
China

ns
ti–de
usal

ll-
the
e

PHYSICAL REVIEW D 15 OCTOBER 1996VOLUME 54, NUMBER 8

0556-282
Black plane solutions in four-dimensional spacetimes
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The static, plane symmetric solutions and cylindrically symmetric solutions of Einstein-Maxwell equatio
with a negative cosmological constant are investigated. These black configurations are asymptotically an
Sitter–type not only in the transverse directions, but also in the membrane or string directions. Their ca
structure is similar to that of Reissner-Nordstro¨m black holes, but their Hawking temperature goes with
M1/3, whereM is the ADM mass density. We also discuss the static plane solutions in Einstein-Maxwe
dilaton gravity with a Liouville-type dilaton potential. The presence of the dilaton field changes drastically
structure of solutions. They are asymptotically ‘‘anti–de Sitter–’’ or ‘‘de Sitter-type’’ depending on th
parameters in the theory.@S0556-2821~96!03820-9#
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I. INTRODUCTION

In general relativity, looking for the exact solutions of th
Einstein field equations has been a subject of long-stand
interest. Among these exact solutions, the black hole so
tions take an important position because thermodynam
gravitational theory, and quantum theory are connected
quantum black hole physics. In addition, black holes mig
play an important role in developing a satisfactory quantu
theory of gravitation which does not exist today. With th
investigation of the lower energy actions of string theori
and supergravity theory, in recent years we witnessed a ra
growth of interest in the family of black configurations rang
ing from various lower-dimensional black holes, blac
strings, to higher-dimensional extended blackp-branes, such
as two-dimensional dilaton black holes@1–3# and black hole
solutions in Jackiw-Teitelboim theory@4#, three-dimensional
dilaton black holes@5,6# and black strings@7,8#, four-
dimensional charged dilaton black holes@9–12# and black
strings@13#, and higher-dimensional blackp-branes@10,14#.
These black configurations broaden the family of black ho
and manifest some new features.

In the framework of four-dimensional Einstein theory o
gravitation, it is well known that generic black hole solution
to Einstein-Maxwell equations are Kerr-Newman solution
which are characterized by only three parameters: the m
charge, and the angular momentum. It is often referred to
the nonhair conjecture of black holes. The Kerr-Newm
spacetime is asymptotically flat. When a nonzero cosmolo
cal constant is introduced, the spacetime will become asym
totically de Sitter or anti–de Sitter spacetime depending
the sign of the cosmological constant. Although the theory
general relativity in three-dimensions retains the same form
structure as the one in four-dimensions and the Einst
equations still hold, the nature of the theory in thre
dimensions is very different from that of four-dimensiona
gravitation @15#. In the three-dimensional spacetime th
number of independent components of Riemann tensor is
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the same as that of the Ricci tensor, and the Weyl tens
vanishes identically. Thus, the stress-energy tensor has o
a local effect on the curvature, the curvature at a point
nonzero if and only if the sress-energy tensor does not van
@16#. Therefore, the pure gravity is identically flat in three
dimensional theory of gravity. But, when some extende
matters appear, the Einstein equations have solutions w
cosmological event horizons; the existence of a positive co
mological constant does not change this conclusion@16#.
However, a negative cosmological constant will change dr
matically this situation. Recently, Banados, Teitelboim, an
Zanelli ~BTZ! @17# have found a family of black hole solu-
tions in three-dimensional Einstein gravity. The negativ
cosmological constant plays a central role in the existence
BTZ black holes.

In four-dimensional spacetime, Horowitz and Strominge
@14# showed that there does not exist static, cylindrical
symmetric black string solutions with asymptotically flat in
the transverse directions if the strong energy conditio
Tmnt

mtn> 1
2Tt

mtm for all timelike vectors tm, is satisfied.
When the energy condition is relaxed to the weak ener
condition,Tmnt

mtn>0, the conclusion still holds. However,
their proof does not rule out the existence of the asympto
cally nonflat black strings. The Kaloper’s black string solu
tion @13# in the dilaton theory of gravity is a manifest ex
ample, which is basically a direct product of a spinning BT
black hole and a real line space@18#. Therefore, the
Kaloper’s black strings are asymptotically anti–de Sitter
the transverse directions and flat in the string direction.

