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A numerical study of the evolution of a massless scalar field in the background of rotating black ho
presented. First, solutions to the wave equation are obtained for slowly rotating black holes. In this ap
mation, the background geometry is treated as a perturbed Schwarzschild spacetime with the angular m
tum per unit mass playing the role of a perturbative parameter. To first order in the angular momentum
black hole, the scalar wave equation yields two coupled one-dimensional evolution equations. In this ap
mation, the late time dynamics of a massless scalar field exhibit the same power-law behavior as in the
a Schwarzschild background. Solutions to the wave equation are also obtained for rapidly rotating black
In this case, owing to higher order terms in the angular momentum, the wave equation does not admit co
separation of variables and yields a two-dimensional evolution equation. The study shows that, depend
initial conditions, the late-time dynamics of a massless scalar field is dominated by the lowest-allowed
with respect tol for a fixed value ofm. @S0556-2821~96!02920-7#
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I. INTRODUCTION

Perhaps the simplest wave phenomenon in relativity is
propagation of linearized waves on a fixed, curved ba
ground. When observed at a fixed spatial point, the dynam
of a wave propagating on spherically symmetric, tim
independent, asymptotically flat, background geometr
consists of three stages. During the first stage, the obse
wave depends on the structure of the initial pulse and
reflection from the origin~burst phase!. This phase is fol-
lowed by an exponentially decaying quasinormal ringing
the black hole~quasinormal phase!. In the last stage, the
wave slowly dies off as a power-law tail~tail phase!. The last
two phases are dictated by the interference of the part of
wave backscattered at the tail of the potential and the p
reflected by the potential barrier.

The tail phenomenon can be understood as due to
scattering of the wave off the effective curvature potential
the background geometry@1,2#. Tails have been mostly in-
vestigated on Schwarzschild backgrounds@3–5#, Reissner-
Nordström black holes@5#, and for collapsing scalar fields
@6,7#. The study of tails has also implications in connectio
with the gravitational radiation emerging from inspiralin
binary systems@8#.

For stationary spherically symmetric systems, after se
ration of variables, the three-dimensional wave equat
¹m¹mF50 reduces, in a suitable radial coordinatex, to the
one-dimensional wave equation

@2] t
21]x

22V~x!#F~x,t !50, ~1!

where V(x) denotes the effective curvature potential. R
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cently, the late-time behavior of Eq.~1! has been the subject
of detailed numerical and analytic investigations by Gun
dlachet al. @5# and Chinget al. @3,4#.

Gundlachet al. @5,7# studied both the late-time behavior
of massless fields around a fixed Schwarzschild geomet
and the full nonlinear evolution of a minimally coupled sca
lar field. Their studies show a remarkable agreement betwe
the numerically computed quasinormal frequencies an
power-law tails and their corresponding theoretical predic
tions. Using a characteristic initial value approach, the
found tails not only at timelike infinity, but also at future null
infinity and at the future horizon of the black hole. The time
behavior of the tails is shown to be

F;H t2~2l1P11! at timelike infinity,

~ t2x!2~ l1P! at future null infinity,

~ t1x!2~2l1P11! at the future horizon,

~2!

with P51 if there is an initial static field andP52 other-
wise.

Pursuing a different approach, Chinget al. @3,4# showed
that the late time tail phenomena are governed by the asym
totic structure of the background spacetime. Furthermor
they found that, for nonstatic initial conditions, the simple
power-law F;t22l1a in Schwarzschild geometries, is
not present for general potentials of the form
V(x); l ( l11)/x21x2alnx. Instead, the generic late-time
behavior is given byF;t22l1alnt.

In spite of previous work, a complete understanding of th
tail phenomenon for general systems is still missing. Que
tions such as which factors determine the magnitude an
4728 © 1996 The American Physical Society
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54 4729DYNAMICS OF SCALAR FIELDS IN THE BACKGROUND . . .
power-law time dependence have not been addressed f
general system. It is of particular interest, for instance,
show which role the dimensionality of the system plays
the existence of power-law tails@9#. When the point of view
that tails arise from backscattering off an effective potent
is adopted, it is not clear whether the tail behavior wou
remain unchanged, or be present at all, for intrinsically tw
or three-dimensional systems@10#.

