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Quenched chiral perturbation theory for baryons
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We develop chiral perturbation theory for baryons in quenched QCD. Quenghiaglimination of dia-
grams containing virtual quark loops achieved by extending the Lagrangian method of Bernard and Gol-
terman, and is implemented in a theory where baryons are treated as fixed velocity sources. Our method
requires that the octet baryons be represented by a three index tensor rather than by the usual matrix field. We
calculate the leading nonanalytic corrections to the masses of octet and decuplet baryons. In QCD these are
proportional toM 2. We find that quenching alters thé 3 terms, but does not completely remove them. In
addition, we find nonanalytic contributions to baryon masses proportiond,.tandM 2 In M _. These terms,
which are artifacts of quenching, dominate over khd terms for sufficiently small quark masses. This pattern
of corrections is different from that in most mesonic quantities, where the leading nonanalytic terms in QCD
(proportional toM# InM_) are removed by quenching. We also point out various peculiarities of the
guenched theory, most notably that thdaryon can decaif kinematically allowed, in the sense that its two
point function will be dominated at long Euclidean times by a nucleon plus pion intermediate state.
[S0556-282(96)04519-5

PACS numbgs): 12.38.Gc, 12.39.Fe, 12.39.Hg, 14.2@.

I. INTRODUCTION AND SUMMARY Here M, is the mass in the chiral limit, and , is a generic
pseudo Goldstone boson mass. The dominant contributions
A central goal of numerical simulations of lattice QCD is come, in fact, from th& and » mesons. The; are combi-
to calculate the hadron spectrum and compare with experirations of coefficients appearing in the chiral Lagrangian.
ment. Agreement between simulations and experiment woul@he expansion consists of terms that are analytic in the quark
provide a crucial test that QCD is the correct theory of themasses—those proportional  toM 2 (m,+my) and
strong interactions in the low-energy domain. Present simuM 4_and nonanalytic terms proportional tt3 and
lations have yet to achieve this gdalargely because of M%InM_ . The latter arise from infraredR) divergences
various approximations that must be made to make the caln loop graphs, and thus are multiplied by constdntsand
culations computationally tractable. Most important of thesec,, ) that are determined in terms of leading order chiral co-
is the use of the quenched approximation, in which the fermefficients. For example;; depends on the pion-nucleon cou-
ion determinant is approximated by a constant, so that therplings F and D (defined precisely below Thus, if one
are no internal quark loops. The other significant approximaknows the lowest order chiral coefficients, one can predict
tions are the use of quarks with masses heavier than theihe form of the leading nonanalytic terms. The same is true
physical counterparts, and the use of finite lattice spacing. for mesonic quantitiese.g.,M 2 andf ), but with baryons
This paper is the first of two in which we study the im- the leading nonanalytic terms contain one less powe¥ of
portance of the quenched approximation for baryon massethan the first analytic correctiori® 3 versusM ), and are
In this paper we develop chiral perturbation theory for bary-thus enhanced in the chiral limit, while with mesdaas with
ons in the quenched approximation and calculate the domihe c,_ term above the enhancement is only logarithmic.
nant contributions from one-loop graphs to both octet and In the quenched approximation we find that the expansion
decuplet baryon masses. In the companion paper we wori different:
out some implications of these resul]. In particular we
use them to estimate the size of quenching errors in baryons, Mg, —=M3+ 6cIM .+ ¢ M2 InM ,+ cIM2 + cIM3
. ary 0 1V 2LV T 2V 3V
and show how they lead to a better understanding of how to

do chiral extrapolations in quenched QAQRQCD). This +cd MAInM ,+ iM%+ -+ (1.2
knowledge has already been useful for analyzing results of
simulations{2]. The constants are now different combinations of the coeffi-

To provide a context for the quenched results, it is usefukients in the quenched chiral Lagrangian. We have calculated
to recall the general form of the chiral expansion of baryonthe constants{, c§,, cJ, andcd, all of which are given in
masses in QClsee, for example, Reff4—6]): terms of lowest order coefficients. We have not calculated
cJ., but for sufficiently smallM_ (which, in numerical
simulations, is adjustable¢he M j‘, terms should be a small
correction compared to the lower order terms.

The dimensionless constad which multiplies thec{
andcj, in Eq. (1.2, is a pure quenched artifact. It appears

tOpinions differ as to how close we are to reaching this goal. Foralso in mesonic quantities, and its likely magnitudé4<0.1,
example, Ref[1] is optimistic while Ref[2] is more pessimistic.  although there is no definitive determinatigfi. In Eq. (1.2

Mpary=Mo+C,M2+csM3+cy M% INM +c,ME+---
(1.1)
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it multiplies terms that will dominate the corrections for QCD to QQCD by constructing a Lagrangian symmetric un-
small enoughM .. If such terms are significant, then we der the graded group SU|3), XSU(3|3)r [8]. The latter
should not trust the quenched results. Fortunately, as distep corresponds to the addition of “bosonic quark” degrees
cussed in the companion paper, the numerical evidence sugf freedom whose internal loops in Feynman diagrams can-
gests that these terms are small, and so are largely curiositie=el those of the ordinary quarks.

They do, however, give another example of the sickness of

the quenched approximation in the chiral limit, a phenom- A. Review of results for QCD

enon first pointed out for mesonic quantities in R¢&9]. ) ) .
Of more practical interest is the fact that the nonanalytic Ve Start with the low-energy effective theory for QCD, in
terms proportional tV 3 survive quenching, albeit multi- which the pseudo Goldstone bosons are coupled to octet and

plied by different constants than in QCD. Naively, one mightdecuplet baryons. The Goldstone fields are g_rou+ped in the
expect meson loops to require the presence of underlyingSual 3<3 matrix m(x) (normalized so thatr;s=K "/v2).
quark loops, and thus that quenching would remove all thd "€ Octet baryons are similarly grouped in the3 Dirac
M 3 terms. This is indeed true for mesonic quantities, wherdi€!d B(x) (with B,3 normalized to the protan Finally, the
only artifacts proportional t@ survive. Why this is not true  SPiN-3/2 baryons are represented by a Rarita-Schwinger ten-
for baryonic quantities is explained in Sec. IIl. sor Tj(x), symmetric in its three flavor indicesvith Ty,

The presence of thel 3 terms has practical implications. normalized to theA™ ™). Fixed velocity fields are defined by

When doing chiral extrapolations to quenched results one B _ ;

) . : . X)=expimgduv ,Xx*)B(X),
should fit to a form including these cubic terms. It turns out o(X) Rimgdv,x*)B(x)
that certain linear combinations of baryon masses have ex- vron . g
pansions beginning @ (M 2), and these combinations can Tu(x)=explimgdv ,x*)T"(x), 2.1

be used, in principle, to extract the constanfls With these : . e i
in hand, we can then make estimates of the errors in baryoWhereU IS the vel_ocny_, andmg 1S the mass of the octet
g?ryons in the chiral limit. As shown in Ref4], in the

masses due to quenching. The idea is to compare the size mg—oe limit, the Dirac v matrix structure of the theory can
the contributions of pion loops in the two theories, and as; B ' Y y

sume that any difference is a quenching error. The uncerl-)(.3 ehmm_ated in favor C.)bﬂ and the spin operatois; . We
will explain the properties 08/ as they are needed.

