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Trapped surfaces in cosmological spacetimes

Edward Male¢ and Niall OMurchadha
Erwin Schrainger Institute, Vienna, Austria
(Received 21 February 1995

We investigate the formation of trapped surfaces in cosmological spacetimes, using constant mean curvature
slicing. Quantitative criteria for the formation of trapped surfaces demonstrate that cosmological regions
enclosed by trapped surfaces may have matter density exceeding significantly the background matter density of
the flat and homogeneous cosmological model. Cosmological trapped surfaces existing at the epoch of recom-
bination would become seeds of the galaxy formation and would be hidden in their centers.
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[. INTRODUCTION extrinsic curvatureK ,, which is essentially the first time
derivative of the metric, all given at some timgay,
In our previous worK 1] we investigated the formation of 7=0). The intrinsic geometries are, respectively,
trapped surfaces in various cosmological models. Recently

we have found a particularly useful formulati§g] of the a?(7)[dr?+sirfrdQ?], (4)
spherically symmetric Einstein constraint equations that al-
lowed us to improve our earlier estimafed for conditions a?(7n)[dr2+r2d0?], (5)
determining the appearance of trapped surfaces. In the
present paper we apply the new formalism to spherically a?(7)[dr2+sinrfrdQ?], (6)

symmetric cosmologies. As a result we find stronger criteria

in spacetimes than were investigated previously and, morand in each case the extrinsic curvature is pure trace,

importantly, we are able to deal with hyperbolic universes

where our previous attempts had failed. Kab=H0apn (7)
The order of the article is as follows. The first section

presents the formalism. In Sec. Il we deal with the mainwhereH is a time-dependent function that is constant on

results. Section Il shows that regions enclosed by trappeéach slicer=const. It is called the Hubble constant and it is

surfaces must be invisible to external observers, althougbiven byH=4_a/a.

they might be detected indirectly through the observation of In the general case initial data consist of the quartet

gravitational lensing. The last section contains our conclu{g;; ,Kjj ,p,J;) whereg;; is the intrinsic metricK;; is the

sions. extrinsic curvaturep is the matter energy density, addis
There exist three classes of homogeneous sphericalljne matter current density. These cannot be given arbitrarily

symmetric cosmologies. The three diethe closed k=1)  but must satisfy the constraints

cosmology with the metric

GIR—K;; K+ (trK)?= 16, €)
ds?’=—d7?+a?(7)[dr?+sirfrdQ?], )
VK -VitrkK=—8mJ!, 9
(i) the open flat k=0) cosmology with the metric ' T ©
2.2 2. 24002 where ®)R is the scalar curvature of the intrinsic metric.
ds’=—dr*+a’(n)[dri+r*d07, @ The momentum constraint, E(P), is identically satisfied
(iii ) the open k=—1) cosmology with the metric in the case of homogeneous cosmologiegh J;=0) and

the Hamiltonian constraint, E@8), reduces to
ds’= —d7r?+a?(r)[dr?+sinfrdQ?], ©) 6k
wheredQ?=d 6%+ sirfad¢? is the standard line element on 16mp= ¥+6H2’ (10
the unit sphere with the angle variables<@<27 and
O=f0=m. wherek is 1, 0, and—1 in the closed, flat, and hyperbolic
The geometric part of the initial data set of the Einsteincosmologies, respectively. Thus we can conclude that all
equations consists of the intrinsic three-geometry and thelices of the constant coordinate time have a uniform energy
densitypy which is at rest.
In this article we wish to consider data for spherically
*On leave from Institute of Physics, Jagellonian University, 30-symmetric cosmologies which either in the large approxi-

0&T39 Cracow, Reymonta 4, Poland. mate the standard cosmologies or asymptotically approach
On leave from the Physics Department, University College, Corkthem. In all cases we will make the assumption that the ini-
Ireland. tial slice is chosen so that the trace of the extrinsic curvature
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is constant on the slice. In order to retain the link with ho- [81po

mogeneous cosmologies we definié #r3H. RO=2+2RH=2+2 3 R, R6#'=2-2RH
The initial data we consider is a spherically symmetric set (18)

consisting of a three-metric

for k=0,
ds’3 =a2dr2+b2(r)f2(r)dQ?, (11

R6=2 cogr)+2RH

=2 cogr)+2aH sin(r)
Ki=H+K(r), Kj=H-K/2, Kj=H-K/2, (12

8mpoa’ .
an energy density(r), and a current density;(r). The =2 cogr)+2 \/( 3 _1)5'”(”:

an extrinsic curvature

function f(r) will be one of the se(sin(r),r,sinh)), depend- (19
ing on the type of cosmology.

