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Dynamics of scalar fields in the background of rotating black holes
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A numerical study of the evolution of a massless scalar field in the background of rotating black holes is
presented. First, solutions to the wave equation are obtained for slowly rotating black holes. In this approxi-
mation, the background geometry is treated as a perturbed Schwarzschild spacetime with the angular momen-
tum per unit mass playing the role of a perturbative parameter. To first order in the angular momentum of the
black hole, the scalar wave equation yields two coupled one-dimensional evolution equations. In this approxi-
mation, the late time dynamics of a massless scalar field exhibit the same power-law behavior as in the case of
a Schwarzschild background. Solutions to the wave equation are also obtained for rapidly rotating black holes.
In this case, owing to higher order terms in the angular momentum, the wave equation does not admit complete
separation of variables and yields a two-dimensional evolution equation. The study shows that, depending on
initial conditions, the late-time dynamics of a massless scalar field is dominated by the lowest-allowed mode
with respect td for a fixed value ofm. [S0556-282(96)02920-7

PACS numbes): 04.30.Nk, 04.25.Dm, 04.70.Bw

[. INTRODUCTION cently, the late-time behavior of E¢l) has been the subject
of detailed numerical and analytic investigations by Gun-
Perhaps the simplest wave phenomenon in relativity is thelachet al. [5] and Chinget al. [3,4].
propagation of linearized waves on a fixed, curved back- Gundlachet al.[5,7] studied both the late-time behavior
ground. When observed at a fixed spatial point, the dynamicef massless fields around a fixed Schwarzschild geometry
of a wave propagating on spherically symmetric, time-and the full nonlinear evolution of a minimally coupled sca-
independent, asymptotically flat, background geometriesar field. Their studies show a remarkable agreement between
consists of three stages. During the first stage, the observelle numerically computed quasinormal frequencies and
wave depends on the structure of the initial pulse and itpower-law tails and their corresponding theoretical predic-
reflection from the origin(burst phase This phase is fol- tions. Using a characteristic initial value approach, they
lowed by an exponentially decaying quasinormal ringing offound tails not only at timelike infinity, but also at future null
the black hole(quasinormal phasen the last stage, the infinity and at the future horizon of the black hole. The time
wave slowly dies off as a power-law t4thil phase. The last  behavior of the tails is shown to be
two phases are dictated by the interference of the part of the
wave backscattered at the tail of the potential and the part t—(21+P+1) at timelike infinity,
reflected by the potential barrier.
The tail phenomenon can be understood as due to the
scattering of the wave off the effective curvature potential of (t+x)~@*P*D  atthe future horizon,
the background geometiyl,2]. Tails have been mostly in-
vestigated on Schwarzschild backgrouri8s-5], Reissner- with P=1 if there is an initial static field an@=2 other-
Nordstran black holeg[5], and for collapsing scalar fields wise.
[6,7]. The study of tails has also implications in connection  pursuing a different approach, Chiegal. [3,4] showed
with the gravitational radiation emerging from inspiraling that the late time tail phenomena are governed by the asymp-
binary systemg8]. totic structure of the background spacetime. Furthermore,
For stationary spherically symmetric systems, after sepathey found that, for nonstatic initial conditions, the simple
ration of variables, the three-dimensional wave equatiorpower-law ®~t~2'** in Schwarzschild geometries, is
V,.V#®=0 reduces, in a suitable radial coordinateo the  not present for general potentials of the form

P~1{ (t—x)~"(*P) at future null infinity, ~ (2)

one-dimensional wave equation V(X)~1(1+1)/x>+x"%nx. Instead, the generic late-time
- behavior is given byb~t~2'*Int.
[—df+ 35— V(X)]P(x,1)=0, Y In spite of previous work, a complete understanding of the

