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Trapped surfaces in cosmological spacetimes
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We investigate the formation of trapped surfaces in cosmological spacetimes, using constant mean cu
slicing. Quantitative criteria for the formation of trapped surfaces demonstrate that cosmological re
enclosed by trapped surfaces may have matter density exceeding significantly the background matter de
the flat and homogeneous cosmological model. Cosmological trapped surfaces existing at the epoch of
bination would become seeds of the galaxy formation and would be hidden in their centers.
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I. INTRODUCTION

In our previous work@1# we investigated the formation o
trapped surfaces in various cosmological models. Rece
we have found a particularly useful formulation@2# of the
spherically symmetric Einstein constraint equations that
lowed us to improve our earlier estimates@3# for conditions
determining the appearance of trapped surfaces. In
present paper we apply the new formalism to spherica
symmetric cosmologies. As a result we find stronger crite
in spacetimes than were investigated previously and, m
importantly, we are able to deal with hyperbolic univers
where our previous attempts had failed.

The order of the article is as follows. The first sectio
presents the formalism. In Sec. II we deal with the ma
results. Section III shows that regions enclosed by trapp
surfaces must be invisible to external observers, althou
they might be detected indirectly through the observation
gravitational lensing. The last section contains our conc
sions.

There exist three classes of homogeneous spheric
symmetric cosmologies. The three are~i! the closed (k51!
cosmology with the metric

ds252dt21a2~t!@dr21sin2rdV2#, ~1!

~ii ! the open flat (k50! cosmology with the metric

ds252dt21a2~t!@dr21r 2dV2#, ~2!

~iii ! the open (k521) cosmology with the metric

ds252dt21a2~t!@dr21sinh2rdV2#, ~3!

wheredV25du21sin2udf2 is the standard line element o
the unit sphere with the angle variables 0<f,2p and
0<u<p.

The geometric part of the initial data set of the Einste
equations consists of the intrinsic three-geometry and
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extrinsic curvatureKab which is essentially the first time
derivative of the metric, all given at some time~say,
t50). The intrinsic geometries are, respectively,

a2~t!@dr21sin2rdV2#, ~4!

a2~t!@dr21r 2dV2#, ~5!

a2~t!@dr21sinh2rdV2#, ~6!

and in each case the extrinsic curvature is pure trace,

Kab5Hgab ~7!

whereH is a time-dependent function that is constant o
each slicet5const. It is called the Hubble constant and it i
given byH5]ta/a.

In the general case initial data consist of the quart
(gi j ,Ki j ,r,Ji) wheregi j is the intrinsic metric,Ki j is the
extrinsic curvature,r is the matter energy density, andJi is
the matter current density. These cannot be given arbitrar
but must satisfy the constraints

~3!R2Ki jK
i j1~ trK !2516pr, ~8!

¹ iK
i j2¹ j trK528pJj , ~9!

where (3)R is the scalar curvature of the intrinsic metric.
The momentum constraint, Eq.~9!, is identically satisfied

in the case of homogeneous cosmologies~with Ji50) and
the Hamiltonian constraint, Eq.~8!, reduces to

16pr5
6k

a2
16H2, ~10!

wherek is 1, 0, and21 in the closed, flat, and hyperbolic
cosmologies, respectively. Thus we can conclude that
slices of the constant coordinate time have a uniform ener
densityr0 which is at rest.

In this article we wish to consider data for sphericall
symmetric cosmologies which either in the large approx
mate the standard cosmologies or asymptotically approa
them. In all cases we will make the assumption that the in
tial slice is chosen so that the trace of the extrinsic curvatu
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4800 54EDWARD MALEC AND NIALL Ó MURCHADHA
is constant on the slice. In order to retain the link with ho
mogeneous cosmologies we define trK53H.

The initial data we consider is a spherically symmetric s
consisting of a three-metric

ds~3!
2 5a2dr21b2~r ! f 2~r !dV2, ~11!

an extrinsic curvature

Kr
r5H1K~r !, Ku

u5H2K/2, Kf
f5H2K/2, ~12!

an energy densityr(r ), and a current densityj i(r ). The
function f (r ) will be one of the set„sin(r),r,sinh(r)…, depend-
ing on the type of cosmology.