In a recent paper@19#, Lemos constructed the cylindrical
black hole solutions~black strings! in four-dimensional Ein-
stein gravity with a negative cosmological constant. Huan
and Liang @20# further constructed the so-called toruslike
black holes ~with the topologyR23S13S1). The black
string solutions of Lemos are asymptotically anti–de Sitt
not only in the transverse directions, but also in the strin
direction. One of the aims of this paper is, in Sec. II, t
extend the work of Lemos to the plane symmetric solutio
and cylindrically symmetric solutions in Einstein-Maxwel
equations with a negative cosmological constant. Here,
negative cosmological constant plays a crucial role in the
4891 © 1996 The American Physical Society
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solutions, as in the BTZ black holes. In Sec. III, we furthe
discuss the plane symmetric solutions in Einstein-Maxwe
dilaton gravity with a Liouville-type potential of the dilaton
field. The presence of the dilaton field will change drastica
the structures and quantum properties of solutions. The
istence of black configurations is independent of the sign
the ‘‘cosmological constant.’’ Our conclusion and a brie
discussion are included in Sec. IV.

II. SOLUTIONS OF EINSTEIN-MAXWELL EQUATIONS
WITH A NEGATIVE COSMOLOGICAL CONSTANT

In this section, we discuss the static, plane symmetric
lutions and cylindrically symmetric solutions of the Einstein
Maxwell equations with a negative cosmological consta
respectively. Let us first consider the case of plane symm
try.

A. Black plane solutions

The Einstein-Maxwell equations have a well-known sol
tion possessing the plane symmetry. Its line element is giv
by @21#

ds252Smz 1
e2

z2Ddt21Smz 1
e2

z2D
21

dr21z2~dx21dy2!,

~1!

where m and e are two integration constants, an
2`,t,x,y,z,`. When m/z1e2/z2,0, the solution de-
scribes a spatially homogeneous spacetime. It is static
m/z1e2/z2.0. In the latter case, the solution~1! has four
Killing vectors: a timelike]/]t and three spacelike]/]x,
]/]y, andx]/]y2y]/]x, indicating the static, plane symme
try of spacetime~1!. But the solution is of a naked singular
ity at z50 and its physical meanings are unclear. On t
other hand, Einstein equations with a negative cosmologi
constant (3a2) admit the plane symmetric anti–de Sitter so
lution

ds252a2z2dt21~a2z2!21dz21a2z2~dx21dy2!. ~2!

If one redefinesZ521/(a2z2), Eq. ~2! then becomes

ds25~aZ!22~2dt21dZ21dx21dy2!, ~3!

which is just the half of the spacetime of supergravity d
main walls@22,23#, because the gravitational field of the su
pergravity domain walls can be interpreted in terms of t
domain wall interpolating between the Minkowski spacetim
and the plane anti–de Sitter spacetime. The spacetime~3! is
geodesically incomplete and has a Cauchy horizon
Z→2`. This Cauchy horizon is also unstable@24#, as the
Cauchy horizon in the Reissner-Nordstro¨m black holes.

Combining Eqs.~1! and ~2!, we find that a static plane
symmetric solution possessing event horizons will appe
The singularity at thez50 plane in Eq.~1! will be enclosed
by these event horizons. We start with the action
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S5
1

16pEVd4xA2g~R16a22FmnFmn!

2
1

8pE]V
d3xA2hK, ~4!

whereR is the scalar curvature,Fmn is Maxwell field, and
3a252L.0 denotes the negative cosmological constan
The quantityh is the induced metric on]V, andK its extrin-
sic curvature. Varying the action~4! yields the equations of
motion

Gmn[Rmn2
1

2
Rgmn53a2gmn18pTmn

EM , ~5!

