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In this paper we show some very general results concerningeheralmatching of any two spherically
symmetric spacetimes through a timelike hypersurface. We present a set of necessary conditions for this case
which are very simple to use. As an important result, these conditions allow us to ascertain, by mere inspection
of the conformal diagrams, which matchings are feasible in principle and which are not allowed. We shall
illustrate these results by applying them to the general matching of Vaidya’'s radiating metric and the general
flat Robertson-Walker spacetime with a linear equation of state, where all possible models are obtained. These
particular models are relevant on their own as they describe interesting physical situations; some of them had
not been considered hither{0556-282096)01018-1

PACS numbg(s): 04.20.Jb, 04.20.Cv, 04.46b, 98.10+z

I. INTRODUCTION eral theoretical approach. Thus, in general, we are given two

orientablefull spacetimes’ andV (instead of two spacetimes
The matching of two different spacetimes has been oftefvith a boundary, and we want to know, first, whether or not
used in order to describe some interesting physical situationshey are matchable and second, which are the possible
or to construct new models which can throw some light ontomatching hypersurface$Think, for instance, of the follow-
theoretical aspects which could not be treated with the origiing questions: Are Robertson-Walker and Vaidya geometries
nal separated models. Thus, for instance, models for collapgnatchable? Wherg¢Notice that the matching hypersurfaces
ing or expanding stars, for the description of local inhomo-must be found along with the resolution of the matching
geneities in a cosmological context, for the collision of problem itself, which is one of the main differences with the
gravitational waves, etc., can be studied by means of théheoretical “view.” Furthermore, the correct choice between
junction of two different known and given spacetimes. Thethe two possible directiongelative signof the vectors nor-
purpose of this paper is twofold. We want to show some venynal to the hypersurfaces is crucial in the practical problems
general results for thgeneralmatching of any two spheri- such as those we treat in this pagths has been recently
cally symmetric spacetimes through a timelike hypersurfacepointed out also ifi5]). We perform a detailed study of these
Furthermore, we shall illustrate these results with the generalhoices and their consequences in Sec. II, and we find some
matching of Vaidya’s radiating metric with the Robertson- necessary conditions which must be valid in a general match-
Walker spacetimes. The resulting particular models will being. One of the main aims of this paper is to study, in some
of great interest on their own, and they will further describedepth, the possibilities that arise in this sense for a general
some interesting old and new physical situations. spherically symmetric matching. We devote Sec. Il to the
But first of all, let us make some standard considerationgpplication of the above results to the spherically symmetric
about the matching problem, both from theactical and the  case, where the considerations made in Sec. Il will be imme-
theoreticalpoint of view. LetV" andV~ be twoC? orient-  diately and easily applicable. Thus, we obtain a whole set of
able spacetimes carryir@’ metricsg* andg~, and each of necessarybut nevertheless, easily verifiableonditions for
them with boundary® ™ and X ~, respectively(see[1] for this case. These simple conditions will allow us to ascertain,
standard definitions These boundaries are of course hyper-by mere inspection of the conformal diagrams, which match-
surfaces inV* andV™, respectively. In general relativity, the ings are feasible and which are not. We will be able to sketch
junction conditions for two such spacetimes with boundarythe conformal diagrams for the whole matched spacetimes at
have been extensively considered and studied, even for thhis level andeven beforave write down the matching equa-
general case of matching hypersurfaces with nonconstanions.
signature(see[2—4] and references therginwhen>* and We shall then solve the particular but interesting problem
3~ are diffeomorphic, these junction conditions have beerof the junction of a Vaidya spacetime with a Robertson-
clearly established. An extensive and full summary of thes&Valker geometry. This subject has been previously treated in
junction conditions is given in Sec. Il. the literature. For example, in the pioneering work by Op-
However, thepractical problems have their own difficul- penheimer and Snydéé], the matching of a closed collaps-
ties and subtleties, which are usually overlooked in the gening dust Robertson-Walker model with a Schwarzschild
vacuum exterior was solved. Later, the complementary prob-
lem (interchanging interior with exteripmvas considered by
"Also at Laboratori de Bica Matemtica, Societat Catalana de Einstein and Strau&’] in another historically relevant paper
Fisica, IEC, Barcelona. in which they studied the influence of the universal expan-
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sion on the gravitational fields around the stars. The gener- . IXE(€) IXL(€)
alization from Schwarzschild to Vaidya’s metric started with 9ab=9,,,(X+(£)) a_ga _(9_§b_-

the first attempts to describe the so-called primordial black

holes in[8,9]. The general treatement of this problem can beowever, as pointed out ii8,4], one should specify how the
found in[10]. Lake and Hellaby11] used this same type of angent spaces are to be identified in order to give a global

matching to study the formation of naked singularities in theye||-defined geometry. To that end we consider
collapse of radiating stars, as possible counterexamples of

the cosmic censorship conjecture. The necessary and suffi- ., X&) 0 . P (&) 9
cient conditions for the completely general matching of the €, = = —
Vaidya and Robertson-Walker spacetimes were presented in