tainty in these error estimates can be reduced by forming To construct a chirally invariant Lagrangian, we use fields

suitable combinations of baryon masses. Results from a pil }?at have simple chiral transformation properties. These are
study along these lines are presented in the companion paper. P Co prop '
e exponentiated pion fields

In present simulations, the splitting between the octet an
decuplet baryons is substantially smaller than the pion mass, _ . _ .
M,—My<M .. Thus in our calculations we trebt ,— My 200=exd2im00/f], - f00=exdin(x)/f], (2.2
as a small parameter, and expand about the limit that thf;f1e axial vector and vector currents
octet and decuplet baryons are degenerate. Eventually, simu-
lations will be done in the opposite limit, in which case the 1 Foet 1 $oet
should be treated as heavy and integrated out of the effective A= 3(80,86 =89,8), V,=2(80,8 +¢& aﬂg)'z 3
theory. As explained below, it is straightforward to adapt our 23
results to this new limit or, indeed, to any intermediate valu
of (My—My)/M .. An interesting phenomenon that occursethe mass terms
whenM <M, —My is that the quenchedl decays. In Sec. ME=eMet+ eM M =diagm. .m..m 2.4
Il C, we explain why this happens, and why it might not EME=EME, gmy.Mq,ms), (2.4
have been expected. and the covariant derivatives of baryon fields

Finally, we note that the methods presented here can be
extended straightforwardly to “partially quenched” theories, DFB=g"*B+[V#,B], (2.5
i.e., those in which there are internal quark loops, but the
masses of the valence and loop quarks differ.

The outline of this paper is as follows. In the following
section, we develop the quenched chiral Lagrangian for bary-

ons. We then, in Sec. lll, present the Feynman rules ang|ere as in the following. we have dropped the subsaript
sketch a sample calculation. Section IV contains our results ..’ 9. bp P

for barvon mass renormalizations on the heavy baryon fields—it is always implicitly present.
y ' Under SU(3) XSU(3) the meson fields transform as

DﬂTﬁk:aﬂTrjkﬂw): Ti”,jk+(w)} Ti”j,k+(w)§ Ti”“((, . )
2.6

t
II. CHIRAL LAGRANGIAN FOR QUENCHED BARYONS 2-LERY 2.7)

We calculate the quenched chiral corrections to the E—LEUT(X)=U(x)&RT, (2.9
baryon masses using an effective Lagrangian of “heavy”
baryons coupled to the low-lying pseudoscalars. The apwhere U(x) is defined implicitly through Eq(2.9. A,
proach is a synthesis of two techniques that have recentlpt™, B,, and D*B,, which are octets under the diagonal
appeared in the literatur€l) Baryons are treated as fixed SU(3), all transform like
velocity sources, thereby eliminating the baryon mass term
from the Lagrangiaf4], and(2) the theory is extended from B,(x)—U(x)B,UT(x). (2.9
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Finally, the decuplet field and its covariant derivative bothHere 7 contains the ordinary mesongd), 7 the mesons

transform as tensors: e.g., composed of bosonic quarks §), and y and X' the “fer-
_mionic mesons’(q q andqq respectively. The mass matrix
ThHe— Ui UjmUinT V- (2.10 Is extended taV =diag(m,,my,ms,m,,my,ms), while the

definitions of axial vector and vector currents retain the same
forms (2.3). The transformation properties of the fields are
unchanged, except that the matridesR, andU are now
elements of (3|3).

Here, and in the following, we do not distinguish between
raised and lowered flavor indices. It will always be clear

which indices transform_ witl) and Wh.'Ch withU ; Because of the anomaly, the chiral symmetry of the quan-
The most general chirally symmetric Lagrangian can now,,, theory is reduced to the semidirect product
be written down as an expansion in momenta and quar U(33), XSU(313)g] ®U(1). Thereduction in symmetry

masses. The leading analytic and nonanalytic corrections @y ows the quenched chiral Lagrangian to contain arbitrary
the baryon masses are obtained from the terms functions of the field

£:£7T+£B7T+£T’7TY :i =i r__ =
(2.1 O 73 StrCD—‘/z(n ') (2.19
—1¢2 t + _
Lo=3fr(0"2d,2 +2uM"), [#' is the usual SI(B) singlet mesony’ its ghostly counter-
_ _ part], since®, is invariant under the quantum, though not the
Lg,=i tr(Bv-DB)+2Dtr(BS*{A,,B}) classical, symmetry group. Putting this all together, one ar-
rives at the following quenched replacement for Efj11):

+2Ftr(BSM[A,, ,B]) + 2ubptr(B{M*,B}) ,

+2ubetr(BLM™,B])+ 2ubotr(BB)tr(M ™), L) =7 [st(3, 3 STV (®) +2ust( M T)V(Po)]

(212 +agVs(Pg)d,Pod Do—miVo(Do) 5, (2.16
L1=—1T"(v-D)T,+AMT'T,+2HT"S*A,T, where str denotes supertrace. The potentials can be chosen to
— — — — be even functions of®,, and are normalized as
+C(T"A,B+BA,T)+cT"M ' T,—oT'T,(M"). v, (dy)=1+0O(D2). We will not, in fact, need the higher
(2.13  order terms in these potentials. Our notation follows that of
Bernard and Goltermdi8], except that we use, instead of

We have followed the notation of Jenkins and Mandgy ~ # (following Ref. [9]) and ay, instead ofa. We also differ
except for the octet mass terms in which we follow Bernard™0m [8] in choosing the normalization dfsuch thaff .~ 93

et al. [6]. The traces involving the octet baryon are overMeV. . ) ) )

flavor indices. The contractions of flavor indices for terms At this point the developm(_ent(g)lverges from that in QCD.
involving decuplet baryons are not shown explicitly—we !N QCD, the last two terms irL™ lead to wave-function

discuss them for the quenched Lagrangian below. FinaIIyE]enormalization and a mass shift for the. The 7' is then
AM is the decuplet-octet mass splitting in the chiral limit. N€avy, and can be integrated out of the theory, giving the
usual Lagrangia ; (2.11). In QQCD, by contrast, there is a

