PHYSICAL REVIEW D VOLUME 54, NUMBER 8 15 OCTOBER 1996

Exact quantum states for the diagonal Bianchi type IX model
with negative cosmological constant
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Quantum states of the diagonal Bianchi type IX model wiélgativecosmological constant are obtained
by transforming the Chern-Simons solution in Ashtekar’s variables to the metric representation. We apply our
method developed earlier far>0 and obtain five linearly independent solutions by using the complete set of
topologically inequivalent integration contours in the required generalized Fourier transformation. A caustic in
minisuperspace separates two Euclidean regimssialiandlarge values of the scale parameter from a single
classically interpretable Lorentzian regime in between, corresponding to the fact that classically these model
universes recollapse. Just one particular solution out of the five we find gives a normalizable probability
distribution on both branches of the caustic. However, in contrast with the case of positive cosmological
constant, this particular solution neither satisfies the semiclassical no-boundary condition, nor does the special
initial condition it picks out fori—0 evolve into a classically interpretable universe.
[S0556-282(196)04120-3

PACS numbsd(s): 98.80.Hw, 04.60.Kz, 98.80.Bp

I. INTRODUCTION unlikely that our Universe had <0. (The age problem re-
sulting from recently measured high values of the Hubble
Quantum gravity with a nonvanishing cosmological con-parametef11] and the measured large age of globular star
stant formulated in Ashtekar's spin-connection variablesclusters and also the observed high density of galaxies with
[1-5] has interesting physical states given by the exponentidBrge redshifts seem to call fok>0.) Our motivation is
of the Chern-Simons functionf—7] and appropriate trans- rather to try the method dfi | for a model universe which
formations thereof. In order to elucidate the physical meant€collapses, i.e., for which quantum-mechanically a classi-
ing of such states it is interesting to consider their restriction§ally interpretable Lorentzian evolution phase is bounded for
to spatially homogeneous cosmological models. In a receriMalland large values of the scale parameter by Euclidean
paper[8], henceforth quoted ds], we considered the diag- evolution phases._Therefore, we have_ to expect the appear-
onal Bianchi type IX models with positive cosmological con- ance of two caustic surfaces in the minisuperspace of these

stant from this point of view and found that five linearly models, one at small and the other at large scale parameter.

. . X . . |s there still a wave function, or are there even several, which
independent, physical states in the metric representation).

: . . . ive a normalizable probability distribution on these sur-
could be derived from the Chern-Simons functional. This se aces, and how are these wave functions related to the no-
of solutions was found to be in one-to-one correspondenc

: . . . ; Boundary state?
with the set of topologically different integration contours — +, o swer these questions we apply in Sec. Il the method

which exist for the generalized Fourier transformation from¢ [1] to obtain expressions again for five linearly indepen-
the Ashtekar representation to the metric representation. Bant physical states and identify the caustic surfaces in
cause of the positivity of the cosmological constant the quanminisuperspace. In Sec. Ill we determine the behavior of the
tum states found ifil ] describe an expandin@r collapsing,  absolute square of the wave functions on the caustic and
classically interpretable, Lorentzian universe at large scal@jentify a single physical state which gives a normalizable
parameters. On the other hand, at sufficiently small scalgrobability distribution in this way. In Sec. IV we summarize
parameters the action defined by the exponent of the waveur results. Within the narrow class of models we consider
function becomes imaginary and can be associated only withere, they seem to rule out, with high probability, a classi-
a quantum-mechanically allowed Euclidean universe. Theally evolving universe with <O0.

two “phases” are separated by a caustic surface in minisu-

perspace. It was found that only one of the five Iinearly in- Il. QUANTUM STATES GENERATED

dependent states defines a normalizable probability distribu- BY THE CHERN-SIMONS SOLUTION

tion on this caustic, that this state satisfies the no-boundary

condition of Hartle and Hawking9,10] semiclassically for In this section we want to construct solutions of the

