a

or, equivalently,
B=(ag")s;+g"as;+ (aiInVo)(g's)), (15b

@H,=interp(®*Hy ,r=h)), (9b) X
C:KIJSiSJ‘, (15C)
wherel is an angular grid-point index and tie) subscript
denotes that the interpolation is done independently at each D=g”sisj, (150
angular coordinate along the radial coordinate line
{6=6,,6=¢,}. In practice any reasonable interpolation i.e.,
method should work well here: References3,44] report

satisfactory results using a spline interpolant; in this work, A=(g""=g™duh) (9" —g""ayh) dy,h

we use a Lagrang@olynomia) interpolant centered on the —1(g"—ga,n[ag" —2(3,g")d,h
trial-horizon-surface position, also with satisfactory results. 2 e ' !
Neglecting the interpolation error, we can also write E3j. +(8;9")(9,h)(9,h)], (163
in the form

B=[d,9" —(5ig")d,h]1—g"a,,h+ (In\g) (g — g"ua,h),
@H(6,4)="H(r=h(0,¢),0,). (10) (16b)
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C=K"—2K"g,h+K"(g,h)(a,h), (160 and u is a “small” perturbation amplitude. This computa-
tion of the Jacobian proceeds by columns: For ead, is
D=g"—2g"g,h+g"(d,h)(d,h). (160 perturbed, and the resulting perturbationA(Q) gives the

Jh column of the Jacobian matrix.

Comparing the one-stage and two-stage methods, the two- The perturbation amplitudg. should be chosen to bal-
stage methods’ equations are somewhat simpler, and so theggce the truncation error of the one-sided finite difference
methods are somewhat easier to implement and somewhapproximation(18) against the numerical loss of significance
cheaper(faste) to compute. However, for a proper compari- caused by subtracting the nearly equal quantities
son the cost of computing the horizon function must be conp(QJrMe(J)) and P(Q). References[48,49 discuss the
sidered in conjunction with the cost of computing the hori-choice ofu, and conclude that (Q) can be evaluated with
zon function’s Jacobian. Compared to the one-stage methodn accuracy of, thenu~ \/& “seems to work the best.” In
the two-stage methods double the effective radius of the ngfractice the choice of. is not very critical for horizon find-
H(h) finite differencing molecules, and thus havé4?times ing. Values of 104~10"® seem to work well, and the inac-

as many nonzero off-diagonal Jacobian elements for a tWaoeyracies in the Jacobian matrix resulting from these values of
(three) dimensional code. In practice the cost of computing, do not seem to be a significant problem.

these extra Jacobian elements for the two-stage methods Thjs method of computing Jacobians requires no knowl-
more than outweighs the slight cost saving in evaluating theqge of theP(Q) function’s internal structure. In particular,
horizon function. We discuss the relative costs of the differ,q P(Q) function may involve arbitrary nonlinear computa-

ent methods further in Sec. VI D. tions, including multiple sequential stages of finite differenc-
ing and/or interpolation. This method is thus directly appli-

f Assuming that P(Q) is already known, computing
J[P(Q)] by numerical perturbation requires a total Nf

P, evaluations at each grid point; i.e., it requires a perturbed-
P, evaluation for each nonzero Jacobian element.

In this section we discuss the details of the computation o
the Jacobian matri3[ H(h) ] of the horizon functiorH(h) on
a given trial horizon surface.

A. Computing the Jacobian of a generic functionP(Q) 2. Computing Jacobians by symbolic differentiation

We consider first the case of a generic functiQ) in An alternate method of computing the Jacobian matrix
d d|me_n3|ons, flnlte_dlfferen_ced usiny-point molecu_les. JP(Q)] is by “symbolic differentiation.” This method
We define the Jacobian matrix of the discrB(@) function  naues explicit use of the finite differencing scheme used to
by compute the discretB(Q) function.
oP Suppose first that the continuufA(Q) function is a
— (173 position-dependent localinear differential operator, dis-
9Q, cretely approximated by a position-dependent local finite dif-
ference moleculé/:

JP(Q)],=

or, equivalently, by the requirement that

oP=[P(Q+Q)—P(Q)],=JP(Q)], 6Q, (17b P= 2  M1),Q.y. (20)
M e M)

for any infinitesimal perturbatiodQ of Q.

We assume tha® is actually alocal grid function of Q,
and so the Jacobian matrix is spargEor example, this M(1) it 3—1eM(1)
would preclude the nonlocal fourth-order “compact differ- | = '
encing” methods described by Ref#16,47.) We assume J[P(Q)]'JETQJ: 0 otherwise, (22)
that by exploiting the locality of the discreR(Q) function,
any singleP, can be computed i®(1) time, independent of
the grid size.

Differentiating this, we have

so that the molecule coefficients at each grid point give the
corresponding row of the Jacobian matrix.
More generally, supposk is a position-dependent local

) . nonlinear algebraic function @ and some finite number of
We consider two general methods for computing the Jacogy's derivatives, say,

bian matrix JJP(Q)]. The first of these is the “numerical
perturbation” method. This involves numerically perturbing P=P(Q,dQ,9;Q). (22)
Q and examining the resulting perturbationR{Q),

1. Computing Jacobians by numerical perturbation

Logically, the Jacobian matri P(Q)] is defined by Eq.

JIPQ)], %{P(QJrMe(J))_P(Q) (18) (17)] in terms of the linearization of the discretinite dif-
J ) I’ ferenced P(Q) function. However, as illustrated in Fig. 2, if
the discretizatiorithe finite differencing schemeommutes
wheree is a Kronecker-delta vector defined by with the linearization, we can instead compute the Jacobian
by first linearizing the continuun®(Q) function, and then
1 if =y, finite differencing thigcontinuun) linearized function(This

(19

O = ; L : .
[e™], [0 otherwise, method of computing the Jacobian is essentially just the
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nonlinear L linearized symbolic differentiation method requires the computation of
continuum —LREAMZe o ntinuum “a few” Jacobian-coefficient subexpressions per Jacobian
P(Q) 8P(6Q) row. More precisely, suppose the computation of all the
Jacobian coefficients at a single grid pointRstimes as
discretize discretize costly as aP, evaluation. Then the symbolic differentiation
(finite difference) (finite difference) method is approximatel)}NY/R times more efficient than the
numerical perturbation method.
nonlinear linearized
discrete linearize discrete B. Semantics of the horizon-function Jacobian
(finite difference) (finite difference)
P(Q) §P(5Q) We now consider the detailed semantics of the horizon-

function Jacobian. We define the Jacobian of
FIG. 2. This commutative diagram illustrates the two different H(h)=®H(h), J[H(h)]=J[PH(h)], by

ways a Jacobian matrix can be computed. Given a nonlinear con-
tinuum functionP(Q), the Jacobian matri¥[P(Q)] is logically
defined in terms of the lower-left path in the diagram; i.e., it is
defined as the Jacobian of a nonlinear discKéitdéte difference
approximationP(Q) to P(Q). However, if the operations of dis- . .
cretization(finite differencing and linearization commute, we can Of, equivalently, by the requirement that
instead compute the Jacobian by the upper-right path in the dia-
gram, i.e., by first linearizing the continuuf(Q) function and S2H E[(Z)H(h—i— 6h)—(2)H(h)] =J[(2)H(h)] .5h (26b)
then discretizingfinite differencing this linearizationsP(5Q). ' : b

@H

J[<2>H<h)]u=% (269

“Jacobian part” of the Newton-Kantorovich algorithm for for any infinitesimal perturbatio@h. Herel andJ are both
solving nonlinear elliptic PDES. angular(two-dimensiongl grid-point indices. Notice that this
That is, we first linearize the continuuR(Q) function:  definition uses théotal derivatived®H/dh. This is because
)H(h) is defined to always be evaluated the position

aP P aP r=h(0,¢) of the trial horizon surfaceand so the Jacobian
oP= @5(3*' 5.9 69,Q+ FE) 89;Q (23 J[@H(h)] must take into account not only the direct change
in (®H at a fixed position due to a perturbationinbut also
9P 9P oP the implicit change in®H caused by the field-variable co-
= . ) - - (2) : .
20 oQ+ 3(5.0) 3;6Q+ (3,Q) 9 6Q. (24)  efficients in (¥H being evaluated at a perturbed position

r=h(6,).
We then view the linearized functioAP(5Q) as a linear Itis also useful to copsl(ig)er the Jacobizi”H(h)] of the
differential operator, and discretely approximate it by the€xtended horizon functiot’H(h), which we define analo-

position-dependent finite difference molecule gously by
M= &PI JP g JP q 25 . FIE) |
~90' e Yt aa, i 9 AOHM === (273

where | is the identity molecule and; and d;; are finite ) )
difference molecules discretely approximatifganda;; , re- O, €quivalently, by the requirement that
spectively. Finally, we apply Eq21) to the moleculeM
gﬁii?gt)j] by Eq.(25 to obtain the desired Jacobian matrix 53H =[®H(h+ sh)—FH(h)],=IJ[PH(h)],-dh, (27b

In practice, there is no need to explicitly form the mol- o ) )
eculeM — the Jacobian matrix elements can easily be asfor any infinitesimal perturbatiorsh. Here 1 is a three-
sembled directly from the knowh, d;, andd;; molecule dimensional grid-point '”le.fOQ)H' while Jis an(angulay
coefficients and the “Jacobian coefficients’dP/4Q, twc;—d|men5|ongl grid-point index foh. In contrast with
dP13(d,Q), and aP/4(4;Q). Once these coefficients are J[; H(h)], _thl_s definition uses thepartial derivative
known, the assembly of the actual Jacobian matrix element& ”H/h. This is because we tak&’H(h) to be evaluated at
is very cheap, requiring only a few arithmetic operations pes fixed position(a grid point in the neighborhoad of the
matrix element to evaluate Eq5) and(21). The main cost trial horizon surfacewhich does not change with perturba-
of computing a Jacobian matrix by symbolic differentiation tions inh, and saJ[®H(h)] need only take into account the
is thus the computation of the Jacobian coefficients themdirect change if®H at a fixed position due to a perturbation
selves. Depending on the functional form of tR€Q) func-  in h.
tion, there may be anywhere from 1 to 10 coefficients, al- J[®H(h)] thus has much simpler semantics than
though in practice these often have many common)[®H(h)]. We have foundl[¥H(h)] very useful, both as
subexpressions. an intermediate variable in the computation Jf>H(h)]

In other words, where the numerical perturbation methoddescribed in the next sectiprand also conceptually, as an
requires aP, evaluation per nonzero Jacobiatementthe aid tothinking about the Jacobians.
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TABLE I. This table summarizes the various methods for computing the horizon fun@isigh) and its Jacobiad[(@PH(h)]. The
“codes” are shorthand labels for referring to the various methods. The relative CPU times are as measured for our implementation
(described in Appendix B and are per angular grid point, normalized relative to the one-stAgh) computation. The notation
“s;|n"” means whichever of; and/orn' is appropriate, depending on the precise two-stage method used to compute the horizon function.

