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Time evolution and matching conditions of spinning gauge strings
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The dynamical evolution of a spinning gauge string is investigated. We find that the formation of closed
timelike curves in these models is exceedingly unlikely, because they require unrealistic values of the gaug
string parameters, probably found in the spacetime surrounding a supermassive string. The junction conditio
across the boundary layer of the interior and exterior string solution are investigated. The time evolution of th
string core radius, in a simplified model, is numerically obtained. It turns out that the evolution ofgww cannot
be made consistent with the motion of the core of the string. The behavior of the core of the cosmic string
measured in the interior time, shows that the appearance of the causality-violating regions is an expression
the helical structure of time.@S0556-2821~96!01820-6#

PACS number~s!: 04.20.Jb, 04.20.Cv, 11.27.1d, 98.80.Hw
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I. INTRODUCTION

Spinning-bounded sources in general relativity play a c
cial role in understanding the connection between the ma
ematics in~211!-dimensional gravity on the one hand an
the cosmological implications on the other hand@1–5#. Quite
recently, considerable attention has been given to cos
string solutions, due to the possibility of the formation of th
controversial closed timelike curves~CTC’s! @6–10#. Par-
ticularly, Gott’s spacetime@11#, generated by two moving
cosmic strings, shows the intriguing possibility of CTC’s. H
shows that if the relative velocity is sufficiently high, CTC’
will emerge, that circle the two strings as they pass ea
other. To be sure, there is a Cauchy horizon separating
region with CTC’s from that without them. Ori@12# shows
that in a Gott spacetime the CTC’s are not restricted to so
interaction region when the strings are near each other,
rather CTC’s exist arbitrarily far away from both string
However, Ori’s characterization of the CTC’s as preexisti
is misleading. Cutler@13# showed that it is possible to find
complete spacelike hypersurfaces extending to infinity in
Gott spacetime prior to which there are no CTC’s. So
observer in the Gott spacetime prior to the Cauchy horiz
may find no CTC’s in his past light cone, and yet be able
encounter CTC’s in the future.

Now, it is commonly believed that Hawking’s chronolog
protection conjecture holds, i.e., CTC’s cannot arise in a
alistic universe@5,14–16#. Hawking enforces the conjectur
by considering quantum-mechanical instabilities leading
to the Cauchy horizon. However, the Gott spacetime has
closed null geodesics~fountains! which were the main
source of instability in the wormhole solution. Thus the i
stabilities encountered prior to the Cauchy horizon in t
Gott solution are mild compared to those encountered in
wormhole solution@17–19#. It is also unclear whether it is
unphysical to have in Gott spacetime CTC’s at spacel
infinity @18#. For a collapsing finite string loop, it is possibl
that a singularity and a black hole is formed and that a
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CTC is confined within the event horizon~see Headrick and
Gott @18# for discussion!.

The models mentioned above do not shed enough light o
the situation where the spinning string has a singular boun
ary, separating the interior vortex solution from the exterio
conical string solution. A lot of work was done in construct-
ing an exact solution for the nonrotating situation. See, fo
example, Gott@20# and Hiscock @21#. Further, spinning
strings are stationary. Hence, one should investigate wheth
or not such models could be created by a dynamical proce
Soleng@7# investigated a time-dependent interior solution o
a homogeneous dust planet, a cross section of a cosm
string, and found CTC’s for realistic energy-momentum ten
sors. However, the assumptions seem to be special, by
arbitrarily chosen energy production mechanism. One ca
extend the model of Soleng by considering the full couple
gravity-scalar-gauge field equations on the general, axial
symmetric spacetime

ds252 f ~r ,t !2@dt1v~r ,t !dw#21 f ~r ,t !2dz21dr2

1a~r !2dw2, ~1.1!

by treating the scalar and gauge field also time dependent.
the first instance, we will considerf time independent.