05]m~A2gFmn!, Fmn,r1Fnr,m1Frm,n50, ~6!

where

Tmn
EM5

1

4p S FmlFn
l2

1

4
gmnF

2D ~7!

is the stress-energy tensor of the Maxwell field. The gener
metric of static plane symmetry can be written as

ds252A~r !dt21B~r !dr21C~r !~dx21dy2!, ~8!

where we have takenr5uzu because of the reflection sym-
metry with respect to thez50 plane. In the metric~8! solv-
ing Eqs.~5! and ~6!, we find

A~r !5B21~r !5a2r 22
m

r
1
q2

r 2
, ~9!

C~r !5a2r 2, ~10!

Ftr5
q

a2r 2
, ~11!

wherem andq are two integration constants related to th
Arnowitt-Deser-Misner~ADM ! mass and electric charge of
the solutions, respectively. Because of the noncompactibili
of the coordinatesx andy, for simplicity, we only consider
the mass and charge per unit area in thex-y plane. The
electric charge densityQ can be obtained by the Gauss theo
rem

Q5
1

4pE FtrC~r !dxdy5
q

2p
, ~12!

where we have considered the two integral surfaces
z56r . With the help of the Euclidean action method o
black membranes@25#, the ADM mass densityM is found to
beM5a2m/4p. Thus, we obtain the static plane symmetric
solutions of Eqs.~5! and ~6!;

ds252S a2r 22
4pM

a2r
1

~2pQ!2

a4r 2 Ddt2
1S a2r 22

4pM

a2r
1

~2pQ!2

a4r 2 D 21

dr2

1a2r 2~dx21dy2!. ~13!
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This solution is asymptotically anti–de Sitter not only in th
transverse directions, but also in the membrane directio
By calculating the scalar curvature invariants in the spac
time ~13!, the solution~13! is singular only atr50 plane.
The vacuum background (M5Q50) corresponding to Eq.
~13! is

ds252a2r 2dt21~a2r 2!21dr21a2r 2~dx21dy2!,
~14!

which is just the plane anti–de Sitter spacetime~2!. In addi-
tion, if the condition

Q2<
3a6

4p2 S pM

a4 D 4/3 ~15!

is satisfied, the Eq.A(r )50, i.e.,

a2r 22
4pM

a2r
1

~2pQ!2

a4r 2
50 ~16!

has two positive real roots:

r65
1

2 FA2R6S 22R1
8pM

a4A2RD 1/2G , ~17!

where

R5H p2M2

a8 1F S p2M2

a8 D 22S 4p2Q2

3a6 D 3G1/2J 1/3
1H p2M2

a8 2F S p2M2

a8 D 22S 4p2Q2

3a6 D 3G1/2J 1/3. ~18!

The other two roots of Eq.~16! are imaginary numbers and
have no physical meanings. BecauseA(r )>0 when
0<r<r2 and r>r1 , A(r )<0 when r2<r<r1 . There-
fore, the two positive roots can be interpreted as the ou
horizon and inner horizon of the plane symmetric solution
respectively. The causal structure of solution~13! is similar
to that of Reissner-Nordstro¨m black holes. The singularity at
r50 is enclosed by event horizons. Unlike the spherica
symmetric black holes, here the singularity is in the plane
r50. In addition, it is worth noting that, in fact, the solution
~13! has four-event horizons, two outer horizons
z56r1 , two inner horizonsz56r2 . The singularity at the
planez50 is enclosed by these horizons. When the equa
in Eq. ~15! holds, the two horizons coincide and the horizo
becomes

r ext5S pM

a4 D 1/3. ~19!

This case corresponds to the extremal black plane solutio
Here, we point out that if the negative cosmological consta
is replaced by a positive one, the solution~13! will become
an asymptotically de Sitter solution, and has a single cosm
logical horizon. The singularity atr50 becomes a cosmo-
logical singularity. We have no interest for this situation an
do not discuss it in detail.