There are some useful geometric quantities that can
defined. One of them is the proper distance from the cen
of symmetry given bydl5adr. The Schwarzschild~also
called ‘‘areal’’ or ‘‘curvature’’! radius R is given by
R5b f .

The mean curvature of a centered two-sphere as emb
ded in a spacelike three-dimensional hypersuface is

p5
2] lR

R
. ~13!

In a general spacetime we may investigate the geome
by considering the propagation of various beams of lightra
through a space-time. These beams in general will shear
either expand or contract; a number of~optical! functions
will be required to describe their propagation. In a sphe
cally symmetric spacetime we focus our attention on lig
rays moving orthogonally to two-spheres centered around
center of symmetry. We need only two functions. These a
the divergence of future-directed outgoing light rays

u5
2

R

d

dtout
R ~14!

and the divergence of past-directed outgoing light rays

u85
22

R

d

dt in
R, ~15!

whered/dtout is the derivative along future-pointing outgo
ing radial null rays andd/dt in is the derivative along future-
pointing ingoing radial null rays. One interesting property o
u and u8 is that they can be expressed purely in terms
initial data on a spacelike slice. In the spherically symmetr
case we have

u5p2Kr
r1trK5p2K12H ~16!

and

u85p1Kr
r2trK5p1K22H. ~17!

This means thatu andu8 are three-dimensional scalars. The
are not four-scalars since they depend on a choice of affi
parameters along the null rays. However, the productuu8 is
a four-scalar.

In the homogeneous universes we find thatpR52,
pR52cos(r), and pR52cosh(r) in the k50, 1, and21,
cases, respectively, and
-
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Ru5212RH5212A8pr0
3

R, Ru85222RH

~18!

for k50,

Ru52 cos~r !12RH

52 cos~r !12aH sin~r !

52 cos~r !12AS 8pr0a
2

3
21D sin~r !,

~19!

Ru852 cos~r !22AS 8pr0a
2

3
21D sin~r !

for k51, and

Ru52 cosh~r !12RH

52 cosh~r !12AS 8pr0a
2

3
11D sinh~r !,

Ru852 cosh~r !22AS 8pr0a
2

3
11D sinh~r ! ~20!

for k521.
A surface on whichu is negative is called, after Penrose

@4#, a outer future-trapped surface; a surface on whichu8 is
negative is called a outer past-trapped surface; if both a
negative, we have an outer trapped surface, and ifu is nega-
tive andu8 positive, we have a future-trapped surface. Th
occurrence of such surfaces in a spacetime is an indication
the fact that gravitational collapse is well advanced. In th
case of homogeneous closed cosmologies outer futur
trapped surfaces exist for anyr.arccot(aH). In neither
k50 nor k521 is Ru ever negative ifH.0.

In this article we consider a universe that is homogeneou
in the large but that it is dotted with numerous spherica
inhomogeneities, far from each the metric approaches t
background metric of a homogeneous universe. If we cent
our coordinate system at a particular lump, we expect th
optical scalars approach the values given in Eqs.~18!, ~19!,
and ~20! far away from the lump. In the case of closed cos
mologies this limiting value is expected to be met for value
of the coordinate radiusr much less thanp/2.

We assume local flatness at the origin, i.e.
limR→0Ru5 limR→0Ru852, although this condition can be
relaxed to allow for a conical singularity there, i.e.,
0, limR→0Ru, limR→0Ru8<2.

II. MAIN CALCULATIONS

The spherical initial data must satisfy the constraints
which read, in terms of the functionsu andu8,

] l~uR!528pR~r2 j !

2
1

4R
@2~uR!22uRu8R24212uRHR#,

~21!
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54 4801TRAPPED SURFACES IN COSMOLOGICAL SPACETIMES
] l~u8R!528pR~r1 j !

2
1

4R
@2~u8R!22uRu8R24112uRHR#, ~22!

where j5 j l is the radial component of the matter curre
density normalized so thatj 25 j k j k . We can manipulate Eqs
~21! and ~22! to obtain

] l~u8RuR!528p@r~u8R1uR!1 j ~uR2u8R!#

2
1

2R
@~uRu8R24!~u8R1uR!#. ~23!

