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Exact quantum states for the diagonal Bianchi type IX model
with negative cosmological constant
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Fachbereich Physik, Universita¨t-Gesamthochschule Essen, 45117 Essen, Germany

~Received 20 May 1996!

Quantum states of the diagonal Bianchi type IX model withnegativecosmological constantL are obtained
by transforming the Chern-Simons solution in Ashtekar’s variables to the metric representation. We app
method developed earlier forL.0 and obtain five linearly independent solutions by using the complete se
topologically inequivalent integration contours in the required generalized Fourier transformation. A caus
minisuperspace separates two Euclidean regimes atsmallandlarge values of the scale parameter from a singl
classically interpretable Lorentzian regime in between, corresponding to the fact that classically these
universes recollapse. Just one particular solution out of the five we find gives a normalizable proba
distribution on both branches of the caustic. However, in contrast with the case of positive cosmolo
constant, this particular solution neither satisfies the semiclassical no-boundary condition, nor does the
initial condition it picks out for\→0 evolve into a classically interpretable universe.
@S0556-2821~96!04120-3#

PACS number~s!: 98.80.Hw, 04.60.Kz, 98.80.Bp
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I. INTRODUCTION

Quantum gravity with a nonvanishing cosmological co
stant formulated in Ashtekar’s spin-connection variabl
@1–5# has interesting physical states given by the exponen
of the Chern-Simons functional@5–7# and appropriate trans-
formations thereof. In order to elucidate the physical mea
ing of such states it is interesting to consider their restrictio
to spatially homogeneous cosmological models. In a rec
paper@8#, henceforth quoted as@I#, we considered the diag
onal Bianchi type IX models with positive cosmological con
stant from this point of view and found that five linearl
independent, physical states in the metric representa
could be derived from the Chern-Simons functional. This
of solutions was found to be in one-to-one corresponde
with the set of topologically different integration contour
which exist for the generalized Fourier transformation fro
the Ashtekar representation to the metric representation.
cause of the positivity of the cosmological constant the qu
tum states found in@I# describe an expanding~or collapsing!,
classically interpretable, Lorentzian universe at large sc
parameters. On the other hand, at sufficiently small sc
parameters the action defined by the exponent of the w
function becomes imaginary and can be associated only w
a quantum-mechanically allowed Euclidean universe. T
two ‘‘phases’’ are separated by a caustic surface in mini
perspace. It was found that only one of the five linearly i
dependent states defines a normalizable probability distri
tion on this caustic, that this state satisfies the no-bound
condition of Hartle and Hawking@9,10# semiclassically for
\→0 ~which means on scales large compared to the Pla
scale!, and that, again for\→0, it picks out an initial con-
dition which evolves into a classically interpretable Loren
zian universe. For details and further literature we refer
@I#.

It is now of interest to consider also what happens f
negative cosmological constant, even though it seems v
541/96/54~8!/4805~8!/$10.00
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unlikely that our Universe hasL,0. ~The age problem re-
sulting from recently measured high values of the Hubb
parameter@11# and the measured large age of globular st
clusters and also the observed high density of galaxies w
large redshifts seem to call forL.0.! Our motivation is
rather to try the method of@I# for a model universe which
recollapses, i.e., for which quantum-mechanically a clas
cally interpretable Lorentzian evolution phase is bounded f
small and large values of the scale parameter by Euclidea
evolution phases. Therefore, we have to expect the appe
ance of two caustic surfaces in the minisuperspace of the
models, one at small and the other at large scale parame
Is there still a wave function, or are there even several, whi
give a normalizable probability distribution on these su
faces, and how are these wave functions related to the n
boundary state?

To answer these questions we apply in Sec. II the meth
of @I# to obtain expressions again for five linearly indepen
dent physical states and identify the caustic surfaces
minisuperspace. In Sec. III we determine the behavior of t
absolute square of the wave functions on the caustic a
identify a single physical state which gives a normalizab
probability distribution in this way. In Sec. IV we summarize
our results. Within the narrow class of models we consid
here, they seem to rule out, with high probability, a class
cally evolving universe withL,0.