The model of a cosmic string is that of a single comple
scalar fieldf minimally coupled to a U~1!-gauge fieldAm ,
with the complex scalar field interacting with itself through
the standard ‘‘mexican hat’’ potential. The energy-
momentum tensor will be

Tmn5 1
2 @~Dmf!*Dnf1~Dnf!*Dmf#1FmlFn

l

2 1
2gmnDaf~Daf!*2 1

8lgmn~ff*2h2!2

2 1
4gmnFabFab, ~1.2!

whereD[]m1 ieAm , f[Qeiu[Qeinw, Am5(0,A2,0,A4),
Fmn[]mAn2]nAm , andh represents the energy scale of the
symmetry breaking. We use the coordinate sequen
(t,z,r ,w) and units for whichG5\5c51. It is the scalar
~Higgs! field which plays the role of order parameter in the
Ginzburg-Landau theory of type-II superconductivity and
leads to the famous Meissner effect. It prevents the magne
4873 © 1996 The American Physical Society
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field from spreading out and gives rise to the vortices. The
vortices have two characteristic lengths. First, the cohere
length, the length it takes the order parameter to rise from
false vacuumf50 to its superconducting vacuumf5h.
Second, the penetration length, i.e., how far the magn
field will be spread out. The vortex feature has its analogy
cosmology, i.e., cosmic strings, remnants of the very ea
Universe of very thin tubes of false vacuum. It is known th
cosmic strings can lead to structures on cosmological sc
such as galaxies and clusters of galaxies. Strings can be
sified according to their winding number~or topological
charge! n. It is a measure of the wrapping of the scalar-fie
phaseu around the string. From the requirement thatf must
be single valued, i.e.,u varies by 2pn when we make a
complete turn around a closed loop, it follows that the flux
vortex lines is quantized. Then, one obtains for the ene
per unit length a lower boundmn>punuh2 for e2<l
~Bogomol’nyi bound!. The field equations become

Gmn528pTmn , ~1.3!

DmDmf22
]V

]f*
50, ~1.4!

¹nFnm5 1
2 ie@f~]mf*2 ieAmf* !2f* ~]mf1 ieAmf!#.

~1.5!

For the static situation, where the field variables depend
r andz only, approximate solutions can be constructed@22–
24#. It was found that the solutions show significant devi
tion from the classical vortex solution.

II. THE TIME-DEPENDENT SPINNING STRING

For the interior regionr,rs we obtain from the combi-
nationG142vG11 andG342vG13 the equations

]r
2v

v
1

]rv

v S 4]r f

f
2

]ra

a D5
216p

l f 2
~] tX!2, ~2.1!

and

]r] tv

v
12

] tv

v S ]r f

f
2

]ra

a D5216ph2]rX] tX. ~2.2!

TheA2 component of the gauge field satisfies (G2450)

]rA2

A2
52

e2

l
X2

P

]rP
. ~2.3!

Further, from Eq.~1.5! and the complex part of Eq.~1.4!,

] t
2P52lh2f 2

]rv

v
]rP, ~2.4!

X;
1

APv
, ~2.5!

where we used the redefinitionsQ[hX, A4[(1/e)(P2n),
andr[Alhr . Assume thatv, P, andX are separable func-
tions of r and t, say v(r,t)5V(t)J(r), X(r,t)
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5C(t)U(r), andP(r,t)5P(t)P(r). Substitution into Eqs.
~2.1! and ~2.2!, yields the solutions

C~ t !56A2la1
16p

t1b,

P~ t !5a1coskt1a2sinkt,

V~ t !5expF2a1a2l

32p
t21a2bA2la1

16p
t1cG ,

J~r!5
a~r!2

f ~r!2
expF28ph2

a2
U~r!21a3G , ~2.6!

whereai , a i , b, c, andk are constants. The radii of the core
false vacuum and magnetic field tube are then atrf'1 and
rA'1/Aa, respectively, wherea[e2/l the ratio of the
scalar- to gauge-field masses. Further,a(r) satisfies the
equation~in the case off51)

]r
2a13gU]rU]ra1Fg~]rU !2~112gU2!1gU]r

2U

2
1

2
a1U

2Ga50, ~2.7!

whereg[28ph2/a2.
If we substitute for the ther-dependent part of the scalar

field the Nielsen-Olesen behaviorU5(12e2r), we can in-
vestigate the metric componentgww5a(r)22v2 for some
values of the constantai , b, c, andg. a(r) can be solved
from Eq. ~2.7! as a power series

a~r!5r2
2

3
gr31

5

8
gr41S 2

7

20
g1

7

30
g21

1

40
a1D r5

1••• . ~2.8!

