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Black plane solutions in four-dimensional spacetimes
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The static, plane symmetric solutions and cylindrically symmetric solutions of Einstein-Maxwell equations
with a negative cosmological constant are investigated. These black configurations are asymptotically anti—de
Sitter—type not only in the transverse directions, but also in the membrane or string directions. Their causal
structure is similar to that of Reissner-Nordstrdblack holes, but their Hawking temperature goes with
M¥3 whereM is the ADM mass density. We also discuss the static plane solutions in Einstein-Maxwell-
dilaton gravity with a Liouville-type dilaton potential. The presence of the dilaton field changes drastically the
structure of solutions. They are asymptotically “anti—de Sitter—" or “de Sitter-type” depending on the
parameters in the theorS0556-282(96)03820-9

PACS numbes): 04.20.Jb, 04.70.Dy

I. INTRODUCTION the same as that of the Ricci tensor, and the Weyl tensor
vanishes identically. Thus, the stress-energy tensor has only

In general relativity, looking for the exact solutions of the a local effect on the curvature, the curvature at a point is
Einstein field equations has been a subject of long-standingonzero if and only if the sress-energy tensor does not vanish
interest. Among these exact solutions, the black hole soluF16]. Therefore, the pure gravity is identically flat in three-
tions take an important position because thermodynamicglimensional theory of gravity. But, when some extended
gravitational theory, and quantum theory are connected imatters appear, the Einstein equations have solutions with
quantum black hole physics. In addition, black holes mightcosmological event horizons; the existence of a positive cos-
play an important role in developing a satisfactory quantummological constant does not change this conclugib@).
theory of gravitation which does not exist today. With the However, a negative cosmological constant will change dra-
investigation of the lower energy actions of string theoriesmatically this situation. Recently, Banados, Teitelboim, and
and supergravity theory, in recent years we witnessed a rapidanelli (BTZ) [17] have found a family of black hole solu-
growth of interest in the family of black configurations rang- tions in three-dimensional Einstein gravity. The negative
ing from various lower-dimensional black holes, black cosmological constant plays a central role in the existence of
strings, to higher-dimensional extended blgekranes, such BTZ black holes.
as two-dimensional dilaton black holgs-3] and black hole In four-dimensional spacetime, Horowitz and Strominger
solutions in Jackiw-Teitelboim theofy], three-dimensional [14] showed that there does not exist static, cylindrically
dilaton black holes[5,6] and black strings[7,8], four-  symmetric black string solutions with asymptotically flat in
dimensional charged dilaton black holgs-12] and black the transverse directions if the strong energy condition,
strings[13], and higher-dimensional blagkbraneq10,14. th“t”Z%Tt”t# for all timelike vectorst”, is satisfied.
These black configurations broaden the family of black holesWhen the energy condition is relaxed to the weak energy
and manifest some new features. condition, T, ,t“t"=0, the conclusion still holds. However,

In the framework of four-dimensional Einstein theory of their proof does not rule out the existence of the asymptoti-
gravitation, it is well known that generic black hole solutions cally nonflat black strings. The Kaloper's black string solu-
to Einstein-Maxwell equations are Kerr-Newman solutions,tion [13] in the dilaton theory of gravity is a manifest ex-
which are characterized by only three parameters: the masample, which is basically a direct product of a spinning BTZ
charge, and the angular momentum. It is often referred to alslack hole and a real line spadel8]. Therefore, the
the nonhair conjecture of black holes. The Kerr-NewmanKaloper’'s black strings are asymptotically anti—de Sitter in
spacetime is asymptotically flat. When a nonzero cosmologithe transverse directions and flat in the string direction.
cal constant is introduced, the spacetime will become asymp- In a recent papefl9], Lemos constructed the cylindrical
totically de Sitter or anti—de Sitter spacetime depending orblack hole solutiongblack string$ in four-dimensional Ein-
the sign of the cosmological constant. Although the theory oktein gravity with a negative cosmological constant. Huang
general relativity in three-dimensions retains the same formaind Liang[20] further constructed the so-called toruslike
structure as the one in four-dimensions and the Einsteiblack holes (with the topology R?xStx S'). The black
equations still hold, the nature of the theory in three-string solutions of Lemos are asymptotically anti—de Sitter
dimensions is very different from that of four-dimensional not only in the transverse directions, but also in the string
gravitation [15]. In the three-dimensional spacetime thedirection. One of the aims of this paper is, in Sec. Il, to
number of independent components of Riemann tensor is sixxtend the work of Lemos to the plane symmetric solutions