II. QUANTUM STATES GENERATED
BY THE CHERN-SIMONS SOLUTION

In this section we want to construct solutions of th
Wheeler-DeWitt equation for the diagonal Bianchi type IX
model with a cosmological constantL,0:

$@\]a2F ,a#@\]a1F ,a#2@\]12F ,1#@\]11F ,1#

2@\]22F ,2#@\]21F ,2#

13~8p!2Le6a%C~a,b6 ;L!50 , ~2.1!
4805 © 1996 The American Physical Society



x

ly

t

-

ate
e-
ve
ral
e
of
at
at
s

f

ts
he
if-

ed

y

ve
e

e-

n

if-
ing
ing

4806 54ROBERT PATERNOGA AND ROBERT GRAHAM
where

F:52pe2a Tre2b and

b5~b i j !:5 diag~b11A3b2 ,b12A3b2 ,22 b1!.
~2.2!

In this notation]1 and]2 denote derivatives with respect t
the variablesb1 and b2 , respectively. By writing the
Wheeler-DeWitt equation in the form~2.1! we have assumed
a specific factor ordering, which is suggested by a supers
metric extension of the model@12–14#. A different factor
ordering is obtained by considering Eq.~2.1! with F re-
placed by2F. In the present paper, as in@I#, we will restrict
ourselves to the factor ordering as in Eq.~2.1!, while a brief
comment on the solutions in the second caseF→2F is
given in the Appendix.

If the expression~2.2! for F is inserted into the Wheeler-
DeWitt equation~2.1!, the following more explicit form is
obtained:

H \2

3p2 F ]2

]a2 2
]2

]b1
2 2

]2

]b2
2G2

2 \

p
a2 Tre2b

1a4 Tr~e4b22 e22b!1La6J C~a,b6 ;L!50, ~2.3!

where we have introduced the mean scale factora:52 ea.
As in the caseL.0, solutions of Eq.~2.3! can be obtained
by a transformation to the Ashtekar representation, where
Chern-Simons functional, restricted to the Bianchi type
case, turns out to be an exact solution. Two of the Four
integrals which occur in the transformation back to the m
ric representation can be carried out analytically without a
loss of generality and afterwards the same one-dimensio
integral representation as in@I# is obtained:1

C~k,b6 ;l!}E
C
du exp F1l f ~sinu;k,b6!G , ~2.4!

with

f ~z;k,b6!:52k2e22b1
z1cosh~2A3b2!

12z2
2z2

12ke2b1@z2cosh~2A3b2!#2ke24b1.

~2.5!

Here, we have introduced the new variablek and parameter
l as

k:5
1

12
La2, l:5

\L

6p
, ~2.6!

thereby effectively reducing the number of parameters occ
ing in Eq. ~2.4!, and we shall also make use of the variabl
k j defined by

1Here, in contrast with@I#, the total action, including the part
which affects the similarity transformation between Ashtekar a
metric variables, has been defined as the exponent of the integr
o
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k j :5ke2b j , ~2.7!

where theb j are the entries of the diagonal anisotropy matri
b. The integration contourC in the integral representation
~2.4! can be chosen quite freely, as long as a sufficient
strong falloff for the integrand and itsu derivatives at the
borders]C of C is guaranteed. The proportionality factor lef
open in Eq.~2.4! may depend onl and will be fixed later.

Let us now try to find a basis set of topologically inde
pendent integration contoursC. As known from@I#, such a
set can be constructed as follows: First one has to calcul
the different saddle points of the integrand’s exponent, b
cause they obviously generate linearly independent wa
functions as long as saddle point expansions of the integ
representation~2.4! are considered. For any such saddl
point one may now pick a curve of steepest descent
Ref /l, thereupon guaranteeing that the integrand vanishes
the end points of this curve. It is then possible to show th
the ‘‘saddle point curves’’ defined in this way form a basi
set of topologically independent integration contours.

