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Time evolution and matching conditions of spinning gauge strings

Reinoud J. Slagtér
Institute for Theoretical Physics, University of Amsterdam, Valckenierstraat 65, 1018XE Amsterdam, The Netherlands
(Received 15 April 1996

The dynamical evolution of a spinning gauge string is investigated. We find that the formation of closed
timelike curves in these models is exceedingly unlikely, because they require unrealistic values of the gauge-
string parameters, probably found in the spacetime surrounding a supermassive string. The junction conditions
across the boundary layer of the interior and exterior string solution are investigated. The time evolution of the
string core radius, in a simplified model, is numerically obtained. It turns out that the evolutipg agnnot
be made consistent with the motion of the core of the string. The behavior of the core of the cosmic string,
measured in the interior time, shows that the appearance of the causality-violating regions is an expression of
the helical structure of timg S0556-282(196)01820-9

PACS numbgs): 04.20.Jb, 04.20.Cv, 11.2¥%d, 98.80.Hw

I. INTRODUCTION CTC is confined within the event horizdqeee Headrick and
Gott [18] for discussion
Spinning-bounded sources in general relativity play a cru- The models mentioned above do not shed enough light on
cial role in understanding the connection between the matthe situation where the spinning string has a singular bound-
ematics in(2+1)-dimensional gravity on the one hand and ary, separating the interior vortex solution from the exterior
the cosmological implications on the other hdfiet5]. Quite conical string solution. A lot of work was done in construct-
recently, considerable attention has been given to cosmi®g an exact solution for the nonrotating situation. See, for

string solutions, due to the possibility of the formation of the®<@mple, Gott[20] and Hiscock[21]. Further, spinning
controversial closed timelike curve€TC's) [6-10. Par- strings are stationary. Hence, one should investigate whether

ticularly, Gott's spacetimé11], generated by two moving or not such mod_els could _be created by a_dyngmical process.
cosmic strings, shows the intriguing possibility of CTC’s. He Soleng[7] investigated a time-dependent interior solution of

shows that if the relative velocity is sufficiently high, CTC’s a _homogeneous dUSt, planet, a cross section of a cosmic
\ ) : string, and found CTC'’s for realistic energy-momentum ten-
will emerge, that circle the two strings as they pass eac

. . . ors. However, the assumptions seem to be special, by the
other. To be sure, there is a Cauchy horizon separating th P b y

. : : . grbitrarily chosen energy production mechanism. One can
region with CTC’s fr.om that W|th9ut them. O[[L?] Shows  oytend the model of Soleng by considering the full coupled
Fhat in a Gott s'pacetlme the CT.C s are not restricted to SOM@iravity-scalar-gauge field equations on the general, axially
interaction region when the strings are near each other, b‘é&/mmetric spacetime

rather CTC’s exist arbitrarily far away from both strings.
However, Ori’'s characterization of the CTC's as preexisting ~ ds?=—f(r,t)?[dt+ w(r,t)de]?+ f(r,t)2dZ2+dr?

is misleading. Cutlef13] showed that it is possible to find +a(r)?de? (1.1)
complete spacelike hypersurfaces extending to infinity in the ¢ '

Gott spacetime prior to which there are no CTC's. So anyy reating the scalar and gauge field also time dependent. In
observer in the Gott spacetime prior to the Cauchy horizofne first instance, we will considdrtime independent.

may find no CTC's in his past light cone, and yet be able to The model of a cosmic string is that of a single complex
encounter CTC'’s in the future. scalar field¢ minimally coupled to a (l)-gauge fieldA,,

Now, it is commonly believed that Hawking’s chronology with the complex scalar field interacting with itself through
protection conjecture holds, i.e., CTC’s cannot arise in a rethe standard ‘“mexican hat” potential. The energy-
alistic universg5,14—-18. Hawking enforces the conjecture momentum tensor will be
by considering quantum-mechanical instabilities leading up
to the Cauchy horizon. However, the Gott spacetime has no ~ T.,=3[(D,$)*D,¢+(D,$)* D, b1+ F,\ F)
closed null geodesicgfountaing which were the main 1 vk 1 22
source of instability in the wormhole solution. Thus the in- =29 Da(D¢)* = 510, (b4* = %)
stabilities encountered prior to the Cauchy horizon in the _%gﬂyf’aﬁfuﬁ, (1.2)

