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We derive the gravitational waveform and gravitational-wave energy flux generated by a binary star system
of compact objects(neutron stars or black holgsaccurate through second post-Newtonian order
(O[(v/c)*]=0[(Gm/rc?)?]) beyond the lowest-order quadrupole approximation. We cast the Einstein equa-
tions into the form of a flat-spacetime wave equation together with a harmonic gauge condition, and solve it
formally as a retarded integral over the past null cone of the chosen field point. The part of this integral that
involves the matter sources and the near-zone gravitational field is evaluated in terms of multipole moments
using standard techniques; the remainder of the retarded integral, extending over the radiation zone, is evalu-
ated in a novel way. The result is a manifestly convergent and finite procedure for calculating gravitational
radiation to arbitrary orders in a post-Newtonian expansion. Through second post-Newtonian order, the radia-
tion is also shown to propagate toward the observer along true null rays of the asymptotically Schwarzschild
spacetime, despite having been derived using flat-spacetime wave equations. The method cures defects that
plagued previous “brute-force” slow-motion approaches to the generation of gravitational radiation, and yields
results that agree perfectly with those recently obtained by a mixed post-Minkowskian post-Newtonian
method. We display explicit formulas for the gravitational waveform and the energy flux for two-body systems,
both in arbitrary orbits and in circular orbits. In an appendix, we extend the formalism to bodies with finite
spatial extent, and derive the spin corrections to the waveform and energy36586-282(96)02820-2

PACS numbe(s): 04.30.Db, 04.80.Nn, 97.60.Jd, 97.60.Lf

I. INTRODUCTION “post-Newtonian” (PN) corrections, with each power of
v/ic corresponding to one-half a post-Newtonian order
The generation of gravitational radiation is a long- (1/2PN), in analogy with post-Newtonian corrections to the
standing problem that dates back to the first years followindNewtonian equations of motiohl8]. In 1976, the post-
the publication of general relativityGR). In 1916 Einstein Newtonian corrections were of purely academic, rather than
calculated the gravitational radiation emitted by a laboratory-observational interest.
scale object using the linearized version of @R Some of Recently, however, the issue of higher post-Newtonian
his assumptions were questionable and his answer for theorrections in the theory of gravitational waves has taken on
energy flux was off by a factor of @an error pointed out by some urgency. The reason is the construction of kilometer-
Eddington [2]). There followed a lengthy debate about scale, laser interferometric gravitational-wave observatories
whether gravitational waves are real or an artifact of generah the U.S[Laser Interferometric Gravitational Wave Obser-
coordinate invariance, the former interpretation being convatory (LIGO) projecf and Europe(VIRGO projec), with
firmed by the rigorous, coordinate free theorems of Bondigravitational-wave searches scheduled to commence around
and his schodl3-5] and by the short-wave analysis of Isaac- 2000 (see[19] for a review. These broadband antennae will
son[6]. Shortly after the discovery of the binary pulsar PSRhave the capability of detecting and measuring the gravita-
1913+16 in 1974, questions were raised about the foundational waveforms from astronomical sources in a frequency
tions of the “quadrupole formula” for gravitational radiation band between about 10 Hthe seismic noise cutgfind 500
damping[7] (and in some quarters, even about its quantitaHz (the photon counting noise cutgffvith a maximum sen-
tive validity [8]). These questions were answered in part bysitivity to strain at around 100 Hz af1/I ~10 22 (rms). The
theoretical work designed to shore up the foundations of thenost promising source for detection and study of the
quadrupole approximatiof9—-13], and in part (perhaps gravitational-wave signal is the *“inspiralling compact
mostly) by the agreement between the predictions of thebinary”—a binary system of neutron stars or black hdles
quadrupole formula and thebservedate of damping of the one of eachin the final minutes of a death dance leading to
pulsar’s orbit[14,15. a violent merger. Such is the fate, for example, of the Hulse-
Because it is a slow-motion system/¢~ 10 3), the bi-  Taylor binary pulsar PSR 193316 in about 300 M years.
nary pulsar is sensitive only to the lowest-order effects ofGiven the expected sensitivity of the “advanced LIGO”
gravitational radiation as predicted by the quadrupole for{around 200}, which could see such sources out to hundreds
mula. Nevertheless, the first correction terms of ordér  of megaparsecs, it has been estimated that from 3 to 100
and @/c)? to the quadrupole formula were calculated asannual inspiral events could be detectgde—21.
early as 197616,17]. These are now conventionally called  The urgency derives from the realizati¢82] that ex-
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tremely accurate theoretical predictions for the orbital evolu- The approach of this paper is based on a framework de-
tion, and to a lesser extent, the gravitational waveform, willveloped by Epstein and WagongEW) [16]. Like the BDI
play a central role in the data analysis from these observat@pproach, it involves rewriting the Einstein equations in their
ries. That data analysis is likely to involve some form of “relaxed” form, namely as an inhomogeneous, flat-
matched filtering of the noisy detector output against an enspacetime wave equation for a fiedd?, whose source con-
semble of theoretical “template” waveforms which dependsists of both the material stress energy, and a “gravitational
on the intrinsic parameters of the inspiralling binary, such astress energy” made up of all the terms nonlineamitf.
the component masses, spins, and so on, and on its inspirBhe wave equation is accompanied by a harmonic or de
evolution. How accurate must a template be in order tddonder gauge condition oh®?, which serves to specify a
“match” the waveform from a given sourcévhere by a coordinate system, and also imposes equations of motion on
match we mean maximizing the signal-to-noise n&im the  the sources. Unlike the BDI approachsiagle formal solu-
total accumulated phase of the wave detected in the sensitit®n is written down, valid everywhere in spacetime. This
bandwidth, the template must match the signal to a fractiofiormal solution, based on the flat-spacetime retarded Green’s
of a cycle. For two inspiralling neutron stars, around 16 00Cfunction, is a retarded integral equation fof?, which is
cycles should be detected; this implies a phasing accuracy tfien iterated in a slow-motion v(c<1), weak-field
10" ° or better. Sincer/c~ 1/10 during the late inspiral, this (]|h%#||<1) approximation, that is very similar to the corre-
means that correction terms in the phasing at the level ofponding procedure in electromagnetism. However, because
(v/c)® or higher are needed. More formal analyses confirnthe integrand of this retarded integral is not compact by vir-
this intuition [23-26. ture of the nonlinear field contributions, the original EW for-
The bottom line is that theorists have been challenged tmalism quickly runs up against integrals that are not well
derive the gravitational waveform and the resulting radiationdefined, or worse, are divergent. Although at the lowest
back reaction on the orbit phasing at least to 2PN, or seconquadrupole and first few PN orders, various arguments can
post-Newtonian orderQ[(v/c)*], beyond the quadrupole be given to justify sweeping such problems under the rug
approximation, and probably to 3PN order. Furthermore, bef17], they are not very rigorous, and provide no guarantee
cause of the extreme complexity of the calculations at sucithat the divergences do not become insurmountable at higher
high PN order, independent calculations are called for, irorders. As a consequence, despite efforts to cure the prob-
order to inspire confidence in the final formulas. After all, lem, the EW formalism fell into some disfavor as a route to
the formulas will ultimately be compared against real data. higher orders, although an extension to 3/2PN order was ac-
This challenge was recently taken up by two teams oftomplished 35].
workers, one composed of Blanchet, Damour and (&), One contribution of this paper is a resolution of this prob-
the other composed of the present authors. The goal was tem. The resolution involves taking literally the statement
derive the gravitational waveform and the energy flux forthat the solution is aetardedintegral, i.e., an integral over
inspiralling compact binaries of arbitrary masses, througthe entire past null cone of the field point. To be sure, that
2PN order. Each team adopted a different approach to thpart of the integral that extends over the intersection between
calculation, and worked in isolation from the other. Only atthe past null cone and the material source and the near zone
the end of the calculation were comparisons made for the keig still approximated as usual by a slow-motion expansion
formulas for the waveform and the gravitational energy flux.involving spatial integrals of moments of the source, includ-
The results agreed precisd87]. ing the non-compact gravitational contributions, just as in the
The BDI approach was based on a mixed post-NewtoniaB®DI framework. But instead of cavalierly extending the spa-
and “post-Minkowskian” framework for solving Einstein’s tial integrals to infinity as was implicit in the original EW
equations approximately, developed in a long series of paframework, and risking undefined or divergent integrals, we
pers by Damour and colleagug8—33. The idea is to solve terminate the integrals at the boundary of the near zone, cho-
the vacuum Einstein equations in the exterior of the materiaten to be at a radiuR given roughly by one wavelength of
sources extending out to the radiation zone in an expansiotie gravitational radiation. For the integral over the rest of
(“post-Minkowskian™) in “nonlinearity” (effectively an ex- the past null cone exterior to the near zofeadiation
pansion in powers of Newton's consta®), and to express zone”), we do not make a slow-motion expansion, instead
the asymptotic solutions in terms of a set of formal, time-we use a coordinate transformation to convert the integral
dependent, symmetric and trace-fré&TH multipole mo- into a convenient, easy-to-calculate form, that is manifestly
ments[34]. Then, in a near zone within one characteristicconvergent, subject only to reasonable assumptions about the
wavelength of the radiation, the equations including the mapast behavior of the source. This transformation was sug-
terial source are solved in a slow-motion approximatiex-  gested by our earlier work on a nonlinear gravitational-wave
pansion in powers of tj that yields a set of STF source phenomenon called the Christodoulou mem@8p|. Not
multipole moments expressed as integrals over the “effeconly are all integrations now explicitly finite and convergent,
tive” source, including both matter and gravitational field we show explicitly that all contributions from the near-zone
contributions. The solutions involving the two sets of mo-spatial integrals that grow witiR (and that would have di-
ments are then matched in an intermediate zone, resulting iverged had we lekR— ) are actuallycancelledby corre-
a connection between the formal radiative moments and thgponding terms from the radiation-zone integrals. Thus the
source moments. The matching also provides a natural wayprocedure, as expected, has no dependence on the artificially
using analytic continuation, to regularize integrals involvingchosen boundary radiug of the near zone. In addition, the
the noncompact contributions of gravitational stress energmethod can be carried to higher orders in a straightforward,
that might otherwise be divergent. albeit very tedious manner. The result is a manifestly finite,
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well-defined procedure for calculating gravitational radiation dg/dt= (dE/dt)o[1+O(e) + 0(53’2) +0()+---].
to high, and we suspect all, PN orders. 1.3

The result of the calculation is an explicit formula for the
gravitational waveform for a two-body system, the Here dE/dt)q denotes the lowest-order quadrupole contri-
transverse-tracele$$ T) part of the radiation-zone field, de- bution, proportional to the square of three time derivatives of
notedh", and representing the deviation of the metric fromthe trace-free mass quadrupole moment tensor of the source.
flat spacetime. In terms of an expansion beyond the quadrdrhe explicit formula for a general two-body system is given

pole formula, it has the schematic form below in Eqs.(6.12 and(6.13. For the special case of non-
spinning bodies moving on quasicircular orhii®., circular
i :ZFZSC,:L {6‘1[1+O(61/2)+O(€)+O(63/2) apart from a slow inspiral the energy flux has the form
dE 32G ,(Gm\% Gm/[2927 5 Gm\3?
+0(€?)--- , 1.1 —=—— 7 — —— ===+ e
(€ prr @9 dt 5c8 7 (rcz) rcz( 336 47 +47T( rcz)
where u is the reduced mass, a@’ represents two time Gm\2/293383 380
derivatives of the mass quadrupole moment tefar series <—2> (— + — 77) } 1.4
actually contains multipole orders beyond quadrupolée rc 9072 9

TT projection operation is described below. The expansion ) _ )

parameter € is related to the orbital variables by Whereé»n=mm,/m*. The first term is the quadrupole con-
e~Gmirc2~(v/c)?, wherer is the distance between the tribution, the second term is the 1PN contribufdrY], the
bodiesp is the relative velocity, anth=m, +m, is the total third term, with the coefficient 4, is the “tail” contribution

mass. The 1/2PN and 1PN terms were deriveilif], the [32,37,38,4% and the fourth term is the 2PN contribution
3/2PN terms if35]. The contribution of gravitational-wave derived here. This new contribution was reportefli#, and
“tails,” caused by backscatter of the outgoing radiation off Was also derived using the BDI approach[89]. For the
the background spacetime curvature,Gite®?), were de- contributions  of splnjorblt and spin-spin coupling see
rived and studied if32,37,38. [40,41,27 and Appendix F. _

This paper derives the 2PN terms including 2PN tail con- Similar expressions can be derived for the loss of angular
tributions; the results are in complete agreement with BDIMomMentum and linear momentum. These losses react back
[39]. We also find that part of the tail terms at 3/2PN and©" the orbit to circularize it and cause it to inspiral. The
2PN order serve to guarantee that the outgoing radiatioffSult is that the orbital phaseand consequently the

propagates along true null directions of the asymptoti(gravitatiqnql—wave phagevolves nonlinearly with time. Itis
curved spacetime, despite the use of flat spacetime way8€ sensitivity of the broadband LIGO- and VIRGO-type de-

equations in the solution. The explicit formula for the gen_tectors to phase that makes the higher-order contributions to

eral two-body waveform is given below in Eq&.10 and dE/dt so observationally relevant. For example, for an in-
(6.12. spiral of two 1.4M  neutron stars, the 2PN term in EG.4)

There are also contributions to the waveform due to in-contributes about 9 of the 16 000 cycles observable in the
trinsic spin of the bodies, which occur @(e%?) (spin-orbif bandwidth of the advanced LIGO. More detailed analyses of

andO(€?) (spin-spin; these have been calculated elsewherdhe effect of the 2PN terms on the matched filtering can be
[40,41, and are rederived in the EW framework in Appendix found in[25,46,417. A ready-to-use set of formulas for the
F. 2PN gravitational waveform template, including the nonlin-
Equations of motion for the material sources must also b&2" evolution of the gravitational-wave frequen@yot in-
specified to 2PN order in order to have a consistent solutiof!uding spin effectsmay be found ir{48]. Spin corrections
of Einstein’s equations. These have the schematic form (0 the waveform templates may be found in Appendix F.
An alternative approach to deriving gravitational wave-
d?x/dt?= —(Gmx/r3)[1+0(e)+0(e3/2)+O(62)+ -, forms and energy flux for inspiralling compact binaries, in
(1.2)  the limit in which one mass is much smaller than the other, is
that of black hole perturbation theory. This method provides
wherex=x;—X, is the separation vector. The lowest-order numerical results that are exactiiic, as well as analytical
contribution is obviously Newtonian. The next te@{e€) is  results expressed as series in powers/af both for nonro-
the first post-Newtonian correction, which gives rise to suchating and for rotating black hold87,49—-532. For nonrotat-
effects as the advance of the periastron. The t&8®?)  ing holes, the analytical expansions have been carried to
comes solely from the spin-orbit interaction. The term offourth PN order{52]. In all cases of overlap, the results agree
O(€?) is asecondpost-Newtonian correction to the equation precisely with our post-Newtonian results, in the limit
of motion (and also contains spin-spin interactionShe  ,_,0.
terms in Eq.(1.2) are all non-dissipative, having nothing to  This paper is an attempt to present, in a relatively com-
do with gravitational radiation reaction. Through 2PN Order,p|ete and self-contained form, the formalism and machinery
these equations are by now standard; see for exapi@le  of our “improved EW” approach to higher-order gravita-
44] and Eq.(6.5 below. tional radiation from binary systems. Indeed, we begin with
Given the gravitational waveform, we can compute thethe raw Einstein equations, and end with a plot of the 2PN
rate energy is carried off by the radiatidechematically waveform. The goal is to provide sufficient detail to allow
ShhdQ, the gravitational analog of the Poynting fludhe  the reader, using this paper virtually alone, to verify any of
result has the schematic form the results reported hergve make no statement about the
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amount of work involvel] and to carry the computations to The spatial components bf* evaluated far from the source

higher PN orders. In Sec. Il, we lay out the foundations ofcomprise the gravitational waveform and are directly related

gravitational-wave generation, describing the relaxed Einio the signal which a gravitational-wave detector measures.

stein equations, the matter sources and the near and radiatigvith these definitions the Einstein equatiofisl) can be

zones, and the formal retarded integral solution of the waveecast in the form

equation, including the new treatment of integration over the

null cone in the radiation zone. We turn in Sec. Il to the Oh*f=—16m7°F, 2.4

weak-field, slow-motion approximation, and write down the

matter and field variables to the accuracy needed to find th

radiation to 2PN order. The part of the retarded integral for

hef that extends over the near zone can be written in term3

of a set of “Epstein-Wagoner” moments; these are evaluated 7%= (—g)T*P+ (16m) 1A, (2.5

explicitly in Sec. IV. In Sec. V, we evaluate the contributions

to h*? from the radiation-zone integrals, showing both thewhere A “# is the nonlinear “field” contribution given by

explicit cancellation of those terms in the EW moments that

grow with R, and the generation of tail terms. Section VI AB=16m(—g)t{f+ (h*#, hP", ,—hF,  h*"),

specializes to two-body systems, and displays the full formu- (2.6

las for the gravitational waveform and energy loss. In Sec, wB . e :

VII, we further specialize to circular orbits. Section VIl andt;{’ is the “Landau-Lifshitz” pseudotensor, given by

makes concluding remarks. A number of technical details are 1

relegated to Appendices. _ 16m(—o)tif=10,,9"h** hPL + ngg“ﬁh“,phﬂﬁyv
Our conventions and notation generally follow those of