A natural generalization of previous studies to axisym
metric spacetimes is obtained by considering the family
Kerr spacetimes. In contrast with the Schwarzschild ba
ground geometry, the wave equation¹m¹mF50 in the
background of a rotating black hole only admits separat
of the azimuthal coordinate, so in principle a two
dimensional evolution problem has to be solved. It has be
suggested@3# that tails similar to those present in Schwarz
child spacetimes should exist on Kerr backgrounds, a
tailed analysis, however, has not been undertaken.

This study considers the dynamics of scalar fields on
background of rotating black holes in two regimes: slow
and rapidly rotating holes. A considerable mathematical s
plification of the problem is achieved in the case of slow
rotating black holes since the angular momentum can
treated as a perturbative parameter. Thus, to first order in
angular momentum, the scalar wave equation yields two o
dimensional evolution equations. This formalism is d
scribed in Sec. II. Results of the numerical calculations a
presented in Sec. III, where power-law tails are discuss
The case of rapidly rotating black holes is discussed in S
IV.

II. SLOWLY ROTATING BLACK HOLES

Using Boyer-Lindquist coordinates (t,r ,u,f), the wave
equation for a massless scalar fieldF reads@11#

2F ~r 21a2!2

D
2a2sin2uG] ttF2

4Mar

D
] tfF

1F 1

sin2u
2
a2

D G]ffF1] r~D] rF!

1
1

sinu
]u~sinu]uF!50, ~3!

whereM is the mass of the black hole,a is its angular
momentum per unit mass, andD[r 222Mr1a2. Equation
~3! is equivalent to the special case of the Teukolsky eq
tion @12# for fields with vanishing spin weight.

The Schwarzschild case,a50, allows separation of vari-
ables in terms of the scalar spherical harmonicsYl

m(u,f)
without any requirements on a particular time behavior. T
solution of Eq.~3! can be written in the form

F5
1

r
Yl
m~u,f!C~ t,r * !, ~4!

wherer * denotes the tortoise coordinate

r *[r12M ln~r22M !. ~5!
or a
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Substitution of Eq.~4! into Eq. ~3!, with a50, yields the
one-dimensional wave equation

@2] tt1] r* r*2V~r !#C~ t,r * !50 , ~6!

with the potentialV(r ) defined by

V~r !5S 12
2M

r D F l ~ l11!

r 2
1
2M

r 3 G . ~7!

It has been shown, in both numerical and analytic studie
@1,3,5#, that at a fixed radius the solution of Eq.~6! will fall
off as t2(2l13) for large t and nonstatic initial data.

ForaÞ0, it is no longer possible to separate variables an
arrive at an equation similar to Eq.~6!. While the azimuthal
dependence ofF can still be described byeimf, a full sepa-
ration of variables exists only in the frequency domain, a
first demonstrated by Brillet al. @11#. In this case, both the
Teukolsky equation and Eq.~3! admit separable solutions of
the form

F5e2 ivte2 imf
sSl

m~u;av!Rlm~r ;v!, ~8!

where sSl
m are the spin-weight-s spheroidal wave functions.

However, since the objective of the present study is the lat
time dynamics, a decomposition based onv modes is not
suitable, and one is forced, in principle, to solve a two
dimensional evolution equation forF. Nonetheless, the case
of slowly rotating black holes circumvents the problem o
solving a two-dimensional wave equation.

The use of an azimuthal coordinate defined by asymptot
observers, as is the case with the Boyer-Lindquistf coordi-
nate, introduces unphysical pathologies near the horizo
even in the casea!M . A discussion of those pathologies
and their precise manifestation in the slow rotation limit is
given in the Appendix. Those coordinate-induced problem
are readily dealt with by adopting the Kerr azimuthal coor
dinatef̃ given by

df̃5df1
a

D
dr. ~9!

Using the ansatz

F[C~ t,r * ,u!eimf̃, ~10!

the wave equation~3! yields

2] ttC2
~r 21a2!2

s
] r* r*C1

4 imarM

s
] tC

2
2 @rD1 iam~r 21a2!#

s
] r*C

2
D

s F]uuC2cotu]uC1
m2

sin2u
C G50, ~11!

with
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4730 54KRIVAN, LAGUNA, AND PAPADOPOULOS
s[2~a21r 2!21a2Dsin2u, ~12!

and the Kerr tortoise coordinater * defined by

dr*

dr
[
r 21a2

D
. ~13!