and cylindrically symmetric solutions in Einstein-Maxwell
equations with a negative cosmological constant. Here, the
“Electronic address: cairg@itp.ac.cn negative cosmological constant plays a crucial role in these
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solutions, as in the BTZ black holes. In Sec. Ill, we further 1
discuss the plane symmetric solutions in Einstein-Maxwell- S= ﬁf d*xy—g(R+6a*~F*F )

dilaton gravity with a Liouville-type potential of the dilaton v

field. The presence of the dilaton field will change drastically

the structures and quantum properties of solutions. The ex- 8 d®x+/—hK, (4)
istence of black configurations is independent of the sign of N

the “cosmological constant.” Our conclusion and a brief

. ; . . whereR is the scalar curvaturd;
discussion are included in Sec. IV.

s uv 1S Maxwell field, and
3a?=—A>0 denotes the negative cosmological constant.

The quantityh is the induced metric oaV, andK its extrin-

Il. SOLUTIONS OF EINSTEIN-MAXWELL EQUATIONS sic curvature. Varying the actiof) yields the equations of
WITH A NEGATIVE COSMOLOGICAL CONSTANT motion
In this section, we discuss the static, plane symmetric so- o 1 2 EM
lutions and cylindrically symmetric solutions of the Einstein- G =R 2 ROu=3a70,, T 87T, ®
Maxwell equations with a negative cosmological constant,
tr;aspectlvely. Let us first consider the case of plane symme- 0=0d,(N—gF*"), F,,,*F,,.tF,..,=0, (6)
y.
where
A. Black plane solutions 1 1
- pere. T F )= 7 0. @
The Einstein-Maxwell equations have a well-known solu- ™
gg?zpﬁssessmg the plane symmetry. lts line element is IVeR the stress-energy tensor of the Maxwell field. The general

metric of static plane symmetry can be written as
2 2

m € m €
dsz=—<—+—2)dt2+(—+—2
4 4 4 V4

-1

dr2+ 22(dx2+dy?), ds?=—A(r)dt?+ B(r)dr2+ C(r)(dx®+dy?), (8)

(1)  where we have taken=|z| because of the reflection sym-
metry with respect to the=0 plane. In the metri¢8) solv-

. . ing Egs. , fi
where m and e are two integration constants, and ing Egs.(5) and(®), we find

—o0<t,X,y,z<®. When m/z+e?/z?<0, the solution de- m q?

scribes a spatially homogeneous spacetime. It is static as P\(f):'?fl(f):aZfz—TﬂL Pl 9
m/z+e?/z%>0. In the latter case, the solutidgft) has four

Killing vectors: a timeliked/dt and three spaceliké/Jdx, C(r)=a?? (10)
alay, andxdl 9y —ydl dx, indicating the static, plane symme-

try of spacetimgl). But the solution is of a naked singular- q

ity at z=0 and its physical meanings are unclear. On the Ftr:W, (11)

other hand, Einstein equations with a negative cosmological

constant (3?) admit the plane symmetric anti—de Sitter so-wherem and q are two integration constants related to the
lution Arnowitt-Deser-MisnefADM) mass and electric charge of
the solutions, respectively. Because of the noncompactibility
of the coordinates andy, for simplicity, we only consider
the mass and charge per unit area in #g plane. The
electric charge densit can be obtained by the Gauss theo-
If one redefineZ = — 1/(a?z?), Eq. (2) then becomes rem

ds?= — a?Z2dt?+ (a?2?) " 1d 2+ &?Z2(dX2+ dy?). (2)

1 q
ds’=(aZ) 3(—dt?*+dZ?+dx*+dy?), €) Q:Ef FyC(r)dxdy=>—, (12

where we have considered the two integral surfaces at
z=*r. With the help of the Euclidean action method of
black membranef25], the ADM mass densiti is found to

which is just the half of the spacetime of supergravity do-
main walls[22,23, because the gravitational field of the su-
pergrgvity dqmain wajls can be interprqted in terms Of.th e M= a?m/4s. Thus, we obtain the static plane symmetric
domain wall interpolating between the Minkowski Spacet'mesolutions of Eqs(5) and (6);
and the plane anti—de Sitter spacetime. The spaced®jne '
geodesically incomplete and has a Cauchy horizon at 47M  (27wQ)3?
Z— —o. This Cauchy horizon is also unstalji24], as the dSZ:-(aZFZ— 2 72 )d 2
Cauchy horizon in the Reissner-Nordstrdlack holes. “« “«

Combining Egs.(1) and (2), we find that a static plane
symmetric solution possessing event horizons will appear. +
The singularity at the=0 plane in Eq(1) will be enclosed
by these event horizons. We start with the action + a?r?(dx?+dy?). (13

a“‘rc— +
a’r a’r?

