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Gravitational radiation from compact binary systems: Gravitational waveforms and energy loss
to second post-Newtonian order
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We derive the gravitational waveform and gravitational-wave energy flux generated by a binary star system
of compact objects~neutron stars or black holes!, accurate through second post-Newtonian order
(O@(v/c)4#5O@(Gm/rc2)2#) beyond the lowest-order quadrupole approximation. We cast the Einstein equa-
tions into the form of a flat-spacetime wave equation together with a harmonic gauge condition, and solve it
formally as a retarded integral over the past null cone of the chosen field point. The part of this integral that
involves the matter sources and the near-zone gravitational field is evaluated in terms of multipole moments
using standard techniques; the remainder of the retarded integral, extending over the radiation zone, is evalu-
ated in a novel way. The result is a manifestly convergent and finite procedure for calculating gravitational
radiation to arbitrary orders in a post-Newtonian expansion. Through second post-Newtonian order, the radia-
tion is also shown to propagate toward the observer along true null rays of the asymptotically Schwarzschild
spacetime, despite having been derived using flat-spacetime wave equations. The method cures defects that
plagued previous ‘‘brute-force’’ slow-motion approaches to the generation of gravitational radiation, and yields
results that agree perfectly with those recently obtained by a mixed post-Minkowskian post-Newtonian
method. We display explicit formulas for the gravitational waveform and the energy flux for two-body systems,
both in arbitrary orbits and in circular orbits. In an appendix, we extend the formalism to bodies with finite
spatial extent, and derive the spin corrections to the waveform and energy loss.@S0556-2821~96!02820-2#

PACS number~s!: 04.30.Db, 04.80.Nn, 97.60.Jd, 97.60.Lf
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I. INTRODUCTION

The generation of gravitational radiation is a long
standing problem that dates back to the first years follow
the publication of general relativity~GR!. In 1916 Einstein
calculated the gravitational radiation emitted by a laborato
scale object using the linearized version of GR@1#. Some of
his assumptions were questionable and his answer for
energy flux was off by a factor of 2~an error pointed out by
Eddington @2#!. There followed a lengthy debate abou
whether gravitational waves are real or an artifact of gene
coordinate invariance, the former interpretation being co
firmed by the rigorous, coordinate free theorems of Bon
and his school@3–5# and by the short-wave analysis of Isaa
son@6#. Shortly after the discovery of the binary pulsar PS
1913116 in 1974, questions were raised about the foun
tions of the ‘‘quadrupole formula’’ for gravitational radiation
damping@7# ~and in some quarters, even about its quanti
tive validity @8#!. These questions were answered in part
theoretical work designed to shore up the foundations of
quadrupole approximation@9–13#, and in part ~perhaps
mostly! by the agreement between the predictions of t
quadrupole formula and theobservedrate of damping of the
pulsar’s orbit@14,15#.

Because it is a slow-motion system (v/c;1023), the bi-
nary pulsar is sensitive only to the lowest-order effects
gravitational radiation as predicted by the quadrupole f
mula. Nevertheless, the first correction terms of orderv/c
and (v/c)2 to the quadrupole formula were calculated
early as 1976@16,17#. These are now conventionally calle
540556-2821/96/54~8!/4813~36!/$10.00
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‘‘post-Newtonian’’ ~PN! corrections, with each power o
v/c corresponding to one-half a post-Newtonian ord
~1/2PN!, in analogy with post-Newtonian corrections to th
Newtonian equations of motion@18#. In 1976, the post-
Newtonian corrections were of purely academic, rather th
observational interest.

Recently, however, the issue of higher post-Newtoni
corrections in the theory of gravitational waves has taken
some urgency. The reason is the construction of kilomet
scale, laser interferometric gravitational-wave observator
in the U.S.@Laser Interferometric Gravitational Wave Obse
vatory ~LIGO! project# and Europe~VIRGO project!, with
gravitational-wave searches scheduled to commence aro
2000~see@19# for a review!. These broadband antennae w
have the capability of detecting and measuring the grav
tional waveforms from astronomical sources in a frequen
band between about 10 Hz~the seismic noise cutoff! and 500
Hz ~the photon counting noise cutoff!, with a maximum sen-
sitivity to strain at around 100 Hz ofD l / l;10222 ~rms!. The
most promising source for detection and study of t
gravitational-wave signal is the ‘‘inspiralling compac
binary’’—a binary system of neutron stars or black holes~or
one of each! in the final minutes of a death dance leading
a violent merger. Such is the fate, for example, of the Huls
Taylor binary pulsar PSR 1913116 in about 300 M years.
Given the expected sensitivity of the ‘‘advanced LIGO
~around 2001!, which could see such sources out to hundre
of megaparsecs, it has been estimated that from 3 to
annual inspiral events could be detectable@19–21#.

The urgency derives from the realization@22# that ex-
4813 © 1996 The American Physical Society
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4814 54CLIFFORD M. WILL AND ALAN G. WISEMAN
tremely accurate theoretical predictions for the orbital evo
tion, and to a lesser extent, the gravitational waveform, w
play a central role in the data analysis from these observa
ries. That data analysis is likely to involve some form
matched filtering of the noisy detector output against an
semble of theoretical ‘‘template’’ waveforms which depen
on the intrinsic parameters of the inspiralling binary, such
the component masses, spins, and so on, and on its ins
evolution. How accurate must a template be in order
‘‘match’’ the waveform from a given source~where by a
match we mean maximizing the signal-to-noise ratio!? In the
total accumulated phase of the wave detected in the sens
bandwidth, the template must match the signal to a fract
of a cycle. For two inspiralling neutron stars, around 16 0
cycles should be detected; this implies a phasing accurac
1025 or better. Sincev/c;1/10 during the late inspiral, this
means that correction terms in the phasing at the level
(v/c)5 or higher are needed. More formal analyses confi
this intuition @23–26#.

The bottom line is that theorists have been challenged
derive the gravitational waveform and the resulting radiati
back reaction on the orbit phasing at least to 2PN, or sec
post-Newtonian order,O@(v/c)4#, beyond the quadrupole
approximation, and probably to 3PN order. Furthermore,
cause of the extreme complexity of the calculations at su
high PN order, independent calculations are called for,
order to inspire confidence in the final formulas. After a
the formulas will ultimately be compared against real dat

This challenge was recently taken up by two teams
workers, one composed of Blanchet, Damour and Iyer~BDI!,
the other composed of the present authors. The goal wa
derive the gravitational waveform and the energy flux f
inspiralling compact binaries of arbitrary masses, throu
2PN order. Each team adopted a different approach to
calculation, and worked in isolation from the other. Only
the end of the calculation were comparisons made for the
formulas for the waveform and the gravitational energy flu
The results agreed precisely@27#.

The BDI approach was based on a mixed post-Newton
and ‘‘post-Minkowskian’’ framework for solving Einstein’s
equations approximately, developed in a long series of
pers by Damour and colleagues@28–33#. The idea is to solve
the vacuum Einstein equations in the exterior of the mate
sources extending out to the radiation zone in an expans
~‘‘post-Minkowskian’’! in ‘‘nonlinearity’’ ~effectively an ex-
pansion in powers of Newton’s constantG), and to express
the asymptotic solutions in terms of a set of formal, tim
dependent, symmetric and trace-free~STF! multipole mo-
ments@34#. Then, in a near zone within one characteris
wavelength of the radiation, the equations including the m
terial source are solved in a slow-motion approximation~ex-
pansion in powers of 1/c) that yields a set of STF source
multipole moments expressed as integrals over the ‘‘eff
tive’’ source, including both matter and gravitational fie
contributions. The solutions involving the two sets of m
ments are then matched in an intermediate zone, resultin
a connection between the formal radiative moments and
source moments. The matching also provides a natural w
using analytic continuation, to regularize integrals involvin
the noncompact contributions of gravitational stress ene
that might otherwise be divergent.
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The approach of this paper is based on a framework d
veloped by Epstein and Wagoner~EW! @16#. Like the BDI
approach, it involves rewriting the Einstein equations in the
‘‘relaxed’’ form, namely as an inhomogeneous, flat-
spacetime wave equation for a fieldhab, whose source con-
sists of both the material stress energy, and a ‘‘gravitation
stress energy’’ made up of all the terms nonlinear inhab.
The wave equation is accompanied by a harmonic or d
Donder gauge condition onhab, which serves to specify a
coordinate system, and also imposes equations of motion
the sources. Unlike the BDI approach, asingle formal solu-
tion is written down, valid everywhere in spacetime. This
formal solution, based on the flat-spacetime retarded Green
function, is a retarded integral equation forhab, which is
then iterated in a slow-motion (v/c,1), weak-field
(uuhabuu,1) approximation, that is very similar to the corre-
sponding procedure in electromagnetism. However, becau
the integrand of this retarded integral is not compact by vir
ture of the nonlinear field contributions, the original EW for-
malism quickly runs up against integrals that are not we
defined, or worse, are divergent. Although at the lowes
quadrupole and first few PN orders, various arguments c
be given to justify sweeping such problems under the ru
@17#, they are not very rigorous, and provide no guarante
that the divergences do not become insurmountable at high
orders. As a consequence, despite efforts to cure the pro
lem, the EW formalism fell into some disfavor as a route to
higher orders, although an extension to 3/2PN order was a
complished@35#.

One contribution of this paper is a resolution of this prob
lem. The resolution involves taking literally the statemen
that the solution is aretarded integral, i.e., an integral over
the entire past null cone of the field point. To be sure, tha
part of the integral that extends over the intersection betwe
the past null cone and the material source and the near zo
is still approximated as usual by a slow-motion expansio
involving spatial integrals of moments of the source, includ
ing the non-compact gravitational contributions, just as in th
BDI framework. But instead of cavalierly extending the spa
tial integrals to infinity as was implicit in the original EW
framework, and risking undefined or divergent integrals, w
terminate the integrals at the boundary of the near zone, ch
sen to be at a radiusR given roughly by one wavelength of
the gravitational radiation. For the integral over the rest o
the past null cone exterior to the near zone~‘‘radiation
zone’’!, we do not make a slow-motion expansion, instea
we use a coordinate transformation to convert the integr
into a convenient, easy-to-calculate form, that is manifest
convergent, subject only to reasonable assumptions about
past behavior of the source. This transformation was su
gested by our earlier work on a nonlinear gravitational-wav
phenomenon called the Christodoulou memory@36#. Not
only are all integrations now explicitly finite and convergent
we show explicitly that all contributions from the near-zone
spatial integrals that grow withR ~and that would have di-
verged had we letR→`) are actuallycancelledby corre-
sponding terms from the radiation-zone integrals. Thus th
procedure, as expected, has no dependence on the artificia
chosen boundary radiusR of the near zone. In addition, the
method can be carried to higher orders in a straightforwar
albeit very tedious manner. The result is a manifestly finite
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54 4815GRAVITATIONAL RADIATION FROM COMPACT BINARY . . .
well-defined procedure for calculating gravitational radiatio
to high, and we suspect all, PN orders.

The result of the calculation is an explicit formula for th
gravitational waveform for a two-body system, th
transverse-traceless~TT! part of the radiation-zone field, de
notedhi j , and representing the deviation of the metric fro
flat spacetime. In terms of an expansion beyond the quad
pole formula, it has the schematic form

hi j5
2Gm

Rc4
$Q̃i j @11O~e1/2!1O~e!1O~e3/2!

1O~e2!•••#%TT , ~1.1!

wherem is the reduced mass, andQ̃i j represents two time
derivatives of the mass quadrupole moment tensor~the series
actually contains multipole orders beyond quadrupole!. The
TT projection operation is described below. The expans
parameter e is related to the orbital variables by
e;Gm/rc2;(v/c)2, where r is the distance between th
bodies,v is the relative velocity, andm5m11m2 is the total
mass. The 1/2PN and 1PN terms were derived in@17#, the
3/2PN terms in@35#. The contribution of gravitational-wave
‘‘tails,’’ caused by backscatter of the outgoing radiation o
the background spacetime curvature, atO(e3/2), were de-
rived and studied in@32,37,38#.

This paper derives the 2PN terms including 2PN tail co
tributions; the results are in complete agreement with B
@39#. We also find that part of the tail terms at 3/2PN an
2PN order serve to guarantee that the outgoing radiat
propagates along true null directions of the asympto
curved spacetime, despite the use of flat spacetime w
equations in the solution. The explicit formula for the ge
eral two-body waveform is given below in Eqs.~6.10! and
~6.11!.

There are also contributions to the waveform due to
trinsic spin of the bodies, which occur atO(e3/2) ~spin-orbit!
andO(e2) ~spin-spin!; these have been calculated elsewhe
@40,41#, and are rederived in the EW framework in Append
F.

Equations of motion for the material sources must also
specified to 2PN order in order to have a consistent solut
of Einstein’s equations. These have the schematic form

d2x/dt252~Gmx/r 3!@11O~e!1O~e3/2!1O~e2!1•••#,
~1.2!

wherex5x12x2 is the separation vector. The lowest-ord
contribution is obviously Newtonian. The next termO(e) is
the first post-Newtonian correction, which gives rise to su
effects as the advance of the periastron. The termO(e3/2)
comes solely from the spin-orbit interaction. The term
O(e2) is asecondpost-Newtonian correction to the equatio
of motion ~and also contains spin-spin interactions!. The
terms in Eq.~1.2! are all non-dissipative, having nothing t
do with gravitational radiation reaction. Through 2PN orde
these equations are by now standard; see for example@42–
44# and Eq.~6.5! below.

Given the gravitational waveform, we can compute t
rate energy is carried off by the radiation~schematically
* ḣḣdV, the gravitational analog of the Poynting flux!. The
result has the schematic form
n
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dE/dt5~dE/dt!Q@11O~e!1O~e3/2!1O~e2!1•••#.
~1.3!

Here (dE/dt)Q denotes the lowest-order quadrupole contr
bution, proportional to the square of three time derivatives
the trace-free mass quadrupole moment tensor of the sou
The explicit formula for a general two-body system is give
below in Eqs.~6.12! and~6.13!. For the special case of non-
spinning bodies moving on quasicircular orbits~i.e., circular
apart from a slow inspiral!, the energy flux has the form

dE

dt
5
32G

5c5
h2SGmrc2 D

5F12
Gm

rc2 S 2927336
1
5

4
h D14pSGmrc2 D

3/2

1SGmrc2 D
2S 293 3839072

1
380

9
h D G , ~1.4!

whereh5m1m2 /m
2. The first term is the quadrupole con-

tribution, the second term is the 1PN contributon@17#, the
third term, with the coefficient 4p, is the ‘‘tail’’ contribution
@32,37,38,45#, and the fourth term is the 2PN contribution
derived here. This new contribution was reported in@27#, and
was also derived using the BDI approach in@39#. For the
contributions of spin-orbit and spin-spin coupling se
@40,41,27# and Appendix F.

Similar expressions can be derived for the loss of angu
momentum and linear momentum. These losses react b
on the orbit to circularize it and cause it to inspiral. Th
result is that the orbital phase~and consequently the
gravitational-wave phase! evolves nonlinearly with time. It is
the sensitivity of the broadband LIGO- and VIRGO-type de
tectors to phase that makes the higher-order contributions
dE/dt so observationally relevant. For example, for an in
spiral of two 1.4M( neutron stars, the 2PN term in Eq.~1.4!
contributes about 9 of the 16 000 cycles observable in t
bandwidth of the advanced LIGO. More detailed analyses
the effect of the 2PN terms on the matched filtering can b
found in @25,46,47#. A ready-to-use set of formulas for the
2PN gravitational waveform template, including the nonlin
ear evolution of the gravitational-wave frequency~not in-
cluding spin effects! may be found in@48#. Spin corrections
to the waveform templates may be found in Appendix F.

An alternative approach to deriving gravitational wave
forms and energy flux for inspiralling compact binaries, i
the limit in which one mass is much smaller than the other,
that of black hole perturbation theory. This method provide
numerical results that are exact inv/c, as well as analytical
results expressed as series in powers ofv/c, both for nonro-
tating and for rotating black holes@37,49–52#. For nonrotat-
ing holes, the analytical expansions have been carried
fourthPN order@52#. In all cases of overlap, the results agre
precisely with our post-Newtonian results, in the limi
h→0.

This paper is an attempt to present, in a relatively com
plete and self-contained form, the formalism and machine
of our ‘‘improved EW’’ approach to higher-order gravita-
tional radiation from binary systems. Indeed, we begin wit
the raw Einstein equations, and end with a plot of the 2P
waveform. The goal is to provide sufficient detail to allow
the reader, using this paper virtually alone, to verify any o
the results reported here~we make no statement about the
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4816 54CLIFFORD M. WILL AND ALAN G. WISEMAN
amount of work involved!, and to carry the computations t
higher PN orders. In Sec. II, we lay out the foundations
gravitational-wave generation, describing the relaxed E
stein equations, the matter sources and the near and radi
zones, and the formal retarded integral solution of the wa
equation, including the new treatment of integration over t
null cone in the radiation zone. We turn in Sec. III to th
weak-field, slow-motion approximation, and write down th
matter and field variables to the accuracy needed to find
radiation to 2PN order. The part of the retarded integral
hab that extends over the near zone can be written in ter
of a set of ‘‘Epstein-Wagoner’’ moments; these are evalua
explicitly in Sec. IV. In Sec. V, we evaluate the contribution
to hab from the radiation-zone integrals, showing both th
explicit cancellation of those terms in the EW moments th
grow with R, and the generation of tail terms. Section V
specializes to two-body systems, and displays the full form
las for the gravitational waveform and energy loss. In S
VII, we further specialize to circular orbits. Section VII
makes concluding remarks. A number of technical details
relegated to Appendices.

Our conventions and notation generally follow those
@53,34#. Henceforth we use units in whichG5c51. Greek
indices run over four spacetime values 0, 1, 2, 3, while La
indices run over three spatial values 1, 2, 3; commas den
partial derivatives with respect to a chosen coordinate s
tem, while semicolons denote covariant derivatives; repea
indices are summed over;hmn5hmn5diag(21,1,1,1);
g[det(gmn); a

( i j )[(ai j1aji )/2; a[ i j ][(ai j2aji )/2; e i jk is
the totally antisymmetric Levi-Civita symbol (e123511).
We use a multi-index notation for products of vector com
ponents:xi j •••k[xixj•••xk, with a capital letter superscrip
denoting a product of that dimensionality:xL[xi1xi2•••xi l;
angular brackets around indices denote STF products~see
Appendix A for definitions!. Spatial indices are freely raise
and lowered withd i j andd i j .

II. FOUNDATIONS OF GRAVITATIONAL-WAVE
GENERATION

A. The relaxed Einstein equations

We begin our development of the gravitational-wave ge
eration problem with the Einstein equations

Rab2
1

2
gabR58pTab. ~2.1!

HereRab is the Ricci curvature tensor,gab is the spacetime
metric andTab is the stress energy tensor of the matte
Although Eq.~2.1! is a conceptually powerful statement, re
lating the curvature of spacetime on the left-hand side to
stress energy of matter on the right-hand side, it is no
particularly useful form of the Einstein equations for prac
cal calculations of gravitational-wave generation. For th
purpose it is conventional first to define the potential

hab[hab2~2g!1/2gab, ~2.2!