#—0 (which means on scales large compared to the Planck/heeler-DeWitt equation for the diagonal Bianchi type IX
scale, and that, again fofi— 0, it picks out an initial con- model with a cosmological constait<0:
dition which evolves into a classically interpretable Lorent-
zian universe. For details and further literature we refer tal79a~ @ ol[fidot @ (] =[fid, —® [ J[Ad, + P ]
[ _ _ —[ho_—D [ho_ +D ]
It is now of interest to consider also what happens for ‘ '
negative cosmological constant, even though it seems very +3(877)2Ae6“}\lf(oz,,Bi A)=0, (2.1
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where Kkj:=xe Pi, 2.7
®:=2me’* Tre*’ and where theg; are the entries of the diagonal anisotropy matrix
. B. The integration contou€ in the integral representation
B=(B;j):= diag B, +38_ .8+ —3B_,—28.). (2.4 can be chosen quite freely, as long as a sufficiently

strong falloff for the integrand and its derivatives at the
bordersdC of C is guaranteed. The proportionality factor left
open in Eq.(2.4) may depend o and will be fixed later.
Let us now try to find a basis set of topologically inde-
npendent integration contouts As known from[l], such a
set can be constructed as follows: First one has to calculate
the different saddle points of the integrand’s exponent, be-
cause they obviously generate linearly independent wave
functions as long as saddle point expansions of the integral
representation(2.4) are considered. For any such saddle
point one may now pick a curve of steepest descent of
Ref/\, thereupon guaranteeing that the integrand vanishes at
the end points of this curve. It is then possible to show that
the “saddle point curves” defined in this way form a basis

In this notationd, andd_ denote derivatives with respect to
the variablesg, and B_, respectively. By writing the
Wheeler-DeWitt equation in the forf2.1) we have assumed
a specific factor ordering, which is suggested by a supersy
metric extension of the mod¢ll2—14. A different factor
ordering is obtained by considering E®.1) with ® re-
placed by— ®. In the present paper, as[ifl, we will restrict
ourselves to the factor ordering as in Eg.1), while a brief
comment on the solutions in the second cdse>—® is
given in the Appendix.

If the expressior{2.2) for ® is inserted into the Wheeler-
DeWitt equation(2.1), the following more explicit form is

obtained: ) ; . ;
set of topologically independent integration contours.
[ 12 [ &2 92 92 } 2% 28 While in the case\ >0 the curves of steepedescenof
2.2 — o7 |- —atTre Ref were of interest, now, because of the different sign of
37290 9BZ 9B% m ?

A, the curves of steepeascentlead to suitable integration
contours. A discussion of the location of the saddle points
+at Tf(e4ﬁ—2eZﬁ)+/\36+‘1’(a,ﬁ+;/\)=0, (2.3 suggests to distinguish between different regimes of the
minisuperspace. To motivate our division between these dif-
where we have introduced the mean scale faater 2 e®,  ferentregions, let us consider the semiclassical limit0O of

As in the caseA >0, solutions of Eq(2.3) can be obtained the wave functiong2.4). Noticing that the only% depen-
by a transformation to the Ashtekar representation, where thdence of Eq(2.4) is hidden in via Eq.(2.6), a saddle point
Chern-Simons functional, restricted to the Bianchi type Ix&xpansion in the limiti—0 easily reveals

case, turns out to be an exact solution. Two of the Fourier h—0 B

integrals which occur in the transformation back to the met- S~ — f(zs), (2.9
ric representation can be carried out analytically without any

loss of generality and afterwards the same one-dimension

[ . . .
integral representation as fi is obtainect ¥here Zg is the highest saddle point that must be passed

through byC. To describe d.orentzianuniverse, the action

1 (2.8) should have a nonvanishing real part, which is only

—f(sinu;K,,Bi)}, (2.9 possible for Inzs#0. In this way the existence of complex

A saddle points is directly connected to the existence of wave
functions which describe a Lorentzian universe. Thus, we