There are some useful geometric quantities that can be 8mpoa )
defined. One of them is the proper distance from the center R6'=2 cogr)—2 ( 3 1)S|n(r)

of symmetry given bydl=adr. The Schwarzschildalso
called “areal” or “curvature”) radius R is given by for k=1, and

R=bf.
The mean curvature of a centered two-sphere as embed- R6=2 costir)+2RH
ded in a spacelike three-dimensional hypersuface is 87 poal
_ / 0 .
20R =2 coshir)+2 ( 3 +1/sinhr),

pP=—F" (13

, 8mpoa’ .
In a general spacetime we may investigate the geometry R6"=2 coslir)—2\/| —5~—+1]sinh(r) (20

by considering the propagation of various beams of lightrays

through a space-time. These beams in general will shear argr k=—1.

either expand or contract; a number (@itical) functions A surface on which is negative is called, after Penrose
will be required to describe their propagation. In a spheri{4], a outer future-trapped surface; a surface on wititlis

cally symmetric spacetime we focus our attention on lightnegative is called a outer past-trapped surface; if both are
rays moving orthogonally to two-spheres centered around pegative, we have an outer trapped surface, amdsfnega-
center of symmetry. We need only two functions. These ar¢ive and ¢’ positive, we have a future-trapped surface. The
the divergence of future-directed outgoing light rays occurrence of such surfaces in a spacetime is an indication of
the fact that gravitational collapse is well advanced. In the

_—

GZEL (14) case of homogeneous closed cosmologies outer future-
R d 7oy trapped surfaces exist for any>arccot@H). In neither
) ) o k=0 nork=—1 is R@ ever negative iH>0.
and the divergence of past-directed outgoing light rays In this article we consider a universe that is homogeneous
o g in the large but that it is dotted with numerous spherical
o' (15) inhomogeneities, far from each the metric approaches the

R drj, ~ background metric of a homogeneous universe. If we center
our coordinate system at a particular lump, we expect that

whered/dr,, is the derivative along future-pointing outgo- optical scalars approach the values given in Eg8), (19),

ing radia] nuII_ rays a.nd/dTi“ is the derjvative _along future- and(20) far away from the lump. In the case of closed cos-
pointing ingoing radial null rays. One interesting property of

4o is that th b d Vi fmologies this limiting value is expected to be met for values
9 and ¢" Is that they can be expressed purely in terms Olsf the coordinate radius much less thanr/2.

initial data on a spacelike slice. In the spherically symmetric We assume local flatness at the origin, i.e.,
case we have limg_.oRé=limg_ RO =2, although this condition can be
K’ o relaxed to allow for a conical singularity there, i.e.,
f=p—K+trK=p—K+2H 18 ) <limg_oR0,limg_oRO'<2.
and
Il. MAIN CALCULATIONS
0'=p+K|—trK=p+K-2H. 17 L _ _
The spherical initial data must satisfy the constraints,
This means thaf and @’ are three-dimensional scalars. They Which read, in terms of the functiorsand 6,
are not four-scalars since they depend on a choice of affine )
parameters along the null rays. However, the proditis 9 (6R)=—87R(p—])
a four-scalar. 1
In the homogeneous universes we find thaR=2, - E[Z(eR)z— ORO'R—4—-120RHR],
pR=2cos(), and pR=2cosh() in the k=0, 1, and—1,
cases, respectively, and (21
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(0'R)=—8mR(p+]j) Remarks(i) The above statement is true for any regular
slice, with arbitrary(i.e., nonconstant on a part of a slice
1 o , trK, assuming that the slice is asymptotic to a homogeneous
~ 2g[2(0'R)*— ORO'R—4+120RHR], (22)  constant mean curvature sligé) It implies the positivity of
the Hawking mass on a sphere centered around a symmetry
center; My=R(1—-R6R#’'/4) cannot become negative on a
where j=j, is the radial component of the matter currentfixed slice.