Gott solution are mild compared to those encountered in the _ _

wormhole solution[17-19. It is also unclear whether it is where D=4d,+ieA,, ¢=0¢€'"=0e"?, A =(0A;0A,),

unphysical to have in Gott spacetime CTC’s at spaceliker,,=d,A,—d,A,, andn represents the energy scale of the

infinity [18]. For a collapsing finite string loop, it is possible symmetry breaking. We use the coordinate sequence

that a singularity and a black hole is formed and that any(t,z,r,¢) and units for whichG=#A=c=1. It is the scalar
(Higgs) field which plays the role of order parameter in the
Ginzburg-Landau theory of type-1l superconductivity and

“Electronic address: rslagt@sara.nl leads to the famous Meissner effect. It prevents the magnetic
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field from spreading out and gives rise to the vortices. These-w (t)U(p), andP(p,t) =I1(t)P(p). Substitution into Egs.
vortices have two characteristic lengths. First, the coherence.1) and (2.2), yields the solutions

length, the length it takes the order parameter to rise from its

false vacuum¢=0 to its superconducting vacuuih= 7. —\ay
Second, the penetration length, i.e., how far the magnetic VU= 75 th
field will be spread out. The vortex feature has its analogy in

cosmology, i.e., cosmic strings, remnants of the very early T1(t) = a,cokt+ a,sinkt,

Universe of very thin tubes of false vacuum. It is known that
cosmic strings can lead to structures on cosmological scales

: ) : —a;aN , —\ay
such as galaxies and clusters of galaxies. Strings can be clas- Q(t)=ex t>+a,b t+c|,
sified according to their winding numbepr topological 32m 16m
charge n. It is a measure of the wrapping of the scalar-field a(p)? 82
phased around the string. From the requirement tiamust _ap exr{ “°T ()24 a 26
be single valued, i.e.¢ varies by 2rn when we make a Jp) f(p)? ap ()" +ag), @8

complete turn around a closed loop, it follows that the flux of

vortex lines is quantized. Then, one obtains for the energyvherea;, «;, b, ¢, andk are constants. The radii of the core
per unit length a lower boungu,=w|n|7? for e?<)  false vacuum and magnetic field tube are thep gt 1 and

(Bogomol'nyi bound. The field equations become pa~1Na, respectively, wherex=e?/\ the ratio of the
scalar- to gauge-field masses. Furtha(p) satisfies the
G,,=—87nT,,, (1.3 equation(in the case of =1)
ad 2 2 2 2
DMDM¢—26¢* =0, (1.9 dra+3yUd,Ud,a+| y(d,U)%(1+2yU%)+yUdsU
V”]—'VM=%ie[qﬁ(o’?MqS*—ieAM¢*)—¢*(ﬁ#¢+ieAﬂ¢2i.5) —;aluz a=0, 2.7
For the static situation, where the field variables depend owhere y=—8m 7%/ a,.
r andz only, approximate solutions can be construdi22- If we substitute for the the-dependent part of the scalar
24]. It was found that the solutions show significant devia-field the Nielsen-Olesen behavibr=(1—e~*), we can in-
tion from the classical vortex solution. vestigate the metric componegtp(pza(p)z— w? for some
values of the constamat;, b, c, andy. a(p) can be solved
Il. THE TIME-DEPENDENT SPINNING STRING from Eg.(2.7) as a power series
For the interior regiorp<ps we obtain from the combi- 2 .5 , 7 7, 1 5
nationG,,— wG;; and G;,— wG,5 the equations a(p)=p-— ZYPTT gV T T 59T 307 T 202 P
Pw s af da) —16w +ee (2.8
LT L hady Ny I A Ly 2 . .

In Fig. 1 we plottedg,, for large symmetry-breaking
and scaley [in comparison with the grand unified theai@UT)
scald. We see thag,,, can become negative, an unpleasant

dp0i0  _dw(d,f  dja ) feature: there is a causality-violating region. The Killing vec-
o T2\ T | T w0, X0 X. (22 o d,, which has closed orbits, becomes timelike in that
region. The moment upon whidd,, becomes negative de-
The A, component of the gauge field satisfi€s,4=0) pends on several parametgsse Eq(2.6)]. For example, the
smaller thez, the later the negative region will be entered.
P2 e » P Moreover, this moment depends on the behavior of the
A, YX ap_p' 2.3 space-partJ of the Higgs field, as can be seen from Eq.

