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Quenched chiral perturbation theory for baryons

James N. Labrenz and Stephen R. Sharpe
Department of Physics, University of Washington, Seattle, Washington 98195

~Received 28 May 1996!

We develop chiral perturbation theory for baryons in quenched QCD. Quenching~the elimination of dia-
grams containing virtual quark loops! is achieved by extending the Lagrangian method of Bernard and Go
terman, and is implemented in a theory where baryons are treated as fixed velocity sources. Our me
requires that the octet baryons be represented by a three index tensor rather than by the usual matrix fiel
calculate the leading nonanalytic corrections to the masses of octet and decuplet baryons. In QCD thes
proportional toM p

3 . We find that quenching alters theM p
3 terms, but does not completely remove them. In

addition, we find nonanalytic contributions to baryon masses proportional toMp andM p
2 ln Mp . These terms,

which are artifacts of quenching, dominate over theM p
3 terms for sufficiently small quark masses. This pattern

of corrections is different from that in most mesonic quantities, where the leading nonanalytic terms in Q
~proportional toM p

4 ln Mp! are removed by quenching. We also point out various peculiarities of th
quenched theory, most notably that theD baryon can decay~if kinematically allowed!, in the sense that its two
point function will be dominated at long Euclidean times by a nucleon plus pion intermediate sta
@S0556-2821~96!04519-5#

PACS number~s!: 12.38.Gc, 12.39.Fe, 12.39.Hg, 14.20.2c
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I. INTRODUCTION AND SUMMARY

A central goal of numerical simulations of lattice QCD
to calculate the hadron spectrum and compare with exp
ment. Agreement between simulations and experiment wo
provide a crucial test that QCD is the correct theory of t
strong interactions in the low-energy domain. Present sim
lations have yet to achieve this goal,1 largely because of
various approximations that must be made to make the
culations computationally tractable. Most important of the
is the use of the quenched approximation, in which the fer
ion determinant is approximated by a constant, so that th
are no internal quark loops. The other significant approxim
tions are the use of quarks with masses heavier than t
physical counterparts, and the use of finite lattice spacing

This paper is the first of two in which we study the im
portance of the quenched approximation for baryon mas
In this paper we develop chiral perturbation theory for bar
ons in the quenched approximation and calculate the do
nant contributions from one-loop graphs to both octet a
decuplet baryon masses. In the companion paper we w
out some implications of these results@3#. In particular we
use them to estimate the size of quenching errors in baryo
and show how they lead to a better understanding of how
do chiral extrapolations in quenched QCD~QQCD!. This
knowledge has already been useful for analyzing results
simulations@2#.

To provide a context for the quenched results, it is use
to recall the general form of the chiral expansion of bary
masses in QCD~see, for example, Refs.@4–6#!:

Mbary5M01c2Mp
21c3Mp

31c4LMp
4 lnMp1c4Mp

41••• .
~1.1!

1Opinions differ as to how close we are to reaching this goal. F
example, Ref.@1# is optimistic while Ref.@2# is more pessimistic.
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HereM0 is the mass in the chiral limit, andMp is a generic
pseudo Goldstone boson mass. The dominant contribution
come, in fact, from theK andh mesons. Theci are combi-
nations of coefficients appearing in the chiral Lagrangian
The expansion consists of terms that are analytic in the qua
masses—those proportional toM p

2}(mu1md) and
M p

4—and nonanalytic terms proportional toM p
3 and

M p
4 ln Mp . The latter arise from infrared~IR! divergences

in loop graphs, and thus are multiplied by constants~c3 and
c4L! that are determined in terms of leading order chiral co
efficients. For example,c3 depends on the pion-nucleon cou-
plings F and D ~defined precisely below!. Thus, if one
knows the lowest order chiral coefficients, one can predic
the form of the leading nonanalytic terms. The same is tru
for mesonic quantities~e.g.,M p

2 and f p!, but with baryons
the leading nonanalytic terms contain one less power ofMp
than the first analytic corrections~M p

3 versusM p
4 !, and are

thus enhanced in the chiral limit, while with mesons~as with
the c4L term above! the enhancement is only logarithmic.

In the quenched approximation we find that the expansio
is different:

Mbary
q 5M0

q1dc1
qMp1dc2L

q Mp
2 lnMp1c2

qMp
21c3

qMp
3

1c4L
q Mp

4 lnMp1c4
qMp

41••• . ~1.2!

The constants are now different combinations of the coeffi
cients in the quenched chiral Lagrangian. We have calculate
the constantsc 1

q, c 2L
q , c 2

q, andc 3
q, all of which are given in

terms of lowest order coefficients. We have not calculated
c 4L
q , but for sufficiently smallMp ~which, in numerical

simulations, is adjustable! theM p
4 terms should be a small

correction compared to the lower order terms.
The dimensionless constantd, which multiplies thec 1

q

andc 2L
q in Eq. ~1.2!, is a pure quenched artifact. It appears

also in mesonic quantities, and its likely magnitude isd'0.1,
although there is no definitive determination@7#. In Eq. ~1.2!

or
4595 © 1996 The American Physical Society
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4596 54JAMES N. LABRENZ AND STEPHEN R. SHARPE
it multiplies terms that will dominate the corrections fo
small enoughMp . If such terms are significant, then we
should not trust the quenched results. Fortunately, as d
cussed in the companion paper, the numerical evidence s
gests that these terms are small, and so are largely curiosi
They do, however, give another example of the sickness
the quenched approximation in the chiral limit, a phenom
enon first pointed out for mesonic quantities in Refs.@8,9#.

Of more practical interest is the fact that the nonanaly
terms proportional toM p

3 survive quenching, albeit multi-
plied by different constants than in QCD. Naively, one mig
expect meson loops to require the presence of underly
quark loops, and thus that quenching would remove all t
M p

3 terms. This is indeed true for mesonic quantities, whe
only artifacts proportional tod survive. Why this is not true
for baryonic quantities is explained in Sec. III.

The presence of theM p
3 terms has practical implications.

When doing chiral extrapolations to quenched results o
should fit to a form including these cubic terms. It turns o
that certain linear combinations of baryon masses have
pansions beginning atO(M p

3 ), and these combinations can
be used, in principle, to extract the constantsc 3

q. With these
in hand, we can then make estimates of the errors in bary
masses due to quenching. The idea is to compare the siz
the contributions of pion loops in the two theories, and a
sume that any difference is a quenching error. The unc
tainty in these error estimates can be reduced by form
suitable combinations of baryon masses. Results from a p
study along these lines are presented in the companion pa

In present simulations, the splitting between the octet a
decuplet baryons is substantially smaller than the pion ma
MD2MN,Mp . Thus in our calculations we treatMD2MN
as a small parameter, and expand about the limit that
octet and decuplet baryons are degenerate. Eventually, si
lations will be done in the opposite limit, in which case theD
should be treated as heavy and integrated out of the effec
theory. As explained below, it is straightforward to adapt o
results to this new limit or, indeed, to any intermediate valu
of (MD2MN)/Mp . An interesting phenomenon that occur
whenMp,MD2MN is that the quenchedD decays. In Sec.
III C, we explain why this happens, and why it might no
have been expected.

Finally, we note that the methods presented here can
extended straightforwardly to ‘‘partially quenched’’ theories
i.e., those in which there are internal quark loops, but t
masses of the valence and loop quarks differ.

The outline of this paper is as follows. In the following
section, we develop the quenched chiral Lagrangian for ba
ons. We then, in Sec. III, present the Feynman rules a
sketch a sample calculation. Section IV contains our resu
for baryon mass renormalizations.