density normalized so thaf=jXj,. We can manipulate Egs. Lemma 1 holds true for all three cosmological models.
(21) and(22) to obtain The main issue that we will address in this paper is the
) question of the formation of trapped surfaces due to concen-
3 (0'ROR)=—8m[p(0'R+ 6R)+[(IR— 6'R)] tration of matter. The result will be obtained through a care-

ful analysis of Eq(21). What we do is multiply Eq(21) by

3R (ARO'R—4)(0'R+0OR)]. (23 R, use Eq.(13), and write the resulting equation in the form

2y — 20 % 1 p_1 2
Let us now assume that the total matter satisfy the domi- A(OR)=—8mRY(p=]) +1+30RO'R=3(6R)
nant energy condition, i.eg=|j|. Assume thatyR6’'R>4 +36RHR (27)

at a particular point. Consider first the situation where

both R and 'R are positive. Then The substitution of Eqg16) and(17) into Eq. (27) gives
(0'R+6R)>|(—0'R+6R)| and p(6'R+6R)+j(—6'R

+6#R)=0. This means that both terms of E(QR3) are ) ) 2 1 5
nonpositive and the derivative of the produéR6'R is H(OR")=—8mR"| p— 5——] |+1+ 7(PR+KR)
negative. On the other hand, when baR and 'R are
negative and their product is greater than 4, then —R?K?+2R?Hp (28
p(0'R+6R)+j(— 'R+ OR)<0 and the first term in Eq.
(23) is positive. The second term becomes also positive, s€f
that 4,(6RA’'R)>0. Thus in both cases ifR6'R>4 then 3K
d,(#RO'R) #0. 2y_ _ 2l e ot —il+
Let us now consider the expressions for the product ofthg'(aR) 8mR\ P~ po gra? 2
two scalarséR6’'R in each of the three homogeneous cos- 1
mologies. We get —(1— 7(PR¥ KR)Z) —~R?K?+4RHAR,  (29)
RORO' =4—4R?H? (24)

where we used the relatidf0) to eliminate theH? term and

for k=0, use the definition of the mean curvatye
RORY =4 — AR?H? 2 Let us m'gegrate Eq29) from the origin out to a surface
oRO cos(r) @9 S. We identify
for k=1, and
L(S)
81rpga’ AM =4z f R*(p—po)dI= f dV(p—po), (30
R0R9'=4cosﬁ(r)—4( 3 +1 sintf(r)=4 0 S
2 as the excess matter inside a volu¥(&s) bounded bys and
32mwpga” |
- Tsml*?(r) (26)

L(S)
P=47-rf szdl=j dvj (31)

for k=—1. 0 Vs

In each of these cases we haR@R#’' =4 at the origin . . :
and never more than 4. We are considering initial geometrie§S thg total radial mom.entum'of the 'F“a“e?r insgldn this
that have regular origins and asymptotically approach thdotation, the aforementioned integration yields
homogeneous cosmologies, so that both at the origin and far 3K HA
from the center the produ®6R¢’ does not exceed 4. If it OR?|g= —2(AM—P)— ——V+2L+ —
were to achieve a maximal value greater than 4 somewhere 4ma 2m
in between, then its derivative would have to vanish, but that 1
is excluded in the preceding analysis. Therefore we have _f dV(l——(pRJr KR)2+R2K2|, (32
proved the following. v(s) 4

Lemma 1Assume that one is given spherical cosmologi- ) . )
cal data which are locally flat at the center, which are asympWhereA is the area of the surfacg andL is the geodesic
totic to any of standard homogeneous cosmological modelglistance ofS from the center. Below we will prove, in a

and that the matter satisfies the dominant energy conditiors€ries of lemmas, that under some conditions we can control
Then the sign of the last integral.