(2.6). Further, as we shall see in Sec. IV, the matching con-
Further, from Eq(1.5 and the complex part of Eq1.4), ditions between the interior and exterior string solution will
fix some constants. For example, the sign a3f which

dpw makes the distinction between the appearance of the break-
2 2¢2_°P
GP=—Anf ) P, 2.4 down ofg,,, at finite time or at time infinity.
1 I1Il. MATCHING CONDITIONS
X~ o (2.9 AND THE BOUNDARY LAYER
w

Consider the exterior metric
where we used the redefinitior@= nX, A,=(1/e)(P—n),
andp=\ 7r. Assume that, P, and.X are separable func- ds? = — fdt+mde]?+ f2d2+dp?+ B(p)2de?,
tions of p and t, say w(p,t)=Q)I(p), Xp,t) 3.1
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dSE=y,,0£3dEP= — ed 2+ d 22+ py(7)2d@?, (3.3

where p¢(7) is the width of the scalar-gauge field core, of
order 1 fora~1 andr the proper time on the boundary layer
(latin indices take the values 0, 1, angd Fhe condition of
metric continuity on the hypersurface results in

flps(7))=1, w(ps(7))=4I(ps(7)), alps(7))=pB(ps(

ii’;;;;liil;ijill Z%?a)

Further, we have the discontinuity of the extrinsic curva-
ture Kj; , determined by the shell’s stress ten§gr[27,28

e([Kj]- &K =—8mS], (35
(@)
where[ICij]EICﬁ—ICi] represents the jump in the extrinsic
curvature, the so-called Lanczos tensor, aredl for time-
like hypersurface$.

Further, from the Einstein equations, we obtain

s +[T=0, (3.6

IAOJ’

1201

1001
A7

% L3752

K>
NN
SN

{K}S/+[Th1=0, 3.7

40 T
e

where{K;;}=3(K;; +K;;), n denotes the coordinate in the
direction of an outgoing normal to the shell and the vertical
bar denotes covariant differentiation with respect to the met-
ric on .. Following Bereziret al.[28], we obtain, from Egs.

(3.5 and(3.7)
(b) R SK;*+4meS|(S— 58,9 +[Th]=0. (3.9

201

g33 o1

-20

FIG. 1. Plot of the metric componegy, for »=0.14, A=1, |t js not difficult to calculate;; for the exterior metri¢3.2)

anda,>0 (). It turns out, the smaller the, the later the break- (see Appendix The termsd,B and d,f in Kt are deter-
down ofg,, occurs. The figuréb) represents the situatica,<0. mined. in the case of the Sljpermasspive Strir|1jg[29,]

wherem= 4.7 represents the angular momentum. This metric . 1—4m|n|

can be transformed to 9. B= —— (A2 )Pyt —— T
W W

ds? = f —dt*2+ d 2]+ dp2+ B(p)2de?, (3.2 3.9

whereX,,; and P, are the exterior string fields. Further, for

by t=t*—me, leaving a helical structure of timigt]. This  he surface stress tensBf , we can apply the thin-wall ap-
jump property can also be formulated in context with torsionygximation

in Riemann-Cartan geometry8,9,29 or to quantum-

3,f=0,

mechanical concep{d.0]. Well known is the peculiar gravi- _ pst (1/2) 8
tational time delay effecf26]. For isolated GUT strings, Sj= |lmf Tijdp,
B(p)—(1—4u)(p+po), where the angle deficitAe 5-07ps= (1122