2\ -1
5, A4mM (ZWQ)) dr?
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action method25-27. Analytically, extending the solution

transverse directions, but also in the membrane direction$13) to its Euclidean section, we obtain
By calculating the scalar curvature invariants in the space-

time (13), the solution(13) is singular only atr =0 plane.
The vacuum background\{=Q=0) corresponding to Eq.
(139 is

ds?

@?r2dt?+ (a?r?) " ldr2+ a?r?(dx+dy?),
(14

which is just the plane anti—de Sitter spacetifBe In addi-
tion, if the condition

47M  (27Q)?
_| 2.2 2
d32 a“r W_FQ’TI' dr
47M  (2wQ)%\ 1
+ azl’z— azr a4r2 dr2
+ a?r2(dx?+dy?), (20)

where 7 is the Euclidean time. The requirement of the ab-
sence of the conical singularity in the Euclidean spacetime

3a6 M 43 . . . .
Q%< _(_) (15) (20) causes the Euclidean timeto have a periogBy , which
4m?\ o satisfies
is satisfied, the EA(r)=0, i.e., - Al 1 ( . 27M  (27Q)2
= =—|a’M +—>——575|,
,, 47M  (27Q) " amfmB| 270 T ol o'l
a’r?— ——+—55—=0 (16) .
a’r a’r (21)
has two positive real roots: which is just the Hawking temperature of the black plane
2 solutions. For extremal black plang$9) the temperature
1 8mM vanishes. Whei®=0, that is, for neutral black plane solu-
r==7| V2R=| —2R+ o 2R 17 tions, the temperaturef,*=3MY3(al47)?3, goes with
M2 which is very different from that of Schwarzschild
where black holes. It implies that the difference in topology struc-
— P > 31121 173 tures will change greatly the quantum properties of black
Rl T M AT M7\ [47°Q configurations. Following Ref27], consider the black mem-
|l o a® 3a’ brane and its surroundings contained by two infinite parallel
plates azg= *rgz. We regard the interior of the plates as the
202 20 2 22 .
M M 47°Q thermodynamical system and the two plates as the bound-

8

@ 8

o 3ab

[T

The other two roots of Eq16) are imaginary numbers and

have no physical meanings. Becaug®(r)=0 when S'xR2? On the boundary, the inverse temperatdgehas the
Osr=<r_ andr=r ., A(r)<O0 whenr_=<r=<r_,. There- Toman’s relation,
fore, the two positive roots can be interpreted as the outer

aries. In a grand canonical ensemble, we must fix the bound-
ary conditions of the system. The Euclidean manif@) is
regular with a product topologyR>xR?, and boundary

horizon and inner horizon of the plane symmetric solutions, Be=BuAYrg), (22
respectively. The causal structure of solutid®) is similar

to that of Reissner-Nordstno black holes. The singularity at and the electric potentiabg is fixed as

r=0 is enclosed by event horizons. Unlike the spherically

symmetric black holes, here the singularity is in the plane at 2mQ(1 1 A-172 23
r=0. In addition, it is worth noting that, in fact, the solution B a2 \r, rg (). (23

(13) has four-event horizons, two outer horizons at
z=*r ., two inner horizong= *r _. The singularity at the The Euclidean action can be obtained by Euclideanizing the
planez=0 is enclosed by these horizons. When the equalityaction (4):
in Eq. (15) holds, the two horizons coincide and the horizon
becomes

) 1/3

This case corresponds to the extremal black plane solutions.