In Fig. 1 we plottedgww for large symmetry-breaking
scaleh @in comparison with the grand unified theory~GUT!
scale#. We see thatgww can become negative, an unpleasan
feature: there is a causality-violating region. The Killing vec
tor ]w , which has closed orbits, becomes timelike in tha
region. The moment upon whichgww becomes negative de-
pends on several parameters@see Eq.~2.6!#. For example, the
smaller theh, the later the negative region will be entered
Moreover, this moment depends on the behavior of th
space-partU of the Higgs field, as can be seen from Eq
~2.6!. Further, as we shall see in Sec. IV, the matching co
ditions between the interior and exterior string solution wi
fix some constants. For example, the sign ofa2, which
makes the distinction between the appearance of the bre
down ofgww at finite time or at time infinity.

III. MATCHING CONDITIONS
AND THE BOUNDARY LAYER

Consider the exterior metric

ds1
2 52 f 2@dt1mdw#21 f 2dz21dr21b~r!2dw2,

~3.1!
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wherem54J represents the angular momentum. This metr
can be transformed to

ds1
2 5 f 2@2dt* 21dz2#1dr21b~r!2dw2, ~3.2!

by t5t*2mw, leaving a helical structure of time@4#. This
jump property can also be formulated in context with torsio
in Riemann-Cartan geometry@8,9,25# or to quantum-
mechanical concepts@10#. Well known is the peculiar gravi-
tational time delay effect@26#. For isolated GUT strings,
b(r)→(124m)(r1r0), where the angle deficitDw
58pm, m the linear mass density of the string andr0 a
constant determining the origin of the exterior coordinate,
that the radial coordinates coincide in the interior and ex
rior coordinate system. It was argued@26#, in the static limit
with all the matter concentrated in the core, that the radi
rs of core of the string will always remain smaller tha
4J/(124m). So, when one takes for the maximum possib
angular momentum per unit length,J5mrs(124m), then
rs will always be larger then 4J/(124m) as long as
m, 1

4, which is a realistic condition. In Sec. IV we compar
this result with our time evolution ofrs .

Now the interior solution must be matched onto the ext
rior solution. Consider the hypersurfaceS, the boundary be-
tween the exterior and interior spacetime

FIG. 1. Plot of the metric componentgww for h50.14, l51,
anda2.0 ~a!. It turns out, the smaller theh, the later the break-
down ofgww occurs. The figure~b! represents the situationa2,0.
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dsS
2[gabdjadjb52edt21dz21rs~t!2dw2, ~3.3!

wherers(t) is the width of the scalar-gauge field core, of
order 1 fora'1 andt the proper time on the boundary layer
~latin indices take the values 0, 1, and 3!. The condition of
metric continuity on the hypersurface results in

f „rs~t!…51, v„rs~t!…54J„rs~t!…, a„rs~t!…5b„rs~t!….
~3.4!

Further, we have the discontinuity of the extrinsic curva
tureKi j , determined by the shell’s stress tensorSi j @27,28#

e~@Kj
i #2d j

i @K# !528pSj
i , ~3.5!

where@Ki j #[Ki j
12Ki j

2 represents the jump in the extrinsic
curvature, the so-called Lanczos tensor, ande51 for time-
like hypersurfaces.1

Further, from the Einstein equations, we obtain

Si u j
j 1@Ti

n#50, ~3.6!

$Kj
i %Si

j1@Tn
n#50, ~3.7!

where $Ki j %[
1
2(Ki j

11Ki j
2), n denotes the coordinate in the

direction of an outgoing normal to the shell and the vertica
bar denotes covariant differentiation with respect to the me
ric onS. Following Berezinet al. @28#, we obtain, from Eqs.
~3.5! and ~3.7!

Si
jKj

i114peSi
j~Sj

i2 1
2d j

i S!1@Tn
n#50. ~3.8!

It is not difficult to calculateKi j
1 for the exterior metric~3.2!