Let us now assume that the total matter satisfy the do
nant energy condition, i.e.,r>u j u. Assume thatuRu8R.4
at a particular point. Consider first the situation whe
both uR and u8R are positive. Then
(u8R1uR).u(2u8R1uR)u and r(u8R1uR)1 j (2u8R
1uR)>0. This means that both terms of Eq.~23! are
nonpositive and the derivative of the productuRu8R is
negative. On the other hand, when bothuR and u8R are
negative and their product is greater than 4, th
r(u8R1uR)1 j (2u8R1uR),0 and the first term in Eq.
~23! is positive. The second term becomes also positive,
that ] l(uRu8R).0. Thus in both cases ifuRu8R.4 then
] l(uRu8R)Þ0.

Let us now consider the expressions for the product of
two scalarsuRu8R in each of the three homogeneous co
mologies. We get

RuRu85424R2H2 ~24!

for k50,

RuRu854cos2~r !24R2H2 ~25!

for k51, and

RuRu854cosh2~r !24S 8pr0a
2

3
11D sinh2~r !54

2
32pr0a

2

3
sinh2~r ! ~26!

for k521.
In each of these cases we haveRuRu854 at the origin

and never more than 4. We are considering initial geomet
that have regular origins and asymptotically approach
homogeneous cosmologies, so that both at the origin and
from the center the productRuRu8 does not exceed 4. If it
were to achieve a maximal value greater than 4 somewh
in between, then its derivative would have to vanish, but th
is excluded in the preceding analysis. Therefore we ha
proved the following.

Lemma 1.Assume that one is given spherical cosmolog
cal data which are locally flat at the center, which are asym
totic to any of standard homogeneous cosmological mod
and that the matter satisfies the dominant energy condit
Then

RuRu8<4.
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Remarks.~i! The above statement is true for any regula
slice, with arbitrary~i.e., nonconstant on a part of a slice!
trK, assuming that the slice is asymptotic to a homogeneo
constant mean curvature slice.~ii ! It implies the positivity of
the Hawking mass on a sphere centered around a symme
center; 2MH5R(12RuRu8/4) cannot become negative on a
fixed slice.

Lemma 1 holds true for all three cosmological models.
The main issue that we will address in this paper is th

question of the formation of trapped surfaces due to conce
tration of matter. The result will be obtained through a care
ful analysis of Eq.~21!. What we do is multiply Eq.~21! by
R, use Eq.~13!, and write the resulting equation in the form

] l~uR2!528pR2~r2 j !111 1
2uRu8R2 1

4 ~uR!2

13uRHR. ~27!

The substitution of Eqs.~16! and ~17! into Eq. ~27! gives

] l~uR2!528pR2S r2
3H2

8p
2 j D111

1

4
~pR1KR!2

2R2K212R2Hp ~28!

or

] l~uR2!528pR2S r2r01
3k

8pa2
2 j D12

2S 12
1

4
~pR1KR!2D2R2K214RH] lR, ~29!

where we used the relation~10! to eliminate theH2 term and
use the definition of the mean curvaturep.

Let us integrate Eq.~29! from the origin out to a surface
S. We identify

DM54pE
0

L~S!

R2~r2r0!dl5E
V~S!

dV~r2r0!, ~30!

as the excess matter inside a volumeV(S) bounded byS and

P54pE
0

L~S!

R2 jdl5E
V~S!

dV j ~31!

as the total radial momentum of the matter insideS. In this
notation, the aforementioned integration yields

uR2uS522~DM2P!2
3k

4pa2
V12L1

HA

2p

2E
V~S!

dVS 12
1

4
~pR1KR!21R2K2D , ~32!

whereA is the area of the surfaceS andL is the geodesic
distance ofS from the center. Below we will prove, in a
series of lemmas, that under some conditions we can cont
the sign of the last integral.