[12]. In this work, the physical interpretation of the results thage are two different sets of three vector fields tangent to
was also given, settling down some apparent problems whic (yecause they are obviously tangent to the images “of
gad been raised conc;a]rnlng thg |mpo.;5|b|lltybof gluing a”r<a-m V,; remember that these images have been identified
iative spacetime such as Vaidya with a Robertson-Walke . L >
P Y &ondmon(l) implies that the scalar products W, of {e;}

model (the final comments of Sec. VI are devoted to this . ide. Theref hould identify th ¢ ts of
subjeci. Moreover, some interesting examples were fully in-coneide. theretore, we should iden 'f.y ese wo Sets o
vectors. However, we need to identify the whole four-

tegrated in[12]. In the present paper, Secs. IV and V are . ;
g in[12] P pap dimensional* -tangent spaces &, and not merely the part

devoted to the treatment and resolution of this problemt S To do that, | der th lik
which is exhausted for a flat Robertson-Walker model with a2N9ent to2. To do that, let us now consider the spacelike

linear equation of statp= yp: all possible and qualitatively unit vectorsn= normal toX = on% =, definedup to signby
different matchings with their corresponding conformal dia-the conditions
grams are explicitly given. Finally, in Sec. VI we analyze

and discuss the results, and give some possible physical in-
terpretations for the explicitly found models.

—, ahae .
IE:  gxt a g axt

tatu_— ttu—
n,e, =0, n,n 1,

and similarly forn~. We mustchoose these two normal vec-
tors in such a way that ifi~ points fromV~ outwards, then
nt points inwards oveb*, and vice versa. It is important to

The purpose of this section is to present briefly the mairremark now that this is not an arbitrary choice since any
results concerning the general junction conditions. For furcurve with affine parametes which crosse<. at a pointp
ther details, the reader is referred[®-4]. To that end, and must have a uniquely well-defined tangent veatiéds|, .
as sketched in the Introduction, let us consider @bori-  Thus, ifd/ds|; is the tangent vector of the curvemas seen
entable spacetimag”, each of them withimelikeboundary ~ from V" and is given by
3 * andC? metricg™. In order to study their possible match-
ing by means of identification of points on the boundaries, i
we will assume that there is@3 diffeomorphism froms, ~ ds
to 7. Then, we defing/,, the whole spacetime, as the dis-
joint union of V* and V™ with diffeomorphically related thenn~ must be chosen in such a way that the tangent vector
points of 3 and X~ identified. Henceforth, the identified g/qg - of the curve ap as seen from/- is
images of2 * in V, will be denoted simply by.. The ques- P
tion arises whether or not we can dovetgil to formV, in d|~ - -

. ) 'V o .

such a way that there is a Lorentzian geometryinwith d_s‘ =An |p+B €a |p-
well-defined Einstein’s equations and with the original met- P
ricsg™ in the images oIV_i in V,. As shown ,n[fi], ILWrNS  This choice fixes two pairs of reasonable signs for the nor-
out that this is possible if and only E* andX~ are iso-

! ! allt mal vectors and allows for the complete identification of the
metrical with respect to their first fundamental forms and T S_ s
— ; " _ . ~ . two bases{n',e;} and{n~,e,} for the tangent space of
g~ inherited fromV™ andV, respectively, because in this ; L - . :
V, at 2. In particular, this identification determines an ori-

case there is a naturabntinuousextensiorg of the metric to : .
« " . . entation and/or a time arrow faf, whenever such concepts
the wholeV,. Here “natural” means thag coincides with X . . -
are defined(or fixed by any meansin any of theV" or

g™ in the images ob* in V,, respectively.

In a practical problem, we are given two embeddings Once this identification has been done, we can drop the

Xk =x4 (&%) of 3, wherex” are local coordinates foy™, N L .
respectively, and® are intrinsic coordinates fat (u,», ... ~ and write{n,e,} for the basis of the tangent spaces at

=0,1,2,3; a,b, ... =1,2,3. The mentioned condition that 3. In the resulting whole spacetime,, as we wished, there

. l . . . . 3
the first fundamental forms inherited from both embeddings’ex'Sts a uniquéc™ atlas.A (compatible with the originaC

and computed in the coordinate systegfil must agree, then structures inV*) and a contirluous extensignfor the metric
reads of V, which coincides withg~ at the corresponding regions

V*. Moreover, according to the previous identification of
S tangent spacetimes, the componemtsand e/ in the local
Yab=Yab - (1) charts of A are well defined and, is globally orientable.
When Eq.(1) holds and given that the extensigrof the
where[2-4] metric is continuous in/,, the Einstein equations are well

II. GENERAL MATCHING CONDITIONS

+
=An*|,+B%;]|,,
p
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defined in the distributional sense, 464]. Relation(1) is At this level, our task reduces to finding the matching
necessary if we want to compute the Riemann tensor distrirypersurfaceso and o defined by x*=x*(¢%) and
bution and its contractior{g}]. In general, these distributions x*=x*(£?), respectively, which are solutions of the com-
will have two separated parts, one of them called the singulaplete set of junction conditions. In general situations this
part of the considered tensor distribution. This singular partnay be rather difficult, but we will now obtain mecessary

is proportional to the Dirac one-form distributiaf), associ-  condition that will allow us to ascertain which possible
ated withX, [3,4], so that it describes an infinite jump &t  matchings are valid and which are definitely excluded be-
Of course, in general, we want to avoid these infinities in thforehand. To that end, suppose that one of the possible
curvature and matter tensors because the only physicalljmatchings has been performed. Then, it follows that for ev-
meaningful discontinuities across a timelike matching hyperery pointp on X there exists a local coordinate system of
surface must be finite. Thus, we need to get rid of the singuy, in which the metric isC! [4,13,14. These are called