II. CHIRAL LAGRANGIAN FOR QUENCHED BARYONS

We calculate the quenched chiral corrections to t
baryon masses using an effective Lagrangian of ‘‘heavy
baryons coupled to the low-lying pseudoscalars. The a
proach is a synthesis of two techniques that have recen
appeared in the literature:~1! Baryons are treated as fixed
velocity sources, thereby eliminating the baryon mass te
from the Lagrangian@4#, and~2! the theory is extended from
r
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QCD to QQCD by constructing a Lagrangian symmetric un
der the graded group SU(3u3)L3SU(3u3)R @8#. The latter
step corresponds to the addition of ‘‘bosonic quark’’ degree
of freedom whose internal loops in Feynman diagrams ca
cel those of the ordinary quarks.

A. Review of results for QCD

We start with the low-energy effective theory for QCD, in
which the pseudo Goldstone bosons are coupled to octet a
decuplet baryons. The Goldstone fields are grouped in t
usual 333 matrix p(x) ~normalized so thatp135K1/&!.
The octet baryons are similarly grouped in the 333 Dirac
field B(x) ~with B13 normalized to the proton!. Finally, the
spin-3/2 baryons are represented by a Rarita-Schwinger te
sor T i jk

n (x), symmetric in its three flavor indices~with T111
normalized to theD11!. Fixed velocity fields are defined by

Bv~x!5exp~ imBv” vmx
m!B~x!,

Tv
n~x!5exp~ imBv” vmx

m!Tn~x!, ~2.1!

where v is the velocity, andmB is the mass of the octet
baryons in the chiral limit. As shown in Ref.@4#, in the
mB→` limit, the Diracg matrix structure of the theory can
be eliminated in favor ofvm and the spin operatorsSv

m. We
will explain the properties ofSv

m as they are needed.
To construct a chirally invariant Lagrangian, we use field

that have simple chiral transformation properties. These a
the exponentiated pion fields

S~x!5exp@2ip~x!/ f #, j~x!5exp@ ip~x!/ f #, ~2.2!

the axial vector and vector currents

Am5 i 1
2 ~j]mj†2j†]mj!, Vm5 1

2 ~j]mj†1j†]mj!,
~2.3!

the mass terms

M65j†Mj†6jMj, M5diag~mu ,md ,ms!, ~2.4!

and the covariant derivatives of baryon fields

DmB5]mB1@Vm,B#, ~2.5!

DmTi jk
n 5]mTi jk

n 1~Vm! i
i 8Ti 8 jk

n
1~Vm! j

j 8Ti j 8k
n

1~Vm!k
k8Ti jk 8

n .
~2.6!

Here, as in the following, we have dropped the subscriptv
on the heavy baryon fields—it is always implicitly present
Under SU(3)L3SU(3)R the meson fields transform as

S→LSR†, ~2.7!

j→LjU†~x!5U~x!jR†, ~2.8!

where U(x) is defined implicitly through Eq.~2.8!. Am ,
M6, Bv , andDmBv , which are octets under the diagona
SU~3!, all transform like

Bv~x!→U~x!BvU
†~x!. ~2.9!
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54 4597QUENCHED CHIRAL PERTURBATION THEORY FOR BARYONS
Finally, the decuplet field and its covariant derivative bo
transform as tensors: e.g.,

Ti jk
n →Ui l UjmUknTl mn

n . ~2.10!

Here, and in the following, we do not distinguish betwee
raised and lowered flavor indices. It will always be cle
which indices transform withU and which withU†.

The most general chirally symmetric Lagrangian can no
be written down as an expansion in momenta and qu
masses. The leading analytic and nonanalytic correction
the baryon masses are obtained from the terms

L5Lp1LBp1LTp ,
~2.11!

Lp5 1
4 f

2tr~]mS]mS†12mM1!,

LBp5 i tr~B̄v•DB!12Dtr~B̄Sm$Am ,B%!

12Ftr~B̄Sm@Am ,B# !12mbDtr~B̄$M1,B%!

12mbFtr~B̄@M1,B# !12mb0tr~B̄B!tr~M1!,

~2.12!

LTp52 i T̄n~v•D!Tn1DMT̄nTn12HT̄nSmAmTn

1C~ T̄nAnB1B̄AnT
n!1cT̄nM1Tn2s̄T̄nTntr~M1!.

~2.13!

We have followed the notation of Jenkins and Manohar@4#,
except for the octet mass terms in which we follow Berna
et al. @6#. The traces involving the octet baryon are ov
flavor indices. The contractions of flavor indices for term
involving decuplet baryons are not shown explicitly—w
discuss them for the quenched Lagrangian below. Fina
DM is the decuplet-octet mass splitting in the chiral limit.

B. Quenched chiral Lagrangian for mesons

We now consider the quenched theory. Bernard and G
terman have developed a Lagrangian framework that p
vides a consistent means for calculating the physics of
low-lying pseudoscalars in QQCD@8#. We briefly review
this technique, introduce a compatible representation for
baryons, and then construct the quenched baryon Lagran
analogous to that of Eqs.~2.12!, ~2.13! above.

QQCD can be described by the addition of bosonic qua
degrees of freedomq̃i , one for each flavor of light quark.
They have the same masses, one for one, as the orig
quarks,qi . Integrating over theq̃i in the functional integral
yields a determinant that exactly cancels that resulting fr
the quark integration. This theory is symmetric, at the cla
sical level, under the graded group U(3u3)L3U(3u3)R , and
this symmetry dictates the form of the low-energy effecti
theory for the pseudo Goldstone bosons. To construct
theory, one replaces the fieldp(x) in the definitions~2.2! by
the fieldF(x), given in block matrix form as

F5Fp x†

x p̃
G . ~2.14!
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Here p contains the ordinary mesons (qq̄), p̃ the mesons
composed of bosonic quarks (q̃ qD ), andx andx† the ‘‘fer-
mionic mesons’’~q̃ q̄ andqqD respectively!. The mass matrix
is extended toM5diag(mu ,md ,ms ,mu ,md ,ms), while the
definitions of axial vector and vector currents retain the sam
forms ~2.3!. The transformation properties of the fields are
unchanged, except that the matricesL, R, andU are now
elements of U~3u3!.

Because of the anomaly, the chiral symmetry of the quan
tum theory is reduced to the semidirect product
@SU(3u3)L3SU(3u3)R] ^U(1). Thereduction in symmetry
allows the quenched chiral Lagrangian to contain arbitrary
functions of the field

F05
1

)
str F[

1

&
~h82h̃8! ~2.15!

@h8 is the usual SU~3! singlet meson,h̃8 its ghostly counter-
part#, sinceF0 is invariant under the quantum, though not the
classical, symmetry group. Putting this all together, one ar
rives at the following quenched replacement for Eq.~2.11!:

LF
~Q!5

f 2

4
@str~]mS]mS†!V1~F0!12mstr~M1!V2~F0!#

1aFV5~F0!]mF0]
mF02m0

2V0~F0!F0
2, ~2.16!

where str denotes supertrace. The potentials can be chosen
be even functions of F0, and are normalized as
Vi(F0)511O~F0

2!. We will not, in fact, need the higher
order terms in these potentials. Our notation follows that o
Bernard and Golterman@8#, except that we usem0 instead of
m ~following Ref. @9#! andaF instead ofa. We also differ
from @8# in choosing the normalization off such thatf p'93
MeV.