[53,34]. Henceforth we use units in whicdB=c=1. Greek 1

indices run over four spacetime values 0, 1, 2, 3, while Latin —29,,gN*nAY her | + g(ZQ“ngM

indices run over three spatial values 1, 2, 3; commas denote

partial derivatives with respect to a chosen coordinate sys-

hered= — %/ 9t?+ V? is the flat-spacetime wave operator.
he source on the right-hand side is given by the “effective”
tress-energy pseudotensor

tem, while semicolons denote covariant derivatives; repeated —g“ﬁg””)(Znggw— 9,09,,)"7 \h?7 1.
indices are summed overp*'=7n,,=diag(—1,1,1,1);
g=det(g,,); aW=(a'+al")/2; alll=(a-al')/2; €' is 2.7

the totally antisymmetric Levi-Civita symbolet?®=+1).
We use a multi-index notation for products of vector com-
ponents:xx') - k=xxI. . .x¥, with a capital letter superscript
denoting a product of that dimensionality:=x'1x'2. . . x'I; B —0 2.8
angular brackets around indices denote STF prod(see B '
Appendix A for definitions. Spatial indices are freely raised which is equivalent to the equation of motion of the matter

By virtue of the gauge conditiof2.3), this source term sat-
isfies the conservation law

and lowered withs'! and g; . TB.,=0.
We emphasize that Eq2.4) is not anapproximate or
Il. FOUNDATIONS OF GRAVITATIONAL-WAVE weak-field form of the Einstein equations; it is exact, and
GENERATION relies only on the assumption that spacetime can be covered

by harmonic coordinates.
_ o The form of Eq.(2.4) is suggestive of the wave equation
We begin our development of the gravitational-wave gen<or the vector potential in electromagneti§&M). This anal-

A. The relaxed Einstein equations

eration problem with the Einstein equations ogy with EM is at once helpful and deceptive. It is helpful in
that it suggests how to proceed to solve the equation, i.e., use
RS _ EgaBR:8ﬂ_TQB. 2.1) a retarded Green function, and an expansion in terms of ra-

2 diative multipole moments. It further illustrates that, just as

Y o Y ) the current density in EM is the source for the vector poten-
HereR®" is the Ricci curvature tensog™ is the spacetime {j5 here the stress energy of the matter is a source of the
metric andT*# is the stress energy tensor of the matter.gravitational potential.
Although Eq.(2.1) is a conceptually powerful statement, re- = powever there are several important differences between
lating the curvature of spacetime on the left-hand side to th@q_ (2.4 and its electromagnetic counterpart. First, the
stress energy of matter on the right-hand side, it is not agoyrce” in Eq. (2.4) also contains a gravitational part that
particularly useful form of the Einstein equations for practi- depends explicitly orh®?, the very quantity for which we
cal calculations of gravitational-wave generation. For thatyo trying to solve. Second, unlike the EM case where the
purpose it is conventional first to define the potential source(the currents has finite spatial extercompact sup-
aB \whi i B
heB= paB_(—g)M2ge8, 2.2 port), we can expect®”, which depends on the fleldibf” o
have infinite spatial extent. Indeed the very outgoing radia-

(see, e.g.[34]) and to choose a particular coordinate systerrfion that we hope to detect, will, at some level of approxi-

defined by the de Donder or harmonic gauge condition mation, serve as a contribution to the source, thus generating
an additional component of the radiation. However, we have

h“ﬁ,ﬁzo. (2.3y  found that, for the physical situations of interest, this latter,



54 GRAVITATIONAL RADIATION FROM COMPACT BINARY ... 4817

highly nonlinear effect, often referred to as the Christodou-The resulting self-field and internal energy effects result in a
lou memory, is very weak and can be adequately approxirenormalization of the mass of each body from a “bare”
mated by the methods of this pag&6]. mass/f ,pd>x to the gravitational massi,. Furthermore, all

Another complication in Eq(2.4) is that the second de- effects of the internal structure of the bodies are “effaced,”
rivative term h“ﬁ,wh’” in the source really “belongs” on so that all aspects of the motion and gravitational radiation
the left-hand side with the other second derivative terms irare characterized by a single masg for each body(see
the wave operator. Such a term in a differential equatiorj35] for demonstration of this effacement in the waveform at
modifies the propagation characteristics of the field from the8/2PN orde). This is a manifestation of the strong equiva-
flat-spacetime  characteristics represented by théence principle, which is satisfied by general relativity. All
d’Alembertian operator. Physically this is a manifestation ofthese complications, then, can be embodied in the distribu-
the fact that the radiation propagates along null cones of théonal stress-energy tensor of EG.10), with the caveat that
curved spacetime around the source, which deviate from thall infinite self-field effects that might result from the use of
flat null cones of the harmonic coordinates. Nevertheless, théhe 5-function source are to be discardé&klf-field effects
techniques to be presented here do recover the leading mamiaving already been renormalized imm,). An alternative
festations of this effect, commonly known as “tails,” includ- viewpoint takes the gravitational field in a zone surrounding
ing modification of the phasing of the solutions from their each body in a coordinate system that momentarily comoves
initial dependance on flat space retarded time to true retardegith the body and notes that it can be characterized by mul-
time of the asymptotic Schwarzschild spacetime of thetipole moments that can be identified with the body’s asymp-
source. totially measured mass arfifl desired higher multipole mo-

ments. The fields surrounding each body are then matched to
B. Source, near zone, and radiation zone an appropriate interbody gravitational field, with the equa-
tions of motion providing consistency conditions for such
']ﬂatching. Apart from tidal effects, the results depend only

n the effective masses of the bodies, and all self-field ef-

cts are automatically accounted f(see[56,57 for ex-
ample, for detailed implementations of this approach in vari-

T*P=(p+p)uuf+pg*®, (2.9 ous situations . -
The effects of spins can be added to the framework in a
wherep andp are the locally measured energy density angStraightforward way; these are reviewed in Appendix F.
pressure, respectively, and is the four-velocity of an ele- ~ We consider the bodies to comprise a bound system of
ment of fluid. We shall assume that the bodies are sufficharacteristic sizeS=maxagras, Where rag=|Xa—xg|,
ciently compact that we can ignore all intrinsic multipole With @ center of mass chosen to be at the origin of coordi-
moments of the bodies at quadrupole order and beyond. ThagtesX=0. Thesource zon¢hen consists of the world tube
is, we treat only the bodies’ monopolmass momentsfin 7= {X|r <8, —w<t<e}.
an appendix we treat the bodies’ dipé#pin) moment3. For The bodies are assumed to move with characteristic ve-
inspiralling binaries of compact objects, the effects of rotalocitiesva<1, and for much of their evolution with,<1.
tionally induced and tidally induced quadrupole and higherThe characteristic reduced wavelength of gravitational radia-
moments on the orbital evolution or gravitational radiationtion, x=X\/2w~S/v=TR serves to define the boundary of the
have been shown, in the case of binary neutron stars, to jeear  zone defined to be the world tube
negligible until the final coalescence stage, where the posP={x"|r <R,—o<t<o}. Within the near zone, the gravi-
Newtonian approximation breaks down anywgs4]. For tational fields can be treated as almost instantaneous func-
spinning black holes, the effects are small, but can be nortions of the source variables, i.e., retardation can be ignored
negligible for sufficiently large spifi55]. In the long run, Or treated as a small perturbation of instantaneous solutions.
such finite-size effects shouldnd cam be incorporated into  For most of the evolution, up to the point where the post-
our formalism. Newtonian approximation breaks dowR> S.

To treat the monopole part of the bodies’ mass distribu- The region exterior to the near zone is tiaeliation zone
tions, we approximate the stress-energy tensor as a distribti™"R. In this zone, we evaluate the fully retarded solutions
tional tensor representing “point” masses, given by of Eq. (2.4), and focus on the parts that fall off as™.

The formal solution to Eq(2.4) can be written down in
terms of the retarded, flat-space Green function:

of fluid balls (starg whose size is typically small compared
to their separations. The material will be modeled as perfe
fluid, having stress-energy tensor

monopoid= 20 Ma(—9) A UZUR/UR) &°x—xa(D)],

afy!r ! r__ v/

(2.10 haﬁ(t,X):‘]—J’ T(LX )|5X(t_X,|t+|X X |)d4X/.
where m, is the gravitational mass of thath body, and (2.1)
uy is the four-velocity of its center of mass,(t). Formally,
such a distributional stress-energy tensor is not valid in genThis represents an integration of?/|x—x’| over the past
eral relativity. On the other hand, it has been shown in éharmonic null coneC emanating from the field pointt (x)
variety of post-Newtonian contexts to give results that argsee Fig. 1 This past null cone intersects the world tube
equivalent to treating the bodies as almost spherical fluignclosing the near zone at the three-dimensional hypersur-
balls, defining a suitable approximate center of mass, anthce A. Thus the integral of Eq(2.11) consists of two
carrying out explicit integrals over the interiors of the balls. pieces, an integration over the hypersurfaéeand an inte-
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CENTER OF MASS WORLD LINE

& FIELD POINT (t,x)

N

FIG. 1. Past harmonic null cor@of the field point ¢,x) inter-

! FIG. 3. Taylor expansion of retarded time dependence\on
sects the near zor® in the hypersurfaceV.

results in multipole moments integrated over the spatial hypersur-

. face M.
gration over the rest of the past null cofie- N. Each of

these integrations will be treated differently. We will also
treat slightly differently the two cases in whi¢h) the field
point is outside the near zoriEig. 1), and(b) the field point

r=|x|. We now expand tha’ dependence in the integrand
in powers of|x’|/r, using the fact that

is within the near zondFig. 2). The former case will be o
relevant for calculating the gravitational-wave signal, while Ix—x'|9= E i(_xl)il-uim(rq) o (2.13
the latter will be important for calculating field contributions m! SEAL '

to 7# that must be integrated over the near zone, as well as
for calculating fields that enter the equations of motion.  We next expand-“? in a Taylor series about the retarded
time u=t—r. The integration is now over the hypersurface
C. Radiation-zone field point, near-zone integration M, which is the intersection of the near-zone world tube

For a field point in the radiation zone, and integrationWith the constant-time hypersurfa¢g=u=t—r (see Fig.
over the near zone, we first carry out tentegration in Eq.  9)- Roughly speaking, each term in the Taylor series is

(2.11), to obtain smaller than its predecessor by a factor of orderl, thus
for any hope of convergence of the series, one must restrict
up 7*B(t—|x—x'],x") s, attention to slow-motion sources. We now have an infinite
hi? (t,X)=4JN X—x'| dx’. (212 series inx’ (expansion ofx—x’| 1) multiplying a double

infinite seriegexpansion ofx—x’| inside the Taylor expan-
Within the near zone, the spatial integration variablesat- ~ Sion. Grouping terms with the same powersxdfand car-

isfies |x'|<R<r, where the distance to the field point rying out the appropriate combinatori¢gcluding use of
“Faa di Bruno’s formula” [58]), it is straightforward to

CENTER OF MASS WORLD LINE show that
T
Co(—-1)9/1
hj"f(t,X)=4E u(_Maﬁkl---kq> ,
g=o ¢! r Ky
FIELD POINT (t,n) (214)

where

MaBkl-ukq(u)EJ TaB(U,X')X,kl'"X,kquX’.
M
(2.15

This general expansion, both in powers of! and in
retarded-time derivatives dfl “#1"*ka(u) will prove useful
‘\_—J in later integrations of field quantities over the far zone.
However, for gravitational-wave detectors, we need only
FIG. 2. Same as Fig. 1, for field point inside the near zone. to focus on the spatial componentshs?, and on the leading
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component in IR, whereR is the distance to the detector. tion, especially in some of the higher-order moments. If this

Using the fact thatu,i=—l§l‘, where N=x/R denotes the
detector direction, we obtain

hi/{/(t,x)— 2 71 (u,x")(N-x")Md3x’

m! &tm
+0O(R™?). (2.16
Because of the conservation law K8.8), 71 satisfies the
identities
o 1 o
ot 2(70xD) |- E(Tklxlxl),kh

(2.173

] o
’7'Il :E(TOOXIXJ)VO

rijxk:%(ZTo(ixj)xk— 7%xIx)) o+ %(27‘<ixi)xk— xix) |

(2.17b

Using these identities in Eq2.16) generates the multipole

expansion

2 ®

2 d .
W0 =5 gz, Mo Nl "(w), (218

where the “Epstein-Wagoner(EW) moments are given by

1dy= jM OOXIXJd3X+IEW(surf) (2.193
|k = f (27%0xDxK— 7% XY A3+ 1 (curp
(2.19h
N 2 dm? y
ijkq Ky k Kmd3
v m_HdtTZ MT”X 1...xmd3x  (m=2),
(2.199

where integrating the spatial derivative terms in E@s17)

boundary is formally taken tee (as was previously done
these integrals would diverge. However, as we shall see,
such R-dependent effects angreciselycanceled by contri-
butions from the integral over the rest of the past null cone,
to which we now turn.

D. Radiation-zone field point, radiation-zone integration

The integral over the rest of the past null caire N can
be written in the form

h? tx)—4fw du’f T
co Mt » o

X(S(u/_tr+r/)d4xr,

Bt/ x')S(t' —t+|x—X'])
x—x'|

(2.2)

where we have simply inserted=lfdu’ §(u’ —t'+r’). We
now integrate ovet’ andr’, and note that

f dt’f dr's(u’ —t'+r")s(t' —t+|x—x'|)
— o R

|x=x'|
——=—, u'<u andr'>R,
=<{t—u"—n"-x (2.22
0, u'>u orr'<R.
The result is
u B’ +r1',x")
af — ’ _ !
he? \(t,x) 4fiwdu i,j\,—t—u’—n“x
X[r'(u’,Q")]%d’Q". (2.23

Note thatr’ is a function ofu’ and )’ via the condition
[from the two &-functions in Eg. (2.22]: t—u
=r’+|x—x'|, which gives

r'(u,Q")=[(t—

u)2—r2J/[2(t—u'—n"-x)]. (2.29

The integration over solid angid?Q)’ for a given value of

by parts generates surface integrals at the two-dimensiongl  together with ther’ +r’ “time” dependence ofr*, can
coordinate sphere of radiuR bounding the hypersurface pe seen to represent an integration over the two-dimensional
M, denotedd M, resulting in surface contributions to the jntersection of the past null cortewith the future null cone

first two EW moments given by

(d/dt)l Lyourn = ﬁg [47'0xD - (xx))  JR?A'd2Q2,
M
(2.203

(AL (ourp = 35 (27 xDxk— 7KIxIx ) R2Ald2Q,
oM
(2.20b

where n' denotes an outward radial unit vector, adé)
denotes solid angle.

t’=u’+r' emanating from the center of mass of the system
att. m=u’ (Fig. 4). The integration oveu’ then includes all
such future-directed cones, starting from the infinite past,
and terminating in the one emanating from the center of
mass at timeau, which is tangent to the past null cone of the
observation point.

However, foru=u’=u—2R, the two-dimensional inter-
sections meet the boundary of the near zone, and so the
angular integration is not complete. If we choose the field
point x to be in thez direction, so that’-x=rcos?, then
the conditionr’="R, together with Eq.(2.24 imply that

<¢'<2m, 1-a<co¥' <1, where

One advantage of this multipole expansion is that the field

and source variables appearing in the integrafid are

evaluated at the single retarded tionea disadvantage is that

because the field contributions t6” fall off as some power

a=(u—u')(2r—=2R+u—u’)/2rR. (2.29

Note thata ranges from 0’ =u) to 2 (u’'=u—2R). For

of r, one can expect to encounter integrals that depend on’ <u—27R, the angular integration covers the fulr4 Thus

positive powers of the radiuR of the boundary of integra-

we write the radiation-zone integral in the form
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R S

~ yLu-2%

N : +2r

u'—-u—zﬂ

FIG. 5. Same as Fig. 4, for field point in near zone. Integral over
u’ terminates ati’ =u—2R+2r.

FIG. 4. Two-dimensional hypersurfacgsformed by intersec-

tion of past null cone of field point with future null cones from the F. Near-zone field point, radiation-zone integration

origin. The field point is in radiation zone. Far from —o to The formulas from Sec. II D, such as Eq2.24) and
u—2R, F covers full 4r solid angle around the origin. From (2.25, carry over to this case with only one modification.
u—2R to u, F terminates at boundary of the near zokie The final future null cone that appears in the integration is
the one that intersects the boundary of the near zone and the
1 2% 41’ x) past null cone of the field point simultaneously at

u’'=u—2R+2r, rather tharu’ =u (Fig. 5 (recall that here,
r<R). The result is, for a near-zone field point,

u 2
hgmt,x)=4f du’f de’
u—2R 0

1—a t—u'—n"-X
x[rr(ur,Qr)]ZdCOggr 8 u—2R+2r 27 1 T“ﬁ(u’+r’x’)
a _ ' ' I D
u-2R AU’ +r' x") hcth'x)_ArJ'usz du fo d¢ 1-o t—U'—N'"-X

+4 du ¢ ————=—

t-u—nex X[r'(u’,Q')]?dcoss’

u-2R AU’ +r'x")
t—u’'—n’-x

X[r'(u’,Q")]2d2Q". (2.26

— o0

Note that7*# contains only field contributions evaluated in -
the radiation zone; in determining these we will make use of X[r'(u,Q")]°d"Q’. (2.28
the general expansioi2.14).

To obtain the contribution to the gravitational waveform,
we evaluate the spatial components of E426) at distance
R and directionN and keep the leading R/part.

