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In this paper we show some very general results concerning thegeneralmatching of any two spherically
symmetric spacetimes through a timelike hypersurface. We present a set of necessary conditions for this
which are very simple to use. As an important result, these conditions allow us to ascertain, by mere inspe
of the conformal diagrams, which matchings are feasible in principle and which are not allowed. We s
illustrate these results by applying them to the general matching of Vaidya’s radiating metric and the gen
flat Robertson-Walker spacetime with a linear equation of state, where all possible models are obtained. T
particular models are relevant on their own as they describe interesting physical situations; some of them
not been considered hitherto.@S0556-2821~96!01018-1#
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I. INTRODUCTION

The matching of two different spacetimes has been of
used in order to describe some interesting physical situatio
or to construct new models which can throw some light on
theoretical aspects which could not be treated with the or
nal separated models. Thus, for instance, models for colla
ing or expanding stars, for the description of local inhom
geneities in a cosmological context, for the collision
gravitational waves, etc., can be studied by means of
junction of two different known and given spacetimes. T
purpose of this paper is twofold. We want to show some ve
general results for thegeneralmatching of any two spheri-
cally symmetric spacetimes through a timelike hypersurfa
Furthermore, we shall illustrate these results with the gene
matching of Vaidya’s radiating metric with the Robertso
Walker spacetimes. The resulting particular models will
of great interest on their own, and they will further descri
some interesting old and new physical situations.

But first of all, let us make some standard consideratio
about the matching problem, both from thepractical and the
theoreticalpoint of view. LetV1 andV2 be twoC3 orient-
able spacetimes carryingC2 metricsg1 andg2, and each of
them with boundaryS1 andS2, respectively~see@1# for
standard definitions!. These boundaries are of course hype
surfaces inV1 andV2, respectively. In general relativity, the
junction conditions for two such spacetimes with bounda
have been extensively considered and studied, even for
general case of matching hypersurfaces with noncons
signature~see@2–4# and references therein!. WhenS1 and
S2 are diffeomorphic, these junction conditions have be
clearly established. An extensive and full summary of the
junction conditions is given in Sec. II.

However, thepractical problems have their own difficul-
ties and subtleties, which are usually overlooked in the g
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eral theoretical approach. Thus, in general, we are given tw
orientablefull spacetimesV andV̄ ~instead of two spacetimes
with a boundary!, and we want to know, first, whether or not
they arematchable, and second, which are the possibl
matching hypersurfaces.~Think, for instance, of the follow-
ing questions: Are Robertson-Walker and Vaidya geometri
matchable? Where?! Notice that the matching hypersurface
must be found along with the resolution of the matchin
problem itself, which is one of the main differences with th
theoretical ‘‘view.’’ Furthermore, the correct choice betwee
the two possible directions~relative signs! of the vectors nor-
mal to the hypersurfaces is crucial in the practical problem
such as those we treat in this paper~this has been recently
pointed out also in@5#!. We perform a detailed study of these
choices and their consequences in Sec. II, and we find so
necessary conditions which must be valid in a general matc
ing. One of the main aims of this paper is to study, in som
depth, the possibilities that arise in this sense for a gene
spherically symmetric matching. We devote Sec. III to th
application of the above results to the spherically symmetr
case, where the considerations made in Sec. II will be imm
diately and easily applicable. Thus, we obtain a whole set
necessary~but nevertheless, easily verifiable! conditions for
this case. These simple conditions will allow us to ascerta
by mere inspection of the conformal diagrams, which matc
ings are feasible and which are not. We will be able to sket
the conformal diagrams for the whole matched spacetimes
this level andeven beforewe write down the matching equa-
tions.

We shall then solve the particular but interesting proble
of the junction of a Vaidya spacetime with a Robertson
Walker geometry. This subject has been previously treated
the literature. For example, in the pioneering work by Op
penheimer and Snyder@6#, the matching of a closed collaps-
ing dust Robertson-Walker model with a Schwarzschi
vacuum exterior was solved. Later, the complementary pro
lem ~interchanging interior with exterior! was considered by
Einstein and Straus@7# in another historically relevant paper
in which they studied the influence of the universal expa
4862 © 1996 The American Physical Society
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54 4863GENERAL MATCHING OF TWO SPHERICALLY . . .
sion on the gravitational fields around the stars. The gen
alization from Schwarzschild to Vaidya’s metric started wi
the first attempts to describe the so-called primordial bla
holes in@8,9#. The general treatement of this problem can
found in @10#. Lake and Hellaby@11# used this same type o
matching to study the formation of naked singularities in t
collapse of radiating stars, as possible counterexample
the cosmic censorship conjecture. The necessary and s
cient conditions for the completely general matching of t
Vaidya and Robertson-Walker spacetimes were presente
@12#. In this work, the physical interpretation of the resul
was also given, settling down some apparent problems wh
had been raised concerning the impossibility of gluing a
diative spacetime such as Vaidya with a Robertson-Wal
model ~the final comments of Sec. VI are devoted to th
subject!. Moreover, some interesting examples were fully i
tegrated in@12#. In the present paper, Secs. IV and V a
devoted to the treatment and resolution of this proble
which is exhausted for a flat Robertson-Walker model with
linear equation of statep5gr: all possible and qualitatively
different matchings with their corresponding conformal di
grams are explicitly given. Finally, in Sec. VI we analyz
and discuss the results, and give some possible physica
terpretations for the explicitly found models.