Here, we point out that if the negative cosmological constanty the Euclidean spacetime of E(B), the scalar curvature
is replaced by a positive one, the solutiti8) will become  ang extrinsic curvature are, respectively,
an asymptotically de Sitter solution, and has a single cosmo-

1
= 4 _ 2_ppy
y Se 1677de x\—g(R+6a“—F*'F,,)
’7T

r = | —5
ext (Of

Z (19

(24)

1
+—f d3x\/—hK.
8 Jov

logical horizon. The singularity at=0 becomes a cosmo- R=-g YAg'?A’'IAB)' —2G{ (25)
logical singularity. We have no interest for this situation and
do not discuss it in detail. and
We now turn to thermodynamics of the black plane solu-
tions. To do this, it is convenient to employ the Euclidean K=—g YAg¥B 12", (26)
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WhereGOO is the 0-0 component of the Einstein tensor. Simi-where ¢, = (27Q/ a?)(1/r ,) . With the help of Eqs(30)—

lar to the mass and charge, we only calculate the Euclidea(82), we easily obtain the first law of thermodynamics for the
action per unit area in the following discussions. Substitutingsystem:

Egs.(25) and(26) into Eqg.(23), with the help of Eqs(9)-

JE JE JE
(11), we have dE=|—2| dS+|-~| dQ+|=—| do,
dS Q do
a2r 2r2 Q.o S,o S,Q
- _ — AlR + _
SE—ﬁB( S A (r)) T2 = Bg 'dS+ ¢pdQ—Pdo, (35)
B
2mQ?[ 1 1 where p=—(JE/do)sq is the surface pressure of the sys-
_EBW_,Z(__ —)Al’z(rB). (270 tem ando=2a?%r3 the surface area of the system. If one
a r~ Te rewrites Eq.(35) by using proper quantities ag— e, it then
. . . reduces to
In order to obtain the Euclidean action of black plane solu-
tions, we must eliminate the contribution of the vacuum dM=B;'dS+ ¢,dQ, (36)

background14) with the same boundary conditions from the
action(27). The Euclidean action of the vacuum backgroundwhich is just the first law of black hole thermodynamics.

is easy to get To end this subsection, we write down the metric of
charged black plane solutions with a pressureless null radia-
a3r§ tion in the advanced time coordinates:
SvE=— Be5—- (28

47M 2 2
d2— | gor2- ATMW) @RI 4o oty

Thus, we obtain the Euclidean action of black plane solu- a‘r a’r
tions: +a2r2(d2+dy?), 37)
2 2,2
SME=BBa r (ar —AYA(r)) + which is the Vaidya-like metric of black membranes. Equa-
2w o 2 tion (37) implies that the stress-energy tensor of the radiation
is
2mQ?[ 1 1
QLR :—g)A (re). (29 Th=p.Nll,, (38)

Comparing the Euclidean actiof29) with the formula of Wherel,=—d,v is the four-velocity of the null radiation,
thermodynamic potential, we get the interfl entropys, ~ and the energy densify(v,r) satisfies
and the chemical potentigl corresponding to the electric : .
chargeQ, respectively: M(v) 7QQ(v)

p(v,r)= 22212 A% (39
a2
E= E(afz—fAllz(f)ﬂrB, (300 where an overdot stands for derivative with respecuto

Following Refs.[28—30, we can easily show that the inner
22 horizon r _ is unstable. When the ingoing radiation has a
_eTs_ o (31) power-law tail, a nonscalar curvature singurality will be de-
2 4’ veloped at the inner horizon. When an outgoing null flux is

added to the metri€37), the mass inflation will take place
27Q( 1 _1 _ inside the black plane solutions, as in the Reissner-

e b LA LY (32 Nordstran black holes.
wheres=2a?r% denotes the area of horizon of black mem- B. Black string solutions

branes and the prefactor 2 is because of two outer h_orizon The black string solutions to Einstein equations with a
surfaces. From E(31) we see that the entrof§y also satis-  negative cosmological constant have been constructed by Le-
fies 7 area formula of black hole entropy. In terms of the mos[19]:

relativistic thermodynamics, the proper energ@f and
proper chemical potentiat* are, respectively,

m
ds’= _(azrz_ T dt?+

-1
m
a’r?— —) dr?+r2de?
rB—m r
E*=EAYqrg) —— =M +a?r?d2, (40)
= ADM mass density of the black membrane&3) Where —s<t, z<w, 0<r<o, and 0< 6<2a. and the in-
P tegration constanm is related to the ADM mass density of
the black strings. Huan®1] has recently discussed the gen-
eralization of the solutiof40) to include the electric charge.
= electric potential at the horizon, (39 However, some expressions in REB1] are incorrect. For