While in the caseL.0 the curves of steepestdescentof
Ref were of interest, now, because of the different sign o
L, the curves of steepestascentlead to suitable integration
contours. A discussion of the location of the saddle poin
suggests to distinguish between different regimes of t
minisuperspace. To motivate our division between these d
ferent regions, let us consider the semiclassical limit\→0 of
the wave functions~2.4!. Noticing that the only\ depen-
dence of Eq.~2.4! is hidden inl via Eq.~2.6!, a saddle point
expansion in the limit\→0 easily reveals

S ;
\→0

2
6p i
L f ~zS!, ~2.8!

where zS is the highest saddle point that must be pass
through byC. To describe aLorentzianuniverse, the action
~2.8! should have a nonvanishing real part, which is onl
possible for ImzSÞ0. In this way the existence of complex
saddle points is directly connected to the existence of wa
functions which describe a Lorentzian universe. Thus, w
shall subdivide the minisuperspace as follows:

~a! By choosinguku sufficiently small at fixedb6 , it is
always possible to make all five saddle points off (z) lie on
the real axis of the complexz plane, defining theEuclid I
region of minisuperspace. Note, however, that the corr
sponding points in theu plane of Fig. 1~hereu5 arcsinz)
are real valued only foruzu<1, whereas realz values with
uzu.1 are mapped into complex conjugate pairs of points o
the axes Reu56p/2 and periodic repetitions thereof.

~b! Except for the caseb650, where all five saddle
points are on the realz axis, there is the possibility for two of
the saddle points to become complex in thez plane, which
defines theLorentzian regime.

~c! For large values ofuku one always enters theEuclid II
region, where again all five saddle points off (z) become
real valued.

Some typical locations of the saddle points in these d
ferent regimes of minisuperspace and the correspond
curves of steepest ascent are presented in Fig. 1. By pass
from one of these regions to another, amarginal situation

nd
and.
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FIG. 1. Saddle points and curves of steepest ascent of Ref in the complexu plane forL,0. The picture given in the Lorentzian cas
only holds fork35min$k j%. The remaining case can easily be constructed by reflecting this figure on the imaginary axis. The dashed
come from2` with respect to Ref and are given just for completeness.
er
e-
a-
ld

to

to

e

c-
occurs, where two of the saddle points are confluent. We w
refer to the corresponding hypersurface in minisuperspac
thecaustic; it has been calculated and is plotted in Fig. 2.
contrast with the caseL.0 the caustic obtained here con
sists of an upper and a lower branch, which are connec
just by a singlepoint at k522, b650. Furthermore, there
arekinksat b1.0, b250 and also at the other half-rays o

FIG. 2. The caustic in minisuperspace forL,0.
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the b6 plane, related to the former by the typicalb6 sym-
metries of diagonal Bianchi type IX.

Obviously, an exactly isotropic universeb650 has to
stay purely Euclidean throughout its evolution. On the oth
hand, ‘‘large’’ universes with Lorentzian geometry must b
come very anisotropic. Apart from the possibility of a neg
tive cosmological constant very close to zero, which wou
allow for large scale parameters even atuku values of order
one, it seems impossible for the model under investigation
describe the Universe observed today.

Nevertheless, let us now construct a basis of solutions
the Wheeler-DeWitt equation~2.3! by choosing topologi-
cally independent integration contoursC in the representation
~2.4!. Using the curves defined in Fig. 3 we introduce th
solutions

C0 :5
2 iem

K0~2m!
E
C0
du exp F1l f ~sinu!G ,

C% :5
em

pI 0~m!
E
C% %C%*

du exp F1l f ~sinu!G ,
%P$2,1,3, NB% ~2.9!

with

m:5
1

2 l
, ~2.10!

which, by definition, are real valued and normalized in a
cordance with
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C%~a50![1, %P$0,2,1,3, NB%. ~2.11!