II. GENERAL MATCHING CONDITIONS

The purpose of this section is to present briefly the ma
results concerning the general junction conditions. For f
ther details, the reader is referred to@2–4#. To that end, and
as sketched in the Introduction, let us consider twoC3 ori-
entable spacetimesV6, each of them withtimelikeboundary
S6 andC2 metricg6. In order to study their possible match
ing by means of identification of points on the boundarie
we will assume that there is aC3 diffeomorphism fromS2

to S1. Then, we defineV4, the whole spacetime, as the dis
joint union of V1 and V2 with diffeomorphically related
points ofS1 andS2 identified. Henceforth, the identified
images ofS6 in V4 will be denoted simply byS. The ques-
tion arises whether or not we can dovetailV6 to form V4 in
such a way that there is a Lorentzian geometry inV4 with
well-defined Einstein’s equations and with the original me
rics g6 in the images ofV6 in V4. As shown in@3#, it turns
out that this is possible if and only ifS1 andS2 are iso-
metrical with respect to their first fundamental formsḡ1 and
ḡ2 inherited fromV1 andV2, respectively, because in thi
case there is a naturalcontinuousextensiong of the metric to
the wholeV4. Here ‘‘natural’’ means thatg coincides with
g6 in the images ofV6 in V4, respectively.

In a practical problem, we are given two embeddin
x6

m 5x6
m (ja) of S, wherex6

m are local coordinates forV6,
respectively, andja are intrinsic coordinates forS (m,n, . . .
50,1,2,3; a,b, . . . 51,2,3!. The mentioned condition tha
the first fundamental forms inherited from both embeddin
and computed in the coordinate system$ja% must agree, then
reads

ḡab
15ḡab

2 , ~1!

where@2–4#
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ḡab
6 [gmn

6
„x6~j!…

]x6
m ~j!

]ja
]x6

n ~j!

]jb
.

However, as pointed out in@3,4#, one should specify how the
tangent spaces are to be identified in order to give a glob
well-defined geometry. To that end we consider

eWa
1[

]x1
m ~j!

]ja
]

]x1
m and eWa

2[
]x2

m ~j!

]ja
]

]x2
m .

These are two different sets of three vector fields tangent
S ~because they are obviously tangent to the images ofS6

in V4; remember that these images have been identified!.
Condition ~1! implies that the scalar products inV4 of $eWa

6%
coincide. Therefore, we should identify these two sets o
vectors. However, we need to identify the whole four
dimensional6-tangent spaces atS, and not merely the part
tangent toS. To do that, let us now consider the spacelike
unit vectorsnW 6 normal toS6 on S6, definedup to signby
the conditions

nm
1ea

1m50, nm
1n1m51,

and similarly fornW 2. Wemustchoose these two normal vec-
tors in such a way that ifnW 2 points fromV2 outwards, then
nW 1 points inwards overV1, and vice versa. It is important to
remark now that this is not an arbitrary choice since an
curve with affine parameters which crossesS at a pointp
must have a uniquely well-defined tangent vectord/dsup .
Thus, ifd/dsup

1 is the tangent vector of the curve atp as seen
from V1 and is given by

d

dsU
p

1

5AnW 1up1BaeWa
1up ,

thennW 2 must be chosen in such a way that the tangent vect
d/dsup

2 of the curve atp as seen fromV2 is

d

dsU
p

2

5AnW 2up1BaeWa
2up .

This choice fixes two pairs of reasonable signs for the no
mal vectors and allows for the complete identification of th
two bases$nW 1,eWa

1% and $nW 2,eWa
2% for the tangent space of

V4 at S. In particular, this identification determines an ori-
entation and/or a time arrow forV4 whenever such concepts
are defined~or fixed by any means! in any of theV1 or
V2.

Once this identification has been done, we can drop th
6 and write $nW ,eWa% for the basis of the tangent spaces a
S. In the resulting whole spacetimeV4, as we wished, there
exists a uniqueC1 atlasA ~compatible with the originalC3

structures inV6) and a continuous extensiong for the metric
of V4 which coincides withg6 at the corresponding regions
V6. Moreover, according to the previous identification o
tangent spacetimes, the componentsnm andea

m in the local
charts ofA are well defined andV4 is globally orientable.

When Eq.~1! holds and given that the extensiong of the
metric is continuous inV4, the Einstein equations are well
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defined in the distributional sense, see@3,4#. Relation~1! is
necessary if we want to compute the Riemann tensor dis
bution and its contractions@4#. In general, these distributions
will have two separated parts, one of them called the singu
part of the considered tensor distribution. This singular p
is proportional to the Dirac one-form distributiondm associ-
ated withS @3,4#, so that it describes an infinite jump atS.
Of course, in general, we want to avoid these infinities in t
curvature and matter tensors because the only physic
meaningful discontinuities across a timelike matching hyp
surface must be finite. Thus, we need to get rid of the sin
lar part of the Riemann tensor distribution. An easy calcu
tion leads to the conclusion that, for a general timeli
matching hypersurfaceS, the vanishing of the singular par
for the Riemann tensor distribution is equivalent to the va
ishing of the singular part of the Einstein tensor distributio
@3,4#, and this happens if and only if thesecond fundamenta
forms of S calculated fromV1 and V2 are identical. The
componentsKab

6 of the second fundamental forms ofS in
the natural cobasis$dja% are defined by@3,4#

Kab
6 [2nmea

n¹n
6eb

m ,

where the6 appears now because, even though the preli
nary junction conditions hold, the connection coefficien
neednot be continuous acrossS. In fact, in the practical
problems and given that we may only know the6-local
charts$x6

m % for V6, the formulas we must use to compu
Kab

6 are

Kab
6 [2nm

6S ]2x6
m ~j!

]ja]jb
1Grn

6m
]x6

r ~j!

]ja
]x6

n ~j!

]jb D ,
from where it is obvious thatKab

6 5Kba
6 Therefore, the afore-

mentioned condition for the vanishing of the singular part f
the Riemann tensor distribution simply reads

Kab
2 5Kab

1 . ~2!

Because of the above reasons, two spacetimesV6 are said to
be matchable across their common boundaryS if the junc-
tion conditions~1! and ~2! hold.