) ) cancellation between diagrams with more than one insertion
B. Quenched chiral Lagrangian for mesons of eitheray, or my on any’ (or 3') propagatof8—10]. Thus
We now consider the quenched theory. Bernard and Golthe 7 and7’ remain light, and thex, andmj terms must be
terman have developed a Lagrangian framework that praincluded as interactions i8(?). This leads to a more singu-
vides a consistent means for calculating the physics of théar behavior of a number of quantiti¢s.g.,m, andfy) in
low-lying pseudoscalars in QQCI[8]. We briefly review the chiral limit. Furthermore, the new vertices destroy the
this technique, introduce a compatible representation for thgsual power counting. Higher loop diagrams involviag
baryons, and then construct the quenched baryon Lagrangi@nd m, are not suppressed by powers of A, or m_/A |
analogous to that of Eq$2.12), (2.13 above. where A ~1 GeV is the chiral cutoff. We assume tha}
QQCD can be described by the addition of bosonic quarkand my/A, are small, and work only to first order in these
degrees of freedor;, one for each flavor of light quark. parameters.
They have the same masses, one for one, as the original Finally, although we have been talking about thie it is
quarks,q; . Integrating over thej; in the functional integral not, in fact, a mass eigenstate unless the quarks are degener-
yields a determinant that exactly cancels that resulting fronate. Instead, the flavor-neutral eigenstates are those with fla-
the quark integration. This theory is symmetric, at the clasvor compositionuu, dd and ss, with squared masses
sical level, under the graded group U83, XU(3|3)z, and M 3,=2um, (q=u, d, s). These replace ther, and 7 of
this symmetry dictates the form of the low-energy effectiveQCD. The flavor nondiagonal mesons are the same in both
theory for the pseudo Goldstone bosons. To construct thiheories, having the forrg;q;, with M = s (m;+m;).
theory, one replaces the fieled(x) in the definitions2.2) by
the field®(x), given in block matrix form as C. Baryon representations in quenched QCD
To construct the chiral Lagrangian for baryons in QQCD,
_ (214 We need to generalize the octet and decuplet fiBldsid T#.
The corresponding quenched fields will contain additional

+
T X
o=

X T
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baryons with compositiongqg, qqq, andqqq. Even if we B9 ot BE (2.22
restrict the external states to be the usgal baryons, the 1k =ik Pk '

extra baryons will appear in loops. Thus we must mclude'\IOW the problem is clear—the operata{j' creates both

these. states in our effective Lagranglan. Just as when Cor§U(3) octetsand singlets, but we only want the former. The
structing the baryon part of the chiral Lagrangian in QCD, all”. . ; e

. singlet is obtained by contracting” with &;; . It can be
we need to know is how the states transform under the VeCtOcranceIIed by svmmetrizing the last two indJicesli?'f as is
subgroup SU(B)y (i.e., L=R=U). The transformations y Sy 9 '

. , . .done in Eq.(2.20. The octet part is, up to an overall con-
under the full group are simply obtained by using the posi- . .
tion dependent)(x) defined in Eq(2.8). Thus we need to stant, just the standardx® matrix used to represent baryons

determine the irreducible representations of(%8) that, in the QCD chiral Lagrangian. Using the normalizations dis-

when restricted to the quark sector, contain only an octet or Igsussed below, the explicit relation betweBhand this field
decuplet of SIB).
We begin with the octet, which is the more difficult case

since it has mixed.symmetry. We construct repregentations Bijlr=—= (gijk,BE'Jrgikk,Br’)_ (2.23
using the “quark” fieldQ=(u,d,s,u,d,s) and its conjugate V6

Q. Under SU3|3), these transform as fundamental and an- ] . ]
tifundamental representationsl respective|y: We have convinced ourselves thattransforms in an ir-

- reducible representation of $8)3), . It has dimension 70,
Qi—U;Q; and Qi—>QJ-UJTi (i,j=1,6. (217  and decomposes under &Y as follows: an8 each ofqqq
andqqq states, and 4+8+8+10 each ofgqq andqqq
We now define the tensor spin-1/2 baryon fidg,(x) to states. It satisfies the symmetry propertieasily determined
have the same transformation properties as the following oprom the above definitions
erator constructed from the generalized quark fields: B o1
Bije=(=)"" B,

Biyjkw[QiayanB’b IZYC_ ia'an%C 5Yb]8abc(c7’5)aﬁ- (2-18 OZBijk+(_ )ij +1Bjik+(_ )ij +jk+ki+lBk]i ) (2'24)
HereC=iy,y, is the charge conjugation matrix, aad b,
andc are color indices. We have raised the color and spino
indices on the fields for the sake of clarity, and suppresse
the common position argument of all fields. The transforma-
tion of B;; under SU3(3), is defined through the right-hand
side (RHS) of Eqg. (2.18—the Q’s are first rotated “inside”
the operator, and then thd’'s are moved to the outside,
giving rise to a grading factor because the off-diagonaB3
blocks of U are Grassman variables. The result is

These relations show whjg cannot be reduced to a two
[ndex form in QQCD—it has no grading independent sym-
etry properties under the interchange of two indices.
The need for a three-index tensor makes sense also from
another point of view. The major aim of the formalism we
are constructing is to allow identification of contributions to
mass renormalization that contain internal quark loops. To
do this we need to be able to follow the flow of flavor
through the Feynman diagrams. This is not straightforward
using the standard two-index form f&, since one of the
K (219 indices carries the flavor of two quarks. Using the three-
index field B, by contrast, there is a one-to-one correspon-

Here we are using the following notation in the grading fac-dence between the terms that comprise a given diagram in
tor: if the index on the field is “anticommuting’(in the  quenched chiral perturbation thed@ChPT and the flow of
range 1-3then the index equals 1 in the grading factor; if quark flavor. In practice what happens is that all diagrams in
the field index is “commuting”(in the range 4-the cor-  which the quark flow contains internal loops are cancelled by
responding index equals O in the grading factor. the corresponding diagrams within the loops.

This construction of3 automatically yields a representa-  The representation containing the spin-3/2 baryons is sim-
tion of SU3[3)y, since it is written in terms o)’s. The  pler to construct. The decuplet baryons are already repre-
Dirac and color structure of the operator enforce the consented by a symmetric three-index tensor in QCD. One only

straints coming from the fact that creates spin-1/2 baryons needs to extend the range of the indices, and apply the ap-
which are color singlets. The second term on the RHS of Edpropriate symmetrization. We find that

(2.18 is required in order to make the representation irreduc-
ible. To see this, consider the operator that results when the Qz]ijk~[Q?'an""ng'°+ QF'ij’/'CQﬁ'a
indicesi—k are restricted to lie in the range 1-3: b

+Q7°Q* QR leapd Cy*)g,. (225

This transforms under SB[3), exactly as does3;, , Eq.
(2.19. It has the symmetry properti¢dropping Lorentz and
Dirac indices for clarity

|

Bij|r= Bl + Bi; (2.20

(R indicating restriction, where the usual quark baryon op-

erator is defined to transform as in

Ti=(—) 1" 1T = (=) 17, . 2.2

B0 °afPa) leand Crs)ap- (2.2 k= = (0 225
These imply that the representation is 38 dimensional, con-

BY is antisymmetric under« j, which allows the first two taining a10 of qqq states, a0 and an8 of qqgs, an8 and

quark indices to be combined into an antiquark index alof qqg’s, and a lonel qqqg. When the indices are re-
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stricted to the range 1-3, the QQCD tensor is proportional té-or example, &5AB5) bilinear with A coupling to the second
the decuplet tensor used in QCD, and we choose normallzaﬂdex of By is redundant due to the symmetry
tions so that Bij=(— 1)”‘“[3",(J Other terms simply vanish, e.g., con-
structlons involvingBy;; T -
Tl r=Tijk - (2.27) We can now write down the relevant part of the quenched
Lagrangian for baryons. It consists of