Jacobian Horizon Relative Estimated

computation function CPU implementation
Code dimensions Jacobian computation method method Jacobian matrices used time effort
H.1s one-stage =1 Moderate
H.2s two-stage 0.7 Low
2d.np.1s  two-dimensional Numerical perturbation of?H(h) one-stage J@H(h)] 6 Low
2d.np.2s  two-dimensional Numerical perturbation of?H(h) two-stage J@H(h)] 8 Low
3d.np.1s three-dimensionalNumerical perturbation of?H(h) one-stage J[@H(h)], [P H(h)] 7 Low — Moderate
3d.sd.1s three-dimensionaSymbolic differentiation of®H(h) one-stage J[@H(h)], I H(h)] 15 Moderate
3d.np.2s  three-dimensionalNumerical perturbation of?H(h) two-stage J[@H(h)], [P H(h)] 8 Low — Moderate
3d.np2.2s three-dimensional Numerical perturbation two-stagg@H(h) ], P H(h)], 14  Moderate — High

of s|n'(h) and @H(s;|n’) Jsiln'(h)], IL@H(sin")]

3d.sd2.2s three-dimensional Symbolic differentiation two-stag#f @H(h)], JI®H(h)], 5 Moderate — High

of |n'(h) and ®H(s;|n") Jsiln'(h)], A®H(s|n)]

C. Computing the horizon-function Jacobian respectively. The symbolic differentiation Jacobian coeffi-

cients for the 3d.sd2.2s method are tabulated in Appendix A.
the Jacobian-computation methods in this paper, which we (;or any of the three dlme(r;)smnal methods,. once
now describe in detail. We tag each method with a shorthandl" H(h)] is known, we computd[*~’H(h)] as follows:
“code,” which gives the method’s basic properties: whether d@H

it computesJ[®H(h)] directly or computes) ®H(h)] as  J[@H(h)],=

Table | (discussed further in Sec. VI)Dsummarizes all

—_ 28
an intermediate step, whether it uses symbolic differentiation dh, 29
or numerical perturbation, and whether it uses a one-stage or
a two-stage horizon function computation. d@H(6,,¢)
The simplest methods for computirf®H(h)] are the ~7dh(o,, ) (29

“two-dimensional” ones, which work directly with
)H(h) in angular-coordinate space, without computing
J®H(h)] as an intermediate step. Siné®H(h) is not
given by a simple molecule operation of the form E20),
symbolic differentiation is not directly applicable here. How-
ever, numerical perturbation in angular-coordinate space is
applicable, using either a one-stage or a two-stage method to
compute®H(h). We refer to the resulting Jacobian compu-
tation methods as the “2d.np.1s” and “2d.np.2s” methods,
respectively.

Our remaining methods for computitdj®'H(h)] are all
“three-dimensional” ones, which first explicitty compute
J@®H(h)] and then computd[(PH(h)] from this in the
manner described below.

If ®)H(h) is computed using the one-stage method, i.e.,
via Egs.(14) and(16), then either numerical perturbation or
symbolic differentiation may be used to compute

d®H(r=h(6,.4).6,,¢,
SR A0 0Py Eq.10)

dh(6,,¢,) (30)
_OHr.6.4)
~ oh(6,,¢) r=h(6,.¢,)
(3)
AL GLL)) (39
r r=h(é,,¢,
=interpJ[*'H(h)] (75, F =h)
+ interp’((s)Hm) ;r=hy), (32

J®H(h)]. We refer to these as the “3d.np.1s” and where the(r1) subscripts in Eq(32) denote that the interpo-
“3d.sd.1s” methods, respectively. The symbolic differentia- lations are done along the radial lii¢=6,,¢= ¢}, analo-
tion Jacobian coefficients for the 3d.sd.1s method are tabwgously to Eg.(9), and where we neglect the interpolation
lated in Appendix A. errors in Eq.(32).

Alternatively, if ®H(h) is computed using a two-stage  Notice that the interf{---) term in Eq.(32) may be
method, thenJ[(®H(h)] may be computed either by the computed very cheaply using the safiéH data values used
simple numerical perturbation ofH(h) (the “3d.np.2s”  in computing @H; cf. Eq. (9). [The number of ®H data
method or by separately computing the Jacobians of thepoints used in the radial interpolation at each angular grid
individual stages and matrix-multiplying them together. Forposition will probably have to be increased by one to retain
the latter case, either numerical perturbation or symbolic difthe same order of accuracy in the intgrp -) termin Eq.
ferentiation may be used to compute the individual-stage Jd32) as in the interp(--) term] It is thus easy to compute
cobians, giving the “3d.np2.2s” and “3d.sd2.2s” methods, J[®H(h)] onceJ[®H(h)] is known.
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D. Comparing the methods for the horizon function, and so symbolic differentiation

Table | summarizes all the horizon-function and JacobianmethOdS would .require explicitly differentiating the finite
ifference equations.

computation methods described in Secs. V and VI C. Théi . . .

; ; A These suggestions have proven to be incorrect: Using the
table also ShO,WS which Jacoblan_ matrices th_e meth_ods USFacobian-coefficient formalism described in Secs. VI A 2 and
the methods’ measured relative CPU times in our.

. ) . . i ) VI C, only the continuum equations need be differentiated,
axisymmetric-spacetiméwo-dimensional code (discussed and this is easily done by hand. More generally, using this
further in Appendix B, and our estimates of the methods’ '

. ) ) . formalism we find the actual programming of the symbolic
approximate implementation effofprogramming complex-  iterentiation methods to be only moderately more difficult

ity). _ . than that of the numerical perturbation methods. Some of the

As can be seen from the table, for our implementation thgjacobian coefficients tabulated in Appendix A are fairly
3d.sd.1s method is by far the most efficient of the Jacobiancomplicated, but no more so than many other computations
computation methods, being about a factor of 5 faster thafh 3+ 1 numerical relativity.
any of the numerical perturbation methods. In fact, the com- |n order to be confident of the correctness of any of the
putation of the Jacobiad @H(h)] by the 3d.sd.1s method Jacobian-computation methods except the simple two-
is only 1.5—-2 times more expensive than the simple evaluadimensional numerical perturbation ones, we feel that it is
tion of the horizon-functiorf®H(h). highly desirable to program an independent methstlich

The relative performance of the different methods will of may be programmed for simplicity at the expense of effi-
course vary considerably from one implementation to anciency and make an end-to-end comparison of the resulting
other, and especially between axisymmetric-spacetime- Jacobian matrice§We have successfully done this for each
dimensional and fully-general-spacetime (three- ~ Of the Jacobian matrices computed by each of the methods
dimensional codes. However, counting the number of opera-listed in Table |, and our implementation-effort estimates
tions needed for each method shows that the 3d.sd.1s meth8iere include doing thislf, and only if, the Jacobians agree
should remain the fastest for any reasonable implementatiof® Within the expected truncation error of the numerical-
(We omit details of the counting in view of their length and Perturbation Jacobian approximatitt) can we then have a
lack of general interestNotably, the 3d.sd.1s method’s rela- high degree of confidence that both calculations are correct.
tive advantage over the other methods should be approxif they disagree, then we find the detailed pattern of which
mately a factor of the molecule diametiarger for fully- ~ Matrix elements differ to be a very useful debugging aid.

general-spacetime (three-dimensional codes than for Summarizing our comparisons, then, we find that the best
axisymmetric-spacetimétwo-dimensional codes such as Jacobian computation method is clearly the 3d.sd.1s one. It
ours. is much more efficient than any of the other methods, and

Considering now the implementation efforts required bystill quite easy to implement.
the various methods, in general we find that these depend
more on which Jacobian matrices are involved than on how VII. CONVERGENCE TESTS
the Jacobians are computed: The two-dimensional methods
involving only J[®H(h)], are the easiest to implement,
while the three-dimensional methods involvingnly)
J@H(h)] and J[®H(h)] are somewhat harder to imple-
ment. The three-dimensional methods involving the
individual-stage Jacobiang{s;(h)1, J[n'(h)], J®H(s)], [23,51,53, a careful comparison of a finite differencing
and/orJ[H(n')] are con_siderably more d_ifficult to imple- cod,e’s’ nl’JmericaI results at different grid resolutions can
ment, due to these Jacobians’ more complicated sparsity Pafie|q very stringent tests of the code’s numerical perfor-

ter'r&Tl. he Jacobi ) highl 4 mance and correctness. In particular, such *“convergence
the Jacobian matrices are highly sparse, and for reéageqis» can yield reliable numerical estimates of a codxs

sonable efficiency it is essential to exploit this sparsity iy g errors, i.e., of the deviation of the code’s results from
their storage and computation. We have done this in OUfyqqe that would be obtained by exactly solving the con-
code, and our CPU-time measurements and implementatiog,, ,,m equations. With, and only with, such estimates avail-

effort estimat_es all reflect this. We brieﬂy describe OUlahle can we safely draw inferences about solutions of the
sparse-Jacobian storage scheme in Appendix C. This scherggnin um equations from the codefinite-resolution nu-
is very efficient, but its programming is a significant fraction \qrical results.