The functionsK0 and I 0 occurring in Eq.~2.9! are the usual
modified Bessel functions with index 0. To extract the a
ymptotic behavior of the wave functions~2.9! in a given
parameter limit it is useful to deform the curves given in Fi
3 into the curves of steepest ascent presented in Fig
Clearly, this deformation of the curves depends subtly on
regime of minisuperspace and it involves some detailed
pological considerations. But in the end the individual sad
point contributions to the integral are nicely displayed;
particular, the highest saddle point that must be pas
through by the given integration curve is easily identifie
and this is the only one which has to be taken into acco
when performing a saddle point expansion. In the followi
we only give here theresultsof the expansions obtained in
this way.

It will be of some advantage to replace the solutio
C1 andC2 defined in Eq.~2.9! by

C1 :5H C1 , b2>0,

C2 , b2<0,
C2 :5H C1 , b2<0,

C2 , b2>0.
~2.12!

Then, expansions of the integrals~2.9! in the limit L→0,
a andb6 fixed, reveal

lim
L→0

C05CWH
0 , lim

L→0
CNB5CNB

0 ,

lim
L→0

C i5C i
0 , iP$1,2,3%, ~2.13!

where the upper index ‘‘0’’ denotes the solutions of th
L50 model given in@I#.

We just mention thatC i , iP$1,2,3%, are three asymmet-
ric solutions which generate each other by cyclic permu
tions of thek j , so consequently, the sum of these states,

CS :5
1

3 (
i51

3

C i , ~2.14!

in addition toC0 andCNB , turns out to be symmetric with
respect to arbitraryk j permutations. An explicit proof of this

FIG. 3. Basis set of integration curves.
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claim can be given in analogy to the caseL.0 detailed in
@I# if the wave functionsC i are replaced by the equivalent
setC i defined in Eq.~2.17! below. Because of the cyclic
relationship between the asymmetric statesC i and the obvi-
ous nice analytical properties ofC3, it is then furthermore
clear thatC1 andC2 defined in Eq.~2.12!, in contrast with
C6 , are differentiable functions even at the junction
b250.

Let us also consider the asymptotic behavior of the wav
functions C0 and CNB defined in Eq.~2.9! in the limit
k→2` which finally yields

C0 ;
k→2` A\

K0S 2
3p
\L D S 2

3
L D 1/4S a2D 23/2

3exp F2
pa3

\ A2
L
3 G , ~2.15!

CNB ;
k→2` A\

pI 0S 3p
\L D S 2

3
L D 1/4S a2D 23/2

3exp F1
pa3

\ A2
L
3 G , ~2.16!

atb650, i.e., whileC0 falls off rapidly fora→`, the wave
functionCNB is strongly divergent in the same limit. More-
over, sinceCNB alwaysgets its dominant contribution from
the real saddle pointz>1 ~corresponding to the pointsuNB
anduNB* in the complexu plane of Fig. 1 viaz5sinu), just
Euclidean geometries are described by this state, so we w
rejectCNB as a physically relevant solution. Note, however,
that it is the only state which satisfies theno-boundarycon-
dition in the limit \→0, a→0; hence, the name of this wave
function.

To give the asymptotic behavior in the limitk→2` for
the statesC i , iP$1,2,3%, it will be helpful to consider

C i :5
1

2
~C j1Ck!, « i jk51 ~2.17!

instead. For these solutions the asymptotic expansions

C i ;
k→2`

2
CWH

0

I 0~m!
A2

l

p

2

k i
H 122

k jkk

k i
3 J

3exp F1l S k i
222

k jkk

k i
D G , « i jk51 ~2.18!

hold, so they fall off very rapidly fora→` ~remember the
negative sign ofl).

By considering additional asymptotic expansions for large
anisotropy it is possible to show that the four statesC i , i
P$0,1,2,3% are all normalizable on minisuperspace in the
distribution sense~see@I# for a discussion of this point for
L.0), i.e., so far we are left with a still four-dimensional
space of physically interesting solutions.