At this point the development diverges from that in QCD.
In QCD, the last two terms inL(Q) lead to wave-function
renormalization and a mass shift for theh8. Theh8 is then
heavy, and can be integrated out of the theory, giving th
usual LagrangianLp ~2.11!. In QQCD, by contrast, there is a
cancellation between diagrams with more than one insertio
of eitheraF orm0 on anh8 ~or h̃8! propagator@8–10#. Thus
theh8 andh̃8 remain light, and theaF andm0

2 terms must be
included as interactions inL(Q). This leads to a more singu-
lar behavior of a number of quantities~e.g.,mp and f K! in
the chiral limit. Furthermore, the new vertices destroy the
usual power counting. Higher loop diagrams involvingaF

andm0 are not suppressed by powers ofp/Lx or mp/Lx ,
whereLx'1 GeV is the chiral cutoff. We assume thataF

andm0/Lx are small, and work only to first order in these
parameters.

Finally, although we have been talking about theh8, it is
not, in fact, a mass eigenstate unless the quarks are degen
ate. Instead, the flavor-neutral eigenstates are those with fl
vor composition uū, dd̄ and ss̄, with squared masses
M qq

2 52mmq ~q5u, d, s!. These replace thep0 and h of
QCD. The flavor nondiagonal mesons are the same in bot
theories, having the formqiq̄j , with M i j

25m(mi1mj ).

C. Baryon representations in quenched QCD

To construct the chiral Lagrangian for baryons in QQCD,
we need to generalize the octet and decuplet fieldsB andTm.
The corresponding quenched fields will contain additiona
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baryons with compositionsqqq̃, qq̃ q̃, andq̃ q̃ q̃. Even if we
restrict the external states to be the usualqqq baryons, the
extra baryons will appear in loops. Thus we must inclu
these states in our effective Lagrangian. Just as when c
structing the baryon part of the chiral Lagrangian in QCD,
we need to know is how the states transform under the ve
subgroup SU(3u3)V ~i.e., L5R5U!. The transformations
under the full group are simply obtained by using the po
tion dependentU(x) defined in Eq.~2.8!. Thus we need to
determine the irreducible representations of SU~3u3! that,
when restricted to the quark sector, contain only an octet o
decuplet of SU~3!.

We begin with the octet, which is the more difficult cas
since it has mixed symmetry. We construct representati
using the ‘‘quark’’ fieldQ5(u,d,s,ũ,d̃,s̃) and its conjugate
Q̄. Under SU~3u3!V these transform as fundamental and a
tifundamental representations, respectively:

Qi→Ui jQj and Q̄i→Q̄jU ji
† ~ i , j51,6!. ~2.17!

We now define the tensor spin-1/2 baryon fieldBi jk(x) to
have the same transformation properties as the following
erator constructed from the generalized quark fields:

Bi jkg ;@Qi
a,aQj

b,bQk
g,c2Qi

a,aQj
g,cQk

b,b#«abc~Cg5!ab . ~2.18!

HereC5 ig2g0 is the charge conjugation matrix, anda, b,
andc are color indices. We have raised the color and spin
indices on the fields for the sake of clarity, and suppres
the common position argument of all fields. The transform
tion of Bi jk under SU~3u3!V is defined through the right-hand
side~RHS! of Eq. ~2.18!—theQ’s are first rotated ‘‘inside’’
the operator, and then theU ’s are moved to the outside
giving rise to a grading factor because the off-diagonal 333
blocks ofU are Grassman variables. The result is

Bi jkg →~2 ! i 8~ j1 j 8!1~ i 81 j 8!~k1k8!Uii 8Uj j 8Ukk8Bi 8 j 8k8
g . ~2.19!

Here we are using the following notation in the grading fa
tor: if the index on the field is ‘‘anticommuting’’~in the
range 1–3! then the index equals 1 in the grading factor;
the field index is ‘‘commuting’’~in the range 4–6! the cor-
responding index equals 0 in the grading factor.

This construction ofB automatically yields a representa
tion of SU~3u3!V , since it is written in terms ofQ’s. The
Dirac and color structure of the operator enforce the co
straints coming from the fact thatB creates spin-1/2 baryons
which are color singlets. The second term on the RHS of E
~2.18! is required in order to make the representation irredu
ible. To see this, consider the operator that results when
indicesi –k are restricted to lie in the range 1–3:

Bi jk uR5Bi jkq 1Bik jq ~2.20!

~R indicating restriction!, where the usual quark baryon op
erator is defined to transform as in

Bi jkq ;@qi
a,aqj

b,bqk
g,c#«abc~Cg5!ab . ~2.21!

Bq is antisymmetric underi↔ j , which allows the first two
quark indices to be combined into an antiquark index
de
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Bi jkq }« i jk 8Bk
k8 . ~2.22!

Now the problem is clear—the operatorBk
k8 creates both

SU~3! octetsandsinglets, but we only want the former. The
singlet is obtained by contractingBq with « i jk . It can be
cancelled by symmetrizing the last two indices ofBq, as is
done in Eq.~2.20!. The octet part is, up to an overall con-
stant, just the standard 333 matrix used to represent baryons
in the QCD chiral Lagrangian. Using the normalizations dis
cussed below, the explicit relation betweenBq and this field
is

Bi jk uR5
1

A6
~« i jk 8Bk

k81« ikk8Bj
k8!. ~2.23!

We have convinced ourselves thatB transforms in an ir-
reducible representation of SU~3u3!V . It has dimension 70,
and decomposes under SU~3! as follows: an8 each ofqqq
and q̃ q̃ q̃ states, and a11818110 each ofqqq̃ and qq̃ q̃
states. It satisfies the symmetry properties~easily determined
from the above definitions!

Bi jk5~2 ! jk11Bik j ,
~2.24!

05Bi jk1~2 ! i j11Bj ik1~2 ! i j1 jk1ki11Bk j i .

These relations show whyB cannot be reduced to a two
index form in QQCD—it has no grading independent sym
metry properties under the interchange of two indices.

The need for a three-index tensor makes sense also fro
another point of view. The major aim of the formalism we
are constructing is to allow identification of contributions to
mass renormalization that contain internal quark loops. T
do this we need to be able to follow the flow of flavor
through the Feynman diagrams. This is not straightforwar
using the standard two-index form forB, since one of the
indices carries the flavor of two quarks. Using the three
index fieldB, by contrast, there is a one-to-one correspon
dence between the terms that comprise a given diagram
quenched chiral perturbation theory~QChPT! and the flow of
quark flavor. In practice what happens is that all diagrams
which the quark flow contains internal loops are cancelled b
the corresponding diagrams withq̃ in the loops.

The representation containing the spin-3/2 baryons is sim
pler to construct. The decuplet baryons are already repr
sented by a symmetric three-index tensor in QCD. One on
needs to extend the range of the indices, and apply the a
propriate symmetrization. We find that

Ta,i jk
m ;@Qi

a,aQj
b,bQk

g,c1Qi
b,bQj

g,cQk
a,a

1Qi
g,cQj

a,aQk
b,b#«abc~Cgm!bg . ~2.25!

This transforms under SU~3u3!V exactly as doesBi jk , Eq.
~2.19!. It has the symmetry properties~dropping Lorentz and
Dirac indices for clarity!

Ti jk5~2 ! i j11Tj ik5~2 ! jk11Tik j . ~2.26!

These imply that the representation is 38 dimensional, co
taining a10 of qqq states, a10 and an8 of qqq̃’s, an8 and
a 1 of qq̃ q̃’s, and a lone1 q̃ q̃q̃. When the indices are re-
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stricted to the range 1–3, the QQCD tensor is proportiona
the decuplet tensor used in QCD, and we choose normal
tions so that

Ti jk uR5Ti jk . ~2.27!