Lemma 2.Given spherical data which are locally flat a
the origin and approach either thek50 or thek51 cosmol-
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4802 54EDWARD MALEC AND NIALL Ó MURCHADHA
ogy. If the energy conditionr2r02u j u>23k/4pa2 is sat-
isfied out to an asymptotic region, then

2>upR1KRu, 2>upR2KRu.

Lemma 3.Given spherical data which are locally flat a
tha origin and approach thek521 cosmology, if the energy
condition r2r02u j u>3/4pa2 is satisfied inside a sphere
S, then

2.~pR1KR!, 2.~pR2KR!

inside the sphere.
Remark.The energy conditionr2r02u j u>3/4pa2, us-

ing Eq.~10!, can be written as(3)R>16pu j u1 3
2K

2, indepen-
dent ofk. In both thek51 and thek50 cases this condition
will be satisfied in the external region, whereas in t
k521 cosmology(3)R approaches26/a2. This is the prin-
cipal reason why lemma 3 differs from lemma 2.

Before proving the two lemmas, let us formulate tw
main results that give sufficient conditions for the formatio
of trapped surfaces.

Theorem 1.Given data which approach either thek50 or
the k51 cosmology and is locally flat at the origin, if th
energy conditionr2r02u j u>23k/4pa2 is satisfied out to
an asymptotic region and if

DM2P>23k/8pa2V1L1
HA

4p
~33!

at a surfaceS, thenS is outer future trapped.
Proof. The result follows directly from Eq.~32! and the

estimate of lemma 2.
Theorem 2.Assume that normally ingoing light light rays

are everywhere convergent inside a volumeV bounded by a
surfaceS, u8.0. Given data which approach thek521
locally flat cosmology, if the energy condition
r2r02u j u>3/4pa2 is satisfied inside the volumeV and if

DM2P>
3

8pa2
V1L1

HA

4p
~34!

at the surfaceS, then there exists a surface insideS that is
future trapped.

Proof. Assume that there is no future-trapped surface
side S, i.e., u5p12H2K.0. Since we also assume tha
there is no past-trapped surface, we may conclude that in
S p2K.22H,p1K.2H. We know thatp is positive in-
sideS because we have thatp5(u1u8)/2 and each ofu and
u8 is positive. We also have 2.pR2KR.22HR and
2.pR1KR.2HR; the last inequalities follow from lemma
3. If H.0, we have thatpR1KR is positive and thus
(p1K)2R2<4 and the last integral of Eq.~32! is strictly
negative. On the other hand, ifH,0, we must have that
pR2KR is positive and (pR2KR)2<4 but we could have
that pR1KR be negative. This can only happen whi
K is negative since we know thatp is positive. In this
case we write the integrand of Eq.~32! as

12 1
4 (pR2KR)22pKR21K2R2. This is clearly non-

negative. Thus we also have in this case that the last term
Eq. ~32! is negative. This contradicts the assumption th
t
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there is no trapped surface. Hence, under the assumptions
theorem 2, there must exist a trapped surface insideS.

In order to prove lemmas 2 and 3 we shall return to Eq
~21! and ~22! and write them in terms ofRp, RK, andRH.
Equation~21! can be written as

] l~pR2KR!528pRS r2 j2
3H2

8p D2
1

2R
~Rp2RK!2

1
1

4R
~Rp2RK!~Rp1RK!1

1

R
~35!

and Eq.~22! as

] l~pR1KR!528pRS r1 j2
3H2

8p D2
1

2R
~Rp1RK!2

1
1

4R
~Rp2RK!~Rp1RK!1

1

R
. ~36!

We will prove first the upper bound ofpR1KR, and
pR2KR, simultaneously for both lemmas 2 and 3; this par
of the proof does not depend on the type of a cosmologic
spacetime. Also, as will become clear, the energy conditio
need be imposed only inside a sphereS if we are interested
in finding the upper bound insideS ~as opposed to the esti-
mation from below that requires the global assumption mad
in lemma 2!. According to the conditions made in the lem-
mas, the first term of either Eq.~35! or ~36! is nonpositive.
We show that in the situation of interest the remainders o
each of the equations are also nonpositive.