tail phenomenon for general systems is still missing. Ques-
where V(x) denotes the effective curvature potential. Re-tions such as which factors determine the magnitude and
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power-law time dependence have not been addressed forSubstitution of Eq.(4) into Eq. (3), with a=0, yields the
general system. It is of particular interest, for instance, toone-dimensional wave equation
show which role the dimensionality of the system plays on
the existence of power-law tailS]. When the point of view [— et dps s — V(N W (t,r*)=0, (6)
that tails arise from backscattering off an effective potential
is adopted, it is not clear whether the tail behavior wouldyth the potentialV(r) defined by
remain unchanged, or be present at all, for intrinsically two-
or three-dimensional systerh&0]. oM
A natural generalization of previous studies to axisym- V(r)=(1— —
metric spacetimes is obtained by considering the family of r
Kerr spacetimes. In contrast with the Schwarzschild back- ) . ] )
ground geometry, the wave equatidh,V*®=0 in the It has been shov_vn, in bpth numencal and analy.tlc studies
background of a rotating black hole only admits separation 1,35, that at a fixed radius the solution of E@) will fall
of the azimuthal coordinate, so in principle a two- Off ast™ ("% for larget and nonstatic initial data.
dimensional evolution problem has to be solved. It has been Fora#0, itis no longer possible to separate variables and
suggested3] that tails similar to those present in Schwarzs-arrive at an equation similar to E¢6). While the azimuthal
child spacetimes should exist on Kerr backgrounds, a dedependence ob can still be described bg™?, a full sepa-
tailed analysis, however, has not been undertaken. ration of variables exists only in the frequency domain, as
This study considers the dynamics of scalar fields on thdirst demonstrated by Brilet al. [11]. In this case, both the
background of rotating black holes in two regimes: slowly Teukolsky equation and E¢3) admit separable solutions of
and rapidly rotating holes. A considerable mathematical simthe form
plification of the problem is achieved in the case of slowly _ _
rotating black holes since the angular momentum can be d=e""e” M S h;aw)Rim(r; ), (8)
treated as a perturbative parameter. Thus, to first order in the
angular momentum, the scalar wave equation yields two onévhere ;S™ are the spin-weighs-spheroidal wave functions.
dimensional evolution equations. This formalism is de-However, since the objective of the present study is the late-
scribed in Sec. Il. Results of the numerical calculations argime dynarnics7 a decomposition based @mmodes is not
presented in Sec. Ill, where power-law tails are discussedsyjtable, and one is forced, in principle, to solve a two-
The case of rapidly rotating black holes is discussed in Segimensional evolution equation fd. Nonetheless, the case
V. of slowly rotating black holes circumvents the problem of
solving a two-dimensional wave equation.
Il. SLOWLY ROTATING BLACK HOLES The use of an azimuthal coordinate defined by asymptotic
observers, as is the case with the Boyer-Lindqgistoordi-
Using Boyer-Lindquist coordinated,(,6,¢), the wave nate, introduces unphysical pathologies near the horizon

I(1+1) 2M
A

r r3

@)

equation for a massless scalar fiddreads[11] even in the cas@a<M. A discussion of those pathologies
and their precise manifestation in the slow rotation limit is
(r’+a?? Mar given in the Appendix. Those coordinate-induced problems
I SN0 gy ® — 3 Yw® are readily dealt with by adopting the Kerr azimuthal coor-
dinate ¢ given by
1 a2
dp=dep+ —dr. 9)
1 A
Using the ansatz
where M is the mass of the black hole, is its angular B . im3
momentum per unit mass, ang=r?—2Mr +a?. Equation P=W(tr*,0)em?, (10
(3) is equivalent to the special case of the Teukolsky equa- . .
tion [12] for fields with vanishing spin weight. the wave equationd) yields
The Schwarzschild casa=0, allows separation of vari-
ables in terms of the scalar spherical harmong¥ 6, ¢) (r’+a®? 4imarM
without any requirements on a particular time behavior. The “tt* o Joepe W H o %

solution of Eq.(3) can be written in the form

2[rA+iam(r?+a?)]
1 - P
<I>=?Y.m(0,¢)‘l’(t,r*), 4 i

2

A m
wherer* denotes the tortoise coordinate T 9oV —COWI ¥ + sinzaqi =0, (19

r*=r+2Min(r—2M). (5)  with
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o=—(a%+r?)?+a’Asir?, (12 reduced to solving the homogeneous equatibrg for ¥,
and using this solution as a source in the inhomogeneous
and the Kerr tortoise coordinaté defined by equation(17b).
. . Owing to the one-way membrane character of the hori-
dr* _r°+a 13 zon, the use of ingoing wave boundary conditions at the

dar A horizon fits most naturally the solution of EqL78. The
asymptotic form of¥, for r* — —« is then a wave with
For arbitrary angular momentum per unit masss&@<M,  constant amplitude propagating to the horizon.