=8mu, n the linear mass density of the string apg a

constant determining the origin of the exterior coordinate, sgVn€re é represents the thickness of the shell and use an

that the radial coordinates coincide in the interior and exte2veraging procedurg80,28, or write out Eq.(3.6) in com-

rior coordinate system. It was argugB], in the static limit ~ Ponents:

with all the matter concentrated in the core, that the radius

ps of core of the string will always remain smaller than ) _ _
471(1—4u). So, when one takes for the maximum possible 1" th_e most simple case, wh_en there would be no jump in the
angular momentum per unit lengtti= ups(1—4u), then derivatives ofg;; , we would obtain, fory [see Eqs(2.6) and(2.7)],

ps Will always be larger then &(1—-4u) as long as _ -1
w<3% which is a realistic condition. In Sec. IV we compare 4 (pstpo)Ud,U’
this result with our time evolution o, . y heavily affects the behavior of,,. It is negative because

Now the interior solution must be matched onto the exte-U(p)d,U(ps) is positive for the Nielsen-Olesen vortex solution.
rior solution. Consider the hypersurfake the boundary be- So, a, must be positive. This means that Figajlis physically
tween the exterior and interior spacetime more likely.
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Y

1-4u)[(1—4p)ps+
J—nﬁ( m)[( w)pstpol .

'sg+ S (S-S))= J—n?*a U200+ 4 53, PP 1, 2 (p2+1)+SHt*),
S
(3.10 (3.19
and where SF(t*) represents the time-dependent string-field
] iy components of Eq3.12. Without this term, Eq(3.16) can
Apw i i
Sg+ &$= U o P2oI12. (3.11) be integrated to yield

__bPo " Po -1

Further, an equation of state must be specified. Following Vps 1~ (1-4p)2+1
Laguna-Castilloet al. [31,30, we takeS)=—Si. We also
consider the simplified model wit3=S)+C (C a con-
stanj.

Substituting into Eq(3.8) the results of the Appendix, we
obtain the following differential equations fgry, S), and ~Wwith D an integration constant. Solutio(8.17) already

+--~+Dps(l4’”2e(l4’””0"’5}, (3.17

S3[T=0 andf=1]. shows the critical behavior gfs with respect tow and p,.
- % \/Knﬁapﬁ(szr 3 VpZ+1 IV. THE EVOLUTION OF THE SHELL
= -z 0
° Sg Ps * T outdp We solved the Eqg3.12—(3.14) numerically in the most
22,12 simple situation, whera=ps andf=1. We used the most
t

realistic situation of Fig. (8), where the constar, is posi-
tive (the breakdown og,,, will eventually take place in the

1 1 7
02 _ 02, — 32
X 8776(80 p: +4§ )—I— 5

(6,11)2P> far future. For B we will take for the moment,
X(Qze<—1@nn2U2+Zas>/az—1) —;rr (1—4w)(pstpo), With u the linear mass density. In Fig. 2
we plottedpg as function of interior time and proper time
4 ((9p'p)21‘[2 (oou=1 ande=1) for =0.01 and compared the evolution

A
—Tn(apU)z\Pz—)\nz with pn=w/(1—4ux). We took for u the lower bound
5. In order to be able to compare the evolutiorpgfwith

7?W2U2I1%P? } the evolution ofgw, we used the same values for the sev-

2a%e?

532 (3.12  eral constants as in Fig. 1. Further, we ta@fkeA=1. We
see that merely for large interior time, becomes smaller

: N thanp,,.
-ngcp_5+ \/X773Uz9pU\I'at‘I'+ 2 7277;(9 P4, 11 In Fig. 3 we plottedp for two different values ofC,
Ps representing the field fluctuationssee Egs.(3.12 and

(3-13) (3.13]. It is evident that the evolution depends critically on
the fine tuning ofC and ». Further, it appears that by fine

and tuning the parameter, the evolution pf can be halted, a
_ . NN relatively long period of proper time. In all runs whepg
sg+ &sg —Q—ZQjHatHPa P. (3.14 starts to blow up, the proper time stops flowing and the mo-
Ps

ment the interior time is comparable with the moment where
g, tends to become negative. In Fig. 4 we plotjedfor

7n=0.1. We see thaps decreases rapidly and the causality-
V|oIat|ng region will never be encountered.