As outlined in the Introduction, in practice we will usuall
have two full space timesV andV̄ and we will want to know
if they are matchable. Let us choose a generic timelike
persurfaces splittingV into two complementary parts which
we call 1 and 2. In the same way, we can defines̄, 1̄, and
2̄ for V̄. The matching ofV and V̄ can be done infour dif-
ferent manners: 1 with 2̄, 1 with 1̄, 2 with 1̄, and 2 with 2̄
~see@5#!. For every different matching we shall denote th
overbarred region byV2 ~and then the region without bar is
V1). The whole spacetimeV4 will thus be formed by the
disjoint union of these two6 parts, andS will be the image
of boths and s̄ in V4. According to the above criterion for
the normal vector of the matching hypersurface, it is easy
see that ifS matches a part ofV with a part ofV̄, say 1 and
2̄, then this same hypersurface matches 2 with 1¯automati-
cally. This is why we call 1-2̄and 2-1̄complementary match-
ings. Therefore, there are only two properly inequivale
matchings, given by 1-2̄and 1-1̄.
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At this level, our task reduces to finding the matching
hypersurfacess and s̄ defined by xm5xm(ja) and
x̄m5 x̄m(ja), respectively, which are solutions of the com-
plete set of junction conditions. In general situations thi
may be rather difficult, but we will now obtain anecessary
condition that will allow us to ascertain which possible
matchings are valid and which are definitely excluded be
forehand. To that end, suppose that one of the possib
matchings has been performed. Then, it follows that for ev
ery point p on S there exists a local coordinate system o
V4 in which the metric isC1 @4,13,14#. These are called
admissible coordinates@13#. Therefore, every quantity in
V4 constructed with the metric, its first derivatives, and som
C1 tensor fields must be continuous acrossS. In particular,
the expansions of the geodesic congruences must be conti
ous because, in admissible coordinates, the correct ident
cation of tangent spaces ofV and V̄ on S implies that the
vectors tangent to geodesic curves areC1 acrossS and, also,
because the expansions depend only on the metric and
first derivatives.

As we shall see in the next section, this condition is pa
ticularly useful in the spherically symmetric case, where w
can apply the above result to the invariantly defined nu
geodesic congruences. Given that the sign of the expans
remains invariant when we change the parametrization
any future-directed congruence, we can conclude that t
sign of the expansion of a congruence of null geodesics mo
ing onV4 will be continuous acrossS, independently of the
parameters used to describe the congruence at both sides
S. Furthermore, the expansion is a scalar so that the con
nuity of its sign is independent of the coordinate systems w
use to describeV and V̄ in a neighborhood of a pointp on
S.

III. THE SPHERICALLY SYMMETRIC CASE

A spacetime is said to bespherically symmetric@1,15# if it
admits the group of rotations SO~3! as a group of isometries,
with the group orbits spacelike two-surfaces. Then, these o
bits are necessarily two-surfaces of constant positive curv
ture, usually calledtwo-spheres, and also there exist two-
surfaces orthogonal to the orbits@15#. We can choose two
angular coordinates$x2,x3%[$u,f%, with ranges 0<u,p,
0<f,2p, describing the orbits, and two other coordinate
$x0,x1% describing the orthogonal surfaces. Each two-sphe
is thus marked by constant values of the$xA%[$x0,x1% co-
ordinates (A,B, . . .50,1). We can also define a positive
functionR(xA) in such a way that 4pR2 is the total area of
the corresponding two-sphere. Thus, the line element of
general spherically symmetric spacetime reads

ds25gBC~xA!dxBdxC1R2~du21sin2udf2!,

where the two-metricgBC has Lorentzian signature.
For all these spacetimes, there are two preferred congr

ences of null geodesics defined as those invariant by t
group of isometries~and also as the two principal null direc-
tions of the type-D Weyl tensor, see@15#!. A straightforward
calculation for the product of the expansionsk1 andk2 of
these two congruences~when affinely parametrized! gives
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k1k252
x

2R2 , x[gmn]mR]nR.

It is well known that these expansions coincide~up to a
factor 1/2) with the traces of the two null second fundame
tal forms of the two-spheres~see@1# for definitions!. There-
fore, the two expansions have the same sign wherex,0,
which is the region of closed trapped surfaces@1#, while at
regions withx.0, the two expansions have different sig
The hypersurface defined byx50, where at least one of the
expansions is zero, is called theapparent horizon~AH! @1#.
It is easy to see that

m[
R

2
~12x! ~3!

is the usual mass function introduced by Herna´ndez and Mis-
ner @16–18#.

Let us then consider the question of the general match
of two spherically symmetric spacetimesV and V̄. We as-
sume that both spacetimes are time oriented and we wan
know which, among the four different possible matching
are permitted in principle. Applying the previous general r
sults about the necessary continuity acrossS of the sign of
the expansions for the two preferred null geodesic cong
ences, we have that, for every pointp in S, the signs of
xup and x̄up must be the same. Furthermore, in the ca
xup.0 both expansions have opposite signs inV, and the
same forV̄. Obviously, if sgn(x)5sgn(x̄)511 in some re-
gion of S, only one of the possible inequivalent matching
~and, of course, its complementary! is allowed with regard to
this region. This matching should be given by gluing the p
of V into which the future-directed expanding congruen
enters, with the part ofV̄ towards which the future-directed
contracting congruence points in. The other inequivale
matching is impossible in this case. The case w
sgn(x)5sgn(x̄)521 in some region ofS is a little bit dif-
ferent. Now, both expansionsk1 andk2 have the same sign
and the same happens for bothk̄1 andk̄2. All of them can be
assumed to be positive by appropriate choice of the ti
orientations. Then, all four matchings are allowed at th
level in such regions. Similar reasonings apply to the case
which x5x̄50 in some region ofS. In this case, one of the
expansions vanishes there. The other may be either zer
different from zero. In the first case the situation is of th
same kind that the one with sgn(x)5sgn(x̄)521, while the
second case is similar to that with sgn(x)5sgn(x̄)511.
Summarizing, we have proven the following.