D. Quenched chiral Lagrangian for baryons

To construct the quenched generalization of Eqs.~2.12!
and ~2.13! we need quantities that are invariant und
SU~3u3!L3SU~3u3!R . These we construct from the fieldsB
andT, their covariant derivatives, and their conjugates. T
covariant derivatives of both fields take the same form, e
emplified by

DmBi jk5]mBi jk1~Vm! i i 8Bi 8 jk1~2 ! i ~ j1 j 8!~Vm! j j 8Bi j 8k

1~2 !~ i1 j !~k1k8!~Vm!kk8Bi jk 8 , ~2.28!

whereVm is the vector current defined by the quenched ge
eralization of Eq.~2.3!. The grading factors arise because,
order to compensate for the position dependence of theU ’s,
the V’s must act ‘‘inside’’ B—i.e., as if they were coupled
directly to the generalized quark fields in Eq.~2.18!. These
covariant derivatives transform under SU~3u3!L3SU~3u3!R in
the same way as the fieldsB and T. The conjugate baryon
fields are defined by

B̄k j ig ;@Q̄k
g,cQ̄j

b,bQ̄i
a,a2Q̄k

b,bQ̄j
g,cQ̄i

a,a#«abc~Cg5!ab , ~2.29!

T̄k j i ,am ;@Q̄k
g,cQ̄j

b,bQ̄i
a,a1Q̄k

a,aQ̄j
g,cQ̄i

b,b

1Q̄k
b,bQ̄j

a,aQ̄i
g,c#«abc~Cgm!bg , ~2.30!

and both transform in the same way: e.g.,

B̄k j ig →~21! i 8~ j1 j 8!1~ i 81 j 8!~k1k8!B̄i 8 j 8k8
g Uk8k

† Uj 8 j
† Ui 8 i

† . ~2.31!

Using the group transformation properties, it is straigh
forward to catalogue all the bilinear invariants. We use t
compact notation

~ B̄GB![B̄k j ia Ga
bBi jk ,b , ~2.32!

~ B̄GAB![B̄k j ia Ga
bAii 8Bi 8 jk,b , ~2.33!

~ B̄GBA![B̄k j ia Ga
bAkk8Bi jk 8,b3~2 !~ i1 j !~k1k8!, ~2.34!

~ T̄mGTm![T̄k j i ,am Ga
bTm,i jk

b , ~2.35!

~ T̄mGAnTm![T̄k j i ,am Ga
bAii 8

n Tm,i 8 jk
b , ~2.36!

~ B̄GAmTm![B̄k j ia Ga
bAii 8

m Tm,i 8 jk
b . ~2.37!

There is also the conjugate of the last quantity, i.
~T̄mGAmB!. In the above constructions,A is an operator
transforming like the axial currentAm , andG is an arbitrary
Dirac matrix. In fact, the change to fixed-velocity fields sim
plifies the Dirac structure as for QCD, and in practice on
the spin operatorSm enters in place ofG. Various possible
terms are absent from the list above because they can
rewritten in the above form using the symmetries ofB andT.
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For example, a~B̄AB! bilinear withA coupling to the second
index of Bi jk is redundant due to the symmetry
Bi jk5(21) jk11Bik j . Other terms simply vanish, e.g., con-
structions involvingBk j iTi jk .

We can now write down the relevant part of the quenche
Lagrangian for baryons. It consists of

LBF
~Q!5 i ~ B̄v•DB!12a~ B̄SmBAm!12b~ B̄SmAmB!

12g~ B̄SmB!str~Am!1aM~ B̄BM1!

1bM~ B̄M1B!1s~ B̄B!str~M1! ~2.38!

and

LTF~Q!52 i „T̄n~v•D!Tn…1DM ~ T̄nTn!12H~ T̄nSmAmTn!

2A 3
2 C@~ T̄nAnB!1~ B̄AnTn!#12g8~ T̄nSmTn!str~An!

1c~ T̄nM1Tn!2s̄~ T̄nTn!str~M1!. ~2.39!

Each term can be multiplied by an arbitrary even function o
F0, but the higher order vertices these functions produce
not contribute at the order we are working. There are al
terms proportional to~B̄B!F0

2 and ~B̄B!]mF0]
mF0, but these

do not contribute to mass renormalization at one loop.
quark-flow language, these are double hairpin vertices a
lead to closed quark loops@8#. Finally we note that str(An) is
proportional to]nF0, so possible additional terms involving
the latter are not independent.

The quenched Lagrangian~2.38! and ~2.39! looks very
similar in form to that for QCD, Eqs.~2.12! and ~2.13!. To
make the correspondence precise we need to pick out
parts ofLBF

(Q) andLTF(Q) containing onlyqqq fields. This is
straightforward for the terms involving the spin-3/2 field
since both quenched and full fields have three indices, so
structure of the allowed contractions is the same. For e
ample, using Eq.~2.27!, one finds that

~ T̄nSmAmTn!uR5T̄nSmAmTn . ~2.40!

Thus the coefficientsDM , c, andH play the same role in the
quenched Lagrangian as they do in the full theory. It is im
portant to realize, however, that there is no reason for t
coefficients to have the same values in the two theories. D
spite this, we use the same symbols so that the physi
significance of each term can be more easily recognized.

Terms involving the spin-1/2 field require more work to
interpret. We need to convert from the three-index tensorB
to the matrixB. Using Eq.~2.23! we find

~ B̄B!uR5tr~B̄B!, ~2.41!

~ B̄BA!uR5 2
3 tr~B̄AB!1 1

6 tr~B̄B!tr~A!2 1
6 tr~B̄BA!, ~2.42!

~ B̄AB!uR52 1
3 tr~B̄AB!1 2

3 tr~B̄B!tr~A!2 2
3 tr~B̄BA!, ~2.43!

~ B̄B!str~A!uR5tr~B̄B!tr~A!, ~2.44!

~ T̄nAnB!uR52A2
3 T̄

nAnB52A 2
3 T̄i jk

n An,i i 8Bj j 8« i 8 j 8k .
~2.45!



ry
by

ry-
ent

ust

he

hat

o-
n
. A
ly

ite

tor
s

ed
ay

4600 54JAMES N. LABRENZ AND STEPHEN R. SHARPE
The first of these relations is actually the condition that s
the normalization in~2.23!. From Eq.~2.45! we see that the
coefficientC has the same significance in quenched and f
QCD. As for the other coefficients, the quenched Lagrang
is equal to that for QCD, Eq.~2.12!, if we make the identi-
fications

a52~ 1
3D1F !, b5~2 5

3D1F !, g52~D2F !,

aM54m~ 1
3bD1bF!, bM52m~2 5

3bD1bF!,
~2.46!

s52m~b01bD2bF!.

With the exception of the result forg, we use these relations
to reexpress our quenched results in terms ofD, F, bD , bF ,
andb0 rather thana, b, aM , bM , ands. This allows a more
direct comparison with results from chiral perturbatio
theory in QCD. We reiterate, however, that the values of
coefficients will be different in the two theories.