D. Quenched chiral Lagrangian for baryons

Q)_
To construct the quenched generalization of Hgs12 LR =By DB)JFZQ(BS”BA HZB(BSMA B

and (2.13 we need quantities that are invariant under +2y(BS*B)St(A ) + ay(BBM™)
SU(3|3), XSU(3|3)g. These we construct from the fields _ M
and 7, their covariant derivatives, and their conjugates. The + Bu(BM*B)+a(BB)st( M™) (2.39
covariant derivatives of both fields take the same form, ex-
emplified by and
DHBij= "B+ (VA Birj+ (=) U FI(VH) By L= —i(?(u-D)Y’V)JrAM(?TV)JrZH(?S“A#TV)
+ (=) DSORGB (2.28 B q(TA,B)+(BA,T) ]+ 2 (T'SMT,)str(A,)
whereV* is the vector current defined by the quenched gen- +c(?/\/l+7',,)—a_(?7;)str(/\/l+). (2.39

eralization of Eq(2.3). The grading factors arise because, in

order to compensate for the position dependence obitse  Each term can be multiplied by an arbitrary even function of

the V's must act “inside” B—i.e., as if they were coupled &, but the higher order vertices these functions produce do

directly to the generalized quark fields in EQ.18. These not contribute at the_order we are working. There are also

covariant derivatives transform under @3), xSU(3|3)z in  terms proportional t¢B8)d3 and (BB)d,®y#'®y, but these

the same way as the fields and 7. The conjugate baryon do not contribute to mass renormalization at one loop. In

fields are defined by quark-flow language, these are double hairpin vertices and

- lead to closed quark loog8]. Finally we note that st&,) is

ngiN[Qz’cQ,ﬁ'b = QR QI Q" eabd Cys)as: (229  proportional toa,d,, so possible additional terms involving
the latter are not independent.

Ti o ~[Qy Qjﬁ'bQ_i“'avLQ_ﬁ”aQ_j%cQ_F’b The quenched Lagrangiaf®.38 and (2.39 looks very
b mar.c similar in form to that for QCD, Eqs2.12 and(2.13. To
+QETQ" Q" JeapdC¥*)py» (230 make the correspondence precise we need to pick out the

parts of £ and £ containing onlyqqq fields. This is
straightforward for the terms involving the spin-3/2 field,
since both quenched and full fields have three indices, so the
structure of the allowed contractions is the same. For ex-
ample, using Eq(2.27), one finds that

and both transform in the same way: e.g.,
Bl (— 1)1 041+ l,k,uz,li.,jui*,i, (2.31)

Using the group transformation properties, it is straight-
forward to catalogue all the bilinear invariants. We use the

compact notation (T'SAT)[R=T"SA,T,. (2.40
BrRY=RET B Thus the coefficienta M, ¢, and’ play the same role in the
(BUB)=Biiilo"Biji 5 (232 quenched Lagrangian as they do in the full theory. It is im-
o _Ra T BA R portant to realize, however, that there is no reason for the
(BEAB)=Bigil'o"Aii Birj . (233 Coefficients to have the same values in the two theories. De-
— P kK spite this, we use the same symbols so that the physical
(BI'BA)=B;T', Akk’Bijk’,BX(_) ., (234 significance of each term can be more easily recognized.
Terms involving the spin-1/2 field require more work to
(77‘FT) T, T T sTh ik (2.39 interpret. We need to convert from the three-index tergor
to the matrixB. Using Eq.(2.23 we find
(TTA'T,)=T¢ JJUAL T (2.36 _ _
_ (BB)|r=1r(BB), (2.4
(BUAT ) =BT AL T (2.37

(BBA)|g=5tr(BAB) + £tr(BB)tr(A)— ;tr(BBA), (2.42
There is also the conjugate of the last quantity, i.e.,

(T‘FAMB). In the above constructiong) is an operator (B_AB)|R=—%tr(EAB)Jr%tr(aS)tr(A)—%tr(aBA), (2.43
transforming like the axial curremt,,, andI’ is an arbitrary
Dirac matrix. In fact, the change to fixed-velocity fields sim-
plifies the Dirac structure as for QCD, and in practice only
the spin operato5, enters in place of’. Various possible _
terms are absent from the list above because they can W&"A,B)|g=— \/—TVA B=- \/—TIJkAv,anjj/airirk.
rewritten in the above form using the symmetried5adnd7. (2.45

(BB)Sti(A)|g=tr(BB)tr(A), (2.44
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The first of these relations is actually the condition that set&xternal lines. As we show explicitly below, the symmetry

the normalization in2.23. From Eq.(2.45 we see that the relations are automatically maintained on internal lines by

coefficientC has the same significance in quenched and fulthe structure of the baryon propagators.

QCD. As for the other coefficients, the quenched Lagrangian We are interested in diagrams in which the external bary-

is equal to that for QCD, Eq2.12), if we make the identi- ons areqqq states. Thus, we need to display the independent

fications fields explicitly when the indices df and7 lie in the range
1-3. Using Egs(2.23), the octet baryons are

p=bi, nN=byy,
apy=4u(3bp+bg), Bu=2u(—3bp+bg), _
’ ’ (246) E+:b13, EO:bH_), 2 :b23,
(3.2
o=2u(bg+bp—Dbg). E%=bs;, E =bay,,
With the exception of the result foy, we use these relations AO= b,

to reexpress our quenched results in term®of, by, be,

andb, rather thary, B, ay, By, @ndo. This allows a more

direct comparison with results from chiral perturbation

theory in QCD. We reiterate, however, that the values of the

coefficients will be different in the two theories. bij= \/EB”J- = \/gBiji =— \@BJ” (i#j), 3.2
With all these correspondences in hand, we can now see

the most important difference between the Lagrangians in b . = 3(Bioat Boat) = — \3Baio= \3( Brart B
QCD and QQCD, namely, that the latter has two additional ) v3( 123+ Bzg) V3 312 v3( 137 13

where we have used the symmetry relations to define

coefficients,y and y/. Equation(2.46) shows thaty is non- =— \/53321, (3.3
zero in QCD, but that it is not independent BfandF. In
QQCD, by contrasty is an independent parameter. Both the b(—=(Bioa— Baz) = (Brar— Bana). (3.4

new terms involve a baryon bilinear coupled to
str(A,)«d,P,, and thus represent couplings of thé and . . ' .
7' to baryons. These are independent couplings becaus';eg rf;?ihdeeﬁgzgttté?\g;nﬁetlge fr(;arla;?;n:olghysmal fields is just
there is no symmetry connecting the couplings of ®lbc- ' P

tet and singlet mesons. In the quark-flow language, these are

“hairpin” vertices—theq andq (or g and§) in the %' (or AV =Ty, 3 =3T45= V3T3= V3 a1,
7') annihilate. Such couplings are present in QCD, but are (3.5
absent from the chiral Lagrangian because #é@s heavy 0 =Tas, =*o_ \/57133: \/57—313: \/57331'

and can be integrated out.
We now present the Feynman rules, beginning with the

ll. FLAVOR FEYNMAN RULES AND A SAMPLE “pion” propagator
CALCULATION
Calculations of Feynman graphs separate into “Dirac” P _Ppi= xl (_)in+1T r|n (3.6)
and flavor parts. The former are standard, using the Feynman m 'op%— Mizj 2 i '

rules and methodology worked out in R€i4,5]. We do not
give further details here. The flavor part of the calculation ISHere. lines joining indices denote Kronecker deltas, so that

new, and we have developed a diagrammatic method fafe fiayor factor iss, s, . The form of the grading factor
carrying it out. This method not only simplifies the calcula- follows from the propert%es of the supertrace.
tions, but f_;\lso aI_Iows one to trace the underlying quark 14 gerive the baryon propagators, we write each compo-
flows. In this section we explain our method, and sketch &ent of 3 or 7'in terms of the independent fields, and then
sample calculation. use the fact that the propagator is diagonal for these fields. A
useful trick for obtaining the relative factors, and particularly
A. Feynman rules the grading factors, is to think in terms of the underlyi@Qg