of the (_)v_erall Jacobian implementation effort, especially for To apply this technique in the horizon-finding context,
the |nd|V|dl_JaI-stage qacloblans.b . d bolic diff suppose first that théa) true (continuun) apparent horizon
Comparing numerical perturbation and symbolic differen-yqjsionh* is known. For a convergence test in this case, we

tiation methods, we had previously suggest&®] that . the horizon finder twice, using a 1:2 ratio of grid resolu-
symbolic-differentiation Jacobian computations would be

oo g ; . ~-tions. As discussed in detail by R¢b1], if the code’s nu-
very difficult to implement, necessarily requiring substantial e rical errors are dominated by truncation errors from
support from a(computej symbolic computation system. ., order finite differencing, the numerically computed hori-
Several colleagues have expressed similar opinions to us. V\Q%n positionsh must satisfy
had also previously suggestgs0] that due to the structure
of theH (h) function, a Jacobian-coefficient formalism of the
type described in Secs. VI A 2 and VI C would not be valid h[Ax]=h* + (AX)"f+O((Ax)""?), (33a

' Before continuing our discussion of Newton’s-method ho-
rizon finding, in this section we digress to consider the con-
vergence of finite differencing computations to the con-
tinuum limit.

As has been forcefully emphasized by Choptuik
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h[Ax/2]=h* + (Ax/2)"f+ O((Ax)"*?), (33b parison of gridwise norms. In particular, the scatterplot com-
parison clearly shows convergence problems which may

at each grid point, wheré[Ax] denotes the numerically occur only in a small subset of the grid poirifer example
computed horizon position using grid resolutié®, andf is  near a boundapy which would be “washed out” in a com-
an O(1) smooth function depending on various high-orderparison of gridwise norms.
derivatives ofh* and the field variables, butot on the grid Notice also that the parameter the order of the conver-
resolution.[We are assuming centered finite differencinggence, igshould b¢ known in advance from the form of the
here in writing the higher-order terms @((Ax)"*?); oth-  finite differencing scheme. Thus the slope™/fhe with
erwise, they would only beé((Ax)""1).] Neglecting the which the scatterplot points are compared is not fitted to the
higher-order terms, i.e., in the limit of smallx, we can data points, but is rather am priori prediction withno ad-
eliminatef to obtain a direct relationship between the code’sjustable parameters. Convergence tests of this type are thus a
errors at the two resolutions, very strong test of the validity of the finite differencing

hAX2]—h* 1 scheme and the error expansions E3f) or Eq. (35).
/21—

_— = 34

h[Ax]—h* 2" (34 VIIl. SOLVING THE NONLINEAR ALGEBRAIC

. . . . EQUATIONS
which must hold at each grid point common to the two grids. Q

To test how well any particular set dfinite-resolution Returning to our specific discussion of horizon finding,
numerical results satisfies this convergence criterion, we plove now discuss the details of using Newton’s method or a
a scatterplot of the high-resolution errohg Ax/2]—h* variant to solve the simultaneous nonlinear algebraic equa-
against the low-resolution erros[ Ax]—h* at the grid tionsH(h)=0.
points common to the two grids. If, and given the arguments
of Ref.[51], in practiceonly if, the error expansions E(33) A. Newton’s method
are valid with the higher-order error terms negligible, i.e., if ) , , )
and only if the errors are indeed dominated by the expected 1€ basic Newton's-method algorithm is well known: At
nth-order finite difference truncation errors, will all the €ach iteration, we first linearize the discrééh) function

points in the scatterplot fall on a line through the origin with @P0ut the current approximate solutibff):

slope 1/2. (k) —H(hk (Ky7. 2
Now suppose the trugontinuum apparent horizon posi- R+ 3M) =H(NT) + H(MT)]- oh-+ O(|| N, &7
tion h* is unknown. For a convergence test in this case, W§here sh now denotes a finite perturbation i and where
run thg horizon finder 3 times, using a 1:2:4 ratio of ngdJ[H(h(k))] denotes the Jacobian matdikH(h)] evaluated at
resolutions. Analogously to the two-grid case, we now have, . pointh=h®. We then neglect the higher-ord@ronlin-
h[AX]=h* +(AX)"f + O((AX)"+?), (359 € lEerms l:’;md solve for the perturbatia?h® such that
H(h®+ sh(®)=0. This gives the simultaneous linear alge-

h[AX/2]=h* + (Ax/2)"f +O((Ax)"*2),  (35h  braic equations
h[AX/4]=h* +(AX/4)"F+O((AX)"2), (350 JH(h")]- 6= —H(h®) (38)

at each grid point, witl again independent of the grid reso- to be solved forsh®. Finally, we update the approximate
lution. Again neglecting the higher-order terms, we cansolution via

eliminate bothf andh* to obtain the “three-grid” conver- k4D, k) @
gence criterion ht*"2—h"+sh (39

h[AX/2]-h[Ax/4] 1 and repeat the iteration until some convergence criterion is
h[Ax]—h[Ax/2] 2" (36 satisfied. _ _
Notice that here we are using the word “convergence” in
which must hold at each grid point common to the threea very different sense from that of Sec. VIl — here it refers
grids. We test this criterion using a scatterplot techniquéo the “iteration convergence” of the Newton iterate’) to
analogous to that for the two-grid criterigB4). the exact solutiom* of the discrete equations, whereas there
We emphasize that for a three-grid convergence test ot refers to the “finite difference convergence” of a finite
this type, the true continuum solutiéri need not be known. difference computation resulif Ax] to its continuum limit
In fact, nothing in the derivation actually require$ to be  h* as the grid resolution is increased.
the true continuum horizon position — it need only be the Once the current solution estimdte is reasonably close
true continuum solution to some continuum equation sucho h*; i.e., in practice once the trial horizon surface is rea-
that the truncation error formuld85) hold. We make use of sonably close to théan) apparent horizon, Newton’s method
this latter case in Secs. VIII C and IX B to apply three-grid converges extremely rapidly. In particular, once the linear
convergence tests to intermediate Newton iterétés hori-  approximation in Eq(37) is approximately valid, Newton’s
zon surfacesof our horizon finder. method roughly squares the relative erffor—h*||/|h*| at
For both the two-grid and the three-grid convergence testeach iteration, and can thus bring the error down to a negli-
we find that thepointwisenature of the scatterplot compari- gible value in only a fewmore iterations.(This rapid “qua-
son makes it significantly more useful than a simple com-dratic” convergence depends critically on the mutual consis-
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tency of the horizon function and Jacobian matrix used in thg,(k) +- ) sh( |ies within the radial extent of our code’s main
computation, and is thus a useful diagnostic for monitoring(three-dimensionalnumerical grid at each angular grid co-
the Jacobian’s correctnepgFor a detailed discussion of ordinate. Our implementation of the algorithm also enforces
Newton’s method, including precise formulations and proofsan upper bound(typically 10% on the relative change
of these statements, see, for example, 9], Inoh®/h®)| in any component oh® in a single outer
However, if the initial gues&(® for the horizon position,  jteration. However, it is not clear whether or not this latter
or more generally any Newton itera&ial horizon surfack  restriction is a good idea: Although it makes the algorithm
h(®, differs sufficiently fromh* so that the linear approxi- more robust when thei(h) function is highly nonlinear, it
mation in Eq.(37) is not approximately valid, then Newton’s may slow the algorithm’s convergence when High) func-

method may converge poorly, or fail to converge at all.  tjon is only weakly nonlinear and the error in the initial guess
is large. We give an example of this latter behavior in Sec.
X.
B. Modifications of Newton's method
Unfortunately, as discussed in Sec. IX B, for certain types C. Newton-Kantorovich method

of |n'|t|5a'l guesses'Newton s method fails to converge unless We have described the Newton's-method algorithm, and
the initial guess is very close to the exact solution of the,

finite difference equations. There is an extensive numericattl:e more robust modified versions of it, in terms of solving
: e discreteH(h)=0 equations. However, these algorithms

analysis literature on more robust “modified Newton™ algo- can also be interpreted directly in terms of solving the con-
rithms for solving nonlinear algebraic equations, for ex—,[inuum H(h)=0 equations. This “Newton-Kantorovich”

fil(r:?ﬁ;?l’ Fij?éf[jlsi;tsrgdx\éﬁoﬁla:/; tfrﬁ:r;g ?:155] to be a par- method and its relationship to the discrete Newton’s method
y pic. are discussed in detail by R¢60].