We now turn to thermodynamics of the black plane sol
tions. To do this, it is convenient to employ the Euclidea
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action method@25–27#. Analytically, extending the solution
~13! to its Euclidean section, we obtain

ds25S a2r 22
4pM

a2r
1

~2pQ!2

a4r 2 Ddt2

1S a2r 22
4pM

a2r
1

~2pQ!2

a4r 2 D 21

dr2

1a2r 2~dx21dy2!, ~20!

wheret is the Euclidean time. The requirement of the ab
sence of the conical singularity in the Euclidean spacetim
~20! causes the Euclidean timet to have a periodbH , which
satisfies

bH
215

A8

4pAABU
r1

5
1

2p S a2r11
2pM

a2r1
2 2

~2pQ!2

a4r1
3 D ,

~21!

which is just the Hawking temperature of the black plan
solutions. For extremal black planes~19! the temperature
vanishes. WhenQ50, that is, for neutral black plane solu-
tions, the temperature,bH

2153M1/3(a/4p)2/3, goes with
M1/3, which is very different from that of Schwarzschild
black holes. It implies that the difference in topology struc
tures will change greatly the quantum properties of bla
configurations. Following Ref.@27#, consider the black mem-
brane and its surroundings contained by two infinite paral
plates atzB56r B . We regard the interior of the plates as th
thermodynamical system and the two plates as the bou
aries. In a grand canonical ensemble, we must fix the bou
ary conditions of the system. The Euclidean manifold~20! is
regular with a product topologyR23R2, and boundary
S13R2. On the boundary, the inverse temperaturebB has the
Toman’s relation,

bB5bHA
1/2~r B!, ~22!

and the electric potentialfB is fixed as

fB5
2pQ

a2 S 1r1
2

1

r B
DA21/2~r B!. ~23!

The Euclidean action can be obtained by Euclideanizing t
action ~4!:

SE52
1

16pEVd4xA2g~R16a22FmnFmn!

1
1

8pE]V
d3xA2hK. ~24!

In the Euclidean spacetime of Eq.~8!, the scalar curvature
and extrinsic curvature are, respectively,

R52g21/2~g1/2A8/AB!822G0
0 ~25!

and

K52g21/2~g1/2B21/2!8, ~26!
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whereG0
0 is the 0-0 component of the Einstein tensor. Sim

lar to the mass and charge, we only calculate the Euclide
action per unit area in the following discussions. Substituti
Eqs.~25! and ~26! into Eq. ~23!, with the help of Eqs.~9!–
~11!, we have

SE5bBS 2
a2r

2p
A1/2~r ! D U

r B

2
a2r1

2

2

2bB

2pQ2

a2 S 1r1
2

1

r B
DA21/2~r B!. ~27!

In order to obtain the Euclidean action of black plane sol
tions, we must eliminate the contribution of the vacuu
background~14! with the same boundary conditions from th
action~27!. The Euclidean action of the vacuum backgroun
is easy to get

SVE52bB

a3r B
2

2p
. ~28!

Thus, we obtain the Euclidean action of black plane so
tions:

SME5
bBa2r

2p
~ar2A1/2~r !!U

r B

2
a2r1

2

2

2bB

2pQ2

a2 S 1r1
2
1

r B
DA21/2~r B!. ~29!

Comparing the Euclidean action~29! with the formula of
thermodynamic potential, we get the internalE, entropyS,
and the chemical potentialm corresponding to the electric
chargeQ, respectively:

E5
a2

2p
~ar 22rA1/2~r !!ur B, ~30!

S5
a2r1

2

2
5

s

4
, ~31!

m5
2pQ

a2 S 1r1
2

1

r B
DA21/2~r B![fB , ~32!

wheres52a2r1
2 denotes the area of horizon of black mem

branes and the prefactor 2 is because of two outer horiz
surfaces. From Eq.~31! we see that the entropyS also satis-
fies 1

4 area formula of black hole entropy. In terms of th
relativistic thermodynamics, the proper energyE* and
proper chemical potentialm* are, respectively,

E*5EA1/2~r B! ——→
r B→`

5M

5ADM mass density of the black membranes,~33!