Theorem 1. If there is at least one point p inS where
xup.0 (or where xup50 but with one of the expansion
nonzero), then only one matching (and its complementary
possible in principle.

Of course, even thisa priori possible matching may turn
out to be impossible by several reasonsa posteriori. First,
because the possible matching around one of the reg
with x>0 induces a global identification of the6-tangent
spaces which may be inadequate for the discussed contin
of the sign of the expansions in other regions. And seco
because one still has to check whether or not the full se
junction conditions holds.
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IV. A RELEVANT APPLICATION: MATCHING OF THE
VAIDYA AND ROBERTSON-WALKER SPACETIMES

In this section we apply the above results to the matchin
of Vaidya’s radiating metric with the Robertson-Walker
~RW! spacetimes. We proceed as follows: First we reca
some properties of the Vaidya and RW spacetimes and w
draw their respective Penrose conformal diagrams; then w
make use of theorem 1 in order to pick out the possibl
candidates for matching hypersurfaces in both spacetime
We will then describe the Penrose diagrams that can be o
tained in this way for the complete manifoldV4, beforethe
resolution of the matching conditions is carried out in the
next section.

A. Vaidya’s solution

Locally, Vaidya’s metric@19# can be described in radia-
tive coordinates@20# as

dsV
252x̄du212«dudR1R2~dū21sin2ūdf̄2!, ~4!

where the mass function~3! depends only onu @so that
x̄5122m̄(u)/R# and«251. The range of the coordinates is

2`,u,`, 0<R,`, 0<u,p, 0<f,2p.

The energy-momentum tensor for the metric~4! is of pure
radiation type

T̄mn5
2«

R2

dm̄~u!

du
lml n , lmdx

m52du, lml
m50 . ~5!

This energy-momentum tensor has only finite jumps when
everm̄(u) is a continuous function. Moreover, the weak en
ergy conditions demand that« dm̄(u)/du>0. We shall as-
sume from now on thatu grows towards the future. Then,
m̄must be a nonincreasing~nondecreasing! function ofu for
«521 («51) and the incoherent radially directed radiation
described by Eq.~5! is outgoing~ingoing!. Here, outgoing
means going towards bigger values ofR, and similarly for
ingoing. The apparent horizon~AH! for the Vaidya metric
~4! is located at the hypersurfaceR22m̄(u)50. Taking into
account the weak energy conditions it is easily seen that t
AH is a spacelike hypersurface in general, but it become
null for values ofu such thatdm̄(u)/du50.

Let us consider a general timelike hypersurfaces̄ pre-
serving the spherical symmetry of the spacetime and wi
intrinsic coordinates$ja%5$t,q,w%, where t is a future-
directed time coordinate defined only on the hypersurfac
The general parametric equations ofs̄ are:
u5u(t), R5R(t),ū5q,f̄5w. This hypersurface is time-
like if and only if x̄u̇22«Ṙ.0, where overdots stand for
derivatives with respect tot and we have taken into account
that u̇.0. The unit normal vector ofs is

n̄W5
ē

Au̇~ x̄u̇22«Ṙ!
F«u̇ ]

]u
1~ x̄u̇2«Ṙ!

]

]RG , ē251.

The future-directed vector fields tangent to the two invari
ant null geodesic congruences are given bylW of Eq. ~5! and
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kW5
]

]u
1«

x̄

2

]

]R
,

where we have setlmk
m521. A trivial calculation gives

sgn~kmn̄
m!52 sgn~ lmn̄

m!5«ē.

These relations will be very useful in order to use the crite

defined in Sec. II. Thus, if we want that bothn̄W and lW point
towards the same region, we will have to chooseē«521,
and analogously for the other cases.

As is well known, Vaidya’s metric is extendible in gen
eral @21–23#. We can consider two different possibilities
First, Penrose conformal diagram for the line element~4!
when«521 andm̄(u) is a nonincreasing and positive func
tion of u is shown in the nonshadowed region of Fig. 1. Th
ingoing radial null geodesics~coming from the past null in-
finity J2 or the spacelike singularityR50) are incomplete
since they reach the event horizonR52m̄(u→`) for a finite
value of their affine parameters. The shadowed region of F
1 extends maximally the original Vaidya’s metric. This sha
owed region is by itself the Penrose conformal diagram

the line element~4! when «511 and with a massm̂̄(û)
which is a nondecreasing function of the new null timeû
@23#. With such a mass function the energy conditions a
satisfied in the new shadowed region as well. The mass fu
tion must be continuous at the event horizon in order to ha
at worst, finite jumps of the curvature tensor there.1 Thus, we

havem̄(u→`)5m̂̄(û→2`).
The second possibility is shown in Fig. 2, where we gi

the Penrose conformal diagram for the line element~4! with
«521 and for a mass function which vanishes from som
instant u50 on. We could have extendedm̄(u) beyond
u50 with negative values since the only requirement is th
m̄(u) must be aC0 function. Despite this, we have chosen
continuation withm̄(u.0)50. It is easy to see that the
spacetime thus obtained is inextendible. We have to emp

1This condition can be easily verified by matching the two Vai
ya’s solutions through a null (u5const! hypersurface~see@4,23#!.