the angular dependence oF cannot be expressed by As r*——w, the source term behaves like
Y{"(6, ), because, in general, modes belonging to differenpy— — 9, ¥ o+ d;« V. Thus,pg—0 if ¥o—W(t+r*). On
values ofl are coupled. This follows directly from the angu- the other hand, at* —«, p;—0 due to the assumption that
lar dependence af. Only if the initial data are prepared in W, has compact initial data.

the form of Eq. (8), is the # dependence given by
S"(6;aw) at all times.

To first order ina, however, the angular momentum op- _ )
erator in Eq.(11) is the same as in the Schwarzschild case The numerical results presented here were computed with
and the coefficients of the temporal and radial derivatives ar@ Second order staggered in time evolution scheme. For con-
independent o). Hence, the modes belonging to different Sistency, a characteristic numerical integration was also used,

Ill. POWER-LAW TAILS

| decouple, and, under the assumpticaM, one can seek a and the results were in complete agreement.
solution of Eq.(3) that possesses an angular dependence !N general, both, and¥W, are complex quantities. Ow-

given byY["(8, ¢) following a procedure similar to that used
in deriving Eq. (4). That is, one views the function
W (t,r*) as containing a piec&y(t,r*), representing the
scalar field in the Schwarzschild background, and a secon
field ¥,(t,r*) that takes into account the correction due to

the rotation of the black hole to first order &n Thus, the
ansatz for the solution of Eq3) has the form

1 _
¢>=FY[“(0,¢)[‘I’O(t,r*)+a‘lf1(t,r*)]. (14

In (t,r*,a,g) coordinates, substitution of Eql4) into
the wave equatio’V,V#®=0 and collecting powers o
yields, after separation of variables, the equation

OgWo+a(de¥,—pg)+0(a?) =0, (15
where
o= —dyt+ dps s — V(1) (168
and
2im
Po=— r—4[—2Mrat\lfo-l—rza,*\lfo—(r—ZM)\PO].
(16b)

The system of equations fob, and ¥, is obtained by

requiring that the zero and first order terms of this expansio

vanish independently: namely,

[ =ttt dpspx —V(r)]¥o=0, (173

2im )
[_(?n‘l' &r*r* +V(I’)]‘I’l=r—4[—2Mr(?t\I’0+r (9'«*\1,0

—(r—2M)¥,], (170

ing to the purely imaginary coefficients 8f¥, d,+ ¥, and
V¥, in the source term in Eql7b), Im¥, is coupled to
Re¥,, and R& to Im¥,. Hence, without loss of general-
ify: one may assume Rg=Im¥;=0. Since the separation
variablem plays the role of a scaling factor for the source
term in Eqg.(17b), in the numerical calculatioma=M=1 is
used.

The initial data for¥, consist of a bell-shaped pulse
propagating outwards given by

Uil=c{[co(r* —t)—rilco(r* —t)—rX, 1% (18
for ri<r*<r}, and vanishing otherwise. The parameters
have been chosen to yield a pulse centered at100; that
is, ¢;=100¢,=0.02, and ;.= 1,3. On the other hand, the
initial conditions for¥, are ¥,=9,%;=0. Numerical ex-
periments have shown that the tail behavior is not affected
by the choice of initial conditions fow ;.