lar part of the Riemann tensor distribution. An easy calcula-admissible coordinate$13]. Therefore, every quantity in
tion leads to the conclusion that, for a general timelike), constructed with the metric, its first derivatives, and some
matching hypersurfacg, the vanishing of the singular part C! tensor fields must be continuous acr@ssin particular,

for the Riemann tensor distribution is equivalent to the vanthe expansions of the geodesic congruences must be continu-
ishing of the singular part of the Einstein tensor distributionous because, in admissible coordinates, the correct identifi-
[3,4], and this happens if and only if theecond fundamental cation of tangent spaces ®fand V on 3 implies that the
forms of 3 calculated fromy* and V™ are identical. The vectors tangent to geodesic curves @feacrossS, and, also,
componentsC;y, of the second fundamental forms Bfin  because the expansions depend only on the metric and its

the natural cobasi&dé?} are defined by3,4] first derivatives.
. o As we shall see in the next section, this condition is par-
Kap=—n.eV, e}, ticularly useful in the spherically symmetric case, where we

_can apply the above result to the invariantly defined null
where the* appears now because, even though the prelimiyeqdesic congruences. Given that the sign of the expansion
nary junction conditions hold, the connection coefficientsyemains invariant when we change the parametrization of
neednot be continuous across. In fact, in the practical  any future-directed congruence, we can conclude that the
problems and given that we may only know thelocal  sign of the expansion of a congruence of null geodesics mov-
charts{x4} for V*, the formulas we must use to compute jng on V), will be continuous acrosg, independently of the

K3y are parameters used to describe the congruence at both sides of
3,. Furthermore, the expansion is a scalar so that the conti-
PN G ¢ 3) L, PXE(E) XL (€) nuity of its sign is independent of the coordinate systems we
Kap=—n, a8 Thev To@ @ | use to describ&’ andV in a neighborhood of a poirnt on
3.

from where it is obvious that,, = KC,, Therefore, the afore-
mentioned condition for the vanishing of the singular part for

. L . Il. THE SPHERICALLY SYMMETRIC CASE
the Riemann tensor distribution simply reads

Ko=Kt ) A spacetime is said to tepherically symmetrifl,15] if it
ab™ Trab admits the group of rotations $8) as a group of isometries,
Because of the above reasons, two spacetifieare said to  With the group orbits spacelike two-surfaces. Then, these or-
be matchable across their common boundgrif the junc- bits are necessarily two-surfaces of constant positive curva-
tion conditions(1) and (2) hold. ture, usually calledwo-sphere,s_and also there exist two-
As outlined in the Introduction, in practice we will usually Surfaces orthogonal fo ghe orbits5]. We can choose two
have two full space time¥ and) and we will want to know an<gular coordmaf[e_l@x X }={0.’ ¢}, with ranges & 9<7.T'
if they are matchable. Let us choose a generic timelike hy9\0¢1<277’ dgspnbmg the orbits, and two other coardinates
persurfacer splitting V into two complementary parts which _{X X"} describing the orthogonal surfaces._EacOh t\l/vo-sphere
we call 1 and 2. In the same way, we can definel, and s thus marked by constant values of thety={x"x} co-

. . ) ordinates A,B, ...=0,1). We can also define a positive
2 for V. The matching o’ andy can be done iffour dif-_ ,¢ti0n R(x%) in such a way that #R? is the total area of

ferent manners: 1 with,21 with 1, 2 with 1, and 2 with 2 the corresponding two-sphere. Thus, the line element of a
overbarred region by~ (and then the region without bar is

V*). The whole spacetim@, will thus be formed by the d2=ggce(xA) dxBdXC+ R2(d 62+ sir?0d $2)

disjoint union of these twa- parts, and will be the image ’

of botho ando in V. According to the above crit_e_rion for where the two-metrigg has Lorentzian signature

the norm_al vector of the matchln_g hypersurface, it is easy to For all these spacetimes, there are two preferred congru-
see that ifx. matches a part of with a part of), say 1 and  gpeeg of null geodesics defined as those invariant by the
2, then this same hypersurface matches 2 withufomati-  group of isometriesand also as the two principal null direc-
cally. This is why we call 1-2nd 2-1complementary match- tions of the type-D Weyl tensor, s¢&5]). A straightforward
ings Therefore, there are only two properly inequivalentcalculation for the product of the expansiors and «, of
matchings, given by 1-2nd 1-1 these two congruencéwhen affinely parametrizedjives
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¥ IV. A RELEVANT APPLICATION: MATCHING OF THE
K1K2= ~ 502, x=9*"9,Rd,R. VAIDYA AND ROBERTSON-WALKER SPACETIMES

In this section we apply the above results to the matching
It is well known that these expansions coinciflgp to a of Vaidya’'s radiating metric with the Robertson-Walker
factor 1/2) with the traces of the two null second fundamen{RW) spacetimes. We proceed as follows: First we recall
tal forms of the two-spheresee[1] for definitiong. There-  some properties of the Vaidya and RW spacetimes and we
fore, the two expansions have the same sign wher®,  draw their respective Penrose conformal diagrams; then we
which is the region of closed trapped surfa¢#l while at  make use of theorem 1 in order to pick out the possible
regions withy>0, the two expansions have different sign. candidates for matching hypersurfaces in both spacetimes.
The hypersurface defined by=0, where at least one of the We will then describe the Penrose diagrams that can be ob-
expansions is zero, is called thpparent horizon(AH) [1].  tained in this way for the complete manifold,, beforethe
It is easy to see that resolution of the matching conditions is carried out in the