V(k,B=+ ;)\)ocfcdu exp

with shall subdivide the minisuperspace as follows:
f(z: 1, B ): = 2626 2P+ z+cosh2y34-) 2 (@) By choosing|«| sufficiently small at fixedg-. , it is
T 1-7° always possible to make all five saddle points () lie on

25 _ap the real axis of the complex plane, defining theeuclid |
+2re”F [z cosh23B-)]— ke 4+ region of minisuperspace. Note, however, that the corre-
(2.5 sponding points in thel plane of Fig. 1(hereu= arcsirz)
are real valued only fofz|<1, whereas reat values with
Here, we have introduced the new variaklend parameter |z|>1 are mapped into complex conjugate pairs of points on
A as the axes Re= = 7/2 and periodic repetitions thereof.
(b) Except for the caseB.=0, where all five saddle
_ @ (2.6) points are on the realaxis, there is the possibility for two of
6w the saddle points to become complex in thplane, which

) i defines the_orentzian regime
thereby effectively reducing the number of parameters occur- (c) For large values offk| one always enters tHeuclid Il

ing in _Eq.(2.4), and we shall also make use of the variablesregion' where again all five saddle points fz) become
«; defined by real valued.

'_1A2 .
K.—:L—2 as, A\

Some typical locations of the saddle points in these dif-
'Here, in contrast witH], the total action, including the part ferent regimes of minisuperspace and the corresponding
which affects the similarity transformation between Ashtekar andcurves of steepest ascent are presented in Fig. 1. By passing
metric variables, has been defined as the exponent of the integraniiom one of these regions to anotherparginal situation
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FIG. 1. Saddle points and curves of steepest ascent birRéne complexu plane forA<0. The picture given in the Lorentzian case

only holds forkz=min{ x;}. The remaining case can easily be constructed by reflecting this figure on the imaginary axis. The dashed curves
come from—co with respect to Reand are given just for completeness.

occurs, where two of the saddle points are confluent. We wilthe 8. plane, related to the former by the typigal sym-
refer to the corresponding hypersurface in minisuperspace asetries of diagonal Bianchi type IX.

the caustic it has been calculated and is plotted in Fig. 2. In Obviously, an exactly isotropic universg.=0 has to
contrast with the casd >0 the caustic obtained here con- stay purely Euclidean throughout its evolution. On the other
sists of an upper and a lower branch, which are connecteldand, “large” universes with Lorentzian geometry must be-
just by a singlepoint at k=—2, B8.-=0. Furthermore, there come very anisotropic. Apart from the possibility of a nega-
arekinksat 8, >0, 8_=0 and also at the other half-rays of tive cosmological constant very close to zero, which would

allow for large scale parameters even aft values of order
one, it seems impossible for the model under investigation to
describe the Universe observed today.

Nevertheless, let us now construct a basis of solutions to
the Wheeler-DeWitt equatiofi2.3) by choosing topologi-
cally independent integration contouts$n the representation
(2.4). Using the curves defined in Fig. 3 we introduce the

solutions
- —iet d lf(_ )
= u exp| —f(sinu)|,
O Ko(—m) ) ¢ PIx
N4 ¢ d 1f(' )
= u exp|—f(sinu)|,
" o) ooy © FPIN
ce{—,+,3,NB} (2.9
with

1
M= o (2.10

which, by definition, are real valued and normalized in ac-

FIG. 2. The caustic in minisuperspace o 0. cordance with
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claim can be given in analogy to the case-0 detailed in
[1] if the wave functions¥; are replaced by the equivalent
set V' defined in Eq.(2.17) below. Because of the cyclic
relationship between the asymmetric stalgsand the obvi-
ous nice analytical properties df 3, it is then furthermore
clear that¥, andWV, defined in Eq.(2.12), in contrast with
V., are differentiable functions even at the junction
B_=0.