~see, e.g.,@34#! and to choose a particular coordinate syste
defined by the de Donder or harmonic gauge condition

hab,b50. ~2.3!
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The spatial components ofhab evaluated far from the source
comprise the gravitational waveform and are directly relate
to the signal which a gravitational-wave detector measure
With these definitions the Einstein equations~2.1! can be
recast in the form

hhab5216ptab, ~2.4!

whereh[2]2/]t21¹2 is the flat-spacetime wave operator.
The source on the right-hand side is given by the ‘‘effective’
stress-energy pseudotensor

tab5~2g!Tab1~16p!21Lab, ~2.5!

whereLab is the nonlinear ‘‘field’’ contribution given by

Lab516p~2g!tLL
ab1~ham,nh

bn,m2hab,mnh
mn!,

~2.6!

and tLL
ab is the ‘‘Landau-Lifshitz’’ pseudotensor, given by

16p~2g!tLL
ab[H glmg

nrhal
,nh

bm
,r1

1

2
glmg

abhln
,rh

rm
,n

22gmng
l~ahb)n

,rh
rm

,l1
1

8
~2galgbm

2gabglm!~2gnrgst2grsgnt!h
nt
,lh

rs
,mJ .
~2.7!

By virtue of the gauge condition~2.3!, this source term sat-
isfies the conservation law

tab
,b50, ~2.8!

which is equivalent to the equation of motion of the matte
Tab

;b50.
We emphasize that Eq.~2.4! is not anapproximate, or

weak-field, form of the Einstein equations; it is exact, and
relies only on the assumption that spacetime can be cover
by harmonic coordinates.

The form of Eq.~2.4! is suggestive of the wave equation
for the vector potential in electromagnetism~EM!. This anal-
ogy with EM is at once helpful and deceptive. It is helpful in
that it suggests how to proceed to solve the equation, i.e., u
a retarded Green function, and an expansion in terms of r
diative multipole moments. It further illustrates that, just a
the current density in EM is the source for the vector poten
tial, here the stress energy of the matter is a source of t
gravitational potential.

However there are several important differences betwee
Eq. ~2.4! and its electromagnetic counterpart. First, the
‘‘source’’ in Eq. ~2.4! also contains a gravitational part that
depends explicitly onhab, the very quantity for which we
are trying to solve. Second, unlike the EM case where th
source~the currents! has finite spatial extent~compact sup-
port!, we can expecttab, which depends on the fieldshab, to
have infinite spatial extent. Indeed the very outgoing radia
tion that we hope to detect, will, at some level of approxi
mation, serve as a contribution to the source, thus generati
an additional component of the radiation. However, we hav
found that, for the physical situations of interest, this latte
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54 4817GRAVITATIONAL RADIATION FROM COMPACT BINARY . . .
highly nonlinear effect, often referred to as the Christodo
lou memory, is very weak and can be adequately appro
mated by the methods of this paper@36#.

Another complication in Eq.~2.4! is that the second de-
rivative termhab,mnh

mn in the source really ‘‘belongs’’ on
the left-hand side with the other second derivative terms
the wave operator. Such a term in a differential equat
modifies the propagation characteristics of the field from t
flat-spacetime characteristics represented by
d’Alembertian operator. Physically this is a manifestation
the fact that the radiation propagates along null cones of
curved spacetime around the source, which deviate from
flat null cones of the harmonic coordinates. Nevertheless,
techniques to be presented here do recover the leading m
festations of this effect, commonly known as ‘‘tails,’’ includ
ing modification of the phasing of the solutions from the
initial dependance on flat space retarded time to true retar
time of the asymptotic Schwarzschild spacetime of t
source.

B. Source, near zone, and radiation zone

We consider a material source consisting of a collecti
of fluid balls ~stars! whose size is typically small compare
to their separations. The material will be modeled as perf
fluid, having stress-energy tensor

Tab[~r1p!uaub1pgab, ~2.9!

wherer andp are the locally measured energy density a
pressure, respectively, andua is the four-velocity of an ele-
ment of fluid. We shall assume that the bodies are su
ciently compact that we can ignore all intrinsic multipo
moments of the bodies at quadrupole order and beyond. T
is, we treat only the bodies’ monopole~mass! moments@in
an appendix we treat the bodies’ dipole~spin! moments#. For
inspiralling binaries of compact objects, the effects of ro
tionally induced and tidally induced quadrupole and high
moments on the orbital evolution or gravitational radiatio
have been shown, in the case of binary neutron stars, to
negligible until the final coalescence stage, where the po
Newtonian approximation breaks down anyway@54#. For
spinning black holes, the effects are small, but can be n
negligible for sufficiently large spin@55#. In the long run,
such finite-size effects should~and can! be incorporated into
our formalism.

To treat the monopole part of the bodies’ mass distrib
tions, we approximate the stress-energy tensor as a distr
tional tensor representing ‘‘point’’ masses, given by

Tmonopole
ab [(

A
mA~2g!21/2~uA

auA
b/uA

0 !d3@x2xA~ t !#,

~2.10!

wheremA is the gravitational mass of theAth body, and
uA

a is the four-velocity of its center of mass,xA(t). Formally,
such a distributional stress-energy tensor is not valid in g
eral relativity. On the other hand, it has been shown in
variety of post-Newtonian contexts to give results that a
equivalent to treating the bodies as almost spherical fl
balls, defining a suitable approximate center of mass, a
carrying out explicit integrals over the interiors of the ball
u-
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The resulting self-field and internal energy effects result in
renormalization of the mass of each body from a ‘‘bare’
mass*Ard3x to the gravitational massmA . Furthermore, all
effects of the internal structure of the bodies are ‘‘effaced,
so that all aspects of the motion and gravitational radiatio
are characterized by a single massmA for each body~see
@35# for demonstration of this effacement in the waveform a
3/2PN order!. This is a manifestation of the strong equiva-
lence principle, which is satisfied by general relativity. All
these complications, then, can be embodied in the distrib
tional stress-energy tensor of Eq.~2.10!, with the caveat that
all infinite self-field effects that might result from the use of
the d-function source are to be discarded~self-field effects
having already been renormalized intomA). An alternative
viewpoint takes the gravitational field in a zone surroundin
each body in a coordinate system that momentarily comov
with the body and notes that it can be characterized by mu
tipole moments that can be identified with the body’s asymp
totially measured mass and~if desired! higher multipole mo-
ments. The fields surrounding each body are then matched
an appropriate interbody gravitational field, with the equa
tions of motion providing consistency conditions for such
matching. Apart from tidal effects, the results depend onl
on the effective masses of the bodies, and all self-field e
fects are automatically accounted for~see @56,57# for ex-
ample, for detailed implementations of this approach in var
ous situations!.

The effects of spins can be added to the framework in
straightforward way; these are reviewed in Appendix F.

We consider the bodies to comprise a bound system
characteristic sizeS5max$A,B%rAB, where r AB5uxA2xBu,
with a center of mass chosen to be at the origin of coord
nates,X50. Thesource zonethen consists of the world tube
T5$xaur,S,2`,t,`%.

The bodies are assumed to move with characteristic v
locities vA,1, and for much of their evolution withvA!1.
The characteristic reduced wavelength of gravitational radi
tion, |5l/2p;S/v[R serves to define the boundary of the
near zone, defined to be the world tube
D5$xaur,R,2`,t,`%. Within the near zone, the gravi-
tational fields can be treated as almost instantaneous fun
tions of the source variables, i.e., retardation can be ignor
or treated as a small perturbation of instantaneous solution
For most of the evolution, up to the point where the pos
Newtonian approximation breaks down,R@S.

The region exterior to the near zone is theradiation zone,
r.R. In this zone, we evaluate the fully retarded solution
of Eq. ~2.4!, and focus on the parts that fall off asr21.

The formal solution to Eq.~2.4! can be written down in
terms of the retarded, flat-space Green function:

hab~ t,x!54E tab~ t8,x8!d~ t82t1ux2x8u!
ux2x8u

d4x8.

~2.11!

This represents an integration oftab/ux2x8u over the past
harmonic null coneC emanating from the field point (t,x)
~see Fig. 1!. This past null cone intersects the world tubeD
enclosing the near zone at the three-dimensional hypers
face N. Thus the integral of Eq.~2.11! consists of two
pieces, an integration over the hypersurfaceN, and an inte-
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gration over the rest of the past null coneC2N. Each of
these integrations will be treated differently. We will als
treat slightly differently the two cases in which~a! the field
point is outside the near zone~Fig. 1!, and~b! the field point
is within the near zone~Fig. 2!. The former case will be
relevant for calculating the gravitational-wave signal, wh
the latter will be important for calculating field contribution
to tab that must be integrated over the near zone, as wel
for calculating fields that enter the equations of motion.

C. Radiation-zone field point, near-zone integration

For a field point in the radiation zone, and integratio
over the near zone, we first carry out thet8 integration in Eq.
~2.11!, to obtain

hN
ab~ t,x!54E

N

tab~ t2ux2x8u,x8!

ux2x8u
d3x8. ~2.12!

Within the near zone, the spatial integration variablex8 sat-
isfies ux8u<R,r , where the distance to the field poin

FIG. 1. Past harmonic null coneC of the field point (t,x) inter-
sects the near zoneD in the hypersurfaceN.

FIG. 2. Same as Fig. 1, for field point inside the near zone
o

ile
s
l as

n

t

r5uxu. We now expand thex8 dependence in the integrand
in powers ofux8u/r , using the fact that

ux2x8uq5 (
m50

`
1

m!
~2x8! i1••• im~r q! ,i1••• im. ~2.13!

We next expandtab in a Taylor series about the retarded
time u[t2r . The integration is now over the hypersurface
M, which is the intersection of the near-zone world tub
with the constant-time hypersurfacetM5u5t2r ~see Fig.
3!. Roughly speaking, each term in the Taylor series i
smaller than its predecessor by a factor of orderv,1, thus
for any hope of convergence of the series, one must restr
attention to slow-motion sources. We now have an infinit
series inx8 ~expansion ofux2x8u21) multiplying a double
infinite series~expansion ofux2x8u inside the Taylor expan-
sion!. Grouping terms with the same powers ofx8 and car-
rying out the appropriate combinatorics~including use of
‘‘Faà di Bruno’s formula’’ @58#!, it is straightforward to
show that

hN
ab~ t,x!54(

q50

`
~21!q

q! S 1r Mabk1 ••• kqD
,k1•••kq

,

~2.14!

where

Mabk1•••kq~u![E
M

tab~u,x8!x8k1•••x8kqd3x8.

~2.15!

This general expansion, both in powers ofr21 and in
retarded-time derivatives ofMabk1•••kq(u) will prove useful
in later integrations of field quantities over the far zone.

However, for gravitational-wave detectors, we need onl
to focus on the spatial components ofhab, and on the leading.

FIG. 3. Taylor expansion of retarded time dependence onN
results in multipole moments integrated over the spatial hypersu
faceM.
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component in 1/R, whereR is the distance to the detecto
Using the fact thatu,i52N̂i , where N̂[x/R denotes the
detector direction, we obtain

hN
i j ~ t,x!5

4

R(
m50

`
1

m!

]m

]tmEMt i j ~u,x8!~N̂–x8!md3x8

1O~R22!. ~2.16!

Because of the conservation law Eq.~2.8!, t i j satisfies the
identities

t i j5
1

2
~t00xixj ! ,0012~t l ~ ixj )! ,l2

1

2
~tklxixj ! ,kl ,

~2.17a!

t i j xk5
1

2
~2t0~ ixj )xk2t0kxixj ! ,01

1

2
~2t l ~ ixj )xk2tklxixj ! ,l .

~2.17b!

Using these identities in Eq.~2.16! generates the multipole
expansion

hN
i j ~ t,x!5

2

R

d2

dt2 (m50

`

N̂k1
•••N̂km

IEW
i jk1•••km~u!, ~2.18!

where the ‘‘Epstein-Wagoner’’~EW! moments are given by

IEW
i j 5E

M
t00xixjd3x1IEW ~surf!

i j , ~2.19a!

IEW
i jk 5E

M
~2t0~ ixj )xk2t0kxixj !d3x1IEW ~surf!

i jk ,

~2.19b!

IEW
i jk1•••km5

2

m!

dm22

dtm22E
M

t i j xk1•••xkmd3x ~m>2!,

~2.19c!

where integrating the spatial derivative terms in Eqs.~2.17!
by parts generates surface integrals at the two-dimensio
coordinate sphere of radiusR bounding the hypersurface
M, denoted]M, resulting in surface contributions to th
first two EW moments given by

~d/dt!2IEW~surf!
i j 5 R

]M
@4t l ~ ixj )2~tklxixj ! ,k#R2n̂ld2V,

~2.20a!

~d/dt!IEW ~surf!
i jk 5 R

]M
~2t l ~ ixj )xk2tklxixj !R2n̂ld2V,

~2.20b!

where n̂l denotes an outward radial unit vector, andd2V
denotes solid angle.

One advantage of this multipole expansion is that the fi
and source variables appearing in the integrandtab are
evaluated at the single retarded timeu; a disadvantage is tha
because the field contributions totab fall off as some power
of r , one can expect to encounter integrals that depend
positive powers of the radiusR of the boundary of integra-
r.

nal

e

eld

t
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tion, especially in some of the higher-order moments. If thi
boundary is formally taken tò ~as was previously done!,
these integrals would diverge. However, as we shall se
suchR-dependent effects arepreciselycanceled by contri-
butions from the integral over the rest of the past null cone
to which we now turn.

D. Radiation-zone field point, radiation-zone integration

The integral over the rest of the past null coneC2N can
be written in the form

hC2N
ab ~ t,x!54E

2`

`

du8E
C2N

tab~ t8,x8!d~ t82t1ux2x8u!
ux2x8u

3d~u82t81r 8!d4x8, ~2.21!

where we have simply inserted 15*du8d(u82t81r 8). We
now integrate overt8 and r 8, and note that

E
2`

`

dt8E
R

`

dr8d~u82t81r 8!d~ t82t1ux2x8u!

5H ux2x8u
t2u82n̂8•x

, u8,u and r 8.R,

0, u8.u or r 8,R.
~2.22!

The result is

hC2N
ab ~ t,x!54E

2`

u

du8 R
C2N

tab~u81r 8,x8!

t2u82n̂8•x

3@r 8~u8,V8!#2d2V8. ~2.23!

Note thatr 8 is a function ofu8 andV8 via the condition
@from the two d-functions in Eq. ~2.22!#: t2u8
5r 81ux2x8u, which gives

r 8~u8,V8!5@~ t2u8!22r 2#/@2~ t2u82n̂8•x!#. ~2.24!

The integration over solid angled2V8 for a given value of
u8, together with theu81r 8 ‘‘time’’ dependence oftab, can
be seen to represent an integration over the two-dimension
intersection of the past null coneC with the future null cone
t85u81r 8 emanating from the center of mass of the system
at tc.m.5u8 ~Fig. 4!. The integration overu8 then includes all
such future-directed cones, starting from the infinite pas
and terminating in the one emanating from the center o
mass at timeu, which is tangent to the past null cone of the
observation point.

However, foru>u8>u22R, the two-dimensional inter-
sections meet the boundary of the near zone, and so t
angular integration is not complete. If we choose the fiel
point x to be in thez direction, so thatn̂8•x5rcosu8, then
the condition r 8>R, together with Eq.~2.24! imply that
0<f8<2p, 12a<cosu8<1, where

a5~u2u8!~2r22R1u2u8!/2rR. ~2.25!

Note thata ranges from 0 (u85u) to 2 (u85u22R). For
u8,u22R, the angular integration covers the full 4p. Thus
we write the radiation-zone integral in the form
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hC2N
ab ~ t,x!54E

u22R

u

du8E
0

2p

df8E
12a

1 tab~u81r 8,x8!

t2u82n̂8•x

3@r 8~u8,V8!#2dcosu8

14E
2`

u22R
du8 R tab~u81r 8,x8!

t2u82n̂8•x

3@r 8~u8,V8!#2d2V8. ~2.26!

Note thattab contains only field contributions evaluated i
the radiation zone; in determining these we will make use
the general expansion~2.14!.

To obtain the contribution to the gravitational waveform
we evaluate the spatial components of Eq.~2.26! at distance
R and directionN̂ and keep the leading 1/R part.

E. Near-zone field point, near-zone integration

In this case, in Eq.~2.12!, both x and x8 are within the
near zone, henceux2x8u<2R. Consequently, the variation
in retarded time can be treated as a small perturbation, s
tab varies on a time scale;R. We therefore expand the
retardation in powers ofux2x8u, to obtain

hN
ab~ t,x!54(

m50

`
~21!m

m!

]m

]tmEMtab~ t,x8!ux2x8um21d3x8,

~2.27!

whereM here denotes the intersection of the hypersurfa
t5const with the near-zone world tube.

FIG. 4. Two-dimensional hypersurfacesF formed by intersec-
tion of past null cone of field point with future null cones from th
origin. The field point is in radiation zone. Foru8 from 2` to
u22R, F covers full 4p solid angle around the origin. From
u22R to u, F terminates at boundary of the near zoneN.
n
of

,
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F. Near-zone field point, radiation-zone integration

The formulas from Sec. II D, such as Eqs.~2.24! and
~2.25!, carry over to this case with only one modification
The final future null cone that appears in the integration
the one that intersects the boundary of the near zone and
past null cone of the field point simultaneously a
u85u22R12r , rather thanu85u ~Fig. 5! ~recall that here,
r,R). The result is, for a near-zone field point,

hC2N
ab ~ t,x!54E

u22R

u22R12r

du8E
0

2p

df8E
12a

1 tab~u81r 8,x8!

t2u82n̂8•x

3@r 8~u8,V8!#2dcosu8

14E
2`

u22R
du8 R tab~u81r 8,x8!

t2u82n̂8•x

3@r 8~u8,V8!#2d2V8. ~2.28!

G. Gravitational waveform and energy flux

To obtain the gravitational waveform, we combine th
two contributions tohi j , Eqs.~2.18! and the leading 1/R part
of the spatial components of Eq.~2.26!, and evaluate the
transverse-traceless~TT! part, given by

hTT
i j 5hklS Pk

i Pl
j2

1

2
Pi j PklD , ~2.29!

wherePk
i 5dk

i 2N̂kN̂
i .

Note that the two expressions that contribute tohkl in Eq.
~2.29! each depend on the radiusR of the near zone. Since
R was an arbitrarily chosen radius, the final physical answ
should not depend on it. However, to check that all term
involving R cancel in the end would be a formidable task
Instead we adopt the following nonrigorous, but reasonab
strategy. All terms in the near-zone EW moments and in th
radiation-zone integrals that areindependentof R are kept.

e

FIG. 5. Same as Fig. 4, for field point in near zone. Integral ov
u8 terminates atu85u22R12r .
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All terms thatfall off with R will be dropped. Close exami-
nation shows that, despite our formal choiceR;|, nothing
in our calculations actually constrains the value ofR, apart
from the inequalityR,R. Thus we are free to makeR suf-
ficiently large, but still less thanR, so as to make such terms
as small as we wish, whether or not they ultimately canc
In this regard, it is useful to note that, for a LIGO or VIRGO
detector 10 Mpc from a source emitting gravitational wav
at f5100 Hz, fR5R/l;1016, and thus many orders of
magnitude ofR are available to achieve this suppressio
Nevertheless, we believe that all such terms actually canc
Finally, all terms thatgrowwith powers ofR are also kept.
In this case we will show explicitly that all terms that vary a
positive powers ofR cancel between the near-zone an
radiation-zone integrals. This procedure thus isolates the
nite terms that arise from convergent integrals, while simu
taneously verifying that no truly divergent integrals aris
The result is a well-defined, explicitly finite, method for ca
culating the gravitational waveform. It is the explicit inclu
sion of the radiation-zone integral in the formulation of Eq
~2.26! that cures the apparent divergences that plagued
original EW framework.

The energy flux is given by

Ė5~R2/32p! R ḣTT
i j ḣTT

i j d2V. ~2.30!