Lemma 2.Given spherical data which are locally flat at
RORO' <4. the origin and approach either tke=0 or thek=1 cosmol-
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ogy. If the energy conditiop— po—|j|=—3k/47a? is sat- there is no trapped surface. Hence, under the assumptions of

isfied out to an asymptotic region, then theorem 2, there must exist a trapped surface inSide
In order to prove lemmas 2 and 3 we shall return to Egs.
2=|pR+KR|, 2=|pR-KR]. (21) and(22) and write them in terms oRp, RK, andRH.

. . ) Equation(21) can be written as
Lemma 3.Given spherical data which are locally flat at

tha origin and approach the= —1 cosmology, if the energy 342 1
condition p— po—|j|=3/4ma? is satisfied inside a sphere 3(pR—KR) = —87TR< p—j— _) — —(Rp—RK)?
S, then 8w 2R

2>(pR+KR), 2>(pR—-KR) +%(Rp—RK)(Rp+RK)+% (35)
inside the sphere.
Remark.The energy conditiorp— po—|j|=3/4ma?, us- and Eq.(22) as
ing Eq.(10), can be written a§’R=16w]j| + 3K?, indepen-
dent ofk. In both thek=1 and thek=0 cases this condition
will be satisfied in the external region, whereas in the 4 (pR+KR)=-8#nR
k=—1 cosmology®R approaches-6/a. This is the prin-
cipal reason why lemma 3 differs from lemma 2. 1 1
Before proving the two lemmas, let us formulate two +—(Rp—RK)(Rp+RK)+ =. (36)
main results that give sufficient conditions for the formation 4R R
of trapped surfaces.
Theorem 1Given data which approach either tke O or ~ We will prove first the upper bound opR+KR, and
the k=1 cosmology and is locally flat at the origin, if the pR—KR, simultaneously for both lemmas 2 and 3; this part
energy conditiorp— po—|j|= — 3k/4ma? is satisfied out to  of the proof does not depend on the type of a cosmological
an asymptotic region and if spacetime. Also, as will become clear, the energy condition
need be imposed only inside a sph&# we are interested

3H?2

1
HE R 2
p+i 877) 5= (RP+RK)

HA in finding the upper bound insid® (as opposed to the esti-
AM—P=—3k/8ma’V+L+ 47 (33 mation from below that requires the global assumption made
in lemma 2. According to the conditions made in the lem-
at a surfaces, thenS is outer future trapped. mas, the first term of either E¢35) or (36) is nonpositive.
Proof. The result follows directly from Eq(32) and the We show that in the situation of interest the remainders of
estimate of lemma 2. each of the equations are also nonpositive.

Theorem 2Assume that normally ingoing light light rays At the center of symmetry the quantitiggR+KR and
are everywhere convergent inside a volushéounded by a pR—KR are equal to 2 for all types of cosmology. This
surfaceS, 6'>0. Given data which approach the=—1  means that right-hand sides of either E2f) or (36) must be
locally flat cosmology, if the energy condition nonpositive and that the quantities in question start from the
p—po—|j|=3l4ma? is satisfied inside the volumé and if  origin with the value 2 and start to decrease as soon as they
meet either positive+ j — 3H?/81 or p—j — 3H?/8r.

Let us assume that further out one of the two, say,
pR+ KR, rises up to 2 withpR— KR lagging behind. In this
case we can write the nonmaterial part of the right-hand side
at the surfaces, then there exists a surface insiBehat is  of Eq. (36) as
future trapped.