For arbitrary angular momentum per unit mass, 0<a<M ,
the angular dependence ofC cannot be expressed by
Yl
m(u,f̃), because, in general, modes belonging to differe

values ofl are coupled. This follows directly from the angu
lar dependence ofs. Only if the initial data are prepared in
the form of Eq. ~8!, is the u dependence given by

sSl
m(u;av) at all times.
To first order ina, however, the angular momentum op

erator in Eq.~11! is the same as in the Schwarzschild ca
and the coefficients of the temporal and radial derivatives a
independent ofu. Hence, the modes belonging to differen
l decouple, and, under the assumptiona!M , one can seek a
solution of Eq. ~3! that possesses an angular dependen
given byYl

m(u,f̃) following a procedure similar to that used
in deriving Eq. ~4!. That is, one views the function
C(t,r * ) as containing a pieceC0(t,r * ), representing the
scalar field in the Schwarzschild background, and a seco
field C1(t,r * ) that takes into account the correction due
the rotation of the black hole to first order ina. Thus, the
ansatz for the solution of Eq.~3! has the form

F5
1

r
Yl
m~u,f̃ !@C0~ t,r * !1aC1~ t,r * !#. ~14!

In (t,r * ,u,f̃) coordinates, substitution of Eq.~14! into
the wave equation¹m¹mF50 and collecting powers ofa
yields, after separation of variables, the equation

h0C01a~h0C12r0!1O~a2!50, ~15!

where

h0[2] tt1] r* r*2V~r ! ~16a!

and

r0[2
2 im

r 4
@22Mr ] tC01r 2] r*C02~r22M !C0#.

~16b!

The system of equations forC0 andC1 is obtained by
requiring that the zero and first order terms of this expansi
vanish independently: namely,

@2] tt1] r* r*2V~r !#C050, ~17a!

@2] tt1] r* r*1V~r !#C15
2 im

r 4
@22Mr ] tC01r 2] r*C0

2~r22M !C0#, ~17b!

with V(r ) given by Eq.~7!. As expected, the equation for
C0 does not contain terms depending onC1, and the source
termr0 in the equation forC1 only depends on the solution
C0 of the zero order equation. The problem has then be
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reduced to solving the homogeneous equation~17a! for C0
and using this solution as a source in the inhomogeneo
equation~17b!.

Owing to the one-way membrane character of the hor
zon, the use of ingoing wave boundary conditions at th
horizon fits most naturally the solution of Eq.~17a!. The
asymptotic form ofC0 for r *→2` is then a wave with
constant amplitude propagating to the horizon.

As r *→2`, the source term behaves like
r0→2] tC01] r*C0 . Thus,r0→0 if C0→C0(t1r * ). On
the other hand, atr *→`, r0→0 due to the assumption that
C0 has compact initial data.

III. POWER-LAW TAILS

The numerical results presented here were computed w
a second order staggered in time evolution scheme. For co
sistency, a characteristic numerical integration was also use
and the results were in complete agreement.

In general, bothC0 andC1 are complex quantities. Ow-
ing to the purely imaginary coefficients of] tC0, ] r*C0, and
C0 in the source term in Eq.~17b!, ImC0 is coupled to
ReC1, and ReC0 to ImC1. Hence, without loss of general-
ity, one may assume ReC0[ImC1[0. Since the separation
variablem plays the role of a scaling factor for the source
term in Eq.~17b!, in the numerical calculationsm5M51 is
used.

The initial data forC0 consist of a bell-shaped pulse
propagating outwards given by

C0
ini5c1$@c2~r *2t !2r in* #@c2~r *2t !2r out* #%8 ~18!

for r in*<r *<r out* and vanishing otherwise. The parameter
have been chosen to yield a pulse centered atr *5100; that
is, c15100,c250.02, andr in,out* 51,3. On the other hand, the
initial conditions forC1 areC15] tC150. Numerical ex-
periments have shown that the tail behavior is not affecte
by the choice of initial conditions forC1.