FIG. 1. Penrose diagram for the extended Vaidya spacet
when m̄(u) is a positive function and the waved arrows represe
the flow of radiation. For every region we show the light cones a
their respective signs of expansions. The dashed lines marked
s̄a1 and s̄a2 represent two candidates for matching hypersurfac
ria
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size the fact that, in this case, the differential equations f
the ingoing radial null geodesics have a critical point a
R50,u50 because the derivatives of bothR and u with
respect to the affine parameter vanish there. If

lim
u→02

m̄~u!

u
<

1

16
, ~6!

thenu5R50 has a node~or col-node! structure@24#. The
case sketched in Fig. 2 is precisely the linear on
m̄(u)5au where 0,a5const ,1/16. In particular, the
time reversal of Fig. 2~shown in Fig. 3! has a locally naked
singularity inu5R50 ~see@25,26#!. Obviously, we can in-
terpret Fig. 3 as a Vaidya’s spacetime («511) with a van-
ishing mass function that begins to grow after a certa
u50 and satisfying the time reversal of Eq.~6!. In both Figs.

d-
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FIG. 2. The Penrose diagram for Vaidya’s spacetime whe
m̄(u) vanishes from some instantu50 on. A generic spacelike
hypersurfaceF has the past Cauchy horizon in the null hypersurfac
marked as ‘‘CH forF.’’

FIG. 3. The Penrose diagram for the time reversal of Fig. 2.
generic spacelike hypersurfaceP has the future Cauchy horizon at
the null hypersurface marked as ‘‘CH forP.’’
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2 and 3, the region withm̄50 is, obviously, part of a
Minkowski flat spacetime. Despite the fact that these d
grams are qualitatively the same for otherm̄(u), there are
still cases with a different causal structure@depending on
whether Eq.~6! is accomplished or not# @25#. These cases are
not drawn here because it is easy to see, according to
necessary condition, that any candidate for matching hyp
surface does not have a corresponding candidate on
Robertson-Walker spacetime.

B. The Robertson-Walker metrics

We can describe the Robertson-Walker line element in
isotropic form as

dsRW
2 52dt21

a2~ t !

b2~r !
@dr21r 2~du21sin2udf2!#, ~7!

where b(r )[11kr2/4 and k50,61. As is evident, the
t5const hypersurfaces are spacelike while ther5const ones
are timelike. The mass function~3! for the RW spacetime is

m~ t,r !5
ar3~a,t

21k!

2b3
. ~8!

The energy-momentum tensor of Eq.~7! takes the form of a
perfect fluid with respect to the unit velocity vecto

vW 5]/]t :

Tmn5~r1p!vmvn1pgmn ,

wherer(t) andp(t) are the energy density and the isotrop
pressure relative tovW , respectively. Friedmann’s equation
are given by

r5
3~a,t

21k!

a2
, r,t13~r1p!

a,t
a

50.

Combining the first of these equations with Eq.~8!, we ob-
tain

m~ t,r !5
r

6 S rab D 3
from where we learn that them will be positive if and only if
so isr ~notice thatr>0 for k50,1, in general!.

Let us take a general timelike hypersurfaces preserving
the spherical symmetry of Eq.~7!. This hypersurface is as
sumed to be diffeomorphic tos̄, and thus the intrinsic coor-
dinates are chosen to be the same$ja%5$t,q,w%. The gen-
eral parametric equations for s are:
t5t(t), r5r (t), u5q, f5w. This hypersurface is time-
like whenever

ṙ 2

ṫ2
5S drdt D

2

,
b2

a2
. ~9!

The corresponding unit vector normal tos is simply

nW 5
e

aAb2ṫ22a2ṙ 2
S a2ṙ ]

]t
1b2ṫ

]

]r D ,
ia-

the
er-
the

its

r

ic
s

-

wheree251. Now, the meaning ofe is very clear given that
]/]r is a spacelike vector field everywhere. Thus, for in
stance, if t is future directed~so that ṫ.0) and e51
(21), thennW points towards greater~smaller! values ofr ,
and sonW points into the same direction as the vector fiel
tangent to the radial future-directed outgoing~ingoing! null
geodesic congruence. The other case (ṫ,0) is analogous.

Let us consider the interesting particular case of a flat R
metric (k50) with a linear equation of statep5gr, g being
a constant which we assume to lie in the range21,g,1
~so that the dominant energy conditions hold@1#!. Fried-
mann’s equations can be easily solved to give

a~ t !5Ct2/3~11g!, ~10!

whereC is a positive integration constant and we have s
a(0)50. The apparent horizonr52m for these particular
models is the hypersurfacera,t51, that is to say

AH:ra,t51⇔r2
3 ~11g!

2C
t ~113g!/3~11g!50. ~11!

It is easy to check with the help of Eq.~9! that this apparent
horizon is timelike if21,g,1/3, lightlike if g51/3, and
spacelike if 1/3,g,1. The typical Penrose diagram for
these spacetimes when21/3,g,1 is sketched in Fig. 4,
while g521/3 and21,g,21/3 are sketched in Figs. 5
and 6, respectively. We shall make use of these particu
models later.

C. Making use of theorem 1

Let us focus on the cases21/3,g,1/3. In Figs. 1–4 we
have drawn some lines corresponding to some possi
matching hypersurfaces for the matching of RW and Vaidy
spacetimes. Thus, for example, the linessa , sb , andsc in

FIG. 4. Conformal diagram for a flat Robertson-Walker spac
time with equation of statep5gr when21/3,g,1. The dashed
lines represent the valid candidates for matching hypersurfaces. T
apparent horizon ~AH! drawn corresponds to the case
21/3,g,1/3; if g51/3 the AH would be a null hypersurface
going from the lower left corner to the future null infinityJ1;
finally, if 1/3,g,1 the AH would be a spacelike hypersurface
from the lower left corner to the spacelike infinityi 0.
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Fig. 4 represent three possible typical matching hypers
facess. As we can see,sa starts att50 and moves first
through ax,0 region up to a certain instantt5tAH in which
it crosses the apparent horizon. The expansions for the in
ing and outgoing null geodesic congruences are both posi
up to t5tAH , and then the matching hypersurface enters

FIG. 5. Conformal diagram for theg521/3 case. We do not
draw the possible candidates for matching hypersurface beca
they have the same qualitative behavior as those in Fig. 4.