For horizon finding, the Jacobian matrix’s size is the num- For the Newton-Kantorovich algorithm, at each iteration
ber of angular grid points on the horizon surface. This is 9 ' '

generally large enough that it is important for the nonlinear-V¢ first linearize the continuum differential operaig(h)

algebraic-equations solver to support treating the Jacobian g@out the current continuum approximate solutiH,
fen:her a band matn((for aX|Sy.mmetr|C'Spacet|me COdﬁB’_a H(h(k)+ 5h): H(h(k))+\][H(h(k))](5h)+O(||5h||2),
ully general sparse matrixfor fully-general-spacetime (40)
codes. It is also desirable for the nonlinear-algebraic-
equations solver to permit explicit bounds on the solutionwhere sh is now a finite perturbation im, and where the
vector, so as to ensure the trial horizon surfaces never fajlnear differential operatod[H(h®)] is now the lineariza-
outside the radial extent of the code’'s main three+ion of the differential operatorH(h) about the point
dimensional grid. Unfortunately, these requirements rule ouf—h®_ e then neglect the higher-ordéronlineay terms
many nonlinear-algebraic-equations software packages. snd  solve for the perturbation sh®  such that
For the sake of expediency, in the present work we Chosiil(h(k)+ sh®)=0. This gives the linear differential equa-
to write our own implementation of a relatively simple 4,
modified-Newton algorithm, the “line-search” algorithm de-
scribed by Refs[55,57]. However, a much better long-term J[H(h®)](sh®0)= —H(h®) (41)
solution would be to use an extant nonlinear-algebraic-
equations code embodying high-quality implementations ofg be solved forsh®. Finally, we update the approximate
more sophisticated algorithms, such as thenT code de-  golution via
scribed by Refs.[58,59. We would expect Newton's-
method horizon-finding codes using such software to be con- hk+t D h0 4+ shK (42
siderably more robust and efficient than our present code.
The modified-Newton algorithm used in this work, the and repeat the iteration until some convergence criterion is
line-search algorithm of Ref$55,57, is identical to the ba- satisfied.
sic Newton’s-method algorithm, except that the Newton’s- Now suppose we discretely approximate this continuum
method  update, Eq. (39, is modified to Newton-Kantorovich algorithm by finite differencing the it-
hk* 1) h® 4+ \sh®, where A €(0,1] is chosen at each eration equatior(41). If the finite differencing and the lin-
“outer” iteration by an inner “line search” iteration to en- earization commute in the manner discussed in Sec. VI A 2,
sure that|H|, decreases monotonically. Referenfg§,57]  then this finite difference approximation to the Newton-
show that such a choice afis always possible, and describe Kantorovich algorithm is in fact identical to the discrete
an efficient algorithm for it. Sufficiently close to the solution Newton’s-method algorithm applied to the (discrete)
h*, this algorithm always chooses=1, and so takes the H(h)=0 equations obtained by finite differencing the con-
same steps as Newton’s method. The overall modifiedtinuum Hh)=0 equation (In a simpler context, our
Newton algorithm thus retains the extremely rapid converJacobian-coefficient formalism described in Sec. VIA 2 es-
gence of Newton's method once the linear approximation irsentially just exploits the “Jacobian part” of this identity.
Eq. (37) is good. Therefore, when using the discrete Newton’'s method to
The line-search algorithm described by Réfs5,57 al-  solve theH(h) =0 equations, we can equivalently view each
ways begins by trying the basic Newton step 1. For ho-  Newton iterate(trial horizon surface h®[Ax] as being a
rizon finding, we have slightly modified the algorithm to finite difference approximation to the corresponding con-
decrease the starting value »fif necessary to ensure that tinuum Newton-Kantorovich iteratétrial horizon surface
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h®. As the grid resolution is increased, each Newton iterate T T T
h®[ Ax] should therefore show proper finite difference con- 0.2
vergencaegardless of the iteration convergence or iteration '
divergence of the Newton or Newton-Kantorovich iteration
itself. 0.1
Moreover, once we verify the individual Newton iterates’
finite differencing convergencéwith a three-grid conver-
gence tegt we can safely extrapolate the iteration conver- = 0.0
gence or iteration divergence of this discrete iteration to that
of the continuum Newton-Kantorovich algorithm applied to
the (continuum H(h)=0 equations. In other words, by this -0.1
procedure we can ascribe the iteration convergence or itera-
tion divergence of Newton’s method to inherent properties of
the continuumH(h)=0 equations, as opposed tsay a -0.2
finite differencing artifact. We make use of this in Sec. IX B. | | |

1 3 10 30 100
IX. GLOBAL CONVERGENCE OF THE HORIZON r
FINDER

FIG. 3. This figure showsi(r) for spherical trial horizon sur-
We now consider the global convergence behavior of thdaces with coordinate radiusin an Eddington-Finkelstein slice of a
Newton’s-method horizon-finding algorithm. That is, how unitmass  Schwarzschild  spacetime.  Notice that  for
close must the initial gued¥® be to the(an) exact solution ">f""~4.372,H>0 anddH/dr<0, and so Newton's method
h* of the finite difference equations in order for the iteratesdVérges in this region.
(trial horizon surfacesh® to converge toh*? In other
words, how large is the algorithm’s radius of convergence?infinity, and so|H| must attain a maximum for some finite
trial horizon surface somewhere between these two surfaces.
A. Global convergence for Schwarzschild spacetime We thus expect the same general behavior as in the
To gain a general picture of the qualitative behavior Of_SphwarzschiId-slicg case, i._e., (_jiverg_ence to infinity if the
initial guess or any intermediate iterdtaal horizon surfacg

E'é;%gari]tﬁslhssépl]ﬂg itcl)?]r;isdJ?gcﬁawgégsﬁme;r;%%egxg oVr\]/eIieS outside the maximurfH| surface. This argument is not
' ! . . - ; * ""tompletely rigorous, since the algorithm could move inward
use the Eddington-Finkelstein slicing, where the time coor pietely 1g 9

) . . o . . in an angularly anisotropic manner, but this seems unlikely.
dinate is defined by requiring+r to be an ingoing null g y P y

dinate (Th i i imad:i d Fortunately, in practice this is not a problem: The black
coordina e.(. ese sSlices are not maximatl. IS NONzero and e area theorem places an upper bound on the size of an
spatially variable throughout the slicgs.

) . . . apparent horizon, and this lets us avoid overly large initial
Taking the black ho_le to_be of dlmensm_nless unit massguesses, or restart the Newton iteration if any intermediate
the (only) apparent horizon in such a slice is the coordinat

Sterate trial horizon surfacgis too large.
spherer=2. More generally, a straightforward calculation ( 4 9

gives
B. Global convergence in the presence
He 2(r—2) 43 of high-spatial-frequency errors
r32Jr+2 Assuming that the initial guess is close enough to the

horizon for the divergence-to-infinity phenomenon not to oc-

for spherical trial horizon surfaces with coordinate radius cur, we find the global convergence behavior of Newton’s
Figure 3 showsH(r) for these surfaces. As expected, method to depend critically on the angular spatial frequency
H=0 for the horizonr =2. However, notice that reaches spectrum of the initial guess’s errbf®) —h*: If the error has
a maximum value at=r"®=1(3+.33)~4.372, and in only low-spatial-frequency component; a sense to be
particular that for >r™® H>0 anddH/dr<0. Because of clarified below, then Newton's method has a large radius of
this, almost any algorithm — including Newton’s method convergence; i.e., it will converge even for a rather inaccu-
and its variants — which tries to soh(r)=0 using only rate initial guess. Howeveif, the error has significant high-
local information aboutH(r), and which maintains the spatial-frequency components, then we find that Newton’s
spherical symmetry, will diverge towards infinity when method has a very small radius of convergence; i.e., it often
started from within this region, or if any intermediate iteratefails to converge even when the ertdP)— h* is very small
(trial horizon surfaceever enters it. This behavior imotan artifact of insufficient resolution in

In fact, we expect broadly similar behavior feirin any  the finite difference grid. Rather, it appears to be caused by a
black hole spacetime: Given an asymptotically flat slice constrong nonlinearity in the continuuf(h) function for high-
taining an apparent horizon or horizons, consider any onespatial-frequency componentstinin this context there is no
parameter family of topologically two-spherical nested trialsharp demarcation between “low” and “high” spatial fre-
horizon surfaces starting at the outermost apparent horizoguencies, but in practice we use the terms to refer to angular
and extending outward towards the two-sphere at spatial inFourier components varying &say cosné with m<4 and
finity. H=0 for the horizon and for the two-sphere at spatialm=8, respectively.
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FIG. 4. This figure illustrates how the convergence behavior of the basic and modified-Newton iterations depends on the spatial-
frequency spectrum of the initial guess’s erfd® —h* . In each part of the figure, the true continuum horidnis plotted as a solid line,
while the horizon finder's first few iteratdrial horizon surfacesh® are plotted with dots at the grid points. Péat of the figure shows
the behavior of Newton’s method for an initial-guess error containing only low spatial frequencied) mows the behavior of Newton’s
method for an initial-guess error containing significant high spatial frequencies, antt)psahtows the behavior of the modified-Newton
iteration for the same initial guess as pés. In parts(a) and(c), where the iteration is converging, the final iterates shown are indistin-
guishable from the true continuum horizon at the scale of the figure. Iflpawhere the iteration is diverging, the computed values for the
next iterateh®® (not shown are almost all far outside the scale of the figure; many of them are in fact negative.

1. Example frequency errors,r =h(®(9,$)=1.8+0.1cos4, and one

As an example of this behavior, consider Kerr spacetim&ontaining  significant  high-spatial-frequency errors,
with dimensionless angular momentume J/M2=0.6. We ' =h(®(6,¢)=1.8+0.1cos1@. Notice that both initial
use the Kerr slicing, where the time coordinate is defined byuesses are quite close to the actual horizon shape, differing
requiringt+r to be an ingoing null coordinatéThese slices from it by slightly less than 5%. We use a finite difference
generalize the Eddington-Finkelstein slices of Schwarzschilgrrid with A 9=Z2, which is ample to resolve all the trial
spacetime, and are similarly nonmaximal, wkhnonzero  horizon surfaces occurring in the example.
and spatially variable throughout the slige§.aking the Figure 4a) shows the behavior of Newton's method for
black hole to be of dimensionless unit mass, tbely) ap-  the low-spatial-frequency-error initial guess. As can be seen,
parent horizon in such a slice is the coordinate spheréere Newton’s method converges without difficulty.
r=h*(6,¢)=1+1-a’=1.8. Figure 4b) shows the behavior of Newton’s method for

For this example we consider two different initial guesseghe high-spatial-frequency-error initial guess. Here Newton’s
for the horizon position: one containing only low-spatial- method fails to converge: The successive iteréteal hori-
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15 | | We conclude that the iteration divergence of Newton's
method seen in Fig.() is in fact an inherent property of the
continuum Newton-Kantorovich algorithm for this initial
guess and slice. Looking at the internal structure of this al-
gorithm, we see that its only approximation is the lineariza-
1.0 I . tion of the continuuntH (h) function in Eq.(40), and so the
algorithm’s iteration divergence mugtan only be due to
nonlinearity in the continuuni (h) function.