However, while in the Lorentzian regimeC0 receives
saddle point contributions exclusively from the saddle points
at complex zand thus describes a Lorentzian universe in this
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part of minisuperspace, the statesC i , iP$1,2,3% in addition
also get Euclidean contributions of similar order of magn
tude fromreal saddle points and are, therefore, hard to inte
pret. For a discussion of the semiclassical behavior we sh
therefore, restrict ourselves to the wave functionC0. Taking
account of Eq.~2.8!, the Lorentzian, classical trajectories i
the limit \→0 may be calculated by solving the equation

da

dt
52

d Imf ~z0!

da
,

db6

dt
5
d Imf ~z0!

db6
, ~2.19!

where we have chosen the lapse function to beN5 1
2La3.

While the complex saddle pointz0 occurring in Eq.~2.19! is
intended to correspond to the pointu0 of Fig. 1, its complex
conjugate counterpartz0*5sinu0* , which describes the time-
reversed classical evolution, can be considered with the s
justification. The corresponding second branch of the cla
cal evolution of the Universe is actually necessary to defi
the continuation of a classical trajectory which has reach
the caustic: in approaching the caustic the saddle pointsz0
andz0* become confluent and real valued, so that, in acc
dance with Eq.~2.19!, the time derivatives ofa and b6

vanish. To continue such a trajectory in time, the tim
reversed version of Eq.~2.19! has to be considered. Since th
Universe is ‘‘reflected’’ in this way whenever it meets th
caustic, and since in the generic case the classical trajecto
have both of their end points on the caustic,oscillatinguni-
verses are described byC0.

The numerical results for the classical trajectories whi
are obtained in the planeb250 of the minisuperspace are
presented in Fig. 4. We should stress one important diff
ence obtained for the different signs ofb1 . While for
b1.0, b250 all trajectories run to infinite anisotropy
~which is, indeed, a peculiarity of the specialb6 direction,
corresponding to a kink on the caustic, cf. Fig. 2!, in the case
b1,0 the trajectories meet the lower branch of the caus
again at a finiteb1 value, representing the general situatio
This feature gives rise to the existence of a special trajecto
represented by a dot in Fig. 4, with coinciding start and e
points; hence, describing a universe that never becom
Lorentzian. The corresponding points in minisuperspace

FIG. 4. Semiclassical trajectories generated by the comp
saddle points in the Lorentzian regime. For simplicity, we ha
restricted the plot to the planeb250. The arrows indicate the
direction of increasing timet in Eq. ~2.19!.
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be calculated analytically, requiring the solution of Eq
~2.19! to be tangentialto the caustic, with the result

k52A3 2 S 25D
4/3

, b11 ib25
1

6
~ ln525ln2!e2p in/3,

nP$21,0,1%. ~2.20!

These points will play an important role in the following
section.

III. BEHAVIOR ON THE CAUSTIC

Since the classical Lorentzian evolution of the univers
described by the wave functionsC i , iP$0,1,2,3%, is
bounded by the caustic in minisuperspace, the value
uCuc

2 on the causticpredicted by the different solutions is of
particular interest. In fact,uCuc

2 governs the realization of the
different possible histories of the universe and may thus b
interpreted as the ‘‘initial’’ value distribution for the classi-
cal evolution.

However, at this stage a new problem arises because
the different branches of the caustic. Since the semiclassic
trajectories always can be passed through in both direction
it is impossible to distinguish between their start and en
points. The distributions ofuCuc

2 on the upper and lower
branches of the caustic may, therefore, be considered w
the same justification, and we will always discuss them to
gether in the following.

The numerical results obtained foruC0uc
2 and uCSuc

2 on
the lower caustic are given in Fig. 5, while Fig. 6 shows th
behavior on the upper caustic, which is very similar for th
two different solutions. In the following the additional indi-
ces ‘‘u’’ and ‘‘ l ’’ denote the upper and lower branch of the
caustic, respectively. While on the upper caustic both distr
butions fall off rapidly with increasingb6 and may be
shown to be integrable over theb6 plane, there areb6

directions on the lower caustic, in whichuCuc,l
2 approaches a

finite value at infinity. Consequently, the wave functions on
the lower branch arenot square integrable and, hence, diffi-
cult to interpret as probability distributions. Nevertheless, a
in the caseL.0, one may construct a new wave function a
a linear combination of the two symmetric wave functions
C0 andCS : By normalizingC0 andCS to approach unity
in the critical b6 directions, the difference of these new
functions is square integrable on thefull caustic. To give an
explicit expression for the quantum state obtained in th
way, we introduce the integrals