FIG. 6. Conformal diagram for the21,g,21/3 case. We do
not draw the candidates for matching hypersurface for the sa
reason as in Fig. 5.
ur-

go-
tive
a

x.0 region, where, of course, the expansions have differe
sign, and moves asymptotically towardsi1. The hypersur-
face sb is similar to sa , the only difference is thatsb
reachesr50 at a finite t instead of moving towardsi1.
Finally, the hypersurfacesc is quite different from the pre-
vious ones. Now,sc starts atr50 with t.0 and reaches
i1 asymptotically. The hypersurfacesc always lies in a
x.0 region.

The question is now to try and find the correspondin
possible hypersurfaces in the Vaidya metrics, that is, in Fig
1–3. By making use of theorem 1 and the consideration
preceding it regarding the expansionsk1 and k2, we can
easily identify these candidates. For example, in Fig. 1 w
have drawn two different and inequivalent possibilities
which can be, in principle, good matching partners forsa .
They are labeled ass̄a1 and s̄a2. Obviously, the reasoning
presented in Sec. III implies also that the matching with th
hypersurfacessa and s̄a1 must join the region to the left of
sa in Fig. 4 with the region to the right ofs̄a1 in Fig. 1 ~or
the corresponding complementaries, giving the compleme
tary matching!. Similarly, the matching with the hypersur-
facessa and s̄a2 has to be that gluing the part to the left of
sa in Fig. 4 with the region to the left ofs̄a1 in Fig. 1 ~and
its complementary!. In this case, the complete Penrose dia
gram, once the matching has been performed, is presented
Fig. 7 ~and the corresponding complementary in Fig. 8!. We
shall see in the next section that the first possibility with
sa and s̄a1 is forbidden by the complete set of matching
equations.

Analogously, the hypersurfacess̄b in Fig. 2 ands̄c in
Fig. 3 are good matching partners forsb and sc , respec-
tively. In the first case we can join the part to the left o
sb in Fig. 4 with the part to the right ofs̄b in Fig. 2. The
resulting conformal diagram is presented in Fig. 9~and its
complementary in Fig. 10!. In the second case we can match
the part to the left ofsc in Fig. 4 with the part to the left of
s̄c in Fig. 2. The whole conformal diagram is presented in
Fig. 11 ~and its complementary in Fig. 12!. In the next sec-
tion we justify all these conformal diagrams by solving com

use

me

FIG. 7. The Penrose diagram for the matching of the Vaidya an
Robertson-Walker spacetimes whensa is identified withs̄a2.
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pletely the full set of matching conditions in some pertine
cases.

V. INTEGRATION OF THE MATCHING CONDITIONS

We are going to write down and solve the general matc
ing equations for the Vaidya and RW spacetimes. As w
shall presently see, these equations will depend explicitly
the productēe. The full set of matching conditions is given
by Eqs.~1! and ~2!, which in the case under consideratio
become, after a little computation@12,27#,

R5
S

a
r

b
, ~12!

m̄5
S ar3~a,t

21k!

2 b3
, ~13!

FIG. 8. Conformal diagram for the complementary matching
Fig. 7. Integration of the matching conditions shows thatS starts
from a partly spacelike and partly null singularity.

FIG. 9. Penrose diagram for the matching of the Vaidya a
Robertson-Walker spacetimes whensb and s̄b are identified. As
for the previous caseS starts from a partly spacelike and partly nul
singularity.
nt

h-
e
on

n

u̇5
S

«
aṙ1«ēebṫ

b2~r /b! ,r2«ēera,t
, ~14!

ṙ5
S

eēe
b

a

p

r
ṫ, ~15!

where5
S

means that both sides of the equality must be evalu
ated onS. Condition ~9! on the matching hypersurface can
be written now with the help of Eq.~15! as @12#

p2

r2
,1,

FIG. 11. The identification ofsc ands̄c leads to this conformal
diagram.

of

nd

l

FIG. 10. Conformal diagram for the complementary matching o
Fig. 9 .
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so that this will hold whenever the dominant energy con
tions are satisfied. In the casep5gr, the above inequality is
equivalent to simplyg2,1.

Assuming that we know explicitly the RW models@i.e,
a(t)#, the general procedure to solve the matching conditio
~12!–~15! is the following@12,27#. ~i! Sinceṫ.0 ~for future-
directedt), we can always chooset(t)5t. Then, Eq.~15!
becomes a simple ordinary differential equation for the u
known r (t), which will have solution if the right-hand side
satisfies Lipschitz’s conditions. The solution will depend o
one arbitrary constantr 0, and thus we obtain a one-paramet
family of possible hypersurfacesS. ~ii ! By substituting the
solution forr (t,r 0) into Eq.~14!, we obtain another ordinary
differential equation for the unknownu(t). Solving this
equation, we obtainu(t,r 0 ,u0), whereu0 is a new arbitrary
constant. It should be noticed, however, that in this caseu0 is
an additive constant.~iii ! From Eq.~12! we immediately find
R(t,r 0), which together withu(t,r 0 ,u0) provides the form
of the hypersurfacesS as seen from the Vaidya spacetim
~iv! Finally, we getm̄(t,r 0) from Eq. ~13!. This gives us, in
combination withu(t,r 0 ,u0), the mass functionm̄(u) for
Vaidya’s metric explicitly.

In the particular casek50, p5gr of the previous sec-
tion, and according to Eq.~10!, Eqs. ~14! and ~15! read,
respectively,

u̇5
S g11

ēe2«a,tr
, ṙ5

S

«ēe
g

a
5«ēe

g

C
t2 2/3~11g!. ~16!

The second of these equations is easily integrable, and
solutions are

r ~t,r 0!5«eē
3g

C S 11g

113g D t113g/3~11g! 1r 0 ~17!

for gÞ21/3, while for g521/3 we have
r (t,r 0)52(e«ē/3C)lnt1r0, wherer 0 is an integration con-
stant. These formulas define a one-parameter family
matching hypersurfaces in the RW models. We should n
integrate the first of the Eqs.~16!, but this is not necessary in
order to know the main characteristics of the solution. Sin
the left-hand side of this relation is bigger than ze
(u̇.0) and alsog11.0, the matching is only possible in
those regions with

ēe2«a,t~t!r ~t,r 0!.0. ~18!