200

2. Horizon-perturbation survey

To investigate how general the poor convergence of New-
ton’s method seen in this example is, and to what extent it
also occurs for the modified Newton’s method, we have
made a Monte Carlo numerical survey of both algorithms’

A ; behavior over a range of different initial-guess-error spatial
0.0 0 10 20 frequency spectra.
108 (h(z)[ﬂ] 3 h(?)[lﬂ]) qu this survey we first f|.x a part_lcular ho.rlgon—flndlng
50 100 algorithm. Suppose we are given a slice containing an appar-
ent horizon at the continuum positidrf , and consider run-

FIG. 5. This figure shows the results of a three-grid covergenceying the horizon finder with the generic perturbed initial
test for the second-iteration Newton iterdtgal horizon surface

103 (h(z)[%] _ h(z)[m])

- . X > guess
h® plotted in Fig. 4b). The line has slopek, appropriate for
fourth-order convergencéRecall that this line is not fitted to the M
data, but is rather aa priori prediction withno adjustable param- h=h*+ 2 C,cosmé (449
eters) (The absolute magnitude of the errors shown here is much m=0

larger than is typical for our horizon finder, due to a combination of meven

the compounding of smaller errors in the earlier Newton iteratefor some set of initial-guess-error Fourier coefficiefits,}.
h(%), and the very strong angular variation in both iterat€ and  (Here we include only evem cosine terms ind so as to
h®)) preserve axisymmetry and equatorial reflection symmetry,
which our code requirek.
For each value oM we define the horizon finder’s “con-
Figure 4c) shows the behavior of the modified Newton’s vergence re.g"’”" m{cf.“}'Space to be the set of coefficients
{cm} for which the horizon finder convergése presume to

method for this same high-spatial-frequency-error initial,[he correct solution For example. the convergence region
guess. Although the first iteration still moves the trial hori- = .~ - X . Pie, converg 9
will in practice always include the origin idc,}-space,

zon surface somewhat inward from the horizon, the nonsphe-, e _— :

ricity damps rapidly, and the successive iterdtaal horizon since thereh=h o+ SO the initial guess differs from the exact

surfaces quickly converge to the horizon. solutlo'n.of the dlscrgte{(h) =0 equations only by the small
Notice that all the intermediate iteraté@sal horizon sur- H(h) f|n|te_d|fferencmg error.

faces in this example are well resolved by the finite differ- We def_meVM to be .the(hyper)vqlgme of th(_a conver-

ence grid. To verify that insufficient grid resolution is not a gence region. As described in de.tall n Appendix D, we es-

factor in the behavior of the horizon finder here, we havelimate Vi by Mo.nte Car‘I‘o sampllng_ |E{Cm}-space. Given

rerun all three parts of this example with several higher grid/m+ We then define the “volume ratio

resolutions, obtaining results essentially identical to those

zon surfacesh®® move farther and farther away from the
horizon, and rapidly become more and more nonspherical.

Vo if M=0,
plotted here. o !
More quantitatively, following our discussion of the Ry = Vi it M=2 (45)
Newton-Kantorovich method in Sec. VIII C, we have made Vu_2 ! o

three-grid convergence tests of each intermediate iterate
(trial horizon surfacgin this example. For example, Fig. 5
shows a three-grid convergence test for the Newton iterat
(trial horizon surfaceh(® plotted in Fig. 4b), using grids
with resolutions

o thatR,, measures the average radius of convergence of
e horizon finder in the,, dimension.

3. Results and discussion

B w2 w2 w2 We have carried out such a horizon-perturbation survey

50 100" 200° for the same Kerr slices of the unit-mass spin-0.6 Kerr space-
time used in the previous example, for both the Newton and
Notice that despite the iteration divergence of the Newtorthe modified-Newton algorithms, fin=0,2,4 . . . ,12.Fig-
iteration, this iterate shows excellent fourth-order finite dif-ure 6 shows the resulting volume ratios. Although the precise
ference convergence. The other Newton and modifiedvalues are somewhat dependent on the details of our imple-
Newton iterateqtrial horizon surfacesin our example all mentation and on the test set(ip particular on the position
similarly show excellent fourth-order finite difference con- of the inner grid boundary, which is at=1 for these tesjs
vergence. the relative trends in the data should be fairly generic. These
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If this is the case, then high-spatial-frequency variations
in the field variables, such as would be caused by high-
frequency gravitational radiation, might well impair the con-
vergence of Newton’s method in a manner similar to high-
spatial-frequency perturbations lm Further investigation of
this possibility, either by analytical study of the nonlinear
structure of theH(g;; ,Kj;,h) function, or by numerical in-
vestigations, would be very interesting. Fortunately, how-
ever, thosdfew) dynamic black hole spacetimes which have
been explicitly computed thus fdfor example, Ref[62])
seem to contain mainly low-frequency gravitational radia-
tion.

In general, how serious a problem is the poor high-spatial-
frequency convergence of Newton’s method? Given a suffi-
. | | | \ | . ciently good initial guess, Newton’s method still converges
0.03 very rapidly (quadratically, and so the key question is, how
good is the initial guess in practice? Two cases seem to be of
particular importance: If the horizon finder is being used to

FIG. 6. This figure shows the volume ratiBg for the horizon- UP.date a horizon's ppsitiOIj at each time.Step of z.i.time evo-
perturbation survey. These measure the average radius of convél"—tlon’ th‘?” the prequus time Ste.p S horizon position pro,b-
gence of the horizon finder as a function of the initial—guess-error'@ny provides a sufficiently good |n|thl guess f'or Newton;
maximum spatial frequendyl. The points and solid lines show the me;thod to CO”‘_’e_fge well. In gontra}st, if the horlzon finder is
results for the modified-Newtofuppei and Newton(lower) algo- ~ P€ing used on initial data, or in a time evolution where there
rithms, with + 1 statistical error bars from the Monte Carlo esti- IS N0 nearby horizon in the previous time step, then signifi-

mation procedure. The dashed line showsRap~1/M 2 falloff. cant initial-guess errors can be expected, and Newton’s
method may converge poorly.

tests use a grid with = ZZ, which is adequate to resolve

all the perturbed trial horizon surfaces. X. ACCURACY OF THE HORIZON FINDER

As can be seen from the figure, the modified-Newton al-
gorithm is clearly superior to the Newton algorithm, increas- We now consider the accuracy of the Newton’s-method
ing the radius of convergence by a factor of 2—-3 at highhorizon'ﬁnding algorithm. That iS, aSSUming the Newton or
spatial frequencies. However, both algorithms’ radia of conmodified-Newton iteration converges, how close is the hori-
vergence still fall rapidly with increasing spatial frequency, zon finder’s final numerically computed horizon position to
approximately as M 3?2 although the rate is slightly slower the () true continuum horizon position* ?
for the modified-Newton than for the Newton algorithm. The ~ The horizon finder computes Newton or modified-Newton
radius of convergence of Newton’s method falls below 0.1iterates(trial horizon surfacesh® for k=0,1,2 ..., until
(~5% of the horizon radiysby M= 10, and the data sug- Some convergence criterion is satisfied, saykatp. Be-
gest that the radius of convergence of the modified-Newtoigause of the extremely rapid convergence of the Newton and
method would be similarly small byl =18. modified-Newton iterations, once the error is sufficiently

Since the grid resolution is adequate, we again concludémall (cf. Sec. VIII A), there is little extra cost in using a
that the small radius of convergence of Newton's method/€ry strict convergence criterion, i.e., in solving the discrete
must be due to a strong high-spatial-frequency nonlinearity1(h)=0 equations to very high accuracy. In our horizon
in the continuumH (h) function. Our horizon-perturbation finder we typically requirgH(h®)|.,<10~.
survey covers only a single axisymmetric initial slice and We denote the exact solution of the discréi¢h)=0
generic axisymmetric perturbations of the initial guess, but ittquations byh*. Given that|H(h®)] is reasonably small,
seems unlikely that the nonlinearity would diminish for morethen from standard matrix-perturbation thedsge, for ex-
general cases. HU®1] has made limited tests with nonaxi- ample, Refs[63,64)), |[h(P—h*||<k|H(h®))|, where« is
symmetric spacetimes and high-spatial-frequency perturbadhe condition number of thgresumably nonsinguladaco-
tions, and has foungboor convergence of Newton’'s method bian matrixJ[H(h)] at the horizon position.
similar to our results. If we take the convergence tolerance to be strict enough

Although we write the continuum horizon function as for |h(P’—h*| to be negligible, then the overall accuracy of
H=H(h), it is more accurate to write this as the horizon finder, i.e., the external erfgr® —h*|| in the
H=H(g;; ,Kjj ,h), sinceH also depends on the slice’s field computed horizon position, is thus limited only by the close-
variables and their spatial derivatives. Examining the funcness with which the discreté(h) =0 equations approximate
tional form of theH(g;; ,K;; ,h) function in Egs.(14) and  the continuumH(h)=0 equations, i.e., by the accuracy of
(16), we see thaH depends on thg" components in a theH(h) finite differencing. This potential for very high ac-
manner broadly similar to its dependence lonWe thus curacy is one of the main advantages of the Newton’s-
conjecture that thei(g;; ,K;; ,h) function may exhibit strong method horizon-finding algorithm.
high-spatial-frequency nonlinearity in the field variables, in  For an example of the accuracy attainable in practice, we
particular in theg' components, similar to its nonlinear de- again consider the Kerr slices of the unit-mass spin-0.6 Kerr
pendence oin. spacetime. However, to make the horizon deviate from a