At the center of symmetry the quantitiespR1KR and
pR2KR are equal to 2 for all types of cosmology. This
means that right-hand sides of either Eq.~35! or ~36! must be
nonpositive and that the quantities in question start from th
origin with the value 2 and start to decrease as soon as th
meet either positiver1 j23H2/8p or r2 j23H2/8p.

Let us assume that further out one of the two, say
pR1KR, rises up to 2 withpR2KR lagging behind. In this
case we can write the nonmaterial part of the right-hand sid
of Eq. ~36! as

2 1
2 ~Rp1RK!21 1

4 ~Rp2RK!~Rp1RK!11

5211 1
2 ~Rp2RK!<0. ~37!

Because the material part of Eq.~36! is nonpositive, we get
that ] l(Rp1RK)<0 so thatpR1KR cannot exceed 2. A
similar argument can be made forpR2KR. Thus lemma 3
and the upper bound of lemma 2 are proved; as is clear fro
the above derivation, in order to have a bound that is val
inside a sphereS we need that the energy condition be im-
posed only insideS.

The same reasoning can be applied to complete the pro
of lemma 2. We will show that if one of the two quantities in
question reaches the value22, then at least one of them
must be less than22, thus breaking either the demand of
geometries being asymptotic to a homogeneous cosmolo
in the sense expressed in Eqs.~18! and ~19!.
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In order to show this we need the global energy conditi
of lemma 2. Let us assume that there exists a point wh
pR1KR522, with pR2KR>pR1KR. Then the nonma-
terial part of Eq.~36! reads

2 1
2 ~Rp1RK!21 1

4 ~Rp2RK!~Rp1RK!11<0. ~38!

Equation~36! implies now~assuming the energy condition!
that pR1KR has to become more negative
pR1KR,pR2KR and may stay at22 in the case of
equality only if the matter contribution vanishes. However,
we can impose an outer boundary condition such t
pR1KR>22, then we get a contradiction. A similar argu
ment works forpR2KR. The outer boundary condition is
guaranteed in the cases of interest. Cosmological space
dotted with inhomogeneities have the property that asym
totically pR1KR and pR2KR approach values given by
Eqs. ~18! and ~19! which must be strictly larger than22.
That ends the proof of lemma 2.

It is interesting that we obtain an exact criterion with th
constant 1; this suggests that the above theorem constitu
part of a more complex true statement that can be formula
for general nonspherical spacetimes. It suggests also
M (S) is a sensible measure of the energy of a gravitatio
system that might appear as a part of a quasilocal ene
measure in nonspherical systems.

It is clear that the analysis performed here can inclu
cases where the sources are distributions rather than clas
functions; in particular, we have no difficulty with shells o
matter. All we get on crossing the shell is a downward st
in u andu8. More interestingly, we can extend the analys
to include conical singularities at the origin@6#, in a way
analogous to that described in@2#.

III. CONFINING PROPERTY OF TRAPPED SURFACES

In this section we show that a region enclosed by trapp
surfaces cannot be seen by external observers. This fact
been proven~without referring to the cosmic censor hypoth
esis! by Israel@5#. Here we will present a different version o
the proof that is based on a 113 decomposition of a space
time ~as opposed to the proof of Israel who used a 212
decomposition!.

We need the evolution part of the Einstein equations a
the lapse equation. These are

] t@dKr
r22H~ t !#5

3a

4
~dKr

r !22
ap2

4
2

p

Aa
] ra1

a

R2

18paTr
r13aH223HdKr

r ~39!

and

¹ i]
ia5aS 32 ~dKr

r !24p~r1Ti
i !13H2D13] tH. ~40!

In addition we need the evolution equation of the mean c
vaturep of centered spheres:
on
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] tp5
] ra

Aa
~2dKr

r12H !18pa
j r

Aa
1
pa

2
~dKr

r22H !.

~41!

Using these equations we can find the full time derivativ
of u along a trajectory of null geodesics normal to centere
spheres:

S ] t1
a

AaD u5
] ra

Aa
u8u28paS 22

j r

Aa
1r1Tr

r D 2au2

13aHu. ~42!