G. Gravitational waveform and energy flux

To obtain the gravitational waveform, we combine the
two contributions tch", Egs.(2.18 and the leading R part
of the spatial components of EQ.26), and evaluate the
E. Near-zone field point, near-zone integration transverse-traceles3 T) part, given by

In this case, in Eq(2.12), bothx andx’ are within the - R
near zone, henck—x'|<2R. Consequently, the variation hi = hk'( PLPf_EP”Pm), (2.29
in retarded time can be treated as a small perturbation, since
7P varies on a time scale-R. We therefore expand the L A A
retardation in powers dfx—x’|, to obtain wherePj = 5~ NyN'.
Note that the two expressions that contributé'tbin Eq.
B (=)™ gm v wr 13 (2.29 each depend on the radi@ of the near zone. Since
hi (t’x):4m§—:o mi ﬁt—meTa (tX)x=x'|""*d*x", R was an arbitrarily chosen radius, the final physical answer
- ' (2.27) should not depend on it. However, to check that all terms
involving R cancel in the end would be a formidable task.
Instead we adopt the following nonrigorous, but reasonable
where M here denotes the intersection of the hypersurfacstrategy. All terms in the near-zone EW moments and in the
t=const with the near-zone world tube. radiation-zone integrals that aiedependendf R are kept.

o)
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All terms thatfall off with R will be dropped. Close exami- sufficient accuracy, only the dominant contribution 4%,
nation shows that, despite our formal choe- X, nothing  namelyp, is neededwithout explicit recourse to the first-
in our calculations actually constrains the valueif apart iteratedhfﬁ. Insteadhfﬁ is buried implicitly in the equation
from the inequalityR<R. Thus we are free to make suf-  of motion (2.8 that leads to the identity2.173. This cir-
ficiently large, but still less thaR, so as to make such terms cumstance is responsible for the prevalent, but erroneous
as small as we wish, whether or not they ultimately cancelview that linearized gravityone iteration suffices to derive
In this regard, it is useful to note that, for a LIGO or VIRGO the quadrupole formula. The formula so derived turns out to
detector 10 Mpc from a source emitting gravitational wavesbe “correct,” but its foundation is nofsee[9] for discus-
at =100 Hz, fR=R/A~10%, and thus many orders of sion).
magnitude ofR are available to achieve this suppression. Thus, in practice, in order to evaluate EW moments re-
Nevertheless, we believe that all such terms actually cancetjuired for the Nth iterated field, we will only need the
Finally, all terms thagrow with powers ofR are also kept. (N—2)-iterated field contributions to the sources. This is not
In this case we will show explicitly that all terms that vary as precisely true for the two EW surface integrals, and formally
positive powers ofR cancel between the near-zone andthe full (N—1)-iterated field must be used ¥ there, but
radiation-zone integrals. This procedure thus isolates the fiwith sufficient care, it can be shown without detailed, ex-
nite terms that arise from convergent integrals, while simulplicit calculations that the contributions of the
taneously verifying that no truly divergent integrals arise.(N—1)-iterated fields all fall off sufficiently rapidly with
The result is a well-defined, explicitly finite, method for cal- R to have no effect on these surface integrals. Similarly, for
culating the gravitational waveform. It is the explicit inclu- the radiation-zone integration, the fulN¢ 1)-iterated field
sion of the radiation-zone integral in the formulation of Eq. must be used in!, Eq. (2.26. However, it will also be
(2.26) that cures the apparent divergences that plagued thgossible to show that the contributions of the these fields fall
original EW framework. off with R. To obtain the finite contributions and the contri-
The energy flux is given by butions needed to cancel any divergent terms from the EW
moments, only theN—2 iterated fields will be needed in

S o2 i) A2 practice. Thus to 2PN orddfourth iteratior), only second-
E=(R%/32m) % hyrhrd“Q. (2.30 iterated fields will be needed explicitly in the source terms.
Il. WEAK-FIELD, SLOW-MOTION APPROXIMATION B. Second-iterated fields in source terms

Because the source contributions are integrated over all
space, we must evaluate the second-iterated figjdsin a
We make the standard assumption that, with respect to th@yrm that is valid everywheréhis and the following section
orbital motion and mutual gravitational interactions, follow the approach and notation of BDI; sg&3], for ex-
2 ample. The first iteration of the field equatiori2.4) gives
VA~ MAlS~e<L, GD  the linearized equation§hf= —16xT*A. SinceT*? has
compact support, the solutions are standard Lienard-
Wiechert-type retarded functions. The solutions have the
leading-order behavioh®~e, h%~¢e%2 hii~¢e2. Taking
these orders into account, together with the fact that, because

A. lteration of relaxed Einstein equations

wheree will be used as an expansion parameter.

Now, because the field*? appears in the source of the
field equation, the usual method of solution is to iterate: sub
stituteh®#=0 on the right-hand side of E¢2.11) and solve of the slow-motion assumptiond/at~ e*23/ax/, we can
for the first-iteratech;” ; substitute that into Eq2.10 and  \yrite the second-iterated field equations in the fgwe drop
solve for the second-iteratédy”, and so or{imposing the the subscripts
gauge condition Eq(2.3 consistently at each orderThe
first iteratedhfﬁ is O(€), and each subsequent iteration im-
proves its accuracy by one orderédnThus, for example, to
obtain a result for the waveform accurate to the order of the

7

Oh%=—16m(-g)T®+ 5

h%h%+0(pe?), (3.2

quadrupole formula, h~ (m/r)1' ~(m/r) (v?+m/S)~ €2, Oh%=—16a(—g)TO+O(pe®?), (3.2b
two iterations of Eq.(2.11) are needed. To obtain the first

post-Newtonian corrections to the quadrupole approxima- o e 1 0000

tion, i.e.,h to ordere®, h$#, or three iterations, are needed, " =—167(—g)T" — ) h3hS°— §5ijh,koh,k) +0(pe?),
while to obtain the 2PN contributionghe goal of this pa- (3.29

pen, the fourth-iterated field is needed. This would be a

daunting task, if it was not for the use of the identities, Eqswhere we have kept only contributions required to determine
(2.17). Consider for example, the quadrupole formula. Then® Ko andhl to the accuracieg?, €2, and €?, respec-
sourcer) of the second-iterated field] containspv'v! as tively [note that, in identifying orders of source terms with
well as terms of the form Yh{9)?, both of which are dimension(length ~2, we can useéJ !p~e]. By defining
O(pX¢€). [Note that ¥h)2~hV?h~ pe.] However, the use the densities

of the identity Eq.(2.173 in the near-zone integration con- B

verts 71 into two time derivatives of°*'x! (modulo total o=T%+T", (3.39
divergences because of the slow-motion approximation, _

two time derivatives increase the order by and thus, to o=TY, (3.3b
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o =TI, (3.39 a3’
U(U,X)Ef WO’(U,X,), (373
and the retarded potentials M
d3X' Ef 3yllv_ ! '
Vit = [ oot e xlx, (343 Xu)= | @ bexotuxd, 37
c|x—x'|
dx’ U= O 3.70
Vi(t,x)sf—,ai(t—|x—x’|,x’), (3.4b (Ux)= M|x—x’|gi(u’x ), '
c|x—x'|
3, d3x’ 1 1
W (t x)zf—d o P VRV RVAY: P”(U'X)EJMW Tit g7 | VYT AVl
ijlt c|X_X/| i 4 AV o Y kY ok
X(u,x"). 3.7
X (t=|x=x'],x), (3.49 (ux) 379

o ) We have used the fact that, by virtue of the conservation of
it is straightforward to solve Eq¢3.2) to the needed order, nass and momentum at lowest ordeyf od3x~ €52 and

with the result 8, o;d3x~ €. We will drop the contribution from the
radiation-zone integralW;;) .- -, which falls off at least as

00_ _ _ 2 3
h™=4V—4(W=2V%)+0(e), (3.53 fast asR~? (see Appendix € Note that these potentials
, i = 2y = o=
hOi = 4V, + O(52), (3.50) satisfyU; ; U, VeX=2U, Py U;.
b —aw +O(e3), (3.50 C. Near-zone metric, matter stress energy, and effective

gravitational source

whereW=W;; . It is useful to note that, although these forms  In order to evaluate the components of the stress-energy
of h*? are of sufficient accuracy in practice to be used in thetensorT*# to the necessary order, we need the components
effective sources for evaluating the waveform to 2PN order0f the near-zone metric to post-Newtonian order. These are
they are not sufficiently accurate for use in the equations ogiven from Eqgs.(2.2) and(3.5) by

motion that must also be specified consistently to 2PN order.

The 2PN equations of motion requind®to O(€®) andh® to g%=—(1+2V+2vi)+0(e), (3.83

0(€>?) (h'l is sufficiently accurate as it standsiowever, as o oo

the 2PN equations of motion are well known, we shall not g~ =—4Vi+0(e™), (3.80

undertake their derivation here, and will simply use the pub- - y

lished equation$44,59 when they are needed. g'=(1-2Vv)81+0(e?), (3.89
Because the source df andV; has compact support, the

integrals(3.4a and (3.4b) can be evaluated simply for field (—9)=1+4V—-8(W—V?)+0(€). (3.80

points within either the near zone or the radiation zone. But ) ) o o
because the source ¥¥; contains both compact and non- These equations, together with the distributional definition
compact support pieces, it must be evaluated carefully, witth2-10 of the stress-energy tensor yield, to the requisite order,
proper attention paid to contributions from the integration

ot Ha Wi 3 1 1 7
over the radiation-zone part of the null cone. The details will UZE ma 1—V+ _v/§+ —V24 —Vv,zﬁ- 4W+ —v4A

depend on the use to whidl;; is being put. Evaluation of A 2 2 2 8
W;; is discussed in Appendix C.
When we calculate the EW moments, we shall need the [ 3
, g .y . —4Viv+ B(X—Xp), :
field contributions tor*? evaluated at fixed retarded tinwe At O(€]07(x=X,) (3.99
(on the hypersurfac#1), and for field points witlr <R. We
therefore expand the retardatibr |x—x’| as a perturbation i 1, 5
of the potentialsV, V;, andW;; aboutt=u, with [x—x'| ‘Ti:; Mavp 1=V+ 503+ 0(€%) 8 (X=Xa),
acting as the expansion parameftsee Eq.(2.27]. The re- (3.9b
sults are
o 1
1 =2 Mmookl 1= V+ Zva+O0(€2) | 83(x—xa),
V=U+53{X+0(e*), (3.69 7= 3 Mhohh g VAT O [
(3.90
Vi=U;+0(e%?), (3.6b  where the potential¥, V;, andW are assumed to be evalu-
ated atx, , excluding contributions of thAth body itself(to
Wi =Pjj+ (Wij)e-at 0(€?), (3.60 avoid infinite self-field terms The components of *# can

be easily constructed from these expressions.
where the “instantaneous” potentials are given by To the needed orden “# has the form
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. . . 5. ~
A%=—14V ,V  + 16[ —VV+V V=2V, V ( + =V? J f(x)d3x= f g(y)d3y— rﬁ 9(y)y-xaR?d?Q),,
o ’ “ 8 My M, oM,
1 1 R
+ 5 Vik(Vingt 3Viem) +2W V= WigV +3 3§ e Vo(y)y-xaR2d?Q+ - - -,
IMy
! 3 4.2
— 5VVAV [ +0(ped), (3.103

whereg(y)=f(y+x,) andy=y/y. Again, we evaluate and
- save the surface terms.
+0(pe™), (3.10b In the end, we will only be interested in the physically
measurable, transverse-tracelg3S) components of the
radiation-zone fieldh". We will therefore make frequent use

. 3.
A%= lﬁ{v,k(vk,i Vit WV,

. 1 .
Al :4(v,iv,j— Eaijv,kv,k + 1({ 2V V) of the identities, which follow from the definitio(2.29):
~ViiVigi = ViV ket 2V, i Vi) k (6")r=0, (N'Bi)71=0, 4.3
3. .
_5ij(§V2+V,ka_Vm,kV[m,k] +0(ped), whereB is arbitrary. These identities apply only to indices
“i"” and “j” appearing in the components of the final

(3.100  waveform; We do not apply them to fields which ultimately
make up source terms.

where overdot denote#/dt. Iglooti_ce the presence of the cu- | the field integrals, we will need explicit forms for the
brgally nonlinear terms inA™, involving either VW or  jnstantaneous potential8.7) evaluated inside the near zone.
V= To the needed order, they are given by
IV. EVALUATION OF EPSTEIN-WAGONER MOMENTS m*
_ A 3
A. Basic strategy U(u,x)—ZA X—Xa] +0(e), (4.43

The EW moments are integrals over a sphere of harmonic
coordinate radiugk about the center of mass of the system,
with all variables entering the integrands to be evaluated at X(U,X)= >, Ma|X—Xa|[1+0(e)], (4.4b
retarded timai=t—r. We substitute the matter stress-energy A
tensorT*#, and the second-iterated fields evaluated in the
near-zone into Eqg2.19. We expand all quantities to the
PN order needed to achieve a 2PN-accurate waveform. Each U;(u,x)= E +0(e%?), (4.40
volume integral will be split into a “compact” €) piece | |
involving integration of the compact-support matter source,

and a “field” (F) piece, involving integration of the nonlin- mAUA 1
ear field contributions. I, and1, the two surface inte- P(u,x)= 2 TX—X] | U2
grations at the boundary radiG& WI|| involve only the field A
contributions, and will require somewhat special treatment. 1 MaMg

In integrating the field terms, we will frequently integrate +0(€%, (4.49
by parts, but will carefully evaluate and save the surface

terms, using the identity

2478 XXl [Xa—Xg|

whereP=P;;, and where
f GF M3k = 45 FiI-MRAKR2d?Q.  (4.1)
M M

mx=my, 1+§v,§—2 Mg/ |Xa—Xg|+O(€?) |. (4.5
In order to simplify some of the integrations, we will fre- B
guently make a change of variables within integrals, in order
to place one of the bodies at the origin of the new variablesEquation(4.4d can be easily obtained from E.7d (after

for exampley=x—x,. Even thoughd®y=d3x, this shift has  contraction orij) by integrating by parts, carefully checking
the consequence that the region of integrationthe vanishing of all surface terms. Although the full potential
M,={x'||x|<R} will now appear in the new coordinates to P;; appears(via W;;) in A%, we will not need its explicit

be a region bounded by|=|RN—x,/, i.e., not centered at form, as the integration of that particular term will be
y=0. It is much easier in practice to integrateyircoordi-  handled by a “trick” (see Appendix D Note that the so-
nates over a regiotM,={y'||ly|<R}, which is shifted by called “superpotential”’X(u,x) is needed only to lowest or-

Xa relative to the true region of integration. The two integra-der because it always appears twice time-differentiated, e.g.,
tions can be related by taking into account the appropriatéin Eq. (3.68, and so its contribution is already( ¢) relative
surface integrals, using the identity to that ofU.
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B. The two-index momentl &, SsMg/|y+Xag|. We calculate the surface contributions that
We write Eq.(2.193 in the form result from this change of variables using £4.2). For ex-
ample the first integral then becomes
Ihw=10+12+14, (4.6)
. 1
_ f UUxid3x=> mAme —_—
where the three terms represent the comp@gt €ield (F), M AB My|Y+ Xag|

and surface $) contributions. Substituting Eq$3.3), (3.6),
(3.8d), (3.9), and(4.4) into (—g) T and expanding through >
O(pe?), we obtain

A

yap-J—va+3(Va §)2 -3 vay*s’(y)

X (Y + 2y §ixd) + xilyy ~3dy. 4.9

. - 1 mg| 3 o
L= muxi| 1+ 20243, — |+ =2, maxiiv?
¢ ; ATA 2UA % Mg 8; ATATA We use the spherical harmonic expansion
XR ) 7 2 3 A |
+ _ + — — . —_ . 1 47T bl ~ ~
AEB mAmBrAB 2vgt 3vA~ WaVe~ 5 (Ve Nag) ( r'+<1) Yim(Nag)Yim(Y),
>

|y+XAB| = I,m 2| + 1
(4.10

me 7 mc

> = +0(e3)Xmx,
C fec 2T rac (€9 A

3
T 53 XaB
wherer _ (- denotes the lességreatej of r,g andy, ex-
(4.7)  press all products of unit vectog& in terms of symmetric,
trace-free(STP products using Eq$A2), and integrate over
where Xag=Xp—Xg, rag=|Xagl» Nag=Xag/lag, and directionsy, using the identity
ay=d?x, /dt2. All sums are assumed to exclude cases where
a denominatofe.qg.,rgc) might vanish. R o R
To the required order for calculating A% can be writ- > f V(DY im(DY-d?Q,=h"s,, (4.1
ten in terms of the instantaneous potentials, "

(see Appendix Awhere the superscrigt.) over a unit vec-

A%=—14U U +16 — ZU X —UU+U U-—2u,U0, tordenotes an-dimensional STF product. We then integrate
K 8 ' ' overy, using the formula
5., 1 |
+ 35U+ U (Ut 33Uy m) +2P (U = PrU im RI_ (21+1)rdg l+q+1( R\
8 2 e yidy= - -
_f 3
5UU kU | +O(pe ) (4.8 (q—1#0). (4.12

For the first term, the integrat (14/167) [ U U ,xd®xis  The result is a series of terms of three types: those with
straighforward: integrating twice by parts and showing thathonvanishing TT part that are independenfénd linear in
the surface terms are proportional®s'!, which has no TT R, which we keep; terms with vanishing TT part which we
part, we are left with the integral (14/4#§f ,,UV2Ux'd®  discard (regardless of their dependence ®); and terms

= —(7/2)2 agmimiX3/r ag. This term is of 1PN and 2PN that fall off with increasingR, which we also discard. An
order via the PN contributions tan*. The next term, example of the second type of term would be a contribution

_ X o g3y i in. to |, proportional toR&". The contribution of such a term
(14/16m) f U X (x"d°x is already of 2PN order. We in EW prop _ _ St
tegrate once by parts to remove the derivative ftonUsing o h" has no TT part; equivalently, it can be eliminated to the
the fact that VfXZZU’ we find a surface integral necessary order by a finite gauge or coordinate transforma-
—(14/16m)$ ,,UX (XIA*R2d2Q, and the new integrals UON- o , ,
(28/16m) [ onijagx+(28/16ﬁ)f UX.sxid®.  The Many of the field integrations that we encounter in evalu-
M MUK . ; ; :
first of these volume integrals can be combined with thal ting the EW moments are amenable 10 t.h's ger_meral m_ethod.
arising from the third term in Eq4.8). We substitute Egs. !.) Integrate by_parts to leave one potential und|1_‘ferent|§ited,
(4.43 and (4.4, including as-function term that arises in (i) change variables to put the center of the differentiated

) potentials at the origingii) expand the undifferentiated po-
U (see Appendix B In the surfaceitlerm, we expand the yoniial in spherical harmonicgjv) express all unit vector
integrand  in  powers of r”%, ~ and obtain