54 FINDING APPARENT HORIZONS IN NUMERICAL RELATIVITY 4913

coordinate sphere and hence be a more significant test case

for our horizon finder, we apply the spatial coordinate trans- 25
formation h(O) = initial guess
h(?) = final result
b? 2.0
r—r+ W(azcos%ﬁr a,C0s460) (463
to the slice, where the parameters are given by 1.5
b=5, a,=0.75, a,=0.05. (46b) §

As shown in Fig. 7a), in the transformed coordinates this 1.0

gives a strongly nonspherical “peanut-shaped” horizon,
similar in shape to those around a pair of coalescing black 0.5
holes. ’
We have run our horizon finder on this slice, using the

warped-coordinate coordinate sphere1.8 as an initial 0.0
guess and a grid resolution akd=ZZ. We used the ' ' ' ' '
modified-Newton algorithm, which converged to the horizon (g 0.0 0.5 1.2quato1r.5 20 25
without difficulty. (The convergence took nine iterations, but

would have taken only six iterations in the absence of our

1.0
10% restriction on the relative change in any component of ' '
h in a single outer iteration; cf. Sec. VIII BFigure 1a)
shows the initial guess and the final numerically computed 0.8 | -
horizon position. -
Figure 7b) shows the results of a two-grid convergence %
test of the final numerically computed horizon position for | 0.6 [ .
this example, using grids with resolutions 98
- w2 w2 ;‘:%/ 04 F i
~ 50°100 5
As can be seen, the numerically computed solution shows 02+ -
excellent fourth-order convergence. Moreover, the numeri-
cally computed horizon positions are very accurate, with
[h®P)—h*|~107%(10"®) for a grid resolution ofA §= %z 0.0 o é 1'0 15
(Z22). Errors of this magnitude are typical of what we find 108 (h(P)[ﬂ] _ h*)
for Newton’s-method horizon finding using fourth-order fi- ®) 50

nite differencing, as long as the grid adequately resolves the

horizon shape. FIG. 7. This figure illustrates the accuracy of our horizon finder

for a test case where the horizon’s coordinate shape is strongly
XI. FINDING OUTERMOST APPARENT HORIZONS nonspherical. The figure is plotted using the transformed radial co-
ordinate defined by Eq(46). Part (a) of the figure shows the
The main focus of this paper is on locally finding apparent‘peanut-shaped” true continuum horizon positibii, plotted as a
horizons, i.e., on finding an apparent horizon in a neighborsolid line, and the initial guess® and the final numerically com-
hood of the initial guess. However, there is a related globaputed horizon positiom(®, plotted with dots at the grid points. At
problem of some interest which has heretofore attracted littl¢his scale the numerically computed horizon positié® is indis-
attention, that of finding or recognizing tloeitermosiappar- tinguishable from the true continuum positibri. Part(b) of the
ent horizon in a slice(By “recognizing” the outermost ap- figure shows the results of a two-grid convergence test for the nu-
parent horizon we mean the problem of determining whethefnerically computed horizon position®. The line has slopeg,
or not a given apparent horizon is in fact the outermost on@ppropriate for fourth-order convergend®ecall again that this
in a slice) line is_ not fitted to the data, but is rather amriori prediction with
These global problems are of particular interest when ap?© adjustable parameteys.

parent horizons are used to set the inner boundary of a blackymost apparent horizon, and continue the evolution on the
hole-excluding grid in the numerical evolution of a multiple- exterior of the new(distorted black hole.

black-hole spacetime, as discussed by Ris:11]. In this So far as we know, no reliable algorithms are known for
context, we can use the appearance of a new outermost afinding or recognizing outermost apparent horizons in non-
parent horizon surrounding the previously-outermost apparspherical spacetimes(For spherical spacetimes, a one-
ent horizons around two black holes as a diagnostic that thdimensional search oH(r) suffices) If started with a very
black holes have collided and coalesced into a siidls- large two-sphere as the initial guess, the curvature flow
torted black hole. As suggested by R¢f.0], we can then method might well converge to the outermost horizon in the
generate a new numerical grid and attach it to the new outslice, but as mentioned in Sec. 1V, the theoretical justifica-
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tion for this method’s convergence is only valid in time- putations in 3+ 1 numerical relativity.
symmetric K;;=0) slices. We find the actual programming of the symbolic differ-
For the remaining local-horizon-finding algorithms sur- entiation Jacobian computation to be only moderately more
veyed in Sec. IV, including the Newton's-method one, wedifficult than that of a numerical perturbation computation.
know of no better method for locating or recognizing outer-|n order to be confident of the correctness of a symbolic
most horizons than trying the local horizon finder with a differentiation Jacobian computation, we feel that it is highly
number of different initial guesses near the suspected posiesirable to program an independent numerical perturbation
tion of an outermost horlzon._ If t_hls method succeeds, ithethod and make an end-to-end comparison of the resulting
locates a horizon, but there is still no assurance that thi§gcopian matrices. The comparison Jacobian computation
horizon is the outermost one in the slice. Moreover, if all themay be programmed for simplicity at the expense of effi-

L?gi:;?&rézno?éf'{;]tn\%émls (];?Ilt,htehlﬁ‘]i?aﬁy T:Sasré;h%trtﬂerfa's ciency, and so it need not add much to the overall symbolic-
y 9 ! y gifferentiation implementation effort.

only mean that a horizon is present nearby but the metho Turning now to the convergence behavior of Newton's

failed to converge to it. It is also not clear how many local- : : .
horizon-finding trials should be made, or just how their ini- method, we find that as long as the error in the initial guess
(its deviation from the true horizon positipgontains only

tial guesses should be chosen. X . .
This is clearly not a satisfactory algorithm. Further re-!0W-spatial-frequency components, a Newton’s-method hori-

search to develop reliable algorithms for finding or recogniz20n finder has a largegood radius of convergence; i.e., it

nonmaximal slices would be very useful. ever, if the error in the initial guess contains significant high-

spatial-frequency components, then we find that Newton’s
method has a smalpoor radius of convergence; i.e., it may
XIl. CONCLUSIONS fail to converge even when the initial guess is quite close to

We find Newton’s method to be an excellent horizon-the true horizon position. In this context there is no sharp
finding algorithm: It handles fully generic slices, it is fairly deémarcation between “low” and “high” spatial frequen-
easy to implement, it is very efficient, it is generally robust in ¢i€S, but in practice we use the terms to refer to angular
its convergence, and it is very accurate. These properties af@urier components varying dsay cosné with m=<4 and
all well known, and Newton's method is widely used for m=8, respectively.
horizon finding. In this paper we focus on two key aspects of Using a Monte Carlo survey of initial-guess-error Fourier-
this algorithm: the computation of the Jacobian matrix andcoefficient space, we find that the radius of convergence for
the algorithm'’s global convergence behavior. Newton’s method falls rapidly with increasing spatial fre-

Traditionally, the Newton’s-method Jacobian matrix is quency, approximately as mf2 A simple “line-search”
computed by a numerical perturbation technique. In this pamodification of Newton’s method roughly doubles the hori-
per we present a much more efficient “symbolic differentia-zon finder’s radius of convergence, and slightly slows the
tion” technique. Conceptually, this entails differentiating therate of decline with spatial frequency. Using a robust
actual finite difference equations used to compute the disaonlinear-algebraic-equations code to solve the discrete
crete horizon functiorH(h). However, provided the finite H(h)=0 equations would probably give some further im-
differencing scheme commutes with linearization, the comprovement, but we doubt that it would change the overall
putation can instead be done by first differentiating the contrend.

tinuum horizon functiorH(h) and then finite differencing. Using quantitative convergence tests, we demonstrate that
(This is essentially just the “Jacobian part” of the Newton- the poor high-spatial-frequency convergence behavior of
Kantorovich method for solving nonlinear PDEs. Newton’s method isot an artifact of insufficient resolution

In our axisymmetric-spacetimétwo-dimensional nu- in the finite difference grid. Rather, it appears to be inherent

merical code, this method is about a factor of 5 faster thain the (a) strong nonlinearity of the continuuhi(h) function

any other Jacobian computation method. In fact, the Jacobidior high-spatial-frequency components lin We conjecture
computation using this method is only 1.5-2 times morethat H may be similarly nonlinear in its high-spatial-
expensive than the simple evaluationHit). We expect the frequency dependence on the inverse-metric components. If
symbolic differentiation method’s relative advantage overso, then the presence of high-frequency gravitational radia-
other Jacobian computation methods to be roughly similation might well also impair the convergence of Newton's
for other axisymmetric-spacetimgwo-dimensiongl codes, method, and possibly other horizon-finding methods as well.
and an additional factor of-3-5 larger for fully-general- Further investigation of this possibility would be very inter-
spacetimgthree-dimensionalcodes. esting.