Let us also consider the asymptotic behavior of the wave
functions ¥ and Vg defined in Eq.(2.9) in the limit
k— —oo which finally yields

s o0 N 3\ 14/ 5\ 32
Yo ~ —/=377\ 7 &) |2
o -]
x ma’ } .15
exp| — -l .
FIG. 3. Basis set of integration curves. PlIm 7 3
14( o\ —312
¥, (a=0)=1, 0—,+,3 NB. (21 o VR [ 3)7a
o(a=0)=1, oef LY Ve W( 33
The functionsK, andl, occurring in Eq.(2.9) are the usual ”lO(M)
modified Bessel functions with index 0. To extract the as- 3
ymptotic behavior of the wave function®.9) in a given « n ma” A
parameter limit it is useful to deform the curves given in Fig. P 3 2.19

3 into the curves of steepest ascent presented in Fig. 1. ) , ,

Clearly, this deformation of the curves depends subtly on th&t8==0, i.e., whileW, falls off rapidly fora—, the wave
regime of minisuperspace and it involves some detailed tolUnction ¥yg is strongly divergent in the same limit. More-
pological considerations. But in the end the individual saddIe?VeT: Since¥ g alwaysgets its dominant contribution from
point contributions to the integral are nicely displayed; inthe real saddle point=1 (corresponding to the pointsyg
particular, the highest saddle point that must be passe@nd Uy in the complexu plane of Fig. 1 viaz=sinu), just
through by the given integration curve is easily identified,Euclidean geometries are described by this state, so we will
and this is the only one which has to be taken into accouni€ject¥yg as a physically relevant solution. Note, however,
when performing a saddle point expansion. In the followingthat it is the only state which satisfies the-boundarycon-

we only give here theesultsof the expansions obtained in dition in the limitz—0, a—0; hence, the name of this wave

this way. function.
It will be of some advantage to replace the solutions TO give the asymptotic behavior in the limit— —oo for
¥, and¥_ defined in Eq(2.9 by the statesV;, i €{1,2,3, it will be helpful to consider
’\I’+’ [)’*ZO! lII+7 B7$0, i 1
= = _ Phi=—(T:+¥, ei=1 (2.1
v, v_, B_<0, 2 v, B_=0. (212 2 i k ijk
Then, expansions of the integral®.9) in the limit A—0, instead. For these solutions the asymptotic expansions
a and 8- fixed, reveal
imWo=%0,, limW¥ys="7 v - Vo V_lz[l—zm]
pal 0 WH: Ao NB NB lo( ) T K Ki3
. . 1 .
limw,=v°, iel{1,2,3, (2.13 xexp| = | k2= 25 e =1 (218
A—0 A i Ki ijk

where the upper index “0” denotes the solutions of thehold, so they fall off very rapidly foa— o (remember the
A =0 model given inl]. negative sign of\).

We just mention tha¥;, i €{1,2,3, are three asymmet- By considering additional asymptotic expansions for large
ric solutions which generate each other by cyclic permutaanisotropy it is possible to show that the four stales i
tions of thex;, so consequently, the sum of these states, <{0,1,2,3 are all normalizable on minisuperspace in the
distribution sensdsee|[l] for a discussion of this point for
A>0), i.e., so far we are left with a still four-dimensional
space of physically interesting solutions.