NN % products in STF termgy) integrate oved?®y using the iden-
— (7/15)Z pgmamgR(v A +xp84) + O(R 7). We drop all  tites (4.11) and (4.12), (vi) retain all relevant contributions
terms that fall off with increasing. In the volume integrals, from surface integrals that arise in stefpsand (ii).

for each term in the sumgd=X,U, and X (=2 ,Xa i, We Terms 2—8 contributed by [Eq. (4.8)] can be handled
change integration variables froxto y=x—Xa so that, for  using this method, as can the compact contribution®;fo

a givenA, the potentialsdJ 5, and X, are centered at the andP (proportional to velocitiesin terms 9 and 10. How-
origin of the newy coordinate, whileJ now takes the form ever the nonlinear field contributions #; and P lead to



54 GRAVITATIONAL RADIATION FROM COMPACT BINARY ... 4825

additional complications, although the basic method still apfor o, oy, ando;;, and displaying only terms that lead to the
plies. These terms are discussed in Appendix D. Finally, theppropriate contributions in'l, we find, in the vicinity of
cubically nonlinear term 11 can be calculated easily by intet =R,
grating by parts. Computation of these terms is straightfor-
ward but tedious. In evaluating 2PN terms, we make re-
peated use of the fact, valid to Newtonian order, that
ZamaXa=0. B

We now turn to the surface teri given by Eq.(2.203. C @
Because the surface lies outside the matter source, only the AKI skl kAl 4 2,2 2.3
field contribution,A" is needed. The term can be rewritten T16Q (814 n"n)+ O(&'r) + O(£1r?) + O(er),
in the form

1. 2 (3
V=—+-QX(38—n*n) +O(e’r) - 5 Q+O(er")

(4.153

(d/dt)21d=(1/16m) iM(zAk“ﬁJ)kR‘? V=— 21 (kK= Qiiyni +O(€52)/r2

— AX ARRY d2Q). (4.13 10
! — 7 QI +0(er0) +0(e¥r?),  (4.150

However, becaust! is essentially two anti-time deriva-
tives of the surface integral, reducing its orderdyye need I
to know Al to O(ped), i.e., to O(€%) beyond its leading WIJZEQ”‘FO(EZ/I'Z)-FO(G?’/I'), (4.1509
order terms, at least in principle. This is in contrast to having
to know A% in the spatial integral{! only to O(€) beyond
its leading order. This would present considerable complicawhere we define here and for future use
tions, except for the fact that we only need to calculate a
surface integral, and retain terms that are either independent _
of or grow with R. Consequently we only need to retain m=m-+E, (4.163
contributions toA'l that vary asR 2 or R 3. To see what
terms must be retained, we return to the definitio8f Eq.
(2.6). Far from the source, the fields*® have the leading E=
e andr dependencebf®~ e/r, h%~&¥%r? (r=2 here be-
cause the net momentum of the system vanishasad
h'~e?r; A has the schematic formh()?+h(h,)? _
+h?(h,)?+---. By combining the leading forms dfi*? X=M"1 max,
with the knowledge that time derivatives increase the order A

N| =

EA: (mAvi_EB: mAmB/rAB), (416[:)

1 1
1+ Evi_ E% mB/rAB) :O,

by €2, while spatial derivatives either increase the rate of (4.169
fall off by one power off ~* or increase the order bg*'? via
the retarded time dependence, it can be shown by inspection ij_ i
that terms of ordeh(h w2 and higher are either of higher Q _Z MAXA (4.169
than 2PN order, or fall off faster thaR 3, or generate an-
gular dependence that leads to no TT parts. However, the
purely quadratic terms proportional thl,()2 do contribute; Qijkzz mAXIJk (4.168
their explicit contribution is given by the nonlinear terms of A
Eg. (2.6) with g,, replaced bys,,. Again, inspection
shows that, to the required order, we can write . .
J'E; mae'™xho'T, (4.169
Al = — hO%ii + %hooihooj + 2h00(i )0
J”E; mae' ™xpv Xk , (4.169

A1 :
— | g% h® + Pk, (4.14

wherem=3,m,, andQ=Q". In Eq. (4.15 we show sche-
Further inspection shows that knowihg” to the accuracy Matically the e order and ther dependence of the terms
shown in Eq.(3.5 suffices; the higher-order terms not ex- Neglected. Note that, by virtue of the Newtonian equations of
plicitly shown in those expressions contribute terms either amptlon E. and J' are constant to leading order. Heme,
higher-than-2PN order, or at faster-th&-® falloff. We do ~ Q'', andJ' are to be evaluated at=t—R. Combining Egs.
need to evaluate, V;, andW;; carefully, however. Expand- (4.19, (3.5), (4.14, and(4.13, we find, to the required order
ing these functions in powers ¢k—x'| aboutt=u, but to  thatld= —(7/6)mRQ” .
higher orders than that shown in E®.6), using Eqs.(3.9) Combiningl{, 1¢, andld, we obtain finally
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1 1 mg
1+2v,§ 2% s += Z maxii vA+ Z mAxIJ

ijo_
IEW—Z mAx Ar
A AB

2 2 a2 noy2 A A Mc
X 28UA_11UB_22VA'VB_(VA'HAB) +2(VB'I’1AB) _ZVA'nABVB'nAB+2(aA+aB)'XAB+6% E:

1 maMg
1278 ras

{ S{(VATVE)2=[(Va+ V) - Aag] 2} XAXE + 2(VatVg) - Xag( 100 aXR + 11v A xY)
—(26v2—49¢;§§v§)riB] 122 MAMgT as{aa- AapXt N —alixy +23(a,+ag) 1xR}

—3>, mamghilg+G! —EmR(")”-I—O(é)Q” (4.17
< 1A BIABTY(3)" g ) :

Wheregi(j3) is a complicated three-body term arising from #gU ,, term in Eq.(4.8), that vanishes identically for two-body
systems. It is evaluated in Appendix D.

C. The three-index momentl X ”k

SincelIJk is dominantly of 1/2PN order, we need to calculate only the first post-Newtonian corrections to it, i.e., terms of

3/2PN order. We first note thaEW [Egs.(2.19H and(2.20h] can be written
=T e+ B TE, (4.18
where we separaﬁ%cj\'j\, into compact, field, and surface contributions, given by

1<+ Hk=f Oxixkd3x,
M

(d/dt)1dk = (1/16m) ﬁMA“ﬁik'R“dZQ. (4.19

Substituting Egs(3.3), (3.6a, (3.8d), (3.9), and(4.4) into (—g)T% and expanding througB(pe®?), we obtain

1
2 mav x| 1+ EUA+ 32 +O(e5/2)><Q” (4.20
To the required order,
Oi 3.
A"'=1 U,k(Uk,i_Ui,k)+ZUU,i . (421)

We then calculate!IJk following the method laid out in Sec. IV A. In the course of this calculation we find no TT terms

dependent on positive powers &. Finally we evaluate the surface contribution using Egsl4 and (4.15 evaluated to
lowest order, and find no contributions. The final result is

2 1 Mg A jk_l 2 ~ ~ijk
Va NasNaXa 1_2;3 MAMgI ag[ 2VA* NagNAR

1
E mAvAx l+§vA—§B @ -

|]k E MaMg

278 TaB
+12(20 Ak — v LA — vAnAB)]+ E MAMg[Va- NagNhbx® + 70 hxUnky— 70 Ux¥Al 1+ 0( €52 X Q1.

(4.22
The result agrees with EGA52) of [35]. The full moment %, can be constructed from this using E4.18.
|Jk|

D. The four-index moment | 2

Since this moment contributes to the waveform already at PN order, we only need to evaluate the integrands through their
first PN corrections. We write E¢2.199 in the form

1l = 140 (423
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(there is no surface contributiprExpanding € g)T' throughO(pe?), we obtain

} ) 1 }
|gk'=; mav X[ 1+ 2vA+3% +0(3)x Q. (4.24

To the required orderA" can be written in terms of the instantaneous potentials

- 1 1 - .
Al :4( U,iU,j_ E&”U’ku K +16[ZU,UXJ)+2U’“U]-)—Uk'iUk’j—Ui,kUj'k-i- 2Uk,(in),k

3. .
SUZHU  U=Up Upmig | [+ 0(ped). (4.25

8

1 .
- 5” gUYkX'k—I—

The terms proportional té¢'! produce no TT contributions to the waveform, so we drop them.
The method proceeds as in the previous cases, without the complications of cubic nonlinearities. The result is

| kl i
J E mA<U I _E mBnAB/rAB

1

1 . 1
A ~kl | 2 i
XA 1_2;3 MM AN Ag(Nag— ) + E; mAUAU/-J\XA

E mAmBXA/rAB(20A+(4vAB UB)”AB 3(Va-Nap)? nAB 4(3Vp-Npg—4Vg- nAB)UAn]) _1638)(]) _2aAXAB
Aij '\ij 1 kl
+aA‘xABnAB—2; Mc(Lr act+ 1l go)Rllg _ZlAEB MAMgT Agd

) yai N . L
(dvig—v2)Na+2(8v)s—2301) = (Va- Nap) Mg — 8Vag- Nay npNKp+ 4Va- Napy MK — 14ax s+ ax- Xasids

N 1 i .
_4%‘4 (Mc/tac)Nip +ﬂ%‘§ mAmBrAang(4viB_5UE\+9(VA'nAB)2_4§C: Mc /T ac—38a" Xag

~ 2/\” H H Al
_E MAMEAREXA (0 aANAs+ 100 +4(Va- Nap— 3Vag: Nap)v ANKE— 3(Va- Nap) *Mils— 14alXKa+ ax- Xaphids)

1 ., .
[ kol (ko Akl
+ 12;3 mAmBrABnAB(UA+2VA nABUAn) - f’\X/A)B"'ZaAX/-z 1_2AEB MAMgr AsNAg(4vAg— 2104

o o | . el
+8Vap: Nagt ApNig— 6Va- gy AN+ 35a0XY )+—E MAMgI ag(20 AMRe0 XeM e — v ANKEV WNE)

1
+§AEB MAMg (20 4 NRE0 ¥X — Vo - Aaghilgo X0 — 120 LR} o Wox )~ 38 mRQ"6K'+O(e3)><Q” (4.26

ijkim

E. The five- and six-index momentd X! iiklmn

and | gy

These moments contribute to the waveform at 3/2PN and 2PN order, respectively, thus we only need to evaluate the
dominant, Newtonian contributions to the integrands. Splitting the moments into a compact and a field piece, substituting the
lowest-order contributions tor! at O(pe), into Eq. (2.199, namely g)TI=3muls3%(x—x,), and

Al =4(U;U ;- %5ijU,kU,k), and carrying out the integration procedures as above, we obtain

ol mg -
E@m 2 M o= 52 kg |+ E MAMgr AsdeXW(ANE — 8™ +0(¥A)%xQl,  (4.279
3 dt 2 B rAB
. 1 d? 1w Mg .. A
|El\;\|,mn (2 mAXkImn( 2% @nRB + 2 MAMGT Ag nABX (nmn)_émn))__x (anlmn 2n(A"é5m“)
8
SKIsMMy | — 105 mRQ'J(s(k'am”>++0(e3)><Q'J (4.27hH

Equation(4.273 is equivalent to Eq(A53d) of [35].
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V. EVALUATION OF RADIATION-ZONE
CONTRIBUTIONS

~We now turn to the evaluation of the contribution
h_\(t,x) given by the integral over the remainder of the
past light cone of the observer, EQ.23. There is no ma-
terial source now, se''=A"/167. On the other hand, the
time dependence in the integrand of E8.23 is not the
simple fixed retarded time=t— R of the EW moments. The
(u’+r’") dependence of' in Eq. (2.23 reflects the varia-
tion in retarded time along each two-dimensional intersection
of the past light cone of the event,X) with the future light
cone of the eventy’,0). However,7" is a functional of
retarded potentials, such & When evaluated aw’+r’,
V has the form

d*” FIG. 6. Fi ibuting to\ *# ive poi
. 6. Fields contributing to\ “* at two representative points
V' +r' x")=| oo’ +r' =[x =x"|,x"),
( ) X" —=x"| ( | X" a andb on F have sources near same everitat r=0. Only
(5.9 orientation of near-zone source slice varies as angular integration

_ ) moves around-.
Notice that, becausé”|<R, while |x'|>R, we can ap-

proximate Since the ingredients of " are all fields evaluated in the
U =[x =X|=u’+A X"+ (2r ) (A -x")2=1"2] radiation zone, we can use expansions in powers of, 1/
such as those of E@2.14). The angular dependence of such
+-- (5.2 expansions can always be expressed in terms of STF prod-

ucts of radial unit vectorg’ (analogues of spherical harmon-

wheren’=x'/r', and then expand such retarded functlonsics)_ Thus All can be written, in the regime’>R, as a

aboutu’ in powers of the small quantity’/r’. For a given . U ALy —N
u’, the retarded fields that contribute A3 along the inter-  Sca-ence of terms of the generic forfy, (u’)A’ e =N,
section between the two light cones in Fig. 5 all have theirThen a change of variables

source in the near zone, on slices of the near-zone world tube

that pass through the center of mass at timeThe expan- , ,

sion (5.2) simply reflects the fact that, as one moves around {=(t—u)/r=1+u-u")lr (5.3
the source in anglfintegration overd2() in Eq. (2.23], the

orientation of the slice of the near-zone world tube that gen-

erates the fields precessage Fig. 6. puts Eq.(2.26 into the form, for eachlj,I) term,
N 2\N=2 rq140R/r d¢ 27 1 o
h'éN(N,'):(—> j me[u—r(f—l)]MTrYlJ d¢’J A"t —A"- AN 3dcosy’
r 1 (&°-1) ’ 0 1-a
2\N=2 re d¢ 2 1 o
+(— |7 ettt Dlam [ Tag [ i Oe-i i deosr, (5.4
r 1+2rn({°—1) ' 0 -1

where[cf. EQ.(2.29] a=({—1)({+1-2R/r)(r/2R). We  again expand the functions abaytat the latter boundary the
first carry out the angular integrals, which vyield contributions are assumed to be zero, which is equivalent to
n{“Ay (¢, a), whereAy | can be computed from Legendre making the usual and reasonable assumption that the source
polynomialsP,(z) by A,;H(g,a):%f%_aP,(z)(g—z)N*dz is not extraordinarily dynamical in the infinite past.

[see Appendix A, Eq(A5); a=2 corresponds to the full For the cases where the field point is inside the near zone,
44 angular integratioh Then, in the/ integration from 1 to  Eqg. (5.4 still applies, except that now<R, and the first/
1+2RIr, we expand the retarded time dependence of théntegral runs from—1+2R/r to 1+2R/r (Fig. 5.

f, aboutu, then integrate; this is valid sinc@<r. In the In working to 2PN order, just as in the case of the EW
integrals from H2R/r to , we integrate by parts numer- surface integrals, Eq$2.20, here we must also evaluate the
ous times, each time increasing the number of time derivaintegrandA'l to O(pe®). Here, as before, it can be shown
tives of fy |, stopping when the result exceeds the PN ordethat only the twice-iterated fields are needed in practice. This
required. The boundary terms that arise are evaluated a@an be seen as follows. We are only interested in theart
{=1+2R/r and (=, corresponding to retarded time of the waveform. Thus a contribution th" that is already
u—2R and —, respectively. At the former boundary, we O(pe®) but that falls off faster tham’ 3 (N>3) can be
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dropped. This would apply to all terms that are quarticallyexpandingh® through q=3, h® through q=2, and h®
nonlinear and higher, such as terms of the fdrAgh ,)?,  through g=1. Evaluating the integral$1“?*1" a1 to the
which fall off asr’ ~©. Cubically nonlinear terms of the form needed order, using the general method for integrating over
h(h,)? can also be dropped; at leading order, they arghe near-zone hypersurfacet described in Sec. 11 D, and
O(pe?), but fall off asr’~°. One might worry that by ex- adding any contributions tb_“ﬁ from the radiation-zone in-
pandingf}\ﬂ’, in Eqg. (5.4) aboutu (the value of retarded time tegrations(primarily from W"; see Appendix ¢ we obtain
at which all contributions to the waveform are to be evalu-

ated in the engd one could reduce the rate of fall off by one h%=4m/r'+7(m/r")2+ 2{r"1Q”(u’)},ij

power ofr for each retarded time derivative. But each time

derivative either raises the order of the termed§? or kills it _ E{r r=1Qik (U}

outright via a conservation law, such as for the Newtonian 3 Ak

potentialh~m/r. Thus the leading cubically nonlinear con- _ o -

tribution turns out to be of ordepe®/r’S, which can be h%=—2{r' "1 Q'l(u")—€"23%u")1};

dropped. Thus only quadratically nonlinear terms of the form

(h’é\)2 need to be conside_red. As befqre, .a _knowledge of +E{r/—1[Qijk(u/)_ZEika‘]aj(u/)]}’jk’ (5.5
h“? to the accuracy shown in E3.5 suffices; higher-order 3

terms contribute terms of ordere®/r . However, we must

now be careful in evaluating the terms whidh contribute. h'=(m/r")?A"1+2Q" (u")/r’

For example a term dD(pe) that falls off asr’ ~©, can, after 2

three terms in the Taylor expansion of its retarded time de- — _{r/—1[("3ijk(uf)_4€<i|kaja\1)(uf)]} ‘o
pendence aboui in powers ofr({—1), lead to a 1/ con- 3 ’

tribution to the waveform a©([d~1pe®?), which is 3/2PN o _ _ _

order beyond quadrupole order. A term of this form wouldWhere Q", Q'%, 3% and J% are defined in Eqs(4.16d—
arise from the cross term between the gradient of the New(4.169, and where the superscript notatii <) denotes
tonian potential/r and the Newtonian quadrupole potential Symmetrization only o andj.