As previously discussed, the behavior of both the poten-
tial and the source term in Eq17b makes it possible, in
principle, to impose ingoing boundary conditions at the ho-
rizon and outgoing conditions at infinity, i.e.
limes 5. Wo1=Wo(t=r*). However, in a Cauchy evolu-
tion, such as the one under consideration, boundary condi-
tions are imposed at a finite distanfg3]. Typically, the
computational domains used covered0<r* <2000 with
Ar*=0.1. Sincer* = —50 yieldsr —2M~ 10" *2, imposing
I?he left (ingoing into the black holeboundary condition at a
inite radiusr* turns out to be a suitable approximation; both
the potential V(r) and the sourcep, are negligible at
r*=-50. A different situation is encountered at the right
boundary. Even though the potentM(r) and the source
po vanish ag* — oo, at the right boundaryr =2000) of the
computational domain, and especially for late times, the out-
going boundary condition is not a good approximation. How-
ever, this boundary is at a sufficiently large radial distance,
so it allows enough dynamical evolution range to obtain the

with V(r) given by Eq.(7). As expected, the equation for tail behavior before numerical boundary effects contaminate
V¥, does not contain terms depending¥n, and the source the solution.

term pq in the equation fof'; only depends on the solution

Figure 1 shows several snapshots of the evolution for

¥, of the zero order equation. The problem has then beeh=1, 0<t<200. During the evolution, the initially outgoing
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FIG. 1. Evolution of¥, po, and¥ 4 for =1, 0<t<200.(a) At t=0,V,=py=0. (b) At t=20, the source, is dominated by the initial
shape of¥. (c) At t=100, a peak irpy, has developed due to the part of the initial pulse that was backscattered off the potential and is
propagating inwardgd) At t=200, as a consequence of the pealpgin (c), a hump appears in the trailing part ¥f;.

zero order functionV, is followed by a pulse inV; driven  where

by the source,. In Fig. 1(a), the initial bell-shaped pulse for

W, centered at* =100 is shown ¥,=p,=0). At t=20,

Fig. 1(b) depicts the radial dependence of the soupge

dominated by the initial shape &F,. As displayed in Fig.

1(c), after an evolution time df=100, a pronounced peak of Equation(19) contains two operators: the operator for scalar

po has developed due to the part of the initial pulse that wadields on Schwarzschild backgrourtfirst term in squared

backscattered off the potential and is propagating inwards. Ibracket$ and a second operatdirst order ina) containing

Fig. 1(d), att=200, as a consequence of the pealpgfa first order spatial and temporal derivatives.

hump appears in the trailing part df;. If one views the late-time tail behavior at a radial position
Before presenting the numerical results, a heuristic anar, as the result of the scattering by a potentiaf atr of a

lytical argument is given, estimating the expected late-timevave originated at,~r, the arrival time of the scattered

behavior. The argument is based on the result that the latavave is approximately given by (r —r )+ (f —r)~2r [3].

time decay of waves propagating on curved spacetimes iat late times, the scalar fieldV«V;(r)~V(t), where

dictated by the spatial asymptotics of the poterft#dl The  V(r,t)=V(r)+V,(r,t) represents the “total” potential;

argument does not include the contribution from the centrifuthat is, the Schwarzschild potenti@) with | =0 plus a cor-

gal barrier (=0). Starting with the original wave equation rectionV, due to the rotation of the black hole. This correc-

D=W(t,r*)Y"(0,).

(1) one obtains, to first order ia, tion arises from the second term in squared brackets in Eg.
(19). Under the late-time and large scattering radius approxi-

2imaM mation, V~W/t and 4,+VT~W/r. Thus, Vu(r,t)

[0t dpxrx = V(r) ¥+ 3 ~F 73+ 3t 147 4~t"3.  Therefore, ¥xV+V,~t3

sinceV~t~2. This shows that both the Schwarzschild poten-
tial and the perturbative potential contribute with the same
M ) }\If—o (19 power-law behavior. The centrifugal barrier adds &' fac-

2
_2‘9t+r5’r*+(1_7 tor to the tails[4].