However, while in the Lorentzian regim®, receives
in addition toW, and¥ g, turns out to be symmetric with saddle point contributions exclusively from the saddle points
respect to arbitrary; permutations. An explicit proof of this atcomplex zand thus describes a Lorentzian universe in this

3
Zl i, (2.14

w| K=

‘Pz:z
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be calculated analytically, requiring the solution of Eg.

el (2.19 to betangentialto the caustic, with the result
2 4/3 1 .
k=—32 g) : ﬁ++i3,=5(|n5—5|n2)e2’””’3,
ne{-1,0,1. (2.20
These points will play an important role in the following
section.
k 11l. BEHAVIOR ON THE CAUSTIC
15 1 0.5 0 0.5 1 1.5 B‘*’

Since the classical Lorentzian evolution of the universe
described by the wave function®;, i€{0,1,23, i
FIG. 4. Semiclassical trajectories generated by the complebOunded by the caustic in minisuperspace, the Value of
saddle points in the Lorentzian regime. For simplicity, we have|‘l’|C on the caustigredicted by the different solutions is of
restricted the plot to the plang_=0. The arrows indicate the particular interest. In fact?|2 governs the realization of the
direction of increasing time in Eq. (2.19. different possible histories of the universe and may thus be
interpreted as the “initial” value distribution for the classi-
part of minisuperspace, the stat¥fs, i €{1,2,3 in addition ~ cal evolution.

also get Euclidean contributions of similar order of magni- However, at this stage a new problem arises because of
tude fromreal saddle points and are, therefore, hard to inter- the different branches of the caustic. Since the semiclassical

pret. For a discussion of the semiclassical behavior we shalff&jectories always can be passed through in both directions,
It is impossible to distinguish between their start and end

therefore, restrict ourselves to the wave functibp Takin ) AT
B 9 points. The distributions of¥|2 on the upper and lower

account of Eq(2.8), the Lorentzian, classical trajectories in . . .
the limit i—0 may be calculated by solving the equations 2ranches of the caustic may, therefore, be considered with
the same justification, and we will always discuss them to-
gether in the following.
de  dImf(zo) dB. dImf(zy) The numerical results obtained fpW |2 and | ¥'s|? on
dt da ' dt  dg. (219 the lower caustic are given in Fig. 5, while Fig. 6 shows the
behavior on the upper caustic, which is very similar for the
two different solutions. In the following the additional indi-
where we have chosen the lapse function toNve3Aa®.  ces “u” and “I” denote the upper and lower branch of the
While the complex saddle poia occurring in Eq(2.19 is  caustic, respectively. While on the upper caustic both distri-
intended to correspond to the poing of Fig. 1, its complex  putions fall off rapidly with increasingd. and may be
conjugate counterpag; = sinug , which describes the time- shown to be integrable over th@. plane, there ares.
reversed classical evolution, can be considered with the sanifirections on the lower caustic, in wh|¢ﬂf|2| approaches a
justification. The corresponding second branch of the classkinite value at infinity. Consequently, the wave functions on
cal evolution of the Universe is actually necessary to definehe lower branch areot square integrable and, hence, diffi-
the continuation of a classical trajectory which has reachedult to interpret as probability distributions. Nevertheless, as
the caustic: in approaching the caustic the saddle paints in the case\ >0, one may construct a new wave function as
andzg become confluent and real valued, so that, in accora linear combination of the two symmetric wave functions
dance with Eq.(2.19, the time derivatives olx and 8. V¥, and¥y: By normalizing¥y and ¥y to approach unity
vanish. To continue such a trajectory in time, the time-in the critical 8. directions, the difference of these new
reversed version of E¢2.19 has to be considered. Since the functions is square integrable on thél caustic. To give an
Universe is “reflected” in this way whenever it meets the explicit expression for the quantum state obtained in this
caustic, and since in the generic case the classical trajectoriesy, we introduce the integrals
have both of their end points on the caustscillating uni-
. + 74 .
verses are described . jgl)(v):zj’ dx e Vs.n4x7
The numerical results for the classical trajectories which —ml4
are obtained in the plang_=0 of the minisuperspace are
presented in Fig. 4. We should stress one important differ- TP ()= f+w/4dx o veodh
ence obtained for the different signs ¢@f, . While for 0 ' '
B+>0, B_=0 all trajectories run to infinite anisotropy
(which is, indeed, a peculiarity of the specjgl direction,
corresponding to a kink on the caustic, cf. Fig. i& the case
B+ <0 the trajectories meet the lower branch of the caustic
again at a finite3,. value, representing the general situation. )
This feature gives rise to the existence of a special trajectory, K& (p):= Jo dx cog4u sintt)e#<osn? (3.1
represented by a dot in Fig. 4, with coinciding start and end
points; hence, describing a universe that never becomeshich, as far as we know, have no simple representation in
Lorentzian. The corresponding points in minisuperspace caterms of tabulated functions. Defining now