HA
V+L+— (34)

AM—P= 8ma’ 41

~ Proof. Assume that there is no future-trapped surface in- — L(Rp+RK)2+ }(Rp—RK)(Rp+RK)+ 1
side S, i.e., 6=p+2H—-K>0. Since we also assume that
there is no past-trapped surface, we may conclude that inside =—1+3(Rp—RK)=<0. (37

S p—K>-2H,p+K>2H. We know thatp is positive in-

SIijS because we have that=(6+ 6')/2 and each of and  gecayse the material part of E@6) is nonpositive, we get

0" is positive. We also have 2pR—KR>—-2HR and  h5; 5, (Rp+RK)<0 so thatpR+KR cannot exceed 2. A
2>pR+KR>2HR; the last inequalities follow from lemma  gjmijar argument can be made fpR— KR. Thus lemma 3

3. If H2>9' we have thappR+KR is positive and thus gnq the upper bound of lemma 2 are proved: as is clear from
(p+K)°R°<4 and the last integral of E¢32) is strictly  he above derivation, in order to have a bound that is valid
negative. On the other hand, H<0, we must have that jhside a spher& we need that the energy condition be im-
pR—KR is positive and pR—KR)2<4 but we could have posed only insidé.

that pR+KR be negative. This can only happen while ' The same reasoning can be applied to complete the proof
K is negative since we know that is positive. In this  of |emma 2. We will show that if one of the two quantities in
case we write the integrand of Eq.32) as guestion reaches the value2, then at least one of them
1-3(pR—KR)>—pKR2+K?R?. This is clearly non- must be less than-2, thus breaking either the demand of
negative. Thus we also have in this case that the last term igeometries being asymptotic to a homogeneous cosmology
Eqg. (32) is negative. This contradicts the assumption thain the sense expressed in E¢8) and (19).
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In order to show this we need the global energy condition o i Pa
of lemma 2. Let us assume that there exists a point where gp=——(— 8K +2H)+87a—= + — (K —2H).
pR+KR=—2, with pR—KR=pR+KR. Then the nonma- Va Ja 2
terial part of Eq.(36) reads (41)

Using these equations we can find the full time derivative
—3(Rp+RK)?+3(Rp—RK)(Rp+RK)+1=<0. (38  of ¢ along a trajectory of null geodesics normal to centered
spheres:

Equation(36) implies now(assuming the energy conditipn ; .
that pR+KR has to become more negative if Il P oA rl_ p2
pR+KR<pR—-KR and may stay at-2 in the case of (a‘+ \/5)0 Ja i 877“( 2\/5+p+T’> af
equality only if the matter contribution vanishes. However, if
we can impose an outer boundary condition such that +3aH#. (42)
pR+KR= -2, then we get a contradiction. A similar argu-
ment works forpR—KR. The outer boundary condition is s ‘ e .
guaranteed in the cases of interest. Cosmological spacetinf@"ishing#(S). Assume that there exists a foliation with a

dotted with inhomogeneities have the property that asymp-900d” lapse >0 in an external region extending outward
totically pR+ KR and pR—KR approach values given by from the horizon. Equatiort42) implies that photons that

Egs. (18) and (19) which must be strictly larger than 2. start fromS will forever remgin in;ide an apparent -horizon,
That ends the proof of lemma 2. if the strong energy condition- 2j,I\a+p+Ti=0 is as-

It is interesting that we obtain an exact criterion with the SUmed. Hence apparent horizons move faster than light in
constant 1; this suggests that the above theorem constitute$@smological spacetimés contrast with asymptotically flat
part of a more complex true statement that can be formulate@Pacetimes, where they can eventually stabilize to the speed
for general nonspherical spacetimes. It suggests also th&f light); they act as one-way membranes for nontachyonic
M(S) is a sensible measure of the energy of a gravitationanatter. This means that outside observers cannot detect any

system that might appear as a part of a quasilocal enerdjjformation from any inside region that is enclosed by a
measure in nonspherical systems. tfrapped surface. The only way to draw any conclusions about

It is clear that the analysis performed here can includét Piece of a spacetime that is enclosed by a trapped surface is
cases where the sources are distributions rather than classi¢afough the observation of “long-wave” effects, through the
functions; in particular, we have no difficulty with shells of attractive force that large massive objects exert on their sur-
matter. All we get on crossing the shell is a downward stegounding. One such possibility would be the observation of
in # and #'. More interestingly, we can extend the analysis9ravitational lensing.
to include conical singularities at the origf®], in a way