m*5mA1/2~r B! ——→
r B→`

5fH

5electric potential at the horizon, ~34!
i-
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wherefH5(2pQ/a2)(1/r1) . With the help of Eqs.~30!–
~32!, we easily obtain the first law of thermodynamics for the
system:

dE[S ]E

]SD
Q,s

dS1S ]E

]QD
S,s

dQ1S ]E

]s D
S,Q

ds,

5bB
21dS1fBdQ2Pds, ~35!

wherep[2(]E/]s)S,Q is the surface pressure of the sys
tem ands52a2r B

2 the surface area of the system. If one
rewrites Eq.~35! by using proper quantities atr B→`, it then
reduces to

dM5bH
21dS1fHdQ, ~36!

which is just the first law of black hole thermodynamics.
To end this subsection, we write down the metric o

charged black plane solutions with a pressureless null rad
tion in the advanced time coordinates:

ds252S a2r 22
4pM ~v !

a2r
1
„2pQ~v !…2

a4r 2 Ddv212dvdr

1a2r 2~dx21dy2!, ~37!

which is the Vaidya-like metric of black membranes. Equa
tion ~37! implies that the stress-energy tensor of the radiatio
is

Tmn
R 5r~v,r !lml n , ~38!

where lm52]mv is the four-velocity of the null radiation,
and the energy densityr(v,r ) satisfies

r~v,r !5
Ṁ ~v !

4a2r 2
2

pQQ̇~v !

a4r 3
, ~39!

where an overdot stands for derivative with respect tov.
Following Refs.@28–30#, we can easily show that the inner
horizon r2 is unstable. When the ingoing radiation has
power-law tail, a nonscalar curvature singurality will be de
veloped at the inner horizon. When an outgoing null flux i
added to the metric~37!, the mass inflation will take place
inside the black plane solutions, as in the Reissne
Nordström black holes.

B. Black string solutions

The black string solutions to Einstein equations with
negative cosmological constant have been constructed by L
mos @19#:

ds252S a2r 22
m

r Ddt21S a2r 22
m

r D 21

dr21r 2du2

1a2r 2dz2, ~40!

where2`,t, z,`, 0<r,`, and 0<u<2p, and the in-
tegration constantm is related to the ADM mass density of
the black strings. Huang@31# has recently discussed the gen
eralization of the solution~40! to include the electric charge.
However, some expressions in Ref.@31# are incorrect. For
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completeness, here we reexamine the charged black st
solutions to Einstein-Maxwell equations with a negative co
mological constant. To construct the cylindrically symmetr
solution, by identifying the coordinatex in Eq. ~6! with a
period 2p, and replacing the variabley by z, we obtain the
static, cylindrically symmetric solution of Eqs.~5! and ~6!:

ds252S a2r 22
4M

ar
1
4Q2

a2r 2Ddt2
1S a2r 22

4M

ar
1
4Q2

a2r 2D
21

dr2

1r 2du21a2r 2dz2, ~41!

Ftr5
2Q

ar 2
, ~42!

where the two constantsM andQ are the ADM mass and
charge per unit length in thez direction. The spacetime~41!
is asymptotically anti–de Sitter in the transverse directio
and string directions, unlike the Kaloper’s black strings
the dilaton gravity@13#. The singularity atr50 is enclosed
by the horizonsr6 if the condition

Q2<
3

4
M4/3 ~43!

holds. Same as the black plane solutions, the black stri
~41! have two horizons:

r65
1

2 FA2R6S 22R1
8M

a3A2RD 1/2G , ~44!

where

R5H M2

a6 1F SM2

a6 D 22S 4Q2

3a4 D 3G1/2J 1/3
1H M2

a6 2F SM2

a6 D 22S 4Q2

3a4 D 3G1/2J 1/3. ~45!

Euclideanizing the metric~41!, we can get the Hawking tem-
perature of the black strings:

bH
215

1

2p S a2r11
2M

ar1
2 2

4Q2

a2r1
3 D . ~46!