As previously discussed, the behavior of both the poten
tial and the source term in Eq.~17b! makes it possible, in
principle, to impose ingoing boundary conditions at the ho
rizon and outgoing conditions at infinity, i.e.
limr*→7`C0,15C0,1(t6r * ). However, in a Cauchy evolu-
tion, such as the one under consideration, boundary con
tions are imposed at a finite distance@13#. Typically, the
computational domains used covered250<r *<2000 with
Dr *50.1. Sincer *5250 yieldsr22M;10212, imposing
the left ~ingoing into the black hole! boundary condition at a
finite radiusr * turns out to be a suitable approximation; both
the potentialV(r ) and the sourcer0 are negligible at
r *5250. A different situation is encountered at the righ
boundary. Even though the potentialV(r ) and the source
r0 vanish asr *→`, at the right boundary (r *52000) of the
computational domain, and especially for late times, the ou
going boundary condition is not a good approximation. How
ever, this boundary is at a sufficiently large radial distance
so it allows enough dynamical evolution range to obtain th
tail behavior before numerical boundary effects contamina
the solution.

Figure 1 shows several snapshots of the evolution fo
l51, 0<t<200. During the evolution, the initially outgoing
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FIG. 1. Evolution ofC0, r0, andC1 for l51, 0<t<200.~a! At t50,C15r050. ~b! At t520, the sourcer0 is dominated by the initial
shape ofC0. ~c! At t5100, a peak inr0 has developed due to the part of the initial pulse that was backscattered off the potential
propagating inwards.~d! At t5200, as a consequence of the peak ofr0 in ~c!, a hump appears in the trailing part ofC1.
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zero order functionC0 is followed by a pulse inC1 driven
by the sourcer0. In Fig. 1~a!, the initial bell-shaped pulse for
C0 centered atr *5100 is shown (C15r050). At t520,
Fig. 1~b! depicts the radial dependence of the sourcer0
dominated by the initial shape ofC0. As displayed in Fig.
1~c!, after an evolution time oft5100, a pronounced peak o
r0 has developed due to the part of the initial pulse that w
backscattered off the potential and is propagating inwards
Fig. 1~d!, at t5200, as a consequence of the peak ofr0, a
hump appears in the trailing part ofC1.

Before presenting the numerical results, a heuristic a
lytical argument is given, estimating the expected late-tim
behavior. The argument is based on the result that the l
time decay of waves propagating on curved spacetime
dictated by the spatial asymptotics of the potential@4#. The
argument does not include the contribution from the centri
gal barrier (l50). Starting with the original wave equatio
~1! one obtains, to first order ina,

@2] tt1] r* r*2V~r !#C1
2 imaM

r 3

3F22 ] t1r ] r*1S 12
2M

r D GC50, ~19!
f
as
. In

na-
e

ate-
s is

fu-
n

where

F5C~ t,r * !Yl
m~u,f̃ !.

Equation~19! contains two operators: the operator for scala
fields on Schwarzschild background~first term in squared
brackets! and a second operator~first order ina) containing
first order spatial and temporal derivatives.

If one views the late-time tail behavior at a radial positio
r , as the result of the scattering by a potential atr̂@r of a
wave originated atr o;r , the arrival time of the scattered
wave is approximately given byt'( r̂2r o)1( r̂2r )'2r̂ @3#.
At late times, the scalar fieldC}VT( r̂ )'VT(t), where
VT(r ,t)5V(r )1Va(r ,t) represents the ‘‘total’’ potential;
that is, the Schwarzschild potential~7! with l50 plus a cor-
rectionVa due to the rotation of the black hole. This correc
tion arises from the second term in squared brackets in E
~19!. Under the late-time and large scattering radius approx
mation, ] tC;C/t and ] r*C;C/r . Thus, Va( r̂ ,t)
; r̂231 r̂23t211 r̂24;t23. Therefore, C}V1Va;t23

sinceV;t23. This shows that both the Schwarzschild poten
tial and the perturbative potential contribute with the sam
power-law behavior. The centrifugal barrier adds at22 l fac-
tor to the tails@4#.
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The numerical investigation of the late-time behavior w
performed at different distances from the black hole. Pow
law behavior, with an exponent independent of the locat
of observation, was detected for bothC0 andC1 for differ-
ent multipole indicesl . As shown in Figs. 2 and 3, the nu
merically determined power-law exponents for the zero a
first order solutions are in good agreement: Forl51, the
power-law exponents are24.93 forC0 and24.92 forC1;
the theoretically predicted value is 5 for this case. F
l52, the exponents are27.02 and27.07, respectively, and
the corresponding theoretical value is 7. These results lea
a power-law exponent forF5 (1/r ) Yl

m@C01aC1# that is
unchanged with respect to the behavior on a Schwarzsc
background.