—7l4

,Cgl)(//«):: fo dx sin(4u sinht)ercosh?
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FIG. 5. Initial value distributions generated Ny, and ¥y on
the lower causti¢A=—3, A=27). Like the caustic itself, the dis-
tributions have kinks in some criticgl.. directions, which are par-
tially hidden in the figures.

lo(u)
Ko(—u)

Ko (1)
>< 1
27 6"(81)+ T ¢(8u) +e Iy ()

Q(\):=3me 3

1
with M:ﬁ, (32)

the new state can be written in the form

Vo— OV

.= -0

(3.3
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FIG. 6. Initial value distribution of¥"; on the upper caustic,
normalized to unity ap. =0. The numerical plots obtained for the
different wave functionslP, and ¥y (and thus for¥ defined be-
low) on the upper caustic look very similar, so we restrict ourselves
to a representation of\If0|§'u. The absolute values taken by
|¥|Z, at B.=0 are given by 1.4810 ', 3.56x10 3 and
2.43x 10" for the wave functiongl,, ¥y, and ¥, respectively
(here again,A=-3, A=2mw). Since the lower and upper caustic
coincide atB.. =0, it is clear that these values hold for the distri-
butions on the lower caustic, too. That is why we suggest to con-
sider the two distributions obtained on the different branches of the
caustic as analytical continuations of each other through the isotro-
pic point.

bution, three maxima on the lower branch of the caustic pick
out special initial values for the classical evolution of the
Universe. The general representati@m) easily reveals that
the wave function becomes arbitrarily sharply concentrated
about these maxima in the limk—0, i.e., in particular in
the limit2—0 at fixedA . Consequently, in the semiclassical
limit there are just three histories of the Universe which oc-
cur with significant probability.

In the following we shall be interested in the special
points of minisuperspace where the maximei*la]‘éI arise.
Using the saddle point method far—0 the asymptotic be-
havior of the integrals defined in E(B.1) after some calcu-
lation yields

-0 3
Q" SN E T a1

and with this result the relation

(3.9

~h—0
¥~ ¥, (3.5

can be shown to hold at least on the lower caustic. Since
¥ is a real valued, nonvanishing wave function, the maxima

of |‘i’|2 coincide with the maxima o, and using Eq(3.5)

where the overall normalization factor has again been chosethey may also be calculated frodt, in the semiclassical

to make¥V=1 ata=0. The behavior off on the caustic has

limit. By performing again a saddle point expansion for

been computed for Fig. 7. Taking account of the full distri- A— 0, now in the integral representation Eg.9) of ¥, the
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APPENDIX: SOLUTIONS IN A DIFFERENT
FACTOR ORDERING

For completeness, and in order to obtain an important
argument for the factor ordering chosen for the Wheeler-
DeWitt equation(2.3), we shall make some comments on a
further class of solutions, which can again be discussed by
using the methods di].