p*=uAY(rg) ——— =y
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completeness, here we reexamine the charged black striqgmerature of black strings also goes wih'’, as the case of
solutions to Einstein-Maxwell equations with a negative cosblack membranes. When the equality in E43) holds, the
mological constant. To construct the cylindrically symmetrictwo horizons coincide and Hawking temperature vanishes.
solution, by identifying the coordinate in Eq. (6) with a  This corresponds to the extremal black strings. As the case of
period 2, and replacing the variable by z, we obtain the black membranes, the causal structure of charged black

static, cylindrically symmetric solution of EqES) and (6): strings is similar to that of Reissner-Nordstrdlack holes.
Finally, we write down here the Vaidya-like metric of
4M  4Q2 black strings(41),
o= A 2
4M (v 4Q%(v
S ds?=—| a?r?— ( )+ QZ(Z) dv?+2dvdr+r2d6?
AM  4Q arl a’r
raw + a?r2d 2, (49
+r2d¢?+ a’r?dZ, (41)  where the energy density of the null radiation is
2Q M(v) QQ(v)
Foe=—73, (42) p)=5 2~ "33 (50)

where the two constantsl and Q are the ADM mass and Similarly, by using the metrid49) we can show that the
charge per unit length in thedirection. The spacetim@l) inner horizon is also unstable and a scalar curvature singu-
is asymptotically anti—de Sitter in the transverse directiondarity will replace the inner horizon when the charged black
and string directions, unlike the Kaloper's black strings instrings are perturbed by ingoing and outgoing null fluxes.
the dilaton gravity{13]. The singularity ar =0 is enclosed So far, we have investigated the static, plane symmetric
by the horizong .. if the condition solutions and cylindrically symmetric solutions in the
Einstein-Maxwell equations with a negative cosmological
constant. The causal structure of these solutions is similar to
that of Reissner-Nordstno black holes. Therefore, they can
be interpreted as the black membranes and black strings,
holds. Same as the black plane solutions, the black stringgspectively. These black configurations are asymptotically
(41) have two horizons: anti—de Sitter-type not only in the transverse directions, but

also in the membrane or string directions. In these solutions,
J2R+

3
Q= ZM* (43

1/2
_oR+ 8M ) ] (44) the negative_cosmolpgical constant plays an important role.
a3\2R ' In the following section, we will see that when the dilaton
field is present, the structure of the plane solutions will be
where changed greatly. The role of the negative cosmological con-
stant seems to be lowered.

_1
rt—i

MZ MZ 2 4Q2 3112 1/3
R:{ Pl ?) _<3a4) ] Il. BLACK PLANE SOLUTIONS
5 " 20 31121 1/3 IN EINSTEIN-MAXWELL-DILATON GRAVITY
M M 4Q
+[?— <?> _(W) ] (45) In recent years, many black hole solutions have been
found in the dilaton gravity. Due to the dilaton field, the

usual black hole structure and quantum properties are
changed drastically. In this section, we would like to look for

the plane symmetric solution in the Einstein-Maxwell-

dilaton gravity with a Liouville-type dilaton potential, whose

(48)  action is

Euclideanizing the metri¢41), we can get the Hawking tem-
perature of the black strings:

1 2M  4Q?

-1_ 2
=—|a?’r +———7|.
P 277( Tard a3

Similar to the previous subsection, we have the entropy pers= LJ d*x\—g[R—2(V ¢)2— 6a?5e??— e 2a¢E2]
unit length and the first law of thermodynamics for charged 16m

black strings: (51)
2 where¢ is the dilaton field, the Liouville-type potential rep-
_ Tar, _ EU (47 resents the “cosmological constant termg”’andb are two
2 47’ constants, andy= = 1, representing the sign of the “cosmo-
logical constant.” This action51) has been considerably
dM= g 'dS+ ¢dQ, (48 investigated in the context of three- and four-dimensional

. . ) dilaton black hole$5,12]. Varying the actior(51), we obtain
whereg=2mar? is the area of horizon per unit length and the equations of motion

¢ny=2Q/ ar , the electric potential at the horizon . When

Q=0, i.e., for neutral black strings, the inner horizon disap- R,,=23,4d,6+ 3a277e2b¢gw

pears and , =« }(4M)*3. Thus, the Hawking temperature . . . ,

(46) becomesB,,*=(3a/27)(M/2)'". Therefore, the tem- +2e7 2H(F ,\Fy— 1 9,,F?), (52
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0=9,(\—ge 23?F~7), (53

a
V2¢p=3a’bne??— ze*2a¢|=2. (54)