J 0
~1!~n!:5E

2p/4

1p/4

dx e2nsin4x,

J 0
~2!~n!:5E

2p/4

1p/4

dx e2ncos4x,

K0
~1!~m!:5E

0

`

dx sin~4m sinht !emcosh2t,

K0
~2!~m!:5E

0

`

dx cos~4m sinht !emcosh2t, ~3.1!

which, as far as we know, have no simple representation
terms of tabulated functions. Defining now

lex
ve
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Q~l!:53pe23m
I 0~m!

K0~2m!

3
K0

~2!~m!

2J 0
~1!~8m!1J 0

~2!~8m!1e23mK0
~1!~m!

,

with m5
1

2l
, ~3.2!

the new state can be written in the form

Ĉ:5
C02QCS

12Q , ~3.3!

where the overall normalization factor has again been cho
to makeĈ[1 ata50. The behavior ofĈ on the caustic has
been computed for Fig. 7. Taking account of the full dist

FIG. 5. Initial value distributions generated byC0 andCS on
the lower caustic~L523, \52p!. Like the caustic itself, the dis-
tributions have kinks in some criticalb6 directions, which are par-
tially hidden in the figures.
sen

ri-

bution, three maxima on the lower branch of the caustic pic
out special initial values for the classical evolution of the
Universe. The general representation~2.4! easily reveals that
the wave function becomes arbitrarily sharply concentrate
about these maxima in the limitl→0, i.e., in particular in
the limit \→0 at fixedL. Consequently, in the semiclassical
limit there are just three histories of the Universe which oc
cur with significant probability.

In the following we shall be interested in the specia
points of minisuperspace where the maxima ofuĈuc,l

2 arise.
Using the saddle point method forl→0 the asymptotic be-
havior of the integrals defined in Eq.~3.1! after some calcu-
lation yields

Q ;
l→0 3

2A
2
p G~ 1

4 !~2l!21/4e3/l, ~3.4!

and with this result the relation

Ĉ ;
\→0

C0 ~3.5!

can be shown to hold at least on the lower caustic. Sinc
Ĉ is a real valued, nonvanishing wave function, the maxim
of uĈu2 coincide with the maxima ofĈ, and using Eq.~3.5!
they may also be calculated fromC0 in the semiclassical
limit. By performing again a saddle point expansion fo
l→0, now in the integral representation Eq.~2.9! of C0, the

FIG. 6. Initial value distribution ofC0 on the upper caustic,
normalized to unity atb650. The numerical plots obtained for the
different wave functionsC0 andCS ~and thus forĈ defined be-
low! on the upper caustic look very similar, so we restrict ourselve
to a representation ofuC0uc,u

2 . The absolute values taken by
uCuc,u

2 at b650 are given by 1.45310211, 3.56310213, and
2.43310211 for the wave functionsC0 , CS , andĈ, respectively
~here again,L523, \52p!. Since the lower and upper caustic
coincide atb650, it is clear that these values hold for the distri-
butions on the lower caustic, too. That is why we suggest to co
sider the two distributions obtained on the different branches of th
caustic as analytical continuations of each other through the isotr
pic point.
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maxima ofC0 on the caustic can be calculated analytica
with the result given exactly by Eq.~2.20!.

Consequently, within the class of solutions consider
here, theonly quantum state that is square integrable on t
full caustic turns out to predict a universe which never b
comes Lorentzian in the classical limit~albeit classical
Lorentzian solutions of the Bianchi type IX model wit
negative cosmological constant actually do exist, cf. Fig.!.