next section.
R

2 (1=X) ©) A. Vaidya's solution
Locally, Vaidya’'s metric[19] can be described in radia-

is the usual mass function introduced by Hertez and Mis- tive coordinate$20] as

ner[16-19.
Let us then consider the question of the general matching  gs2= —ydu?+2edudR+ RA(d¢?+sirfgd$?),  (4)
of two spherically symmetric spacetim@sand V. We as-
sume that both spacetimes are time oriented and we want tghere the mass functiof3) depends only oru [so that
know which, among the four different possible matchings,y=1-2m(u)/R] ande?=1. The range of the coordinates is
are permitted in principle. Applying the previous general re-
sults about the necessary continuity acrisef the sign of —o<u<own, 0sR<x, 0=s0<mw, O0=¢<27.
the expansions for the two preferred null geodesic congru-
ences, we have that, for every poiptin 3, the signs of The energy-momentum tensor for the meii is of pure
X|p and ﬂ'p must be the same. Furthermore, in the casegadiation type
X|p>0 both expansions have opposite signsiinand the _
same fory. Obviously, if sgnﬁ)=_sgn_(§=4_r1 in some re- e :Eaz dm(u) |, Ldxt=—du, 1,14=0. (5)
gion of %, only one of the possible inequivalent matchings mYo RS du MY m m
(and, of course, its complementaig allowed with regard to
this region. This matching should be given by gluing the parfThis energy-momentum tensor has only finite jumps when-
of V into which the future-directed expanding congruenceeverm(u) is a continuous function. Moreover, the weak en-
enters, with the part of towards which the future-directed €rgy conditions demand thatdm(u)/du=0. We shall as-
contracting congruence points in. The other inequivalensume from now on thati grows towards the future. Then,
matching is impossible in this case. The case withm must be a nonincreasirigondecreasingunction ofu for
sgn(x) =sgn(y) = —1 in some region ok is a little bit dif- &=—1 (¢=1) and the incoherent radially directed radiation
ferent. Now, both expansions, and x, have the same sign described by Eq(5) is outgoing(ingoing). Here, outgoing
and the same happens for bathandk,. All of them can be means going towards bigger valuesRf and similarly for
assumed to be positive by appropriate choice of the timéngoing. The apparent horizofAH) for the Vaidya metric
orientations. Then, all four matchings are allowed at this(4) is located at the hypersurfage-2m(u)=0. Taking into
level in such regions. Similar reasonings apply to the case iaccount the weak energy conditions it is easily seen that the
which y=xy=0 in some region oE. In this case, one of the AH is a spacelike hypersurface in general, but it becomes
expansions vanishes there. The other may be either zero bl for values ofu such thatdm(u)/du=0.
different from zero. In the first case the situation is of the Let us consider a general timelike hypersurfacepre-
same kind that the one with sgg)X=sgn(y)=—1, while the ~ serving the spherical symmetry of the spacetime and with
second case is similar to that with sgE&sgn()=+1. intrinsic coordinates{¢®}={7,9,¢}, where 7 is a future-
Summarizing, we have proven the following. directed time coordinate defined only on the hypersurface.
Theorem 1. If there is at least one point pinwhere The general parametric equations ofo  are:
x|p>0 (or where x|,=0 but with one of the expansions u=u(r), R=R(7),0=13,¢=¢. This hypersurface is time-
nonzero), then only one matching (and its complementary) ifke if and only if yuU—2¢R>0, where overdots stand for
possible in principle. derivatives with respect te and we have taken into account
Of course, even thia priori possible matching may turn thatu>0. The unit normal vector of is
out to be impossible by several reasanposteriori First,
because the possible matching around one of the regions _ .
with =0 induces a global identification of the-tangent n=———|¢
spaces which may be inadequate for the discussed continuity Vu(xu—2eR)
of the sign of the expansions in other regions. And second,
because one still has to check whether or not the full set of The future-directed vector fields tangent to the two invari-
junction conditions holds. ant null geodesic congruences are g|venl lof Eqg. (5) and

J . J
'_ — —
u&u-l—()(u SR)&R’ e=1.
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FIG. 1. Penrose diagram for the extended Vaidya spacetime
whenm(u) is a positive function and the waved arrows represent
the flow of radiation. For every region we show the light cones and
their respective signs of expansions. The dashed lines marked with
o4, ando,, represent two candidates for matching hypersurfaces.

R=0 i

FIG. 2. The Penrose diagram for Vaidya's spacetime when
9 m(u) vanishes from some instant=0 on. A generic spacelike
— hypersurfacé has the past Cauchy horizon in the null hypersurface
marked as “CH forF.”

L X
= — 4+ g—
k au_ o2

where we have séf,k”=—1. A trivial calculation gives size the fact that, in this case, the differential equations for

the ingoing radial null geodesics have a critical point at
R=0,u=0 because the derivatives of bok and u with

These relations will be very useful in order to use the criterid ©SPeCt t0 the affine parameter vanish there. If

sgn(k,n*)=— sgr(l ,n*)=¢e.

defined in Sec. Il. Thus, if we want that boﬁharﬁr point S om(u) 1
towards the same region, we will have to choese= —1, lim ——<7¢& (6)
and analogously for the other cases. u—0"

As is well known, Vaidya's metric is extendible in gen-
eral [21-23. We can consider two different possibilities.
First, Penrose conformal diagram for the line elemeht
whene =—1 andm(u) is a nonincreasing and positive func-
tion of u is shown in the nonshadowed region of Fig. 1. The
ingoing radial null geodesic&oming from the past null in-

finity jr; or thehs%acelike shingularitRi(O) are)z ;ncor?plete ishing mass function that begins to grow after a certain
since they reach the event horizBa-2m(u—o°) for a finite _ i ; :
value of their affine parameters. The shadowed region of FigL.I 0 and satisfying the time reversal of ). In both Figs.