With all these correspondences in hand, we can now
the most important difference between the Lagrangians
QCD and QQCD, namely, that the latter has two addition
coefficients,g andg8. Equation~2.46! shows thatg is non-
zero in QCD, but that it is not independent ofD andF. In
QQCD, by contrast,g is an independent parameter. Both th
new terms involve a baryon bilinear coupled t
str(An)}]nF0 , and thus represent couplings of theh8 and
h̃8 to baryons. These are independent couplings beca
there is no symmetry connecting the couplings of SU~3! oc-
tet and singlet mesons. In the quark-flow language, these
‘‘hairpin’’ vertices—theq and q̄ ~or q̃ andqD ! in the h8 ~or
h̃8! annihilate. Such couplings are present in QCD, but a
absent from the chiral Lagrangian because theh8 is heavy
and can be integrated out.

III. FLAVOR FEYNMAN RULES AND A SAMPLE
CALCULATION

Calculations of Feynman graphs separate into ‘‘Dirac
and flavor parts. The former are standard, using the Feynm
rules and methodology worked out in Refs.@4,5#. We do not
give further details here. The flavor part of the calculation
new, and we have developed a diagrammatic method
carrying it out. This method not only simplifies the calcul
tions, but also allows one to trace the underlying qua
flows. In this section we explain our method, and sketch
sample calculation.

A. Feynman rules

The quenched baryon Lagrangian is written in terms
the three-index tensor fieldsBi jk andTi jk , each of which has
216 components. The symmetry relations@Eqs. ~2.24! and
~2.26!# reduce the number of independent fields to 70 and
respectively. One could proceed by expressing the Lagra
ian in terms of these independent fields. By construction
baryon propagators would then be diagonal and normaliz
The vertices, on the other hand, would involve complicat
flavor factors. In practice, we find it more useful to reexpre
the Feynman rules in terms of all of the components ofB and
T, and impose the relations between the components only
ets
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external lines. As we show explicitly below, the symmet
relations are automatically maintained on internal lines
the structure of the baryon propagators.

We are interested in diagrams in which the external ba
ons areqqq states. Thus, we need to display the independ
fields explicitly when the indices ofB andT lie in the range
1–3. Using Eqs.~2.23!, the octet baryons are

p5b12, n5b21,

S15b13, S05b~1 ! , S25b23,
~3.1!

J05b31, J25b32,

L05b~2 ! ,

where we have used the symmetry relations to define

bi j[A6Bi i j 5A6Bi j i 52A 3
2Bj i i ~ iÞ j !, ~3.2!

b~1 ![A3~B1231B231!52A3B3125A3~B1321B213!

52A3B321, ~3.3!

b~2 ![~B1232B231!5~B1322B213!. ~3.4!

For the decuplet baryons the relation to physical fields is j
as for the usual tensor field, for example

D115T111, S* ,15A3T1135A3T1315A3T311,
~3.5!

V25T333, J* ,05A3T1335A3T3135A3T331.

We now present the Feynman rules, beginning with t
‘‘pion’’ propagator

Fm
n ––––F i

j5
i

p22Mi j
2 3

1

2
~2 ! in11u

i

n

u
j

m

. ~3.6!

Here, lines joining indices denote Kronecker deltas, so t
the flavor factor isdnidmj . The form of the grading factor
follows from the properties of the supertrace.

To derive the baryon propagators, we write each comp
nent ofB or T in terms of the independent fields, and the
use the fact that the propagator is diagonal for these fields
useful trick for obtaining the relative factors, and particular
the grading factors, is to think in terms of the underlyingQ
fields. For example, for the spin-1/2 propagator, we rewr
the field as

Bi jk;@QiQjQk2~21! jkQiQkQj #3spin3color, ~3.7!

insert this relation and its conjugate into the propaga
^BlmnB̄i jk&, and then compute the ordinary Wick contraction
of theQ vectors. Reordering theQ’s to form singlet combi-
nations results in a common spin and color factor multipli
by a constant which includes the grading factors. In this w
we obtain
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~3.8!

~3.9!

~3.10!

~3.11!

HerePmn5vmvn2gmn2(4/3)SmSn is the spin-3/2 projection matrix, and theF( j ) are flavor projectors, withj labeling the
spin. We discuss the properties of theF’s below.

We obtain the vertices in a similar fashion. The baryon-pion vertices are

~3.12!

~3.13!

~3.14!
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wherek is the incoming pion momentum, andm,n are the
Lorentz indices of the Rarita-Schwinger fields. We ha
shown all flavor indices explicitly for the first vertex in orde
to illustrate the conventions that we use in subsequent ve
ces. The two-point vertices are more straightforward:

~3.15!

~3.16!

~3.17!

~3.18!

where we have adopted the notation that a dot on a line w
flavor j indicates a factor ofmj . For example, the spin-1/2
mass term is

id i ld jmdkn~2ammk12bmmi !.

Note that potential mass terms involvings and s̄ vanish
because str(M )50. In the ‘‘hairpin’’ vertex,~3.15!, we have
included a factor of 2 resulting from the possible contra
tions.

We also need vertices in which two pions emanate from
baryon mass term, but for the sake of brevity we do not g
the results here. They are straightforward extensions of
vertex in Eq.~3.18!.

B. A sample calculation

To illustrate our method, we sketch the computation
mass renormalization of the spin-1/2 baryons resulting fro
the diagrams of Fig. 1. We mainly focus on diagram~a!, and
in particular the part proportional tob2. The Feynman inte-
gral is

Imn5E d4k

~2p!4
i 2~km!~2kn!

~v•k!~k22Mp
2 !
, ~3.19!

and multipliesūSmSnu, u being the spinor of the externa
state. For the moment we denote the meson mass in the
generically asMp . The finite part of the integral is
Imn52 igmnMp/(24p), allowing us to eliminate the spin
vectors usingūS2u523/4. The mass renormalization,Dm,
is thus given by

2 iDm5 ib2
Mp

3

32p f 2
, ~3.20!

FIG. 1. Examples of diagrams contributing to spin-1/2 bary
mass and wave-function renormalization.
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aside from flavor factors.
The pion in the loop can, for nondegenerate quarks, hav

one of six masses:M i j
25m(mi1mj ) wherei< j<3. This is

true even if the pion contains bosonic~anti!quarks, since
they are degenerate with the corresponding quarks. In ou
calculation of spin-3/2 baryon mass shifts we have worked
with completely nondegenerate quarks. For the spin-1/
baryons, on the other hand, we have considered only th
isospin symmetric limit,m̂5mu5md . This reduces to three
the values of the meson masses:M p

252mm̂,
M K

25m(m̂1ms) andMs s̄52mms . The full expression for
mass renormalization is then

DmB52b2 (
I5p,K,s s̄

cB,I
M I

3

32p f 2
. ~3.21!

whereB specifies the external spin-1/2 baryon, andcB,I is
the flavor factor.

The flavor factors are obtained by projecting the contribu
tion from the flavor part of the Feynman rules onto the par
ticular flavor of the external baryon. Explicitly, we can write

cB,I5(
a,b

ca
BDab

I cb
B , ~3.22!

where the indicesa andb run over all 216 values of the three
flavor indices in the dependent field basis,D ab

I is the flavor
part of the Feynman graph in this basis, andB is one of the
independent baryons, whose ‘‘wave function’’ iscB. The
wave functions can be read off from Eqs.~3.1!–~3.5!. The
flavor ‘‘charged’’ octet baryons are exemplified by

c112 c121 c211

cp5A 1
6 ( 1, 1, 22 ) ,

c332 c323 c233

cJ2
5A 1

6 ( 1, 1, 22 ) , ~3.23!

where we show only the nonzero elements. The flavor
neutral octets have wave functions

c123 c231 c312 c132 c213 c321

cS0
5A 1

12 ( 1, 1, 22, 1, 1, 22 ) ,

~3.24!
c123 c231 c132 c213

cL5 1
2 ( 1, 21, 1, 21 ) . ~3.25!