III. WEAK-FIELD, SLOW-MOTION APPROXIMATION

A. Iteration of relaxed Einstein equations

We make the standard assumption that, with respect to
orbital motion and mutual gravitational interactions,

vA
2;mA /S;e!1, ~3.1!

wheree will be used as an expansion parameter.
Now, because the fieldhab appears in the source of the

field equation, the usual method of solution is to iterate: su
stitutehab50 on the right-hand side of Eq.~2.11! and solve
for the first-iteratedh1

ab ; substitute that into Eq.~2.11! and
solve for the second-iteratedh2

ab , and so on@imposing the
gauge condition Eq.~2.3! consistently at each order#. The
first iteratedh1

ab is O(e), and each subsequent iteration im
proves its accuracy by one order ine. Thus, for example, to
obtain a result for the waveform accurate to the order of t
quadrupole formula, h;(m/r ) Ï i j;(m/r )(v21m/S);e2,
two iterations of Eq.~2.11! are needed. To obtain the firs
post-Newtonian corrections to the quadrupole approxim
tion, i.e.,h to ordere3, h3

ab , or three iterations, are needed
while to obtain the 2PN contributions~the goal of this pa-
per!, the fourth-iterated field is needed. This would be
daunting task, if it was not for the use of the identities, Eq
~2.17!. Consider for example, the quadrupole formula. Th
sourcet i j of the second-iterated fieldh2

i j containsrv iv j as
well as terms of the form (¹h1

00)2, both of which are
O(r3e). @Note that (¹h)2;h¹2h;re.# However, the use
of the identity Eq.~2.17a! in the near-zone integration con-
verts t i j into two time derivatives oft00xixj ~modulo total
divergences!; because of the slow-motion approximation
two time derivatives increase the order bye, and thus, to
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sufficient accuracy, only the dominant contribution tot00,
namelyr, is needed,without explicit recourse to the first-
iteratedh1

ab . Instead,h1
ab is buried implicitly in the equation

of motion ~2.8! that leads to the identity~2.17a!. This cir-
cumstance is responsible for the prevalent, but erroneo
view that linearized gravity~one iteration! suffices to derive
the quadrupole formula. The formula so derived turns out t
be ‘‘correct,’’ but its foundation is not~see@9# for discus-
sion!.

Thus, in practice, in order to evaluate EW moments re
quired for theNth iterated field, we will only need the
(N22)-iterated field contributions to the sources. This is no
precisely true for the two EW surface integrals, and formall
the full (N21)-iterated field must be used int i j there, but
with sufficient care, it can be shown without detailed, ex
plicit calculations that the contributions of the
(N21)-iterated fields all fall off sufficiently rapidly with
R to have no effect on these surface integrals. Similarly, fo
the radiation-zone integration, the full (N21)-iterated field
must be used int i j , Eq. ~2.26!. However, it will also be
possible to show that the contributions of the these fields fa
off with R. To obtain the finite contributions and the contri-
butions needed to cancel any divergent terms from the E
moments, only theN22 iterated fields will be needed in
practice. Thus to 2PN order~fourth iteration!, only second-
iterated fields will be needed explicitly in the source terms

B. Second-iterated fields in source terms

Because the source contributions are integrated over
space, we must evaluate the second-iterated fieldsh2

ab in a
form that is valid everywhere~this and the following section
follow the approach and notation of BDI; see@33#, for ex-
ample!. The first iteration of the field equations~2.4! gives
the linearized equations,hh1

ab5216pTab. SinceTab has
compact support, the solutions are standard Lienar
Wiechert-type retarded functions. The solutions have th
leading-order behaviorh00;e, h0i;e3/2, hi j;e2. Taking
these orders into account, together with the fact that, becau
of the slow-motion assumption,]/]t;e1/2]/]xi , we can
write the second-iterated field equations in the form~we drop
the subscripts!

hh005216p~2g!T001
7

8
h,k
00h,k

001O~re2!, ~3.2a!

hh0i5216p~2g!T0i1O~re3/2!, ~3.2b!

hhi j5216p~2g!Ti j2
1

4S h,i00h, j002 1

2
d i j h,k

00h,k
00D1O~re2!,

~3.2c!

where we have kept only contributions required to determin
h00, h0i , andhi j to the accuraciese2, e3/2, and e2, respec-
tively @note that, in identifying orders of source terms with
dimension~length! 22, we can useh21r;e#. By defining
the densities

s[T001Tii , ~3.3a!

s i[T0i , ~3.3b!
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s i j[Ti j , ~3.3c!

and the retarded potentials

V~ t,x![E
C

d3x8

ux2x8u
s~ t2ux2x8u,x8!, ~3.4a!

Vi~ t,x![E
C

d3x8

ux2x8u
s i~ t2ux2x8u,x8!, ~3.4b!

Wij ~ t,x![E
C

d3x8

ux2x8u Fs i j1
1

4p SV,iV, j2
1

2
d i j V,kV,kD G

3~ t2ux2x8u,x8!, ~3.4c!

it is straightforward to solve Eqs.~3.2! to the needed order
with the result

h0054V24~W22V2!1O~e3!, ~3.5a!

h0i54Vi1O~e5/2!, ~3.5b!

hi j54Wij1O~e3!, ~3.5c!

whereW5Wii . It is useful to note that, although these form
of hab are of sufficient accuracy in practice to be used in t
effective sources for evaluating the waveform to 2PN ord
they are not sufficiently accurate for use in the equations
motion that must also be specified consistently to 2PN ord
The 2PN equations of motion requireh00 toO(e3) andh0i to
O(e5/2) (hi j is sufficiently accurate as it stands!. However, as
the 2PN equations of motion are well known, we shall n
undertake their derivation here, and will simply use the pu
lished equations@44,59# when they are needed.

Because the source ofV andVi has compact support, the
integrals~3.4a! and ~3.4b! can be evaluated simply for field
points within either the near zone or the radiation zone. B
because the source ofWij contains both compact and non
compact support pieces, it must be evaluated carefully, w
proper attention paid to contributions from the integratio
over the radiation-zone part of the null cone. The details w
depend on the use to whichWij is being put. Evaluation of
Wij is discussed in Appendix C.

When we calculate the EW moments, we shall need
field contributions totab evaluated at fixed retarded timeu
~on the hypersurfaceM), and for field points withr,R. We
therefore expand the retardationt2ux2x8u as a perturbation
of the potentialsV, Vi , andWij about t5u, with ux2x8u
acting as the expansion parameter@see Eq.~2.27!#. The re-
sults are

V5U1
1

2
] t
2X1O~e5/2!, ~3.6a!

Vi5Ui1O~e5/2!, ~3.6b!

Wij5Pi j1~Wij !C2N1O~e5/2!, ~3.6c!

where the ‘‘instantaneous’’ potentials are given by
,
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U~u,x![E
M

d3x8

ux2x8u
s~u,x8!, ~3.7a!

X~u,x![E
M
d3x8ux2x8us~u,x8!, ~3.7b!

Ui~u,x![E
M

d3x8

ux2x8u
s i~u,x8!, ~3.7c!

Pi j ~u,x![E
M

d3x8

ux2x8u Fs i j1
1

4p SU ,iU , j2
1

2
d i j U ,kU ,kD G

3~u,x8!. ~3.7d!

We have used the fact that, by virtue of the conservation
mass and momentum at lowest order,] t*sd3x;e5/2 and
] t*s id

3x;e3. We will drop the contribution from the
radiation-zone integral (Wij )C2N , which falls off at least as
fast asR22 ~see Appendix C!. Note that these potentials
satisfyUi ,i52U̇, ¹2X52U, Pi j , j52U̇ i .

C. Near-zone metric, matter stress energy, and effective
gravitational source

In order to evaluate the components of the stress-ene
tensorTab to the necessary order, we need the componen
of the near-zone metric to post-Newtonian order. These a
given from Eqs.~2.2! and ~3.5! by

g0052~112V12V2!1O~e3!, ~3.8a!

g0i524Vi1O~e5/2!, ~3.8b!

gi j5~122V!d i j1O~e2!, ~3.8c!

~2g!5114V28~W2V2!1O~e3!. ~3.8d!

These equations, together with the distributional definitio
~2.10! of the stress-energy tensor yield, to the requisite orde

s5(
A

mAF12V1
3

2
vA
21

1

2
V21

1

2
VvA

214W1
7

8
vA
4

24VivA
i 1O~e3!Gd3~x2xA!, ~3.9a!

s i5(
A

mAvA
i F12V1

1

2
vA
21O~e2!Gd3~x2xA!,

~3.9b!

s i j5(
A

mAvA
i vA

j F12V1
1

2
vA
21O~e2!Gd3~x2xA!,

~3.9c!

where the potentialsV, Vi , andW are assumed to be evalu-
ated atxA , excluding contributions of theAth body itself~to
avoid infinite self-field terms!. The components ofTab can
be easily constructed from these expressions.

To the needed order,Lab has the form
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L005214V,kV,k116F2VV̈1V,kV̇k22VkV̇,k1
5

8
V̇2

1
1

2
Vm,k~Vm,k13Vk,m!12W,kV,k2WklV,kl

2
7

2
VV,kV,kG1O~re3!, ~3.10a!

L0i516FV,k~Vk,i2Vi ,k!1
3

4
V̇V,i G1O~re5/2!, ~3.10b!

L i j54SV,iV, j2
1

2
d i j V,kV,kD116F2V,~ i V̇ j )

2Vk,iVk, j2Vi ,kVj ,k12Vk,~ iVj ),k

2d i j S 38V̇21V,kV̇k2Vm,kV[m,k] D G1O~re3!,

~3.10c!

where overdot denotes]/]t. Notice the presence of the cu
bically nonlinear terms inL00, involving eitherV3W or
V3.

IV. EVALUATION OF EPSTEIN-WAGONER MOMENTS

A. Basic strategy

The EW moments are integrals over a sphere of harmo
coordinate radiusR about the center of mass of the system
with all variables entering the integrands to be evaluated
retarded timeu5t2r . We substitute the matter stress-ener
tensorTab, and the second-iterated fields evaluated in t
near-zone into Eqs.~2.19!. We expand all quantities to the
PN order needed to achieve a 2PN-accurate waveform. E
volume integral will be split into a ‘‘compact’’ (C) piece
involving integration of the compact-support matter sourc
and a ‘‘field’’ (F) piece, involving integration of the nonlin-
ear field contributions. InIEW

i j and IEW
i jk the two surface inte-

grations at the boundary radiusR will involve only the field
contributions, and will require somewhat special treatmen

In integrating the field terms, we will frequently integrat
by parts, but will carefully evaluate and save the surfa
terms, using the identity

E
M

]kF
i j •••md3x5 R

]M
Fi j . . .muRn̂kR2d2V. ~4.1!

In order to simplify some of the integrations, we will fre
quently make a change of variables within integrals, in ord
to place one of the bodies at the origin of the new variabl
for exampley[x2xA . Even thoughd

3y5d3x, this shift has
the consequence that the region of integrati
Mx5$xi uuxu<R% will now appear in the new coordinates t
be a region bounded byuyu5uRn̂2xAu, i.e., not centered at
y50. It is much easier in practice to integrate iny coordi-
nates over a regionMy5$yi uuyu<R%, which is shifted by
xA relative to the true region of integration. The two integr
tions can be related by taking into account the appropri
surface integrals, using the identity
-

nic
,
at

gy
he

ach

e,

t.
e
ce

-
er
es,

on
o

a-
ate

E
Mx

f ~x!d3x5E
My

g~y!d3y2 R
]My

g~y!ŷ–xAR2d2Vy

1
1

2 R
]My

xA•“g~y!ŷ–xAR2d2Vy1•••,

~4.2!

whereg(y)[ f (y1xA) and ŷ5y/y. Again, we evaluate and
save the surface terms.

In the end, we will only be interested in the physically
measurable, transverse-traceless~TT! components of the
radiation-zone fieldhi j . We will therefore make frequent use
of the identities, which follow from the definition~2.29!:

~d i j !TT50, ~N̂iBj !TT50, ~4.3!

whereB is arbitrary. These identities apply only to indices
‘‘ i ’ ’ and ‘‘ j ’’ appearing in the components of the fina
waveform; we do not apply them to fields which ultimately
make up source terms.

In the field integrals, we will need explicit forms for the
instantaneous potentials~3.7! evaluated inside the near zone
To the needed order, they are given by

U~u,x!5(
A

mA*

ux2xAu
1O~e3!, ~4.4a!

X~u,x!5(
A

mAux2xAu@11O~e!#, ~4.4b!

Ui~u,x!5(
A

mAvA
i

ux2xAu
1O~e5/2!, ~4.4c!

P~u,x!5(
A

mAvA
2

ux2xAu
1
1

4
U2

2
1

2(
AÞB

mAmB

ux2xAuuxA2xBu
1O~e3!, ~4.4d!

whereP[Pii , and where

mA*[mAS 11
3

2
vA
22(

B
mB/uxA2xBu1O~e2! D . ~4.5!

Equation~4.4d! can be easily obtained from Eq.~3.7d! ~after
contraction oni j ) by integrating by parts, carefully checking
the vanishing of all surface terms. Although the full potentia
Pi j appears~via Wij ) in L00, we will not need its explicit
form, as the integration of that particular term will be
handled by a ‘‘trick’’ ~see Appendix D!. Note that the so-
called ‘‘superpotential’’X(u,x) is needed only to lowest or-
der because it always appears twice time-differentiated, e
in Eq. ~3.6a!, and so its contribution is alreadyO(e) relative
to that ofU.
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B. The two-index momentI EW
i j

We write Eq.~2.19a! in the form

IEW
i j 5I C

i j1I F
i j1I S

i j , ~4.6!

where the three terms represent the compact (C), field (F),
and surface (S) contributions. Substituting Eqs.~3.3!, ~3.6!,
~3.8d!, ~3.9!, and~4.4! into (2g)T00 and expanding through
O(re2), we obtain

I C
i j5(

A
mAxA

i j S 11
1

2
vA
213(

B

mB

rAB
D 1

3

8(A mAxA
i jvA

4

1(
AB

mAmB

xA
i j

r AB
S 2vB21

7

2
vA
224vA•vB2

3

2
~vB•n̂AB!2

2(
C

mC

rBC
1
7

2(C
mC

rAC
2
3

2
aB•xABD 1O~e3!3mxA

2 ,

~4.7!

where xAB[xA2xB , r AB[uxABu, n̂AB[xAB /r AB , and
aA[d2xA /dt

2. All sums are assumed to exclude cases wh
a denominator~e.g.,r BC) might vanish.

To the required order for calculatingI F
i j L00 can be writ-

ten in terms of the instantaneous potentials,

L005214U ,kU ,k116S 2
7

8
U ,kẌ,k2UÜ1U ,kU̇k22UkU̇ ,k

1
5

8
U̇21

1

2
Um,k~Um,k13Uk,m!12P,kU ,k2PkmU ,km

2
7

2
UU ,kU ,kD1O~re3!. ~4.8!

For the first term, the integral2(14/16p)*MU ,kU ,kx
i j d3x is

straighforward: integrating twice by parts and showing th
the surface terms are proportional toRd i j , which has no TT
part, we are left with the integral (14/16p)*MU¹2Uxi j d3x
52(7/2)(ABmA*mB* xA

i j /r AB . This term is of 1PN and 2PN
order via the PN contributions tom* . The next term,
2(14/16p)*MU ,kẌ,kx

i j d3x is already of 2PN order. We in-
tegrate once by parts to remove the derivative fromU. Using
the fact that ¹2X52U, we find a surface integra
2(14/16p)r]MUẌ,kx

i j n̂kR2d2V, and the new integrals
(28/16p)*MUÜx

i j d3x1(28/16p)*MUẌ,kd
k( ixjd3x. The

first of these volume integrals can be combined with th
arising from the third term in Eq.~4.8!. We substitute Eqs.
~4.4a! and ~4.4b!, including ad-function term that arises in
Ü ~see Appendix B!. In the surface term, we expand th
integrand in powers of r21, and obtain
2(7/15)(ABmAmBR(vAi j1xA

( iaA
j )1O(R21). We drop all

terms that fall off with increasingR. In the volume integrals,
for each term in the sumsÜ5(AÜA and Ẍ,k5(AẌA,k , we
change integration variables fromx to y5x2xA so that, for
a givenA, the potentialsÜA and ẌA,k are centered at the
origin of the newy coordinate, whileU now takes the form
ere

at

l

at

e

(BmB /uy1xABu. We calculate the surface contributions tha
result from this change of variables using Eq.~4.2!. For ex-
ample the first integral then becomes

E
M
UÜxi j d3x5(

AB
mAmBE

My

1

uy1xABu

3FyaA• ŷ2vA
213~vA• ŷ!22

4p

3
vA
2y3d3~y!G

3~y2ŷi j12yŷ~ ixA
j )1xA

i j !y23d3y. ~4.9!

We use the spherical harmonic expansion

1

uy1xABu
[(

l ,m

4p

2l11

~2r,! l

r.
l11 Ylm* ~ n̂AB!Ylm~ ŷ!,

~4.10!

where r,(.) denotes the lesser~greater! of r AB and y, ex-
press all products of unit vectorsŷk in terms of symmetric,
trace-free~STF! products using Eqs.~A2!, and integrate over
directionsŷ, using the identity

(
m

E Ylm* ~ n̂!Ylm~ ŷ!ŷ^L8&d2Vy[n̂^L&d l l 8, ~4.11!

~see Appendix A! where the superscript^L& over a unit vec-
tor denotes anl -dimensional STF product. We then integrate
over y, using the formula

E
0

R r,
l

r.
l11 y

qdy5
~2l11!r AB

q

~ l1q11!~ l2q! F12
l1q11

2l11 S Rr ABD
q2 l G

~q2 lÞ0!. ~4.12!

The result is a series of terms of three types: those wi
nonvanishing TT part that are independent ofR and linear in
R, which we keep; terms with vanishing TT part which we
discard ~regardless of their dependence onR); and terms
that fall off with increasingR, which we also discard. An
example of the second type of term would be a contributio
to IEW

i j proportional toRd i j . The contribution of such a term
to hi j has no TT part; equivalently, it can be eliminated to th
necessary order by a finite gauge or coordinate transform
tion.

Many of the field integrations that we encounter in evalu
ating the EW moments are amenable to this general metho
~i! integrate by parts to leave one potential undifferentiate
~ii ! change variables to put the center of the differentiate
potentials at the origin,~iii ! expand the undifferentiated po-
tential in spherical harmonics,~iv! express all unit vector
products in STF terms,~v! integrate overd3y using the iden-
tites ~4.11! and ~4.12!, ~vi! retain all relevant contributions
from surface integrals that arise in steps~i! and ~ii !.

Terms 2–8 contributed byL00 @Eq. ~4.8!# can be handled
using this method, as can the compact contributions toPi j
andP ~proportional to velocities! in terms 9 and 10. How-
ever the nonlinear field contributions toPi j and P lead to
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additional complications, although the basic method still a
plies. These terms are discussed in Appendix D. Finally,
cubically nonlinear term 11 can be calculated easily by in
grating by parts. Computation of these terms is straightf
ward but tedious. In evaluating 2PN terms, we make
peated use of the fact, valid to Newtonian order, th
(AmAxA50.

We now turn to the surface termI S
i j given by Eq.~2.20a!.

Because the surface lies outside the matter source, only
field contribution,L i j is needed. The term can be rewritte
in the form

~d/dt!2I S
i j5~1/16p! R

]M
~2Lk~ i n̂ j )kR3

2Lkl
,l n̂

i jkR4!d2V. ~4.13!