Take now an apparent horizon, i.e., a centered spBeyé

analogous to that described [i8]. IV. DISCUSSION
For a fixed value ofd, for all three kinds of cosmologies,
I1l. CONFINING PROPERTY OF TRAPPED SURFACES we know that we need a minimum density of matter before

. ) ) we expect trapped surfaces to appear. What we need is
In this section we show that a region enclosed by trappen?wpF wherepg=3H?2/8 is the density in the flat cosmol-

surfaces cannot be seen by external observers. This fact heﬁy. In other words. we need that the scalar curvaf®g
been proveriwithout referring to the cosmic censor hypoth- pe 5t jeast on average, positive in the interior. The specific
esig by Israel[5]. Here we will present a different version of oqits that we prove capture this very well. For example, in

the proof that is based on arB decomposition of & Space- |emmas 2 and 3, the energy condition required is that
time (as opposed to the proof of Israel who used -622 p—pe=|j|. Further, if we define

decomposition
We need the evolution part of the Einstein equations and ~ Le
the lapse equation. These are AM =47TJO R (p—pp)dl= jv(s)dV(p—pF), (43
3a ap? p a then the sufficient conditions for the appearance of trapped
A K[ —2H(1)]= —(K))2— — — —d,a+ = surfaces in both theorems 1 and 2 can be written as
4 4 Ja R
r 2 r r HA
+8maT,+3aH —3HK; (39 AM—-P=L+ = (44)
v
and This means that it is much harder to form trapped surfaces in

a hyperbolic universe than in the flat or closed case because
. 3 _ we need a much larger enhancement over the background.
Vida=a E((SK{)24w(p+T})+3H2 +30H. (40 Cosmological trapped surfaces that we discuss in the first
three sections can, if they exist, accumulate an enormous
amount of energy. Typically, as we have shown, the matter
In addition we need the evolution equation of the mean cureontent of a trapped surface having a geodesic rddiigsof
vaturep of centered spheres: the orderL plus the background enerdy,,=3H?2V/8x (we
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neglect here the effects related to the possibility of a nonzero They could have, however, existed during earlier epochs,
curvature of the spacelike slice and the surface ternwhen the universe was more dense. The evolution of spheri-
HA/27). Assume that there exists a trapped surface with &al inhomogeneities formed by pressureless dust can be ex-
proper radius of the order of 1000 Mpc. Then its excessctly solved in Lemaitre-Tolman coordinates and it probably
energy is of the order of 100@n units of Mpg. The present gives a good fit to the evolution of spherical inhomogeneities
value of the Hubble constant is about 50 km s Mpc(ior i cosmological models after recombination when the pres-
units in which the speed of light=1) 1/6000 Mpc. There- syre became negligible. A simple calculati@] shows that
fore the expected value of the background energy inside thg trapped surface existing at the epoch of recombination and
above ball is of the order 0:610°X(1/6000f Mpc=14  having initial radius of the order of 16 pc and initial mass
Mpc, which is about 1dtimes less than the energy content of 107 solar masses would become a seed of a galaxy of a
that is needed in order to form, say, a spherical massive shethal mass 18 solar masses. The size of the galaxy would be
that creates a trapped surface. We include this crude Ca'meadays of the order of 0.15 Mpc, while the size of a
lation to point out that the formalism of general relativity trapped surface inside it would have to be much less than
does allow for cosmological regions with high concentra-19-3 pc. Accretion of surrounding matter onto the trapped
tions of matter that can be detected only indirectly by extersyrface would ignite a powerful source of radiation at an
nal observers. _ early phase of the evolution. That calculation suggests that
On the other hand, the observed mass density contrast &smological trapped surfacehat formed in the past can

of the order of 102 [7] on scales of 1000 Mpc, that is almost exist as huge black holes at centers of some galaxies, notably
four orders less than required in order to have a trappeguasars and their remnants.

surface. A trapped surface of the size 1000 Mpc, that is, of

the mass of order of £8 solar masses, would form a pow-

erful gravitational lense and should locally deform the cos- ACKNOWLEDGMENTS
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