1 extends maximally the original Vaidya’'s metric. This shad-
owed region is by itself the Penrose conformal diagram for

thenu=R=0 has a nodéor col-node structure[24]. The
case sketched in Fig. 2 is precisely the linear one:
m(u)=au where O<a=const <1/16. In particular, the
time reversal of Fig. Zshown in Fig. 3 has a locally naked
singularity inu=R=0 (see[25,26]). Obviously, we can in-
terpret Fig. 3 as a Vaidya's spacetime={+1) with a van-

the line elemeni4) when e=+1 and with a massn(l)
which is a nondecreasing function of the new null time
[23]. With such a mass function the energy conditions are
satisfied in the new shadowed region as well. The mass func-
tion must be continuous at the event horizon in order to have,
at worst, finite jumps of the curvature tensor thkfidus, we

havem(u— o) =m(l— —).

The second possibility is shown in Fig. 2, where we give
the Penrose conformal diagram for the line elem@htwith
e=—1 and for a mass function which vanishes from some
instantu=0 on. We could have extendem(u) beyond
u=0 with negative values since the only requirement is that
m(u) must be aC° function. Despite this, we have chosen a
continuation withm(u>0)=0. It is easy to see that the
spacetime thus obtained is inextendible. We have to empha-

FIG. 3. The Penrose diagram for the time reversal of Fig. 2. A
This condition can be easily verified by matching the two Vaid- generic spacelike hypersurfaBehas the future Cauchy horizon at
ya’s solutions through a nullu= cons} hypersurfacesee[4,23)). the null hypersurface marked as “CH féx”
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2 and 3, the region wittm=0 is, obviously, part of a
Minkowski flat spacetime. Despite the fact that these dia-
grams are qualitatively the same for otha(u), there are

still cases with a different causal structUmepending on
whether Eq(6) is accomplished or npf25]. These cases are
not drawn here because it is easy to see, according to the
necessary condition, that any candidate for matching hyper-
surface does not have a corresponding candidate on the
Robertson-Walker spacetime.

B. The Robertson-Walker metrics

We can describe the Robertson-Walker line element in its
isotropic form as

a%(t)
b*(r)
where b(r)El+kr2/4 and k=0+1. As is evident. the FIG. 4. Conformal diagram for a flat Robertson-Walker space-

t=const hypersurfaces are spacelike whileithaonst ones  '™M® with equation of state=yp when —1/3<y<1. The dashed

are timelike. The mass functic) for the RW spacetime is lines represent_the valid candidates for matching hypersurfaces. The
apparent horizon (AH) drawn corresponds to the case

ar3(a,2+k) —1_/3< v<1/3; if y=1/3 the AH would be a null hypgrgurface
mt,r=——-5—. (8) going from the lower left corner to the future null infinity™;
2b finally, if 1/3<y<1 the AH would be a spacelike hypersurface
from the lower left corner to the spacelike infinit}.

t=0

ds2,= —dt2+ [dr2+r2(d6?+sirfodp?)], (7)

The energy-momentum tensor of K@) takes the form of a

perfect fluid with respect to the unit velocity vector \yheree2=1. Now. the meaning of is very clear given that
v=alat: dlor is a spacelike vector field everywhere. Thus, for in-
stance, ift is future directed(so thatt>0) and e=1

T =PRIV, T PGus (—1), thenn points towards greateismalley values ofr,
wherep(t) andp(t) are the energy density and the isotropicand son points into the same direction as the vector field

pressure relative t@, respectively. Friedmann's equations t&ngent to the radial future-directed outgoifiggoing null
are given by geodesic congruence. The other case() is analogous.

Let us consider the interesting particular case of a flat RW
3(a,2+k) a, metric (k=0) with a linear equation of stafe= yp, y being
p=—z pit+3(pt+ p);=0. a constant which we assume to lie in the rargé<y<1
(so that the dominant energy conditions h¢). Fried-

Combining the first of these equations with E8), we ob- ~Mann’'s equations can be easily solved to give

tain a(t)=Ct2/31+7), (10)
3
m(t,r)= pira whereC is a positive integration constant and we have set
61 b a(0)=0. The apparent horizon=2m for these particular

) L . models is the hypersurfaca,;=1, that is to say
from where we learn that tha will be positive if and only if

so isp (notice thatp=0 for k=0,1, in general 3(1+7y)

Let us take a general timelike hypersurfagereserving AHrra, =ler - Tt(1+37)/3<1+7)=0- (11
the spherical symmetry of Eq7). This hypersurface is as-
sumed to be diffeomorphic ta, and thus the intrinsic coor- |t is easy to check with the help of E() that this apparent
dinates are chosen to be the safé}={r,3,¢}. The gen-  horizon is timelike if — 1< y<1/3, lightlike if y=1/3, and

eral parametric equations for o are:  spacelike if 1/% y<1. The typical Penrose diagram for
t=t(r), r=r(7), 6=, ¢=¢. This hypersurface is time- these spacetimes when1/3<y<1 is sketched in Fig. 4,
like whenever while y=—1/3 and— 1< y<—1/3 are sketched in Figs. 5

] and 6, respectively. We shall make use of these particular

r? _(dr 2<b2 g  models later.