However, becauseI S
i j is essentially two anti-time deriva-

tives of the surface integral, reducing its order bye, we need
to know L i j to O(re3), i.e., toO(e2) beyond its leading
order terms, at least in principle. This is in contrast to havi
to knowL00 in the spatial integralI F

i j only to O(e) beyond
its leading order. This would present considerable compli
tions, except for the fact that we only need to calculate
surface integral, and retain terms that are either independ
of or grow with R. Consequently we only need to retai
contributions toL i j that vary asR22 or R23. To see what
terms must be retained, we return to the definition ofL i j , Eq.
~2.6!. Far from the source, the fieldshab have the leading
e and r dependencesh00;e/r , h0i;e3/2/r 2 (r22 here be-
cause the net momentum of the system vanishes!, and
hi j;e2/r ; L i j has the schematic form (h,l)

21h(h,l)
2

1h2(h,l)
21•••. By combining the leading forms ofhab

with the knowledge that time derivatives increase the ord
by e1/2, while spatial derivatives either increase the rate
fall off by one power ofr21 or increase the order bye1/2 via
the retarded time dependence, it can be shown by inspec
that terms of orderh(h,l)

2 and higher are either of highe
than 2PN order, or fall off faster thanR23, or generate an-
gular dependence that leads to no TT parts. However,
purely quadratic terms proportional to (h,l)

2 do contribute;
their explicit contribution is given by the nonlinear terms o
Eq. ~2.6! with gmn replaced byhmn . Again, inspection
shows that, to the required order, we can write

L i j52h00ḧi j1
1

4
h00,ih

00
, j12h00,~ i ḣ j )0

2d i j S 18 h00,kh00,k1h00,kḣk0D . ~4.14!

Further inspection shows that knowinghab to the accuracy
shown in Eq.~3.5! suffices; the higher-order terms not ex
plicitly shown in those expressions contribute terms either
higher-than-2PN order, or at faster-than-R23 falloff. We do
need to evaluateV, Vi , andWij carefully, however. Expand-
ing these functions in powers ofux2x8u about t5u, but to
higher orders than that shown in Eq.~3.6!, using Eqs.~3.9!
p-
the
te-
or-
re-
at

the
n

ng

ca-
a
ent
n

er
of

tion
r

the

f

-
at

for s, s i , ands i j , and displaying only terms that lead to the
appropriate contributions inL i j , we find, in the vicinity of
r5R,

V5
m̃

r
1

1

4r
Q̈kl~3dkl2nknl !1O~e3/r !2

2

3
Q
~3!

1O~e3r 0!

1
r

16
Qkl
~4!

~dkl1nknl !1O~e4r !1O~e2/r 2!1O~e2/r 3!,

~4.15a!

Vi52
1

2r 2
~e i jkJk2Q̇i j !nj1O~e5/2!/r 2

2
1

4
Qi j
~3!

nj1O~e3r 0!1O~e3/2/r 3!, ~4.15b!

Wij5
1

2r
Q̈i j1O~e2/r 2!1O~e3/r !, ~4.15c!

where we define here and for future use

m̃[m1E, ~4.16a!

E[
1

2(A SmAvA
22(

B
mAmB /r ABD , ~4.16b!

X[m̃21(
A

mAxAS 11
1

2
vA
22

1

2(B mB /r ABD 50,

~4.16c!

Qi j[(
A

mAxA
i j , ~4.16d!

Qi jk[(
A

mAxA
i jk , ~4.16e!

Ji[(
A

mAe i lmxA
l vA

m , ~4.16f!

Ji j[(
A

mAe i lmxA
l vA

mxA
j , ~4.16g!

wherem5(AmA , andQ5Qii . In Eq. ~4.15! we show sche-
matically the e order and ther dependence of the terms
neglected. Note that, by virtue of the Newtonian equations
motion, E and Ji are constant to leading order. Herem̃,
Qi j , andJi are to be evaluated atu5t2R. Combining Eqs.
~4.15!, ~3.5!, ~4.14!, and~4.13!, we find, to the required order
that I S

i j52(7/6)mRQ̈i j .
CombiningI C

i j , I F
i j , andI S

i j , we obtain finally
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IEW
i j 5(

A
mAxA

i j S 11
1

2
vA
22

1

2(B
mB

rAB
D 1

3

8(A mAxA
i jvA

41
1

12(AB mAxA
i j mB

r AB

3H 28vA2211vB
2222vA•vB2~vA•n̂AB!212~vB•n̂AB!222vA•n̂ABvB•n̂AB12~aA1aB!•xAB16(

C

mC

rBC
J

2
1

12(AB
mAmB

rAB
H 12 $~vA1vB!22@~vA1vB!•n̂AB#2%xA

~ ixB
j )12~vA1vB!•xAB~10vA

~ ixA
j )111vA

~ ixB
j )!

2~26vA
i j249vA

~ ivB
j )!r AB

2 J 2
1

12(AB mAmBrAB$aA•n̂ABxA
~ i n̂AB

j ) 2aA
~ ixA

j )123~aA1aB!~ ixA
j )%

23(
AB

mA
2mBn̂AB

i j 1G~3!
i j 2

14

5
mRQ̈i j1O~e3!Qi j , ~4.17!

whereG(3)
i j is a complicated three-body term arising from thePkmU ,km term in Eq.~4.8!, that vanishes identically for two-body

systems. It is evaluated in Appendix D.

C. The three-index momentI EW
i jk

SinceIEW
i jk is dominantly of 1/2PN order, we need to calculate only the first post-Newtonian corrections to it, i.e., term

3/2PN order. We first note thatIEW
i jk @Eqs.~2.19b! and ~2.20b!# can be written

IEW
i jk 5 ĨEW

i jk 1 ĨEW
j ik 2 ĨEW

ki j , ~4.18!

where we separateĨEW
i jk into compact, field, and surface contributions, given by

Ĩ C
i jk1 Ĩ F

i jk5E
M

t0ixjxkd3x,

~d/dt! Ĩ S
i jk5~1/16p! R

]M
L l i n̂ jklR4d2V. ~4.19!

Substituting Eqs.~3.3!, ~3.6a!, ~3.8d!, ~3.9!, and~4.4! into (2g)T0i and expanding throughO(re3/2), we obtain

Ĩ C
i jk5(

A
mAvA

i xA
jkS 11

1

2
vA
213(

B

mB

rAB
D 1O~e5/2!3Qi j . ~4.20!

To the required order,

L0i516FU ,k~Uk,i2Ui ,k!1
3

4
U̇U ,i G . ~4.21!

We then calculateĨ F
i jk following the method laid out in Sec. IV A. In the course of this calculation we find no TT term

dependent on positive powers ofR. Finally we evaluate the surface contribution using Eqs.~4.14! and ~4.15! evaluated to
lowest order, and find no contributions. The final result is

ĨEW
i jk 5(

A
mAvA

i xA
jkS 11

1

2
vA
22

1

2(B
mB

rAB
D 2

1

2(AB
mAmB

rAB
vA•n̂ABn̂AB

i xA
jk2

1

12(AB mAmBrAB@2vA•n̂ABn̂AB
i jk

111~2vA
i n̂AB

jk 2vA
j n̂AB

ik 2vA
k n̂AB

i j !#1
1

2(AB mAmB@vA•n̂ABn̂AB
i ~ j xA

k)17vA
i xA

~ j n̂AB
k) 27vA

~ j xA
k)n̂AB

i #1O~e5/2!3Qi j .

~4.22!

The result agrees with Eq.~A52! of @35#. The full momentIEW
i jk can be constructed from this using Eq.~4.18!.

D. The four-index moment I EW
i jkl

Since this moment contributes to the waveform already at PN order, we only need to evaluate the integrands throug
first PN corrections. We write Eq.~2.19c! in the form

IEW
i jkl5I C

i jkl1I F
i jkl ~4.23!
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~there is no surface contribution!. Expanding (2g)Ti j throughO(re2), we obtain

I C
i jkl5(

A
mAvA

i j xA
klS 11

1

2
vA
213(

B

mB

rAB
D 1O~e3!3Qi j . ~4.24!

To the required order,L i j can be written in terms of the instantaneous potentials

L i j54SU ,iU , j2
1

2
d i j U ,kU ,kD116F14U ,~ i Ẍ, j )12U ,~ i U̇ j )2Uk,iUk, j2Ui ,kU j ,k12Uk,~ iU j ),k

2d i j S 18U ,kẌ,k1
3

8
U̇21U ,kU̇k2Um,kU [m,k] D G1O~re3!. ~4.25!

The terms proportional tod i j produce no TT contributions to the waveform, so we drop them.
The method proceeds as in the previous cases, without the complications of cubic nonlinearities. The result is

IEW
i jkl5(

A
mAS vAi j2 1

2(B mBn̂AB
i j /r ABD xAkl1 1

12(AB mAmBrABn̂AB
i j ~ n̂AB

kl 2dkl!1
1

2(A mAvA
2vA

i j xA
kl

2
1

4(AB mAmBxA
kl/r ABS 2vAi j1~4vAB

2 2vB
2 !n̂AB

i j 23~vA•n̂AB!2n̂AB
i j 24~3vA•n̂AB24vB•n̂AB!vA

~ i n̂AB
j ) 216aB

~ ixAB
j ) 22aA

~ ixAB
j )

1aA•xABn̂AB
i j 22(

C
mC~1/r AC11/r BC!n̂AB

i j D 2
1

24(AB mAmBrABd
kl

3S ~4vAB
2 2vA

2 !n̂AB
i j 12~8vAB

i j 223vB
i j !2~vA•n̂AB!2n̂AB

i j 28vAB•n̂ABvAB
~ i n̂AB

j ) 14vA•n̂ABvA
~ i n̂AB

j ) 214aA
~ ixAB

j ) 1aA•xABn̂AB
i j

24(
C

~mC /r AC!n̂AB
i j D 1

1

24(AB mAmBrABn̂AB
i jkl S 4vAB2 25vA

219~vA•n̂AB!224(
C

mC /r AC23aA•xABD
1
1

3(AB mAmBn̂AB
~k xA

l )
„vA

2 n̂AB
i j 110vA

i j14~vA•n̂AB23vAB•n̂AB!vA
~ i n̂AB

j ) 23~vA•n̂AB!2n̂AB
i j 214aA

~ ixAB
j ) 1aA•xABn̂AB

i j
…

1
1

12(AB mAmBrABn̂AB
i j ~vA

kl12vA•n̂ABvA
~kn̂AB

l ) 2aA
~kxAB

l ) 12aA
~kxA

l )!1
1

12(AB mAmBrABn̂AB
kl ~4vAB

i j 221vA
i j

18vAB•n̂ABvAB
~ i n̂AB

j ) 26vA•n̂ABvA
~ i n̂AB

j ) 135aA
~ ixAB

j ) !1
1

3(AB mAmBrAB~2vAB
~ i n̂AB

j ) vAB
~k n̂AB

l ) 2vA
~ i n̂AB

j ) vA
~kn̂AB

l ) !

1
1

3(AB mAmB~2vA
~ i n̂AB

j ) vA
~kxA

l )2vA•n̂ABn̂AB
i j vA

~kxA
l )212vA

~ i n̂AB
j ) vAB

~k xA
l )!2

8

35
mRQ̈i jdkl1O~e3!3Qi j . ~4.26!

E. The five- and six-index momentsI EW
i jklm and I EW

i jklmn

These moments contribute to the waveform at 3/2PN and 2PN order, respectively, thus we only need to evalu
dominant, Newtonian contributions to the integrands. Splitting the moments into a compact and a field piece, substitut
lowest-order contributions to t i j at O(re), into Eq. ~2.19c!, namely (2g)Ti j5(AmAvA

i jd3(x2xA), and

L i j54(U ,iU , j2
1
2d i j U ,kU ,k), and carrying out the integration procedures as above, we obtain

IEW
i jklm5

1

3

d

dt H(A mAxA
klmS vAi j2 1

2(B
mB

rAB
n̂AB
i j D 1

1

4(AB mAmBrABn̂AB
i j xA

~k~ n̂AB
lm)2d lm!1O~e5/2!3Qi j , ~4.27a!

IEW
i jklmn5

1

12

d2

dt2 H(A mAxA
klmnS vAi j2 1

2(B
mB

rAB
n̂AB
i j D 1

1

2(AB mAmBrABF n̂ABi j xA~kl~ n̂ABmn)2dmn)!2
1

10
xAB
i j ~2n̂AB

klmn22n̂AB
~kldmn)

2d~kldmn)!G2
8

105
mRQi jd~kldmn)J 1O~e3!3Qi j . ~4.27b!

Equation~4.27a! is equivalent to Eq.~A53d! of @35#.
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V. EVALUATION OF RADIATION-ZONE
CONTRIBUTIONS

We now turn to the evaluation of the contributio
hC2N
i j (t,x) given by the integral over the remainder of th
past light cone of the observer, Eq.~2.23!. There is no ma-
terial source now, sot i j5L i j /16p. On the other hand, the
time dependence in the integrand of Eq.~2.23! is not the
simple fixed retarded timeu5t2R of the EW moments. The
(u81r 8) dependence oft i j in Eq. ~2.23! reflects the varia-
tion in retarded time along each two-dimensional intersect
of the past light cone of the event (t,x) with the future light
cone of the event (u8,0). However,t i j is a functional of
retarded potentials, such asV. When evaluated atu81r 8,
V has the form

V~u81r 8,x8!5E d3x9

ux82x9u
s~u81r 82ux82x9u,x9!,

~5.1!

Notice that, becauseux9u!R, while ux8u.R, we can ap-
proximate

u81r 82ux82x9u'u81n̂8•x91~2r 8!21@~ n̂8•x9!22r 92#

1•••, ~5.2!

where n̂85x8/r 8, and then expand such retarded functio
aboutu8 in powers of the small quantityr 9/r 8. For a given
u8, the retarded fields that contribute toL i j along the inter-
section between the two light cones in Fig. 5 all have th
source in the near zone, on slices of the near-zone world t
that pass through the center of mass at timeu8. The expan-
sion ~5.2! simply reflects the fact that, as one moves arou
the source in angle@integration overd2V in Eq. ~2.23!#, the
orientation of the slice of the near-zone world tube that ge
erates the fields precesses~see Fig. 6!.
n
e

ion

ns

eir
ube

nd

n-

Since the ingredients ofL i j are all fields evaluated in the
radiation zone, we can use expansions in powers of 1r 8,
such as those of Eq.~2.14!. The angular dependence of suc
expansions can always be expressed in terms of STF p
ucts of radial unit vectorsn̂8 ~analogues of spherical harmon
ics!. Thus L i j can be written, in the regimer 8@R, as a
sequence of terms of the generic formf N,l

i j (u8)n̂8^L&r 82N.
Then a change of variables

z[~ t2u8!/r511~u2u8!/r ~5.3!

puts Eq.~2.26! into the form, for each (N,l ) term,

FIG. 6. Fields contributing toLab at two representative points
a and b on F have sources near same eventu8 at r50. Only
orientation of near-zone source slice varies as angular integra
moves aroundF.
hC2N
i j ~N,l !5S 2r D

N22E
1

112R/r dz

~z221!N22f N,l@u2r ~z21!#~4p!21E
0

2p

df8E
12a

1

n̂8^L&~z2n̂8•n̂!N23dcosu8

1S 2r D
N22E

112R/r

` dz

~z221!N22f N,l@u2r ~z21!#~4p!21E
0

2p

df8E
21

1

n̂8^L&~z2n̂8•n̂!N23dcosu8, ~5.4!
to
rce

e,

is
where@cf. Eq. ~2.25!# a5(z21)(z1122R/r )(r /2R). We
first carry out the angular integrals, which yiel
n̂^L&AN,l(z,a), whereAN,l can be computed from Legendr
polynomialsPl(z) by AN,l(z,a)5

1
2*12a

1 Pl(z)(z2z)N23dz
@see Appendix A, Eq.~A5!; a52 corresponds to the full
4p angular integration#. Then, in thez integration from 1 to
112R/r , we expand the retarded time dependence of
f N,l aboutu, then integrate; this is valid sinceR,r . In the
integrals from 112R/r to `, we integrate by parts numer
ous times, each time increasing the number of time deri
tives of f N,l , stopping when the result exceeds the PN ord
required. The boundary terms that arise are evaluated
z5112R/r and z5`, corresponding to retarded tim
u22R and2`, respectively. At the former boundary, w
d
e

the

-
va-
er
at

e
e

again expand the functions aboutu; at the latter boundary the
contributions are assumed to be zero, which is equivalent
making the usual and reasonable assumption that the sou
is not extraordinarily dynamical in the infinite past.

For the cases where the field point is inside the near zon
Eq. ~5.4! still applies, except that nowr,R, and the firstz
integral runs from2112R/r to 112R/r ~Fig. 5!.

In working to 2PN order, just as in the case of the EW
surface integrals, Eqs.~2.20!, here we must also evaluate the
integrandL i j to O(re3). Here, as before, it can be shown
that only the twice-iterated fields are needed in practice. Th
can be seen as follows. We are only interested in the 1/r part
of the waveform. Thus a contribution toL i j that is already
O(re3) but that falls off faster thanr 823 (N.3) can be
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dropped. This would apply to all terms that are quartica
nonlinear and higher, such as terms of the formh2(h,l)

2,
which fall off asr 826. Cubically nonlinear terms of the form
h(h,l)

2 can also be dropped; at leading order, they a
O(re2), but fall off as r 825. One might worry that by ex-
pandingf N,l

i j in Eq. ~5.4! aboutu ~the value of retarded time
at which all contributions to the waveform are to be eval
ated in the end!, one could reduce the rate of fall off by on
power of r for each retarded time derivative. But each tim
derivative either raises the order of the term bye1/2 or kills it
outright via a conservation law, such as for the Newtoni
potentialh;m/r . Thus the leading cubically nonlinear con
tribution turns out to be of orderre3/r 85, which can be
dropped. Thus only quadratically nonlinear terms of the fo
(h,l)

2 need to be considered. As before, a knowledge
hab to the accuracy shown in Eq.~3.5! suffices; higher-order
terms contribute terms of orderre3/r 84. However, we must
now be careful in evaluating the terms whichdo contribute.
For example a term ofO(re) that falls off asr 826, can, after
three terms in the Taylor expansion of its retarded time d
pendence aboutu in powers ofr (z21), lead to a 1/r con-
tribution to the waveform atO(h21re5/2), which is 3/2PN
order beyond quadrupole order. A term of this form wou
arise from the cross term between the gradient of the Ne
tonian potentialm/r and the Newtonian quadrupole potenti
;Qi j /r 3. Similarly a (re)r 827 term would contribute a 2PN
contribution to the waveform. Such a term would arise fro
a cross term between the Newtonian potential and the N
tonian octupole potential;Qi jk /r 4. A consequence of these
considerations is that, in expanding the second-iterated fie
hab, we must use the general multipole expansions of E
~2.14!, expanded through octupole order. This amounts
lly

re

u-
e
e

an
-

rm
of

e-

ld
w-
al

m
ew-

lds
q.
to

expandingh00 through q53, h0i through q52, and h00

through q51. Evaluating the integralsMabk1•••kq to the
needed order, using the general method for integrating ov
the near-zone hypersurfaceM described in Sec. II D, and
adding any contributions tohab from the radiation-zone in-
tegrations~primarily fromWij ; see Appendix C!, we obtain

h0054m/r 817~m/r 8!212$r 821Qi j ~u8!% ,i j

2
2

3
$r 821Qi jk~u8!% ,i jk ,

h0i522$r 821@Q̇i j ~u8!2e i jaJa~u8!#% , j

1
2

3
$r 821@Q̇i jk~u8!22e ikaJa j~u8!#% , jk , ~5.5!

hi j5~m/r 8!2n̂8 i j12Q̈i j ~u8!/r 8

2
2

3
$r 821@Q̈i jk~u8!24e~ i ukaJ̇au j )~u8!#% ,k ,

whereQi j , Qi jk , Ja, and Ja j are defined in Eqs.~4.16d!–
~4.16g!, and where the superscript notation( i ua•••ku j ) denotes
symmetrization only oni and j .