X
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FIG. 4. Log-log plots of| | for m=1, a=0.99 atr* =10 for

100 ; 000 different equidistant angular directions frof+ /16 to 6= /2.
The initial angular dependence was given bylm Pi~sin0. For
FIG. 2. Log-log plots of¥, and ¥, for I=1 atr*=10. The large times the time dependence is given |dy|~t™*, where
power-law exponents are 4.93 for ¥, and —4.92 for¥,. The = #=4.87£0.005 for all observed angles. The theoretical power-law
wiggles that can be seen fox 200 are remainders of the quasinor- tail exponent in the Schwarzschild case is giverwby 5.
mal ringing of the black hole.

ten in coordinatest(r*, 6, ). The equation reduces to the

The numerical investigation of the late-time behavior wasflat wave equatiofl — dy;+ 9« « J¥ =0 for r* — +<, thus a
performed at different distances from the black hole. Powersimple formulation of radial outgoing boundary conditions is
law behavior, with an exponent independent of the locatiorpossible.
of observation, was detected for bothy, and¥, for differ- Equation(11) was evolved on a rectangular spatial grid in
ent multipole indiced. As shown in Figs. 2 and 3, the nu- r,;,<r<r.., 0<60<m/2. The numerical code was tested
merically determined power-law exponents for the zero andor convergence and stability. As in the one-dimensional
first order solutions are in good agreement: Ferl, the case, the mass of the black hole was sdtite 1. The inner
power-law exponents are 4.93 for¥, and —4.92 for¥ ; radial boundaryr .,i, was chosen so that the limit of the flat
the theoretically predicted value is 5 for this case. Forwave equation was reasonably approximatefd Sec. Il).
=2, the exponents are 7.02 and— 7.07, respectively, and The data a¥=0,7/2 were updated according to the behavior
the corresponding theoretical value is 7. These results lead tf the particular mode under consideration. The values of the
a power-law exponent fob = (1/r) Y{[W¥,+a¥,] that is field at the poles and the equatorial plane were determined
unchanged with respect to the behavior on a Schwarzschildy the value ofm and the symmetry of the mode with respect
background. to the equatorial plane: Fan=0, d,¥(t,r*,0)=0 for all
t,r*. For nonaxisymmetric waves, given byn#0,
¥ (0)=0 for all modes. At the equator, the condition for the
modes symmetric to the equatorial plane is given by

The next step is to consider the case of rotating blackls¥ (7/2)=0 and the antisymmetric modes are character-
holes with arbitrary angular momentum per unit mass, i.e.ized by ¥(7/2)=0.
O=<a<M. The objective here is to investigate whether the ~The initial data were given by Rle=g;Re¥ =0 and, us-
Schwarzschild tail behavior is modified for rapidly rotating ing Eq.(18), Im¥ =¥ {"P"/\r2+a?, where a particular as-
black holes. The starting point is the wave equat@®nwrit-  sociated Legendre polynomi&@" had to be chosen accord-

ing to the mode of interest. For fixad, a mixing of modes

IV. RAPIDLY ROTATING BLACK HOLES
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100 ¢ 1000 FIG. 5. Same as in Fig. 4, but fon=2 and the initial angular

dependence given by Nn~ P§~sin20. For large times the power-
FIG. 3. Log-log plots of#, and ¥, for |=2 atr*=10. The law exponent isu=6.98+0.004 for all observed angles. The theo-
power-law exponents are given by7.02 and—7.07, respectively. retical value in the Schwarzschild case is givenioy 7.
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el APPENDIX

The behavior of the wave equation near the horizon when
100 1050 /4 /2 written in Boyer-Lindquist coordinates is illustrated here, in
2000 0 ) the context of the slow rotation approximation. The manifes-
tation of this behavior in the solution of the initial value
problem is analyzed in the limit—2M.

FIG. 6. Log-log plots of|¥|=Im¥ for m=0, a=0.99 at The smalla expansion of equatio(8) using the ansatz
r*=10 for different angular directions in equidistant steps from
6=0 to #==/2. The initial angular dependence was given by
Im\If~Pg~3co§6—l. Mixing of modes: For large times the time
dependence is given QW |~t~#, where for ImP the exponent is
2.88<p<2.92 with (u)=2.91 over the observed angles. yields the system of equations
ReV =0 at all times, because the two equations are decoupled for

1 .
= Y0, ) Wo(t,r*) +awy(t,r*)],  (Al)

m=0, and R&' = (d/dt)Re¥ =0 initially. [— 0t e —V(r)]¥Py=0, (A2a)
belonging to different values dfwill occur during the evo- -~ 4mM
lution if the initial data do not correspond to the lowest pos- [ dut e V(NP =i —5—Wo.  (A2D)
sible mode of .