We had previously suggeste10] that symbolic- Fortunately, if the horizon finder is being used to update a
differentiation Jacobian computations would be quite diffi-horizon’s position at each time step of a time evolution, then
cult, necessarily requiring substantial support frorfcam-  the previous time step’s horizon position probably provides a
putep symbolic computation system. Several colleaguessufficiently good initial guess for Newton’s method to con-
have expressed similar opinions to us. However, this turnserge well.
out not to be the case: We computed all the symbolic differ- Provided it converges, the Newton’'s-method algorithm
entiation Jacobian coefficients for our horizon finder by handor horizon finding is potentially very accurate, in practice
in only a few few pages of algebra. Some of the coefficientdimited only by the accuracy of thEl(h) finite differencing
are fairly complicated, but no more so than many other comscheme. Using fourth-order finite differencing, we demon-
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strate that the error in the numerically computed horizon aD

position, i.e., the deviation oh from the true continuum mz—z(gxr—gxuﬁuh). (A1f)

horizon position, shows the expect®d(A #)*) scaling with X

grid resolutionA ¢, and is typically~10"° (10°%) for a IA

grid resolution ofA = Z2 (Z2). 67(a—h)=(gxr—g"“&uh)(gyr—gy“&uh), (Alg)
Finally, we have argued that considerable further research Xy

is needed to develop algorithms for finding or recognizing JB

the outermostapparent horizon in a slice. This is an impor- m= -gv. (Alh)

tant problem for the numerical evolution of multiple-black- Xy

hole Spacetlmes with the black holes excluded from the nu- For s (h) Starung from Eq (3) the Coeff|c|ents are

merical evolution, but so far as we know no reliable

algorithms are known for it except in spherical symmetry. asy -1 if u=x,

d(ayh) |0 otherwise. (A2)
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For ®)H(s,), starting from Eqs(14) and (15), the coef-

APPENDIX A: SYMBOLIC-DIFFERENTIATION

JACOBIAN COEEFICIENTS ficients are

d%H 1 9A 1 aB 1 4C

In this appendix we tabulate all the nonzero symbolic dif- - 4 — =
D™ s, " D™gs, ' D s,

ferentiation Jacobian coefficients fé#’H(h) and its sub- Iy
functions. These are used in the 3d.sd.1s and 3d.sd2.2s
Jacobian-computation methods. All the coefficients are ob-
tained by straightforward, if somewhat tedious, linearizations
in the manner of Eq(24), starting from the defining equa-

3 A 1 B C\dD AS
202t 2pm p2lss,  (ASD

tions noted. _3(3>H = ! —aA + ! _&B (A5b)
For ®H(h), starting from Eqs(14) and(16), the coeffi- d(dxs,) D a(dcs,) D2 d(d,s,)’
cients are
where
AH 1 4A 1 9B 1 aC A
a(ah) ~ D (g " D™ a(ah) | D a(a) -5 = ~[9%(g"s0 +9™(g"s0]ais,
X
3 A 18 C dD 1 4ix kl ij xk
~“|zpmtrpmt o2 2| 30a) (Ala) — 20%[(3i9) s8] — (9" s)[ (19" sl
(A5c)
d®H 1 oA 1 (ALb) 5
— J . _
3(xgh) DI 3(3egh) HLETEWD) K gz_o’)ig'x-}-((;im\/g)g”(, (A5d)
X
where
dC .
IA . 2KX's;, (A5e)
— UX/ ~UT _ qUW UX/ Ul AUW X
Gy L9797 — g™ 97 (g — g auh) du,h
oD
+39%[3i9" = 2(8,g™) dyh+ (,g™) (auh)(3,h)] asx_ZQX'S' ’ (ASD)
+(9" —g"a,h)[ 39"~ (4,9)d,h], (Alc) IA ) |
=—(9"s)(g”'s)), A5
B | \/_ | (48, (9™sp)(9”'s)) (A5Q)
=—9;g"—(g;In X, Ald
oy 497 (dinvg)g (Ald) B
&(&Xsy)—g . (A5h)
= —2(KX"—K*Yg,h), (Ale)

d(dgh) For ®)H(n'), starting from Eq(8), the coefficients are
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J®H suspect such singularities would be widespread.

= =4, In\g+2K,n', (A6a)

_ APPENDIX C: OUR SPARSE-JACOBIAN STORAGE
d®H 1 if x=y, SCHEME

—— = . (A6b)
9(axn?) 0 otherwise. As mentioned in Sec. VI D, all the Jacobian matrices in-
volved in horizon finding are highly sparse, and for reason-
APPENDIX B: DETAILS OF OUR HORIZON-EINDING able efficiency this sparsitgnustbe exploited in storing and
CODE computing the Jacobians. In this appendix we briefly de-

) _ _ _ _ scribe our sparse-Jacobian storage scheme. This scheme
In this appendix we outline those details of our horizon-stores the Jacobian by rows, and is applicable to all of the

finding code relevant to the remainder of this paper. ~ jacobian matrices which arise in our horizon-finding algo-
Our horizon finder implements all the horizon-function rjthm.

and Jacobian-computation methods discussed in this paper, we consider first the storage df @H(h)]. Which ele-

as summarized in Table I. It is part of a larget-2 code  ments in a specified rowof this Jacobian are nonzero? From
under development, designed to time evolve an asymptotihe basic definition Eq(26), we see that the nonzero ele-
cally flat axisymmetric vacuum spacetime containing aments; are precisely those whef@H, depends or,, i.e.,
single black hole present in the initial data. The black hole ispose for whichh, enters into the computation 6PH, . That
excluded from the numerical grid in the manner described bys’ for a one<{two-) stage(3)H(h) computation, the nonzero-
Refs.[8—11]. The code uses fourth-order centered finite dif- 35cobian values are precisely those within oftevo) mol-
ferencing(five-point moleculesfor finite differencing, on a  o¢ e radia of. This makes it easy to store the Jacobian: For
two-dimensional polar-spherical-coordinate gri@lhe code each grid point, we simply store a molecule-sizétvice-
also assumes equatorial reflection symmetry, but this iﬁwolecule-size}iarray of Jacobian elements.

merely for convenience and could easily be chang&te In practice, for an axisymmetric-spacetiméwo-

code uses a “PDE compiler” to automatically generate allyimensiongl code, whera and J are both one-dimensional

the finite differencing and other grid-computation code, in-( gy orid indices and the Jacobian is a band matrix, we would
cluding that for the horizon function and Jacobian computaggre the Jacobian as a two-dimensional array with indices

tions, from a high-level tensor-differential-operator specifi- ;4 ;| For a fully-general-spacetim@hree-dimensional

cation of the 3+1 equations. code, where andJ are both two-dimensiona(and ¢) grid

The entire code is freely available on request from thejicas we would store the Jacobian as a four-dimensional
author, and may be modified and/or redistributed under th%rray with indices,, 15, J,— 15, andi,—1,,, where we tem-

terms of the GNU Public License. The code should be eaSi%orarin use subscripts for coordinate components, and

portable to any modern computing platform. It is mainly yhere for pedagogical simplicity we ignore the artificial grid
written in ANSI C (about 30K linegand the Maple symbolic- boundarieg ayzg{g - and?ﬁ={)(l) 2779} g

_computation Ianguag&_about 9K lines for the_ PDE compiler A similar storage scheme may be used for more compli-
|ts_ehlf, Snd iioll'ﬂ 6K Iflrl\eskfo_thhij efquaglor;])s 'gogetfhe(; cated Jacobians. For example, consider the storage of
wit |fa' oué g:f? 0 Wf c edC(;Kel_ort ef l\?lrlztl)n l')n € JI®H(h)]. Herel is a three-dimensional grid point index for
itself is about BK lines of C and 2K lines of Maple, but a @, '\ hije ;is a two-dimensional grid point index fr. For
large part of this is due to its supporting many different com-. on’e-(two-) stage @H(h) computation, the nonzero Jaco-
binations of finite differencing schemes and horizon-function,_. | ag ii puta ’ isel
and Jacobian computation methods. We estimate that pian e ements in a speci led Jacobian ucave NOW precisely

. oseJ within one(two) angular molecule radia of the angu-

implemeptation supporting onlyas_ingle differen_cing schemqar components of. Thus for an axisymmetric-spacetime
and horizon-function and Jacobian-computation method i

supplemented by a not-optimized-for-efficiency independen?wo'd'mens'onal code we would store this Jacobian as a

. . . hree-dimensional array with indices 14, andJ,—14, while
Jacobian computation for debugging purpodes Sec. i i . e )
VI D), would be a factor of-4 smaller. for a fully-general-spacetiméthree-dimensionalcode we

The code takes the metric, extrinsic curvature, and othe?fvOUId store the Jacobian as a five-dimensional array with

: . : indicesl, ,lg, 14, Jy—lg, andd;—1I,.
3+1 field tensors to be algebraically fully general; i.e., it A A AN A ¢ ¢ -
permits all their coordinategcompongnts t)(/)gbe nonzero. T Notice that with this storage scheme the Jacobian’s struc-

: . . : o .gure, i.e., the location of its nonzero elements, is stored im-
avoid z-axis coordinate singularities, the code uses a hybri

of polar spherical and Cartesian coordinates as a tensor bas%Iicitly. This makes this scheme considerably more efficient
As discussed in detail by Rdf10], for the subset of the slice I"both space and time than generic "sparse matrix” storage

containing the code’&wo-dimensiondl grid, this hybrid co- schemes{fpr example, those of RE’ngBS’GQ)’ Wh'.Ch invarl-

. . : ably require the storage of large integer or pointer arrays to
ordinate system combines the convenient topology of polaf =

: : . ) : record a sparse matrix’s structure.

spherical coordinates with the singularity-free nature of Car-
tesian coordinates.

For hpr%slgnt p”Lp%S.es’h the E.ey Coknsequ:ence OO‘; this APPENDIX D: DETAILS OF OUR
z-axis-handling method is that in this work we have made no HORIZON-PERTURBATION SURVEY
effort to avoid expressions which would be singular on the
z axis if polar spherical coordinates were used as a tensor In this appendix we describe our Monte Carlo horizon-

basis. We have not investigated this case in detail, but weerturbation surveycf. Sec. IX B in more detail. Given the
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maximum initial-guess-error spatial frequendy the goal of
the survey procedure is to estimatg,, the (hypepvolume
in {c}-space of the horizon finder's convergence region.
To do this, we first start from the origin ifc,,}-space,
and search outwards along eagh axis until we find coef-
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one additional hypercube in the sequence after this, typically
(25-50% larger than the previous one in each dimension, to
provide a safety margin against missing disconnected “is-
lands” or fractal zones near the boundary of the convergence
region. [These are quite plausible; recall that ttfeacta)

ficients for which the horizon finder fails to converge. This Julia set is just the convergence region of a simple Newton'’s-

gives the intersection of the,, coordinate axes with the
boundary of the convergence region.

method iteratior]. Finally, we compute an estimate fofy,
by simply adding the convergence-region-volume estimates

We then construct a sequence of nested hypercubder C; and eaclCy.,—Cy.

in
the

(strictly speaking, hyperparallelepipeds;, C,, Cs, ...
{cm}-space, starting with C; just containing

Unfortunately, asM and hence the dimensionality of
{cm}-space increases, we find that the fraction of the hyper-

cy-coordinate-axis boundaries of the convergence regiomgubes and hypercube differences occupied by the conver-
and expanding outwards. We use the obvious Monte Carlgence region decreases rapidly, and so a very large number
sampling algorithm to estimate the volume of the conver-of horizon-finding trials is needed to obtain a reasonable sta-

gence region contained within the first hypercubg and
then within the difference€, . ;— C, of the succeeding hy-

tistical accuracy foi/y, . (For example, thél =12 points in
Fig. 6 required 15 000 trials eaghlt is this effect which

percubes. We continue this process until one of the differultimately limits the maximum value d#l attainable in prac-
ences contains no convergence-region volume. We includéce by a survey of this type.