IV. CONCLUSION

In the present paper we constructed exact quantum st
for the diagonal Bianchi type IX model with a negative co
mological constant. We found that the method presented
@I# for L.0 is indeed perfectly applicable to the model wit
L,0. As for L.0 it gives five linearly independent solu
tions, which are generated by the Chern-Simons state u
topologically different integration contours in the genera
ized Fourier transformation to the metric representation. P
vided the square integrability of the wave function on th
caustic surface in minisuperspace is accepted as an esse
condition ~and this is the point of view we have adopte
throughout this paper!, just one wave function remains tha
turns out to have some nice additional properties: It is fou
to be normalizable in minisuperspace in the distributi
sense and it respects the symmetries of the Bianchi type
model. However, this state doesnot satisfy the no-boundary
condition in the semiclassical limit in contrast with the ca
L.0, and it turns out to predict a universe that never b
comes Lorentzian, after all. Hence, we obtain the result th
if one allows for a nonzero cosmological constant at all
should be positive, at least as far as the Chern-Sim
functional-related states of the quantized Bianchi type
model are concerned.

FIG. 7. Initial value distribution generated byĈ on the lower
caustic~L523, \52p!. For the distribution obtained on the uppe
caustic see Fig. 6.
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APPENDIX: SOLUTIONS IN A DIFFERENT
FACTOR ORDERING

For completeness, and in order to obtain an importa
argument for the factor ordering chosen for the Wheele
DeWitt equation~2.3!, we shall make some comments on
further class of solutions, which can again be discussed
using the methods of@I#.

Considering the Wheeler-DeWitt equation in the form
~2.1!, one may ask why we have not chosen a different fact
ordering, which is obtained by changingF→2F. This
choice, of course, would not have affected th
classical Hamiltonian, but the quantum correctio
2(2 \/p)a2Tre2b in Eq. ~2.3! would have changed its sign.2

Since the coordinate transformationa→ ia, L→2L has ex-
actly the same effect as the above-mentioned change of
factor ordering, it is possible to discuss the solutions of th
Wheeler-DeWitt equation in the new factor ordering by con
sidering still Eq. ~2.3!, but substituting formallya→ ia,
L→2L in the solutions. In the following it will be more
convenient to use the coordinatesk j and l introduced in
Eqs. ~2.6! and ~2.7!, which transform such ask j→k j ,
l→2l under this substitution.

It should be clear that the solutions of the Wheele
DeWitt equation~2.3! are still of the form~2.4!, but while
we looked at the casesk.0, l.0 in @I# andk,0, l,0 in the
present paper, now the remaining sectorsk.0, l,0 and
k,0, l.0 are of interest which, because of the formal sub
stitutionl→2l just mentioned, describe solutions forposi-
tive and negativecosmological constant in thenew factor
ordering, respectively. It is easily checked that the locatio
of the saddle points and, therefore, the caustic, depends o
on f (z;k,b6) defined in Eq.~2.5!. This means that, irrespec-
tive of the sign ofl, we deal with the caustic of@I# in the
casek.0, and with the caustic of Fig. 2 in the casek,0.
On the other hand, it is just the sign ofl which decides
whether the integration curves of@I# ~for l.0) or of Fig. 3
~for l,0) give suitable integration contours.

However, constructing the solutions for the new facto
ordering in this manner and applying the saddle poi
method to the integral representation~2.4! in the limit of
large anisotropyb6 , it finally turns out thatany solution to
the Wheeler-DeWitt equation in the new factor orderingdi-
vergesfor b6→`, at least in someb6 sectors. In other
words, in the new factor ordering there is no solution whic
is normalizable in minisuperspace, not even in the distrib
tion sense. Furthermore, if the behavior of the wave fun

2The factor ordering obtained in this way corresponds to theA1

representation introduced by Kodama in@6#, in contrast with the
A2 representation, which we have considered up to now.
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tions on the caustic is considered, actually none of th
solutions is found to be square integrable with respect
b6 .

Comparing these results with the nice normalizabili
properties of the solutions of the Wheeler-DeWitt equati
ese
to

ty
on

in the factor ordering of Eq.~2.1! presented in@I# and the
present paper, we believe to have a compelling argument
rule out the new factor ordering. It would be interesting i
this argument could be extended even to the general, inh
mogeneous case of quantum gravity.
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