't2 - dt a2 . ( )

C. Making use of theorem 1

The corresponding unit vector normal dois simply Let us focus on the cases1/3< y<<1/3. In Figs. 1-4 we

have drawn some lines corresponding to some possible
a2 ﬁ + bz'ti> matching hypersurfaces for the matching of RW and Vaidya
at ar spacetimes. Thus, for example, the lines, o, andoy in

€

a bl

n:
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FIG. 7. The Penrose diagram for the matching of the Vaidya and
Robertson-Walker spacetimes whep is identified witho .

FIG. 5. Conformal diagram for the=—1/3 case. We do not x>0 region, where, of course, the expansions have different
draw the possible candidates for matching hypersurface becauségn, and moves asymptotically towards. The hypersur-
they have the same qualitative behavior as those in Fig. 4. face oy, is similar to o,, the only difference is thatr,

reachesr=0 at a finitet instead of moving towards™.
Fig. 4 represent three possible typical matching hypersurEinally, the hypersurface is quite different from the pre-
faceso. As we can seeg, starts att=0 and moves first Vious ones. Nowp starts atr=0 with t>0 and reaches
through ay<0 region up to a certain instant t, in which i~ asymptotically. The hypersurface. always lies in a
it crosses the apparent horizon. The expansions for the ingo<>0 region.
ing and outgoing null geodesic congruences are both positive The question is now to try and find the corresponding

up to t:tAH! and then the matching hypersurface enters é)OSSible hypersurfaces in the Valdya metrics, that is, in FlgS
1-3. By making use of theorem 1 and the considerations

preceding it regarding the expansiors and x,, we can
easily identify these candidates. For example, in Fig. 1 we
t=const have drawn two different and inequivalent possibilities
r=const . o )
s\,\ + // which can be, in principle, good matching partners 4qr.
3 t=00 i They are labeled as,; and o ,,. Obviously, the reasoning
/ presented in Sec. Il implies also that the matching with the
hypersurfaces, ando,; must join the region to the left of
o, in Fig. 4 with the region to the right o, in Fig. 1 (or
the corresponding complementaries, giving the complemen-
tary matching. Similarly, the matching with the hypersur-
faceso, ando,, has to be that gluing the part to the left of
0, in Fig. 4 with the region to the left of,; in Fig. 1 (and
its complementary In this case, the complete Penrose dia-
gram, once the matching has been performed, is presented i
Fig. 7 (and the corresponding complementary in Fig.\8e
shall see in the next section that the first possibility with
o, and o, is forbidden by the complete set of matching
equations.

Analogously, the hypersurfaces, in Fig. 2 andoy in
Fig. 3 are good matching partners faf, and o, respec-
tively. In the first case we can join the part to the left of
oy, in Fig. 4 with the part to the right of, in Fig. 2. The
resulting conformal diagram is presented in Fig(add its
complementary in Fig. 0In the second case we can match
the part to the left otr. in Fig. 4 with the part to the left of
FIG. 6. Conformal diagram for the 1< y< —1/3 case. We do ¢ in Fig. 2. The whole conformal diagram is presented in

not draw the candidates for matching hypersurface for the samEig. 11 (and its complementary in Fig. 12n the next sec-
reason as in Fig. 5. tion we justify all these conformal diagrams by solving com-

>
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i R=0 it

FIG. 8. Conformal diagram for the complementary matching of
Fig. 7. Integration of the matching conditions shows tBastarts

from a partly spacelike and partly null singularity. FIG. 10. Conformal diagram for the complementary matching of

Fig. 9.
pletely the full set of matching conditions in some pertinent
cases. s A
: ar+eeebt
=& —, (14
V. INTEGRATION OF THE MATCHING CONDITIONS b (I’/b)',—seera,t
We are going to write down and solve the general match-
ing equations for the Vaidya and RW spacetimes. As we . _bp.
shall presently see, these equations will depend explicitly on r= €ee ;t, (15
the productee. The full set of matching conditions is given
by Egs.(1) and (2), which in the case under consideration
become, after a little computatigd2,27), = ] )
where= means that both sides of the equality must be evalu-
DI ated onX. Condition(9) on the matching hypersurface can
R=ar, (120 be written now with the help of Eq15) as[12]
_ar¥(a,2+k) p?
= —<1,
m TS , (13 02

=0

=0

R:

FIG. 9. Penrose diagram for the matching of the Vaidya and
Robertson-Walker spacetimes whey and o, are identified. As
for the previous casE starts from a partly spacelike and partly null FIG. 11. The identification o, ando, leads to this conformal
singularity. diagram.
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From this inequality and the AH hypersurface given in Eq.
(11), we learn that if:ee=1 we will not be able to describe
the matching after crossing the apparent hori@ee cases A
and C below. This is partly because of the fact that the
coordinateu is only valid to describe a part of the spacetime
(for example, the nonshadowed region of Fig.decause
whenee—ea,(7)r(7,r,)—0 thenu— +o andr(r,rg) just
reaches the AH.