The quenched baryon Lagrangian is written in terms offi€lds. For example, for the spin-1/2 propagator, we rewrite
the three-index tensor fields;, and7;; , each of which has the field as
216 components. The symmetry relatidiisgs. (2.24) and _
(2.26] reduce the number of independent fields to 70 and 38,  Bijx~[QiQ;Qx— (—1)1*Q;Q4Q;1x spinxcolor, (3.7)
respectively. One could proceed by expressing the Lagrang-
ian in terms of these independent fields. By construction thénsert_this relation and its conjugate into the propagator
baryon propagators would then be diagonal and normalizedB,,,3'¥), and then compute the ordinary Wick contractions
The vertices, on the other hand, would involve complicatedf the Q vectors. Reordering th@’s to form singlet combi-
flavor factors. In practice, we find it more useful to reexpressations results in a common spin and color factor multiplied
the Feynman rules in terms of all of the component8ahd by a constant which includes the grading factors. In this way
7, and impose the relations between the components only orwe obtain
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= i (1/2)
By =——B;; = mj:lmnz]ka (3.9
Imn Il mn I mn
1 i ) ;
Fore = 52| | | - X sy
ik PGk iik
I mn it mn Ilmn
_ (=) >€< ()i >§< 4 (—)itikb >~< ’
ik igk ik (3.9
1P
Ty === T,,;, = (oF) Fic z(i{f,gjk (3.10
I mn I mn Il mn
! ; ;
Flmit = 5 - ()" >< - (=)¥ \ (3.11)
|
i § k i 5 k it j k
I'm n ! m n imn
§ (=)t >€< 4 (o) M — (=it >K
ik PGk iik

Here P#’=ypHp’—gh’— (4/3)S#S’ is the spin-3/2 projection matrix, and th&! are flavor projectors, with labeling the

spin. We discuss the properties of ti&s below.
We obtain the vertices in a similar fashion. The baryon-pion vertices are

I m nopgyg gplimn npgq
TS 2a(—) )+ % +28 W + 2y ’ o 7 (3.12
i 7 k k
(3.13)
i= _ ky 3 \]
®o= 7’:_\/50\ ‘ ] )
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wherek is the incoming pion momentum, andv are the aside from flavor factors.

Lorentz indices of the Rarita-Schwinger fields. We have The pion in the loop can, for nondegenerate quarks, have
shown all flavor indices explicitly for the first vertex in order one of six massesvi ﬁ = p(m;+m;) wherei<j<3. This is

to illustrate the conventions that we use in subsequent vertirue even if the pion contains bosonfantijquarks, since

ces. The two-point vertices are more straightforward: they are degenerate with the corresponding quarks. In our
calculation of spin-3/2 baryon mass shifts we have worked

) 2U with completely nondegenerate quarks. For the spin-1/2

TTTeXet = i(ak - m)) 30 (3.15  baryons, on the other hand, we have considered only the

isospin symmetric limitfn=m,=m,. This reduces to three

the values of the meson massesM2=2um,
—h— - i[2cvm ) + +2/Bm+ ' \ ] ' (3.16) M Z=pu(m+ ms)_ an_d Mgs=2ums. The full expression for
mass renormalization is then
T A T igwAM' ‘ , M3
(3.17) Amg=—82 X cg, 3912 (3.21
I=m,K,Ss T
v el— = g 2C ‘ + ; (3.18)  whereB specifies the external spin-1/2 baryon, ang is

the flavor factor.
where we have adopted the notation that a dot on a line with The flavor factors are obtained by projecting the contribu-
flavor j indicates a factor ofm;. For example, the spin-1/2 tion from the flavor part of the Feynman rules onto the par-
mass term is ticular flavor of the external baryon. Explicitly, we can write

i5i|5jm5kn(2ammk+ Zﬁmmi)-
_ CB,|=Eb YD b, (3.22
Note that potential mass terms involving and o vanish a

because st1) =0. In the “hairpin” vertex,(3.19, we have  here the indicea andb run over all 216 values of the three
included a factor of 2 resulting from the possible contrac-f,,or indices in the dependent field badis), is the flavor

tions. o , art of the Feynman graph in this basis, @ik one of the
We also need vertices in which two pions emanate from dependent baryons, whose “wave function” . The

baryon mass term, but for the sake of brevity we do not give, -\ e functions can be read off from Ed8.1)—(3.5. The
the results here. They are straightforward extensions of thg., . “charged” octet baryons are exemplified by

vertex in Eq.(3.18.
Y112 Y121 Your

. B. A sample calculation . {/lp:\/g( 1, 1, -2,
To illustrate our method, we sketch the computation of
mass renormalization of the spin-1/2 baryons resulting from Wasy Waps  Wass
the diagrams of Fig. 1. We mainly focus on diagréan and
in particular the part proportional t6%. The Feynman inte- Y= = \/g( 1, 1, -2, (3.23
gral is
A " where we show only the nonzero elements. The flavor-
_ f dk itk (—k,) (3.19 neutral octets have wave functions
w2 vk (KK-M2) '
123 Y231 Yz12 Y132 Y213 Yz

and multipliesuS*S”u, u being the spinor of the external wgoz \/I( 1 1 -2 1 1, -2)
state. For the moment we denote the meson mass in the loop E ’ ' ’ ' ’
generically asM . The finite part of the integral is (3.24

I —ig,,M,/(24m), allowing us to eliminate the spin

uv=

vectors usingiS?u= —3/4. The mass renormalizatioAm, V123 Yom Y32 Yo
is thus given by =31, -1, 1, -1). (3.29
. o M3 In other calculations, we also need the wave functions for the
—iAm=iB 307 f2" (320  decuplet baryonsy . These are exemplified by
¥111 113 Y131 Yann
,/’ \\\ ,/’ \\\ A++ _ * 4 (32@
e e prtoo= (1), o1l L 1),

Y123 Y231 Y312 Y132 Y213 Ya
FIG. 1. Examples of diagrams contributing to spin-1/2 baryon
mass and wave-function renormalization. sz = \/g( 1, 1, 1, 1, 1, 1).@27
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Explicit forms for the wave functions involving bosonic 1 1 0
guarks are not needed, since these do not appear as external - 1 —
states in quenched lattice calculations. D"=-5% 1 1 0], D®=0, D*°=0, (3.34
The wave functions satisfy various useful properties. 0 0 2
Those for the spin-1/2 and spin-3/2 baryons are separatelty o )
orthonormal: or the (112,121,211 block. Sandwiching this between the
proton wave functions gives the flavor factors
1 B=B’, 1 T=T, Cp,1=—1/3,0,0, forl = m,K,ss. These can be inserted in Eq.