~Q'/r3. Similarly a (pe)r’ =7 term would contribute a 2PN To the required order, we then have

contribution to the waveform. Such a term would arise from
a cross term between the Newtonian potential and the New- .. YT 1 "
tonian octupole potentiat Q'%/r4. A consequence of these A= —h%ht + Zhooyihooyi + Eh()(),(ihkk,J')+ 2h%4ThDo,
considerations is that, in expanding the second-iterated fields (5.6
he?, we must use the general multipole expansions of Eq.

(2.14), expanded through octupole order. This amounts tawith the result

L@ ) 3)
am| . [ 150%) 150K gOKD Q| | 18000 1800k 1801k 24Qik
Al =— | fr{ik) + + +a O — =
r r

r/4 r/3 r/2 r’ 7r73 - 7r12 - 7r’

(3) (3) (4)
(i) an @ (klm) y(klm) O¢kim) (klm) (klm)
_[ 8 6QW 0| 4 pvnamy| 35U 35QUM 150MM 10Mm  Q
5r/2 5r/ r15 r/4 r/3 3r/2 3rl

(3) 4 3
ki Sk )kl Dkl jak  gjak k
25QWKN 250K 250 (k) 10Q (I >) +ﬁ,<kl(i>6j)ka( gjek gjak gja )

+ (ki + - - + +
3r15 3r/4 9r/2 9r/ rl3 r/2 3rl

. . (3) . 3) (4) (4)
o 433k 433k 49 [ 10QUK 10QWK  4QMk 4Qlk 205
—n/ih gkla + + —f’k + — + +-Qlk
r's o' 3r 7’3 7r? 21r’ 3r° 3

R . . 3)
LAk (ika< 8Ja|1)+8Ja“)+ 16Ja|1)+8<j>aj)) - jka( 4% 4% 169°
N T A T ST T T

The terms in Eq(5.7) are of the generic fornhN,,(u’)ﬁ’“)r '~N_We substitute each such term into E§.4), integrate using
the procedure outlined above, and keep only terms through 2PN order that falloff. &véaluating at the detector distance
R, we obtain, finally,

(5.7)
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) am (= @ s 11 VI. REDUCTION TO TWO-BODY SYSTEMS
hi_ \(t,x =—j dsQY(u—s)|Inl s=—— |+ —=
c-mMtX) R Jo QX ) 2R+s 12 A. Center of mass and equations of motion to 2PN order
am . (= s 97 We now specialize to the case of two bodies. Through
+ﬁN dsQ*(u—s)|In| 55— RIS @} 2PN order the dynamics of two-body systems are well

known. The motion is governed by a Lagrangian that admits
16m a conserved total energy and angular momentum, as well as
- —E('|kaN f ds Ja“)(u s) a “‘conserved” center-of-mass definition. We define the sys-
3R tem’s center of masX and the relative positior by

TwR. (5.9 X=m~H(myxg+myxg) + 0 (x1,%,)
+f@(xq,%,) + O(€3) X X, (6.13

x| In

2R+s) 6| 315 R

) 7} 1912m®

As with the calculation of EW moments, we discard terms
that fall off with increasingR.

The integrals involving the logarithm of retarded time are
the tail terms, and are in complete agreement \\W&8J, in-
cluding the constantél1/12, 97/60, 7/6added to the loga-
rithms. Their origin is the backscatter of the outgoing gravi-
tational waves off the lowest-order, Schwarzschild-like,
static background curvature of the spacetime surrounding the

X=X1— Xz, (6.1b

wherem=m; +m,, andf(!) and f?) denote 1PN and 2PN
corrections to the center-of-mass definition. Inverting these
expressions and setting=0, we obtain

— 1 2 3
source. More precisely, the logarithmic integrals can be seen X = (mp /m)x— =2+ 0(e%) x x4, (6.28
to arise directly from the term-h°h'l in Eq. (5.6), which
represents a modification of the flat spacetime characteristics Xp= — (Mg /m)x—fP 2+ 0(e) xx,. (6.2D

by the potentiah®~m/r. The first tail term, arising from

the 20*Q{1/du* term in Eq.(5.7), is actually of 3/2PN or- The only place the 2PN correctidff’ could conceivably be
der, while the second and third terms, arising from theneeded is in the lowest-order quadrupole moment, but in this
2d5Q"k/du® and £d*J2/du® terms in Eq.(5.7), are of 2PN case it is straightforward to show that it is not, since

order. On the other hand, only the 3/2PN tail term contrib—

utes to the energy flux at 2PN order, resulting in ther N o o S -
term for circular orbits in Eq(1.4). Notice that the tail terms Q= EA: MaXaXa= XX +mfD I+ 0(%) x QY,
show no dependence on the near-zone boundary ralilrs 6.3
the BDI framework, the tail terms contain a schlevhich is
associated with a gauge transformation from harmonic coor- i_
dinates to a set o?raglatlve coordinates used in that frame—h eref =~ 3p(om/m)(v?—m/n)x (see, e.g.[59)), and

work; physical results in the end do not dependop@and the \(/jvherg we define th? twogbody variables=m;m, /m (re(-j
tail effects in the two frameworks are in complete agreement uced mass n=p/m, SM=my=my, V=Vi—Vp an
=|x|. The two-body equations of motion then take the ef-

It is casy to see that the final term in E.8), which fective one-body relative form, through 2PN order:
depends linearly ok exactly cancelshe sum of the corre-

sponding terms arising from the two-, four-, and six-index

EW momentdEgs. (4.17), (4.26), and (4.278]. a=ay+apy+asy +apytald+0(a®?), (6.9
Thus combining the contributions of the six EW moments

to Eq.(2.18 with these contributions gives the gravitational where the subscripts denote the nature of the term, post-

waveform, valid to 2PN order, for a genefdtbody system. Newtonian (PN), spin-orbit (SO, post-post-Newtonian

The waveform is explicitly finite, with no divergent integrals (2PN), and spin-spin(SS; and the superscripts denote the

or undefined termsHenceforth, we shall not display any order ine. The individual termgexcluding spinsare given

‘R-dependent terms. by
m
an="— 2, (6.5a
(1) mj. m 2 3 2 :
aPN:_r_Z n —2(2+7])T+(1+377)v —Enr —=2(2—n)rvy, (6.5b

2
(2) —
BHpNT

4 15 4 3 2.2 1 m 2
+7(3=4nv + g n(1=3n)r"= 5 9(3—4n)vT =5 7(13-4n) v

S 12429 m
721N 7 M\

m..] 1.
—(2+2577+2772)Tr2 —Zrv

m .
> 77(15+477)02—(4+4177+8772)7—377(3+277)r2}. (6.50
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B. Two-body Epstein-Wagoner moments

Restricting the summations in the EW moments to two bodies and substituting622)swe obtain, through 2PN order,

= x| 14 S (1 3m)o— = (1- 2 31 307)0* + (28 79— 5nR)od(m/
Ew= MX 2( n)v 2(1 nym/r 8(1 7n+135%)v +12( 79m— 547 )v-(m/r)

+/.LXij
1 ) ) 1 22 1 . b o
—7(5+27n—4y Y(m/r) — 15(1-137+307 yr2(mir) |+ umr 6(13+2377)v"—§(1—477)rv('n1) , (6.63
ijk ik (iyi)K_ . (iyi)k 2 1
[ew=m(dm/im)y xv*—20"xV*=p "X’ (1-57n)v +§(7+127;)(m/r)
1 . 1 1 . .
+§X"vk (1—57;)v2+§(17+1277)(m/r) +6(1—6n)(mr/r2)x”k], (6.6b
ijkl Kl ij 1"ij 1 ~ij ok s 2y, 2]
lgw=ux"(1-3n)|v —3n m/r —gmmmn 8+ ux 5(1—9774—2177 Jvv
1 2\, 25 1 2\ ij 1 2y (in)
_Zl(13_4677+367] )ven m/r+Z(7—107;—361; v m/r+6(7—1277—367; yro''nVm/r
1 i 1 .
+5(1—67;+12772)r2n"m/r+ﬂ(37—1227;+487;2)n”(m/r)2}
+ pumrs< i(7—467;)0”—i(7+2n)uz‘ﬁ”+3(5«,+277)'rv<w>+i(l—zr;)'ﬂﬁ‘i—§ﬁ”m/r
® 12 24 6 24 8
1 s 1 A 1 a ~
+,umrL—2(1—277)n”vk'—5(1—477)rn”v(kn')—§(7—2077)v('n”v(kn') , (6.60
ijklm 1 i l"ij kim 1 ~ij (kK sim)
lEw =—§(d/dt),u(5m/m) (1-27n)|v —Zn m/r | X —Zmrn XM | (6.60
ijkimn 2 N Kl 1 Sij g (KI 1 ij (kI
13" == u(d/dt)? (1-57+57?)| v'l = —ATm/r | xK™'— — (3—107)mralx® 6m™ + —mrxli 5K sm0 | (6.60
12 5 10 10
In addition, the moments that appear in the tail terms, (B@), reduce, to the required order, to
Q= pux, (6.7
QK= — p(sm/m)x'ik, (6.9
JA= — p(Smim)(xX v)aXI. (6.9

C. Two-body gravitational waveform and energy loss

Substituting the EW two-body momen(8.6) into Eq. (2.18), calculating the time derivatives using the 2PN equations of
motion (6.5) to the accuracy needed, and adding the tail terms from the radiation zone ir{&eg§ralve obtain the gravita-
tional waveform. An alternative method is first to calculate the so-called “symmetric trace-f88" moments defined by
Thorne[34] and used by BDI, and then to calculate the waveform. The procedures and formulas needed to do this are given
in Appendix E. The result for the waveform is

hi=—[Q"+ PYQ! +PQ+ PQlg+ PYAQU+ PYAQY+ P¥2Qdo+ P2QY + P2Qil+ P2Qdot P?Qdst O(e¥?) I,
(6.10

where, as before, the superscripts denote the effective PN order, and subscripts label the nature of the term, and where the
individual nonspin pieces are given by

5ij:2(vivj_?ﬁiﬁj)' (6.11a
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P1/2Q'l— [B(N n) [2n<' D= AR+ (N-v) —n Al -2y ] (6.11b
1 - .M ) )
PQU=31(1-37)|(N-)>— 3v2—15r +7— ARl +30rAtp)) —14p'y)
N m. ... S Sl M ) mi
+(N-n)(N-v)T[1Zn n'—=32n"y) ]+ (N-v)| 6v vJ—ZTn n||+[3(1-37n)v —2(2—37/)TvvJ
m. ... m . mi|,.. ..
—I—4Tr(5+377)n('v1)+? 3(1—3n)r2—(10+3n)v2+29r— n'al (6.110
m[5 oom\..... 17 1 . m\..
P3’2Q"— (1— 277)[(N n)s— { (302—7r2+67 rn'nJ—7ru'v1—g(zluz—105r2+447)n<'u”
1 o . m\ ... e 3 ~ . - m s
+ = (N-A)X(N- v) 58 vl +| 45r2—9u2—28—|n'nl — 108 nv |+ = (N-A)(N-v)2—[10n"v)) - 3rA'ni]
4 r 2 r
1 - m,_. .. o 1mAAmA...2 m )
+5(N- v)® A —4plo] |1+ — (N-R) — 20y r (63+547) — —(128-367) +v?(33- 187)

o m .
+n‘nlr(r2(15—9on)—v2(63—5477)+7(242—247;)>—rv'vl(186+24n)}

om -

+—(N V) —v UJ(—(3 87)—20v?(1— 57;))—n('v”—r(7+47;)

_aipi D 3 1-2 'r2+E 26-3 )T—E 7—27)v? (6.119
712+ 5( n =z (T=2nv], :
@ m m . . C o 11
32ni — | 24 2| ARl Al g) ]
P tha” fo [ 3 v+ ; 15 )nn +18n''v)—4v'v Ju ln(2R+s —12 ds, (6.119

m . o
4 2(175r——4652+93v2)v'v‘

oom. ] m o~
5v'vi——n'n’|+ —(N-n)
r r

PZQ”:%(1—57;+5n2)(24(|(1~v)4

Ao m o m. m) 2 . m . L
+3Or(63rz—50r——27v2>n('v”+(1155r—r2—172(7) —945"4—159r—v2+630202—4504)n'n'

m : o
57—10rz+ 202) Aliyh
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87rv'v‘+5r(14!(2—15?—6v2)n'n1+16

m ~ _ . -
+24?(N-n)3(N-v)

Nl — 760l +126rntip))

]

m .
35r——45rz+9v2

m -~ . - e m ~ _ . -
+288r—(N-n)(N-v)3[rn'nJ—4n('v1)]+24T(N-n)2(N-v)2

m LMo
5(25— 78n+ 127;2)7— (18— 657+ 457%)v?+9(1— 57+ 57%)r? Tn'nl

1- 2
+1—5(NV)

m
v'vl+186—159— 1On2)—rn('v')}

3|5(1—97+219*)v?—2(4— 257;+4577)

ran)

1 ~ . - m m .
+ 1—5(N-n)(N V) T[ [3(36— 145p+ 1509?)v?—5(127— 3925+ 367;2)7— 15(2— 155+ 307?)r?

2 ﬁ(ivi)]

Lo m .
+6(98— 2957 —307?)rv'v! + 2| 5(66— 221y + 96772)7— 9(18— 457 —407?)r?— (66— 2657+ 3607%)v

1 -~ ..m . m.
+ a)(N-n)ZT[ {3(33— 1307+ 1507?)v4+ 1051 — 107+ 30%%)r*+ 15181— 572+ 84772)Tr2
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m . m\2] ..
—(131—770r,+9307;2)7v2—60(9—4077+sonz)u2r2—8(131—39077+30772) - n'n’

+4

v'v!

. m
(12+ 57— 3157°)v2— 9(39— 1157 — 359?)r2+ 5(29— 1047+ 847,2)7

+4

. m
15(18— 407~ 757%)r*— 5(197— 640+ 1807?)——+ 3(21- 130y + 3757°)v

o)

m m. .
+ 5 [ (467+7807— 1201]2)Tv2— 1561— 967+ 48772)Tr2— (144~ 2657— 1357%)v* + 6(24— 957+ 757°)v?r?
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m_. .
—n'n’+

m) 2 .
—2(642+54577)(T> —45(1-59+57)r* .

m m.
4(69+ 107~ 1357%)~v?~ 12(3+ 607 + 257) 17

m\?] .
+45(1— 77+ 137%)v*— 10(56+ 1657 — 127?) - v'v!

. mim. .. .
+4|2(36+57—757%)v2—6(7— 15— 157°)r2+ 5(35+ 455+ 36772)7 Trn“v‘)}, (6.119
20l — om 21 o™ izl 1202+ 22 e52| (Aifiv-Re 270007
PQuii=26m 3 15 3v +2r 7rejrn'n’'n-N—|{ 13v°+ 37 65r<|(n'nlv-N+2n"v"n-N)
0
—40|-’(vivjﬁ-l§|+Zﬁ(ivj)v-l;l)-f-ZOvivjv-l(l In S +9—7ds
u_sl |2R+s/ 60
+85mfw M o2- 20 g2 (AAIv-N=nlpDA-N) - 2r (v'via-N—fAlpv. N) in[ = |+ Z|ds
olrd 3r .4 \2R+s/ 6]
(6.119

The leading PN and 3/2PN spin-orbit and the 2PN spin-spin contributions to the waveform can be found 322qsf [41]
and in Appendix F. There will also be in principle 2PN spin-orbit terms; these have not been calculated to date.

Although we have differentiated the moments appearing in the tail terms explicitly using the equations of motion in order
to display the waveform contributions in a consistent manner, this is not the best form of the tail terms for explicit numerical
evaluation in the case of general orbits. The reason is the slow falloff of the logarithmic term with incredsisigad, it is
preferable to revert to the forms of the tail terms given in Ex8), split each integral oves into a finite part from 0 to
So, Wheres, corresponds to several dynamical time scales of the source, and a remaining integra} tmm. The first
integral can be done using the expressions given in &q%l). The remaining integral is integrated by parts twice. One can
then show[38] that the latter integral falls off as & generally, and for nearly periodic orbits, a$§'L/By choosings,
sufficiently large(generally a few dynamical time scales or orbital perjpdse then can obtain accurate numerical represen-
tations of the tail terms, without having to integrate over the entire past history of the source.

Differentiatingh" with respect to time, using the 2PN equation of mot{érb) where required, and substituting into Eq.
(2.30; or equivalently, taking the appropriate time derivatives of the STF mom@pgendix B, and substituting into Eq.

(E5b), one finds, for the energy flux,

dgE . ) . . . ) B
rTa En+ Epnt Esot Bt Ezpnt Esst O(e2)Ey, (6.12

where the nonspin contributions are

. 8 m?u? .
N {1202—11r?}, (6.133

2 2
. _ 8 m M 1 4 2.2 4 m 2
Epn=15 7| 5g (785 8527)v*— 2(1487- 13927)v 22+ 3(687— 6207 *~ 16017~ 7) —v

2
+8(367—157;)?%%16(1—47,)(?) “ (6.13b
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. 4m<4><i.> w<4><iA>
Eta”:—?Q 1(u) . Q" (u—s)In[s/(2R+s)]ds, (6.139
2.2
E _Smeny 1 18(1692- 54977+ 44307?)v®— 54(1719- 10 278+ 6292%)v*r?
ZPN_15 r.4 75 n 07] v 8’] 27] %

. . m.
+54(2018- 15 207+ 75725%)v2r*— 18(2501— 20 2345+ 84047%)r®—12(33 510- 60 971y + 14 290;;2)Tr4

m m. m) 2.
— 36(4446- 5237+ 1393772)?1144— 1084987—8513y+ 2165772)Tr2v2— 3(106 319+ 9798y +53767°) - r2

m) 2 m)3
+(281 473+81 828;7+4368;72)(T v2—24(253— 10265+ 56172)(7) H (6.130
|
The 3/2PN spin-orbit and 2PN spin-spin contributions can be m? 1im 1/m)\?
found in Eqs.(3.25 of [41] and Appendix F. The tail con- E=—n5-|1— > —(7—n)— 5| —| (7-49—77)|.
o o 2r 4r 8\r
tribution is formally of 3/2PN order, arising from a cross 7.2

term involving P¥2Q!L, and Q'J; for simplicity, we do not

write it out explicitly (for circular orbits we evaluate it be- In order to calculate waveforms as observed by an Earth-
low). The “11/12” term in Eq.(5.8) contributes a term of bound detector, we must choose conventions for the direc-
the schematic form *Q/du*)(d3Q/du®), which can be tion and orientation of the orbit. The standard convention is
written as a total time derivative and absorbed into a redefito choose a triad of vectors composed(bfthe radial direc-
nition of the energyE at an order above that at which it is tion to the observerp, lying along the intersection of the
well defined as a conserved quantisee, €.9.[60,61] for a  orbital plane with the plane of the skiine of node$, and
discussion of this point In the same way, the form of the QINXﬁ (see Fig. 7. The normal to the orbiﬁN is inclined

tail term shown in Eq(6.139 has been achieved by integrat- an anglei relative to N (O<i<m). The orbital phase
ing the tail contribution once by parts and moving the tOtal¢=wu+Const of body 1 is measured from the line of nodes

time derivative over to the left-hand side. The 2PN tail termsy, 5 positive(out of the plangsense(orbits seen to be mov-
in the waveform make no contribution to the energy flux toing clockwise correspond to=/2). The two basic wave-
2PN order because their cross product with the quadrupollebrm polarizationsh, andh,, are gi\./en by

% + X

piece contains an odd number of unit vectdtsand thus

vanishes on integration over solid angle. They will, however, 1. '

produce 5/2PN contributions 8 via cross terms with the h. =5 (Pipj—aiaph”, (7.38
1/2PN waveform term®2Q'.