~see Appendix!. The terms]rb and ]r f in Ki j
1 are deter-

mined, in the case of the supermassive string, by@29#

]rb5
24ph

Al
~Xout2 21!Pout1

124punuh

Al
, ]r f50,

~3.9!

whereXout andPout are the exterior string fields. Further, for
the surface stress tensorSi j , we can apply the thin-wall ap-
proximation

Si j5 lim
d→0

E
rs2 ~1/2! d

rs1 ~1/2! d
Ti j dr,

where d represents the thickness of the shell and use a
averaging procedure@30,28#, or write out Eq.~3.6! in com-
ponents:

1In the most simple case, when there would be no jump in th
derivatives ofgi j , we would obtain, forg @see Eqs.~2.6! and~2.7!#,

g5
21

~rs1r0!U]rU
.

g heavily affects the behavior ofgww . It is negative because
U(rs)] rU(rs) is positive for the Nielsen-Olesen vortex solution.
So, a2 must be positive. This means that Fig. 1~a! is physically
more likely.
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Ṡ0
01

ṙs
rs

~S0
02S3

3!5
1

4
Alh3]rU

2] tC
21

Alh

4e2a2
]rP2] tP2,

~3.10!

and

Ṡ3
01

ṙs
rs
S3
05

Alhv

e2a2
]rP2] tP2. ~3.11!

Further, an equation of state must be specified. Follow
Laguna-Castilloet al. @31,30#, we takeS0

052S1
1. We also

consider the simplified model withS3
35S0

01C (C a con-
stant!.

Substituting into Eq.~3.8! the results of the Appendix, we
obtain the following differential equations forrs , S0

0, and
S3
0 @Tnn

out50 and f51].

r̈s52
S3
3

S0
0

Alhb]rb

rs
2 ~ ṙs

211!1
Aṙs

211

soutS0
0

3F8peSS0022 1

rs
2S3

021
1

4
S3
32D 1

h2U2~] tC!2

2

3~V2e~216ph2U212a3!/a221!2
~] tP!2P2

2e2a2

2
lh4

2
~]rU !2C22lh2

~]rP!2P2

2a2e2

1
h2C2U2P2P2

2a2
1VG , ~3.12!

Ṡ0
05C

ṙs
rs

1Alh3U]rUC] tC1
Alh

e2a2
P]rPP] tP,

~3.13!

and

Ṡ3
01

ṙs
rs
S3
05

Alh

a2e2
VJP] tPP]rP. ~3.14!

In Sec. IV we solve these equations numerically, by sub
tuting the solutions~2.6!, bearing in mind the relations
t5t*2vw and ṫ*5A11 ṙs

2. The equation forr̈, @Eq.
~3.12!# is comparable with the evolution equation of th
spherical symmetric phase separation boundary studied
Berezinet al. @28#:

r̈52
2S2

2

S0
0

~11 ṙ2!

r
1

A11 ṙ2

S0
0 ~eout2e in!, ~3.15!

whereeout,e in represent the energy densities. For simple p
fect fluids, the evolution behavior is comparable with th
well-known equations for detonation waves@28#. In our case,
the coefficient of the first term in the right-hand side of E
~3.12! contains the exterior solutionb(rs), which, in turn,
determines the mass density of the string. Further, the sec
term contains the time-dependent string-field components
we substitute for the moment forb the well-known approxi-
mate solution, (124m)rs1r0, we obtain
ing

sti-

e
by

er-
e

q.

ond
. If

r̈s52Alh
S3
3~124m!@~124m!rs1r0#

S0
0rs

2 ~ ṙs
211!1SF~ t* !,

~3.16!

where SF(t* ) represents the time-dependent string-fiel
components of Eq.~3.12!. Without this term, Eq.~3.16! can
be integrated to yield

Aṙs
211;

1

~124m!211 Frs2
r0

124m
1

r0
2

~124m!221
rs

21

1•••1Drs
2~124m!2e~124m!r0 /rsG , ~3.17!

with D an integration constant. Solution~3.17! already
shows the critical behavior ofṙs with respect tom andr0.

IV. THE EVOLUTION OF THE SHELL

We solved the Eqs.~3.12!–~3.14! numerically in the most
simple situation, wherea5rs and f51. We used the most
realistic situation of Fig. 1~a!, where the constanta2 is posi-
tive ~the breakdown ofgff will eventually take place in the
far future!. For b we will take for the moment,
(124m)(rs1r0), with m the linear mass density. In Fig. 2
we plottedrs as function of interior time and proper time
(sout51 ande51) for h50.01 and compared the evolution
with rm[v/(124m). We took for m the lower bound
ph2. In order to be able to compare the evolution ofrs with
the evolution ofgww , we used the same values for the sev
eral constants as in Fig. 1. Further, we tooke25l51. We
see that merely for large interior timers becomes smaller
thanrm .