In other calculations, we also need the wave functions for th
decuplet baryons,c a

T. These are exemplified by

c111

cD11
5 ~ 1 !,

c113 c131 c311

c(* ,15A 1
3
( 1, 1, 1 ) ,

~3.26!

c123 c231 c312 c132 c213 c321

cS* ,05A 1
6
( 1, 1, 1, 1, 1, 1 ) . ~3.27!

on
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Explicit forms for the wave functions involving bosoni
quarks are not needed, since these do not appear as ext
states in quenched lattice calculations.

The wave functions satisfy various useful propertie
Those for the spin-1/2 and spin-3/2 baryons are separa
orthonormal:

(
a

ca
Bca

B85H 1 B5B8,

0 BÞB8, (
a

ca
Tca

T85H 1 T5T8,

0 TÞT8.
~3.28!

This ensures that the kinetic terms are correctly normaliz
when written in terms of independent fields. The wave fun
tions are eigenvectors of the flavor propagators with u
eigenvalues:

Fab~1/2!cb
B5ca

B , Fab~3/2!cb
T5ca

T . ~3.29!

All other eigenvectors have zero eigenvalues, correspond
to the fact that the flavor propagators are projection matric
i.e., @F( j )#25F( j ) for j51/2 and 3/2. Thus the flavor propa
gators can be written as

Fab~1/2!5(
B

ca
Bcb

B , Fab~3/2!5(
T

ca
Tcb

T . ~3.30!

The sums here are over the independent baryons of the
propriate spin~70 and 38 respectively!, including baryons
containing bosonic quarks. These results show that
baryon propagators in Feynman diagrams project onto
independent states, as claimed above.

Returning to the sample calculation, we next compute
‘‘matrix elements’’D ab

I using the flavor Feynman rules. W
begin with the elements needed if the external baryon i
proton, i.e.,a,b5112,121,211. A representative element i

5
1

6 S (
l5$1,1,0,0%

~21! l11D 2
1

12
2

1

12
52

1

6
,

~3.31!

5
1

6 (
l5$1,0%

~21! l1150, ~3.32!

D112,112
s s̄ 50. ~3.33!

In these equations we are using the diagrammatic notatio
a slightly different way from above—the diagrams deno
both the way in which the flavor indices are contracted a
the corresponding factors from the propagators and vertic
The remaining elements can be evaluated similarly, with
results
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Dp52
1

6 S 1 1 0

1 1 0

0 0 2
D , DK50, Ds s̄50, ~3.34!

for the ~112,121,211! block. Sandwiching this between the
proton wave functions gives the flavor factors
cp,I521/3,0,0, forI5p,K,ss̄. These can be inserted in Eq
~3.21! to obtain the proton mass renormalization.

It is worthwhile contrasting the calculation thus far with
that in QCD. To make the comparison, it is better to use
three index field to represent spin-1/2 baryons in QCD, fo
then one can develop the calculation diagrammatically
above. The major difference from QQCD is that the indice
run from 1–3 instead of 1–6.~One must also project against
the h8 in the meson propagator in QCD, but this is a sma
effect numerically.! Thus the main difference between calcu
lations in the two theories is that quark-flow diagrams in
volving internal loops cancel in QQCD, but do not in QCD
This is, qualitatively, exactly as expected. What we are ab
to do here is make a quantitative calculation of the effect
this cancellation.

A striking feature of the calculation for baryons is tha
there are quark-flow diagrams that contribute in QCD th
survive the cancellation betweenq andq̃ loops, e.g., the last
two diagrams contributing toD 112,112

p . This is in contrast to
mesonic quantities~e.g.,Mp and fp!, where the cancellation
of quark loops removes all the QCD contributions@4,9#. The
surviving diagrams for baryons must, however, contain m
sons composed of quarks having the flavors of the valen
quarks of the external baryon. Thus, since the proton do
not contain a valence strange quark, there can be no con
butions from kaons orss̄mesons in the loop. If the external
particle contains a strange quark, however, kaon contrib
tions are present: e.g.,

Here we have not shown the quark-loop cancellations expl
itly.

Proceeding as above, we calculate all the relevant parts
DI . Contracting these with the wave functions, we obtain th
flavor factors

218cB,I5

p

S

J

L

S p K ss̄

6 0 0

1 5 0

0 5 1

3 3 0

D . ~3.35!

When inserted in Eq.~3.21! this gives the result for the con-
tribution proportional tob2 coming from Fig. 1~a!.

The calculation of the other contributions proceeds sim
larly. The diagrams for thea2 terms are the same as thos
just discussed, except that the loops come off the right-ha
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side of the baryon instead of the left. This changes the fla
factors. The diagrams for theab contributions are different,
and are shown in Fig. 2. Again, some of the diagrams
volve internal quark loops and cancel in the quenched
proximation, whereas others remain. Diagrams for thega
contributions are shown in Fig. 3. These are special to
quenched approximation because only flavor singlet pio
can appear in the loop. The same is true of contributio
proportional togb. Finally, terms proportional tog2 vanish
because they involve internal quark loops.

Additional types of quark flow occur in the evaluation o
Fig. 1~b!. This diagram is not present in QCD because on
flavor singlet pions couple to them0

2 ~or aF! vertex. Ex-
amples of the corresponding quark-flow diagrams, for co

FIG. 2. Quark-flow diagrams contributing to theab terms in
mass renormalization. Arrows have been added to help cla
quark flows. The boldface line can be both aq and aq̃; other lines
represent only quarks.
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tributions proportional tob2m0
2, are shown in Fig. 4. There

are similar diagrams for thea2 and ab contributions. It is
these types of diagrams that are the sole quenched contrib
tion to mesonic quantities. Finally, contributions propor
tional tog involve quark loops and cancel.

C. Quenched oddities

We close this section by noting some peculiar features
the workings of chiral perturbation theory for QQCD. We
first show why care must be taken if one attempts to calcu
late quenched results without the benefit of the graded fo
malism. This might be done, for example, by making a
quark-flow correspondence using the QCD chiral Lagrang
ian. Such an approach was used successfully for mesons
Ref. @9#.

ConsiderD 211,211
p , which can be split up as follows:

rify
FIG. 3. Quark-flow diagrams contributing to thega terms in

mass renormalization.
~3.36!
-

s.
of

-
-

The correct approach is to drop all diagrams containi
quark loops, since these cancel in pairs. This leaves the
four diagrams on the first line, which give a nonzero resu
21/3.

One might have been tempted, however, to argue as
lows. In each of these four diagrams, the baryon propaga
in the loop isB111. There is, however, no spin-1/2 baryo
consisting of three up quarks—indeed, the symmetry re
tions set B11150. Thus D 211,211

p should vanish in the
quenched approximation.

This argument is wrong because, as we have seen,
baryon propagator automatically projects againstB111. What
ng
last
lt,

fol-
ting
n
la-

the

happens is that thesix diagrams on the first line~the only
ones containingB111! cancel: their sum is proportional to
~21221212121!50. In the second line, the contributions
from l52 and l55 cancel as usual, leaving the entire con
tribution to come from the diagram withl54. This consists
entirely of diagrams containing an internalũ loop. Thus, if
one insists on removingB111, then to obtain the correct result
in the quenched theory one must include bosonic quark
Clearly the simplest approach is to let the theory take care
doing the projections itself.