Similar to the previous subsection, we have the entropy
unit length and the first law of thermodynamics for charge
black strings:

S5
par1

2

2
5
1

4
s, ~47!

dM5bH
21dS1fHdQ, ~48!

wheres52par1
2 is the area of horizon per unit length an

fH52Q/ar1 the electric potential at the horizonr1 . When
Q50, i.e., for neutral black strings, the inner horizon disa
pears andr15a21(4M )1/3. Thus, the Hawking temperature
~46! becomesbH

215(3a/2p)(M /2)1/3. Therefore, the tem-
ring
s-
ic

ns
in

ngs

per
d

d

p-

perature of black strings also goes withM1/3, as the case of
black membranes. When the equality in Eq.~43! holds, the
two horizons coincide and Hawking temperature vanishe
This corresponds to the extremal black strings. As the case
black membranes, the causal structure of charged bla
strings is similar to that of Reissner-Nordstro¨m black holes.

Finally, we write down here the Vaidya-like metric of
black strings~41!,

ds252S a2r 22
4M ~v !

ar
1
4Q2~v !

a2r 2 Ddv212dvdr1r 2du2

1a2r 2dz2, ~49!

where the energy density of the null radiation is

r~v !5
Ṁ ~v !

2par 2
2
QQ̇~v !

pa2r 3
. ~50!

Similarly, by using the metric~49! we can show that the
inner horizon is also unstable and a scalar curvature sin
larity will replace the inner horizon when the charged blac
strings are perturbed by ingoing and outgoing null fluxes.

So far, we have investigated the static, plane symmet
solutions and cylindrically symmetric solutions in the
Einstein-Maxwell equations with a negative cosmologic
constant. The causal structure of these solutions is similar
that of Reissner-Nordstro¨m black holes. Therefore, they can
be interpreted as the black membranes and black strin
respectively. These black configurations are asymptotica
anti–de Sitter-type not only in the transverse directions, b
also in the membrane or string directions. In these solutio
the negative cosmological constant plays an important ro
In the following section, we will see that when the dilato
field is present, the structure of the plane solutions will b
changed greatly. The role of the negative cosmological co
stant seems to be lowered.

III. BLACK PLANE SOLUTIONS
IN EINSTEIN-MAXWELL-DILATON GRAVITY

In recent years, many black hole solutions have be
found in the dilaton gravity. Due to the dilaton field, the
usual black hole structure and quantum properties a
changed drastically. In this section, we would like to look fo
the plane symmetric solution in the Einstein-Maxwel
dilaton gravity with a Liouville-type dilaton potential, whose
action is

S5
1

16pE d4xA2g@R22~¹f!226a2he2bf2e22afF2#,

~51!

wheref is the dilaton field, the Liouville-type potential rep-
resents the ‘‘cosmological constant term,’’a andb are two
constants, andh561, representing the sign of the ‘‘cosmo
logical constant.’’ This action~51! has been considerably
investigated in the context of three- and four-dimension
dilaton black holes@5,12#. Varying the action~51!, we obtain
the equations of motion

Rmn52]mf]nf13a2he2bfgmn

12e22af~FmlFn
l2 1

4 gmnF
2!, ~52!
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05]m~A2ge22afFmn!, ~53!

¹2f53a2bhe2bf2
a

2
e22afF2. ~54!

We consider again the static plane solutions of Eqs.~52!–
~54! in the metric

ds252A~r !dt21B~r !dr21C~r !~dx21dy2!. ~55!

From Eq.~53! we have

Ftr5
Q

AABC
e2af, ~56!

whereQ is an integration constant. Thus, Eqs.~52! and~54!
reduce to

A8C8

2ABC
2

C9

BC
1

C82

2BC2 1
B8C8

2B2C
5
2

B
f82, ~57!

A9

2AB
2
A8B8

4AB2
2

A82

4A2B
1

A8C8

2ABC

523a2he2bf1
Q2

A2B2C2e
2af, ~58!

2
C9

2BC
1
B8C8

4B2C
2

A8C8

4ABC
53a2he2bf1

Q2

A2B2C2e
2af,

~59!