To the required order, we then have

L i j52h00ḧi j1
1

4
h00,ih

00
, j1

1

2
h00,~ ih

kk
, j )12h00,~ i ḣ j )0,

~5.6!

with the result
L i j5
4m

r 82
F n̂8^ i jkl &S 15Q^kl&

r 84
1
15Q̇^kl&

r 83
1
6Q̈^kl&

r 82
1
Q
~3!

^kl&

r 8
D 1n̂8^k~ i &S 18Q^ j !k&

7r 84
1
18Q̇^ j !k

7r 83
2
18Q̈^ j !k

7r 82
2
24Q

~3!
^ j !k

7r 8
D

2S 6Q̈^ i j &

5r 82
1
6Q

~3!
^ i j &

5r 8
12Q

~4!
^ i j &D 1n̂8^ i jklm&S 35Q^klm&

r 85
1
35Q̇^klm&

r 84
1
15Q̈^klm&

r 83
1
10Q

~3!
^klm&

3r 82
1
Q
~4!

^klm&

3r 8
D

1n̂8^kl~ i &S 25Q^ j !kl&

3r 85
1
25Q̇^ j !kl&

3r 84
2
25Q

~3!
^ j !kl&

9r 82
2
10Q

~4!
^ j !kl&

9r 8
D 1n̂8^kl~ i &e j )kaS 8J̇ak

r 83
1
8J̈ak

r 82
1
8 J

~3!
ak

3r 8
D

2n̂8^ i j l &eklaS 4J̇ak
r 83

1
4J̈ak

r 82
1
4 J

~3!
ak

3r 8
D 2n̂8kS 10Q̈^ i jk &

7r 83
1
10Q

~3!
^ i jk &

7r 82
2
4Q

~4!
^ i jk &

21r 8
1
4Q

~4!
i jk

3r 8
1
2

3
Q
~5!

i jk D
1n̂8ke~ i ukaS 8J̇au j )

5r 83
1
8J̈au j )

5r 82
1
16J

~3!
au j )

5r 8
1
8

3
J

~4!
au j )D 2n̂8~ ie jkaS 4J̇ak

5r 83
1
4J̈ak

5r 82
2
16J

~3!
ak

15r 8
D G . ~5.7!

The terms in Eq.~5.7! are of the generic formf N,l(u8)n̂8^L&r 82N. We substitute each such term into Eq.~5.4!, integrate using
the procedure outlined above, and keep only terms through 2PN order that falloff as 1/r . Evaluating at the detector distance
R, we obtain, finally,
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hC2N
i j ~ t,x!5

4m

R E
0

`

dsQ
~4!

i j ~u2s!F lnS s

2R1sD1
11

12G
1
4m

3R
N̂kE

0

`

dsQ
~5!

i jk~u2s!F lnS s

2R1sD1
97

60G
2
16m

3R
e~ i ukaN̂kE

0

`

ds J
~4!

au j )~u2s!

3F lnS s

2R1sD1
7

6G1
1912

315

m

R
Q
~4!

i j ~u!R. ~5.8!

As with the calculation of EW moments, we discard term
that fall off with increasingR.

The integrals involving the logarithm of retarded time a
the tail terms, and are in complete agreement with@33#, in-
cluding the constants~11/12, 97/60, 7/6! added to the loga-
rithms. Their origin is the backscatter of the outgoing gra
tational waves off the lowest-order, Schwarzschild-lik
static background curvature of the spacetime surrounding
source. More precisely, the logarithmic integrals can be s
to arise directly from the term2h00ḧi j in Eq. ~5.6!, which
represents a modification of the flat spacetime characteris
by the potentialh00;m/r . The first tail term, arising from
the 2d4Q^ i j &/du4 term in Eq.~5.7!, is actually of 3/2PN or-
der, while the second and third terms, arising from t
2
3d

5Qi jk /du5 and 8
3d

4Ja j/du4 terms in Eq.~5.7!, are of 2PN
order. On the other hand, only the 3/2PN tail term contr
utes to the energy flux at 2PN order, resulting in the ‘‘4p ’’
term for circular orbits in Eq.~1.4!. Notice that the tail terms
show no dependence on the near-zone boundary radiusR. In
the BDI framework, the tail terms contain a scaleb which is
associated with a gauge transformation from harmonic co
dinates to a set of radiative coordinates used in that fram
work; physical results in the end do not depend onb, and the
tail effects in the two frameworks are in complete agreeme

It is easy to see that the final term in Eq.~5.8!, which
depends linearly onR exactly cancelsthe sum of the corre-
sponding terms arising from the two-, four-, and six-inde
EW moments@Eqs.~4.17!, ~4.26!, and~4.27b!#.

Thus combining the contributions of the six EW momen
to Eq. ~2.18! with these contributions gives the gravitation
waveform, valid to 2PN order, for a generalN-body system.
The waveform is explicitly finite, with no divergent integra
or undefined terms.Henceforth, we shall not display an
R-dependent terms.
s
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VI. REDUCTION TO TWO-BODY SYSTEMS

A. Center of mass and equations of motion to 2PN order

We now specialize to the case of two bodies. Throu
2PN order the dynamics of two-body systems are w
known. The motion is governed by a Lagrangian that adm
a conserved total energy and angular momentum, as we
a ‘‘conserved’’ center-of-mass definition. We define the sy
tem’s center of massX and the relative positionx by

X[m21~m1x11m2x2!1f~1!~x1 ,x2!

1f~2!~x1 ,x2!1O~e3!3X, ~6.1a!

x[x12x2 , ~6.1b!

wherem5m11m2, and f
(1) and f(2) denote 1PN and 2PN

corrections to the center-of-mass definition. Inverting the
expressions and settingX50, we obtain

x15~m2 /m!x2f~1!2f~2!1O~e3!3x1 , ~6.2a!

x252~m1 /m!x2f~1!2f~2!1O~e3!3x2 . ~6.2b!

The only place the 2PN correctionf(2) could conceivably be
needed is in the lowest-order quadrupole moment, but in t
case it is straightforward to show that it is not, since

Qi j5(
A

mAxA
i xA

j 5mxixj1mf~1!i f ~1! j1O~e3!3Qi j ,

~6.3!

where f (1)i52 1
2h(dm/m)(v

22m/r )xi ~see, e.g.,@59#!, and
where we define the two-body variablesm5m1m2 /m ~re-
duced mass!, h5m/m, dm5m12m2, v5v12v2, and
r5uxu. The two-body equations of motion then take the e
fective one-body relative form, through 2PN order:

a5aN1aPN
~1!1aSO

~3/2!1a2PN
~2! 1aSS

~2!1O~a~5/2!!, ~6.4!

where the subscripts denote the nature of the term, p
Newtonian ~PN!, spin-orbit ~SO!, post-post-Newtonian
~2PN!, and spin-spin~SS!; and the superscripts denote th
order ine. The individual terms~excluding spins! are given
by
aN52
m

r 2
n̂, ~6.5a!

aPN
~1!52

m

r 2 H n̂F22~21h!
m

r
1~113h!v22

3

2
h ṙ 2G22~22h! ṙvJ , ~6.5b!

a2PN
~2! 52

m

r 2 H n̂F34~12129h!Smr D 21h~324h!v41
15

8
h~123h! ṙ 42

3

2
h~324h!v2ṙ 22

1

2
h~1324h!

m

r
v2

2~2125h12h2!
m

r
ṙ 2G2

1

2
ṙvFh~1514h!v22~4141h18h2!

m

r
23h~312h! ṙ 2G . ~6.5c!
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B. Two-body Epstein-Wagoner moments

Restricting the summations in the EW moments to two bodies and substituting Eqs.~6.2!, we obtain, through 2PN order,

IEW
i j 5mxi j F11

1

2
~123h!v22

1

2
~122h!m/r G1mxi j F38 ~127h113h2!v41

1

12
~28279h254h2!v2~m/r !

2
1

4
~5127h24h2!~m/r !22

1

12
~1213h130h2! ṙ 2~m/r !G1mmrF16 ~13123h!v i j2

5

3
~124h! ṙv ~ i n̂ j )G , ~6.6a!

IEW
i jk 5m~dm/m!H xi jvk22v ~ ixj )k2v ~ ixj )kF ~125h!v21

1

3
~7112h!~m/r !G

1
1

2
xi jvkF ~125h!v21

1

3
~17112h!~m/r !G1

1

6
~126h!~mṙ/r 2!xi jk J , ~6.6b!

IEW
i jkl5mxkl~123h!S v i j2 1

3
n̂i jm/r D2

1

6
mmrn̂i jdkl1mxklF12 ~129h121h2!v2v i j

2
1

24
~13246h136h2!v2n̂i jm/r1

1

4
~7210h236h2!v i jm/r1

1

6
~7212h236h2! ṙv ~ i n̂ j )m/r

1
1

8
~126h112h2! ṙ 2n̂i jm/r1

1

24
~372122h148h2!n̂i j ~m/r !2G

1mmrdklF 112~7246h!v i j2
1

24
~712h!v2n̂i j1

1

6
~312h! ṙv ~ i n̂ j )1

1

24
~122h! ṙ 2n̂i j2

3

8
n̂i jm/r G

1mmrF 112~122h!n̂i jvkl2
1

6
~124h! ṙ n̂i jv ~kn̂l )2

1

3
~7220h!v ~ i n̂ j )v ~kn̂l )G , ~6.6c!

IEW
i jklm52

1

3
~d/dt!m~dm/m!F ~122h!S v i j2 1

4
n̂i jm/r D xklm2

1

4
mrn̂i j x~kd lm)G , ~6.6d!

IEW
i jklmn5

1

12
m~d/dt!2F ~125h15h2!S v i j2 1

5
n̂i jm/r D xklmn2

1

10
~3210h!mrn̂i j x~kldmn)1

1

10
mrxi jd~kldmn)G . ~6.6e!

In addition, the moments that appear in the tail terms, Eq.~5.8!, reduce, to the required order, to

Qi j5mxi j , ~6.7!

Qi jk52m~dm/m!xi jk , ~6.8!

Ja j52m~dm/m!~x3v!axj . ~6.9!

C. Two-body gravitational waveform and energy loss

Substituting the EW two-body moments~6.6! into Eq. ~2.18!, calculating the time derivatives using the 2PN equations
motion ~6.5! to the accuracy needed, and adding the tail terms from the radiation zone integral~5.8!, we obtain the gravita-
tional waveform. An alternative method is first to calculate the so-called ‘‘symmetric trace-free’’~STF! moments defined by
Thorne@34# and used by BDI, and then to calculate the waveform. The procedures and formulas needed to do this ar
in Appendix E. The result for the waveform is

hi j5
2m

R
@Q̃i j1P1/2Qi j1PQi j1PQSO

i j 1P3/2Qi j1P3/2Qtail
i j 1P3/2QSO

i j 1P2Qi j1P2Qtail
i j 1P2QSO

i j 1P2QSS
i j 1O~e5/2!#TT ,

~6.10!

where, as before, the superscripts denote the effective PN order, and subscripts label the nature of the term, and w
individual nonspin pieces are given by

Q̃i j52S v iv j2 m

r
n̂i n̂j D , ~6.11a!
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P1/2Qi j5
dm

m H 3~N̂–n̂!
m

r
@2n̂~ iv j )2 ṙ n̂i n̂ j #1~N̂–v!Fmr n̂i n̂j22v iv j G J , ~6.11b!

PQi j5
1

3 H ~123h!F ~N̂–n̂!2
m

r F S 3v2215ṙ 217
m

r D n̂i n̂ j130ṙ n̂~ iv j )214v iv j G
1~N̂–n̂!~N̂–v!

m

r
@12ṙ n̂i n̂ j232n̂~ iv j )#1~N̂–v!2F6v iv j22

m

r
n̂i n̂j G G1F3~123h!v222~223h!

m

r Gv iv j
14

m

r
ṙ ~513h!n̂~ iv j )1

m

r F3~123h! ṙ 22~1013h!v2129
m

r G n̂i n̂ j J , ~6.11c!

P3/2Qi j5
dm

m
~122h!H ~N̂–n̂!3

m

r F54 S 3v227ṙ 216
m

r D ṙ n̂i n̂ j2 17

2
ṙv iv j2

1

6 S 21v22105ṙ 2144
m

r D n̂~ iv j )G
1
1

4
~N̂–n̂!2~N̂–v!

m

r F58v iv j1S 45ṙ 229v2228
m

r D n̂i n̂ j2108ṙ n̂~ iv j )G1
3

2
~N̂–n̂!~N̂–v!2

m

r
@10n̂~ iv j )23ṙ n̂i n̂ j #

1
1

2
~N̂–v!3Fmr n̂i n̂j24v iv j G J 1

1

12

dm

m
~N̂–n̂!

m

r F2n̂~ iv j )S ṙ 2~63154h!2
m

r
~128236h!1v2~33218h! D

1n̂i n̂ j ṙ S ṙ 2~15290h!2v2~63254h!1
m

r
~242224h! D2 ṙv iv j~186124h!G

1
dm

m
~N̂–v!F12 v iv j Smr ~328h!22v2~125h! D2n̂~ iv j )

m

r
ṙ ~714h!

2n̂i n̂ j
m

r S 34 ~122h! ṙ 21
1

3
~2623h!

m

r
2
1

4
~722h!v2D G , ~6.11d!

P3/2Qtail
i j 54mE

0

` H mr 3F S 3v21 m

r
215ṙ 2D n̂i n̂ j118ṙ n̂~ iv j )24v iv j G J

u2s
F lnS s

2R1sD1
11

12Gds, ~6.11e!

P2Qi j5
1

60
~125h15h2!H 24~N̂–v!4F5v iv j2 m

r
n̂i n̂j G1

m

r
~N̂–n̂!4F2S 175mr 2465ṙ 2193v2D v iv j

130ṙ S 63ṙ 2250
m

r
227v2D n̂~ iv j )1S 1155mr ṙ 22172Smr D 22945ṙ 42159

m

r
v21630ṙ 2v2245v4D n̂i n̂ j G

124
m

r
~N̂–n̂!3~N̂–v!F87ṙv iv j15ṙ S 14ṙ 2215

m

r
26v2D n̂i n̂ j116S 5mr 210ṙ 212v2D n̂~ iv j )G

1288
m

r
~N̂–n̂!~N̂–v!3@ ṙ n̂i n̂ j24n̂~ iv j )#124

m

r
~N̂–n̂!2~N̂–v!2F S 35mr 245ṙ 219v2D n̂i n̂ j276v iv j1126ṙ n̂~ iv j )G J

1
1

15
~N̂–v!2H F5~25278h112h2!

m

r
2~18265h145h2!v219~125h15h2! ṙ 2Gmr n̂i n̂j

13F5~129h121h2!v222~4225h145h2!
m

r Gv iv j118~6215h210h2!
m

r
ṙ n̂~ iv j )J

1
1

15
~N̂–n̂!~N̂–v!

m

r H F3~362145h1150h2!v225~1272392h136h2!
m

r
215~2215h130h2! ṙ 2G ṙ n̂i n̂ j

16~982295h230h2! ṙv iv j12F5~662221h196h2!
m

r
29~18245h240h2! ṙ 22~662265h1360h2!v2G n̂~ iv j )J

1
1

60
~N̂–n̂!2

m

r H F3~332130h1150h2!v41105~1210h130h2! ṙ 4115~1812572h184h2!
m

r
ṙ 2
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2~1312770h1930h2!
m

r
v2260~9240h160h2!v2ṙ 228~1312390h130h2!Smr D 2G n̂i n̂ j

14F ~1215h2315h2!v229~392115h235h2! ṙ 215~292104h184h2!
m

r Gv iv j
14F15~18240h275h2! ṙ 225~1972640h1180h2!

m

r
13~212130h1375h2!v2G ṙ n̂~ iv j )J

1
1

60H F ~4671780h2120h2!
m

r
v2215~61296h148h2!

m

r
ṙ 22~1442265h2135h2!v416~24295h175h2!v2ṙ 2

22~6421545h!Smr D 2245~125h15h2! ṙ 4Gmr n̂i n̂j1F4~69110h2135h2!
m

r
v2212~3160h125h2!

m

r
ṙ 2

145~127h113h2!v4210~561165h212h2!Smr D 2Gv iv j
14F2~3615h275h2!v226~7215h215h2! ṙ 215~35145h136h2!

m

r Gmr ṙ n̂~ iv j )J , ~6.11f!

P2Qtail
i j 52dmE

0

` H mr 3F15S 3v212
m

r
27ṙ 2D ṙ n̂i n̂ j n̂–N̂2S 13v21 22

3

m

r
265ṙ 2D ~ n̂i n̂ jv–N̂12n̂~ iv j )n̂–N̂!

240ṙ ~v iv j n̂–N̂12n̂~ iv j )v–N̂!120v iv jv–N̂G J
u2s

F lnS s

2R1sD1
97

60Gds
18dmE

0

` H mr 3 F S v22 2

3

m

r
25ṙ 2D ~ n̂i n̂ jv–N̂2n~ iv j )n̂–N̂!22ṙ ~v iv j n̂•N̂2n̂~ iv j )v•N̂!G J

u2s
F lnS s

2R1sD1
7

6Gds.
~6.11g!

The leading PN and 3/2PN spin-orbit and the 2PN spin-spin contributions to the waveform can be found in Eqs.~3.22! of @41#
and in Appendix F. There will also be in principle 2PN spin-orbit terms; these have not been calculated to date.

Although we have differentiated the moments appearing in the tail terms explicitly using the equations of motion in
to display the waveform contributions in a consistent manner, this is not the best form of the tail terms for explicit num
evaluation in the case of general orbits. The reason is the slow falloff of the logarithmic term with increasings. Instead, it is
preferable to revert to the forms of the tail terms given in Eq.~5.8!, split each integral overs into a finite part from 0 to
s0, wheres0 corresponds to several dynamical time scales of the source, and a remaining integral froms0 to `. The first
integral can be done using the expressions given in Eqs.~6.11!. The remaining integral is integrated by parts twice. One c
then show@38# that the latter integral falls off as 1/s0 generally, and for nearly periodic orbits, as 1/s0

2. By choosings0
sufficiently large~generally a few dynamical time scales or orbital periods!, one then can obtain accurate numerical represe
tations of the tail terms, without having to integrate over the entire past history of the source.

Differentiatinghi j with respect to time, using the 2PN equation of motion~6.5! where required, and substituting into Eq
~2.30!; or equivalently, taking the appropriate time derivatives of the STF moments~Appendix E!, and substituting into Eq.
~E5b!, one finds, for the energy flux,

dE

dt
5ĖN1ĖPN1ĖSO1Ėtail1Ė2PN1ĖSS1O~e5/2!ĖN , ~6.12!

where the nonspin contributions are

ĖN5
8

15

m2m2

r 4
$12v2211ṙ 2%, ~6.13a!

ĖPN5
8

15

m2m2

r 4 H 1

28F ~7852852h!v422~148721392h!v2ṙ 213~6872620h! ṙ 42160~172h!
m

r
v2

18~367215h!
m

r
ṙ 2116~124h!Smr D 2G J , ~6.13b!
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Ėtail52
4m

5
Q
~4!

^ i j &~u!E
0

`

Q
~4!

^ i j &~u2s!ln@s/~2R1s!#ds, ~6.13c!