Considering the Wheeler-DeWitt equation in the form
(2.1), one may ask why we have not chosen a different factor
ordering, which is obtained by changimlp— —®. This
choice, of course, would not have affected the
classical Hamiltonian, but the quantum correction

FIG. 7. Initial value distribution generated bl on the lower  —(2 #/7)a®Tre?? in Eq. (2.3 would have changed its sign.
caustic(A=—3, #=2m). For the distribution obtained on the upper Since the coordinate transformatian-ia, A——A has ex-
caustic see Fig. 6. actly the same effect as the above-mentioned change of the
factor ordering, it is possible to discuss the solutions of the

maxima of ¥, on the caustic can be calculated analytically WWheeler-Dewitt equation in the new factor ordering by con-

with the result given exactly by Eq2.20. sidering _stlll Eq. (2._3), but substltutmg fo_rma%llyaﬂ|a,
Consequently, within the class of solutions considered/\—’_A_ in the solutions. In the following it will be more

here, theonly quantum state that is square integrable on theonvenient to use the coordinates and A introduced in

full caustic turns out to predict a universe which never be-Eds. (2.6) and (2.7), which transform such as;—«;,

comes Lorentzian in the classical limialbeit classical M——A\ under this substitution.

Lorentzian solutions of the Bianchi type IX model with It should be clear that the solutions of the Wheeler-

negative cosmological constant actually do exist, cf. Fig. 4 DeWitt equation(2.3) are still of the form(2.4), but while
we looked at the cases>0, \>0 in[|I] andx<0, A<0 in the

present paper, now the remaining sectatsO, A<0 and
IV. CONCLUSION K_<0,_)\>0 are of interest yvhich, becayse of th_e formal_sub-
stitution A — — A\ just mentioned, describe solutions fousi-
In the present paper we constructed exact quantum stat@ége and negativecosmological constant in theew factor
for the diagonal Bianchi type IX model with a negative cos-ordering, respectively. It is easily checked that the location
mological constant. We found that the method presented iaf the saddle points and, therefore, the caustic, depends only
[1] for A>0 is indeed perfectly applicable to the model with on f(z; x, 3..) defined in Eq(2.5). This means that, irrespec-
A<0. As for A>0 it gives five linearly independent solu- tive of the sign of\, we deal with the caustic di] in the
tions, which are generated by the Chern-Simons state usingasex>0, and with the caustic of Fig. 2 in the case0.
topologically different integration contours in the general-On the other hand, it is just the sign af which decides
ized Fourier transformation to the metric representation. Prowhether the integration curves fif| (for A>0) or of Fig. 3
vided the square integrability of the wave function on the(for A <0) give suitable integration contours.
caustic surface in minisuperspace is accepted as an essentialHowever, constructing the solutions for the new factor
condition (and this is the point of view we have adopted ordering in this manner and applying the saddle point
throughout this papgrjust one wave function remains that method to the integral representati¢®4) in the limit of
turns out to have some nice additional properties: It is foundarge anisotropy3-., it finally turns out thatany solution to
to be normalizable in minisuperspace in the distributionthe Wheeler-DeWitt equation in the new factor orderiig
sense and it respects the symmetries of the Bianchi type IXergesfor 8.—o, at least in some3.. sectors. In other
model. However, this state doest satisfy the no-boundary words, in the new factor ordering there is no solution which
condition in the semiclassical limit in contrast with the caseis normalizable in minisuperspace, not even in the distribu-
A>0, and it turns out to predict a universe that never betion sense. Furthermore, if the behavior of the wave func-
comes Lorentzian, after all. Hence, we obtain the result that,
if one allows for a nonzero cosmological constant at all, it
should be positive, at least as far as the Chern-Simons?The factor ordering obtained in this way corresponds toAHe
functional-related states of the quantized Bianchi type IXrepresentation introduced by Kodamal[#i, in contrast with the
model are concerned. A~ representation, which we have considered up to now.
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tions on the caustic is considered, actually none of thesin the factor ordering of Eq(2.1) presented irfl] and the
solutions is found to be square integrable with respect tgresent paper, we believe to have a compelling argument to
B rule out the new factor ordering. It would be interesting if

Comparing these results with the nice normalizabilitythis argument could be extended even to the general, inho-
properties of the solutions of the Wheeler-DeWitt equationmogeneous case of quantum gravity.
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