FIG. 12. Complementary Penrose diagram of Fig. 11.
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From this inequality and the AH hypersurface given in Eq
~11!, we learn that if«ēe51 we will not be able to describe
the matching after crossing the apparent horizon~see cases A
and C below!. This is partly because of the fact that the
coordinateu is only valid to describe a part of the spacetime
~for example, the nonshadowed region of Fig. 1! because
when ēe2«a,t(t)r (t,r 0)→0 thenu→6` andr (t,r 0) just
reaches the AH.

On the other hand, Eq.~13! comes from the matching

condition m̄(u)5
S

m(t,r ). The derivative onS of this equa-
tion leads us to

m̄,uu̇5
S

m,t1m,r ṙ .

Taking into account Eq.~14! and the above equation we can
see that, in order to have« dm̄(u)/du>0, a necessary con-
dition is thatg>0. Thus, by making Eq.~18! explicit we
finally get

g>0, eē2«
2Cr0~113g!

3~11g!2
t2~113g!/3~11g!.0. ~19!

From the last relation we immediately see that the case wi
«51 andeē521 is not possible. The other cases are:

Case A:«511 and then, from Eq.~19!, eē511. Ex-
amination of Eq.~19! tells us that two different subcases may
still appear, depending on whetherr 0>0 or not. When
r 0>0, we can define a lower bound fort given by

tH5S 2Cr0~113g!

3~11g!2 D 3~11g!/~113g!

~20!

which is the limit value oft whenS approaches the apparent
horizon in the RW metric. The ranges oft, r (t,r 0) and
u(t,r 0 ,u0) are, respectively

tH,t,1`,

r ~tH ,r 0!,r ~t,r 0!,1`,

2`,u~t,r 0 ,u0!,1`. ~21!

This behavior foru(t,r 0 ,u0) follows from the expression for
u̇.0 in Eq. ~16!, which implies thatu(tH ,r 0 ,u0)→2`.

On the other hand, ifr 0,0, there is another lower bound
tm for t, defined byr (tm ,r 0)50. Because of Eq.~17!, we
have

tm5S ~2r 0!C~113g!

3g~11g! D 3~11g!/~113g!

.

The mass function vanishes onS at tm , and thus we must
have Minkowski’s spacetime previously. The correspondin
ranges fort, r (t,r 0) andu(t,r 0 ,u0) are, respectively,

tm<t,`, 0<r ~t,r 0!,`, um,u~t,r 0 ,u0!,1`

for some finite valueum .
Case B:«521 with eē511. From Eq.~17! it follows

that r 0>0. Then, Eq.~19! is always trivially satisfied. Now,
we have an upper bound fort given by tM such that
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r (tM ,r 0)50, from where we again get a vanishing ma
function onS at tM . From Eq.~17! we have

tM5SCr0~113g!

3g~11g! D 3~11g!/~113g!

and the ranges fort, r (t,r 0), andu(t,r 0 ,u0) are

0<t<tM , r 0>r ~t,r 0!>0, u0>u~t,r 0 ,u0!>uM .

Notice that att50(⇔u5
S

u0) the mass function become
infinite onS, then we havem̄(u0)5` and, therefore, Vaid-
ya’s hypersurfaceu5u0 is singular. In this case B,S crosses
the apparent horizon of the RW metric at the value

tH8 5S 2Cr0~113g!

3~11g!~115g! D
3~11g!/~113g!

which is within the allowed range oft.
Case C:«521 with eē521. From Eq.~19! we must

haver 0>0. Now, there appears an upper bound fort given
by the limit value oft whenS approaches the RW apparen
horizon. This value is exactlytH given in Eq. ~20!. The
corresponding ranges oft, r (t,r 0), andu(t,r 0 ,u0) are now

0<t,tH , r 0<r ~t,r 0!,r ~tH ,r 0!,

u0<u~t,r 0 ,u0!,1`. ~22!

Let us interpret the solutions found. In both cases A a
C, we have«ēe511, and therefore the solution~17! has the
same functional form. The only difference appears in t
valid intervals fort. In fact, the ranges~21! for case A when
r 0>0 and the ranges~22! for case C are obviously two part
of a unique solution since the valid intervals are perfec
complementary. The valid interval for case C describes
part of s̄a2 in Fig. 1 which goes fromR50 up to the event
horizon ~EH!, while the valid interval for case A describe
the part of the sames̄a2 in Fig. 1 which goes from the same
point at EH up toi1. Obviously, this same ‘‘double’’ de-
scription holds for the partner hypersurfacesa in Fig. 4. The
whole matched spacetime is sketched in Fig. 7~and Fig. 8
for the complementary!. For case B, we saw thatS always
crosses the AH hypersurface and also thatr and the mass
function go to zero for a finite value oft. Thus, it describes
appropriately the hypersurfacesb shown in Fig. 4, and its
partners̄b in Fig. 2. The whole matched spacetime and
complementary are sketched in Figs. 9 and 10. The sa
type of reasoning shows that case A withr 0,0 describes
sc in Fig. 4, and its partners̄c in Fig. 3, appropriately. The
whole matched spacetimes are shown in Figs. 11 and
Finally, it is obvious that the hypersurfaces̄a1 in Fig. 1 does
not correspond to any solution of the matching equations

VI. DISCUSSION

By making use of theorem 1 and related criteria on t
continuity of the sign of the expansions for the invariant nu
geodesic congruences, we have been able to choose s
possible matchings of the Vaidya and RW spacetimesbefore
solving the full set of matching equations. The subsequ
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integration of these matching equations and the requireme
of weak energy conditions have distinguished between tho
which are actually viable from those which are not. We ma
wonder, however, whether or not we have found all possib
matchings for these spacetimes, since we have assumed
bothu andt are future-directed throughout. In this sense, th
change of time direction fort may supply some extra free-
dom that could produce new results. A closer examination
the conformal diagrams sketched in Figs. 1–6 proves that,
fact, the global spacetimes we can obtain in this manner a
just the time reversals of those already obtained in Fig
7–12. This is because of thequalitativelysymmetric nature
of future and past in Vaidya’s spacetime of Fig. 1, and als
to the fact that Fig. 3 is the time reversal of Fig. 2.