Ė2PN5
8

15

m2m2

r 4 H 1

756F18~169225497h14430h2!v6254~1719210 278h16292h2!v4ṙ 2

154~2018215 207h17572h2!v2ṙ 4218~2501220 234h18404h2! ṙ 6212~33 510260 971h114 290h2!
m

r
ṙ 4

236~444625237h11393h2!
m

r
v41108~498728513h12165h2!

m

r
ṙ 2v223~106 31919798h15376h2!Smr D 2ṙ 2

1~281 473181 828h14368h2!Smr D 2v2224~25321026h156h2!Smr D 3G J . ~6.13d!
th-
c-
is

s

The 3/2PN spin-orbit and 2PN spin-spin contributions can
found in Eqs.~3.25! of @41# and Appendix F. The tail con-
tribution is formally of 3/2PN order, arising from a cros
term involving P3/2Qtail

i j and Q̃i j ; for simplicity, we do not
write it out explicitly ~for circular orbits we evaluate it be-
low!. The ‘‘11/12’’ term in Eq. ~5.8! contributes a term of
the schematic form (d4Q/du4)(d3Q/du3), which can be
written as a total time derivative and absorbed into a red
nition of the energyE at an order above that at which it i
well defined as a conserved quantity~see, e.g.,@60,61# for a
discussion of this point!. In the same way, the form of the
tail term shown in Eq.~6.13c! has been achieved by integra
ing the tail contribution once by parts and moving the to
time derivative over to the left-hand side. The 2PN tail term
in the waveform make no contribution to the energy flux
2PN order because their cross product with the quadrup
piece contains an odd number of unit vectorsN̂, and thus
vanishes on integration over solid angle. They will, howev
produce 5/2PN contributions toĖ via cross terms with the
1/2PN waveform termsP1/2Qi j .

Through first PN order, Eqs.~6.13! agree with@17,62#.

VII. QUASICIRCULAR ORBITS

A. Orbit equations and gravitational waveforms

Because gravitational radiation reaction circularizes
bits, the late stage of inspiral of a compact binary, such
that of the binary pulsar PSR 1913116, will be characterized
by a quasicircular orbit, that is, an orbit which is circula
apart from the slow inspiral caused by radiation dampin
We define the Newtonian angular momentumLN[mx3v,
the unit vector l[L̂N3n̂, and the angular velocity
v[uLNu/mr 2. A circular orbit is given by the conditions
r̈5 ṙ50. Solving the 2PN two-body equations of motio
~6.5! under these conditions gives

v25
m

r 3 F12
m

r
~32h!1Smr D 2S 61

41

4
h1h2D G . ~7.1!

Then the orbital velocity isv5rvl and the orbital energy
through 2PN order is
be

s

efi-
s

t-
tal
s
to
ole

er,

or-
as

r
g.

n

E52h
m2

2r F12
1

4

m

r
~72h!2

1

8 Smr D 2~7249h2h2!G .
~7.2!

In order to calculate waveforms as observed by an Ear
bound detector, we must choose conventions for the dire
tion and orientation of the orbit. The standard convention
to choose a triad of vectors composed ofN̂, the radial direc-
tion to the observer,p̂, lying along the intersection of the
orbital plane with the plane of the sky~line of nodes!, and
q̂5N̂3p̂ ~see Fig. 7!. The normal to the orbitL̂N is inclined
an angle i relative to N̂ (0< i<p). The orbital phase
f5vu1const of body 1 is measured from the line of node
in a positive~out of the plane! sense~orbits seen to be mov-
ing clockwise correspond toi>p/2). The two basic wave-
form polarizationsh1 andh3 are given by

h15
1

2
~ p̂i p̂ j2q̂i q̂ j !h

i j , ~7.3a!

h35
1

2
~ p̂i q̂ j1q̂i p̂ j !h

i j . ~7.3b!

@There is no need to apply the TT projection in Eq.~6.10!
before contracting onp̂ and q̂.# From our conventions, we
have that n̂5p̂cosf1(q̂cosi1N̂sini)sinf and l52p̂sinf
1(q̂cosi1N̂sini)cosf. Since hi j consists of terms of the

FIG. 7. Orientation of unit vectors defining1 and3 waveform
polarizations. Direction of detector isN̂; p̂ lies along line of nodes
and is the origin for orbital phase anglef.
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form n̂i n̂ j , l̂i l̂j , or n̂( i l̂j ), we find the following formulas to
be useful in evaluating the polarizations:

~ n̂i n̂ j !15
1

4
sin2i1

1

4
~11cos2i !cos2f, ~7.4a!

~ l̂i l̂j !15
1

4
sin2i2

1

4
~11cos2i !cos2f, ~7.4b!

~ n̂~ i l̂j )!152
1

4
~11cos2i !sin2f, ~7.4c!

~ n̂i n̂ j !35
1

2
cosisin2f, ~7.4d!

~ l̂i l̂j !352
1

2
cosisin2f, ~7.4e!

~ n̂~ i l̂j )!35
1

2
cosicos2f, ~7.4f!

N̂•n̂5sinisinf, ~7.4g!

N̂•l5sinicosf. ~7.4h!

Substitutingṙ50 and Eq.~7.1! into Eqs.~6.11! @keeping PN
and 2PN corrections in Eq.~7.1! as needed#, and using Eqs.
~7.4!, we can evaluateh1 andh3 explicitly as functions of
orbital phase and orbital orientation. The waveforms can
expressed in terms of powers ofm/r , but it is observationally
more useful to express them in terms ofmv'(m/r )3/2, since
v is directly related to the observed gravitational-wave fr
quency. Instead of showing the result here, we refer
reader to@48# where the complete, ‘‘ready-to-use’’ pair o
2PN waveform polarizations are displayed and discuss
Similar substitution into Eqs.~6.13! results in Eq.~1.4!.

B. Tail terms

Because they involve integration over the past history
the source, the tail contributions to the waveform and ene
flux require additional discussion. For circular orbits, the1
and3 polarizations of the quantityP3/2Qtail

i j are given by

~P3/2Qtail!158m~11cos2i !E
0

`Sm2

r 4
cos2f D

u2s

3F lnS s

2R1sD1
11

12Gds, ~7.5a!

~P3/2Qtail!3516mcosi E
0

`Sm2

r 4
sin2f D

u2s

3F lnS s

2R1sD1
11

12Gds. ~7.5b!

Becauser and v evolve on a radiation-reaction timesca
tRR which is long compared to an orbital period, we ca
approximate them to be constant in the above integrals;
results will be valid up to corrections of orde
be

e-
the
f
ed.

of
rgy

le
n
the
r

(vtRR)
21ln(vtRR)!1 @45#. Notice that the integrals con-

verge ass→`, even if we approximatem2/r 4'const ~in
fact, r→` in the infinite past@63#, so the integrals truly
converge!. Thus we can substitutev(u2s) for f with
v5const in the tail integrals, pull out them2/r 4 factor, and
use the fact that, for any integern,

PS~n![E
0

`

sin~nvs!lnS s

2R1sDds
52

1

nv
$g1 ln~2nvR!1O@~2nvR!22#%, ~7.6a!

PC~n![E
0

`

cos~nvs!lnS s

2R1sDds
52

1

nvS p

2
1O@~2nvR!21# D , ~7.6b!

whereg is Euler’s constant. The result is

~P3/2Qtail!1524~11cos2i !Smr D 5/2
3H p

2
cos2f1S g1 ln~4vR!2

11

12D sin2fJ ,
~7.7a!

~P3/2Qtail!3528cosi Smr D 5/2
3H p

2
sin2f2S g1 ln~4vR!2

11

12D cos2fJ ,
~7.7b!

It is useful to combine these tail terms with the lowest-orde
quadrupole terms, given from Eq.~6.11a! by Q̃1

52(m/r )(11cos2i)cos2f and Q̃3522(m/r )cosisin2f,
into the forms

Q̃1'2
m

r
~11cos2i !F112pSmr D 3/2Gcos2c, ~7.8a!

Q̃3'22
m

r
cosi F112pSmr D 3/2Gsin2c, ~7.8b!

where

c5f22~m/r !3/2@g1 ln~4vRe211/12!#

5v$u22mlnR22m@g1 ln~4ve211/12!#%. ~7.9!

We first note that one effect of the tail term is to shift the
phase of the quadrupole piece by an irrelevant constant, a
by a term which varies logarithmically withv as the inspiral
proceeds. This slowly varying phase shift was studied i
@38#.

We also recognize thatu22mlnR5t2R22mlnR is re-
tarded time with respect to the ‘‘true’’ null cone that inter-
sects the observation point at (t,R). This can be seen by
noting that, in the asymptotic, Schwarzschild-like spacetim
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of the source, in harmonic coordinates, outgoing radial n
geodesics obeyt2r22mlnr1O(1/r )5const. An identical
R dependence in the phase shows up at the next 1/2PN o
when one combines the two polarization states ofP1/2Qi j

with those ofP2Qtail
i j . We thus conclude that, at least throug

the 2PN order considered, our procedure for calculating
tail terms yields gravitational waves that asymptotica
propagate along the true harmonic null cones, toward t
future null infinity, despite the use of a flat-spacetime wa
equation forhab. This avoids the need for further matchin
or other devices to connect our solutions to true null infini
and answers another long-standing criticism of the E
framework@7#. It is useful to note also that, in the BDI ap
proach, a similar logarithmic term appears in the phase s
~7.9!, but there the term depends on the parameterb used in
the transformation from harmonic to radiative coordinate
The appearance of such a parameter can be shown to hav
physical consequences, as expected@38,64#. Our method is
explicitly free of such arbitrary parameters, all effects ofR
having cancelled. The only external radius which appear
that of the observer.

The tail contribution to the energy flux, given by Eq
~6.13c! can also be calculated in closed form using the abo
assumptions together with Eq.~7.6b!. The result is the
‘‘4 p ’’ term in Eq. ~1.4!.

C. Display of the waveforms

We now display our results explicitly by plotting the
waveform for an inspiralling binary as a function of time
We will assume that the binary is in a quasicircular orbit
its last few moments before the final plunge to coalescen
The time evolution of the orbital phase velocity in this re
gime can be obtained by integrating the equation

dv

dt
5

Ė

dE/dv
, ~7.10!

whereĖ is given by Eqs.~1.4! anddE/dv can be obtained
from Eqs.~7.1! and ~7.2!. The orbital phase anglef can, in
turn, be obtained by integrating the orbital phase veloci
The results are

v~ t !5
1

8m
~Tc2T!23/8H 11F 7432688

1
11

32
h G~Tc2T!21/4

2
3p

10
~Tc2T!23/81F 1 855 09914 450 688

1
56 975

258 048
h

1
371

2048
h2G~Tc2T!21/2J , ~7.11a!

f~ t !5fc2
1

h
~Tc2T!5/8H 11F37158064

1
55

96
h G~Tc2T!21/4

2
3p

4
~Tc2T!23/81F 9 275 49514 450 688

1
284 875

258 048
h

1
1855

2048
h2G~Tc2T!21/2J , ~7.11b!
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whereT is a dimensionless time variable related to the c
ordinate retarded timeu by T5h(u/5m), andfc andTc are
constants of integration. The constantTc is the dimensionless
retarded time at coalescence~the time at which the frequency
in Eq. ~7.11! formally becomes infinite!, andfc is the orbital
phase at coalescence.

We can now use the orbital phase evolution along w
Eqs. ~7.3!, ~7.4!, and ~7.1! to write h1 and h3 as explicit
functions of time. We will not display the result here~there
are enough large equations in this paper already!, but rather
refer the reader to Eqs.~2!–~4! in @48# for ‘‘ready-to-use’’
waveforms. The ‘‘ready-to-use’’ waveforms are essentia
Eqs.~6.11! boiled down to the circular orbit case.

For the case of a 1.4M( neutron star spiralling into a
10M( black hole the resulting frequency sweep and wav
form are shown in Fig. 8. The observer is viewing the orbit
motion edge on, so thati5p/2 in Eqs.~7.4!. In this case the
gravitational radiation is linearly polarized~only h1 is
present!. The upper cut-off frequency in Fig. 8 is chosen
be 180 Hz; this is approximately the orbital frequency at t
innermost stable circular orbit@65,66# for this type of sys-
tem. For the initial LIGO detector, Finn@67# has shown that
a substantial fraction of the signal-to-noise ratio available
accumulated when integrating a matched filter against
signal in the frequency range we have displayed. In oth
words, the segment of the waveform shown in Fig. 8~b!,
sweeping from 75 Hz to 180 Hz, is the portion of the wav
form which is actually mostdetectablefor the initial LIGO
detector.

As energy is extracted from the system by the radiatio
the orbital radius shrinks and the orbital frequency increas

FIG. 8. ~a! Orbital frequency and~b! waveform for a 1.4M(

neutron star spiralling into a 10M( black hole plotted vs time in
sec. Orbit is viewed edge-on, therefore only ‘‘1’’ polarization is
present.
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This gives rise to the dominant ‘‘chirp’’ feature of the wave
form in Fig. 8~b!: the growing amplitude and the bunching o
peaks at late time. However, because the coordinate velo
rises to about 0.5c, this system is quite relativistic, and thu
the inclusion of higher multipoles of the radiation causes t
waveform to differ considerably from the simplecosine
chirp that one would compute just using quadrupole rad
tion. The pairing of wave crests~alternately closer togethe
and farther apart! signifies the onset of the gravitational ana
logue of synchrotron spikes. Just as in electricity and m
netism this feature comes from the inclusion of many h
monics of the radiation. In our analysis we have includ
multipoles through the six-index multipoleIEW

i jklmn . This al-
lows us consistently to include components of the radiat
in our waveform at multiples of the orbital phasenforbital
wheren ranges from 1 to 6,n52 being the dominant quad
rupole contribution.

Another interesting feature of Fig. 8~b! is that adjacent
troughs are not the same depth, but adjacent crests are e
tially the same height. This effect also has a discerna
physical origin. The deeper troughs arise when the ligh
mass is coming toward the observer; thus the observer i
the forward synchrotron beam pattern of the lighter, fast
moving mass. The shallower troughs arise when the ligh
mass is receding from the observer.@At the left-hand side of
the figure, the phase is arbitrarily set to zero, i.e., the hea
mass~chosen to bem1) is passing through the ascendin
node coming toward the observer and the lighter mass
receding. The waveform is clearly in the not-so-deep trou
at this leftmost point.# The crests are essentially the sam
height because the radiation is virtually the same when
masses are moving transverse to the line of sight of the
server regardless of which mass is closer to the observer~see
@35# for further discussion of the asymmetric radiation em
sion!. The extent to which the harmonic structure might
measurable by a gravitational-wave detector is currently
der investigation@68#. Preliminary analysis shows that ne
glecting the harmonic structure~i.e., just using the quadru-
pole amplitude to describe the wave! results in
approximately a 4% loss in signal-to-noise ratio. In Appe
dix F we show how the effects of spin modify the wavefor
and frequency evolution.

VIII. DISCUSSION

We have extended the Epstein-Wagoner framework
calculating gravitational radiation from slow-motion system
to produce a method that is free of divergences or undefi
integrals. The extension involved adding to the origin
framework the integral of the effective source over that p
of the past null cone of the field point that isexterior to the
near zone. When expressed in appropriate variables, tha
tegral can be shown to be convergent, and can be evalu
in a straightforward way, to any chosen PN order. The ex
rior integral yielded~a! terms that explicitly cancel terms
from the EW framework previously thought to be diverge
~b! tail terms, in agreement with other methods based
matching, and~c! phasing terms that verify that the radiatio
asymptotically propagates along true null cones of t
curved spacetime.

This new, well-defined framework, provides a basis f
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extending the calculation of gravitational radiation to highe
PN orders. An extension to 5/2PN order in the BDI frame
work has been achieved by Blanchet@69#; such an extension
in the improved EW framework is in progress. Extension t
3PN order will be a bigger challenge, simply because of th
complexity of the terms, including quadratically nonlinea
integrals, and the rapidly increasing number of computation
However, we foresee no obstacle in principle to such a
extension in the improved framework.

This improved framework will also allow derivation of
near-zone gravitational fields in a form that will yield equa
tions of motion for the sources to high PN orders. It shou
be possible to derive radiation-reaction terms in the tw
body equations of motion, at ordere5/2 ande7/2 beyond New-
tonian gravity@60,61,70#, without the presence of ill-defined
or divergent terms, and without the need for matching b
tween zones. One goal would be to derive the nondissipati
3PN terms in the equations of motion. This would improv
the accuracy of estimates, using a hybrid Schwarzschild-P
equation of motion, of the transition point between inspira
and unstable plunge in the late stage of compact binary
spiral@65,66#. Calculation of the near-zone fields will also be
important in developing interfaces between the pos
Newtonian approach, which works well for most of the in
spiral, and numerical relativity methods which must be use
for the final few orbits and the coalescence. Work on th
latter subject is in progress.
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APPENDIX A: STF TENSORS AND THEIR PROPERTIES

In calculating field integrals we make frequent use of th
properties of symmetric, trace-free~STF! products of unit
vectors. The general formula for such STF products is

n̂^L&[ (
p50

[ l /2]

~21!p
~2l2 l22p!!!

~2l21!!!
@ n̂L22PdP1sym~q!#,

~A1!

where @ l /2# denotes the integer just less than or equal
l /2, the capitalized superscripts denote the dimensionali
l22p or p, of products of n̂i or d i j respectively, and
‘‘sym(q)’’ denotes all distinct terms arising from permuta
tions of indices, whereq5 l !/ @(2pp!( l22p)! # is the total
number of such terms~see@34,28# for compendia of formu-
las!. For convenience, we display the first several exampl
explicitly:

n̂^ i j &5n̂i j2
1

3
d i j , ~A2a!
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n̂^ i jk &5n̂i jk2
1

5
~ n̂id jk1n̂ jd ik1n̂kd i j !, ~A2b!

n̂^ i jkl &5n̂i jkl2
1

7
@ n̂i jdkl1sym~6!#

1
1

35
~d i jdkl1d ikd j l1d i ld jk!, ~A2c!

n̂^ i jklm&5n̂i jklm2
1

9
@ n̂i jkdkl1sym~10!#

1
1

63
@ n̂id jkd lm1sym~15!#, ~A2d!

n̂^ i jklmn&5n̂i jklmn2
1

11
@ n̂i jkldmn1sym~15!#

1
1

99
@ n̂i jdkldmn1sym~45!#

2
1

693
@d i jdkldmn1sym~15!#. ~A2e!

There is a close connection between these STF tensors
spherical harmonics. For example, it is straightforward
show that, for any unit vectorN̂, the contraction ofN̂L with
n̂^L& is given by

N̂Ln̂^L&5
l !

~2l21!!!
Pl~N̂–n̂!, ~A3!

wherePl is a Legendre polynomial. This latter property ca
be used to establish the identity~4.11!:

(
m

E Ylm* ~ n̂!Ylm~ ŷ!ŷ^L8&d2Vy[n̂^L&d l l 8. ~A4!

Since the left-hand side is STF, and depends only on the
vector n̂, then it must be proportional to the STF combin
tion n̂^L8&. To establish the normalization, contract both sid
with theL8-dimensional non-STF productN̂L8, whereN̂ rep-
resents thez direction. Using Eq.~A3!, and recalling that
Pl 85Nl 8Yl 80, whereNl 8 is a normalization coefficient, we
find that the integral yields@ l !/(2 l21)!! #Pl 8(N̂•n̂)d l l 8, es-
tablishing the unit coefficient in Eqs.~4.11! and ~A4!.

In calculating the radiation-zone contribution
to hi j , we must also evaluate the integra
(4p)21*0

2pdf8*12a
1 n̂8^L&(z2n̂8•n̂)N23dcosu8, where a

5(z21)(z1122R/r )(r /2R). The result must be an
l -dimensional STF tensor, dependent on the only vector
the problem,n̂, and thus must be proportional ton̂^L&. To
determine the proportionality factor, which will be a functio
of z and a, we contract withn̂L, choosen̂ to be in thez
direction, and substitute Eq.~A3!. The result is

~4p!21E
0

2p

df8E
12a

1

n̂8^L&~z2n̂8•n̂!N23dcosu8

5AN,l~z,a!n̂^L&, ~A5a!
and
to

n

unit
a-
es

s
ls

in

n

AN,l~z,a!5
1

2E12a

1

Pl~z!~z2z!N23dz. ~A5b!