[1] S. W. Hawking, inBlack Holes Proceedings of the 23rd Les

Houches Summer School of Theoretical Physics, Les Houches,

1972, edited by C. DeWitt and B. S. DeWitGordon and
Breach, New York, 1973 pp. 1-56.

[2] S. W. Hawking and G. F. R. EllisThe Large Scale Structure
of Space-TiméCambridge University Press, Cambridge, En-
gland, 1973.

[3] S. W. Hawking and G. F. R. EllisThe Large Scale Structure
of Space-Tim¢2], p. 319.

[4] P. Anninos, D. Bernstein, S. Brandt, J. Libson, J. Magso

[17] A éade'z Ph.D. thesis, University of North Carolina at Chapel

Hill, 1971.

[18] J. Thornburg, Class. Quantum Gral.1119(1987).

[19] J. W. York, Jr., inFrontiers in Numerical Relativityedited by
C. R. Evans, L. S. Finn, and D. W. HobilCambridge Uni-
versity Press, London, 198%p. 89—-109.

[20] M. R. SchroederNumber Theory in Science and Communica-
tion (Springer-Verlag, Berlin, 1986p. 108.

[21] T. Nakamura, K. Oohara, and Y. Kojima, Prog. Theor. Phys.
Suppl.90, 1 (1987.

Seidel, L. L. Smarr, W.-M. Suen, and P. Walker, Phys. Rev.[22] L. I. Petrich, S. L. Shapiro, and S. A. Teukolsky, Phys. Rev. D

Lett. 74, 630(1995.

[5] J. Libson, J. MassoE. Seidel, W.-M. Suen, and P. Walker,
Phys. Rev. D63, 4335(1996.

[6] R. M. Wald and V. lyer, Phys. Rev. B4, R3719(1991).

[7] P. Anninos, D. Bernstein, S. Brandt, D. Hobill, E. Seidel, and

L. L. Smarr, Phys. Rev. [30, 3801(1984).

[8] J. Thornburg, talk at the CITA Workshop on Numerical Rela-

tivity, Toronto, Canada, 199@unpublished
[9] E. Seidel and W.-M. Suen, Phys. Rev. L&9, 1845(1992.

[10] J. Thornburg, Ph.D. thesis, University of British Columbia,
1993.

[11] P. Anninos, G. Daues, J. MassB. Seidel, and W.-M. Suen,
Phys. Rev. D51, 5562(1995.

[12] C. W. Misner, K. S. Thorne, and J. A. Wheel&ravitation
(Freeman, San Francisco, 1973

[13] R. M. Wald, General RelativityUniversity of Chicago Press,
Chicago, 19841

[14] R. Arnowitt, S. Deser, and C. W. Misner, @ravitation: An
Introduction to Current Researcledited by L. WittenWiley,
New York, 1962, pp. 227-265.

[15] J. W. York, Jr., inSources of Gravitational Radiatipredited
by L. L. Smarr(Cambridge University Press, Cambridge, En-
gland, 1979, pp. 83-126.

[16] J. W. York, Jr., in Gravitational Radiation edited by N.
Deruelle and T. PiraiNorth-Holland, Amsterdam, 1983pp.
175-201.

31, 2459(1985.

[23] M. W. Choptuik, Ph.D. thesis, University of British Columbia,
1986. .

[24] P. Bizon, E. Malec, and N. Murchadha, Phys. Rev. Letl,
1147(1988.

[25] A. Cadez Ann. Phys.(N.Y.) 83, 449 (1974.

[26] P. G. Dykema, Ph.D. thesis, University of Texas at Austin,
1980.

[27] A. M. Abrahams and C. R. Evans, Phys. Rev4bB R4117
(1992.

[28] N. T. Bishop, Gen. Relativ. Gravifi4, 717 (1982.

[29] N. T. Bishop, Gen. Relativ. Gravii.6, 589 (1984).

[30] S. L. Shapiro and S. A. Teukolsky, Phys. Rev.4B, 2739
(1992.

[31] A. M. Abrahams, K. R. Heiderich, S. L. Shapiro, and S. A.
Teukolsky, Phys. Rev. 26, 2452(1992.

[32] K. P. Tod, Class. Quantum Gra8, L115 (1991).

[33] D. Bernstein, National Center for Supercomputing Applica-
tions report, 1993unpublished

[34] D. R. Brill and R. W. Lindquist, Phys. Re31, 471(1963.

[35] K. R. Eppley, Phys. Rev. 16, 1609(1977).

[36] J. Libson, J. MassoE. Seidel, and W-.M. Suen, iGeneral
Relativity, Proceedings of the Seventh Marcel Grossmann
Meeting, Stanford, California, 1995, edited by R. Ruffini and
M. Keiser (World Scientific, Singapore, 1995

[37] T. Nakamura, Y. Kojima, and K. Oohara, Phys. L&t@6A,
235(1984.



4918 JONATHAN THORNBURG 54

[38] K. Oohara, T. Nakamura, and Y. Kojima, Phys. Let@Q7A, [56] B. S. Garbow, K. E. Hillstrom, and J. J. MQrémINPACK — A

452 (1985. software package for Nonlinear Equations and Nonlinear Least
[39] K. Oohara, inGravitational Collapse and Relativitedited by Squares Problems,” available from theTLiB on-line soft-

H. Sato and T. Nakamur@Vorld Scientific, Singapore, 1986 ware repository.

pp. 313-319. [57] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
[40] A. J. Kemball and N. T. Bishop, Class. Quantum Gig\1361 Flannery,Numerical Recipes in Fortrarend ed.(Cambridge

(1991). University Press, New York, 1992

[41] D. M. Eardley, reportunpublished, as discusse¢p. 135, p.
149 in K. R. Eppley, Ph.D. thesis, Princeton University, 1975.

[42] G. B. Cook, Ph.D thesis, University of North Carolina at
Chapel Hill, 1990.

[43] G. B. Cook and J. W. York, Jr., Phys. Rev.4D, 1077(1990.

[44] G. B. Cook and A. M. Abrahams, Phys. Rev. 45, 702
(1992.

[45] M. Hugq, talk at the Pennsylvania State Numerical Relativity
Workshop, University Park, Pennsylvania, 1998npub-

[58] U. Nowak and L. Weimann, ‘GIANT — A Software Package
for the Numerical Solution of Very Large Systems of Highly
Nonlinear Equations,” Konrad-Zuse-Zentrunt fmformation-
stechnik Berlin Report No. TR-90-11, 1990npublished

[59] U. Nowak and L. Weimann, “A Family of Newton Codes for
Systems of Highly Nonlinear Equations,” Konrad-Zuse-
Zentrum fur Informationstechnik Berlin Report No. TR-91-10,
1991 (unpublishegl

lished. [60] J. P. Boyd,Chebyshev & Fourier Spectral Methqdsecture

[46] M. Ciment and S. H. Leventhal, Math. Compw29, 985 Notes in Engineering Vol. 48Springer-Verlag, Berlin, 1989
(1975. Appendix C.

[47] R. S. Hirsh, J. Comput. Phy&9, 90 (1975. [61] M. Hugq (private communication

[48] A. R. Curtis and J. K. Reid, J. Inst. Math. Appl3, 121  [62] P. Anninos, D. Hobill, E. Seidel, W.-M. Suen, and L. L.
(1974. Smarr, Phys. Rev. 32,2044 (1995.

[49] J. Stoer and R. BulirscHntroduction to Numerical Analysis [63] J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart,
(Springer-Verlag, New York, 1980Sec. 5.3. LINPACK Users’ Guide(SIAM, Philadelphia, 1979 pp. I-7 -

[50] J. Thornburg[10], Sec. 4.4. I-12.

[51] M. W. Choptuik, Phys. Rev. @4, 3124(199J). [64] G. H. Golub and C. Van LoarMatrix Computations2nd ed.

[52] M. W. Choptuik, D. S. Goldwirth, and T. Piran, Class. Quan- (Johns Hopkins University Press, Baltimore, 198§%. 79-80.
tum Grav.9, 721 (1992. [65] A. George and J. W. H. LiuComputer Solution of Large

[53] R. E. Bank and D. J. Rose, SIAM J. Numer. Anall, 806 Sparse Positive Definite SysterfRrentice-Hall, Englewood
(1980. Cliffs, NJ, 1981.

[54] R. E. Bank and D. J. Rose, Numer. Ma8¥, 279(1981). [66] iLuce: A computer code implementing Kernshaw’s Incom-

[55] J. E. Dennis, Jr. and R. B. Schnabklymerical Methods for pleteLU-Decomposition — Conjugate Gradient iteration, writ-
Unconstrained Optimization and Nonlinear Equations ten by P. Madderom and supplied to the present author in 1985

(Prentice-Hall, Englewood Cliffs, NJ, 1978 by T. Nicol.