In the following figures, the late-time behavior |oF | at Upon examining equatioriA2b) a problematic feature

r*=10 is displayed for different initial multipoles for an emerges. The source term on the right-hand side does not
angular momentum parameter af=0.99. Figure 4 shows vanish in the limitr* — —o. More precisely, the asymptotic
the late-time behavior fom=1. Equidistant angular direc- form of the equation at the horizon s
tions were chosen in the interval frof=7/16 to 6=m/2.  (_ + 0r*r*)‘i’1= (im/2 M?2) 9% . Using null coordinates
The initial angular dependence correspondsten=1. The ;=4 r* andu=t—r*, and assuming a purely ingoing so-
late-time behavior can be described [My|~t™#, where the  |ytion W,(v), one obtains

exponent is given by.=4.87 for all the displayed angles. In

Fig. 5 the analogous situation is shown for=2 and an xirl(u,v)zb(u)qfo(v)Jrfl(v)+f2(u), (A3)
initial pulse corresponding té=m=2. In this case the

power-law exponent for the observed anglesuis6.98. where

That is, the power-law exponents governing the late-time

behavior fora=0.99 do not exhibit a significant change b(u)=— im u (Ad)
when compared to the Schwarzschild case, in which the 8M2 "

theoretical power-law tail exponents are given oy 5 for

|=m=1, andu=7 for I=m=2. In both cases the initial andf,f, are solutions of the homogeneous equation.

pulse used for the two-dimensional evolution is given by the The presence of this growing mode in the system may at

lowest-allowed mode for fixed. first appear puzzling, since the ans@él) is related to Eq.
The situation is different for the Cage:z, m:O’ de- (14) Slmply by an angular coordinate redefinition. Yet, the

picted in Fig. 6. Here, the initial pulse is not given by the Singular nature of the transformati¢8) near the horizon is

lowest mode withm= 0 that is symmetric with respect to the the source of the growing mode. A direct comparison of

equatorial plane, corresponding te-0. Instead, the initial Systems(A2) and(17) reveals that the two sets of equations

angular dependence is given by Wn-P9~3cogs—1.  are equivalent, with¥; given by

Here, mixing of modes occurs and the late-time evolution is ~

dictated by the lowest mode. The sink on the right-hand side Wi (tr*) =Wy (t,r*)+c(r)Wo(t,r*), (A5)

is caused by the transition to the lowest mode. For large

times the time dependence is given py|~t~#, where where

2.88<u=<2.92 with{u)=2.91 when averaged over all ob- amim r

served angles. In contrast with this result, the corresponding c(r)=-—— —In(—). (A6)

Schwarzschild case exhibits no mixing of the modes, and the 2M - 2M " \r—2M

theoretical power-law tail exponent is given k=7 for

=2 m=0 The solution of Eq.(17b) with the correct source term is

denoted by (t,r*). The coefficientc(r) is singular at the
horizon, hence bounded solutions,,\V'; give rise to an
unbound combination foW;. The linear combinatiotA5)

We thank N. Andersson, R. Gleiser, K. Kokkotas, H.-P.has indeed the horizon blowup demonstrated by @&@).
Nollert, J. Pullin, R. Price, and E. Seidel for helpful discus- This follows from the fact that
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im falling observer near the horizon. The wave evolution is well
lim _amc(r) =lim; _oub(u)~lim; _ oy 5 In(r —2M). behaved in a local frame, yet it appears singular in a coordi-
(A7) nate system that winds itself infinitely many times around the
black hole. The singularity of the evolution in the Boyer-
An intuitive explanation of this pathology lies in the twisting Lindquist coordinates is introduced entirely through this sin-
of azimuthal directions defined at infinity, as seen by an ingular (at the horizon coordinate transformation.
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