APPENDIX B: DERIVATIVES
OF GRAVITATIONAL POTENTIALS

In evaluating the ‘‘field’’ parts of EW moments, we have
repeated occasion to integrate expressions involving two d
rivatives, spatial, time, and mixed, of the potentialU and two
spatial derivatives ofẌ. For a field point external to the
bodies, such derivatives can be calculated easily from th
expressions~4.4a! and~4.4b!. However, because the integra-
tions run over the locationsxA of the bodies themselves, we
must carefully evaluate the singular behavior of such doub
derivatives atx5xA . Consider, for example, the expression
for Ü, written in terms of a smooth density distribution:

Ü5E r8Fa8•~x2x8!

ux2x8u3
1
3v8 i j ~x2x8!^ i j &

ux2x8u5 Gd3x8, ~B1!

where a85dv8/dt. For a field point outside the bodies,
shrinking the density distribution to a point yields a resul
equivalent to that obtained by differentiating Eq.~4.4a!. For
a point inside, say, bodyA, we find that the integral
*body AÜd

3x→2(4p/3)mAvA
2 as the size of bodyA shrinks

to a point. Consequently we must add ad-function term to
all double derivatives ofU andX found using Eqs.~4.4a!
and ~4.4b!. The results are

U ,i j5U ,i j
† 2~4p/3!(

A
mAd i jd3~x2xA!, ~B2a!

U̇ ,i5U̇ ,i
†1~4p/3!(

A
mAvA

i d3~x2xA!, ~B2b!

Ü5Ü†2~4p/3!(
A

mAvA
2d3~x2xA!, ~B2c!

Ẍ,i j5Ẍ,i j
† 2~8p/15!(

A
mA~vA

2d i j12vA
i j !d3~x2xA!,

~B2d!

where † denotes derivatives computed from Eqs.~4.4a! and
~4.4b!.

APPENDIX C: THE SECOND-ITERATED FIELDS

In Sec. III B, we wrote down the second-iterated solution
for hab in terms of the potentialsV, Vi , andWij . Here we
discuss the solutions for these potentials, Eqs.~3.4!, in more
detail, especially the potentialWij , whose source is noncom-
pact.

We first consider field points in the radiation zone. Sinc
their sources have compact support, the potentialsV andVi
do not have to be divided into contributions from integrals
over the near zone and over the radiation zone. They can
expanded using the analogue of Eq.~2.14!, and written to the
needed order in the form
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V~ t,x!5m̃/r1
1

2
$r21Qi j ~u!% ,i j2

1

6
$r21Qi jk~u!% ,i jk

1
1

2
Q̈/r2$r21Fi~u!% ,i1O~e3!, ~C1a!

Vi~ t,x!52
1

2
$r21@Q̇i j ~u!2e i jaJa~u!#% , j

1
1

6
$r21@Q̇i jk~u!22e ikaJa j~u!#% , jk1O~e5/2!,

~C1b!

where Q̈ and Fi[(AmAxA
i (vA

22(BmB/2r AB), respectively,
represent the difference between the monopole and dip
moments of the potentialV, and the 1PN accurate, consta
total massm̃, Eq. ~4.16a!, and the vanishing center of mas
X, Eq.~4.16c!. In constructingh00 using Eq.~3.5a! these two
terms are cancelled by terms fromW5Wii .

The potentialWij must first be divided into near-zone an
radiation-zone contributions,Wij5(Wij )N1(Wij )C2N . To
the O(e2) needed for the use ofWij in source terms for
higher iterations@see Eqs.~3.5!#, we can approximate the
integrand in Eq. ~3.4c! by s i j1(4p)21(U ,iU , j

2 1
2d i j U ,kU ,k)[t (1)

i j /4, with s i j5(AmAvA
i vA

j d3(x2xA).
Here t (1)

i j denotes the first-iterated effective stress ener
Then (Wij )N can be expanded using the analogue of E
~2.14!, with the result

~Wij !N5 (
q50

`
~21!q

q! S 1r M i jk1•••kqD
,k1•••kq

, ~C2!

where

Mi jk1•••kq~u!5E
M

t~1!
i j ~u,x!xk1•••kqd3x. ~C3!

Using the expression above fort (1)
i j in each of the moments

in Eq. ~C3!, and using the strategy for evaluating field int
grals described in Secs. IV A and IV B, we find, to th
needed accuracy,

Mi j5
1

2
Q̈i j , ~C4a!

Mi jk5
1

6
Q̈i jk2

2

3
e~ i ukaJ̇au j ), ~C4b!

Mi jkl5
1

15
m2RS 2d i ~kd l ) j2

3

2
d i jdklD

1term independent ofR, ~C4c!

where we discard terms that fall off with increasingR, but
retain all other terms. Although we never actually need t
ole
nt
s

d

gy.
q.

e-
e

he

contribution from the momentMi jkl , we show the
R-dependent term to illustrate its ultimate cancellation.

To evaluate (Wij )C2N , we use the fact that, to the
required order, in the radiation zone, t (1)

i j

5(4p)21(m2/r 84)(n̂8^ i j &2 1
6d i j ). Using Eq. ~5.4!, and re-

membering the factor of 4 difference betweenhi j andWij ,
we obtain

~Wij !C2N5
1

4

m2

r 2
n̂i j2

1

5

m2

r 3
Rn̂^ i j &, ~C5!

where we again discard terms that fall off withR. It is easy
to see that theR-dependent term in Eq.~C5! exactly cancels
the corresponding term in (Wij )N resulting from Eqs.~C4c!
and ~C2!. Combining the contributions toWij through octu-
pole order, and substituting them along with Eqs.~C1! for
V andVi into Eqs.~3.5! yields the second-iterated radiation
zone fieldshab, Eqs.~5.5!. It is interesting to note that the
(m2/4r 2)n̂i j term in (Wij )C2N is required in order that the
far-zone field correctly approximate the Schwarzschild g
ometry in harmonic coordinates in the static limit: namely,

h0054m/r17~m/r !2, ~C6a!

h0i50, ~C6b!

hi j5~m/r !2n̂i j ~C6c!

@compare Eq.~5.5!#. This contribution could not have been
found using the EW approach without our new formulatio
of the radiation-zone integrals.

We next consider field points within the near zone. Ex
panding the retardation aboutt5u with ux2x8u as the small
parameter, we obtain Eqs.~3.6! and~3.7!. The compact con-
tributions toU, X, Ui , andPi j can be evaluated directly; the
noncompact part ofPi j is left unevaluated until it is incor-
porated into an EW moment~see Appendix D!. It remains to
evaluate the radiation-zone contribution (Wij )C2N with a
near-zone field point. Using the form oft (1)

i j above, and us-
ing the near-zone field-point version of Eq.~5.4!, we find
only contributions proportional tom2r 2/R4 and m2/R2.
Thus we can discard such terms.

APPENDIX D: CUBIC NONLINEARITIES IN I EW
i j

At 2PN order, the nonlinear field sourceL00 Eq. ~4.8!
contains terms that are cubically nonlinear, i.e., that depe
on effective products of three gravitational potentials. Th
contribution of the final such term in Eq.~4.8!, proportional
to UU ,kU ,k , to the integral*ML00xixjd3x can be evaluated
straightforwardly by integrating by parts. However, the tw
terms 2P,kU ,k2PkmU ,km are more difficult becausePi j it-
self @Eq. ~3.7d!# is a potential, one of whose pieces is pro
duced by a nonlinear source. The contribution of the com
pact sources i j can be handled easily by the methods of Se
IV A. Here we focus on the nonlinear piece. We define th
nonlinear potential
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pi j ~u,x![
1

4pE d3x8

ux2x8u SU ,iU , j2
1

2
d i j U ,kU ,kD ~u,x8!.

~D1!

We then need to evaluate the integral

~1/p!E
M

~2p,kU ,k2pkmU ,km!xixjd3x. ~D2!

We integrate the first term by parts, show that the surfa
terms fall off with R, and obtain
8(AmAp(xA)xA

i j2(4/p)*pU,(ixj )d3x. The first of these
terms may be evaluated using the nonlinear pieces of
~4.4d!. The second term may be written in the form

1

2p2E
M

u¹8U8u2d3x8(
A

mAE
M

1

ux2x8u
~x2xA!~ ixj )

ux2xAu3
d3x.

~D3!

In the x integration, we change variables toy5x2xA
and integrate using the general method describ
in Sec. IV A. The result is the integra
(1/2p)(AmA*Mu¹8U8u2d3x8(x8 i j2xA

i j )/uxA2x8u, which
can be easily evaluated by integrating by parts.

The second term in Eq.~D2! can be written

2
1

4p2E
M

SU ,k8 U ,m8 2
1

2
dkmu¹8U8u2Dd3x8(

A
mA

3E
M

1

ux2x8u S 3~x2xA!^km&

ux2xAu5

2
4p

3
dkmd3~x2xA! D xi j d3x. ~D4!

Again we do thex integration by changing variables to
y5x2xA , and using the method of Sec. IV A. Integration o
the d-function term is straightforward. The remainingx8 in-
tegration takes the form

1

pEMSU ,k8 U ,m8 2
1

2
dkmu¹8U8u2Dd3x8(

A
mAS 16F ,i jkm

A

2C ,k~ i
A d j )m1

1

2
C ,km~ i

A xA
j )22X,k

Adm~ ixA
j )1

1

2
X,km
A xA

i j

2
1

3

dkmxA
i j

ux82xAu
1XAdk~ id j )m2

1

5
Rdk~ id j )mD , ~D5!

where FA[ux82xAu5/15, CA[ux82xAu3/3, and
XA[ux82xAu. The first five terms in Eq.~D5! can be evalu-
ated simply by integrating by parts. The sixth term is equiv
lent to the cubically nonlinear term inL00 proportional to
UU ,kU ,k @Eq. ~4.8!#. The final term proportional toR is
straightforward.

The seventh term requires extra work. Dropping contrib
tions with no TT part, we find that the integral to be eval
ce

Eq.

ed
l

f

a-

u-
u-

ated isp21*MU ,iU , jXd
3x. DefiningUA andXA to be the

contribution toU andX from bodyA, respectively, we write

E
M
U ,iU , jXd

3x5(
A

E
M
UA,iUA, jXAd

3x

1 (
AÞB

E
M
UA,iUA, jXBd

3x

12(
AÞB

E
M
UA,~ iUB, j )XAd

3x

1 (
AÞBÞC

E
M
UA,~ iUB, j )XCd

3x.

~D6!

The first term has no TT part, while the second two term
can be evaluated using the standard methods of Sec. IV
and lead to the term23(ABmA

2mBn̂AB
i j in Eq. ~4.17!. We

define the third term to beG(3)
i j , change variables to

u5x2xC , y5xA2xC , andz5xB2xC , verify that no sur-
face contributions atR are so generated, and show thatG can
be written G(3)

i j 5(ABCmAmBmC¹y
i ¹z

j F(y,z), where
F(y,z)[*Muu2yu21uu2zu21ud3u. The latter step involves
ensuring that the piece ofF that diverges withR contributes
no TT part toG, so that the integration can effectively be
commuted with they andz derivatives. Note thatF has units
of ~distance! 2, is symmetric ony andz, is a function only of
uyu, uzu and w[uy2zu, and has the property that
¹y
2F524py/w, ¹z

2F524pz/w. It is then straightforward
to show that the function with these properties is given b
F(y,z)52(2p/3)@(y1z)w2yz1(y21z22w2)ln(y1z1w)],
modulo terms that give no TT contribution toG. Thus the
solution forG(3)

i j in Eq. ~4.17! is

G~3!
i j 5 (

AÞBÞC
mAmBmC¹A

i ¹B
j F~xAC ,xBC!, ~D7a!

F~xAC ,xBC!52
2

3
@~r AC1r BC!r AB2r ACr BC

12xAC•xBCln~r AC1r BC1r AB!#. ~D7b!

Note that, because¹A
i ¹B

j (xAC•xBC)5d i j , no logarithmic de-
pendence on source variables actually survives inhTT

i j . For
two-body systems, this term does not enter the formula f
the EW moment.

APPENDIX E: STF-MULTIPOLE DECOMPOSITION

Although the Epstein-Wagoner multipoles arose ver
naturally in our retarded-time expansion of the relaxed Ei
stein equation, these are not the only multipoles for displa
ing the answer. An alternative set are the symmetric trac
free ~STF! multipoles, which arise naturally in angular
decompositions of the waveform~see, e.g.,@34#!, and are
multipoles of choice in the BDI framework. Thus it is usefu
to obtain a transformation between the EW multipoles an
the STF multipoles.

If the waveform is known then the STF multipoles can b
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projected out. This is exactly analogous to projecting t
coefficients of spherical harmonics from a scalar functio
The STF multipoles can be projected from the TT wavefo
by integrating over the sphere@see@34#, Eq. ~4.11!#:

dm

dum
I STF

a1a2•••am5Fm~m21!~2m11!!!

2~m21!~m12!

R

4p

3E hTT
a1a2Na3

•••NamdV G , ~E1a!

dm

dum
J STF

a1a2•••am5F ~m21!~2m21!!!

4~m12!

R

4p

3E ea1 jkNjhTT
ka2Na2

•••NamdV G ,
~E1b!

whereISTF
a1a2•••am are called ‘‘mass’’ multipole moments and

J STF
a1a2•••am are called ‘‘current’’ or ‘‘spin’’ multipole mo-

ments. Substituting the expansion ofhTT
a1a2 in terms of EW

moments, Eq.~2.18!, and adding the radiation-zone ta
terms, Eq.~5.8!, we obtain the transformations, correct t
2PN order:

I STF
i j 5F IEWi j 1

1

21
~11IEW

i jkk212IEW
k~ i j !k14IEW

kki j!1
1

63
~23IEW

i jaabb

232IEW
a~ i j !abb110IEW

aai jbb12IEW
abi jab!G

STF

1I tail
i j ,

~E2a!

İ STF
i jk 5@3IEW

i jk 1~3IEW
i jkaa23IEW

iaak j1IEW
aai jk!#STF1İ tail

i jk ,
~E2b!
he
n.
rm

il
o

Ï STF
i jkl 5F12IEWi jkl1 72

55
~13IEW

i jklmm212IEW
imm jkl14IEW

mmi jkl!G
STF

,

~E2c!

I
~3!

STF
i jklm5@60IEW

i jklm#STF, ~E2d!

I
~4!

STF
i jklmn5@360IEW

i jklmn#STF, ~E2e!

J STF
i j 5F12 e ipqIEW

jqp1
1

28
e ipq~9IEW

jqpmm23IEW
qmmjp!G

STF

1J tail
i j ,

~E2f!

J̇ STF
i jk 5F2e ipqIEW

jqpk1
4

15
e ipq~7IEW

jqpkmm22IEW
qmmp jk!G

STF

,

~E2g!

J̈ STF
i jkl 5@9e ipqIEW

jqpkl#STF, ~E2h!

I
~3!

STF
i jklm5@48e ipqIEW

jqpklm#STF, ~E2i!

where the STF notation on the right-hand side means sym
metrize and remove all traces~note that the STF tensors are
symmetric on all indices, while the EW moments are sym
metric only on selected pairs!. These transformations can
also be established using Eqs.~5.23! and ~5.24! of @34#.

For two-body systems in general orbits, the resulting ST
moments are given by
ISTFi j 5mr 2H n̂i n̂ j1 1

42F n̂i n̂ j S 29~123h!v226~528h!
m

r D224~123h! ṙ n̂~ iv j )122~123h!v iv j G
1

1

1512
n̂i n̂ jF3~25321835h13545h2!v426~35511906h2337h2!Smr D 212~202125947h24883h2!

m

r
v2

22~1312907h11273h2!
m

r
ṙ 2G1

1

378
v iv jF2~7422335h2985h2!

m

r
13~412337h1733h2!v2

130~125h15h2! ṙ 2G2
1

378
n̂~ iv j ) ṙ F ~108524057h21463h2!

m

r
112~132101h1209h2!v2G J

STF

1Itaili j ,

~E3a!

ISTFi jk 52m
dm

m
r 3H n̂i n̂ j n̂kF11

1

6
~5219h!v22

1

6
~5213h!

m

r G1~122h!~v iv j n̂k2 ṙv i n̂ j n̂k!J
STF

1Itaili jk , ~E3b!

ISTFi jkl 5mr 4H n̂i n̂ j n̂kn̂lF ~123h!1
1

110
~1032735h11395h2!v22

1

11
~10261h1105h2!

m

r G
1

6

55
~125h15h2!~13v iv j n̂kn̂l212ṙv i n̂ j n̂kn̂l !J

STF

, ~E3c!

ISTFi jklm52m
dm

m
r 5$~122h!n̂i n̂ j n̂kn̂l n̂m%STF, ~E3d!
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ISTFi jklmn5mr 6$~125h15h2!n̂i n̂ j n̂kn̂l n̂mn̂n%STF, ~E3e!

J STF
i j 52m

dm

m
r H ~x3v! iF n̂ j S 11

1

28
~13268h!v21

3

14
~9110h!

m

r D1
5

28
~122h! ṙv j G J

STF

1J tail
i j , ~E3f!

J STF
i jk 5mr 2H ~x3v! iF n̂ j n̂kS 123h1

1

90
~412385h1925h2!v21

2

9
~728h243h2!

m

r D
1

1

45
~125h15h2!~10ṙv j n̂k17v jvk!G J

STF

, ~E3g!

J STF
i jkl 52m

dm

m
r 3~122h!$~x3v! i n̂ j n̂kn̂l%STF, ~E3h!

J STF
i jklm5mr 4~125h15h2!$~x3v! i n̂ j n̂kn̂l n̂m%STF, ~E3i!

where the ‘‘tail’’ STF moments are given by

Ïtaili j 52mE
0

`

dsQ
~4!

i j ~u2s!F lnS s

2R1sD1
11

12G
STF

, ~E4a!

Ïtaili jk52mE
0

`

dsQ
~5!

i jk~u2s!F lnS s

2R1sD1
97

60G
STF

, ~E4b!

J̈ tail
i j 52mE

0

`

ds J
~4!

i j ~u2s!F lnS s

2R1sD1
7

6G
STF

. ~E4c!

Through 3/2PN order, these moments agree with@35#, and in the circular orbit limit, through 2PN order, they agree with BD
@39#.

In terms of STF moments, the waveform and energy flux may be written@34#

hTT
i j 5

1

R(
l52

` F 4
l !
I
~ l !

STF
i ja1•••al22~u!N̂a1•••al221

8l

~ l11!!
epq~ iJ

~ l !

STF
j )pa1•••al22~u!N̂qa1•••al22G

TT

, ~E5a!

dE

dt
5(

l52

` F ~ l11!~ l12!

l ~ l21!l ! ~2l11!!!
I

~ l11!

STF
a1•••al~u! I

~ l11!

STF
a1•••al~u!1

4l ~ l12!

~ l21!~ l11!! ~2l11!!!
J

~ l11!

STF
a1•••al~u! J

~ l11!

STF
a1•••al~u!G . ~E5b!
d
d

e

,
s

in-
-

h

o
by
Substitution of Eqs.~E3! into Eqs. ~E5a! and ~E5b!, using
2PN equations of motions in any acceleration terms gen
ated by time derivatives, and keeping terms through 2
order, yields Eqs.~6.10!, ~6.11!, ~6.12! and ~6.13!.