1

AABC
FAABSCBDf8G853a2bhe2bf1

aQ2

A2B2C2e
2af,

~60!

where a prime denotes derivative with respect tor . From
Eqs.~57!–~60!, we obtain a set of solutions

A~r !5
1

B~r !
52

4pM

NaN r 12N2
6a2h

N~2N21!
r N1

2Q2

Na2N r
2N,

~61!

C~r !5~ar !N, ~62!

f~r !52
b

2
lnr , ~63!

whereM is the quasilocal mass density@32#, and

b5A2N2N2, ~64!

a5b5b/N. ~65!

In the spacetime described by Eqs.~61! and ~62!, the scalar
curvature is

R5
b2

2r 2
A~r !112a2hr N22. ~66!
Obviously, the curvature diverges atr50. Therefore, the
r50 plane is a singularity plane in solutions~61!. The plane
symmetric solutions~61! manifest some interesting proper-
ties because of the parameterN. We will separately discuss
the cases ofh521 andh51.

~1! h521. That is, the Liouville-type potential corre-
sponds to a ‘‘negative cosmological constant.’’ The solutio
~61! is of different asymptotic properties as theN takes dif-
ferent values. From the solution Equations~61!–~65!, we
have 0,N,2, butNÞ1/2. WhenN52, the solution can be
reduced to the one of Einstein-Maxwell equations with
negative cosmological constant~13!.

~i! When 1/2,N,2, the second term (r N) in Eq. ~61! is
dominant asr→`. In that case, the solution~61! is an
asymptotically ‘‘anti–de Sitter’’ solution, where the word
‘‘anti–de Sitter’’ means that the solution has no cosmolog
cal horizon. The other horizons are given by the Eq
A(r )50: i.e.,

3a2

~2N21!
r 2N2

2pM

aN r1
Q2

a2N 50. ~67!

Because of the higher order ofr in Eq. ~67!, in general, the
solution~61! will have the multihorizon structures. A simpler
case isN51, in this case we have

r65
1

3a3 ~pM6Ap2M223a2Q2!. ~68!

WhenM2.3a2Q2/p2, the solution~61! has two horizons,
outer horizon r1 and inner horizon r2 ; when
M253a2Q2/p2, the solution ~61! has a single horizon
r15pM /(3a3); this corresponds to the extremal plane so
lution; whenM2,3a2Q2/p2, the solution~61! will have no
horizon and the singularity atr50 becomes naked. Evi-
dently, the causal structure of this case is similar to that
Reissner-Nordstro¨m black holes. The Hawking temperature
is

bH
215

1

2p S 3a22
Q2

a2r1
2 D . ~69!

From Eq.~69! we can see that ifQ50, the temperature is a
constant. This is very different from the case in the absen
of the dilaton field~21!. For a genericN, the Hawking tem-
perature is

bH
215

1

2p S 2
2pM ~12N!

NaN r1
2N1

3a2

~2N21!
r1
N21

2
Q2

a2N r1
2N21D . ~70!

It should be noted that for some specialN, the solution~61!
will have no horizon. For example, whenN53/2, the solu-
tion has no horizon, and the singularity atr50 is naked.

~ii ! When 0,N,1/2, the first term (r 12N) in Eq. ~61! is
dominant asr→`. In that case, the solution~61! is an as-
ymptotically ‘‘de Sitter’’ solution, where the ‘‘de Sitter’’
means that the solution~61! has the cosmological horizon. In
general, the plane solution will be of the inner horizons
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outer horizon, and the cosmological horizon. These horizo
are determined by the equation

3a2

~122N!
r 2N1

2pM

aN r2
Q2

a2N 50. ~71!

In particular, we find that, in some special cases, althou
there exists the cosmological horizon, the inner and ou
horizons are absent, the singularity atr50 is a cosmological
singularity. A manifest example isN51/4; the solution has
only the cosmological horizon:

r coh5F a1/4

4pM
„26a21~36a418pMQ2a23/4!1/2…G1/2.

~72!

This situation is very like the Reissner–Nordstro¨m–de Sitter
spacetime when the chargeQ exceeds a critical value. But
there exists an essential difference in the causes. The for
is purely because of the parameterN; the latter is due to the
relation of black hole hairs~mass, charge, and cosmologica
constant!.