We consider again the static plane solutions of E§8)—
(54) in the metric

ds®=—A(r)dt?+ B(r)dr?+ C(r)(dx*+dy?). (55
From Eg.(53) we have
Q
Fi= 229, 56
t \/Ece ( )

whereQ is an integration constant. Thus, E¢52) and(54)
reduce to
A,C, C/I N C/Z N Blcl B 2 s 5
2ABC BC 2BC2 28%C B?® 7

Arr ArBr ArZ N A/Cr
2AB 4AB? 4A’B 2ABC
2

229 (58)

= _3a27762b¢+ AZBZCZ ’

Cr/ . BIC/ A/C/ _3 ) 2b¢+ Q2
T 2BC ' 4B2C 4ABC "% "¢ T AZRZC2

eZaqb'
(59
C ' aQ?
[\/AB(g) qs'} =3a’bne??+ APR2C? aad
(60)

1

JABC

where a prime denotes derivative with respectr td-rom
Egs.(57)—(60), we obtain a set of solutions

B 1 B 47M 1-N 6a’y N 2Q? N

AD=gm = " Na""  NEN=D" T Na®™
(61)
C(r)=(ar)", (62)
P(r)=— glnr, (63

whereM is the quasilocal mass densit$2], and

B=+2N—N?, (64)
a=b=pIN. (65

In the spacetime described by E¢61) and(62), the scalar
curvature is

2

R= %A(r)%—ﬂaznr'\"z. (66)
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Obviously, the curvature diverges at=0. Therefore, the
r=0 plane is a singularity plane in solutiof&l). The plane
symmetric solutiong61) manifest some interesting proper-
ties because of the parametér We will separately discuss
the cases of)=—1 andn=1.

(1) »=—1. That is, the Liouville-type potential corre-
sponds to a “negative cosmological constant.” The solution
(61) is of different asymptotic properties as thetakes dif-
ferent values. From the solution Equatio(&l)—(65), we
have O<N<2, butN+1/2. WhenN=2, the solution can be
reduced to the one of Einstein-Maxwell equations with a
negative cosmological constafit3).

(i) When 1/2<N< 2, the second termr{') in Eq. (61) is
dominant asr—c. In that case, the solutiof6l) is an
asymptotically “anti—de Sitter” solution, where the word
“anti—de Sitter” means that the solution has no cosmologi-
cal horizon. The other horizons are given by the Eg.
A(r)=0:i.e.,

3a?
2N—1)"

27M Q?

2N
- r+—x=0.
aN a2N

(67)

Because of the higher order ofin Eq. (67), in general, the
solution(61) will have the multihorizon structures. A simpler
case isN=1, in this case we have

(68)

1
rizﬁ(’ﬂM * \/WEMZ—SaZQZ).

When M?>3a2Q?/ 7, the solution(61) has two horizons,
outer horizon r, and inner horizon r_; when
M?=3a?Q?/ 72, the solution (61) has a single horizon
r.=mM/(3a°); this corresponds to the extremal plane so-
lution; whenM?< 3a2Q?/ 7, the solution(61) will have no
horizon and the singularity at=0 becomes naked. Evi-
dently, the causal structure of this case is similar to that of
Reissner-Nordstra black holes. The Hawking temperature
is

. 1 Q?
3H1:Z(3“2_a2r3)' (69)

From Eq.(69) we can see that =0, the temperature is a
constant. This is very different from the case in the absence
of the dilaton field(21). For a generidN, the Hawking tem-
perature is

L, 1 27M(1—N) N, 3a® |,
H o Ne™ '+ " (2N-1)'*
Q%
—WHN 1. (70)

It should be noted that for some spedwlthe solution(61)
will have no horizon. For example, wheésh= 3/2, the solu-
tion has no horizon, and the singularityrat 0 is naked.