A related peculiarity concerns the decay of decuplet bary
ons in QQCD. In QCD they decay through the strong inter
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actions, e.g.,D11→p1p, due to the vertex proportional to
C. One could study this numerically by calculating theD
two-point function in Euclidean space. At large Euclidea
times it would be dominated by thep1p intermediate state,
resulting from the cut in Fig. 5~a!.2 The issue is whether the
same is true in QQCD. The following argument suggests t
it is not. TheD11 has quark compositionuuu, and, since
there are no quark loops in QQCD, it can decay only into
uū meson and auuu spin-1/2 baryon. But there is nouuu

FIG. 4. Quark-flow diagrams contributing to theb2m0
2 terms in

mass renormalization.
n

hat

a

octet baryon, and so the decay cannot occur. By isospin sy
metry, all of theD’s must be stable in QQCD.

This argument is wrong for the same reason thatD 211,211
p

does not vanish. One can only impose the requirement th
the B111 does not contributeif one works with the bosonic-
quark formalism in which all symmetries are manifest. But
then there are additional contributions to the self-energy th
do lead theD to decay. If one instead simply throws away al
quark loops,then the uuu baryon does contribute in interme
diate states, and again theD decays. Another way of under-
standing this is to note that quark loops are necessary
order to implement the Pauli exclusion principle on interna
propagators.

Thus we claim that one can study the decay of theD even
in QQCD. This is such a counterintuitive result that it is
worthwhile understanding in more detail. Consider th
quark-flow diagrams contributing to theC2 term in Fig. 5~a!:

FIG. 5. Diagrams contributing to theD self-energy that can lead
to D decay.
~3.37!
e

as
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in
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The quark-flows are the same as those contributing to theb2

part ofD 211,211
p —the only difference is the external flavors

The story is now the same as above. The diagrams w
quark loops cancel, leaving a nonzero contribution from t
last four diagrams on the first line—all of which involv
B111. Alternatively, the Pauli exclusion principle require
that the diagrams on the first line cancel, leaving a nonz
contribution from the diagrams of the second line withl 54.
In this view, the quenched decay is actual
D11→(uuD )1(ũuu). In QCD, by contrast, the diagrams o
the first line still cancel, but the nonvanishing contribution
from l 52 on the second line. Thus the QCD and QQC
decay amplitudes have the same magnitude but opposite
~assumingmu5md!.

2Strictly speaking, this is only true in large enough volumes. T
decay amplitude isp wave, and so vanishes at threshold, requiri
the intermediate pion to have nonzero momentum. This increa
the threshold for the decay on small lattices.
.
ith
he
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Actually this is not the whole story in QQCD. There ar
contributions from Fig. 5~a! proportional toCg8, and there
are contributions from Fig. 5~b! proportional toC2m0

2 and
C2aF

2 . Both give rise to a pion-nucleon cut in theD propa-
gator. Thus theD will have a different width in QQCD than
in QCD. Nevertheless, it will be interesting to use QQCD
a testing ground for methods to study an unstableD. This
requires, of course, thatmD2mp.mp , a condition that is
not close to being satisfied in most present simulations. O
must use lighter quarks~to increasemD2mp and to decrease
mp! and larger lattices~to decrease the cost of having non
zero momentum pions! for the decay to be kinematically
allowed.

IV. RESULTS

Using the methods explained above, we have calcula
mass renormalization of octet and decuplet baryons
QQCD resulting from the diagrams shown in Fig. 6. The
diagrams lead to the dominant corrections in a limit whic

he
ng
ses
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we explain below. The calculation of the flavor factors
quite laborious. In order to check our results, we have do
two independent calculations, one by hand and the other
ing MATHEMATICA . We have also tested our method by re
peating the calculation for QCD, and comparing to existin
results.

We present our results separately for each subset
graphs, i.e.,~a!–~e! in Fig. 6. We use the notation

Mbary~mu ,md ,ms!5M01 (
G5a,b,c,d,e

Mbary
~G! ~mu ,md ,ms!.

~4.1!

HereM0 is the octet baryon mass in the chiral limit. For th
octet baryons we have done the calculation assum
mu5md , while for the decuplets we have allowed all thre
quarks to have different masses.

A considerable simplification results from the fact that, i
QQCD, the mass of a given baryon depends only on t
masses of the quarks that it contains. This means that
need only give results for theS and L octets, and the
S* ,0~which has compositionuds! decuplet. Mass shifts for
the other baryons can be found simply by changing the qu
masses: e.g.,

MS5MS~mu ,ms!, Mp5MS~mu ,mu!,

MJ5MS~ms ,mu!,
~4.2!

MS* ,05MS* ~mu ,md ,ms!, MD
115MS* ~mu ,mu ,mu!,

MV
25MS* ~ms ,ms ,ms!.

An important check on our results is that all octet baryo
are degenerate if the quarks are degenerate, which imp
MS(mu ,mu)5ML(mu ,mu).

The diagrams of Fig. 6~a! give contributions proportional
to M p

2 :

MS
~a!524bFMuu

2 12~bD2bF!Mss
2 , ~4.3!

FIG. 6. Diagrams included in this calculation. Those in which
loop is attached to an external line@e.g., the first and third diagrams
in ~d!# represent mass shifts coming from wave-function renorm
ization.
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ML
~a!54~2bD/32bF!Muu

2 22~bD/31bF!Mss
2 , ~4.4!

MS*
~a!

5DM1c8~Muu
2 1Mdd

2 1Mss
2 !, ~4.5!

wherec85c/3m. These results require some explanation.
~1! The diagrams with filled triangles give contributions

proportional to quark masses. These corrections are the sa
as in QCD, except that ‘‘s-term’’ contributions proportional
to s or s̄ are absent in QQCD. To make the comparison wit
QCD more direct, we have rewritten the octet results usin
Eq. ~2.46! to expressaM andbM in terms ofbD andbF .

~2! The decuplet masses are also shifted byDM , the
octet-decuplet mass splitting in the chiral limit.

~3! The diagrams involving meson loops with the hairpi
vertex give corrections proportional tomqm0

2 ln (mp
2 ),

which are quenched artifacts. For small enoughmp , these
can become larger than the analytic corrections proportion
to mq . They are of the same form as the leading chiral co
rection to the pion mass@8,9#:

Mqq
2 52mmqF12d ln

Mqq
2

Lx
2 G , ~4.6!

where3 d5m0
2/48p2f 2. It turns out that the corrections to

baryon masses from these loop graphs are of exactly
form to allow them to be absorbed by replacing quar
masses with the corresponding one-loop corrected mes
squared masses of Eq.~4.6!. This is convenient, since it is
more straightforward to extract meson masses than qu
masses from simulations.

The diagrams of Fig. 6~b! are present in both QCD and
QQCD. As shown in the example of Sec. III, these give ris
to nonanalytic terms proportional toM p

3 . We find

MS
~b!5~ 2

3D
222F224Fg2 1

9C2!Vuu1~ 2
3D

224DF12F2

2 5
9C2!Vus12~D2F !gVss, ~4.7!

ML
~b!5@ 2

9D
22 8

3DF12F214~2D/32F !g2 1
3C2#Vuu

1@ 10
9 D

22 4
3DF22F22 1

3C2#Vus

2@2~D/31F !g#Vss, ~4.8!

MS*
~b!

5~ 1
9C22 10

81H2!@Vud1Vds1Vsu#

2 10
27Hg8@Vuu1Vdd1Vss#, ~4.9!

where

Vus5
Mus

3

16f 2p
, etc. ~4.10!

Note that we have rewrittena andb in terms ofD andF
using Eq.~2.46!.