On the other hand, Eq13) comes from the matching

)

conditionm(u) =m(t,r). The derivative or® of this equa-
tion leads us to

FIG. 12. Complementary Penrose diagram of Fig. 11. s
m, u=m,+m,,r.

so that this will hold whenever the dominant energy condi-
tions are satisfied. In the cape= yp, the above inequality is Taking into account Eq(14) and the above equation we can
equivalent to simplyy?<1. see that, in order to hawe dm(u)/du=0, a necessary con-

Assuming that we know explicitly the RW moddlse,  dition is thaty=0. Thus, by making Eq(18) explicit we
a(t)], the general procedure to solve the matching condition§nally get
(12—(15) is the following[12,27. (i) Sincet>0 (for future-
directedt), we can alvv_ays ch_ooslr(r)_: . The_n, Eq.(15 y=0, ee—s .
becomes a simple ordinary differential equation for the un- 3(1+y)
knownr(7), which will have solution if the right-hand side
satisfies Lipschitz's conditions. The solution will depend on
one arbitrary constamt, and thus we obtain a one-parameter
family of possible hypersurfaces. (i) By substituting the
solution forr (7,rg) into Eq.(14), we obtain another ordinary
differential equation for the unknown(7). Solving this
equation, we obtaim(,rq,ug), whereug is a new arbitrary
constant. It should be noticed, however, that in this cgse 2Cry(1+37)
an additive constantiii) From Eq.(12) we immediately find TH=(—2
R(7,rg), which together withu(7,rq,ug) provides the form 3(1+y)
of the hypersurface¥ as seen from the Vaidya spacetime.
(iv) Finally, we getm(r,ro) from Eq.(13). This gives us, in
combination withu(,rq,ug), the mass functiom(u) for
Vaidya's metric explicitly.

2C1o(1%3y) _esnmiin=g. (19

From the last relation we immediately see that the case with
e=1 andee=—1 is not possible. The other cases are:

Case A:e=+1 and then, from Eq(19), ee=+1. Ex-
amination of Eq(19) tells us that two different subcases may
still appear, depending on whetheg=0 or not. When
ro=0, we can define a lower bound fergiven by

3(1+y)/(1+3y)
(20)

which is the limit value ofr whenZ, approaches the apparent
horizon in the RW metric. The ranges of r(r,ro) and
u(7,rg,uUp) are, respectively

In the particular cas&=0, p=yp of the previous sec- <7T<+oo,
tion, and according to Eq10), Egs. (14) and (15) read,
respectively, M(7H,ro)<r(7,ro) <+,
3 +1 s o —oo<U(T,rg,Ug) < +00. (22)
u=_7—, rzseeZZSEG%f 231+ - (16)
€e—ea,f a This behavior fou(r,rq,ug) follows from the expression for

_ _ o u>0 in Eq.(16), which implies thatu(ry ,ro,ug) — — .
The second of these equations is easily integrable, and the g, the other hand if,<0, there is another lower bound
solutions are mm for 7, defined byr (7,,ro)=0. Because of Eq(17), we

3y have
r(r,rg)=cee—

C

1+y

1+3y/3(1+7y) 4
1+3y T fo (17

3(1+y)/(1+3y)

_((—r0>c<1+3y>
™=\ "> 1, .~

3y(1+
for y#-13, while for y=-1/3 we have y(1+y)

r(7.ro) = —(es€/3C)InT+ro, wherer is an integration con-  The mass function vanishes &hat 7, and thus we must
stant. These formulas define a one-parameter family ohave Minkowski's spacetime previously. The corresponding

matching hypersurfaces in the RW models. We should nOWangeS f0r7-, r(T,rO) and u(71r0,u0) are, respective|y1
integrate the first of the Eq§16), but this is not necessary in

order to know the main characteristics of the solution. Since 7,<7<, O0<r(7,rg)<®, U,<U(7,rq,Uy) <+
the left-hand side of this relation is bigger than zero

(U>0) and alsoy+1>0, the matching is only possible in for some finite valueuy,.
those regions with Case B:e=—1 with ee=+1. From Eq.(17) it follows

o thatro=0. Then, Eq(19) is always trivially satisfied. Now,
ee—ea,(n)r(r,rg)>0. (189 we have an upper bound for given by 7, such that
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r(mm,ro)=0, from where we again get a vanishing massintegration of these matching equations and the requirement
function on2, at 7, . From Eq.(17) we have of weak energy conditions have distinguished between those
which are actually viable from those which are not. We may
o ( Cro(1+3y) wonder, however, whether or not we have found all possible
M 3y(1+y) matchings for these spacetimes, since we have assumed that
and the ranges fot, r(,rg), andu(r,rg,ug) are

3(1+y)/(1+3y)

bothu andt are future-directed throughout. In this sense, the
change of time direction for may supply some extra free-
dom that could produce new results. A closer examination of
the conformal diagrams sketched in Figs. 1-6 proves that, in
s fact, the global spacetimes we can obtain in this manner are
Notice that atr=0(<u=u,) the mass function becomes just the time reversals of those already obtained in Figs.
infinite on3, then we haven(up) = and, therefore, Vaid- 7—12. This is because of tigualitatively symmetric nature
ya’s hypersurfacei= Uy is singular. In this case B, crosses Of future and past in Vaidya's spacetime of Fig. 1, and also

0$T$TM1 rOBr(TIrO)BO’ UOZU(T'rO’UO)ZuM.