~2! h51. Namely, the Liouville-type potential corre-
sponds to a ‘‘positive cosmological constant.’’ In that cas
A(r )→1` as r→0, andA(r )→2` as r→1`, therefore,
the Eq.A(r )50 determining the horizons of solutions has
least a positive root between 0,r,`. For 1/2,N,2 and
0,N,1/2, the solutions~61! are all asymptotically ‘‘de Sit-
ter’’ solutions, that is, these solutions have the cosmologi
horizons. Of course, for generic parameterN, these solutions
could have the inner horizons and outer horizon, indicati
the multihorizon feature. These horizons are given by

3a2

~2N21!
r 2N1

2pM

aN r2
Q2

a2N 50. ~73!

However, unlike the caseh521, whenN51, 1/4, or 3/2,
the solution~61! has only a cosmological horizon, which is

r coh5
1

3a3 ~2pM1Ap2M213a2Q2!, ~74!

for N51,

r coh5F a1/4

4pM
„6a21~36a418pMQ2a23/4!1/2…G1/2,

~75!

for N51/4,

r coh5F Q2

3a5 1S S Q2

3a5D 21S 4pM

9a7/2D 3D 1/2G1/3
1F Q2

3a5 2S S Q2

3a5D 21S 4pM

9a7/2D 3D 1/2G1/3, ~76!
ns

gh
ter

mer

l

e,

at

cal

ng

for N53/2. The Hawking temperature for these cosmologi
cal horizons is

bH
215

1

2p US 2
2pM ~12N!

NaN r2N2
3a2

~2N21!
r N21

2
Q2

a2N r
2N21D U

r5r coh

. ~77!

Similarly, the cylindrically symmetric solution in the ac-
tion ~51! can also be obtained. The causal structures of the
are similar to those of the plane symmetric solutions of equa
tions ~61!–~65!. For simplicity, here we do not present them.

IV. CONCLUSION AND DISCUSSIONS

In this work we have discussed the static, plane symmetr
cally solutions and cylindrically symmetric solutions in
Einstein-Maxwell equations with a negative cosmologica
constant. The singurality atr50 can be enclosed by event
horizons. Their causal structure is very similar to the one o
Reissner-Nordstro¨m black holes, but the Hawking tempera-
ture goes withM1/3. These black configurations are asymp-
totically anti–de Sitter–type, not only in the transverse di-
rections, but also in the membrane or string directions. I
these solutions with horizons, the negative cosmologica
constant plays a crucial role, as in the three-dimensiona
BTZ black holes. We have also investigated the plane sym
metric solutions in Einstein-Maxwell-dilaton gravity with a
Liouville-type dilatonic potential. The presence of the dila-
ton field changes drastically the structure of the solutions t
Einstein-Maxwell equations with a cosmological constant. In
particular, there exist the black plane solutions for the ‘‘posi
tive cosmological constant’’ and ‘‘negative cosmological
constant.’’ These solutions are asymptotically ‘‘anti–de
Sitter–type’’ or ‘‘de Sitter–type,’’ depending on the param-
etersN andh.

In the plane symmetric solutions, an interesting phenom
enon is that, if one removes the reflection symmetry with
respect to thez50 plane, the black plane solution becomes
that the singurality atz50 plane is enclosed by event hori-
zon in one direction and naked in the another direction. Fo
example, for neutral plane solutions,

ds252S a2z22
4pM

a2z Ddt21S a2z22
4pM

a2z Ddz2
1~az!2~dx21dy2!. ~78!

The solution has a singularity atz50 plane. WhenM.0,
obviously, it has a horizon atz5(4pM /a4)1/3 in the positive
z direction. But, the singurality is naked in the negativez
direction. WhenM,0, the situation is opposite. The prop-
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erty is the new feature of these black plane solutions.
course, the problems of physics might have the reflect
symmetry. Finally, we would like to point out that the blac
plane solutions have been also discussed by Cvetic@23# in
the context of supergravity domain walls.
Of
ion
k
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