In Fig. 3 we plottedrs for two different values ofC,
representing the field fluctuations@see Eqs.~3.12! and
~3.13!#. It is evident that the evolution depends critically on
the fine tuning ofC andh. Further, it appears that by fine
tuning the parameter, the evolution ofrs can be halted, a
relatively long period of proper time. In all runs wherers
starts to blow up, the proper time stops flowing and the m
ment the interior time is comparable with the moment whe
gww tends to become negative. In Fig. 4 we plottedrs for
h50.1. We see thatrs decreases rapidly and the causality
violating region will never be encountered.

V. CONCLUSIONS AND OUTLOOK

The metric of a spinning string can have causality
violating regions. However, this phenomenon seems to
artificial. In the stationary situation, an arresting proof can,
some rate, be furnished@15#. The results of the time-
dependent model, presented here in a simplified form, co
firms merely the conjecture that the formation of CTC’
model will be exceedingly unlikely for physically realistic
parameters. One conjectures that when a complete loop
taken around the string~so w acquires a phase shift of
e2p in), the interior time jumps by a factor 8pv and will be
equal to the period thatgww remains positive. When the
string core radius approaches the causality-violating regio
~see Fig. 2!, measured in interior time, the proper time on th
string core stops flowing and the required parameters a
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such thatgww will never enter the negative region.
Our model is far from being complete. First, one shou

handle the surface energy-momentum tensorSi
j more care-

fully @28#. Second, one should not use a constant value
the mass densitym, but instead a mass density which follow
from the exterior string field equations~3.9!. Third, a thor-
ough investigation of the differential equations for the se
eral parameters is necessary, specially for the signs ofsout
ande. From Eq.~3.12! we see that the time-dependent ter
in the right-hand side has an essential effect on the evolut
of the core of the string and complicates the conditions
s ande with respect to the energy density. These items a
currently under consideration by the author.

APPENDIX: THE LANCZOS TENSOR

In order to be able to calculate the extrinsic curvature

Ki j
652

]x6
a

]j i
]x6

b

]j j
¹bNa , ~A1!

FIG. 2. Typical example of the time evolution in interior time o
the string core radius forh50.01 (sout51 ande51). Further, the
same values for the several parameters as for Fig. 1 were u
Between brackets the proper time is marked. Notice that at
momentrs blows up,gww tends to become negative~see Fig. 1! and
the proper time stops flowing. In~b! we plottedrm[v/(124m).
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we need the unit normal vectorNm5]mnuS , wheren(x
m) is

given by @27,28#

n~xm!5s
F~xm!

Au]nF]nFu
, ~A2!

and whereF(xm)50 represents the equation forS ~in the
x1

m or x2
m coordinates!. Further,NmNm5e, with e51 for

timelike hypersurfaces ande521 for spacelike hypersur-
faces.s determines the global geometry, i.e., how the inne
geometry is stuck together with the outer one.s51 corre-
sponds to increasing radius in the outward direction. In o
situation we have forF(x1

m )

F~x1
m !5b~r!2R~ t* !

~for the momentb, the physical radius of the string, inde-
pendent of time!, R(t* ) unknown. For the normal vector we
then obtain

N052s f ṙs , N25sAṙs11, ~A3!

where the overdot meansd/dt. The relation between the
exterior timet* and the proper timet is

FIG. 3. Time evolution in proper time of the string core radius
for h50.01 and two different values of the field-fluctuationC,
C50.1 andC50.01.

FIG. 4. Example of the evolution ofrs for h50.1.
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ṫ*5A11 ṙs
2. ~A4!

Further, for the shell’s ‘‘radius,’’ we have

dR

dt*
5

f ṙs

Aṙs
211

. ~A5!

For the several components ofKi j
1 , we obtain
K00
1 5s

1

Aṙs
211

F r̈s1]r f

f
~ ṙs

211!G , ~A6!

K11
1 52s f ]r fAṙs

211, ~A7!

and

K33
1 52sb]rbAṙs

211. ~A8!
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