The diagrams found can certainly represent interestin
physical situations. For example, the time reversal of Fig.
is a typical diagram for a radiating star collapsing to form a
black hole. The matching hypersurface contracts contin
ously, crosses the event horizon entering into a region
closed trapped surfaces, and eventually reaches the space
singularity. This is a radiating generalization of the classica
collapsing star model of Oppenheimer and Snyder@6#, which
has ak511 RW dust interior with Schwarzschild exterior.
The collapsing time interval in@6# corresponds to the con-
tracting phase of the closed RW spacetime. We present t
time reversal of Fig. 7 as a model for a flat (k50) ever-
contracting RW star with an equation of state of the typ
p5gr for g>0 and radiation coming out of the star.

Regarding Fig. 8, Refs.@8–10# deal with radiative voids
in expanding RW universes, which are calledprimordial in-
homogeneitiesin those papers. The extension of this type o
models through the EH, providing its maximal Penrose dia
gram, corresponds to the matching of Fig. 8. As far as w
know, this full conformal diagram had not been given previ
ously. A relevant property of this model is the presence of
null initial singularity in the past of the radiating void. Thus,
the structure of the whole initial singularity is partly space
like and partly null.

Let us consider now the Figs. 9 and 10. For instance, th
Penrose diagram in Fig. 9 can be interpreted as a radiati
star ~or Universe! that starts in a spacelike singularity and
evolves in a collapsing and radiating way until it losesall its
mass, ending in a flat spacetime state@12#. On the other
hand, the time reversal of its complementary matchin
shown in Fig. 10 describes a flat RW contracting universe
which a radiating Vaidya’s void appears. This induces th
creation of a locally naked singularity. To our knowledge
this model~and its time reversal! is presented here for the
first time.

Finally, the diagrams in Figs. 11 and 12 may have great
interest. The time reversal of Fig. 11 represents acompletely
evaporating star, that is to say, a collapsing and radiating
star which radiates all its energy away. After the complet
evaporation, the manifold becomes flat Minkowski space
time. We have seen that the mass function in Vaidya’s spac
time must be continuous in order to avoid infinite jumps on
the energy-momentum tensor. Therefore, we do not need
continue the metric with negative masses once the mass b
comes zero. This is not in accordance with a claim in@11#. In
Fig. 12 we sketch the complementary matching of Fig. 11.
represents an expanding RW universe generating a radiat
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void, with the appearance of a locally naked singularity. Th
model, as well as some of the previous ones, violate
uniqueness of the Cauchy initial value problem for the R
solution, as was pointed out by Ellis in a note added in pro
in paper@10#. This is natural and logical, however, becau
the Cauchy problem needs a differentiability for the met
functions which does not hold here at the matching hyp
surfaceS. In @10# this type of models is called anonprimor-
dial inhomogeneity.

As a closing remark, we would like to emphasize he
that, in all the above models, the matching hypersurface
not comoving with matter in the usual perfect-fluid interpr
tation of the RW spacetime. Thus, the matching hypersurf
S moves with respect to the preferred observer defined
the perfect-fluid velocity vectorvW 5]/]t. This is why we can
match a radiative metric~e.g., Vaidya! with one usually con-
is
the
W
of
se
ric
er-

re
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ace
by

sidered a nonradiative one~e.g., RW!. Of course, the nonra-
diative character of RW metrics depends on the observe
and, as a matter of fact, any observercomoving withS on
S will certainly see radiation crossing this hypersurface. A
correct and full interpretation of these results was given in
@12# and, in general, the physical interpretation of any pos-
sible matching for spherically symmetric spacetimes was
also given in@27#.
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l’É lectromagne´tisme~Masson, Paris, 1955!.
@14# W.B. Bonnor and P.A. Vickers, Gen. Relativ. Gravit.13, 29

~1981!.
f
d,

.

@15# D. Kramer, H. Stephani, M. MacCallum, and E. Herlt,Exact
Solutions of Einstein’s Field Equations~Cambridge University
Press, Cambridge, England, 1980!.

@16# W.C. Hernández and C.W. Misner, Astrophys. J.143, 452
~1966!.

@17# M.E. Cahill and G.C. McVittie, J. Math. Phys.11, 1382
~1970!.

@18# T. Zannias, Phys. Rev. D41, 3252~1990!.
@19# P.V. Vaidya, Proc. Ind. Acad. Sci.A33, 264 ~1951!.
@20# H. Bondi, M.G.J. van der Burg, and A.W.K. Metzner, Proc. R

Soc. LondonA269, 21 ~1962!.
@21# R.W. Lindquist and R.A. Schwartz, Phys. Rev.137, B1364

~1965!.
@22# W. Israel, Phys. Lett.24A, 184 ~1967!.
@23# F. Fayos, M.M. Martı´n-Prats, and J.M.M. Senovilla, Class

Quantum Grav.12, 2565~1995!.
@24# F.G. Tricomi,Differential Equations~Blackie, London, 1961!.
@25# Y. Kuroda, Prog. Theor. Phys.72, 63 ~1984!.
@26# P.S. Joshi,Global Aspects in Gravitation and Cosmolog

~Clarendon, Oxford, 1993!.
@27# F. Fayos, X. Jaen, E. Llanta, and J.M.M. Senovilla, Phys. R

D 45, 2732~1992!.