0 T+T (3.21) to obtain the proton mass renormalization.
(3' 28 It is worthwhile contrasting the calculation thus far with
: that in QCD. To make the comparison, it is better to use a

This ensures that the kinetic terms are correctly normalizegﬂree index field to represent spin-1/2 baryons in QCD, for

when written in terms of independent fields. The wave funct€n one can develop the calculation diagrammatically as

tions are eigenvectors of the flavor propagators with uni@°0ve- The major difference from QQCD is that the indices
eigenvalues: run from 1-3 instead of 1-§One must also project against

the %' in the meson propagator in QCD, but this is a small
12 B 48 32y T— T (3.29 effect numerically. Thus the main difference between calcu-
ab TbVar “ab Vb Ta lations in the two theories is that quark-flow diagrams in-

All other eigenvectors have zero eigenvalues, correspondini!ving internal loops cancel in QQCD, but do not in QCD.
to the fact that the flavor propagators are projection matrices! NiS 1S, qualitatively, exactly as expected. What we are able
i.e., [FDP=FD for j=1/2 and 3/2. Thus the flavor propa- to'do here is 'make a quantitative calculation of the effect of
gators can be written as this cancellation. _ _
A striking feature of the calculation for baryons is that
there are quark-flow diagrams that contribute in QCD that
FIP=2 yByf, FIP=2 ylyl. (330  survive the cancellation betweenandd loops, e.g., the last
B T two diagrams contributing t® 7, 11, This is in contrast to
mesonic quantitiege.g.,M . andf ), where the cancellation
B quark loops removes all the QCD contributidds9]. The
surviving diagrams for baryons must, however, contain me-
ons composed of quarks having the flavors of the valence
Suarks of the external baryon. Thus, since the proton does
not contain a valence strange quark, there can be no contri-
%utions from kaons 0ss mesons in the loop. If the external
article contains a strange quark, however, kaon contribu-
ons are present: e.g.,

; yBy?

a¥a T|g B#B’,

S vl |

The sums here are over the independent baryons of the a
propriate spin(70 and 38 respectively including baryons
containing bosonic quarks. These results show that th
baryon propagators in Feynman diagrams project onto th
independent states, as claimed above.

Returning to the sample calculation, we next compute th
“matrix elements” D !, using the flavor Feynman rules. We
begin with the elements needed if the external baryon is %
proton, i.e.,.a,b=112,121,211. A representative element is

! \ i ~ o . B B
Dligaiz = ( > @ ‘ } ) + @ { + @K Dlizns = @< = -1 Disns = ©< = 55
1={1,2,4,5} 113 113
112 112 112
. . . - :
Dy = = - = DK = @ = ——,
(— 1)I+1) _ 1 1 _ 1 131,113 @% B 131,113 3

E_E: 6’ 113 113

(3.30) Here we have not shown the quark-loop cancellations explic-
itly.
Proceeding as above, we calculate all the relevant parts of
D'. Contracting these with the wave functions, we obtain the
flavor factors

1
52

D{\;z,nz = @ \
1={3,6}

112 m K ss|
_1 (-1)'*=0, (3.32 Pl e 00
6 1-To —18g=2| 1 5 0 (3.39
D33, 1170. (333 =10 5 1
A\V3 3 O

In these equations we are using the diagrammatic notation in

a slightly different way from above—the diagrams denoteWhen inserted in Eq.3.2]) this gives the result for the con-
both the way in which the flavor indices are contracted andribution proportional to3? coming from Fig. 1a).

the corresponding factors from the propagators and vertices. The calculation of the other contributions proceeds simi-
The remaining elements can be evaluated similarly, with théarly. The diagrams for the”” terms are the same as those
results just discussed, except that the loops come off the right-hand
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FIG. 2. Quark-flow diagrams contributing to the3 terms in FIG. 3. Quark-flow diagrams contributing to thex terms in
mass renormalization. Arrows have been added to help clarifynass renormalization.

quark flows. The boldface line can be botlg and aq; other lines
represent only quarks. tributions proportional tg3°’m3, are shown in Fig. 4. There

are similar diagrams for the” and a8 contributions. It is

side of the baryon instead of the left. This changes the fIavo%.hese types of _dlagram§ 'that are the sole q.“er.‘Ched contribu-
ion to mesonic quantities. Finally, contributions propor-

factors. The diagrams for theg contributions are different, .. ;

A . . ._tional to y involve quark loops and cancel.
and are shown in Fig. 2. Again, some of the diagrams in-
volve internal quark loops and cancel in the quenched ap- .
proximation, whereas others remain. Diagrams for fle C. Quenched oddities
contributions are shown in Fig. 3. These are special to the We close this section by noting some peculiar features of
guenched approximation because only flavor singlet pionghe workings of chiral perturbation theory for QQCD. We
can appear in the loop. The same is true of contributiondirst show why care must be taken if one attempts to calcu-
proportional toyg. Finally, terms proportional ta? vanish  late quenched results without the benefit of the graded for-
because they involve internal quark loops. malism. This might be done, for example, by making a

Additional types of quark flow occur in the evaluation of quark-flow correspondence using the QCD chiral Lagrang-
Fig. 4(b). This diagram is not present in QCD because onlyian. Such an approach was used successfully for mesons in
flavor singlet pions couple to thm3 (or ag) vertex. Ex-  Ref.[9].
amples of the corresponding quark-flow diagrams, for con- ConsiderD 7;; ;5 which can be split up as follows:

+@) + @

Dé’ﬂ,m:@ ¥ ©%< ' @%‘1 ! @E

11 211 211 211
+ > (< + CK )
=245} @2 11 @2 11 (335

The correct approach is to drop all diagrams containinghappens is that theix diagrams on the first linéthe only
quark loops, since these cancel in pairs. This leaves the lashes containing5;,,) cancel: their sum is proportional to
four diagrams on the first line, which give a nonzero result(2+2—1-1-1-1)=0. In the second line, the contributions
-1/3. from =2 andl=5 cancel as usual, leaving the entire con-
One might have been tempted, however, to argue as folribution to come from the diagram with=4. This consists
lows. In each of these four diagrams, the baryon propagatingntirely of diagrams containing an internalloop. Thus, if
in the loop isB;44. There is, however, no spin-1/2 baryon one insists on removing; 4, then to obtain the correct result
consisting of three up quarks—indeed, the symmetry relain the quenched theory one must include bosonic quarks.
tions set B;1,=0. Thus D3, 557 should vanish in the Clearly the simplest approach is to let the theory take care of
guenched approximation. doing the projections itself.
This argument is wrong because, as we have seen, the A related peculiarity concerns the decay of decuplet bary-
baryon propagator automatically projects agaifigt. What  ons in QQCD. In QCD they decay through the strong inter-
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FIG. 5. Diagrams contributing to th& self-energy that can lead

to A decay.
octet baryon, and so the decay cannot occur. By isospin sym-
metry, all of theA’s must be stable in QQCD.