Through first PN order, Eq$6.13 agree with[17,62. 1
hx=§(piqj'+0hpj)h”- (7.3b
Vil. QUASICIRCULAR ORBITS [There is no need to apply the TT projection in E6.10
A. Orbit equations and gravitational waveforms before contracting o andd.] From our conventions, we

Because gravitational radiation reaction circularizes orN1@ve thatn=pcosp+(qcos+Nsini)sing and A= —psing
bits, the late stage of inspiral of a compact binary, such ag-(dcos+Nsin)cosp. Since h" consists of terms of the
that of the binary pulsar PSR 19136, will be characterized
by a quasicircular orbit, that is, an orbit which is circular PLANE OF
apart from the slow inspiral caused by radiation damping. SKY
We define the Newtonian angular momentiug= uxxv,
the unit vector A=LyXxn, and the angular velocity
w=|Ly|/ur?. A circular orbit is given by the conditions
f=r=0. Solving the 2PN two-body equations of motion
(6.5 under these conditions gives

sananey

ASCENDING
NGDE

A
Ly

m\? 4
(6+Z7]+7] ” (7.1

I L S
w°=13 r( 7) ;

FIG. 7. Orientation of unit vectors defining and X waveform
Then the orbital velocity is’=r o\ and the orbital energy polarizations. Direction of detector I$; p lies along line of nodes
through 2PN order is and is the origin for orbital phase angle
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form A'AJ, NN, or AUAD, we find the following formulas to (@ 7rR) ~IN(w7r) <1 [45]. Notice that the integrals con-
be useful in evaluating the polarizations: verge ass—o, even if we approximaten®/r*~const (in
fact, r—oo in the infinite past[63], so the integrals truly
converge¢. Thus we can substitute(u—s) for ¢ with
w=const in the tail integrals, pull out the?/r* factor, and
use the fact that, for any integar

(ﬁiﬁi)+=%sin2i+%(1+co§i)cosz¢, (7.4a

. 1 1
(AN = =sirfi — = (14 co<i)cos2yp, (7.4b J’w , S
4 4 nN—
Py . sin(nws)In| 5=/ ds
(AIND), = — E(1+cos,2i)sin2¢> (7.49 1
* 4 ' ' = —E{ﬁ|n(2an)+0[(2an)*2]}, (7.63
(ﬁiﬁj)x=ico§sin2¢ (7.409 ) »
2 fo =f0 coinws)ln(zm_S ds
(NN, = — }cosisin2¢ (7.4e 77
xXT75 ’ . =— —| =+0[(2nwR) 1]/, (7.6b
Nw\ 2
A 1 : , .
ST — and wherey is Euler’s constant. The result is
(NN 2cosscosZ¢, (7.41) »
~ 3/ )= iV —
N-n=sinising, (7.49 (P Quai) + 4(1+C0§|)( r
NN i T 11
N-A=sinicosp. (7.4h X Ec032¢+ y+In(4wR)— 1—2) sin2¢],
Substitutingr =0 and Eq(7.1) into Egs.(6.11) [keeping PN (7.73
and 2PN corrections in Eq7.1) as needel] and using Egs.
(7.4), we can evaluatd, andh, explicitly as functions of [m)\ 57?2
orbital phase and orbital orientation. The waveforms can be (P¥ Qi) x = —8003<—)
expressed in terms of powersmofr, but it is observationally
more useful to express them in termsnedh ~ (m/r)%?, since T 11
w is directly related to the observed gravitational-wave fre- x| 5sin2¢—| y+In(4wR) - 77 |cosp,
guency. Instead of showing the result here, we refer the
reader to[48] where the complete, “ready-to-use” pair of (7.7

2PN waveform polarizations are displayed and discusse

Similar substitution into Eqs(6.13 results in Eq.(1.4). qt is useful to combine these tail terms with the Iowes~t-order

quadrupole terms, given from Eq(6.11a by Q.
=—(m/r)(1+cosi)cos2p and Q,=—2(m/r)codsin2s,
into the forms

Because they involve integration over the past history of

B. Tail terms

the source, the tail contributions to the waveform and energy ~ m 2 m) 32
flux require additional discussion. For circular orbits, the Qi~— - (1+cosi) 1+2m| | |cos2), (7.83
and X polarizations of the quantitp*?Q}.;, are given by
_ m m\ 372
o m? ~—2—cod|1+27 —) sin2¢y, (7.8b
(P3’2Qta”)+=8m(1+coszi)J (r—400$2¢) Qx r r v
0 _
e where
S 11
Xl 5|+ 13|98 (7.5 ¥=¢—2(mir)¥7 y+In(4wRe 1113)]

= w{u—2mInR—2m[ y+In(4we 1371, (7.9

We first note that one effect of the tail term is to shift the
phase of the quadrupole piece by an irrelevant constant, and
by a term which varies logarithmically witlkr as the inspiral
proceeds. This slowly varying phase shift was studied in
[38].

Becauser and w evolve on a radiation-reaction timescale = We also recognize that—2mIinR=t—R—2mInR is re-

Trr Which is long compared to an orbital period, we cantarded time with respect to the “true” null cone that inter-
approximate them to be constant in the above integrals; theects the observation point at,iR). This can be seen by
results will be wvalid up to corrections of order noting that, in the asymptotic, Schwarzschild-like spacetime

0 m2
(P32Q.4) = 16mcos f (r—43in2¢)
0 u—s

1
SRis ds. (7.5b

+ —
1

In 5

X
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of the source, in harmonic coordinates, outgoing radial null
geodesics obey—r—2minr+O(1/r)=const. An identical
R dependence in the phase shows up at the next 1/2PN order
when one combines the two polarization statesPofQ'!
with those ofP?Qy;. We thus conclude that, at least through
the 2PN order considered, our procedure for calculating the
tail terms yields gravitational waves that asymptotically
propagate along the true harmonic null cones, toward true
future null infinity, despite the use of a flat-spacetime wave
equation forh®A. This avoids the need for further matching
or other devices to connect our solutions to true null infinity,
and answers another long-standing criticism of the EW
framework[7]. It is useful to note also that, in the BDI ap- —— T T T[T
proach, a similar logarithmic term appears in the phase shift 02 1 (b) Waveform B
(7.9), but there the term depends on the paramietesed in [
the transformation from harmonic to radiative coordinates. , %1 [
The appearance of such a parameter can be shown to have #g
physical consequences, as expedt®8l64. Our method is
explicitly free of such arbitrary parameters, all effectsfof ]
having cancelled. The only external radius which appearsis 4 F U U 3
that of the observer. ]
The tail contribution to the energy flux, given by Eq.
(6.139 can also be calculated in closed form using the above
assumptions together with Ed7.6b). The result is the
“4 7" term in Eq. (1.4).

Inspiral for (10M,, 1.4M,) non—spinning system
—Trr—T7

(a) Orbital Frequency Evolution

150

100

Orbital frequency [Hz]

1 L 1 : s 1 N 1
0 0.05 0.1

& of .
N h
&

. P
o] 0.05 0.1
time [seconds]

FIG. 8. (a) Orbital frequency andb) waveform for a 1.8,
C. Display of the waveforms neutron star spiralling into a Mg black hole plotted vs time in
sec. Orbit is viewed edge-on, therefore only-* polarization is

We now display our results explicitly by plotting the present.

waveform for an inspiralling binary as a function of time.
We will assume that the binary is in a quasicircular orbit in\yhere T is a dimensionless time variable related to the co-
its Ia;t few moments before the final plunge to C‘?ales_cenc%rdinate retarded time by T= 7(u/5m), and$, andT, are
The time evolution of the orbital phase velocity in this re- .ongtants of integration. The constditis the dimensionless
gime can be obtained by integrating the equation retarded time at coalescengke time at which the frequency
. in Eq. (7.1 formally becomes infinitg and ¢, is the orbital
d_w: L (7.10 phase at coalescence.
dt dE/de’ ' We can now use the orbital phase evolution along with
Egs. (7.3, (7.4), and(7.2) to write h, andh, as explicit

whereE is given by Eqs(1.4) anddE/dw can be obtained functions of time. We will not display the result hefthere
from Egs.(7.1) and(7.2. The orbital phase anglé can, in  are enough large equations in this paper alrgaloiyt rather

turn, be obtained by integrating the orbital phase velocity'efer the reader to Eq$2)—(4) in [48] for “ready-to-use”
The results are waveforms. The “ready-to-use” waveforms are essentially

Egs.(6.11) boiled down to the circular orbit case.
For the case of a 1.M neutron star spiralling into a

1 743 11 .
w(t)=o—(T—T) B 1+| e+ — 7,}(-|-C_-|-)1/4 10 M black hole the resulting frequency sweep and wave-
8m 2688 32 form are shown in Fig. 8. The observer is viewing the orbital
1855099 56975 motion edge on, so that 7/2 in Egs.(7.4). In this case the

gravitational radiation is linearly polarizedonly h, is
present The upper cut-off frequency in Fig. 8 is chosen to
371 be 180 Hz; this is approximately the orbital frequency at the
+ mnz}(Tc—T)‘l’z], (7.113  innermost stable circular orbf65,66 for this type of sys-
tem. For the initial LIGO detector, Finf67] has shown that
L 3715 55 a substantial fraction of the signal-to-noise ratio available is
B 5/8 _1a accumulated when integrating a matched filter against the
d(t)= e~ ;(Tc—T) [1+{We4+ %”}(TC_T) signal in the frequency range we have displayed. In other
words, the segment of the waveform shown in Fi¢h)8

0T 38
10(Tem T 70 { 14 450 688 258 048"

B 3—7T(T )38y 9275 495+ 284 875 sweeping from 75 Hz to 180 Hz, is the portion of the wave-
4 ¢ 14 450 688 258 048’ form which is actually mostletectablefor the initial LIGO
detector.

N 18557]2 (T—T) 12 (7.11H As energy is extracted from the system by the radiation,
2048 ¢ ' ' the orbital radius shrinks and the orbital frequency increases.
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This gives rise to the dominant “chirp” feature of the wave- extending the calculation of gravitational radiation to higher
form in Fig. 8b): the growing amplitude and the bunching of PN orders. An extension to 5/2PN order in the BDI frame-
peaks at late time. However, because the coordinate velocityork has been achieved by Blanché®]; such an extension
rises to about 04 this system is quite relativistic, and thus in the improved EW framework is in progress. Extension to
the inclusion of higher multipoles of the radiation causes the8PN order will be a bigger challenge, simply because of the
waveform to differ considerably from the simpleosine  complexity of the terms, including quadratically nonlinear
chirp that one would compute just using quadrupole radiaintegrals, and the rapidly increasing number of computations.
tion. The pairing of wave crest@lternately closer together However, we foresee no obstacle in principle to such an
and farther apartsignifies the onset of the gravitational ana- extension in the improved framework.
logue of synchrotron spikes. Just as in electricity and mag- This improved framework will also allow derivation of
netism this feature comes from the inclusion of many harnear-zone gravitational fields in a form that will yield equa-
monics of the radiation. In our analysis we have includedions of motion for the sources to high PN orders. It should
multipoles through the six-index multipold,™ . This al-  be possible to derive radiation-reaction terms in the two-
lows us consistently to include components of the radiatiorbody equations of motion, at orde¥? ande”? beyond New-
in our waveform at multiples of the orbital phas@,mi,  tonian gravity[60,61,7Q, without the presence of ill-defined
wheren ranges from 1 to 6n=2 being the dominant quad- or divergent terms, and without the need for matching be-
rupole contribution. tween zones. One goal would be to derive the nondissipative,
Another interesting feature of Fig.(1§ is that adjacent 3PN terms in the equations of motion. This would improve
troughs are not the same depth, but adjacent crests are ess#ie accuracy of estimates, using a hybrid Schwarzschild-PN
tially the same height. This effect also has a discernabl@quation of motion, of the transition point between inspiral
physical origin. The deeper troughs arise when the lightefnd unstable plunge in the late stage of compact binary in-
mass is coming toward the observer; thus the observer is igpiral[65,66. Calculation of the near-zone fields will also be
the forward synchrotron beam pattern of the lighter, fasterimportant in developing interfaces between the post-
moving mass. The shallower troughs arise when the lighteNewtonian approach, which works well for most of the in-
mass is receding from the observigkt the left-hand side of spiral, and numerical relativity methods which must be used
the figure, the phase is arbitrarily set to zero, i.e., the heavider the final few orbits and the coalescence. Work on this
mass(chosen to bam,) is passing through the ascending latter subject is in progress.
node coming toward the observer and the lighter mass is
receding. The waveform is clearly in the not-so-deep trough
at this leftmost poin{. The crests are essentially the same
height because the radiation is virtually the same when the We are grateful to Luc Blanchet, Thibault Damour, Bala
masses are moving transverse to the line of sight of the oltyer, Eric Poisson, and Wai-Mo Suen for useful discussions.
server regardless of which mass is closer to the obs¢seer This work was supported in part by the National Science
[35] for further discussion of the asymmetric radiation emis-Foundation under Grant Nos. PHY 92-22902 and PHY 96-
sion). The extent to which the harmonic structure might be00049 (Washington University and AST 94-17371 and
measurable by a gravitational-wave detector is currently unPHY 94-24337 (Caltech, and NASA under Grant No.
der investigation 68]. Preliminary analysis shows that ne- NAGW 3874 (Washington University
glecting the harmonic structur@e., just using the quadru-

pole amplitude to describe the waveresults in
approximately a 4% loss in signal-to-noise ratio. In Appen- APPENDIX A: STF TENSORS AND THEIR PROPERTIES

dix F we show how the effects of spin modify the waveform |, cajculating field integrals we make frequent use of the
and frequency evolution. properties of symmetric, trace-fre&TF) products of unit
vectors. The general formula for such STF products is
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VIIl. DISCUSSION

[/z] (21—1—2p)!!

We have ext'enQed the _Epstein-Wagoner frgmework for FL= 2 (_1)pW[ﬁL—2P5P+Syn{q)],
calculating gravitational radiation from slow-motion systems p=0 ( )
to produce a method that is free of divergences or undefined (A1)

integrals. The extension involved adding to the original

framework the integral of the effective source over that par{yhere[1/2] denotes the integer just less than or equal to
of the past null cone of the field point thatesteriorto the |2 the capitalized superscripts denote the dimensionality,
near zone. When expressed in appropriate variables, that ip—2p or p, of products ofi' or &' respectively, and
tegral can be shown to be convergent, and can be evaluatedym(q)” denotes all distinct terms arising from permuta-
in a straightforward way, to any chosen PN order. The extegigns of indices, wherg=11/[(2Pp!(1—2p)!] is the total

rior integral yielded(a) terms that explicitly cancel terms  mper of such termésee[34,2§ for compendia of formu-

from the EW framework previously thought to be divergent|aq For convenience, we display the first several examples
(b) tail terms, in agreement with other methods based oRypjicitly:

matching, andc) phasing terms that verify that the radiation

asymptotically propagates along true null cones of the

curved spacetime. Al = pii — Egij (A23)
This new, well-defined framework, provides a basis for 37
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£ (ijky _ nijk Looi Gk ai sk Ak i 1t N-3
nx' =n! —g(n'aJ +n! 8 +nks"), (A2b) ANJ(g,a):E Pi(2)({—2)"">dz (A5b)
1-a

- . 1 ..
Ak — itk _ 7[ﬁ'l S+ sym6)] APPENDIX B: DERIVATIVES
OF GRAVITATIONAL POTENTIALS

+ iwij S+ sksil+ 51 51Ky, (A2¢) In evaluating.the “field” parts of EW moments, we have
35 repeated occasion to integrate expressions involving two de-

rivatives, spatial, time, and mixed, of the potentiaand two

spatial derivatives ofX. For a field point external to the

bodies, such derivatives can be calculated easily from the

1 expression$4.4g and(4.4b. However, because the integra-
Al sik sim tions run over the locations, of the bodies themselves, we

* 63[n or o+ sym19)], (A2d) must carefully evaluate the singular behavior of such double

derivatives ax=x, . Consider, for example, the expression

Riikim) _ pijkim _ é[ﬁijk(skl+syn(1o)]

Riikimn) _ fijkimn_ %[ﬁijkl 5™+ sym(15)] for U, written in terms of a smooth density distribution:
. a’-(x—x") 3v'l(x—x")
1 . = ! 3y
+®[ﬁ|15klémn+sym45)] u J p |X—X’|3 |X—X'|5 d*x’, (B1)
1 where &' =dv'/dt. For a field point outside the bodies,
— ——[ 816 6™"+sym(15)]. (A2¢) shrinking the density distribution to a point yields a result

693 equivalent to that obtained by differentiating £4.4a. For

There is a close connection between these STF tensors afd PoINt igside, say, bOdYZA* we find that the integral
spherical harmonics. For example, it is straightforward tafbeay AUd“X— — (47/3)Mav} as the size of bod shrinks
show that, for any unit vectaX, the contraction oN" with ~ t0 @ point. Consequently we must addsdunction term to
AL is given by all double derivatives ofJ and X found using Eqs(4.439
and(4.4b. The results are

,\ I! -
NEA = - Py(N-), (A3) )

(2 =" U;=U—(4m3)> myd1(x—xy), (B2a

’ A

whereP, is a Legendre polynomial. This latter property can

be used to establish the identiig.11): o _

U;=UT+(47/3)> mawhé®(x—xa),  (B2b)
' A

> J Yin(®Yim(9 00?0 =018 (A4

m
Since the left-hand side is STF, and depends only on the unit U= UT_MW/S); MAvAS%(X—Xa), (B20
vectorn, then it must be proportional to the STF combina-
tion A", To establish the normalization, contract both sides . ) B
with the L’ -dimensional non-STF produdt*’, whereN rep- X=X _(877/15)2A Ma(038" +20}) 3%(X—Xa),
resents thez direction. Using Eq.(A3), and recalling that (B2d)

P, =N Y|:q, Where |, is a normalization coefficient, we
find that the integral yield§l!/(21—1)!!]P;,(N-n) 8., es-  where 1t denotes derivatives computed from E4s4a and
tablishing the unit coefficient in Eq$4.11) and (A4). (4.4b).