IV. RAPIDLY ROTATING BLACK HOLES

The next step is to consider the case of rotating bla
holes with arbitrary angular momentum per unit mass, i.
0<a<M . The objective here is to investigate whether t
Schwarzschild tail behavior is modified for rapidly rotatin
black holes. The starting point is the wave equation~3! writ-

FIG. 2. Log-log plots ofC0 andC1 for l51 at r *510. The
power-law exponents are24.93 for C0 and24.92 for C1. The
wiggles that can be seen fort,200 are remainders of the quasino
mal ringing of the black hole.

FIG. 3. Log-log plots ofC0 andC1 for l52 at r *510. The
power-law exponents are given by27.02 and27.07, respectively.
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ten in coordinates (t,r * ,u,f̃). The equation reduces to the
flat wave equation@2] tt1] r* r* #C50 for r *→6`, thus a
simple formulation of radial outgoing boundary conditions is
possible.

Equation~11! was evolved on a rectangular spatial grid in
rmin<r<rmax, 0<u<p/2. The numerical code was tested
for convergence and stability. As in the one-dimensiona
case, the mass of the black hole was set toM51. The inner
radial boundaryrmin was chosen so that the limit of the flat
wave equation was reasonably approximated~cf. Sec. III!.
The data atu50,p/2 were updated according to the behavio
of the particular mode under consideration. The values of th
field at the poles and the equatorial plane were determin
by the value ofm and the symmetry of the mode with respec
to the equatorial plane: Form50, ]uC(t,r * ,0)50 for all
t,r * . For nonaxisymmetric waves, given bymÞ0,
C(0)50 for all modes. At the equator, the condition for the
modes symmetric to the equatorial plane is given b
]uC(p/2)50 and the antisymmetric modes are characte
ized byC(p/2)50.

The initial data were given by ReC5] tReC50 and, us-
ing Eq. ~18!, ImC5C0

iniPl
m/Ar 21a2, where a particular as-

sociated Legendre polynomialPl
m had to be chosen accord-

ing to the mode of interest. For fixedm, a mixing of modes

FIG. 4. Log-log plots ofuCu for m51, a50.99 atr *510 for
different equidistant angular directions fromu5p/16 to u5p/2.
The initial angular dependence was given by ImC;P1

1;sinu. For
large times the time dependence is given byuCu;t2m, where
m54.8760.005 for all observed angles. The theoretical power-law
tail exponent in the Schwarzschild case is given bym55.

FIG. 5. Same as in Fig. 4, but form52 and the initial angular
dependence given by ImC;P2

2;sin2u. For large times the power-
law exponent ism56.9860.004 for all observed angles. The theo-
retical value in the Schwarzschild case is given bym57.
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belonging to different values ofl will occur during the evo-
lution if the initial data do not correspond to the lowest po
sible mode ofl .

In the following figures, the late-time behavior ofuCu at
r *510 is displayed for different initial multipoles for an
angular momentum parameter ofa50.99. Figure 4 shows
the late-time behavior form51. Equidistant angular direc-
tions were chosen in the interval fromu5p/16 to u5p/2.
The initial angular dependence corresponds tol5m51. The
late-time behavior can be described byuCu;t2m, where the
exponent is given bym54.87 for all the displayed angles. In
Fig. 5 the analogous situation is shown form52 and an
initial pulse corresponding tol5m52. In this case the
power-law exponent for the observed angles ism56.98.
That is, the power-law exponents governing the late-tim
behavior for a50.99 do not exhibit a significant chang
when compared to the Schwarzschild case, in which
theoretical power-law tail exponents are given bym55 for
l5m51, andm57 for l5m52. In both cases the initial
pulse used for the two-dimensional evolution is given by t
lowest-allowed mode for fixedm.

The situation is different for the casel52, m50, de-
picted in Fig. 6. Here, the initial pulse is not given by th
lowest mode withm50 that is symmetric with respect to th
equatorial plane, corresponding tol50. Instead, the initial
angular dependence is given by ImC;P2

0;3cos2u21.
Here, mixing of modes occurs and the late-time evolution
dictated by the lowest mode. The sink on the right-hand s
is caused by the transition to the lowest mode. For la
times the time dependence is given byuCu;t2m, where
2.88<m<2.92 with ^m&52.91 when averaged over all ob
served angles. In contrast with this result, the correspond
Schwarzschild case exhibits no mixing of the modes, and
theoretical power-law tail exponent is given bym57 for
l52,m50.
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APPENDIX

The behavior of the wave equation near the horizon whe
written in Boyer-Lindquist coordinates is illustrated here, in
the context of the slow rotation approximation. The manifes
tation of this behavior in the solution of the initial value
problem is analyzed in the limitr→2M .