This argument is wrong for the same reason df; 5,

does not vanish. One can only impose the requirement that
FIG. 4. Quark-flow diagrams contributing to ti®@m3 terms in ~ the By;; does not contributé one works with the bosonic-
mass renormalization. quark formalism in which all symmetries are manifeBut
then there are additional contributions to the self-energy that
) it . _ do lead theA to decay. If one instead simply throws away all
actions, e.g.A" "— 7 "p, due to the vertex proportional to guark loopsthen the uuu baryon does contribute in interme-
C. One could study this numerically by calculating the  djate statesand again the\ decays. Another way of under-
two-point function in Euclidean space. At large Euclideanstanding this is to note that quark loops are necessary in
times it would be dominated by the" p intermediate state, order to implement the Pauli exclusion principle on internal
resulting from the cut in Fig. ®).2 The issue is whether the propagators.
same is true in QQCD. The following argument suggests that Thus we claim that one can study the decay ofaheven
it is not. TheA™™ has quark compositionuu, and, since in QQCD. This is such a counterintuitive result that it is
there are no quark loops in QQCD, it can decay only into avorthwhile understanding in more detail. Consider the
uu meson and aiuu spin-1/2 baryon. But there is nouu  quark-flow diagrams contributing to th# term in Fig. Fa):

Dfu,m=@“ + @ZE + @m + @ﬁ + @%1 + @H

+z={§1ys}(@“~ ' @x ) ' (3.3

1 111

The quark-flows are the same as those contributing tggthe Actually this is not the whole story in QQCD. There are
part of D 71, »; —the only difference is the external flavors. contributions from Fig. &) proportional toCy’, and there
The story is now the same as above. The diagrams witlre contributions from Fig. (6) proportional toC’m3 and
quark loops cancel, leaving a nonzero contribution from thecZaé_ Both give rise to a pion-nucleon cut in tkepropa-
last four diagrams on the first line—all of which invqlve gator. Thus the\ will have a different width in QQCD than
By;. Alternatively, the Pauli exclusion principle requires jn QCD. Nevertheless, it will be interesting to use QQCD as
that the diagrams on the first line cancel, leaving a nonzerg testing ground for methods to study an unstableThis
contribution from the diagrams of the second line witk:4. requires, of course, than,—m,>m,., a condition that is

In_this _view, the quent():hed decaﬁ di.s actually hot close to being satisfied in most present simulations. One
A" —(ud)+(tuu). In QCD, by contrast, the diagrams on 1, ¢ ise lighter quarkio increasem, —m, and to decrease

the first line still cancel, but the nonvanishing contribution is : :

- ’ . m,,) and larger latticegto decrease the cost of having non-
from /=2 on the second line. Thus the QCD and QQCD.zero momentum pionsfor the decay to be kinematically
decay amplitudes have the same magnitude but opposite S owed

(assumingm,=m).
IV. RESULTS

2Strictly speaking, this is only true in large enough volumes. The Using the methods explained above, we have calculated
decay amplitude ip wave, and so vanishes at threshold, requiringmass renormalization of octet and decuplet baryons in
the intermediate pion to have nonzero momentum. This increasd@QCD resulting from the diagrams shown in Fig. 6. These
the threshold for the decay on small lattices. diagrams lead to the dominant corrections in a limit which
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X X M@ =4(2bp/3—be)MZ,— 2(bp/3+be)MZ, (4.4
@ —h— AT —=A— —A— —A @ s s,
M@ =AM +c' (M2, + M3+ M2, (4.5
77 ;T A /7T wherec’ =c/3u. These results require some explanation.

® (1) The diagrams with filled triangles give contributions

proportional to quark masses. These corrections are the same
© 2SN 2aSN RSN 2SN as in QCD, except that¢-term” contributions proportional
¢ ¢ * * * ¢ ¢ ¢ to o or o are absent in QQCD. To make the comparison with
QCD more direct, we have rewritten the octet results using
BZaSN 2SN RSN RSN Eq. (2.46 to expressy), and 8y, in terms ofby andbg.
@ —he—e Ao —hke—e -—ie (2) The decuplet masses are also shifted ), the
octet-decuplet mass splitting in the chiral limit.
-X~ ~X~ X~ X~ (3) The diagrams involving meson loops with the hairpin
© —Ae—e ko —he_—o WA vertex give corrections proportional tengmgIn (m?),
which are quenched artifacts. For small enough, these
FIG. 6. Diagrams included in this calculation. Those in which acan become larger than the analytic corrections proportional
loop is attached to an external lipe.g., the first and third diagrams to m,,. They are of the same form as the leading chiral cor-
in (d)] represent mass shifts coming from wave-function renormalvection to the pion mags3,9]:

ization.

M2
we explain below. The calculation of the flavor factors is M§q=2,umq 1-61In A—';q , (4.6)
quite laborious. In order to check our results, we have done X

two independent calculations, one by hand and the other us-

ing MATHEMATICA . We have also tested our method by re_where" 5=m3/487%f2. It turns out that the corrections to
peating the calculation for QCD, and comparing to existin baryon masses from these loop graphs are of exactly the

%orm to allow them to be absorbed by replacing quark
results.

asses with the corresponding one-loop corrected meson
We present our results separately for each subset g I . . o
. A ! squared masses of E.6). This is convenient, since it is
graphs, i.e.(a)—(e) in Fig. 6. We use the notation

more straightforward to extract meson masses than quark
masses from simulations.
Mpar( My, Mg, Mg) =M+ > Mg(;?)(mu ,Mg,Mg). The diagrams of Fig. ®) are present in both QCD and
G=abcde QQCD. As shown in the example of Sec. Ill, these give rise
(4.1 to nonanalytic terms proportional td 3. We find

HereM, is the octet baryon mass in the chiral limit. For the B 22 5 L - 5

octet baryons we have done the calculation assumingMs =(3D°—2F°—4Fy—35C)Vy,+(5D°~4DF+2F

m,=my, wWhile for the decuplets we have allowed all three 5 2

anrksdto have different masses. ~sC)Vust 2(D=F)WVss, 4.7
A considerable simplification results from the fact that, in

QQCD, the mass of a given baryon depends only on the MY =[3D?— §DF+2F2+4(2D/3—~F)y—3C?]V,,

masses of the quarks that it contains. This means that we

need only give results for th& and A octets, and the +[FD?*~ §DF —2F?—3C%]Vys

2*'°(which has compositiomds) decuplet. Mass shifts for —[2(D/3+F)y]V 4.9
the other baryons can be found simply by changing the quark 5

masses: e.g., (b)

ME* = (%CZ_ é_EHZ)[Vud"'VdS"_Vsu]
Ms=Ms(my,ms), Mp:ME(mUymu)y

_%H'y,[vuu+vdd+vss]a (4.9
==Ms(mg,my), where
. 4.2
ME*vOZME*(mU|md:mS)! MA :ME*(muamurmu)v 3
us
=———, etc. (4.10
Mg =Msx(mg,mg,my). usT 16f%a