Take now an apparent horizon, i.e., a centered sphereS of
vanishingu(S). Assume that there exists a foliation with a
‘‘good’’ lapsea.0 in an external region extending outward
from the horizon. Equation~42! implies that photons that
start fromS will forever remain inside an apparent horizon
if the strong energy condition22 j r /Aa1r1Tr

r>0 is as-
sumed. Hence apparent horizons move faster than light
cosmological spacetimes~in contrast with asymptotically flat
spacetimes, where they can eventually stabilize to the spe
of light!; they act as one-way membranes for nontachyon
matter. This means that outside observers cannot detect
information from any inside region that is enclosed by
trapped surface. The only way to draw any conclusions abo
a piece of a spacetime that is enclosed by a trapped surfac
through the observation of ‘‘long-wave’’ effects, through the
attractive force that large massive objects exert on their s
rounding. One such possibility would be the observation
gravitational lensing.

IV. DISCUSSION

For a fixed value ofH, for all three kinds of cosmologies,
we know that we need a minimum density of matter befo
we expect trapped surfaces to appear. What we need
r'rF whererF53H2/8p is the density in the flat cosmol-
ogy. In other words, we need that the scalar curvature(3)R
be, at least on average, positive in the interior. The speci
results that we prove capture this very well. For example,
lemmas 2 and 3, the energy condition required is th
r2rF>u j u. Further, if we define

DM̃54pE
0

L~S!

R2~r2rF!dl5E
V~S!

dV~r2rF!, ~43!

then the sufficient conditions for the appearance of trapp
surfaces in both theorems 1 and 2 can be written as

DM̃2P>L1
HA

4p
. ~44!

This means that it is much harder to form trapped surfaces
a hyperbolic universe than in the flat or closed case becau
we need a much larger enhancement over the backgroun

Cosmological trapped surfaces that we discuss in the fi
three sections can, if they exist, accumulate an enormo
amount of energy. Typically, as we have shown, the matt
content of a trapped surface having a geodesic radiusL is of
the orderL plus the background energyMH53H2V/8p ~we
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4804 54EDWARD MALEC AND NIALL Ó MURCHADHA
neglect here the effects related to the possibility of a nonz
curvature of the spacelike slice and the surface te
HA/2p). Assume that there exists a trapped surface with
proper radius of the order of 1000 Mpc. Then its exce
energy is of the order of 1000~in units of Mpc!. The present
value of the Hubble constant is about 50 km s Mpc or~in
units in which the speed of lightc51! 1/6000 Mpc. There-
fore the expected value of the background energy inside
above ball is of the order 0.531063(1/6000)2 Mpc514
Mpc, which is about 102 times less than the energy conte
that is needed in order to form, say, a spherical massive s
that creates a trapped surface. We include this crude ca
lation to point out that the formalism of general relativit
does allow for cosmological regions with high concentr
tions of matter that can be detected only indirectly by ext
nal observers.

On the other hand, the observed mass density contra
of the order of 1022 @7# on scales of 1000 Mpc, that is almos
four orders less than required in order to have a trapp
surface. A trapped surface of the size 1000 Mpc, that is,
the mass of order of 1022 solar masses, would form a pow
erful gravitational lense and should locally deform the co
mic background radiation. Therefore the existence of cosm
logical trapped surfaces in the present universe seems t
ruled out.
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They could have, however, existed during earlier epoch
when the universe was more dense. The evolution of sphe
cal inhomogeneities formed by pressureless dust can be
actly solved in Lemaitre-Tolman coordinates and it probab
gives a good fit to the evolution of spherical inhomogeneitie
in cosmological models after recombination when the pre
sure became negligible. A simple calculation@8# shows that
a trapped surface existing at the epoch of recombination a
having initial radius of the order of 1026 pc and initial mass
of 107 solar masses would become a seed of a galaxy o
final mass 1010 solar masses. The size of the galaxy would b
nowadays of the order of 0.15 Mpc, while the size of
trapped surface inside it would have to be much less th
1023 pc. Accretion of surrounding matter onto the trappe
surface would ignite a powerful source of radiation at a
early phase of the evolution. That calculation suggests th
cosmological trapped surfacesthat formed in the past can
exist as huge black holes at centers of some galaxies, nota
quasars and their remnants.
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