The smalla expansion of equation~3! using the ansatz

F5
1

r
Yl
m~u,f!@C0~ t,r * !1aĈ1~ t,r * !#, ~A1!

yields the system of equations

@2] tt1] r* r*2V~r !#C050, ~A2a!

@2] tt1] r* r*2V~r !#Ĉ15 i
4mM

r 3
] tC0 . ~A2b!

Upon examining equation~A2b! a problematic feature
emerges. The source term on the right-hand side does n
vanish in the limitr *→2`. More precisely, the asymptotic
form of the equation at the horizon is
(2] tt1] r* r* )Ĉ15 ( im/2M2) ] tC0. Using null coordinates
v5t1r * andu5t2r * , and assuming a purely ingoing so-
lution C0(v), one obtains

Ĉ1~u,v !5b~u!C0~v !1 f 1~v !1 f 2~u!, ~A3!

where

b~u!52
im

8M2u, ~A4!

and f 1 , f 2 are solutions of the homogeneous equation.
The presence of this growing mode in the system may

first appear puzzling, since the ansatz~A1! is related to Eq.
~14! simply by an angular coordinate redefinition. Yet, the
singular nature of the transformation~9! near the horizon is
the source of the growing mode. A direct comparison o
systems~A2! and~17! reveals that the two sets of equations
are equivalent, withĈ1 given by

Ĉ1~ t,r * !5C1~ t,r * !1c~r !C0~ t,r * !, ~A5!

where

c~r !5
pm

2M
2

im

2M
lnS r

r22M D . ~A6!

The solution of Eq.~17b! with the correct source term is
denoted byC1(t,r * ). The coefficientc(r ) is singular at the
horizon, hence bounded solutionsC0 ,C1 give rise to an
unbound combination forĈ1. The linear combination~A5!
has indeed the horizon blowup demonstrated by Eq.~A3!.
This follows from the fact that

m
y

.
for
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limr→2Mc~r !5 limr→2Mb~u!' limr→2M

im

2M
ln~r22M !.

~A7!

An intuitive explanation of this pathology lies in the twistin
of azimuthal directions defined at infinity, as seen by an
g
in-

falling observer near the horizon. The wave evolution is well
behaved in a local frame, yet it appears singular in a coordi
nate system that winds itself infinitely many times around the
black hole. The singularity of the evolution in the Boyer-
Lindquist coordinates is introduced entirely through this sin-
gular ~at the horizon! coordinate transformation.
-

@1# R. H. Price, Phys. Rev. D5, 2419~1972!.
@2# C. T. Cunningham, R. H. Price, and V. Moncrief, Astrophys.

224, 643 ~1978!.
@3# E. S. C. Ching, P. T. Leung, W. M. Suen, and K. Young, Phy

Rev. Lett.74, 2414~1995!.
@4# E. S. C. Ching, P. T. Leung, W. M. Suen, and K. Young, Phy

Rev. D52, 2118~1995!.
@5# C. Gundlach, R. H. Price, and J. Pullin, Phys. Rev. D49, 883

~1994!.
@6# R. Gomez and J. Winicour, J. Math. Phys.33, 1445~1992!.
@7# C. Gundlach, R. H. Price, and J. Pullin, Phys. Rev. D49, 890

~1994!.
J.

s.

s.

@8# T. Apostolatos, D. Kennefick, A. Ori, and E. Poisson, Phys.
Rev. D47, 5376~1993!.

@9# R. H. Price~private communication!.
@10# P. Papadopoulos, P. Laguna, and W. Krivan, ‘‘Late-time Be-

havior of Scalar Fields with Multi-dimensional Potentials’’~in
preparation!.

@11# D. R. Brill, P. L. Chrzanowski, and C. M. Pereira, Phys. Rev.
D 5, 1913~1972!.

@12# S. A. Teukolsky, Astrophys. J.185, 635 ~1973!.
@13# P. Papadopoulos and P. Laguna, ‘‘Cauchy-Characteristic Evo

lution of Scalar Waves in a Schwarzschild Space-Time’’~in
preparation!.