An important check on our results is that all octet baryong\ote that we have rewritterr and B in terms of D and F
are degenerate if the quarks are degenerate, which impliéssing Eq.(2.46.
My (my,my) =M, (m,,my).
The diagrams of Fig. @) give contributions proportional
to M i: 3strictly speaking the meson mass in the logarithm should be the

lowest order approximation (2m,), but it can be replaced by the
_ 2 2 q
M (Ea) = —4beMy,+2(bp —bp) Mgy (4.3 actual mass to the order we are working.
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These results fok ) show that thev  terms are present

in QQCD. Some are proportional @ andF, i.e., of the

same general form as those in QCD, while others, propor-
tional to y and y' are quenched artifacts. To give some ide

of the effect of quenching, we quote the QCD result for
[6]:

M{P(QCD) =[2D2+C?IV,,— §[(D*+ 9F?) + 2] Vi

—-2D?v,,. (4.12)
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5 3 2
3apMza—MoMaa

W(a,a)=IlimW(a,b)= 1627

a—b

(4.16

aThese contributions are pure quenched artifacts.dgeerm

is of roughly the same form as the *“conventional” loop
corrections proportional td 3. The m3 term, however, is
enhanced bym3/M 2 in the chiral limit. It turns out, how-
ever, that the influence of these terms on the curved gf,
versusM gq is not significant until quark masses substantially
smaller than those used in present simulations. We discuss

There is no obvious correlation between quenched and fulhis in detail in the companion paper.

results.

It is simple to understand the origin of the enhanced loop

The diagrams of Fig. @) are obtained from those just contribution. The second propagator in the loop makes the

considered by inserting am3 or ag vertex on the meson
line. We find

M= 3[4F2W(u,u)—4(D—F)FW(u,s)+(D—F)?
XW(s,s)]+ §C3[W(u,u)—2W(u,s) +W(s,s)],

(4.12
M'®=1[(4D/3- 2F)?W(u,u)— 2(4D/3— 2F)(D/3+F)
XW(u,s)+(D/3+F)?W(s,s)] (4.13

M) = S HA W(u,u) + W(d,d) +W(s,s) + 2W(u,d)
+2W(d,s) + 2W(s,u) ]+ %C [ W(u,u) + W(d,d)
+W(s,s)—W(u,d)—W(d,s)—W(s,u)], (4.19

diagrams more infrared divergent than those in Fig),6and
thus more sensitive to the IR cutoff. The contribution pro-
portional tom3 can be obtained, up to overall factors, by
acting withm§(a/dM g on the results from Fig.(®). This
replaces one power dfl éq with m2. This is another ex-
ample of the peculiar behavior of quenched quantities in the
chiral limit, previously seen ifM fT [see Eq.(4.6)], fx, fg,

and various matrix elemenf8-11].

The diagrams of Figs. () and Ge) yield further
quenched artifacts that are proportionalngmg In(M 3,).
Without the hairpin vertex, these diagrams give corrections
proportional tomgM 2 In(M %), which are suppressed in the
chiral limit. The insertion of the hairpin vertex makes the
diagrams more IR singular, replacing2 with m2. In quot-
ing our results we have converted factorsnaf into M éq
using the lowest order formula. This is consistent since, as
we explain below, we are dropping terms®fmyg).

We find that

where
ME=MP=Mm{)=o0. 4.1
g 2 @03 ME) ~mi(ME, M) > M 4
(a,b)= 3 16f277(|v|§a_ Mgb) ' The cancellation between the two diagrams is related to the
(4.15 simple flavor structure of graphs involving thej vertex, as
illustrated in Fig. 4. There is no such cancellation between
and the diagrams in Fig. @), and we obtain
|
M = — 30— 4beM2 1+ 2(bp —be)MZ—c' (2M2,+ M29T[X(u,u) — 2X(u,s) + X(s,s)], (4.18
M{®=0, (4.19
M = £C2c’ +2(bs—bp/3) J(M2,+ Mg+ M2ZJ[X(u,u)+X(d,d) +X(s,5) — X(u,d) — X(d,S) — X(s,u)]
— £Cp(M2,~ M3 X(u,u) - X(d,d) — 2X(u,s) + 2X(d,5)]
— &C%bp(M2,+M3g—2M2)[X(u,u)+ X(d,d) — 2X(s,s) — 4X(u,d) + 2X(u,s) + 2X(d,s)]. (4.20
|
Here m[In(M2,)+1]
T __0 aa
X(aaa) _;Ii,an(a’b) 16f2772 (423
X(a.b)= maLM2a IN(M2,) — Mg, In(M§p)] 29
el 16f22(M2,— M32,) v The last two terms irM(Eel are symmetric under permuta-
tions, despite appearances.
We can now explain why we consider only the diagrams
and of Fig. 6. We are essentially carrying out a standard chiral
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expansion inM 5, supplemented by an expansionrirg/3.  tional to In(M 5,/A 2) and thus contain an unknown scale.

The next chiral corrections areM gq In Mgq, and thus sup-  This unknown scale does enter immg?ry, but can be ab-
pressed by one power &fl,, compared to theV §, terms  sorbed into the meson masses as described above.
that we keep. We also are dropping terms suppressed by Finally, we recall that our calculation is done in the ap-
additional powers ofnS.z However, we keep contributions nroximation thatAM <M 4, so that the octet and decuplet
proportional to (Ng/3)M gqIn My, since they become im-  parvons can be treated to first approximation as degenerate.
portant as we approach the chiral limit. In particular, if \¢ \y6iq pe straightforward in principle to extend our results
M q2q<m0/3, the en.hance(?l logarithm  can Igad . 0, largerAM, although we have not carried out the calcula-
(Mg/3)INMgg~Mgq, in Wh'??h case the logarithmic ion AM enters only in diagrams in which the internal
term should be keptit |52~M qq) While it is consistent 0 harv0n is an octet while the external baryon is a decuplet, or
drop higher pOwers 20fr(10/3) INMgg- In practice, in present yica versa. These are the diagrams giving contributions pro-
simulationsM gq>mg/3, so it is likely thatM qqIn(Mqq)  portional toC? The effects ofAM#0 can be included ex-
terms are significant. Nevertheless, as simulations approac&ﬂy by shifting the mass in the baryon propagator in these
ck_)ser to the chiral limit, our analysis will become more ap-diagramsk-v—k-v+AM. Some of the resulting integrals
plicable. , o have been evaluated in R¢L2]. For example, for the sec-

A second reason for truncating the expansions is morg diagram of Fig. @), the factor ofM 3 from the loop is
practical. The nonanalytic corrections that we have Calcu'replaced by an integral whose expangion for srdll is

lated are those that are determined unambiguously in termg $_3M2AM In(M_)/#. In present simulations, the sec-
of the .Iowest order coefficients in the chiral Lagrangian.qng term is a relatively small correction.

There is no dependence of unknown scates, , and no
counterterms of the same order. This is obvious for the terms
proportional toV andW, but is true also for those containing
the X(a,b)—the scale of the logarithm cancels in the correc-
tions Mg‘;),y. This is in contrast to meson masses and decay We thank Maarten Golterman and Larry Yaffe for useful
constants, Eq4.6), where the chiral corrections are propor- comments.
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