In calculating the radiation-zone contributions
to h'", we must also evaluate the integrals
(4m)tf2mde' f1_ n'(O(z—n"-n)N"3dcosy’, where a
=({—1)({+1-2RIr)(r/2R). The result must be an In Sec. Ill B, we wrote down the second-iterated solution
|-dimensional STF tensor, dependent on the only vector ifior h®? in terms of the potential¥, V;, andW;; . Here we
the problem,f, and thus must be proportional f6-). To  discuss the solutions for these potentials, 8¢}, in more
determine the proportionality factor, which will be a function detail, especially the potenti#/;; , whose source is noncom-
of £ and @, we contract withA', choosen to be in thez  pact.
direction, and substitute EGA3). The result is We first consider field points in the radiation zone. Since

their sources have compact support, the potentiaésdV;
N e P , do not have to be divided into contributions from integrals
(4m) fo d¢ Lwn ({=n"-n)"""dcosy over the near zone and over the radiation zone. They can be
expanded using the analogue of E2;14), and written to the
=An (LR, (A5a)  needed order in the form

APPENDIX C: THE SECOND-ITERATED FIELDS



_1 1
V(t,x)=m/r+§{r Q”(U)},ij—g{r QU (W} ,ij

1. ‘
+ EQ/r—{r—llz'(u)},i+0(e3), (Cla

1 » )
Vi(t,x) = =2 {r Q" (u) — €I%u)]},

+ é{r*l['Qiik(u) _ ZeikaJaj(u)]}yjk_i_ 0(65/2),
(C1b

where Q and F'=3 smax,(v2— SgMg/2r ag), respectively,

represent the difference between the monopole and dipo
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contribution from the momentM we show the
‘R-dependent term to illustrate its ultimate cancellation.

To evaluate WV;j).-, we use the fact that, to the
required order, in the radiation  zone, 7},
=(4m) " Ym?r' Y (n’ {1 —181). Using Eq.(5.4), and re-
membering the factor of 4 difference betweh andW;; ,
we obtain

ijkl
L

1m?y 1meo
(Wipe-w=7 7z~ g s RN,

(CH

where we again discard terms that fall off wiih It is easy
to see that th&R-dependent term in EC5) exactly cancels
the corresponding term inW(;;) ,- resulting from Eqs(C40

lend (C2). Combining the contributions td;; through octu-

moments of the potentidl, and the 1PN accurate, constant pole order, and substituting them along with E¢81) for

total massm, Eq. (4.163, and the vanishing center of mass
X, Eq.(4.160. In constructingh® using Eq.(3.5a these two
terms are cancelled by terms frodd=W".

The potentiaWV;; must first be divided into near-zone and
radiation-zone contributionsW;; = (W;;) y+ (Wij)c- . TO
the O(€?) needed for the use ddv;; in source terms for
higher iterationgsee Egs.(3.5], we can approximate the
integrand in  Eq. (3.40 by oj+(4m) (U U
_%5iju_’kuyk)ETI(J1)/4, with oijIEAmAvkvkﬁ?’(X—XA).

Here r'('l) denotes the first-iterated effective stress energy.
Then (W;;), can be expanded using the analogue of Eq.

(2.14), with the result

oo

_1)q
(Wij)a=
q=0

: = Miik1 kg
q

o]
r k k,

Rpto q

where

M”kl”'kq(u):j Ti<11>(U,X)Xk1"'kqd3X- (C3
M

Using the expression above fmfl) in each of the moments
in Eq. (C3), and using the strategy for evaluating field inte-
grals described in Secs. IVA and IV B, we find, to the
needed accuracy,

MI=5Q, (C4a
I R 2 ..
ijk— — ik _ Z _(ilkajalj)
M 6Q 3€ Jain, (C4b)
. 1 ) 3 .
ijkl — — 2 i(k ol)j__ — oij okl
M EMR| 2846 25' &
+term independent ofR, (C40

where we discard terms that fall off with increasify but

V andV; into Egs.(3.5) yields the second-iterated radiation-
zone fieldsh®?, Eqs.(5.5). It is interesting to note that the
(m?/4r?)A term in (Wi;)c— is required in order that the
far-zone field correctly approximate the Schwarzschild ge-
ometry in harmonic coordinates in the static limit: namely,

h9%=4m/r+7(m/r)?, (C6a
h%=0, (C6bh)
hil=(m/r)?nil (C60)

[compare Eq(5.5)]. This contribution could not have been
found using the EW approach without our new formulation
of the radiation-zone integrals.

We next consider field points within the near zone. Ex-
panding the retardation about u with [x—x’| as the small
parameter, we obtain Eg&.6) and(3.7). The compact con-
tributions toU, X, U;, andP;; can be evaluated directly; the
noncompact part oP;; is left unevaluated until it is incor-
porated into an EW momeii$ee Appendix [ It remains to
evaluate the radiation-zone contributiokV)._ - with a
near-zone field point. Using the form ef,, above, and us-
ing the near-zone field-point version of E¢.4), we find
only contributions proportional tan?r?/R* and m?/R2.
Thus we can discard such terms.

i

APPENDIX D: CUBIC NONLINEARITIES IN 12y

At 2PN order, the nonlinear field source® Eq. (4.8)
contains terms that are cubically nonlinear, i.e., that depend
on effective products of three gravitational potentials. The
contribution of the final such term in E¢4.8), proportional
to UU U |, to the integralf ,,A%x'x/d®x can be evaluated
straightforwardly by integrating by parts. However, the two
terms P U —PymU i« are more difficult becausk;; it-
self [Eq. (3.7d] is a potential, one of whose pieces is pro-
duced by a nonlinear source. The contribution of the com-
pact sourcer;; can be handled easily by the methods of Sec.
IV A. Here we focus on the nonlinear piece. We define the

retain all other terms. Although we never actually need thenonlinear potential
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Pij(U,X)= 7— 50U | (ux). contribution toU andX from bodyA, respectively, we write
(D1)

1 J d3x’ 1 ated is7 [ U ;U ;Xd®. Defining U, and X, to be the
Ix=x’|

We then need to evaluate the integral fMU"U"Xd X EA fMUA*'UA'JXAd X

(1/7T)f (2P U = PrmU km) X XX, (D2) + > Un,iUa Xgd®x

M A#B J M

We integrate the first term.by parts, show that the sgrface +22 j UA(iUB,j)XAd3X
terms fall off with R, and obtain

83 AMAP(Xa) X4 — (4/7) [pU-ixDd3x. The first of these

terms may be evaluated using the nonlinear pieces of Eq. + > f Un iUg,jXcd3x.
(4.4d. The second term may be written in the form A#B#C

(ixd) 9
1 1 (x—=xpu)"x!

T vV'u’ 2d3xr m f - 3
7| STV S m e B

The first term has no TT part, while the second two terms
can be evaluated using the standard methods of Sec. IV A,
and lead to the term- SEABmf\mBﬁ',{B in Eq. (4.17. We

. _ _ define the third term to bejk,, change variables to
In the x integration, we change variables p=x—X, y=x— Xc, Y=Xa—Xc, andz=Xg—Xc, verify that no sur-
and integrate using the general method describeghce contnbutlons aR are so generated, and show tfatan

(D3)

in Sec. IVA. The result is the integral pe \yritten _EABCmAmBmCV IF(y,2), where

(2m)Zamal p] V' U203 (x T =x0)/|xo=x'|,  which F(y,2)=/ plu— y? Yu—27"tudu. The latter step involves

can be easily evaluated by integrating by parts. ensuring that the piece & that diverges withR contributes
The second term in E4D2) can be written no TT part toG, so that the integration can effectively be

commuted with they andz derivatives. Note tha has units

1 1 of (distance?, is symmetric ory andz, is a function only of
’ ! AR A4 3y
“22] (YaYimT §5km|V U7 dx EA Mp lyl, |zl and w=|y—z|, and has the property that
M ViF=—4mylw, VIF=—4xz/w. It is then straightforward
1 3(x—xp)km to show that the function with these properties is given by
fM|X_XI| P F(y,2)=—@Q2#@R3)[ (y+2w—yz+(y>+ 22— w?)In(y+z+w)],
modulo terms that give no TT contribution ta Thus the
4 - solution forGi, in Eq.(4.17) is
- ?ﬂékmbﬁ(x—xA))x”d?’x. (D4) ©

gl(Ja):M%#C MaMgMcVAVEF (Xac Xgc),  (D7a)
Again we do thex integration by changing variables to
y=X—Xp, and using the method of Sec. IV A. Integration of 2
the §-function term is straightforward. The remainirg in- F(Xac,Xgc) = — §[(fAc+ rec)fas—raclBe

tegration takes the form
+2Xpc- XgelN(rac+rge+rag)]- (D7)

1
—f ( U\’ - 5km|V’U |2)d3x’2 My d)ﬁjkm Note that, becaus€,Vj(xac: Xac) = 8; , no logarithmic de-
pendence on source variables actually surviveklin. For
A A 1 two-body systems, this term does not enter the formula for
-y ])m+ ‘If ,x” 22X Om .XA)+ kaX the EW moment.
1 5kaij APPENDIX E: STF-MULTIPOLE DECOMPOSITION
_§|x’——x| +XA8i 6 iym— Rék m | (D5)

Although the Epstein-Wagoner multipoles arose very
naturally in our retarded-time expansion of the relaxed Ein-
where  ®A=|x'—x,|%/15, VPA=|x"—x,/3/3, and stein equation, these are not the only multipoles for display-
XA=|x"—x,|. The first five terms in Eq(D5) can be evalu- ing the answer. An alternative set are the symmetric trace-
ated simply by integrating by parts. The sixth term is equivafree (STF multipoles, which arise naturally in angular
lent to the cubically nonlinear term in% proportional to  decompositions of the waveforifsee, e.g.[34]), and are
UU U\ [Eq. (4.8]. The final term proportional t&® is  multipoles of choice in the BDI framework. Thus it is useful
straightforward. to obtain a transformation between the EW multipoles and

The seventh term requires extra work. Dropping contributhe STF multipoles.
tions with no TT part, we find that the integral to be evalu- If the waveform is known then the STF multipoles can be
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projected out. This is exactly analogous to projecting the .. - - " ikl ik
coefficients of spherical harmonics from a scalar function. Z 7e=| 12l EW+ (13IIJ A v T HELU Y
The STF multipoles can be projected from the TT waveform STF
by integrating over the sphefsee[34], Eq. (4.11)]: (E29
A" aayeay_ [MM-D(@mEDI R .
du™ STF 2(m-1)(m+2) 4xm T =160 s, (E20)
x | h%%Nas...N2ndQ |, (El9 )
T Iljklmn ijklmn
str =[360gw  Istr, (E2¢
dmmjg]fé'_'am:{(m—l)(Zm—l)!! R
du 4(m+2 4 1 N
( : jSTF ElquEW+28€|pq(9|Jqpmm 3|qmm] +\7It£aily
i STF
X f eaﬂ"NJhﬁzNa2~~-NamdQ}, (E2f)
(E1b
ay---a . Jik =126 119 4 — € q(71I9RKM™ 2 AP
WhereZ‘ngF2 ™ are called “mass” multipole moments and STF— | <€ipq EW 15 ipq EW STF'
J %2 % are called “current” or “spin” multipole mo- (E29
ments. Substituting the expansion 2 in terms of EW
moments, EQ.(2.18, and adding the radiation-zone tail Ijkl kI
terms, Eq.(5.8), we obtain the transformations, correct to T Ee=19€ipql B0 str, (E2h)
2PN order:
(S)ijklm jgpkim R
Tl = |iEjW+ (11|Ijkk 121 IE(\}\jl)k+4|kk|J)+ (23||]aabb T gt =[48eipglewv Istr (E2i)

—32A2P 108+ 218020 | + T
STF

tail »

(E2a

aa”k)]STF_l'I tail 1
(E2b

g_IT_F [3|Ijk +(3||Jkaa 3||aakj

) 1
Tdie=pur? AR+ 25
_l ini
T
2(131-9079+127 2) M2 + !
( mt12737°) 1% |+ gzgu')

n m C .
n'n1(29(1—3n)02—6(5—87,)7)—24(1—37;)rn<'vl)+22(1—3n)u'ul

where the STF notation on the right-hand side means sym-
metrize and remove all tracésote that the STF tensors are
symmetric on all indices, while the EW moments are sym-
metric only on selected pajisThese transformations can
also be established using E@S.23 and (5.24 of [34].

For two-body systems in general orbits, the resulting STF
moments are given by

m\? m
3(253- 1835y + 35457%)v* — 6(355+ 1906n— 3377°) ( T) +2(2021- 5947y~ 4883y%) v

m
2(742—3357— 985772)T+ 3(41— 3379+ 7337%)v?

1 )
+30(1-57+57%)r2 }—ﬁn iv)r| (1085-4057p— 14637,2) +12(13— 1017+ 2097?)v? + T,
STF
(E3a
N om JUDR 1 1 m o
z*SJ.krF:—M—r3|n'ank 1+€(5—1977)v2—6(5—l37])— +(1-2n)(v'vink=rv' Ak b K (E3b
m r STF
Kkl aininkal 1 2 2 m
T3 = ur AIRIAKA (1=317)+ 175(103- 7357+ 1395 yo2- 1(10—617;+1057; -
6 .
+5—5(1—57]+5n2)(130'an —12rp’ ankn)] , (E30
STF
=~ u—r5{<1 27)AAIAA A s, (E3d)
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TN = 4r8(1—- 59+ 57%) AR AKA ATAM g1, (E3e
. sm ) m) S ij
T = —p—r{ (xxv)i| Al 1+—(13 687)v +—(9+1o77) + (1™ 2ol |t + 7L (E3f)
m STF
ijk 2 i| 2jmk 1 2y 2, 2 2,M
J &= prsy (xxv)' | nln*| 1-3 75+ %(41—38577+92577 ) +§(7—877—4377 )T
1 2 K k
45(1 57+57%) (10rvink+ 7vivk) , (E39
STF
ijkl om ok
Tste=—n gl 3(1=2{(xxv)' WAk }gr, (E3h
T &= purt(1=5 9+ 5 ) { xxv) AR A s, (E3)
where the “tail” STF moments are given by
51 o (4) 11
= i (u— .
wi=2m | dsQ'(u=9)|In| 57|+ 35 o (E4a
o (5) 97
Tk ZmJ ds Q% (u—s)|In +— (E4b)
il ™ 2R+s| " 60]
i ©  (4) s 7
= i(y— z
Jta” fo ds J'(u—s) In(2R+S +35 . (E40

Through 3/2PN order, these moments agree Y88, and in the circular orbit limit, through 2PN order, they agree with BDI
[39].
In terms of STF moments, the waveform and energy flux may be wiigéh

[’

1
hTT R

40 - 8l

ijag---a_ cay
|!ISTé m2(u)NABi-24 (|+1)|EDCI(|

fs)ﬁé‘l "a'2<u>Nqar“a'2} , (E53)
TT

* (1+1)(1+2) (|+1) a |+1) a 41(142) (1+1) (|+1) "
Z{ i one o Zse W Tse MWt i Jse (W st (W)

(E5b

Substitution of Eqs(E3) into Egs.(E538 and (E5b), using  sented in such a way that the spin contributions computed
2PN equations of motions in any acceleration terms genetiere can just baddedto results already presented. here and
ated by time derivatives, and keeping terms through 2PNelsewhere. In particular we give the spin- orbR @<, and
order, yields Egs(6.10, (6.11), (6.12 and(6.13. P32Qly) and spin-spin P?QYy contributions to the wave-
form Eq. (6.10 for general orbits. We also give a restricted
circular-orbit version of the results which can be added to the
“ready-to-use” waveforms if48].