(i) When 0<N<1/2, the first term (*~N) in Eq. (61) is
dominant ag — . In that case, the solutio(6l) is an as-
ymptotically “de Sitter” solution, where the “de Sitter”
means that the solutioi®1) has the cosmological horizon. In
general, the plane solution will be of the inner horizons,
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outer horizon, and the cosmological horizon. These horizonfor N=3/2. The Hawking temperature for these cosmologi-

are determined by the equation cal horizons is
3a? N, 27M Q2 o 1 ,
A (71) o Llff_2aMA-N) o 3@®
Ho 27 NaN (2N—1)
In particular, we find that, in some special cases, although Q? N_1
there exists the cosmological horizon, the inner and outer oN
horizons are absent, the singularityratO is a cosmological '=Tcon

singularity. A manifest example i = 1/4; the solution has

only the cosmological horizon: o o . o
Similarly, the cylindrically symmetric solution in the ac-

14 12 tion (51) can also be obtained. The causal structures of them
o= (— 602+ (362 +87MQ2a~341?)| are similar to those qf thg plane symmetric solutions of equa-
47M 72 tions (61)—(65). For simplicity, here we do not present them.
This situation is very like the Reissner—Nordstrede Sitter IV. CONCLUSION AND DISCUSSIONS

spacetime when the chargg exceeds a critical value. But

there exists an essential difference in the causes. The former | this work we have discussed the static, plane symmetri-
is purely because of the paramebérthe latter is due to the )y solutions and cylindrically symmetric solutions in
relation of black hole hairgmass, charge, and cosmological gingtein-Maxwell equations with a negative cosmological

con;tan)__l N v the Liouville-t tential constant. The singurality at=0 can be enclosed by event
( )d ”t_ L a”_‘t.e y, the I'OU.V' Ie- ypet p(: er: Iath ctorre- horizons. Their causal structure is very similar to the one of
sponds to a "positive cosmological constant.™ In that Caseé p oicqner.Nordstra black holes, but the Hawking tempera-

A(r)—+o asr—0, andA(r)— —o asr— +oo, therefore, 13 : :
i . . . ture goes withM~~, These black configurations are asymp-
the Eq.A(r)=0 determining the horizons of solutions has at__ . . . . .
totically anti—de Sitter—type, not only in the transverse di-

least a positive root between<r <«. For 1/2<N<2 and ! . . L

0<N<1/2, the solutiong61) are all asymptotically “de Sit- rections, bu_t also N the _membrane or string d|rect|ons.' In
ter” solutions, that is, these solutions have the cosmologica‘ihese solutions with horlzons, thg negative co;mologlcal
horizons. Of course, for generic parameXerthese solutions constant plays a crucial role, as in the three-dimensional
could have the inner horizons and outer horizon, indicating® 1£ Plack holes. We have also investigated the plane sym-

the multihorizon feature. These horizons are given by metrit_: solutions_ in E_instein-MaxweII-diIaton gravity With_ a
Liouville-type dilatonic potential. The presence of the dila-

ton field changes drastically the structure of the solutions to
Einstein-Maxwell equations with a cosmological constant. In
particular, there exist the black plane solutions for the “posi-
tive cosmological constant” and ‘“negative cosmological
However, unlike the case=—1, whenN=1, 1/4, or 3/2, constant.” These solutions are asymptotically “anti—de
the solution(61) has only a cosmological horizon, which is Sitter—type” or “de Sitter—type,” depending on the param-
etersN and 7.
1 In the plane symmetric solutions, an interesting phenom-
o= 5—3(— M + Vm2MZ+342Q3), (74)  enon is that, if one removes the reflection symmetry with
3a respect to the=0 plane, the black plane solution becomes
that the singurality az=0 plane is enclosed by event hori-
for N=1, zon in one direction and naked in the another direction. For
example, for neutral plane solutions,

3a? 27M Q2
0% Ny 20T X
2N=1)" t— =0 (73

1/4 12
rcoh:L‘_ﬁ_M (6a2+(36a4+ 87M Qza_3/4)1/2)} ,
(75 ds2= — | o272— 4mM d2+ | a2z 47M 42
=—|aZ- 7 o?7 = —|dz
for N=1/4, +(C¥Z)2(dX2+dy2)_ 79
Q2 Q2\2 [4mM)\3| 1213
rCth[ﬁJr( 3a° - 9a’ 2) ) } The solution has a singularity a=0 plane. WherM >0,

obviously, it has a horizon at= (47M/a*) 13
z direction. But, the singurality is naked in the negatiwe

2 (a7M\ 3\ 1218 in the positive
r
+(9a7;2> ) } (78 Girection. WhenM <0, the situation is opposite. The prop-
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erty is the new feature of these black plane solutions. Of ACKNOWLEDGMENTS

course, the problems of physics might have the reflection
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