3Strictly speaking the meson mass in the logarithm should be t
lowest order approximation (2mmq), but it can be replaced by the
actual mass to the order we are working.
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These results forM (b) show that theM p
3 terms are present

in QQCD. Some are proportional toD and F, i.e., of the
same general form as those in QCD, while others, prop
tional tog andg8 are quenched artifacts. To give some id
of the effect of quenching, we quote the QCD result forL
@6#:

ML
~b!~QCD!5@2D21C2#Vp2 2

3 @~D219F2!1C2#VK

2 2
3D

2Vh . ~4.11!

There is no obvious correlation between quenched and
results.

The diagrams of Fig. 6~c! are obtained from those jus
considered by inserting anm0

2 or aF vertex on the meson
line. We find

MS
~c!5 1

2 @4F2W~u,u!24~D2F !FW~u,s!1~D2F !2

3W~s,s!#1 1
9C2@W~u,u!22W~u,s!1W~s,s!#,

~4.12!

ML
~c!5 1

2 @~4D/322F !2W~u,u!22~4D/322F !~D/31F !

3W~u,s!1~D/31F !2W~s,s!# ~4.13!

MS*
~c!

5 5
162H2@W~u,u!1W~d,d!1W~s,s!12W~u,d!

12W~d,s!12W~s,u!#1 1
18C2@W~u,u!1W~d,d!

1W~s,s!2W~u,d!2W~d,s!2W~s,u!#, ~4.14!

where

W~a,b!5
2

3 S aF~Maa
5 2Mbb

5 !2m0
2~Maa

3 2Mbb
3 !

16f 2p~Maa
2 2Mbb

2 !
D ,
~4.15!

and
or-
ea

full

t

W~a,a!5 lim
a→b

W~a,b!5

5
3aFMaa

3 2m0
2Maa

16f 2p
. ~4.16!

These contributions are pure quenched artifacts. TheaF term
is of roughly the same form as the ‘‘conventional’’ loop
corrections proportional toM p

3 . Them0
2 term, however, is

enhanced bym0
2/M p

2 in the chiral limit. It turns out, how-
ever, that the influence of these terms on the curves ofMbary
versusM qq

2 is not significant until quark masses substantiall
smaller than those used in present simulations. We discu
this in detail in the companion paper.

It is simple to understand the origin of the enhanced loo
contribution. The second propagator in the loop makes t
diagrams more infrared divergent than those in Fig. 6~b!, and
thus more sensitive to the IR cutoff. The contribution pro
portional tom0

2 can be obtained, up to overall factors, by
acting withm0

2(]/]M qq
2 ) on the results from Fig. 6~b!. This

replaces one power ofM qq
2 with m0

2. This is another ex-
ample of the peculiar behavior of quenched quantities in t
chiral limit, previously seen inM p

2 @see Eq.~4.6!#, f K , f B ,
and various matrix elements@8–11#.

The diagrams of Figs. 6~d! and 6~e! yield further
quenched artifacts that are proportional tomqm0

2 ln(M qq
2 ).

Without the hairpin vertex, these diagrams give correction
proportional tomqM p

2 ln(M p
2 ), which are suppressed in the

chiral limit. The insertion of the hairpin vertex makes the
diagrams more IR singular, replacingM p

2 with m0
2. In quot-

ing our results we have converted factors ofmq into M qq
2

using the lowest order formula. This is consistent since,
we explain below, we are dropping terms ofO(m0

4).
We find that

MS
~d!5ML

~d!5MS*
~d!

50. ~4.17!

The cancellation between the two diagrams is related to t
simple flavor structure of graphs involving them0

2 vertex, as
illustrated in Fig. 4. There is no such cancellation betwee
the diagrams in Fig. 6~e!, and we obtain
MS
~e!52 1

9C2@24bFMuu
2 12~bD2bF!Mss

2 2c8~2Muu
2 1Mss

2 !#@X~u,u!22X~u,s!1X~s,s!#, ~4.18!

ML
~e!50, ~4.19!

MS*
~e!

5 1
18C2@c812~bf2bD/3!#~Muu

2 1Mdd
2 1Mss

2 !@X~u,u!1X~d,d!1X~s,s!2X~u,d!2X~d,s!2X~s,u!#

2 1
18C2bD~Muu

2 2Mdd
2 !@X~u,u!2X~d,d!22X~u,s!12X~d,s!#

2 1
54C2bD~Muu

2 1Mdd
2 22Mss

2 !@X~u,u!1X~d,d!22X~s,s!24X~u,d!12X~u,s!12X~d,s!#. ~4.20!
s
al
Here

X~a,b!5
m0
2@Maa

2 ln~Maa
2 !2Mbb

2 ln~Mbb
2 !#

16f 2p2~Maa
2 2Mbb

2 !
, ~4.21!

and
X~a,a!5 lim
a→b

X~a,b!5
m0
2@ ln~Maa

2 !11#

16f 2p2 . ~4.22!

The last two terms inMS*
(e) are symmetric under permuta-

tions, despite appearances.
We can now explain why we consider only the diagram

of Fig. 6. We are essentially carrying out a standard chir
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expansion inM qq
2 , supplemented by an expansion inm0

2/3.
The next chiral corrections are;M qq

4 ln Mqq , and thus sup-
pressed by one power ofMqq compared to theM qq

3 terms
that we keep. We also are dropping terms suppressed
additional powers ofm0

2. However, we keep contributions
proportional to (m0

2/3)M qq
2 ln Mqq , since they become im-

portant as we approach the chiral limit. In particular,
M qq

2 ,m0
2/3, the enhanced logarithm can lead

(m0
2/3)lnMqq;Mqq , in which case the logarithmic

term should be kept~it is ;M qq
3 !, while it is consistent to

drop higher powers of (m0
2/3)lnMqq . In practice, in present

simulationsM qq
2 .m0

2/3, so it is likely thatM qq
4 ln(Mqq)

terms are significant. Nevertheless, as simulations appro
closer to the chiral limit, our analysis will become more a
plicable.

A second reason for truncating the expansions is m
practical. The nonanalytic corrections that we have cal
lated are those that are determined unambiguously in te
of the lowest order coefficients in the chiral Lagrangia
There is no dependence of unknown scales;Lx , and no
counterterms of the same order. This is obvious for the ter
proportional toV andW, but is true also for those containin
theX(a,b)—the scale of the logarithm cancels in the corre
tionsM bary

(e) . This is in contrast to meson masses and dec
constants, Eq.~4.6!, where the chiral corrections are propo
by

if
to

ach
p-

ore
cu-
rms
n.

ms
g
c-
ay
r-

tional to ln(M qq
2 /L x

2) and thus contain an unknown scale
This unknown scale does enter intoMbary

(a) , but can be ab-
sorbed into the meson masses as described above.

Finally, we recall that our calculation is done in the ap
proximation thatDM!Mqq , so that the octet and decuple
baryons can be treated to first approximation as degenera
It would be straightforward in principle to extend our result
to largerDM , although we have not carried out the calcula
tion. DM enters only in diagrams in which the interna
baryon is an octet while the external baryon is a decuplet,
vica versa. These are the diagrams giving contributions pr
portional toC2. The effects ofDMÞ0 can be included ex-
actly by shifting the mass in the baryon propagator in the
diagrams,k•v→k•v6DM . Some of the resulting integrals
have been evaluated in Ref.@12#. For example, for the sec-
ond diagram of Fig. 6~b!, the factor ofM p

3 from the loop is
replaced by an integral whose expansion for smallDM is
M p

323M p
2DM ln(Mp)/p. In present simulations, the sec-

ond term is a relatively small correction.
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