the apparent horizon of the RW metric at the value to the fact that Fig. 3 is the time reversal of Fig. 2. _
The diagrams found can certainly represent interesting
2Cro(1+3y) |33H»/a+3y) physical situations. For example, the time reversal of Fig. 7
TH= —3(1+ Y)(1+57) is a typical diagram for a radiating star collapsing to form a

black hole. The matching hypersurface contracts continu-
which is within the allowed range of. ously, crosses the event horizon entering into a region of
Case C:e=—1 with ee=—1. From Eq.(19) we must closed trapped surfaces, and eventually reaches the spacelike
haver,=0. Now, there appears an upper bound fagiven  Singularity. This is a radiating generalization of the classical
by the limit value ofr when, approaches the RW apparent collapsing star model of Oppenheimer and Snyéérwhich
horizon. This value is exactlyy, given in Eq.(20). The has ak=+1 RW dust interior with Schwarzschild exterior.

corresponding ranges of r(7,r,), andu(r,rq,U) are now The _collapsing time interval ifi6] corresp_onds to the con-
tracting phase of the closed RW spacetime. We present the

Os7<ty, Tro=r(nro)<r(ry.ro), time reversal of Fig. 7 as a model for a fld¢=0) ever-
contracting RW star with an equation of state of the type
Up<U(T,rg,Ug) < +°. (22 p=yp for y=0 and radiation coming out of the star.

Regarding Fig. 8, Ref48-10| deal with radiative voids
Let us interpret the solutions found. In both cases A andn expanding RW universes, which are callgdimordial in-

C, we havesee= + 1, and therefore the solutidi7) has the homogeneitiein those papers. The extension of this type of
same functional form. The only difference appears in themodels through the EH, providing its maximal Penrose dia-
valid intervals forr. In fact, the range€21) for case A when gram, corresponds to the matching of Fig. 8. As far as we
ro=0 and the range®?2) for case C are obviously two parts know, this full conformal diagram had not been given previ-
of a unique solution since the valid intervals are perfectlyously. A relevant property of this model is the presence of a
complementary. The valid interval for case C describes thaull initial singularity in the past of the radiating void. Thus,
part of o, in Fig. 1 which goes fronR=0 up to the event the structure of the whole initial singularity is partly space-
horizon (EH), while the valid interval for case A describes like and partly null.
the part of the same,, in Fig. 1 which goes from the same  Let us consider now the Figs. 9 and 10. For instance, the
point at EH up toi *. Obviously, this same “double” de- Penrose diagram in Fig. 9 can be interpreted as a radiating
scription holds for the partner hypersurfaggin Fig. 4. The  star (or Universe that starts in a spacelike singularity and
whole matched spacetime is sketched in Figaidd Fig. 8 evolves in a collapsing and radiating way until it losaisits
for the complementaljy For case B, we saw tha always mass, ending in a flat spacetime sti€]. On the other
crosses the AH hypersurface and also thatnd the mass hand, the time reversal of its complementary matching
function go to zero for a finite value of Thus, it describes shown in Fig. 10 describes a flat RW contracting universe in
appropriately the hypersurfaee, shown in Fig. 4, and its Which a radiating Vaidya's void appears. This induces the
partneroy, in Fig. 2. The whole matched spacetime and itscreation of a locally naked singularity. To our knowledge
complementary are sketched in Figs. 9 and 10. The sani@is model(and its time reversalis presented here for the
type of reasoning shows that case A with<O describes first time.
o. in Fig. 4, and its partnes in Fig. 3, appropriately. The Finally, the diagrams in Figs. 11 and 12 may have greater
whole matched spacetimes are shown in Figs. 11 and 1terest. The time reversal of Fig. 11 represent®mpletely
Finally, it is obvious that the hypersurfaeg, in Fig. 1 does evaporating starthat is to say, a collapsing and radiating

not correspond to any solution of the matching equations. Star which radiates all its energy away. After the complete
evaporation, the manifold becomes flat Minkowski space-

V1. DISCUSSION t@me. We have seen that the mass functiqn i_n \_/qidya’s space-
time must be continuous in order to avoid infinite jumps on
By making use of theorem 1 and related criteria on thethe energy-momentum tensor. Therefore, we do not need to
continuity of the sign of the expansions for the invariant nullcontinue the metric with negative masses once the mass be-
geodesic congruences, we have been able to choose sommmes zero. This is not in accordance with a claiflity. In
possible matchings of the Vaidya and RW spacetibefere  Fig. 12 we sketch the complementary matching of Fig. 11. It
solving the full set of matching equations. The subsequentepresents an expanding RW universe generating a radiating
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void, with the appearance of a locally naked singularity. Thissidered a nonradiative orie.g., RW. Of course, the nonra-
model, as well as some of the previous ones, violate theliative character of RW metrics depends on the observer
uniqueness of the Cauchy initial value problem for the RWand, as a matter of fact, any obsene@moving withS on
solution, as was pointed out by Ellis in a note added in proofs, will certainly see radiation crossing this hypersurface. A
in paper[10]. This is natural and logical, however, becausecorrect and full interpretation of these results was given in
the Cauchy problem needs a differentiability for the metric[lz] and, in general, the physical interpretation of any pos-

functions which does not hold here at the matching hypersiple matching for spherically symmetric spacetimes was
surfaceX . In [10] this type of models is called monprimor- 54 given in[27].

dial inhomogeneity

As a closing remark, we would like to emphasize here
that, in all the above models, the matching hypersurface is
not comoving with matter in the usual perfect-fluid interpre-
tation of the RW spacetime. Thus, the matching hypersurface This work was partially supported by the Ministerio de
> moves with respect to the preferred observer defined bgducacim y Ciencia under Project No. PB93-1050 and the
the perfect-fluid velocity vectar=9/dt. This is why we can  Direccio General de Recerca under Project No.
match a radiative metrite.g., Vaidya with one usually con- 1995SGRO00066.
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