In this paper, we have used our augmented Epstein- In order to derive the spin corrections to the waveform,
Wagoner formalism to give a complete description of thewe relax our “point-mass” assumption and allow the bodies
gravitational radiation for inspiralling “point-mass” binaries to have spatial exteramall compared to the interbody dis-
throughO(€?) beyond the lowest-order quadrupole contribu-tances. We further assume that the bodies are uniformly spin-
tion. In this appendix we demonstrate that our formalism isning fluid balls, approximately spherical in harmonic coordi-
also adequate for computing contributions to the radiatiomates.(A full discussion of this “fluid sphere” formalism is
which arise from the finite spatial extent of the bodies. Ourgiven in Appendix A of[35], where it is used to derive the
primary goal will be to compute the contributions to the waveform produced by nonspinning bodies through
radiation from the bodies’ spin angular momenta, but in theO[ €2].) Although formally, our PN approach restricts us to
process we will show how other extended-body effects, suckveak internal gravity, we anticipate applying the results to
as those due to a body’s intrinsic quadrupole moment, couldeutron stars and black holes, as in the nonspinning case, by
be computed with our formalism. The results will be pre-relying upon the strong equivalence princigze Sec. Il B

APPENDIX F: SPIN EFFECTS
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for discussion of this point It is now conventional, in treat- in Eq.(4.26), and the second term is the spin-orbit correction
ing spinning compact bodies, to view the s@inf each body  to this multipole, of ordee*? smaller. In obtaining Eq(F4)
as a quantity measured in units of {taas3?, as is the case from Eq.(F2) we have neglected a number of terms because
for black holes. Given that, formal\§~mdv, whered is (1) they vanish because of our assumption of spherical sym-
the size of the body, and is its rotational velocity, our metry, (2) they have vanishing transverse-traceless projec-
convention implies thaSeompac Stormar~M/dv~ €Y/, with  tion, or (3) they are higher order in the bodieshall dimen-
the result that spin effects are viewed as 1/2PN order smallegion (~m), and therefore effectively of higher PN order.
per factor of spin than would be the case formalgee Such higher order moments can in principle be retained and
[40,41] for further discussion incorporated into the framework. B

The leading-order spin corrections to the waveform arise Keeping terms up td(pe) in the sourcer’, and pro-
solely from terms in the sourd&q. (2.5)] directly dependent ceeding in precisely the same manner we can compute the
upon fluid velocities. Since these terms have compact sugspin-orbit contributions to the other EW multipoles
port, they generate no contributions to the waveform from
surface terms or from far-zone integrals, at the order we are
considering in this appendix. Thus the spin corrections can
all be obtained from the compact support pieces of the EW
moments Eq(2.19. We illustrate the procedure for comput- ~ik ik (i Kl
ing the spin contributions by examining the four-index EW |EW=EA (MAVAXA T XK€V Sp). (F7)
multipole Eq.(2.199:

IEW=§ [maxid + x4 (vax Sy, (F6)

Here again, the first terms are the leading-order non-spin
|iEJ\l;\|/:f Alxkx! d3x. (F)  contributions to the multipoles, Eqé4.17) and (4.22. The
M spin-orbit correction terms are, respectively, of oreéf and
€' smaller than the leading terms.
In generating the expressions for the multipoles and
waveforms, we must includepin corrections to the equa-

Using Eqg.(2.9) and Eq.(2.5 we can write

IE\‘j\',zf [ pv'v! + (terms independent of velocity tions of motion. However, in the case of spinning bodies
M there is a delicate point to be considered in this procedure.
+0(pe?)Tx*x'dBx. (F2) The center of mass of bodk, denoted byx, used in our

derivation of the multipole expressions turns out not to be
Terms which are independent of the fluid velocity will not precisely the same as the definition of the body’s position
contribute to the spin terms that we are computing here; theysed in the derivation of the conventional spin-orbit equa-
give nonspin terms which we have already calculated. Anyions of motion, as given, say, by Damdd#], or Eq.(F14)
Spin terms that m|ght result from ﬂ'@(péz) contributions below. The difference is related to the use of different so-
will, in our convention, be at leasd(e?) smaller, beyond called “spin supplementary conditions” which fix the center
the 2PN order at which we are working. We now write the©f mass of spinning bodiesee[40,41] for a thorough dis-

Source_point position and Ve|0city as cussion. We have previously ShOVV[ﬂ-O] that, to bring our
S center-of-mass definition into accord with that used in the
X'=Xp+ Xy, (F3a  equations of motion we need to shift the position of body

o A in the following manner:
v'=vhtoh, (F3b) 1
wherex}, is a suitably defined, PN-order, coordinate “center Xa—Xpt z_mA(VAX Sa)'- (F8)
of mass” of bodyA and X is a coordinate displacement
vector from the center of mass to the fluid element within thePerforming this transformation replaces EE6) with
body. Similarlyv),=dx,/dt is the coordinate velocity of the
g:z:g: (81; m:ssi..See, e.9.,71,40,4] for the definition of the = ; [maxi + ZXX(VAXSA)')]. (F9)
Substituting Eq.(F3) into Eq. (F2) and integrating we
obtain Since we are working only to 3/2PN order in the spin-orbit
correction, the transformation E¢F8) has no effect on the

ikl _ ij Kl (i_j)m(kyl)am other multipoles. However if one were deriving the 2PN
Ew EA MAUAXA + 202 €7 XASA (F4) spin-orbit correction to the waveforifi.e., P?Qd, in Eq.
(6.10] it would be necessary to use the tranformation on Eq.
where we have defined the spin vector by the formula (F7) as well.
1 The spin pieces of EqgF9), (F7) and (F4) can just be
J pmd%(z_ekijsk, (F5) added to theilN-body point-mass counterparts in Sec. IV,
A 2 Egs.(4.17), (4.22, and(4.26), respectively.

. . We now wish to restrict our attention to the two-body
having assumed thatapxQuRd3x=(1/2)d1}/dt=0, where  case and express our multipoles in terms of relative coordi-
I} is the body’s intrinsic moment-of-inertia tensor. The first nates. The reduction parallels the two-bddgnspin reduc-
term in Eq.(F4) is the leading-order velocity-dependent termtion given in Sec. VI. We introduce the spin corrections to
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the definition of the system center of mass, E§169 (see . 8 , o o ,
[40,41), find the relation between the coordinates and T strso = gM 7 [2X (VX xs) —v'(xX xo)' Istr
X, and the relative coordinatecorresponding to Eqs6.2), (F133

and substitute into the two-body EW moments. It is useful to
define two relative spin quantities . 3, o
T dreso= o>m 7l[(om/m) xs+ xal' X Iste, (F13D

118 S
xs=§(ﬁ+ﬁ), (F103 N o
v T str(so=4M XX xslstr- (F130
1S S (F10b Equations(F13 are in agreement witf40,41. These spin-
Xa=2\m2~ m2) orbit contributions can be added to the STF multipoles given

in Appendix E. It is interesting to note that the four-index
With the spins normalized by the individuahasse}’, these  EW multipole! 1, is needed to describe spin dependence of
vectors are essentially the vectorial sum and difference of theéhe radiation, but there is no spin contribution from the four-

dimensionless angular-momentuiikerr) parameters of the index STF multipol SJ#'F The multipolel J3° does contrib-

individual bodies. For orbital systems composed of two Kerrte tg the multipoleZll;- and 7 I, through Eqs(E23 and
black holes or neutron stars these vectors will have a maxigog),

mum magnitude of unity. Stability studies of rotating neutron |5 grder to derive the spin contributions to the waveform
stars show that the dimensionless angular momentum paramym the multipoles we must also augment the equations of
eter is bounded above by 0.63—0[72] depending on the mqtion [Eq. (6.4)] with spin-orbit and spin-spin contribu-

equation of state. Defining the vector spin quantities _in thiscions. These can be found 0,41, and in our notation are
way also has the advantage that they are comparable in M&¥iven by

mum magnitude to the other vectors that are used to form the

terms in the waveform, namefy, N, andv. As one computes 2

the two-body multipoles, the waveform, the energy flux, and aso=7316N(NXV) - [xs+ (SmM/m) x,]

the orbital phase evolution, the spins appear in many combi-

nations with the masses. With the spin-quantity definitions as —2vX[(2— 1) xst2(6m/m) xa]

above, the reduced mass paramejenever appears in any - .

denominators, so that the extreme mass ratio limit(0) is +ernX[(1-n)xs+(Sm/m)xa]},  (F149
always transparent in all expressions beld&8]. This may 3

seem like a minor aesthetic point, but it also means that the
equations in the form we present them are suitable for stable
numerical implementation with mass parameters free to roam A o
from the equal mass case to the test mass case, and spin +2[xs(N" Xs) = Xa(N" Xa) 1} (F14b

parameters free to roam independently of the mass choiage now substitute our EW multipoles into E€.18 and

from magnitude zero to unity. use the equations of motion to eliminate acceleration terms
The spin corrections to the relation betweenx, and the g gptain the final spin contributions to the waveform
relative coordinatex [41] take the form

m " ~ ~
ass= — r_4{n[|)(s|2_ |Xa|2_5(n’Xs)2+5(n'Xa)2]

2
PR omim)xo+ xa]}0n?, (F153

m PQU=2
x1=ﬁzx— mv X[ xs(dm/m)+ xal, (F113 =0

2
P3’2Q20=4(? [3(AXV)- [xst (Sm/m) xIn'n

—[vX[(2+ 7) xs+2(3m/m) x,]1nP)

m
Xo=— le— mv X[ xs(dm/m) + x,]. (F11b

Substituting these transformations into the leading order term

in Eq. (F9), we find that these spin-orbit corrections cancel, +3r[AX[ xs+ (Sm/m) x,11n)) = 2 (A xg) o)
to the required ordercompare Eq(6.3)]. Substituting these ~ ~ .
definitions into theN-body multipoles gives the spin-orbit +7[2(N-n)v+2(N-v)n

corrections to the two-body Epstein-Wagoner multipoles B 3'r(l§l- n)ﬁ]“(N X x)M, (F15b

|EW(SO):4m2772(VX xs) XD, (F123

3
. m
i o P2Qds=— (-) x> = | xal*—=5(f- xs)?
18 s0=2m2pxi VN[ (sm/m) xs+ xal',  (F12b r

+5(A- x,)?In'n!

. . +Z[Xs(ﬁ'Xs)_Xa(ﬁ'Xa)](an)}- (F150
These corrections can be added to the two-body multipoles
given in Sec. VI. STF multipoles can be projected from theNote that the spin-spin term comes entirely from the effects
EW multipoles using the formulas given in Appendix E. The of the equations of motion. Thus we have computed the com-
results are plete waveform, including leading-order spin effects, using

1so =4m?n?oemksy, (F129
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our augmented EW formalism. The formalism can be ex- m 32

tended to compute additional spin terms and other finite-size w2=r—g[ 1—2<7) [(1+75)xs+(6m/m)x,]

effects, such as the 2PN spin-orbit contribution to the wave-

form. m) 2 ) )

Either by a direct computation starting with the waveform - 377(7) [(xs)—(Xa) ]} : (F20

or by using the STF multipoles in EE5b) we can compute

the spin contributions to the rate of energy loss, 8412,  where ys and x, now represent the projections qf and

Xa Onto the angular momentum axis. These quantities are
. N positive when the spins are aligned in the same direction as
E50:1_5 ro° [nxv]-{[,\/s+(5m/m)xa] the angular momentum axis and negative when they are an-
tialigned. The orbital energy and energy flux take the simple

form in the case of aligned spins and circular motion:

3,2

X 27'r2—37z;2—12T
r m2 3/2
. m E:_WE 1+2 T) [(1_77)Xs+(5m/m))(a]
+477Xs( 12rz—3v2+87 ] (F16)
2
) 8 m4M2 . + T [(XS)Z_(Xa)Z]]a (FZla
ESS:_—677{3[|Xs|2_|Xa|2](47U2_55rz)
15 r e 32772(T)5[1_(T>3IZ[E \ sy X
—3[(A xo)?+ (A xa)?](1682— 2602) R 7] |elxetommixal=
7T (V- ¥)2+ (V- x.)2 71y (m)\?
+ ]-[(V Xs) +(V Xa) ] _?7’(?) [(Xs)z_(Xa)z]]- (FZID

—342[(v- Xs)(ﬁ' Xs)— (V- Xa)(ﬁ’ Xa)]}- (F17)

These spin corrections can be added to the nonspin formulas
Although they are not needed in our discussion, for comEg. (7.2 and Eq.(1.4). With these we can proceed as in Sec.
pleteness we include expressions for the precession of ol to obtain the orbital angular velocity and orbital phase as

spin vector§40,41] explicit functions of time:
C 1 113
mMxs= I X s+ X xa—2(6m/m)xa X xs,  (F183 w(t)zs—m(Tc—T)_3/8 1+| Taplxst (om/m)x,]
m-Xa: TLX X+ I X xs—2(1—27) XsX Xa - (F18b 19

- 4—077)(5}(TC—T)‘3/8
The precession vectors are given by

237
3/ m|2 —5—12n[<xs>2—(xa>2]<Tc—T>-l’2}, (F22a
ng (7

(1+27/3)(nXv)

1 113

m R R . ¢(t)=¢c——(Tc—T)5/8+1+ a[xs+(5m/m)xa]

+27[(1—217)n-xs+(5m/m)n-xa]n ., (F19a 7
19 —3/8
3 m 2 _1_67]XS (TC_T)
H2:—Z(T) [(5m/m)(ﬁ><v) 1185

m _mﬂ[(Xs)z_(Xa)z](Tc_T)1/2}- (F22b

+2[(Sm/m)f- xo+ (1-27)A- xalf|.  (F19b

Again, the spin contributions can be inserted directly into

o ) ) o Egs. (7.11). [The definition of the dimensionless time
When spinning bodies are involved, the full gravitational-T— ,,(y/5m) is unchanged.The explicit contributions to the

wave signal can become quite complicated; the orbital plang. 404 polarizations for this specialized circular orbit case

and the spin vectors of the individual bodies can precess,an pe obtained from EGF15. In the notation of48] they
giving rise to a complicated modulation of the sigpil,74. are given by

However in the special case when the spins are aligned

antialigned with the orbital angular momentum axis, the 2m

spin vectors and the orbital angular momentum vector do not ~ h+ x ZTnX{Hg,x + o+ xHESO 4+ x¥2H (3250
precesgEgs.(F14), (F18), (F19]. In this special case there

is a simple circular orbit solution to the equation of motion +XxPHZSY (F23
and it is straightforward to compute the spin contributions to '

the phase evolution. The spin contributions to orbital fre-wherex=mw and where the ellipsis represents the nonspin
qguency can obtained from E¢F14), contributions given irf48]. In keeping with the notation used
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Inspiral for (12M,, 1.4M;) spinning system

Inspiral for (10M,, 1.4M,) spinning system
— 7 T
C) (a) Orbital Frequency Evolution = (a) Orbital Frequency Evolution
1 > 2 — 2 — 1
‘c:;’ o Ssa/mZ;= 0.5, Sy /m%= 0.1 - g 150 Sen/mMZ= 0.5, Sy/mf;= 0.1 .
3 : 5 ]
4 (3]
£ &
= 100 . % 100 ]
f I =~ 3
o o
1 1 1 1 L L 1 1 1 1 L L 1 1
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FIG. 9. Same configuration as Fig. 8, but bodies are spinning. FIG. 10. Spins are same as in Fig. 9, but heavier mass is now 12
Both spins are aligned with orbital angular momentum axis. Angu-M¢ . The frequency evolution is the same as the nonspinning case.
lar momentum of black hole iSBH:O.SméH and of neutron star is Comparing this with Fig. 8 is an explicit demonstration of degen-
SNS=O.5mﬁS. Note frequency does not sweep as fast as nonspineracy in mass and spin parameters.

ning case because of dragging of inertial frames.
as in Fig. 8(10 Mg black hole and a 1.M neutron star

in [48] the superscripts represent the post-Newtonian ordegpiralling to coalescengebut in this case the objects are
and the physical nature of each term. The plus polarizatiogpinning. The spins are aligned with the orbital angular mo-
spin-orbit and spin-spin contributions are mentum axis. The spin contributions to both the waveform
(18O o Eq. (F23 and the frequency evolution E¢-22) have been
HP = —sini[(om/m)xs+ xalcosp,  (F248  incorporated into the plot. The black hole has been given a
spin  of SBH/méHzo.S and the neutron star has
Sns/Mis=0.1 (i.e., xs=0.3 andx,=0.2). Notice the sig-
nificant change in the frequency evolution; the system only
sweeps to about 130 Hz in the same time it took for the
nonspinning system to sweep to 180 Hz. Consequently, the
(289_ . 2 2 peaks are not as closely bunched as they are in the nonspin-
HIZ™ = —2n(1+cosi(x9)*~ (xa)*Jcos2,  (F249 ning case. This slower orbital decay and frequency evolution
is due to the dragging of inertial frames, which is inherent in
the equations of motion and thus in our phase evolution
H(S9= —sinicod[(Sm/m) s+ xalsing, (F25a  equation(F22). At the left side of Figs. 8 and 9, the wave-
forms are clearly in phase with each other, but after a few
4 cycles they are out of phase. Since the phase evolution of the
H§/2’3Q=§COS[2[XS+(5m/m))(a] system is crucial in analyzing gravitational waves from an
inspiral, it might seem that this sensitivity to spin in the
- 77(1+300§i ) xslsin2¢, (F25h phase evolution could be exploited and the spins of the bod-
ies be determined with great accuracy. However, by leaving
H2S9=47cos[(xo)?— (xa)2]sin2¢.  (F250  the spins the same but adjusting the masses slightly, we can
recover the basic structure of the nonspinning case almost
We emphasize that these are only valid for quasicircular orexactly. This is depicted in Fig. 10, in which the frequency
bits in the case where the the spins are aligf@danti- sweep and the waveform itself are virtually identical to the
aligned with the orbital angular momentum vector. Thesenonspinning waveform in Fig. 8. This signal degeneracy in
restrictive assumptions about the configuration of the systerthe spin and mass parameters has been previously noted in
suppress many of the intricate features of the waveform pro-24,25. It is also interesting to notice that the inclusion of
duced by spinning bodid€1,74. the spins virtually removes the jagged features from the
Figure 9 shows an inspiral waveform for the same systentroughs of the waves.

H(f,/z,so :g[(1+ coSi)[ xs+ (8m/m) x,]

+ 7(1—5c0%i) xs]cos2p, (F24b

and the cross polarization contributions are
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