In Sec. IV we solve these equations numerically, by substi
tuting the solutlons(Z 6), bearing in mind the relations
t=t*—we and t*= \/1+p,52 The equation forp, [Eq.
(3.12] is comparable with the evolution equation of the

spherical symmetric phase separation boundary studied by V. CONCLUSIONS AND OUTLOOK

Berezinet al. [28]: The metric of a spinning string can have causality-
. i violating regions. However, this phenomenon seems to be

2 2 Mx o2 i i T ,
285 (1+p9) N 1+p (3.15 artificial. In the stationary situation, an arresting proof can, at

p= S p 9 (€our™ €in), some rate, be furnishefil5]. The results of the time-
dependent model, presented here in a simplified form, con-
wheree,, €, represent the energy densities. For simple perfirms merely the conjecture that the formation of CTC'’s
fect fluids, the evolution behavior is comparable with themodel will be exceedingly unlikely for physically realistic
well-known equations for detonation wa&s8]. In our case, parameters. One conjectures that when a complete loop is
the coefficient of the first term in the right-hand side of Eq.taken around the stringso ¢ acquires a phase shift of
(3.12 contains the exterior solutiof(ps), which, in turn,  e?>™"), the interior time jumps by a factors8w and will be
determines the mass density of the string. Further, the secoretjual to the period thag,, remains positive. When the
term contains the time-dependent string-field components. I§tring core radius approaches the causality-violating regions
we substitute for the moment fg@ the well-known approxi-  (see Fig. 2, measured in interior time, the proper time on the
mate solution, (+4u)ps+ pg, We obtain string core stops flowing and the required parameters are
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string-core radius

124

101

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
proper time

v 2 L & 8(0.53) 10 12 14 16(0.56)
(a) interior time({proper time)

FIG. 3. Time evolution in proper time of the string core radius
for =0.01 and two different values of the field-fluctuati@
® / (1-4mu) C=0.1 andC=0.01.
we need the unit normal vectav,, = d,ns , wheren(x*) is
¥l given by[27,2§

10

(A2)

o and whereF(x*)=0 represents the equation far (in the

xy or x¥ coordinates Further, V¥, =€, with e=1 for

. timelike hypersurfaces and=—1 for spacelike hypersur-

faces.o determines the global geometry, i.e., how the inner

7 geometry is stuck together with the outer ome=1 corre-
sponds to increasing radius in the outward direction. In our

3 s 8(0.55) 10 12 T2 16(0.56) situation we have fOF(X'ﬁ’;)

(b) interior time(proper time)

FIG. 2. Typical example of the time evolution in interior time of F(x4)=B(p) ~R(t")
the string core radius fop=0.01 (o, =1 ande=1). Further, the . . . .
same values for the several parameters as for Fig. 1 were useffO’ the moments, the physical radius of the string, inde-
Between brackets the proper time is marked. Notice that at th@€ndent of timg R(t*) unknown. For the normal vector we
momentp, blows up,g,,, tends to become negativsee Fig. 1and then obtain
the proper time stops flowing. I¢b) we plottedp,,=w/(1—4u). ] i

No=—ofps, No=0+pst+1, (A3)

such thatg,,, will never enter the negative region. )

Our model is far from being complete. First, one shouldwhere the overdot meand/dr. The relation between the
handle the surface energy-momentum ter§omore care-  €xterior timet* and the proper time is
fully [28]. Second, one should not use a constant value for
the mass density, but instead a mass density which follows 0.2
from the exterior string field equatior(8.9). Third, a thor-
ough investigation of the differential equations for the sev-
eral parameters is necessary, specially for the signs,gf 0.1
ande. From Eq.(3.12 we see that the time-dependent term
in the right-hand side has an essential effect on the evolution  °*’
of the core of the string and complicates the conditions on
o and e with respect to the energy density. These items are
currently under consideration by the author. 0.151

p-s 0.167

APPENDIX: THE LANCZOS TENSOR

In order to be able to calculate the extrinsic curvature

0.1(0.1) 0.2 0.3 0.4 0.5(0.48)
a interior time(proper time)
. ox¥ axB
Ki=— VN, (A1)

g d& o9& FIG. 4. Example of the evolution gf, for 7=0.1.
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t* =1+ pZ. (A4)
Further, for the shell’s “radius,” we have
dR fpsg
_— = A5
a* = r (A5)

For the several components A@ﬁ , we obtain
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ICJOZO'_; bs+£(b§+l) , (AB)
il
Ki=—ota,f\p2+1, (A7)
and
Kis=—0Bd,B\pi+1. (A8)
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