APPENDIX F: SPIN EFFECTS

In this paper, we have used our augmented Epste
Wagoner formalism to give a complete description of t
gravitational radiation for inspiralling ‘‘point-mass’’ binaries
throughO(e2) beyond the lowest-order quadrupole contrib
tion. In this appendix we demonstrate that our formalism
also adequate for computing contributions to the radiat
which arise from the finite spatial extent of the bodies. O
primary goal will be to compute the contributions to th
radiation from the bodies’ spin angular momenta, but in t
process we will show how other extended-body effects, su
as those due to a body’s intrinsic quadrupole moment, co
be computed with our formalism. The results will be pr
er-
PN
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sented in such a way that the spin contributions compute
here can just beaddedto results already presented here an
elsewhere. In particular we give the spin-orbit (PQSO

i j and
P3/2QSO

i j ) and spin-spin (P2QSS
i j ) contributions to the wave-

form Eq. ~6.10! for general orbits. We also give a restricted
circular-orbit version of the results which can be added to th
‘‘ready-to-use’’ waveforms in@48#.

In order to derive the spin corrections to the waveform
we relax our ‘‘point-mass’’ assumption and allow the bodie
to have spatial extentsmall compared to the interbody dis-
tances. We further assume that the bodies are uniformly sp
ning fluid balls, approximately spherical in harmonic coordi
nates.~A full discussion of this ‘‘fluid sphere’’ formalism is
given in Appendix A of@35#, where it is used to derive the
waveform produced by nonspinning bodies throug
O@e3/2#.! Although formally, our PN approach restricts us to
weak internal gravity, we anticipate applying the results t
neutron stars and black holes, as in the nonspinning case,
relying upon the strong equivalence principle~see Sec. II B
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for discussion of this point!. It is now conventional, in treat-
ing spinning compact bodies, to view the spinSof each body
as a quantity measured in units of its~mass! 2, as is the case
for black holes. Given that, formally,S;mdv̄, whered is
the size of the body, andv̄ is its rotational velocity, our
convention implies thatScompact/Sformal;m/dv̄;e1/2, with
the result that spin effects are viewed as 1/2PN order sma
per factor of spin than would be the case formally~see
@40,41# for further discussion!.

The leading-order spin corrections to the waveform ar
solely from terms in the source@Eq. ~2.5!# directly dependent
upon fluid velocities. Since these terms have compact s
port, they generate no contributions to the waveform fro
surface terms or from far-zone integrals, at the order we
considering in this appendix. Thus the spin corrections c
all be obtained from the compact support pieces of the E
moments Eq.~2.19!. We illustrate the procedure for compu
ing the spin contributions by examining the four-index EW
multipole Eq.~2.19c!:

IEW
i jkl5E

M
t i j xkxld3x. ~F1!

Using Eq.~2.9! and Eq.~2.5! we can write

IEW
i jkl5E

M
@rv iv j1~ terms independent of velocity!

1O~re2!#xkxld3x. ~F2!

Terms which are independent of the fluid velocity will no
contribute to the spin terms that we are computing here; th
give nonspin terms which we have already calculated. A
spin terms that might result from theO(re2) contributions
will, in our convention, be at leastO(e1/2) smaller, beyond
the 2PN order at which we are working. We now write th
source-point position and velocity as

xi[xA
i 1 x̄A

i , ~F3a!

v i[vA
i 1 v̄A

i , ~F3b!

wherexA
i is a suitably defined, PN-order, coordinate ‘‘cent

of mass’’ of bodyA and x̄A
i is a coordinate displacemen

vector from the center of mass to the fluid element within t
body. SimilarlyvA

i 5dxA
i /dt is the coordinate velocity of the

center of mass.~See, e.g.,@71,40,41# for the definition of the
center of mass.!

Substituting Eq.~F3! into Eq. ~F2! and integrating we
obtain

IEW
i jkl5(

A
mAvA

i j xA
kl12vA

~ ie j )m~kxA
l )SA

m , ~F4!

where we have defined the spin vector by the formula

E
A
r x̄A

i v̄A
j d3x[

1

2
eki jSA

k , ~F5!

having assumed that*Ar x̄A
( i v̄A

j )d3x5(1/2)dIA
i j /dt50, where

I A
i j is the body’s intrinsic moment-of-inertia tensor. The fir
term in Eq.~F4! is the leading-order velocity-dependent ter
ller

ise

up-
m
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an
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t-
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e
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m

in Eq. ~4.26!, and the second term is the spin-orbit correctio
to this multipole, of ordere1/2 smaller. In obtaining Eq.~F4!
from Eq. ~F2! we have neglected a number of terms becau
~1! they vanish because of our assumption of spherical sy
metry, ~2! they have vanishing transverse-traceless proje
tion, or ~3! they are higher order in the bodies’smalldimen-
sion (;m), and therefore effectively of higher PN order
Such higher order moments can in principle be retained a
incorporated into the framework.

Keeping terms up toO(re) in the sourcet i j , and pro-
ceeding in precisely the same manner we can compute
spin-orbit contributions to the other EW multipoles

IEW
i j 5(

A
@mAxA

i j1xA
~ i~vA3SA! j )#, ~F6!

ĨEW
i jk 5(

A
~mAvA

i xA
jk1xA

~ jek) l i SA
l !. ~F7!

Here again, the first terms are the leading-order non-sp
contributions to the multipoles, Eqs.~4.17! and ~4.22!. The
spin-orbit correction terms are, respectively, of ordere3/2 and
e1/2 smaller than the leading terms.

In generating the expressions for the multipoles an
waveforms, we must includespin corrections to the equa-
tions of motion. However, in the case of spinning bodie
there is a delicate point to be considered in this procedu
The center of mass of bodyA, denoted byxA used in our
derivation of the multipole expressions turns out not to b
precisely the same as the definition of the body’s positio
used in the derivation of the conventional spin-orbit equ
tions of motion, as given, say, by Damour@44#, or Eq.~F14!
below. The difference is related to the use of different so
called ‘‘spin supplementary conditions’’ which fix the cente
of mass of spinning bodies~see@40,41# for a thorough dis-
cussion!. We have previously shown@40# that, to bring our
center-of-mass definition into accord with that used in th
equations of motion we need to shift the position of bod
A in the following manner:

xA
i →xA

i 1
1

2mA
~vA3SA! i . ~F8!

Performing this transformation replaces Eq.~F6! with

IEW
i j 5(

A
@mAxA

i j12xA
~ i~vA3SA! j )#. ~F9!

Since we are working only to 3/2PN order in the spin-orb
correction, the transformation Eq.~F8! has no effect on the
other multipoles. However if one were deriving the 2PN
spin-orbit correction to the waveform@i.e., P2QSO

i j in Eq.
~6.10!# it would be necessary to use the tranformation on E
~F7! as well.

The spin pieces of Eqs.~F9!, ~F7! and ~F4! can just be
added to theirN-body point-mass counterparts in Sec. IV
Eqs.~4.17!, ~4.22!, and~4.26!, respectively.

We now wish to restrict our attention to the two-body
case and express our multipoles in terms of relative coor
nates. The reduction parallels the two-body~nonspin! reduc-
tion given in Sec. VI. We introduce the spin corrections t
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the definition of the system center of mass, Eq.~4.16c! ~see
@40,41#!, find the relation between the coordinatesx1 and
x2 and the relative coordinatex corresponding to Eqs.~6.2!,
and substitute into the two-body EW moments. It is useful
define two relative spin quantities

xs5
1

2 S S1m1
2 1

S2
m2
2D , ~F10a!

xa5
1

2 S S1m1
2 2

S2
m2
2D . ~F10b!

With the spins normalized by the individual~masses! 2, these
vectors are essentially the vectorial sum and difference of
dimensionless angular-momentum~Kerr! parameters of the
individual bodies. For orbital systems composed of two Ke
black holes or neutron stars these vectors will have a ma
mum magnitude of unity. Stability studies of rotating neutro
stars show that the dimensionless angular momentum par
eter is bounded above by 0.63–0.74@72# depending on the
equation of state. Defining the vector spin quantities in th
way also has the advantage that they are comparable in m
mum magnitude to the other vectors that are used to form
terms in the waveform, namelyn̂, N̂, andv. As one computes
the two-body multipoles, the waveform, the energy flux, a
the orbital phase evolution, the spins appear in many com
nations with the masses. With the spin-quantity definitions
above, the reduced mass parameterh never appears in any
denominators, so that the extreme mass ratio limit (h→0) is
always transparent in all expressions below@73#. This may
seem like a minor aesthetic point, but it also means that
equations in the form we present them are suitable for sta
numerical implementation with mass parameters free to ro
from the equal mass case to the test mass case, and
parameters free to roam independently of the mass cho
from magnitude zero to unity.

The spin corrections to the relation betweenx1, x2 and the
relative coordinatex @41# take the form

x15
m2

m
x2mv3@xs~dm/m!1xa#, ~F11a!

x252
m1

m
x2mv3@xs~dm/m!1xa#. ~F11b!

Substituting these transformations into the leading order te
in Eq. ~F9!, we find that these spin-orbit corrections cance
to the required order@compare Eq.~6.3!#. Substituting these
definitions into theN-body multipoles gives the spin-orbit
corrections to the two-body Epstein-Wagoner multipoles

IEW~SO!
i j 54m2h2~v3xs!

~ ixj ), ~F12a!

IEW~SO!
i jk 52m2hx~ ie j ) lk@~dm/m!xs1xa#

l , ~F12b!

IEW~SO!
i jkl 54m2h2v ~ ie j )m~ksl )xs

m . ~F12c!

These corrections can be added to the two-body multipo
given in Sec. VI. STF multipoles can be projected from th
EW multipoles using the formulas given in Appendix E. Th
results are
to

the
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I STF~SO!
i j 5

8

3
m2h2@2xi~v3xs!

j2v i~x3xs!
j #STF,

~F13a!

J STF~SO!
i j 5

3

2
m2h†@~dm/m!xs1xa#

ixj‡STF, ~F13b!

J STF~SO!
i jk 54m2h2@xixjxs

k#STF. ~F13c!

Equations~F13! are in agreement with@40,41#. These spin-
orbit contributions can be added to the STF multipoles giv
in Appendix E. It is interesting to note that the four-inde
EW multipole IEW

i jkl is needed to describe spin dependence
the radiation, but there is no spin contribution from the fou
index STF multipoleISTFi jkl . The multipoleIEW

i jab does contrib-
ute to the multipoleISTFi j andJ STF

i jk through Eqs.~E2a! and
~E2g!.

In order to derive the spin contributions to the waveform
from the multipoles we must also augment the equations
motion @Eq. ~6.4!# with spin-orbit and spin-spin contribu-
tions. These can be found in@40,41#, and in our notation are
given by

aSO5
m2

r 3
$6n̂~ n̂3v!•@xs1~dm/m!xa#

22v3@~22h!xs12~dm/m!xa#

16ṙ n̂3@~12h!xs1~dm/m!xa#%, ~F14a!

aSS52
m3

r 4
$n̂@ uxsu22uxau225~ n̂•xs!

215~ n̂•xa!
2#

12@xs~ n̂•xs!2xa~ n̂•xa!#%. ~F14b!

We now substitute our EW multipoles into Eq.~2.18! and
use the equations of motion to eliminate acceleration ter
to obtain the final spin contributions to the waveform

PQSO
i j 52Smr D 2$N̂3@~dm/m!xs1xa#%

~ inj ), ~F15a!

P3/2QSO
i j 54Smr D 2$3~ n̂3v!•@xs1~dm/m!xa#n

inj

2†v3@~21h!xs12~dm/m!xa#‡
~ inj )

13ṙ †n̂3@xs1~dm/m!xa#‡
~ inj )22h~ n̂3xs!

~ iv j )

1h@2~N̂•n̂!v12~N̂•v!n̂

23ṙ ~N̂•n!n̂#~ i~N̂3xs!
j )%, ~F15b!

P2QSS
i j 526Smr D 3h$@ uxsu22uxau225~ n̂•xs!

2

15~ n̂•xa!
2#ninj

12@xs~ n̂•xs!2xa~ n̂•xa!#
~ inj )%. ~F15c!

Note that the spin-spin term comes entirely from the effec
of the equations of motion. Thus we have computed the co
plete waveform, including leading-order spin effects, usin
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our augmented EW formalism. The formalism can be e
tended to compute additional spin terms and other finite-s
effects, such as the 2PN spin-orbit contribution to the wav
form.

Either by a direct computation starting with the wavefor
or by using the STF multipoles in Eq.~E5b! we can compute
the spin contributions to the rate of energy loss, Eq.~6.12!,

ĖSO5
8

15

m3m2

r 5
@ n̂3v#•H @xs1~dm/m!xa#

3S 27ṙ 2237v2212
m

r D
14hxsS 12ṙ 223v218

m

r D J , ~F16!

ĖSS5
8

15

m4m2

r 6
h$3@ uxsu22uxau2#~47v2255ṙ 2!

23@~ n̂•xs!
21~ n̂•xa!

2#~168v22269ṙ 2!

171@~v•xs!
21~v•xa!

2#

2342ṙ @~v•xs!~ n̂•xs!2~v•xa!~ n̂•xa!#%. ~F17!

Although they are not needed in our discussion, for co
pleteness we include expressions for the precession of
spin vectors@40,41#

mẋs5P13xs1P23xa22~dm/m!xa3xs , ~F18a!

mẋa5P23xa1P13xs22~122h!xs3xa . ~F18b!

The precession vectors are given by

P15
3

4 Smr D 2F ~112h/3!~ n̂3v!

12
m

r
@~122h!n̂•xs1~dm/m!n̂•xa#n̂G , ~F19a!

P252
3

4 Smr D 2F ~dm/m!~ n̂3v!

12
m

r
@~dm/m!n̂•xs1~122h!n̂•xa#n̂G . ~F19b!

When spinning bodies are involved, the full gravitationa
wave signal can become quite complicated; the orbital pla
and the spin vectors of the individual bodies can prece
giving rise to a complicated modulation of the signal@41,74#.
However in the special case when the spins are aligned~or
antialigned! with the orbital angular momentum axis, th
spin vectors and the orbital angular momentum vector do
precess@Eqs.~F14!, ~F18!, ~F19!#. In this special case there
is a simple circular orbit solution to the equation of motio
and it is straightforward to compute the spin contributions
the phase evolution. The spin contributions to orbital fr
quency can obtained from Eq.~F14!,
x-
ize
e-

m

m-
our

l-
ne
ss,

e
not

n
to
e-

v25
m

r 3 H 122Smr D 3/2@~11h!xs1~dm/m!xa#

23hSmr D 2@~xs!
22~xa!

2#J , ~F20!

wherexs and xa now represent the projections ofxs and
xa onto the angular momentum axis. These quantities ar
positive when the spins are aligned in the same direction a
the angular momentum axis and negative when they are a
tialigned. The orbital energy and energy flux take the simpl
form in the case of aligned spins and circular motion:

E52h
m2

2r H 112Smr D 3/2@~12h!xs1~dm/m!xa#

1Smr D 2@~xs!
22~xa!

2#J , ~F21a!

Ė5
32h2

5 Smr D 5H 12Smr D 3/2F7312@xs1~dm/m!xa#2
hxs

2 G
2
71h

8 Smr D 2@~xs!
22~xa!

2#J . ~F21b!

These spin corrections can be added to the nonspin formul
Eq. ~7.2! and Eq.~1.4!. With these we can proceed as in Sec
VI to obtain the orbital angular velocity and orbital phase as
explicit functions of time:

v~ t !5
1

8m
~Tc2T!23/8H 11F113160

@xs1~dm/m!xa#

2
19

40
hxsG~Tc2T!23/8

2
237

512
h@~xs!

22~xa!
2#~Tc2T!21/2J , ~F22a!

f~ t !5fc2
1

h
~Tc2T!5/8H 11F11364 @xs1~dm/m!xa#

2
19

16
hxsG~Tc2T!23/8

2
1185

512
h@~xs!

22~xa!
2#~Tc2T!21/2J . ~F22b!

Again, the spin contributions can be inserted directly into
Eqs. ~7.11!. @The definition of the dimensionless time
T5h(u/5m) is unchanged.# The explicit contributions to the
1 and3 polarizations for this specialized circular orbit case
can be obtained from Eq.~F15!. In the notation of@48# they
are given by

h1,35
2mh

R
x$H1,3

0 1•••1xH1,3
~1,SO!1x3/2H1,3

~3/2,SO!

1x2H1,3
~2,SS!%, ~F23!

wherex[mv and where the ellipsis represents the nonspin
contributions given in@48#. In keeping with the notation used
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in @48# the superscripts represent the post-Newtonian or
and the physical nature of each term. The plus polariza
spin-orbit and spin-spin contributions are

H1
~1,SO!52sini @~dm/m!xs1xa#cosf, ~F24a!

H1
~3/2,SO!5

4

3
†~11cos2i !@xs1~dm/m!xa#

1h~125cos2i !xs‡cos2f, ~F24b!

H1
~2,SS!522h~11cos2i !@~xs!

22~xa!
2#cos2f, ~F24c!

and the cross polarization contributions are

H3
~1,SO!52sinicosi @~dm/m!xs1xa#sinf, ~F25a!

H3
~3/2,SO!5

4

3
cosi †2@xs1~dm/m!xa#

2h~113cos2i !xs‡sin2f, ~F25b!

H3
~2,SS!54hcosi @~xs!

22~xa!
2#sin2f. ~F25c!

We emphasize that these are only valid for quasicircular
bits in the case where the the spins are aligned~or anti-
aligned! with the orbital angular momentum vector. The
restrictive assumptions about the configuration of the sys
suppress many of the intricate features of the waveform p
duced by spinning bodies@41,74#.

Figure 9 shows an inspiral waveform for the same syst

FIG. 9. Same configuration as Fig. 8, but bodies are spinn
Both spins are aligned with orbital angular momentum axis. Ang
lar momentum of black hole isSBH50.5mBH

2 and of neutron star is
SNS50.5mNS

2 . Note frequency does not sweep as fast as nons
ning case because of dragging of inertial frames.
der
tion

or-

se
tem
ro-

em

as in Fig. 8~10 M( black hole and a 1.4M( neutron star
spiralling to coalescence!, but in this case the objects are
spinning. The spins are aligned with the orbital angular mo
mentum axis. The spin contributions to both the waveform
Eq. ~F23! and the frequency evolution Eq.~F22! have been
incorporated into the plot. The black hole has been given
spin of SBH /mBH

2 50.5 and the neutron star has
SNS/mNS

2 50.1 ~i.e., xs50.3 andxa50.2). Notice the sig-
nificant change in the frequency evolution; the system on
sweeps to about 130 Hz in the same time it took for th
nonspinning system to sweep to 180 Hz. Consequently, t
peaks are not as closely bunched as they are in the nonsp
ning case. This slower orbital decay and frequency evolutio
is due to the dragging of inertial frames, which is inherent i
the equations of motion and thus in our phase evolutio
equation~F22!. At the left side of Figs. 8 and 9, the wave-
forms are clearly in phase with each other, but after a fe
cycles they are out of phase. Since the phase evolution of
system is crucial in analyzing gravitational waves from a
inspiral, it might seem that this sensitivity to spin in the
phase evolution could be exploited and the spins of the bo
ies be determined with great accuracy. However, by leavin
the spins the same but adjusting the masses slightly, we c
recover the basic structure of the nonspinning case almo
exactly. This is depicted in Fig. 10, in which the frequenc
sweep and the waveform itself are virtually identical to th
nonspinning waveform in Fig. 8. This signal degeneracy i
the spin and mass parameters has been previously noted
@24,25#. It is also interesting to notice that the inclusion o
the spins virtually removes the jagged features from th
troughs of the waves.

ing.
u-

pin-

FIG. 10. Spins are same as in Fig. 9, but heavier mass is now
M( . The frequency evolution is the same as the nonspinning ca
Comparing this with Fig. 8 is an explicit demonstration of degen
eracy in mass and spin parameters.
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